WO2006120990A1 - 無線通信装置、基地局および無線通信システム - Google Patents

無線通信装置、基地局および無線通信システム Download PDF

Info

Publication number
WO2006120990A1
WO2006120990A1 PCT/JP2006/309227 JP2006309227W WO2006120990A1 WO 2006120990 A1 WO2006120990 A1 WO 2006120990A1 JP 2006309227 W JP2006309227 W JP 2006309227W WO 2006120990 A1 WO2006120990 A1 WO 2006120990A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
time slot
base station
communication device
network
Prior art date
Application number
PCT/JP2006/309227
Other languages
English (en)
French (fr)
Inventor
Masao Nakagawa
Riaz Esmailzadeh
Ikuo Kobayashi
Yuichi Miyake
Yuji Horii
Original Assignee
Keio University
Ipmobile Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005141231A external-priority patent/JP2006319755A/ja
Priority claimed from JP2006009931A external-priority patent/JP2007194821A/ja
Priority claimed from JP2006009932A external-priority patent/JP2007194822A/ja
Application filed by Keio University, Ipmobile Incorporated filed Critical Keio University
Publication of WO2006120990A1 publication Critical patent/WO2006120990A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • Wireless communication apparatus base station, and wireless communication system
  • the present invention relates to a radio communication apparatus, a radio communication system, a base station, a mini base station, and a network resource allocation method that perform communication using a TDD scheme.
  • a user terminal such as a mobile phone, a PC, or a PDA existing in a predetermined communication area (cell).
  • wireless communication services such as data and voice are provided through base stations.
  • Duplex systems used in such mobile communication networks are, for example, known as FDD (Frequency Division Duplex system and TDD (Time Division Duplex) system; 0.
  • FDD Frequency Division Duplex system
  • TDD Time Division Duplex
  • different frequency bands are used for uplink (uplink) and downlink (downlink) communications
  • TDD scheme uses the same frequency band for uplink and downlink.
  • pseudo simultaneous transmission / reception is realized by switching between uplink and downlink at a very short fixed time interval called time slot.
  • the ratio and arrangement of time slots allocated to links and downlinks can be set appropriately according to traffic characteristics, etc. Also, as shown in Fig.
  • video Multiple timeslots are allocated to users (such as streaming), and one time slot is allocated to users of services (such as mail services) that can be handled with low-speed communication. It is also possible to adaptively assign time slots in accordance with user requests and communication conditions (see, for example, Patent Document 1).
  • an ad hoc network is used as a short-range wireless data communication network.
  • this ad hoc network as shown in FIG. 29, it is possible to perform direct communication between wireless communication devices within the reach of radio waves without intervening base stations. Therefore, according to the ad hoc network, there is an advantage that a base station and an access point are not required, and a network can be easily constructed even in a place without having strong communication facilities.
  • communication technologies for constructing such an ad hoc network for example, Bluetooth (registered trademark) and wireless LAN (IEEE802.11x) have been proposed.
  • the present inventors have previously adopted a common TD D-CDMA system for communication in an ad hoc network and communication in a mobile communication network as a wireless communication apparatus that solves the above-described problems.
  • a wireless communication device using the same frequency band is developed, and a technique related to this is disclosed in Patent Document 2.
  • this wireless communication device by unifying the communication methods in the ad hoc network and the mobile communication network, the complexity of the device configuration can be avoided and the cost can be increased, and the network to be connected can be switched. The advantage that can be performed smoothly is obtained.
  • the communication channel used in each network is the same.
  • the reception characteristics of each radio wave deteriorate due to interference between the radio waves.
  • method A and method C are often used probabilistically, and in the case of method A, the time slot usage efficiency deteriorates, so ad hoc.
  • method C there was a problem that high-speed transmission in an ad hoc network could be expected, but there was a problem that interference with a mobile communication network increased.
  • the network between the user equipment and the central base station (main network) and the network between the user equipment and the mini base station (subnet work) and the power are in the same frequency band. Because the system communicates with each other, the radio waves interfere with each other.
  • the mini base station is a simple base station and does not have a directional antenna, which increases interference with the central base station.
  • the central base station and each mini base station completely synchronize the uplink and the downlink to reduce interference.
  • all mini base stations in the cell adopt the same slot configuration as the central base station.
  • each mini base station adopts a unique slot configuration according to traffic characteristics, etc. I could't.
  • the above-mentioned may occur, leading to a decrease in throughput.
  • the time slots with different communication directions in the example shown, the 10th and 11th In the time slot (Crossed-Slot) where the first time slot is generated and transmitted, as shown in Fig. 34
  • the other cell Interference occurs in the mobile station in (cell A)
  • the transmission signal from the base station in the other cell becomes interference in the base station in the one cell.
  • the mobile stations are sufficiently separated from each other, there will be no significant interference, but if they are close to each other, a large interference may occur, which may degrade the throughput characteristics.
  • a user terminal and a base station, or user terminals are connected to other user terminals, etc.
  • the distance of one communication is smaller than that of single-hop communication, the power consumption of each terminal can be reduced.
  • communication can be performed with strong power, high-speed communication can be realized and the data rate can be improved.
  • the ability to use user terminals in the cell as relay terminals for example, user terminals that exist outside the cell also communicate with the base station via the relay terminals in the cell. It can be carried out.
  • terminal-to-terminal communication as shown in FIG. 36, there is a limit in the distance that can be communicated by one terminal due to the limit of output power, but as shown in FIG. Long-distance communication can be realized using the communication distance of the terminal.
  • the transmission output of the relay terminal power may cause a large interference with surrounding user terminals.
  • the time slot used by terminal C for reception from terminal B and the time slot transmitted to terminal D 3 ⁇ 4 are different, the distance between terminal C and terminal D is Because it is close, the transmission power of D terminal power remains as it is. As a result, there is a risk of interfering with the communication of the C terminal.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-197112
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-363998
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-159900
  • the first object of the present invention is to suppress interference between networks as much as possible even when the same frequency band is used for communication in an ad hoc network and a mobile communication network. It is also necessary to provide a wireless communication device, a wireless communication system, a base station, and a network resource allocation method that can increase the use efficiency of network resources.
  • a second object of the present invention is to provide wireless communication capable of suppressing mutual interference between a main network centered on a central base station and a sub-network centered on a mini base station. To provide a system and a mini base station.
  • a third object of the present invention is to provide a radio communication system capable of suppressing mutual interference between adjacent cells.
  • a fourth object of the present invention is to provide a wireless communication system capable of suppressing the occurrence of mutual interference between wireless communication devices existing at a short distance.
  • the wireless communication apparatus constructs an ad hoc network with other wireless communication apparatuses existing in the surrounding area, and establishes TDD with the other wireless communication apparatuses.
  • the amount of network resources used for communication within the ad hoc network is set according to the load amount, and communication within the ad hoc network is performed within the set range. It is characterized by the above.
  • TDD-CDMA is CDMA that uses the TDD scheme as a duplex scheme.
  • CDMA is one of multiple access systems that apply spread spectrum and is a communication system called code division multiple access.
  • Examples of TDD-CDMA include TD-CDMA standardized by 3GPP (3rd Generation Partnership Project).
  • TDD—TDMA is TDMA (Time Division Multiple Access), which uses the TDD method as a duplex method, and TDMA is a multiple number of callers that are alternated over the same frequency band for a short time. This is a multiple access method shared by both.
  • An example of adopting TDD-TDMA is PHS (Personal Handyphone System).
  • TDD-OFDM is OFDM (Orthogonal Frequency Division Multiplexing) that uses the TDD method as a duplex method, and OFDM is a frequency interval at which the intensity of the modulated spectrum becomes zero.
  • OFDM Orthogonal Frequency Division Multiplexing
  • This is a transmission method in which a plurality of carriers are arranged every time (so that each spectrum is orthogonal to each other). In this transmission method, one or more carriers are allocated to each sender.
  • Multiple access schemes based on OFDM include, for example, OFDMA (Orthogonal Frequency Division Multiple Access) and OFCDM (Orthogonal Frequency and Code Division Multiplexing).
  • Network resources include time slots and spreading codes in the case of TDD-CDMA, for example.
  • the time slot is included in the TDD-TDMA scheme, and the time slot and carrier power are included in the network resources in the multiple access scheme based on TDD-OFD M, respectively.
  • Examples of the wireless communication device include information terminals such as a mobile phone, a PDA (Personal Digital Assistance) having a function of connecting to a mobile communication network, and a personal computer.
  • information terminals such as a mobile phone, a PDA (Personal Digital Assistance) having a function of connecting to a mobile communication network, and a personal computer.
  • PDA Personal Digital Assistance
  • the connection function with the mobile communication network is provided.
  • These wireless communication devices are connected to other wireless communication devices that are at least within the reach of radio waves. And has a function of communicating with each other between wireless communication devices in the ad hoc network (hereinafter referred to as an ad hoc communication function).
  • the wireless communication device detects surrounding wireless communication devices having the ad hoc communication function, and information about the wireless communication devices (for example, nodes such as ID and node type) Information, information related to communication channels such as spreading codes and time slots) is acquired by a specific wireless communication device (master) and stored in the storage unit, and then assigned by a specific wireless communication device (master) It is designed to communicate with other wireless communication devices in the ad hoc network using the specified communication channel.
  • information about the wireless communication devices for example, nodes such as ID and node type
  • Information information related to communication channels such as spreading codes and time slots
  • the wireless communication apparatus it is preferable to set so that the utilization rate of the network resource used for communication in the ad hoc network decreases as the load amount increases. .
  • a wireless communication system includes a base station of a mobile communication network and a communication based on TDD-CDMA, TDD-TDMA, and TDD-OFDM for communication with the base station.
  • the ratio of network resources used for mobile communication network communication among the network resources available in the communication area of the base station is described.
  • the base station uses a load amount calculating means for obtaining the load amount, and a utilization rate of network resources used in communication within the ad hoc network based on the load amount.
  • Reference value setting means for setting a reference value
  • reference value notifying means for notifying the set reference value to the wireless communication device, the wireless communication device having a reference value notified from the base station. Based on this, set the utilization rate of the network resources used for communication within the ad hoc network, and communicate within the ad hoc network within the range of the setting! It is characterized by that.
  • the wireless communication apparatus measures the amount of interference when the mobile communication network is uplink, and performs correction according to the amount of interference on the basis of the reference. It is possible to adopt a configuration for deriving the utilization rate by adding to the value.
  • the base station sets the reference value ⁇ to the load amount X and the load amount, where Y is the reference value, X is the load amount, and ⁇ is the number of ad hoc networks existing in the communication area of the base station.
  • the load amount calculation means obtains an uplink load amount and a downlink load amount of the mobile communication network, and sets the reference value.
  • the means sets the first reference value in accordance with the load amount in the uplink of the mobile communication network, and sets the second reference value in accordance with the load amount in the downlink of the mobile communication network.
  • the communication device sets the first usage rate based on the first reference value notified from the base station and sets the second usage rate based on the second reference value, and then downs the mobile communication network.
  • communication within the ad hoc network is performed within the range of the first usage rate, and when the mobile communication network is the uplink, the second usage rate is used. It is preferable to communicate within an ad hoc network within the range of
  • the wireless communication device measures the amount of interference at the time of uplink of the mobile communication network and the amount of interference at the time of downlink of the mobile communication network, and the amount of interference at the time of uplink.
  • the wireless communication device randomly selects a number of time slots corresponding to the above utilization rate from every time slot for each frame.
  • the time slot can be assigned as a time slot for an ad hoc network.
  • the wireless communication apparatus randomly selects a number of combinations corresponding to the utilization rate from each combination of spreading codes and time slots that can be used within the communication area of the base station for each frame. It is also possible to adopt a configuration in which the selected combination of spreading code and time slot is assigned as a network resource for an ad hoc network.
  • the wireless communication device When selecting a number of time slots corresponding to the above utilization rate from among the slots, for example, the mobile station power interference amount or the mobile station position information of the mobile communication network is acquired, and the acquired interference amount or Based on the location information, it is possible to select a combination of time slots that minimizes the amount of interference between the ad hoc network and the mobile communication network.
  • the wireless communication apparatus performs communication using adaptive coding modulation that selects a combination of a modulation scheme and a coding rate adapted to the state of the transmission path. It is also possible to do.
  • the base station constructs an ad hoc network with other wireless communication devices existing in the vicinity, and the other wireless communication devices, the TDD-CDMA scheme, and the TD D-TDMA.
  • Method and TDD A wireless communication device that performs communication using any one of the multiple access methods based on OFDM is used as a mobile station and uses the same frequency band as the ad hoc network with the mobile station.
  • a base station of a mobile communication network that performs communication using the TDD method, and among the network resources that can be used within the communication area of the base station, the network resources used for communication of the mobile communication network are allocated.
  • the load amount calculation means for determining the load amount, and the basis for the utilization rate of the network resources used for communication within the ad hoc network based on the load amount.
  • a reference value setting means for setting a reference value set is characterized in further comprising a reference value notification unit that notifies to said wireless communication device.
  • the network resource allocation method includes a TDD-CDMA system, a TDD-TDMA system, and a TDD for communication between a base station of a mobile communication network and the base station.
  • the wireless communication system is based on any one of TDD-CDMA, TDD-TDMA, and TDD-OFDM! / And multiple access systems. Communicates with the TDD system using the same frequency band as the base station with the base station that communicates with the mobile station that exists in the communication area and the mobile station that exists within the specific area within the communication area.
  • Reference value setting means for setting a reference value for the resource utilization rate, and reference value notification means for notifying the set reference value to the mini base station, the mini base station being notified of the base station power.
  • the utilization rate of network resources used for communication in the specific area is set, and communication with mobile stations in the specific area is established within the setting range! It is characterized by this.
  • the mini base station measures the amount of interference at the time of uplink in the communication area, and adds a correction according to the amount of interference to the reference value. It is possible to adopt a configuration for deriving the utilization rate.
  • the mini base station randomly selects a number of time slots corresponding to the usage rate from every time slot for each frame, and specifies the time slot. It is possible to assign the time slot to be used in the area.
  • the mini base station may use the utilization rate from all combinations of spreading codes and time slots that can be used in the communication area of the base station. It is also possible to adopt a configuration in which the number of combinations corresponding to is randomly selected for each frame, and the combination of the selected spreading code and time slot is allocated as communication network resources in the specific area.
  • the mini base station when the mini base station selects a number of time slots corresponding to the utilization rate, the mini base station acquires the interference amount from the mobile station outside the specific area or the location information of the mobile station, It is possible to select a combination of time slots that minimizes the amount of mutual interference based on the amount of interference or position information.
  • the utilization rate of the network resource used for communication in the ad hoc network is set according to the utilization state of the network resource of the mobile communication network, and within the range of the setting. Since communication within an ad hoc network is performed, it is possible not only to improve the utilization efficiency of network resources, but also to suppress mutual interference between networks.
  • a radio communication system includes a central base station and a mini base station installed in a cell of the central base station, A wireless communication system in which a mobile station existing in a cell communicates with the central base station or the mini base station using a TDD scheme, and the mini base station measures the amount of interference from the central base station.
  • the basic configuration is the time slot configuration used in the central base station, and the degree of freedom for this is defined as the interference amount.
  • the time slot setting means sets the degree of freedom of the time slot used in the mini base station to be low when the amount of interference is large, and when the amount of interference is small, The degree of freedom of time slots used in the base station is set high.
  • the time slot setting means performs control to preferentially assign a time slot used in the downlink of the central base station as a time slot used in the downlink of the mini base station.
  • the time slot setting means evaluates the strength of interference by, for example, comparing the amount of interference with a preset threshold value, and sets a slot configuration with a degree of freedom corresponding to the evaluation. It is possible to adopt a configuration that selects from candidates prepared in advance.
  • a mini base station is installed in a cell of a central base station and communicates with a mobile station existing in a local area in the cell using the TDD scheme.
  • This is a mini base station that is used by the central base station when setting the interference amount measuring means for measuring the interference amount from the central base station and the time slot configuration used by the mini base station.
  • the degree of freedom for this is set according to the amount of interference measured by the interference amount measuring means, and the time used by the mini-base station within the range of the degree of freedom.
  • a time slot setting means for setting the slot configuration, and communicating with a mobile station existing in the communication area of the mini base station according to the time slot configuration set by the time slot setting means. Is shall.
  • the slot configuration of the central base station is used as the basic configuration.
  • the degree of freedom for this is set according to the measured value of the interference amount of the central base station force, and the slot configuration of the mini base station is determined within the range of the setting, so the central base station and the mini base station Even when using the same frequency band, it is possible to suppress mutual interference between both networks, and to ensure a good communication state in any network.
  • Each subnetwork (network between each mini base station and mobile station) can adopt a slot configuration different from that of the main network (network between central base station and mobile station). It is possible to take a flexible response. This avoids a decrease in throughput and communication capacity. Network resources can be used more efficiently.
  • a wireless communication system is a wireless communication system having a base station and a mobile station that communicates with the base station using the TDD scheme.
  • the base station includes pilot signal transmission means for transmitting a pilot signal to the mobile station, while the mobile station transmits the attenuation information of the pilot signal received from the base station to the base station.
  • Attenuation information transmitting means for transmitting to the base station, the base station, based on the attenuation information of the pilot signal received from the mobile station, the mobile station of the mobile station necessary to achieve a predetermined power in the base station
  • the time slot allocation means provides a switching point at a predetermined position in a frame consisting of a plurality of time slots, sets the time slot from the start point of the frame to the switching point as a downlink, and from the switching point to the end point of the frame.
  • Each time slot is set as an uplink, and time slot assignment is performed so that the higher the required transmission power is, the lower the required transmission power that is closer to the start or end of the frame is, the closer to the switching point is. It is characterized by doing.
  • the time slot assigning means assigns a time slot close to the frame start point to the downlink and a time slot close to the frame end point to the uplink.
  • the time slot allocating unit obtains network resource utilization rates in the respective time slots, and performs reassignment of time slots so that the utilization rates are equalized. It is possible.
  • the time slot allocating means evaluates the magnitude of the required transmission power by comparing the required transmission power with a preset threshold value, and evaluates the evaluation.
  • the corresponding time slot can be selected as the time slot used for communication with the mobile station.
  • each threshold based on the correlation between the base station power distance and the required transmission power, It is desirable to set each threshold so that when virtual circles corresponding to each threshold are drawn in the cell, the areas of the donut-shaped regions formed between adjacent virtual circles are substantially equal to each other.
  • a time slot from the start point of the frame to the switching point may be set as an uplink, and a time slot from the switching point to the end point of the frame may be set as a downlink.
  • the time slot assigning means assigns a time slot close to the frame start point to the uplink and a time slot close to the frame end point to the downlink.
  • the required transmission power of the mobile station necessary for achieving the predetermined power at the base station is obtained based on the attenuation information of the pilot signal, and this required transmission power is obtained.
  • a time slot close to is assigned, and a mobile station close to the base station is assigned a time slot close to the switching point.
  • the radio communication system uses any time slot included in this frame as a basic unit of a frame consisting of a plurality of time slots.
  • a wireless communication system having a plurality of wireless communication devices that communicate with each other, wherein a wireless communication device that is a transmission side is a first wireless communication device and a reception side
  • the second wireless communication device is the second wireless communication device, and the second wireless communication device performs interference with each time slot each time a predetermined condition is established after the start of communication with the first wireless communication device.
  • An interference amount measuring means for measuring the amount of interference
  • an interference amount notification means for notifying the first wireless communication device of the interference amount of each time slot measured by the interference amount measuring means.
  • the wireless communication device selects the time slot to be used next (the time slot to be used when transmitting to the second wireless communication device) based on the interference amount of each time slot notified from the second wireless communication device. And a time slot notifying means for notifying the second wireless communication device of the time slot selected by the time slot selecting means.
  • the line communication device notifies the second wireless communication device of the time slot selected by the time slot selecting means, and then communicates with the second wireless communication device using the time slot. To do.
  • examples of the wireless communication device include a base station and a mobile station of a mobile communication network, and the mobile station includes a mobile station that directly communicates with the base station and another mobile station. This includes mobile stations that communicate with the base station.
  • the TD-CDMA system one of the standards standardized by 3GPP, can be adopted as a communication system used between wireless communication devices.
  • this TD-CDM A system one frame consists of 15 time slots.
  • the predetermined condition for starting the measurement of the interference amount is, for example, (1) when receiving an instruction to execute a process from the base station, (2) starting communication with the first wireless communication device, When (3) the measurement force of the previous interference amount has also passed for a certain period of time, any force may be employed.
  • the time slot selecting means obtains allocated power that can be allocated to communication with the second wireless communication device for each time slot, and then determines the allocated power and The function value of the evaluation function using the interference amount notified as the second wireless communication device power as an argument is obtained, and the time slot to be used next is selected based on the comparison result of the function value. It is possible.
  • the time slot selection means for example, sets the allocated power as the interference amount.
  • the time slot with the maximum value obtained by dividing can be configured to be selected as the next time slot to be used.
  • the interference amount measuring means measures the interference amount a plurality of times during communication with the first wireless communication device, and each time slot selection is performed each time.
  • the means may be configured to select a time slot to be used next.
  • the first wireless communication device is, for example, a base station of a mobile communication network
  • the second wireless communication device is a mobile station of the mobile communication network. It is.
  • the first wireless communication device is a relay terminal that performs a relay process between the second wireless communication device and another wireless communication device, for example.
  • the radio communication system uses a frame consisting of a plurality of time slots as a basic unit, and communicates with each other using any of the time slots included in this frame.
  • a wireless communication system having a plurality of wireless communication devices, wherein the first wireless communication device is the first wireless communication device as the first wireless communication device and the second wireless communication device as the second wireless communication device.
  • the second wireless communication apparatus includes an allocated power notification means for obtaining an allocated power that can be allocated for communication with the second wireless communication device for each time slot and notifying the second wireless communication device of the allocated power.
  • the device includes an interference amount measuring means for measuring an interference amount of each time slot each time a predetermined condition is established after communication with the first wireless communication device is established, and the interference amount measurement The time slot to be used next (from the first wireless communication device) based on the interference amount of each time slot measured by the stage and the allocated power of each time slot notified by the first wireless communication device Time slot selection means for selecting a time slot to be used when receiving the time slot, and time slot notification means for notifying the selected time slot to the first wireless communication device, wherein the first wireless communication device comprises: After receiving a time slot notification from the second wireless communication device, the second wireless communication device communicates with the second wireless communication device using the time slot.
  • the radio communication system uses a frame composed of a plurality of time slots as a basic unit, and uses any of the time slots included in this frame.
  • a wireless communication system having a plurality of wireless communication devices that communicate with each other using a wireless communication device as a transmission side as a first wireless communication device and a wireless communication device as a reception side as a second wireless communication device,
  • the second wireless communication device includes an interference amount measuring unit that measures an interference amount of each time slot each time a predetermined condition is established after communication with the first wireless communication device is established. After measuring the amount of time slot interference, select the time slot with the least amount of interference as the next time slot to be used (the time slot used when receiving from the first wireless communication device).
  • the wireless communication system uses a frame consisting of a plurality of time slots as a basic unit, and wireless communication devices communicate with each other using any of the time slots included in this frame.
  • a wireless communication device serving as a transmission side is a first wireless communication device
  • a wireless communication device serving as a reception side is a second wireless communication device
  • the first wireless communication device is connected to each time slot.
  • the second wireless communication device is provided with an allocated power notification means for obtaining an allocated power that can be allocated for communication with the second wireless communication device and notifying the second wireless communication device of the allocated power.
  • an interference amount measuring means for measuring the interference amount of each time slot and the interference amount measuring means Based on the specified interference amount of each time slot and the allocated power of each time slot notified of the power of the first wireless communication device, the time slot to be used next (used when receiving the power of the first wireless communication device)
  • a time slot selecting means for selecting a candidate for a time slot, and a time slot notifying unit for notifying the first wireless communication device of the selected time slot candidate.
  • the first wireless communication device comprises: From the time slot candidates notified from the second wireless communication device, the next time slot to be used is selected and notified to the second wireless communication device, and then the time slot is used. And communicating with the second wireless communication device.
  • the second wireless communication device measures the interference amount of each time slot, and based on the measurement result, the first wireless communication device or the second wireless communication device Since the next time slot to be used next is selected sequentially for communication between wireless communication devices, a communication environment where there are multiple wireless communication devices in close range (especially wireless communication devices that perform multi-hop communication). Even in a communication environment that exists in the vicinity, interference between the wireless communication devices can be suppressed. As a result, a reduction in throughput and communication capacity can be avoided and high-speed communication can be realized.
  • the interference state of each time slot is caused by, for example, the appearance or disappearance of another wireless communication device or the movement of the wireless communication device on the transmission side or the reception side. Even if a change occurs, an optimal time slot with a small amount of interference can be selected appropriately in response to the change.
  • FIG. 1 is a diagram showing an example of a hybrid network of a mobile communication network and an ad hoc network.
  • FIG. 2 is a block diagram showing a main configuration of a wireless communication apparatus according to the present invention.
  • FIG. 3 is a block diagram showing a main configuration of a base station of a mobile communication network.
  • FIG. 4A is a diagram for explaining a method for calculating the load amount X.
  • FIG. 4B is a diagram for explaining a method for calculating the load amount X.
  • FIG. 5 is a diagram for explaining the relationship between the network resource utilization rate Z and the amount of interference in each ad hoc network constructed in the communication area of the base station.
  • FIG. 6 is a diagram showing a setting example of the utilization rate Z of each ad hoc network in FIG.
  • FIG. 7A is a diagram for explaining a method of calculating the load amounts X 1 and X.
  • FIG. 7B is a diagram for explaining a method for calculating the load amounts X 1 and X.
  • FIG. 8 is a diagram showing an example of a mobile communication network in which a mini base station exists within a communication area of a base station.
  • Fig. 9A shows carriers and subkeys used in each cell of the mobile communication network. It is a figure for demonstrating a carrier.
  • FIG. 9B is a diagram showing an example of carriers used in each cell when the frequency reuse factor is 1.
  • FIG. 9C is a diagram showing an example of carriers used in each cell when the frequency reuse factor is 3.
  • FIG. 10 is a diagram showing a radio communication system according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the amount of interference from the central base station.
  • FIG. 12 is a diagram showing an example of the MODE and slot configuration of each mini base station.
  • FIG. 13 is a diagram showing a wireless communication system according to a fifth embodiment of the present invention.
  • FIG. 14 is a schematic diagram for explaining a time slot allocation method.
  • FIG. 15 is a flowchart of processing performed in a base station and a mobile station.
  • FIG. 16 is a schematic diagram for explaining a threshold setting method.
  • FIG. 17 is a schematic diagram for explaining a method of leveling the resource utilization rate.
  • FIG. 18 is a diagram showing a wireless communication system according to a sixth embodiment, showing a communication state in a time slot A of a certain frame.
  • FIG. 19 is a diagram showing a communication state in time slot B.
  • FIG. 20 is a flowchart showing time slot allocation processing according to the sixth embodiment.
  • FIG. 21 is a schematic diagram showing an example of a time slot selection method.
  • FIG. 22 is a graph showing the cumulative distribution function of SIR for each slot assignment method.
  • FIG. 23 is a flowchart showing time slot allocation processing according to the seventh embodiment.
  • FIG. 24 is a flowchart showing time slot allocation processing according to the eighth embodiment.
  • FIG. 25 is a diagram showing an example of a mobile communication network.
  • FIG. 26 is a schematic diagram for explaining the TDD method and the FDD method.
  • FIG. 27 is a diagram illustrating an example of a frame configuration of TDD CDMA.
  • FIG. 28 is a diagram showing an example of time slot allocation.
  • FIG. 29 is a diagram illustrating an example of an ad hoc network.
  • FIG. 30 is a diagram for explaining a conventional time slot allocation method.
  • FIG. 31 is a diagram showing an example of a cell overlay using a mini base station.
  • FIG. 32 is a diagram showing a slot configuration of a conventional mini base station.
  • FIG. 33 is a diagram showing a frame configuration example of two adjacent cells.
  • FIG. 34 is a diagram for explaining interference occurring between the cells in FIG. 33.
  • FIG. 35 is a diagram illustrating an example of single-hop communication.
  • FIG. 36 is a diagram showing an example of single-hop communication (communication between terminals).
  • FIG. 37 is a diagram illustrating an example of multi-hop communication.
  • FIG. 38 is a diagram showing an example (inter-terminal communication) of multi-hop communication.
  • FIG. 39 is a schematic diagram for explaining interference occurring between short-range wireless communication devices.
  • the first to third embodiments are the first aspect of the present invention
  • the fourth embodiment is the second aspect of the present invention
  • the fifth embodiment is According to the third aspect of the present invention
  • the sixth to eighth embodiments correspond to the fourth aspect of the present invention, respectively.
  • FIG. 1 shows a radio communication system according to the first embodiment of the present invention.
  • reference numeral 10 denotes a radio communication device
  • reference numeral 30 denotes a base station of a mobile communication network.
  • the wireless communication device 10 is configured to construct an ad hoc network with other wireless communication devices existing in the vicinity, and to communicate with each other between the wireless communication devices in the ad hoc network. And the same frequency band by adopting the TDD-CDMA system common to each communication system.
  • the wireless communication device 10 is composed of, for example, a mobile phone, an information terminal such as a PDA or personal computer having a communication function.
  • FIG. 2 is a block diagram showing a configuration of main parts of the radio communication device 10.
  • the wireless communication device 10 includes a transmitter 11, a receiver 12, an antenna 13, a control unit 14, and a storage unit 15.
  • the transmitter 11 includes a transmission data processing unit l la that generates a transmission signal, a primary modulation unit l lb that primarily modulates a carrier wave with a transmission signal, and a modulation signal obtained by the primary modulation using a spreading code (two A spreading unit 1 lc that performs next modulation), an amplifying unit 1 Id that amplifies the spread-modulated signal, and the like are provided. That is, the transmission signal generated by the transmission data processing unit 11a is primarily modulated by the primary modulation unit l ib with a predetermined modulation scheme (QPSK, 16QAM, etc.), and then spread modulated by the spreading code by the spreading unit 11c. After that, the signal is amplified by the amplifying unit l id and radiated as a radio wave from the antenna 13.
  • a transmission data processing unit l la that generates a transmission signal
  • a primary modulation unit l lb that primarily modulates a carrier wave with a transmission signal
  • the receiver 12 is a band filter 12a that removes unnecessary noise components contained in the received signal received from the antenna 13, and a reverse filter that despreads the received signal that has passed through the band filter 12a with a spreading code.
  • the control unit 14 is configured to transmit the transmitter 11 and the receiver based on the control information stored in the storage unit 15 and the like.
  • the control unit 14 performs transmission / reception switching control, transmission power output control, switching control between an ad hoc network and a mobile communication network, synchronization control, and the like. It has become. For example, when communicating with a base station 30 of a mobile communication network or another wireless communication device in an ad hoc network using a wireless line, switching between transmission and reception is performed based on time slot allocation to be described later. This is done so that communication is performed using the TDD method.
  • control unit 14 performs processing for measuring the interference amount I at the time of uplink of the mobile communication network, the measured interference amount I, and the reference value notified from the base station 30.
  • a process for setting the utilization rate Z of network resources used for communication within an ad hoc network and a process for allocating network resources based on the setting are executed.
  • the network resource includes a time slot and a spreading code.
  • the time slot is formed by dividing a TDD-CDMA radio frame into a plurality of frames. Here, 15 time slots are provided.
  • Two types of spreading codes are used: channelization codes and scrambling codes.
  • the channelization code is an OVSF (Orthogonal Variable Spreading Factor) code.
  • the receiving side base station or mobile station
  • the transmitting side mobile station or base station
  • the scramble code is used for identifying a mobile communication network and an ad hoc network.
  • the scramble code is used for identifying a cell to which the base station and the mobile station belong. That is, a scramble code is set for each cell so as not to overlap between neighboring cells.
  • TDD-CDMA first, spreading processing is performed using a channelization code, and then spreading processing is performed using a scramble code.
  • FIG. 3 is a block diagram showing a main configuration of the base station of the mobile communication network.
  • the base station 30 includes a transmitter 31, a receiver 32, an antenna 33, a control unit 34, a storage unit 35, and the like.
  • the transmitter 31, the receiver 32, and the antenna 33 Is the above
  • the line communication device 10 has substantially the same function as each corresponding component.
  • the control unit 34 constitutes the load amount calculating means according to the present invention, and the network resource power currently used in the uplink and downlink of the mobile communication network also determines the load amount X (%). Execute the process.
  • TDD Time Division Duplex
  • the base station 30 provides communication services to users using these resources. To do.
  • the utilization rate of these two resources more specifically, among all combinations of spreading codes (channelization codes) and time slots that can be used in the communication area (cell) of the base station 30.
  • the ratio of the combination of spreading code and time slot used for mobile communication network communication is called the load amount X (%).
  • the number of spreading codes (code amount) that can be used in the communication area of the base station 30 is 16 and the number of time slots (number of slots) is 15, communication in a mobile communication network as shown in FIG.
  • code amount 12 and the number of slots is 15, the load amount X is 75%.
  • the load amount X Is about 33%.
  • control unit 34 constitutes a reference value setting unit and a reference value notification unit according to the present invention, and the load amount X obtained as described above and the communication area of the base station 30 are included.
  • Processing to notify the wireless communication device 10 of the set reference value Y after setting the reference value Y of the utilization rate of network resources used for communication within the ad hoc network based on the number N of existing ad hoc networks Execute.
  • the reference value Y decreases as the load amount X and the number of ad hoc networks N increase.
  • the formula is calculated so that the reference value Y increases as the number of ad hoc networks N decreases. In this case, the reference value Y is calculated by taking the number of ad hoc networks N into account.
  • the load amount x (%) is calculated from the number of time slots currently used in the downlink (number of slots) and the number of spreading codes (code amount).
  • the base station 30 executes a process of notifying the wireless communication device 10 of the reference value ⁇ set as described above.
  • This notification may be repeatedly transmitted (broadcast) at predetermined intervals to a large number of unspecified radio communication devices 10 existing in the communication area of the base station 30, or a specific radio communication device It may be sent in response to a request from 10.
  • the wireless communication device 10 that has received the notification of the reference value ⁇ is based on the interference amount I measured at the time of uplink of the mobile communication network and the reference value ⁇ notified from the base station 30.
  • the amount of interference I is large. In some cases, it is considered that the mobile station M of the mobile communication network exists in the vicinity as in the ad hoc network AN1 in FIG. Therefore, the correction according to this interference amount I is the standard.
  • the optimum utilization rate Z for each ad hoc network can be obtained.
  • the adjustment value is a (%)
  • the interference amount I is the upper limit value (threshold value) S1
  • the interference amount I of the ad hoc network AN1 where the mobile station ⁇ exists nearby is
  • the adjustment value is determined using the threshold, but the interference amount I is set to a predetermined value without using the threshold.
  • a value multiplied by a coefficient can also be used as the adjustment value.
  • the wireless communication device 10 After setting the utilization rate ⁇ , the wireless communication device 10 performs a process of allocating network resources based on the utilization rate ⁇ . Specifically, a process is performed in which a number of time slots corresponding to the utilization rate ⁇ are randomly selected from all time slots and assigned as time slots for ad hoc networks. Is called. For example, in the case of the ad hoc network AN1, the usage rate 20 is 20%, so three of the 15 time slots are selected at random for each frame. Similarly, in the case of ad hoc network ⁇ 2, nine time slot powers. In the case of ad hoc network ⁇ 3, six time slots are selected at random for each frame.
  • the spread code corresponding to the entire 1Z2 (8 ) May be assigned on the assumption that it is used for communication within an ad hoc network.
  • the number of slots selected by each ad hoc network AN1, ⁇ 2, ⁇ 3 will be twice the above.
  • a number of combinations corresponding to the utilization rate Z are set for each frame.
  • the wireless communication device 10 will be described as a node A
  • a wireless communication device that manages the entire ad hoc network will be referred to as a master
  • a wireless communication device that performs wireless communication under the management of the master will be referred to as a slave.
  • This process starts when the communication mode is switched to ad hoc mode, or when the SIR (Signal to Interference Ratio) of the ad hoc network is stronger than the mobile communication network! Is done.
  • node A searches for a master in the ad hoc network, and sets the node type of node A to either master or slave based on the search result.
  • node A performs a process of detecting a pilot signal (control signal) generated by the master, and if the pilot signal can be detected as a result, the node type is set to slave and the pilot signal cannot be detected. If it does, set the node type to master.
  • a pilot signal control signal
  • the node A uses a preset common channel (Common Channel) to request connection to the ad hoc network and node information (for example, node A ID, address, etc.) are sent to the master.
  • node information for example, node A ID, address, etc.
  • the master receives the connection request to the network and the node information from the node A, the master stores the network information (each slave and the master in the storage unit 15) based on the received node information. Node information, network resource allocation information, QoS parameters, etc.).
  • the node A also receives ACK (connection permission response) as the master force, and then performs a process of acquiring the network information and storing it in the storage unit 15.
  • ACK connection permission response
  • node A when the node type is set to master, node A performs processing for acquiring information necessary for constructing an ad hoc network, such as reference value Y and spreading code, from base station 30. After that, node A repeatedly transmits a pilot signal every predetermined period, monitors the control signal that also outputs the slave power, and periodically allocates network resources using the reference value Y, and performs network information. Processing to update, processing to detect the communication status of each slave, processing to set the communication timing of the ad hoc network so as to match the communication timing in the mobile communication network (synchronization processing), etc. are performed. As a result, an ad hoc network with node A as the master is constructed, and maintenance of the ad hoc network is performed by node A.
  • an ad hoc network with node A as the master is constructed, and maintenance of the ad hoc network is performed by node A.
  • node A when node A is set as a slave, when node A starts communication with another wireless communication device (hereinafter referred to as node B) set as a slave, Node A specifies the ID of Node B as the communication partner, and sends a communication channel assignment request to the master using the shared channel.
  • the master refers to the network information in the storage unit 15 to check the communication status of the node B and uses the communication channel between the nodes ⁇ and ((used for communication between the nodes ⁇ and ⁇ .
  • a process of assigning a combination of time slot and spreading code) is executed. That is, the network resource for the ad hoc network assigned by the network resource assignment process described above is selected as one of them, and a process for assigning it for communication between the node and the node is executed.
  • the master performs processing for notifying the assigned communication channel to the node ⁇ that requested the communication and the node B that is the communication partner.
  • node A and node B receive the master channel notification of communication channel assignment, they send and receive data signals directly between the nodes using the assigned communication channel.
  • node A and node B perform communication using adaptive coding modulation used in ACM (Adapting Coding and Modulation) and the like.
  • Adaptive coding modulation is a method of selecting a combination of modulation method and coding rate according to the state of the transmission path. Specifically, as shown in Table 1, when the amount of interference is large, it is slow.
  • a modulation method with excellent stability for example, QPSK: Quadrature Phase Shift Keying
  • a coding rate with high error correction capability to lower the code modulation level (MCS level)
  • MCS level code modulation level
  • a high-speed modulation method for example, 16QAM: Quadrature Amplitude Modulation
  • a code rate with a small error correction capability are selected to increase the code modulation level.
  • the utilization rate Z of the network resource used for communication in the ad hoc network is set according to the utilization state of the network resource of the mobile communication network, and the Since communication within an ad hoc network is performed within the set range, it is possible not only to improve the use efficiency of network resources, but also to suppress mutual interference between networks. .
  • a number of time slots corresponding to the utilization rate Z are randomly selected from all time slots for each frame, and the time slots are selected for ad hoc network time. Since it is assigned as a slot, time slot assignment control becomes easier and interference between the time slots is less likely to occur, and certain terminals in the mobile communication network are subject to strong ad hoc network interference. It is possible to prevent this.
  • the total load amount X is obtained without distinguishing between uplink and downlink of the mobile communication network, and the utilization rate Z is derived from this load amount X.
  • the uplink and downlink of the mobile communication network are distinguished from each other to obtain the respective load amounts X and X, and the uplink is transmitted to the uplink.
  • the amount of load X force is also determined by the utilization factor Z for the downlink.
  • the power is also required to obtain the utilization factor Z for the uplink!
  • the base station 30 performs processing for obtaining the load amount X in the uplink of the mobile communication network and the load amount X in the downlink, respectively.
  • time slots among 15 time slots in one frame are set as the downlink of the mobile communication network, and among them, they are used for communication of the mobile communication network.
  • the downlink load X is 50% and
  • the uplink port amount X is about 67%. It becomes. Also, as shown in Figure 7B, 12
  • the load amount X is 50% and the time slot is up.
  • the amount of load in the uplink of the mobile communication network X force
  • the reference value Y for the downlink (first reference value) is set to the amount of load in the downlink.
  • the formula for calculating the reference value Y shown in the first embodiment is used.
  • the base station 30 performs processing for notifying the wireless communication device 10 of the reference values ⁇ and Y.
  • the wireless communication device 10 that has received this notification uses the downlink communication based on the interference amount I measured in the uplink of the mobile communication network and the reference value Y for the downlink.
  • the compensation for the amount of interference I can be adjusted to the reference value Y, so that it can be used for downlink.
  • the uplink By deriving the rate Z and adding a correction according to the interference amount I to the reference value Y, the uplink
  • the load X in the uplink of a mobile communication network is reduced by 90%.
  • the utilization factor Z for uplink is 50%.
  • the wireless communication device 10 After setting the utilization factors Z and Z, the wireless communication device 10 sets the utilization factors Z and Z.
  • the utilization rate Z is selected from all the time slots set for the downlink of the mobile communication network.
  • ad hoc network configured with 50%, 4 or 5 of the 12 time slots configured for the downlink and 1 or 3 of the 3 time slots configured for the uplink Two are randomly selected for each frame. Then, communication within the ad hoc network is performed using the selected time slot.
  • the utilization rate of the network resources used for communication in the ad hoc network is set separately for the uplink and the downlink of the mobile communication network. Because communication within the ad hoc network is performed within the range of these settings, for example, there is a difference in the use state of network resources between the uplink and downlink of the mobile communication network. However, in an ad hoc network, it becomes possible to appropriately allocate network resources according to the difference, which can further improve the utilization efficiency of network resources. It is possible to more effectively suppress mutual interference between networks.
  • the ratio and arrangement of time slots allocated to the uplink and downlink of the mobile communication network may be changed at any time according to the characteristics of traffic, etc.
  • the base station 30 may transmit a notification notifying the change contents to all the radio communication apparatuses 10 existing in the communication area. By doing so, network resources can be appropriately allocated within the ad hoc network in the same manner as described above.
  • FIG. 8 shows a radio communication system according to the third embodiment of the present invention, in which reference numeral 40 is a base station and 41 is a mini base station.
  • a plurality of mini base stations 41 are installed in a communication area (cell) of the base station 40, and the mini base station 41 and the base station 40 are connected to a wireless network control device via a communication network such as a LAN. (RNC: Radio Network Controller Equipment) 42 is connected to each.
  • RNC Radio Network Controller Equipment
  • the base station 40 communicates with the mobile station M existing in the communication area, and the mini base station 41 exists in a specific area in the communication area and in the vicinity of the mini base station 41. It communicates with mobile station M.
  • Both the base station 40 and the mini base station 41 are communication systems that use the duplex system as the TDD system (for example, TDD-CDMA system, TDD-TDMA system, etc.)
  • the mini base station 41 uses one or both of the time slot set for the uplink and the time slot set for the downlink in the communication area to move in the specific area. It communicates with station M.
  • the mobile station M may be a wireless communication apparatus having an ad hoc communication function or a wireless communication apparatus having no ad hoc communication function.
  • the base station 40 also uses the network resources currently used in the communication area (network resources currently used in communication between the base station 40 and the mobile station M). Load amount X (%), and based on this load amount X, set a reference value Y (%) for the utilization rate of network resources used for communications in the specific area, and then set the reference value ⁇ To the mini base station 41 is executed.
  • the mini base station 41 measures the interference amount I in the uplink in the communication area.
  • the process for setting the network resource usage rate ⁇ (%) used for communication within the specified area and the process for allocating network resources based on the setting are executed.
  • Both the load amount X, the reference value ⁇ , and the utilization factor ⁇ can be obtained by the same method as in the first embodiment.
  • the load amount X at the base station 40 is 60%
  • the reference value If the derivation formula of ⁇ is 100
  • the adjustment value a corresponding to the interference amount I is 5%
  • the reference value Y is 40%
  • ⁇ IJ usage rate Z is 35 ⁇ Z ⁇ 45.
  • the mini base station 41 After the usage rate Z is set, the mini base station 41 performs a process of allocating network resources based on the setting of the usage rate Z. Specifically, from all the time slots, a number of time slots corresponding to the utilization rate Z are randomly selected for each frame, and the time slots are assigned as communication time slots in the specific area. Is done The For example, when the utilization rate Z is 40%, 6 out of 15 time slots are randomly selected for each frame, and the selected time slots are the mini-bases in the specific area. It will be used for communication between station 41 and mobile station M.
  • the utilization rate of the network resource used for communication within the specific area is set according to the utilization state of the network resource in the base station 40. Since the mini base station 41 communicates with the mobile station M in the specific area within the setting range, it is possible to improve the use efficiency of network resources. It is possible to suppress the occurrence of mutual interference inside and outside the area as much as possible.
  • the ad hoc network master or mini base station 41 has a number corresponding to the utilization rate Z as a communication time slot in the ad hoc network or in the specific area.
  • the time slot is selected at random for each frame, but the present invention is not limited to this. For example, based on the amount of interference or the position information of the mobile station power of the mobile communication network, each time slot is selected. You might choose a combination of time slots that minimizes the amount of interference.
  • TDD is used as a communication method used in each network (mobile communication network (in the communication area of the base station, in the communication area of the mini base station), ad hoc network).
  • Power that exemplifies CDMA system The present invention is not limited to this. If the communication system used in each network is a communication system based on the TDD system, for example, the TDD-TDMA system or the TDD— A multiplex access scheme based on OFDM may be used.
  • the communication method used in each network is not necessarily the same if the TDD method is used for the duplex method.For example, one is TDD-CDMA method and the other is TDD-TDMA method or TDD-OFDM. Based on the above, it is possible to use V and multiple access methods.
  • each carrier (Carrier) f 1, f 2, f is composed of a number of subcarriers (Sub-Carriers), part of which or All power Used for communication between mobile stations and base stations in the cell.
  • the communication carrier (subcarrier group) or ad hoc in the specific area is used.
  • each wireless communication device or each mobile station for example, a method in which all available subcarriers are assigned to different users for each frame, or a method that is different for each user. Any force proposed by various methods such as a method of assigning subcarrier groups (subsets) may be used. Also, when allocating subcarriers, it is possible to use subcarrier hopping in order to realize frequency diversity. In these OFDM systems, the user power of the target mobile communication network Ad-hoc network or mini-base station When the remote carrier exists at a distant location, the subcarriers assigned to the user are transferred to the ad-hoc network or mini-base station. For example, when a cell exists at a location distant from the ad hoc network or mini base station, the subcarrier assigned to the cell is assigned to the ad hoc network or mini base station. It can be reused at
  • FIG. 10 shows a wireless communication system according to the fourth embodiment of the present invention.
  • Number 100 is a central base station
  • 110 is a mini base station
  • 120 is a mobile station.
  • a plurality of mini base stations 110 are installed in the cell A serving as the communication area of the central base station 100, and the local area A (for example, buildings and underground facilities) set in advance by the mini base stations 110 is installed. Communication with the mobile station 120 existing inside) is performed. That is, among the mobile stations 120 existing in the cell A, the mobile stations 120 existing in the local communication area A communicate with the mini base station 110, and the other mobile stations 120 are not connected.
  • the local area A for example, buildings and underground facilities
  • the communication between the central base station 100 and the mobile station 120 uses TDD-CDMA, which uses the TDD method as a duplex method, and the same communication.
  • System power It is also used for communication in a network (hereinafter referred to as a subnetwork) between each mini base station 110 and mobile station 120. In both networks, the same frequency band is used.
  • the central base station 100 and the mini base station 110 are respectively connected to a radio network controller (RNC) (not shown) via a communication network such as a LAN, and the communication in the main network and the communication in each sub-network. Are configured to be performed in synchronization with each other.
  • RNC radio network controller
  • the central base station 100 and the mini base station 110 have a transmitter, a receiver, an antenna, a control unit, a storage unit, and the like, as in the first embodiment.
  • the control unit of the mini base station 110 constitutes an interference amount measuring unit and a time slot setting unit according to the present invention.
  • the control unit starts from the central base station 100.
  • the degree of freedom for the slot configuration of the central base station 100 is set according to the measured value, and the basic configuration is changed within the range of the degree of freedom so that the mini base station 110 Control to set the slot configuration.
  • the mobile station 120 includes, for example, user equipment such as a mobile phone, a PDA having a communication function, and a personal computer. Similar to the base stations 100 and 110, the mobile station 120 includes a transmitter, a receiver, an antenna, a control unit, a storage unit, and the like, and communicates with the central base station 100 or the mini base station 110 using the TDD-CDMA system. Come to do! /
  • each mini base station 110 First, in the downlink of the main network, processing for measuring the amount of interference (wave level) from the central base station 100 is performed.
  • radio waves become weaker as the distance increases, and as shown in Fig. 11, strong interference is measured near the center of cell A and weak interference is measured near the boundary of cell A.
  • the thickness of the arrow indicates the strength of the interference.
  • processing for setting the degree of freedom of the slot configuration of the mini base station 110 is performed according to the measured interference amount. More specifically, the measured interference amount is compared with one or more preset threshold values, and MODE is set as an index for slot allocation based on the comparison result.
  • interference level 1 and interference level 2 are provided as threshold values, and MODE is set using the following determination formula.
  • interference amount (measured value) ⁇ interference level 1 ⁇ MODE1 (1)
  • interference amount (measured value) ⁇ interference level 2 ⁇ MODE3 ⁇ ⁇ ⁇ (2)
  • the slot configurations that can be selected by each mini base station 110 differ depending on the MODE, and the mini base station 110 with a smaller amount of interference (measured value) has a slot configuration that deviates from the basic configuration CO (ie, the down configuration). It is possible to select a slot configuration that includes many time slots opposite to the basic configuration CO in terms of link and uplink settings. Note that the slot configurations selectable in each MODE are not limited to those shown in FIG. 12, and the ratio and arrangement of the downlink and uplink can be changed as appropriate. Even in this case, it is desirable to preferentially assign the time slot used in the downlink of the central base station 100 as the time slot used in the downlink of the mini base station 110.
  • the mini base station 110 selects the slot configuration corresponding to MODE as described above, and then the selected slot configuration exists in the communication area A of the mini base station 110.
  • Mobile station 120 communicates with mobile station 120 according to the slot configuration.
  • the mini base station 110 performs communication using adaptive coded modulation as in the first embodiment. Note that this adaptive coding modulation is applied not only during communication in the sub-network but also during communication within the main network.
  • the slot configuration of the central base station 100 is set as the basic configuration C0, and the degree of freedom for this is set to the central configuration. Since the slot configuration of the mini base station 110 is determined in accordance with the measurement value of the interference amount from the base station 100 and within the setting range, the central base station 100 and the mini base station 1 10 Even when the same frequency band is used, it is possible to suppress mutual interference between both networks, and a good communication state can be ensured in any network. In addition, since each sub-network can have a slot configuration different from that of the main network, it is possible to flexibly respond to traffic characteristics and the like. As a result, a decrease in throughput and communication capacity can be avoided, and the utilization efficiency of network resources can be improved.
  • the degree of freedom with respect to slot configuration C0 of central base station 100 The slot configuration that can be selected in each MODE is prepared in advance, and the slot configuration to be used in the mini base station 110 is selected from among them, but the present invention is limited to this.
  • the downlink and uplink settings are basic configurations.
  • the relationship between the number of timeslots RN (degree of freedom) opposite to the CO and the amount of interference is set in advance.
  • the number of time slots RN may be obtained, and within the range of this time slot number RN, the basic configuration CO may be changed and the slot configuration of the mini base station 110 may be set.
  • the TDD-CDMA system is exemplified as a communication system used in the main network and each sub-network.
  • the present invention is not limited to this. If the communication method used is a communication method that uses the TDD method as the duplex method, for example, a TDD-TDMA method, a multiple access method based on TDD-OFDM, or a TDD-FDMA method (Frequency Division Multiple Access), etc. It may be.
  • FIG. 13 shows a radio communication system according to the fifth embodiment of the present invention.
  • reference numeral 210 denotes a base station of a mobile communication network
  • 220a, 220b, and 220c denote mobile stations.
  • a plurality of mobile stations 220a, 220b, and 220c exist in the Senole, which is the communication area of the base station 210, and these mobile stations and the base station 210 communicate with each other using the TDD-CDMA system. Yes.
  • one frame is composed of 15 time slots, and the length thereof is set to 10 ms.
  • the time slot from the start point of the frame to the switching point is set to the downlink, and the time slot from the switching point to the end point of the frame is Set to uplink.
  • the position of the switching point can be changed as appropriate according to the characteristics of the traffic. In the example shown in the figure, a switching point is provided between the ninth and tenth time slots.
  • the base station 210 and the mobile stations 220a, 220b, and 220c each have a transmitter, a receiver, an antenna, a control unit, a storage unit, and the like, as in the first embodiment.
  • the control unit of the base station 210 is
  • the required transmission power derivation means and the time slot allocation means according to the present invention are configured, and a mobile station required to achieve a predetermined power at the base station 210 based on the attenuation information of the pilot signal received from the mobile station.
  • base station 210 transmits a pilot signal to the corresponding mobile station (for example, mobile station 220a) (step T1).
  • the mobile station that has received this transmits the attenuation information of the pilot signal to the base station 210 (step T2).
  • the base station 210 Upon receiving the pilot signal attenuation information, the base station 210 obtains the required transmission power of the mobile station necessary to achieve the predetermined power at the base station 210 based on this (step ⁇ ⁇ 3).
  • base station 210 assigns time slots to be used for communication with the mobile station based on the required required transmission power (step ⁇ 4). Specifically, the magnitude of the required transmission power is evaluated by comparing the calculated required transmission power with a plurality of preset thresholds, and the time slot corresponding to the evaluation is determined with the mobile station. Select as the time slot used for communication.
  • the upper limit value and lower limit value of the required transmission power are set as threshold values.
  • the time slot closer to the start point of the frame (for example, time slots 1, 2, 3) is selected as the required transmission power increases.
  • Each threshold is set so that the time slot closer to the end point of the frame (for example, time slots 14 and 15) is selected as the required transmission power increases.
  • the upper limit value of the required transmission power in time slot 3 set for the downlink is ⁇
  • the lower limit value is ⁇
  • time slot 3 is selected, and when the ⁇ relationship is established, time slot 1 or 2 is selected.
  • any of time slots 4 to 9 is selected.
  • both the downlink and uplink time slots (for example, the downlink) : Time slots 7, 8, 9 and uplink: Time slots 10, 11) will be allocated.
  • the switching point moves at any time according to the ratio of the uplink and the downlink. Therefore, the time slot near the switching point (for example, the time slot 9, 10) is the uplink. Therefore, it is highly possible that the setting is different between adjacent cells. Conversely, time slots near the start or end of a frame (for example, timeslots 1 to 3, 14, 15) have little change in the uplink and downlink settings. Are unlikely to be different. For this reason, for mobile stations far from the base station 210 (for example, the mobile station 220a), there is a low possibility that the communication direction is different between adjacent cells, and interference is unlikely to occur.
  • the threshold value be set so that the utilization rate of the network resources in each time slot is almost equal, that is, the load is distributed almost evenly in each time slot.
  • the setting parameters for example, a cell radius, a path loss model (or an actual measurement value) that approximates the propagation environment, the number of uplink / downlink slots, and the like can be used.
  • virtual circles circles connecting points where the required transmission power P is equal to the threshold values
  • the threshold values are set so that the areas of the donut-shaped regions rl, r2, r3,... Formed between adjacent virtual circles are substantially equal to each other.
  • the utilization rate of network resources may be biased between time slots. Therefore, in order to avoid the occurrence of such a phenomenon, after assigning the time slots as described above, the utilization rate of each time slot is obtained, and the utilization rate of the time slot is equalized so that these utilization rates are equalized. It is desirable to perform reallocation. Specifically, as shown in FIG. 17, the time slot allocated at step T4 (time slot 3) is searched for several slots before and after that, and the time slot with the lowest utilization rate is moved from there. It can be selected as a time slot used for communication with the station.
  • the time slot allocated in this way is notified from the base station 210 to the mobile station together with information on the required transmission power, and the mobile station that has received this communicates with the base station 210 in accordance with the notification.
  • the required transmission power of the mobile station required to achieve the predetermined power at the base station 210 is obtained based on the attenuation information of the pilot signal, and this required transmission is performed.
  • the power to set the threshold value that is the upper limit value and the lower limit value of the required transmission power for each time slot.
  • the present invention is not limited to this. It is also possible to group multiple groups and set a threshold for required transmission power for each group. In this case, select the time slot with the lowest utilization rate of network resources from the selected group!
  • the threshold is set statically, the traffic situation and the system You may make it set dynamically according to a characteristic etc. It is also possible to estimate the distribution of required transmission power from past data, etc., and to set each threshold so that resource utilization is averaged between time slots based on the estimated distribution. is there.
  • time slot allocation method shown in this embodiment is a very simple algorithm and is autonomous and distributed, and therefore can be easily applied to a cell overlay system using a mini base station.
  • reference numeral 310 denotes a base station
  • 320a, 320b, and 320c denote mobile stations (relay terminals)
  • 320d, 32 Oe 320f are mobile stations (communication terminals).
  • Base station 310 communicates wirelessly with mobile stations 320a, 320b, 320c, 320d, 320e, and 320f existing in the cell serving as the communication area, either directly or through other mobile stations 320a, 320b, and 320c. Do it like this.
  • the TDD method is used in combination with the TDD method for multiple access and the CDMA method and the TD MA method for multiple access.
  • a common frequency band is used for each communication.
  • one frame is composed of 15 time slots, and the length thereof is set to 10ms.
  • Each time slot is assigned either uplink or downlink.
  • FIG. 18 shows the communication state in time slot A of a frame
  • FIG. 19 shows the communication state in time slot B.
  • a combination of wireless communication devices that perform communication in the time frame and a communication direction thereof are set in advance.
  • Base station 310 and mobile stations 320a, 320b, 320c, 320d, 320e, and 320f each have a transmitter, a receiver, an antenna, a control unit, a storage unit, and the like as in the first embodiment. .
  • the control unit constitutes an interference amount measuring unit and an interference amount notifying unit according to the present invention, and the wireless communication device having the control unit is the second wireless communication device (reception-side wireless communication device).
  • the wireless communication device having the control unit is the second wireless communication device (reception-side wireless communication device).
  • every time a predetermined condition is established (for example, processing from the base station 310). Every time there is an instruction to execute), the amount of interference in each time slot is measured, and the measurement result is notified to the first wireless communication device.
  • the control unit constitutes a time slot selecting unit and a time slot notifying unit according to the present invention, and the wireless communication device having the control unit is the first wireless communication device (transmitting-side wireless communication device).
  • the time slot to be used next is selected based on the interference amount of each time slot received from the second wireless communication device (reception side wireless communication device) as the communication partner, and the selected time slot is selected. Performs processing to notify the second wireless communication device.
  • This time slot allocation process is performed at any time after communication between the first wireless communication device (transmitting wireless communication device: eg, base station) and the second wireless communication device (receiving wireless communication device: eg, mobile station) is started. In this case, the processing is performed in sequence every time there is a processing execution instruction from the base station 310.
  • step S1 the base station 310 performs a process of selecting one of the wireless communication devices (mobile stations) that are currently connected. Normally, since a plurality of mobile stations are connected to the base station 310, in the present embodiment, one mobile station is selected for each frame or for each of a plurality of frames so that the processing timings of these mobile stations do not overlap each other. In selecting the mobile station, it is desirable to select the mobile station that has been selected last time and has the most time. However, the present invention is not limited to this.
  • step S2 base station 310 issues a processing execution instruction by transmitting a control signal to the wireless communication device selected in step S1. If the selected wireless communication device is a relay terminal, the same instruction is given to the wireless communication device (communication terminal) connected thereto.
  • step S3 the receiving-side wireless communication device (hereinafter, this wireless communication device will be described as a second wireless communication device) that has received an instruction from the base station 310 performs interference in each time slot.
  • this interference power is a sum of interference power from base station 310 and interference power of other mobile station power.
  • Interference power from base station 310 is transmitted by base station 310 using all time slots. Therefore, the difference is almost constant between time slots.
  • the interference power from other mobile stations differs depending on the time slot (transmission distance from the second wireless communication device) because the mobile stations that perform transmission differ depending on the time slot. It will be.
  • the second wireless communication device is mobile station 320a
  • time slot A communication from base station 310 to mobile stations 320a and 320c and communication from mobile station 320b to mobile station 320e are performed. Therefore, the interference power received by the second wireless communication device (mobile station 320a) is the sum of the interference power from the base station 310 and the interference power from the mobile station 320b.
  • time slot B communication from base station 310 to mobile stations 320a and 320b and communication from mobile station 320c to mobile station 320f are performed, so the second wireless communication device (mobile station 320a ) Is the sum of the interference power from the base station 310 and the interference power from the mobile station 320c.
  • the amount of interference received by the second wireless communication device differs depending on the time slot, and even in the same time slot, the position of the mobile station differs. Depending on whether or not there is a difference in the amount of interference.
  • step S4 the second wireless communication device performs processing for notifying the first wireless communication device as the communication partner of the measurement result of the interference amount of each time slot.
  • step S5 the first wireless communication device allocates power allocated to communication with the second wireless communication device for each time slot (hereinafter referred to as expected allocated power P).
  • next time slot to be used (the time slot for transmission to the second wireless communication device) is selected.
  • Equation 2 Equation 2
  • Equation 3 p ⁇ MAX ⁇ g
  • P is the maximum output power of the first wireless communication device
  • P is the desired communication speed
  • N is the number of connected terminals.
  • the number N of connected terminals represents the number of wireless communication devices connected to the first wireless communication device when it is assumed that the second wireless communication device uses the time slot.
  • the second wireless communication device The number of connected terminals in the time slot currently used by N is the same as the current connected terminal number N ', and the number of connected terminals in the time slot not currently used by the second wireless communication device is N. This is a value obtained by adding “1” for the second wireless communication device to the number of connected terminals N ′.
  • the minimum required power P is SO
  • the maximum output power P is a constant.
  • the time slot currently used by the second wireless communication device is time slot T2 in FIG. 21, the maximum output power P of the first wireless communication device is 1.5 (W), and each time slot Tl, T
  • Minimum power P of T3 is 0.3, 0.3, 0.3 (W), each time slot Tl, T2, T3
  • the number of connected terminals N is 1, 3, 3, the number of connected terminals N for each time slot Tl, T2, T3 is 2, 3, 4, and the expected allocated power P for each time slot Tl, T2, T3 Is 0.6, 0.4,
  • step S6 the first wireless communication device performs processing to notify the second wireless communication device of the time slot selected in step S5.
  • the time slot selected in step S5 is compared with the time slot currently used by the second wireless communication device, and only when the two do not match, the time slot selected in step S5 is selected. Notification may be made to the second wireless communication device (that is, notification is omitted if both match).
  • step S7 the first wireless communication device communicates with the second wireless communication device using the time slot selected in step S5.
  • the time slot selected in step S5 is used from the frame next to the frame used in the notification in step S6.
  • step S1 the process returns to step S1 again, and the base station 310 is one of the currently connected wireless communication devices (second wireless communication device). Mobile station), and instruct the wireless communication device to execute processing. That is, according to the time slot allocation process described above, each wireless communication device connected to the base station 310 performs the processes of steps S3 to S7 in order, and once it completes a cycle, the first wireless slot again Returning to the communication device, the processing of steps S3 to S7 is similarly performed. As a result, in each wireless communication device, the processes in steps S3 to S7 are repeatedly performed until the power is terminated after the communication is started, and an optimum time slot is selected each time.
  • the second wireless communication device measures the interference amount I of each time slot, and based on the interference amount I and the estimated allocated power P obtained in advance, the first wireless communication device Communication ex
  • the device Since the device sequentially selects the next time slot to be used for communication with the second wireless communication device, the short distance, which was a problem in the past when combining TD-CDMA and multi-hop communication, Mutual interference between wireless communication devices can be greatly suppressed. As a result, the communication failure rate can be reduced, and an increase in SIR (Signal to Interference Ratio) can be expected. Furthermore, by combining with adaptive coding modulation High-speed communication can be realized.
  • SIR Signal to Interference Ratio
  • Fig. 22 compares the performance of the slot allocation methods by simulation, and shows the cumulative distribution function of SIR when the number of mobile stations in a cell is 50.
  • the horizontal axis is SIR and the vertical axis is the cumulative distribution function (CDF).
  • X indicates the allocation method (Dynamic Slot Allocation) according to the present invention
  • indicates the conventional allocation method
  • SSA Sequential Slot Allocation
  • 0, 3 ⁇ 4PSA Pre Slot Allocation
  • indicates the case of not relaying (Non Relay).
  • the SSA method is a method of assigning time slots in order each time there is a communication request for wireless communication equipment.
  • the PSA method is a method of selecting a time slot in consideration of the amount of interference, like the allocation method according to the present invention.
  • the time slot is selected only once before the start of communication. This is different from the allocation method according to the present invention in which the time slot is selected at any time after the start of communication.
  • This PSA method is an allocation method devised by the present inventors as a comparative example in order to verify the effect of the allocation method according to the present invention, which is not known in the art.
  • the allocation method (Dynamic Slot Allocation) according to the present invention has a higher SIR overall as compared to the SSA method and the PSA method.
  • the SSA method and the PSA method there is a region where the SIR is lower than when relaying is not performed (Non Relay), whereas in the allocation method according to the present invention, relaying is performed over all regions. SIR is higher than when there is no! / I understand that.
  • the power used to select the next time slot to be used by the transmitting-side radio communication device In the sixth embodiment described above, the power used to select the next time slot to be used by the transmitting-side radio communication device. In the seventh embodiment, the receiving-side radio communication device The time slot to be used is selected.
  • FIG. 23 is a flowchart showing time slot allocation processing according to the seventh embodiment.
  • the base station 310 selects one of the currently connected wireless communication devices (step S11), and executes the processing for the selected wireless communication device. (Step S12).
  • the receiving-side wireless communication device (second wireless communication device) that received the instruction from the base station 310 performs the process of measuring the amount of interference in each time slot (step S13), and the communication partner
  • the first wireless communication device calculates the expected allocated power P that can be allocated for communication with the second wireless communication device (step S14), and the calculated result is
  • a process of notifying the wireless communication device is performed (step S15).
  • the second wireless communication device displays the calculation result of the estimated allocated power P of each time slot as the first ex
  • step S16 the next time slot to be used (the time slot for reception from the first wireless communication device) is selected (step S16), and the selected time slot is selected for the first wireless communication. Processing to notify the device is performed (step S17).
  • the first wireless communication device Upon receiving the notification of the time slot selected by the second wireless communication device, uses the time slot specified by the second wireless communication device from the next frame that received the notification. Communicate with the second wireless communication device (step S18).
  • the base station 310 after starting communication between the first wireless communication device (transmission-side wireless communication device) and the second wireless communication device (reception-side wireless communication device), the base station 310 performs processing. Each time the execution instruction is given, the second wireless communication device measures the interference amount I of each time slot, and this interference amount I and the expected allocated power P notified from the first wireless communication device.
  • the second wireless communication device sequentially selects the next time slot to be used for communication with the first wireless communication device, so that there are multiple wireless communication devices in close range. Even in a difficult communication environment (especially a communication environment in which a wireless communication device performing multi-hop communication exists in the vicinity), it is possible to suppress the occurrence of mutual interference between the wireless communication devices. Therefore, it is possible to achieve high-speed communication by avoiding a decrease in throughput and communication capacity.
  • the interference state of each time slot for example, due to the appearance or disappearance of another wireless communication device or the movement of the wireless communication device on the transmission side or the reception side, the interference state of each time slot. Even if a change occurs, an optimal time slot with a small amount of interference can be selected appropriately in response to the change.
  • the second wireless communication device determines the time slot to be used next.
  • the present invention is not limited to this.
  • the next time slot candidate to be used (for example, a plurality of time slots having higher evaluation function values) is selected.
  • the first wireless communication device selects and determines the time slot to be used next by the two wireless communication devices.
  • the first wireless communication device is configured to calculate the expected allocation power P and notify the calculation result to the second wireless communication device.
  • the line communication device notifies the number N of connected terminals (or the current number of connected terminals N ′) to the second wireless communication device, and the second wireless communication device determines the estimated allocated power from the notified number N of connected terminals.
  • the time slot allocation process of the sixth embodiment can be applied to both downlink and uplink time slots.
  • the transmitting side wireless communication device first wireless communication device
  • the processing is simplified by omitting the consideration of the expected allocated power P ex
  • FIG. 24 is a flowchart showing time slot allocation processing according to the eighth embodiment.
  • the base station 310 selects one of the currently connected wireless communication devices (step S21), and executes the processing for the selected wireless communication device. (Step S22).
  • the receiving side wireless communication device (second wireless communication device) that received the instruction from the base station 310 measures the amount of interference in each time slot (step S23), and the medium force has the least amount of interference. Processing to select the time slot as the next time slot to be used (reception time slot from the first wireless communication device) (step S24) and notify the selected time slot to the first wireless communication device (Step S25).
  • the first wireless communication device When the first wireless communication device receives the notification of the time slot selected by the second wireless communication device, the first wireless communication device selects the time slot designated by the second wireless communication device from the received next frame. Used to communicate with the second wireless communication device (step S26).
  • the base station 310 after starting communication between the first wireless communication device (transmitting-side wireless communication device) and the second wireless communication device (receiving-side wireless communication device), the base station 310 performs processing. Each time the execution instruction is given, the second wireless communication device measures the interference amount I of each time slot, and the next time slot with the smallest interference amount I is communicated with the first wireless communication device. Since the time slots to be used are sequentially selected as in the sixth embodiment and the seventh embodiment, even in a communication environment in which a plurality of wireless communication devices exist at a close range, these wireless slots It is possible to suppress mutual interference between communication devices. In addition, it is possible to omit the consideration of the expected allocated power P in the time slot of the Ats printer.
  • time slot allocation process can be simplified compared to the sixth embodiment.
  • FIG. 20 and FIG. 23 and the power of using the algorithm shown in Fig. 24 It is possible to use these algorithms when determining the first time slot to be used for communication between the first wireless communication device and the second wireless communication device. It is.
  • TD—SCDMA Time Division-synchronous Code Division Multiple Access
  • TDD—FDMA Frequency Division Multiple Access
  • various developments based on the TD-C DMA system such as a hybrid system combining a mobile communication network and an ad hoc network, a cell overlay system, random slot allocation, etc. It is also possible to apply the present invention to a system
  • the present invention can also be applied to the FDD scheme. Furthermore, the present invention can also be applied to frame selection in a system that can determine which frame is used for communication. In that case, It does not include the concept of OFDM and TDMA! /, And can be applied to all communications where interference is a problem, such as CDMA.
  • the present invention even when the same frequency band is used for communication in the ad hoc network and the mobile communication network, or when the base station and the mini base station use the same frequency band, there is mutual interference. Occurrence can be suppressed and a good communication state can be secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明の目的は、無線通信機器間で相互に干渉が生じるのを抑制することである。この目的を達成するため、本発明においては、基地局(30)の通信エリア内で利用可能なネットワーク資源の中で、移動体通信ネットワークの通信に使用されているネットワーク資源の割合をロード量(X)として、このロード量(X)に応じて、アドホックネットワーク内の通信で用いるネットワーク資源の利用率(Z)を設定し、その設定の範囲内でアドホックネットワーク内の通信を行う。

Description

明 細 書
無線通信装置、基地局および無線通信システム
技術分野
[0001] 本発明は、 TDD方式を用いて通信を行う無線通信装置、無線通信システム、基地 局、ミニ基地局およびネットワーク資源の割当方法に関するものである。
背景技術
[0002] 周知のように、移動体通信ネットワークにおいては、所定の通信エリア(セル)内に 存在する携帯電話、 PC、 PDA等のユーザ端末 (移動局)に対して、図 25に示すよう に、基地局を介して、データや音声等の無線通信サービスを提供するようになってい る。
[0003] このような移動体通信ネットワークにおいて用いられる複信方式としては、例えば、 FDD (Frequency Division Duplexノ方式と、 TDD (Time Division Duplex)方式; 0知ら れている。 FDD方式においては、図 26に示すように、アップリンク(上り回線)とダウン リンク(下り回線)の通信においてそれぞれ異なる周波数帯が用いられる。一方、 TD D方式では、アップリンクとダウンリンクにおいて同一の周波数帯を用いて通信が行 われる。この TDD方式においては、タイムスロットと呼ばれる非常に短い一定の時間 幅毎に、アップリンクとダウンリンクの切替を行うことにより、擬似的に同時送受信を実 現している。図 27は、この TDD方式を複信方式として採用した TDD— CDMA (Cod e Division Multiple Access)のフレーム構成を示しており、この TDD— CDMA方式 では、アップリンクとダウンリンクに割り当てるタイムスロットの比率や配置をトラフィック の特性等に応じて適宜に設定可能となっている。また、図 28に示すように、例えば高 速な通信を必要とするサービス (動画のストリーミングなど)の利用者に対しては、複 数のタイムスロットを割り当て、低速な通信で対応可能なサービス (メールサービスな ど)の利用者に対しては、 1タイムスロットを割り当てるというように、ユーザからの要求 や通信状態等に応じて適応的にタイムスロットの割当を行うことも可能となっている( 例えば、特許文献 1参照)。
[0004] 一方、無線による近距離のデータ通信ネットワークとして、アドホックネットワークが 知られている。このアドホックネットワークにおいては、図 29に示すように、基地局の 介在無しに、電波の届く範囲内にある無線通信装置どうしで直接通信を行うことが可 能となっている。このため、アドホックネットワークによれば、基地局やアクセスポイント が不要となり、力 うな通信設備を持たな 、場所にぉ 、ても簡易にネットワークを構築 することができるという利点が得られる。このようなアドホックネットワークを構築するた めの通信技術としては、例えば、 Bluetooth (登録商標)や無線 LAN (IEEE802.11x) などが提案されている。
[0005] ところが、従来では、上記アドホックネットワークと移動体通信ネットワークとで異なる 通信方式が採用されていたために、それらネットワークの双方に接続できる無線通信 装置を実現しょうとすると、無線通信装置の構成が自ずと複雑になり、それに対応し てコストが増大するという問題点があった。
また、一方のネットワーク(例えば、アドホックネットワーク)力も他方のネットワーク( 例えば、移動体通信ネットワーク)に接続先を切り換える際には、双方の通信方式が 異なることから、ハンドオーバーに時間が力かるという問題点もあった。
[0006] そこで、本発明者等は、先に、上記問題点を解消する無線通信装置として、アドホ ックネットワークにおける通信と移動体通信ネットワークにおける通信とに共通の TD D— CDMA方式を採用して同一周波数帯を使用する無線通信装置を開発するとと もに、これに関する技術を特許文献 2に開示している。この無線通信装置によれば、 アドホックネットワークと移動体通信ネットワークにおける通信方式を統一したことによ り、装置構成の複雑ィ匕ゃコスト増大を回避することができる上に、接続するネットヮー クの切換を円滑に行うことができるという利点が得られる。
[0007] し力しながら、上記無線通信装置においては、アドホックネットワークにおける通信 と移動体通信ネットワークにおける通信とに同一周波数帯を使用するようにしている ために、各々のネットワークで使用する通信チャネルの割当如何によつては、互いの 電波が干渉となって、それぞれの受信特性が悪化する懸念があった。
[0008] そこで、従来では、アドホックネットワークが移動体通信ネットワークに与える影響を 低減するために、移動体通信ネットワークにとって干渉になり難いタイムスロットを用 いて、アドホックネットワーク内における通信を行う方法が採用されていた。すなわち、 移動体通信ネットワークに属する無線通信装置がアドホックネットワークの近傍に存 在する場合には、移動体通信ネットワークのアップリンクに設定されたタイムスロット( 図 30の方式 A)を、またアドホックネットワークの近傍に移動体通信ネットワークの基 地局が存在する場合には、移動体通信ネットワークのダウンリンクに設定されたタイム スロット(方式 B)を、どちらでもない場合には、アップリンクとダウンリンク両方のタイム スロット(方式 C)を、アドホックネットワーク内における通信にそれぞれ利用するように していた。
[0009] し力しながら、上記タイムスロットの割当方法では、確率的に方式 Aや方式 Cが利用 されることが多ぐ方式 Aの場合には、タイムスロットの利用効率が悪くなるためアドホ ックネットワークで高速な伝送が望めないという問題点、また方式 Cの場合には、アド ホックネットワークでの高速伝送は望めるが移動体通信ネットワークに対する干渉が 大きくなるという問題点がそれぞれあった。
[0010] 一方、上記移動体通信ネットワークにおいては、例えば図 31に示すように、中央基 地局からの電波が届き難い局所的なエリア (例えば、建物や地下設備等)内に、簡易 的な基地局であるミニ基地局を設置し、このミニ基地局を介して、上記局所的なエリ ァ内のユーザ機器に対して無線通信サービスを提供するようにしたセルオーバーレ ィと呼ばれるシステムが提案されている(例えば、特許文献 3参照)。
[0011] し力しながら、上記セルオーバーレイにおいては、ユーザ機器と中央基地局間のネ ットワーク (メインネットワーク)と、ユーザ機器とミニ基地局間のネットワーク(サブネット ワーク)と力 互いに同一の周波数帯およびシステムで通信を行っているため、互い の電波が干渉となる。特に、ミニ基地局は、簡易的な基地局であるため指向性アンテ ナを有しておらず、中央基地局に与える干渉が大きくなる。
[0012] そこで、従来では、中央基地局と各ミニ基地局とが、図 32に示すように、アップリン グとダウンリンクの同期を完全に取ることにより、干渉を低減するようにしていた。しか しながら、この場合、セル内のミニ基地局は全て中央基地局と同じスロット構成を採る しかなぐ例えばトラフィックの特性等に応じて、各ミニ基地局で独自のスロット構成を 採るようなことはできなかった。
[0013] また、上記移動体通信ネットワークにおいては、隣接するセル間においても、上記と 同様に干渉が発生してスループットの低下を招くおそれがある。例えば、図 33に示 すように、隣接するセル間で、アップリンクとダウンリンクのタイムスロットの比率が異な る場合には、通信方向の異なるタイムスロット(図示例では、先頭から 10番目と 11番 目のタイムスロット)が発生し、力かるタイムスロット(Crossed- Slot)においては、図 34 に示すように、隣接する一方のセル (セル B)内の移動局からの送信信号力 他方の セル (セル A)内の移動局で干渉となり、上記他方のセルの基地局からの送信信号が 、上記一方のセルの基地局で干渉となる。この際に、移動局どうしが互いに十分に離 れていれば大きな干渉にはならないが、両者が近い場合には、大きな干渉が生じて 、スループット特性が劣化するおそれがある。
[0014] ところで、上記移動体通信ネットワークやアドホックネットワーク等の無線通信ネット ワークにおいては、例えば図 35や図 36に示すように、ユーザ端末と基地局、或いは ユーザ端末どうしが、他のユーザ端末等を経由せずに、直接通信を行うシングルホッ プ通信と、例えば図 37や図 38に示すように、他のユーザ端末等を経由して、通信を 行うマルチホップ通信が知られて!/、る。
マルチホップ通信の場合、シングルホップ通信に比べて 1通信の距離が小さくなる ことから、各端末の消費電力を低減することができる。また、強い電力で通信を行うこ とができるため、高速通信を実現することが可能となり、データレートを向上させること もできる。さらに、図 37に示すように、セル内のユーザ端末を中継端末として利用で きること力ゝら、例えばセル外に存在するユーザ端末も、セル内の中継端末を介して基 地局と通信を行うことができる。また、図 36に示すような端末間通信においては、出 力電力の限界により、 1端末で通信できる距離に限界があるが、図 38に示すように、 マルチホップ通信を行うことにより、他の端末の通信距離を利用して、遠距離の通信 を実現することができる。
[0015] しかしながら、前述した TDD— CDMA方式を利用して、マルチホップ通信を行おう とすると、中継端末力 の送信出力が周囲のユーザ端末に対する大きな干渉となる 場合がある。例えば図 39に示すように、 C端末が B端末からの受信に使うタイムスロッ トと、 D端末力 ¾端末に送信するタイムスロットとがー致してしまった場合、 C端末と D 端末間の距離が近いため、 D端末力もの送信電力がそのまま C端末での大きな干渉 となってしまい、 C端末の通信に支障を来す虞がある。
[0016] 特許文献 1:特開 2000— 197112号公報
特許文献 2:特開 2004— 363998号公報
特許文献 3 :特開 2005— 159900号公報
発明の開示
[0017] 本発明の第 1の目的は、アドホックネットワークと移動体通信ネットワークにおける通 信に同一周波数帯を使用する場合においても、ネットワーク間で相互に干渉が生じ るのを極力抑えることができ、し力もネットワーク資源の利用効率を高めることができる 無線通信装置、無線通信システム、基地局およびネットワーク資源の割当方法を提 供することである。
[0018] 本発明の第 2の目的は、中央基地局を中心とするメインネットワークと、ミニ基地局 を中心とするサブネットワークとの間で相互に干渉が生じるのを抑制することができる 無線通信システムおよびミニ基地局を提供することである。
[0019] 本発明の第 3の目的は、隣接するセル間で相互に干渉が生じるのを抑制することが できる無線通信システムを提供することである。
[0020] 本発明の第 4の目的は、近距離に存在する無線通信機器間で相互に干渉が生じ るのを抑制することができる無線通信システムを提供することである。
[0021] [本発明の第 1の態様]
上記第 1の目的を達成するため、本発明の第 1の態様に係る無線通信装置は、周 囲に存在する他の無線通信装置とアドホックネットワークを構築して上記他の無線通 信装置と TDD— CDMA方式、 TDD—TDMA方式および TDD— OFDMに基づ いた多重アクセス方式の何れかの通信方式で通信を行うとともに、これと同じ周波数 帯域を使用して TDD方式で移動体通信ネットワークの基地局と無線で通信を行う無 線通信装置であって、上記基地局の通信エリア内で利用可能なネットワーク資源の 中で、移動体通信ネットワークの通信に使用されているネットワーク資源の割合を口 ード量として、このロード量に応じて、アドホックネットワーク内の通信で用いるネットヮ ーク資源の利用率を設定し、その設定の範囲内でアドホックネットワーク内の通信を 行うようになっていることを特徴とするものである。 [0022] ここで、 TDD— CDMAとは、複信方式に TDD方式を使用する CDMAである。 C DMAとは、スペクトラム拡散方式を応用した多元接続方式の一つで、符号分割多重 接続と呼ばれる通信方式である。 TDD— CDMAとしては、例えば、 3GPP (3rd Gen eration Partnership Project)により標準化された TD— CDMAなどが挙げられる。ま た、 TDD— TDMAとは、複信方式に TDD方式を使用する TDMA (Time Division Multiple Access :時分割多元接続)であり、 TDMAとは、同一周波数帯域を短時間 ずつ交代で複数の発信者で共有する多元接続方式である。この TDD— TDMAを 採用したものとしては、例えば、 PHS (Personal Handyphone System)などが挙げられ る。また、 TDD— OFDMとは、複信方式に TDD方式を使用する OFDM (Orthogon al Frequency Division Multiplexing:直交波周波数分割多重)であり、 OFDMとは、 変調されたスペクトラムの強度が 0になる周波数間隔毎に(各スペクトルが互いに直 交するように)複数の搬送波(キャリア)を配列する伝送方式である。この伝送方式に おいては、発信者毎に一または複数の搬送波が割り当てられる。 OFDMに基づいた 多重アクセス方式には、例えば、 OFDM A (Orthogonal Frequency Division Multiple Access)や OFCDM (Orthogonal Frequency and Code Division Multiplexing)なども 含まれる。
ネットワーク資源には、例えば TDD— CDMA方式の場合、タイムスロットや拡散符 号が含まれる。また、 TDD— TDMA方式の場合にはタイムスロットが、 TDD-OFD Mに基づいた多重アクセス方式の場合にはタイムスロットとキャリア力 上記ネットヮー ク資源にそれぞれ含まれる。
[0023] 無線通信装置としては、例えば、携帯電話や、移動体通信ネットワークとの接続機 能を有する PDA (Personal Digital Assistance)やパーソナルコンピュータ等の情報端 末などが挙げられる。
また、「周囲に存在する他の無線通信装置」には、上記のように移動体通信ネットヮ ークとの接続機能を有する無線通信装置の他に、例えば、移動体通信ネットワークと の接続機能を持たない情報端末 (コンピュータ、 PDAなど)や、情報端末の周辺機器 (例えば、ヘッドセット、プリンタ、マウス、ディスプレイ)なども含まれる。これら無線通 信装置は、少なくとも電波の到達範囲内にある他の無線通信装置とアドホックネットヮ ークを構築して、当該アドホックネットワーク内の無線通信装置どうしで相互に通信を 行う機能 (以下、アドホック通信機能と称する。)を有している。
[0024] すなわち、本発明の第 1の態様に係る無線通信装置は、上記アドホック通信機能を 有する周囲の無線通信装置を検出し、それら無線通信装置に関する情報 (例えば、 I Dやノード種別等のノード情報、拡散符号やタイムスロット等の通信チャネルに関する 情報など)を特定の無線通信装置 (マスタ)力 取得して記憶部に記憶する処理を実 行した後、特定の無線通信装置 (マスタ)によって割り当てられた通信チャネルを利 用して、アドホックネットワーク内の他の無線通信装置と相互に通信を行うようになつ ている。
なお、本発明の第 1の態様に係る無線通信装置においては、上記ロード量が高くな るほど、アドホックネットワーク内の通信で用いるネットワーク資源の利用率が低くなる ように設定することが好まし 、。
[0025] 本発明の第 1の態様に係る無線通信システムは、移動体通信ネットワークの基地局 と、上記基地局との通信に TDD— CDMA方式、 TDD— TDMA方式および TDD — OFDMに基づいた多重アクセス方式の何れかの通信方式を用いるとともに、アド ホックネットワーク内の他の無線通信装置との通信に、上記基地局との通信と同じ周 波数帯域を使用して複信方式に TDD方式を使用する無線通信装置とを有する無線 通信システムであって、上記基地局の通信エリア内で利用可能なネットワーク資源の 中で、移動体通信ネットワークの通信に使用されているネットワーク資源の割合を口 ード量として、上記基地局は、上記ロード量を求めるロード量演算手段と、上記ロード 量に基づいて、アドホックネットワーク内の通信で用いるネットワーク資源の利用率の 基準値を設定する基準値設定手段と、設定した基準値を上記無線通信装置に対し て通知する基準値通知手段とを備え、上記無線通信装置は、上記基地局から通知さ れた基準値に基づいて、アドホックネットワーク内の通信で用いるネットワーク資源の 利用率を設定し、その設定の範囲内でアドホックネットワーク内の通信を行うようにな つて!/、ることを特徴とするものである。
[0026] 上記無線通信システムにお!/、て、上記無線通信装置は、移動体通信ネットワーク のアップリンクのときにその干渉量を測定して、その干渉量に応じた補正を上記基準 値に加えることにより、上記利用率を導き出す構成とすることが可能である。
また、上記基地局は、上記基準値を Y、上記ロード量を X、上記基地局の通信エリ ァ内に存在するアドホックネットワークの数を Νとして、上記基準値 Υを、上記ロード量 Xと上記アドホックネットワーク数 Νの減少関数である Y=f (X, N)、若しくは上記ロー ド量 Xの減少関数である Y=f (X)より導き出す構成とすることが可能である。
[0027] また、上記無線通信システムにお!/、て、上記ロード量演算手段は、移動体通信ネッ トワークのアップリンクにおけるロード量と、ダウンリンクにおけるロード量とをそれぞれ 求め、上記基準値設定手段は、移動体通信ネットワークのアップリンクにおけるロード 量に応じて第 1基準値を設定する一方、移動体通信ネットワークのダウンリンクにおけ るロード量に応じて第 2基準値を設定し、上記無線通信装置は、上記基地局から通 知された上記第 1基準値に基づいて第 1利用率を、上記第 2基準値に基づいて第 2 利用率をそれぞれ設定した後、移動体通信ネットワークのダウンリンクのときには、上 記第 1利用率の範囲内でアドホックネットワーク内の通信を行 、、移動体通信ネットヮ ークのアップリンクのときには、上記第 2利用率の範囲内でアドホックネットワーク内の 通信を行うものであることが好まし 、。
この場合、上記無線通信装置は、移動体通信ネットワークのアップリンクのときの干 渉量と、移動体通信ネットワークのダウンリンクのときの干渉量とをそれぞれ測定し、 上記アップリンクのときの干渉量に応じた補正を上記第 1基準値に加えることにより、 上記第 1利用率を導き出すとともに、上記ダウンリンクのときの干渉量に応じた補正を 上記第 2基準値に加えることにより、上記第 2利用率を導き出すことが可能である。
[0028] また、上記無線通信システムにお!/、て、上記無線通信装置は、すべてのタイムス口 ットの中から、上記利用率に相当する数のタイムスロットを 1フレーム毎にランダムに 選出して、そのタイムスロットをアドホックネットワーク用のタイムスロットとして割り当て る構成とすることが可能である。若しくは、上記無線通信装置は、上記基地局の通信 エリア内で利用可能な拡散符号とタイムスロットのすべての組合せの中から、上記利 用率に相当する数の組合せを 1フレーム毎にランダムに選出して、その選出した拡散 符号とタイムスロットの組合せをアドホックネットワーク用のネットワーク資源として割り 当てる構成とすることも可能である。或いは、上記無線通信装置は、すべてのタイム スロットの中から、上記利用率に相当する数のタイムスロットを選出する際に、例えば 、移動体通信ネットワークの移動局力 の干渉量または移動局の位置情報を取得し 、その取得した干渉量または位置情報に基づいて、アドホックネットワークと移動体通 信ネットワークの干渉量が最も少なくなるようなタイムスロットの組合せを選出する構成 とすることち可會である。
[0029] さらに、上記無線通信システムにおいては、上記無線通信装置は、伝送路の状態 に適応した変調方式と符号化率の組合せを選択する適応符号化変調を用いて、通 信を行う構成とすることも可能である。
[0030] また、本発明の第 1の態様に係る基地局は、周囲に存在する他の無線通信装置と アドホックネットワークを構築して上記他の無線通信装置と TDD— CDMA方式、 TD D— TDMA方式および TDD— OFDMに基づいた多重アクセス方式の何れかの通 信方式で通信を行う無線通信装置を移動局として、当該移動局との間で、上記アド ホックネットワークと同じ周波数帯域を使用して TDD方式で通信を行う移動体通信ネ ットワークの基地局であって、上記基地局の通信エリア内で利用可能なネットワーク 資源の中で、移動体通信ネットワークの通信に使用されているネットワーク資源の割 合をロード量として、このロード量を求めるロード量演算手段と、上記ロード量に基づ いて、アドホックネットワーク内の通信で用いるネットワーク資源の利用率の基準値を 設定する基準値設定手段と、設定した基準値を上記無線通信装置に対して通知す る基準値通知手段とを備えることを特徴とするものである。
[0031] また、本発明の第 1の態様に係るネットワーク資源の割当方法は、移動体通信ネット ワークの基地局と、上記基地局との通信に TDD— CDMA方式、 TDD— TDMA方 式および TDD— OFDMに基づいた多重アクセス方式の何れかの通信方式を用い るとともに、アドホックネットワーク内の他の無線通信装置との通信に、上記基地局と の通信と同じ周波数帯域を使用して複信方式に TDD方式を使用する無線通信装置 とを有する無線通信システムにおけるネットワーク資源の割当方法であって、上記基 地局の通信エリア内で利用可能なネットワーク資源の中で、移動体通信ネットワーク の通信に使用されているネットワーク資源の割合をロード量として、このロード量を求 めるステップと、上記ロード量に応じて、アドホックネットワーク内の通信で用いるネット ワーク資源の利用率を設定するステップとを有し、上記無線通信装置が上記利用率 の範囲内でアドホックネットワーク内の通信を行うようにしたことを特徴とするものであ る。
[0032] さらに、本発明の第 1の態様に係る無線通信システムは、 TDD— CDMA方式、 T DD— TDMA方式および TDD— OFDMに基づ!/、た多重アクセス方式の何れかの 通信方式で、通信エリア内に存在する移動局と通信を行う基地局と、上記通信エリア 内の特定エリア内に存在する移動局と、上記基地局と同じ周波数帯域を使用して T DD方式で通信を行うミニ基地局とを有し、上記基地局と上記ミニ基地局とが通信ネ ットワークを介して互いに接続された無線通信システムであって、上記通信エリア内 で利用可能なネットワーク資源の中で、上記基地局との通信に使用されているネット ワーク資源の割合をロード量として、上記基地局は、上記ロード量を求めるロード量 演算手段と、上記ロード量に基づいて、上記特定エリア内の通信で用いるネットヮー ク資源の利用率の基準値を設定する基準値設定手段と、設定した基準値を上記ミニ 基地局に対して通知する基準値通知手段とを備え、上記ミニ基地局は、上記基地局 力 通知された基準値に基づいて、上記特定エリア内の通信で用いるネットワーク資 源の利用率を設定し、その設定の範囲内で上記特定エリア内の移動局と通信を行う ようになって!/ヽることを特徴とするものである。
[0033] 上記無線通信システムにおいて、上記ミニ基地局は、上記通信エリア内のアツプリ ンクのときにその干渉量を測定して、その干渉量に応じた補正を上記基準値に加え ることにより、上記利用率を導き出す構成とすることが可能である。
また、上記基地局は、上記基準値を Y、上記ロード量を Xとして、上記基準値 Υを、 上記ロード量 Xの減少関数である Y=f (X)より導き出す構成とすることが可能である また、上記無線通信システムにおいて、上記ミニ基地局は、すべてのタイムスロット の中から、上記利用率に相当する数のタイムスロットを 1フレーム毎にランダムに選出 して、そのタイムスロットを上記特定エリア内で使用するタイムスロットとして割り当てる 構成とすることが可能である。若しくは、上記ミニ基地局は、上記基地局の通信エリア 内で利用可能な拡散符号とタイムスロットのすべての組合せの中から、上記利用率 に相当する数の組合せを 1フレーム毎にランダムに選出して、その選出した拡散符号 とタイムスロットの組合せを上記特定エリア内の通信用ネットワーク資源として割り当 てる構成とすることも可能である。或いは、上記ミニ基地局は、上記利用率に相当す る数のタイムスロットを選出する際に、上記特定エリア外の移動局からの干渉量また は当該移動局の位置情報を取得し、その取得した干渉量または位置情報に基づい て、互 、の干渉量が最も少なくなるようなタイムスロットの組合せを選出する構成とす ることち可會である。
[0034] 本発明の第 1の態様によれば、移動体通信ネットワークのネットワーク資源の利用 状態に応じて、アドホックネットワーク内の通信で用いるネットワーク資源の利用率を 設定し、その設定の範囲内でアドホックネットワーク内の通信を行うようにしたので、ネ ットワーク資源の利用効率を向上させることができるのは勿論のこと、ネットワーク間で 相互に干渉が生じるのを抑制することができる。
したがって、アドホックネットワークと移動体通信ネットワークにおける通信に同一周 波数帯を使用する場合においても、或いは基地局とミニ基地局とが同一周波数帯を 使用する場合においても、良好な通信状態を確保することができるとともに、スルー プットや通信容量の低下を回避することができる。
[0035] [本発明の第 2の態様]
前述した第 2の目的を達成するため、本発明の第 2の態様に係る無線通信システム は、中央基地局と、この中央基地局のセル内に設置されたミニ基地局とを有し、上記 セル内に存在する移動局が上記中央基地局または上記ミニ基地局と TDD方式を用 いて通信を行う無線通信システムであって、上記ミニ基地局は、上記中央基地局から の干渉量を測定する干渉量測定手段と、上記ミニ基地局で使用するタイムスロットの 構成を設定する際に、上記中央基地局で使用するタイムスロットの構成を基本構成と して、これに対する自由度を、上記干渉量測定手段により測定した干渉量に応じて 設定し、その自由度の範囲内で、上記ミニ基地局で使用するタイムスロットの構成を 設定するタイムスロット設定手段とを備え、上記タイムスロット設定手段により設定した タイムスロットの構成に従って、上記ミニ基地局の通信エリア内に存在する移動局と 通信を行うことを特徴とするものである。 [0036] 具体的には、上記タイムスロット設定手段は、上記干渉量が多い場合に、上記ミニ 基地局で使用するタイムスロットの自由度を低く設定し、上記干渉量が少ない場合に 、上記ミニ基地局で使用するタイムスロットの自由度を高く設定するようになっている。
[0037] また、上記タイムスロット設定手段は、上記中央基地局のダウンリンクで使用されて いるタイムスロットを、上記ミニ基地局のダウンリンクで使用するタイムスロットとして優 先的に割り当てる制御を行う。
[0038] また、上記タイムスロット設定手段は、例えば、上記干渉量と、予め設定された閾値 との比較により、干渉の強さを評価して、その評価に対応する自由度のスロット構成を 、予め用意した候補の中から選択する構成とすることが可能である。
[0039] 本発明の第 2の態様に係るミニ基地局は、中央基地局のセル内に設置されて、そ のセル内の局所的なエリアに存在する移動局と TDD方式を用いて通信を行うミニ基 地局であって、上記中央基地局からの干渉量を測定する干渉量測定手段と、当該ミ 二基地局で使用するタイムスロットの構成を設定する際に、上記中央基地局で使用 するタイムスロットの構成を基本構成として、これに対する自由度を、上記干渉量測 定手段により測定した干渉量に応じて設定し、その自由度の範囲内で、当該ミニ基 地局で使用するタイムスロットの構成を設定するタイムスロット設定手段とを備え、上 記タイムスロット設定手段により設定したタイムスロットの構成に従って、当該ミニ基地 局の通信エリア内に存在する移動局と通信を行うことを特徴とするものである。
[0040] 本発明の第 2の態様によれば、ミニ基地局のスロット構成 (ミニ基地局で使用するタ ィムスロットの構成)を決定する際に、中央基地局のスロット構成を基本構成として、こ れに対する自由度を、中央基地局力 の干渉量の測定値に応じて設定し、その設定 の範囲内で、ミニ基地局のスロット構成を決定するようにしたので、中央基地局とミニ 基地局とが同一周波数帯を使用する場合においても、双方のネットワーク間で相互 に干渉が生じるのを抑制することができ、何れのネットワークにおいても良好な通信 状態を確保することができる。また、各サブネットワーク (各ミニ基地局と移動局間のネ ットワーク)において、メインネットワーク(中央基地局と移動局間のネットワーク)と異 なるスロット構成を採ることが可能となり、トラフィックの特性等に応じた柔軟な対応を とることが可能となる。これにより、スループットや通信容量の低下を回避することがで き、ネットワーク資源の利用効率を高めることができる。
[0041] [本発明の第 3の態様]
前述した第 3の目的を達成するため、本発明の第 3の態様に係る無線通信システム は、基地局と、この基地局と TDD方式を用いて通信を行う移動局とを有する無線通 信システムであって、上記基地局は、パイロット信号を上記移動局に対して送信する ノ ィロット信号送信手段を備える一方、上記移動局は、上記基地局から受信したパイ ロット信号の減衰情報を上記基地局に対して送信する減衰情報送信手段を備え、上 記基地局は、上記移動局から受信したパイロット信号の減衰情報に基づいて、当該 基地局で所定電力を達成するために必要な上記移動局の所要送信電力を求める所 要送信電力導出手段と、上記所要送信電力に基づいて、上記移動局との通信に使 用するタイムスロットを割り当てるタイムスロット割当手段とをさらに備え、上記タイムス ロット割当手段は、複数のタイムスロットからなるフレーム内の所定位置にスイッチング ポイントを設けて、フレームの始点から上記スイッチングポイントまでのタイムスロットを ダウンリンクに、上記スイッチングポイントからフレームの終点までのタイムスロットをァ ップリンクにそれぞれ設定するとともに、上記所要送信電力が高くなるほど、フレーム の始点または終点に近ぐ上記所要送信電力が低くなるほど、上記スイッチングボイ ントに近くなるように、タイムスロットの割り当てを行うことを特徴とするものである。
[0042] したがって、上記所要送信電力が高い場合、上記タイムスロット割当手段は、フレー ムの始点に近いタイムスロットをダウンリンクに、フレームの終点に近いタイムスロットを アップリンクに、それぞれ割り当てることとなる。
[0043] 上記無線通信システムにおいて、上記タイムスロット割当手段は、各タイムスロットに おけるネットワーク資源の利用率をそれぞれ求め、それら利用率が平準化するように 、タイムスロットの再割り当てを行う構成とすることが可能である。
[0044] また、上記無線通信システムにおいて、上記タイムスロット割当手段は、上記所要 送信電力と、予め設定された閾値との比較により、上記所要送信電力の大きさを評 価して、その評価に対応するタイムスロットを、上記移動局との通信に使用するタイム スロットとして選択する構成とすることが可能である。
[0045] この場合、上記基地局力 の距離と上記所要送信電力との相関関係に基づいて、 各閾値に対応する仮想円をセル内に描いたときに、隣接する仮想円の間にそれぞれ 形成されるドーナツ形状の領域の面積が互いにほぼ等しくなるように、各閾値を設定 することが望ましい。
[0046] なお、上記無線通信システムにおいては、フレームの始点から上記スイッチングポ イントまでのタイムスロットをアップリンクに、上記スイッチングポイントからフレームの終 点までのタイムスロットをダウンリンクにそれぞれ設定することも可能である。この場合 、上記タイムスロット割当手段は、上記所要送信電力が高い場合に、フレームの始点 に近いタイムスロットをアップリンクに、フレームの終点に近いタイムスロットをダウンリ ンクに、それぞれ割り当てることとなる。
[0047] 本発明の第 3の態様によれば、パイロット信号の減衰情報に基づいて、基地局で所 定電力を達成するために必要な移動局の所要送信電力を求めて、この所要送信電 力が高くなるほど、フレームの始点または終点に近ぐ所要送信電力が低くなるほど、 スイッチングポイントに近 ヽタイムスロットを割り当てるようにしたので、基地局から遠!ヽ 移動局には、フレームの始点または終点に近いタイムスロットが割り当てられ、基地局 に近い移動局には、スイッチングポイントに近いタイムスロットが割り当てられることと なる。
このため、基地局から遠い移動局については、隣接するセル間で、通信方向が異 なる可能性 (一方がダウンリンクで、他方がアップリンクとなる可能性)が低くなり、相 互に干渉が生じ難くなる。一方、基地局に近い移動局については、隣接するセル間 で、通信方向が異なる可能性が高くなるが、上記所要送信電力が低く抑えられるた めに、仮に通信方向の設定が反対になったとしても、大きな干渉にはならない。
したがって、スループットや通信容量の低下を回避して、高速通信を実現すること ができる。
[0048] [本発明の第 4の態様]
前述した第 4の目的を達成するため、本発明の第 4の態様に係る無線通信システム は、複数のタイムスロットからなるフレームを基本単位として、このフレームに含まれる 何れかのタイムスロットを使用して互いに通信を行う複数の無線通信機器を有する無 線通信システムであって、送信側となる無線通信機器を第 1無線通信機器、受信側 となる無線通信機器を第 2無線通信機器として、上記第 2無線通信機器は、上記第 1 無線通信機器との通信開始後、予め設定された所定条件が成立する毎に、各タイム スロットの干渉量を測定する干渉量測定手段と、上記干渉量測定手段により測定した 各タイムスロットの干渉量を、上記第 1無線通信機器に対して通知する干渉量通知手 段とを備える一方、上記第 1無線通信機器は、上記第 2無線通信機器から通知され た各タイムスロットの干渉量に基づいて、次に使用するタイムスロット(上記第 2無線通 信機器への送信時に使用するタイムスロット)を選択するタイムスロット選択手段と、上 記タイムスロット選択手段により選択したタイムスロットを上記第 2無線通信機器に対 して通知するタイムスロット通知手段とを備え、上記第 1無線通信機器は、上記タイム スロット選択手段により選択したタイムスロットを上記第 2無線通信機器に対して通知 した後、そのタイムスロットを使用して上記第 2無線通信機器と通信を行うことを特徴と するものである。
[0049] ここで、無線通信機器としては、例えば移動体通信ネットワークの基地局と移動局 が挙げられ、移動局には、基地局と直接通信を行う移動局と、他の移動局を介して基 地局と通信を行う移動局とが含まれる。
無線通信機器間で使用する通信方式としては、例えば 3GPPにより標準化された 規格の一つである TD— CDMA方式を採用することが可能である。この TD— CDM A方式では、 1フレームが 15のタイムスロットにより構成されている。
干渉量の測定を開始する上記所定条件としては、例えば、(1)基地局からの処理 実行の指示を受けたとき、(2)第 1無線通信機器と通信を開始して力 一定時間経 過したとき、(3)前回の干渉量の測定力も一定時間経過したとき、などが挙げられる 力 何れを採用するようにしてもよい。
[0050] 上記無線通信システムにお 、て、上記タイムスロット選択手段は、例えば、各タイム スロットについて、上記第 2無線通信機器との通信に割当可能な割当電力を求めた 後、この割当電力と、上記第 2無線通信機器力 通知された干渉量とを引数とする評 価関数の関数値をそれぞれ求め、それら関数値の比較結果に基づいて、次に使用 するタイムスロットを選択する構成とすることが可能である。
[0051] この場合、上記タイムスロット選択手段は、例えば、上記割当電力を上記干渉量で 除した値が最大となるタイムスロットを、次に使用するタイムスロットとして選択する構 成とすることが可能である。
[0052] また、上記無線通信システムにお 、て、上記干渉量測定手段は、上記第 1無線通 信機器との通信途中で、干渉量の測定を複数回行い、その都度、上記タイムスロット 選択手段は、次に使用するタイムスロットの選択を行う構成とすることが可能である。
[0053] また、上記無線通信システムにお!/、て、上記第 1無線通信機器は、例えば移動体 通信ネットワークの基地局であり、上記第 2無線通信機器は、移動体通信ネットワーク の移動局である。
[0054] 若しくは、上記第 1無線通信機器は、例えば上記第 2無線通信機器と他の無線通 信機器間の中継処理を行う中継端末である。
[0055] また、本発明の第 4の態様に係る無線通信システムは、複数のタイムスロットからな るフレームを基本単位として、このフレームに含まれる何れかのタイムスロットを使用し て互いに通信を行う複数の無線通信機器を有する無線通信システムであって、送信 側となる無線通信機器を第 1無線通信機器、受信側となる無線通信機器を第 2無線 通信機器として、上記第 1無線通信機器は、各タイムスロットについて、上記第 2無線 通信機器との通信に割当可能な割当電力を求め、これを上記第 2無線通信機器に 対して通知する割当電力通知手段を備える一方、上記第 2無線通信機器は、上記第 1無線通信機器との通信開始後、予め設定された所定条件が成立する毎に、各タイ ムスロットの干渉量を測定する干渉量測定手段と、上記干渉量測定手段により測定し た各タイムスロットの干渉量と、上記第 1無線通信機器カゝら通知された各タイムスロット の割当電力とに基づいて、次に使用するタイムスロット (上記第 1無線通信機器から の受信時に使用するタイムスロット)を選択するタイムスロット選択手段と、選択したタ ィムスロットを上記第 1無線通信機器に対して通知するタイムスロット通知手段とを備 え、上記第 1無線通信機器は、上記第 2無線通信機器カゝらタイムスロットの通知を受 けた後、そのタイムスロットを使用して上記第 2無線通信機器と通信を行うことを特徴 とするちのである。
[0056] さらに、本発明の第 4の態様に係る無線通信システムは、複数のタイムスロットから なるフレームを基本単位として、このフレームに含まれる何れかのタイムスロットを使 用して互いに通信を行う複数の無線通信機器を有する無線通信システムであって、 送信側となる無線通信機器を第 1無線通信機器、受信側となる無線通信機器を第 2 無線通信機器として、上記第 2無線通信機器は、上記第 1無線通信機器との通信開 始後、予め設定された所定条件が成立する毎に、各タイムスロットの干渉量を測定す る干渉量測定手段と、各タイムスロットの干渉量を測定した後、その中で最も干渉量 の少ないタイムスロットを、次に使用するタイムスロット(上記第 1無線通信機器からの 受信時に使用するタイムスロット)として選択するタイムスロット選択手段と、選択したタ ィムスロットを上記第 1無線通信機器に対して通知するタイムスロット通知手段とを備 え、上記第 1無線通信機器は、上記第 2無線通信機器カゝらタイムスロットの通知を受 けた後、そのタイムスロットを使用して上記第 2無線通信機器と通信を行うことを特徴 とするちのである。
また、本発明の第 4の態様に係る無線通信システムは、複数のタイムスロットからな るフレームを基本単位として、このフレームに含まれる何れかのタイムスロットを使用し て無線通信機器どうしが互いに通信を行う無線通信システムであって、送信側となる 無線通信機器を第 1無線通信機器、受信側となる無線通信機器を第 2無線通信機 器として、上記第 1無線通信機器は、各タイムスロットについて、上記第 2無線通信機 器との通信に割当可能な割当電力を求め、これを上記第 2無線通信機器に対して通 知する割当電力通知手段を備える一方、上記第 2無線通信機器は、上記第 1無線通 信機器との通信開始後、予め設定された所定条件が成立する毎に、各タイムスロット の干渉量を測定する干渉量測定手段と、上記干渉量測定手段により測定した各タイ ムスロットの干渉量と、上記第 1無線通信機器力 通知された各タイムスロットの割当 電力とに基づいて、次に使用するタイムスロット(上記第 1無線通信機器力 の受信 時に使用するタイムスロット)の候補を選択するタイムスロット選択手段と、選択したタ ィムスロットの候補を、上記第 1無線通信機器に対して通知するタイムスロット通知手 段とを備え、上記第 1無線通信機器は、上記第 2無線通信機器から通知されたタイム スロットの候補の中から、次に使用するタイムスロットを選択して、これを上記第 2無線 通信機器に対して通知した後、そのタイムスロットを使用して上記第 2無線通信機器 と通信を行うことを特徴とするものである。 [0058] 本発明の第 4の態様によれば、第 1無線通信機器 (送信側の無線通信機器)と第 2 無線通信機器 (受信側の無線通信機器)間で通信を開始した後、予め設定された所 定条件が成立する毎に、第 2無線通信機器が各タイムスロットの干渉量を測定し、そ の測定結果に基づいて、第 1無線通信機器または第 2無線通信機器が、それら無線 通信機器間の通信で次に使用するタイムスロットを順次選択するようにしたので、至 近距離に複数の無線通信機器が存在するような通信環境 (特に、マルチホップ通信 を行う無線通信機器が近傍に存在するような通信環境)にあっても、それら無線通信 機器間で相互に干渉が生じるのを抑制することができる。これにより、スループットや 通信容量の低下を回避して、高速な通信を実現することができる。また、第 1無線通 信機器と第 2無線通信機器の通信途中で、例えば他の無線通信機器の出現または 消滅、若しくは送信側または受信側の無線通信機器の移動により、各タイムスロット の干渉状態に変化が生じたとしても、その変化に速やかに対応して、干渉量の少な い最適なタイムスロットを適宜に選択することができる。
図面の簡単な説明
[0059] [図 1]図 1は、移動体通信ネットワークとアドホックネットワークのハイブリッドネットヮー クの一例を示す図である。
[図 2]図 2は、本発明に係る無線通信装置の要部構成を示すブロック図である。
[図 3]図 3は、移動体通信ネットワークの基地局の要部構成を示すブロック図である。
[図 4A]図 4Aは、ロード量 Xの算出方法を説明するための図である。
[図 4B]図 4Bは、ロード量 Xの算出方法を説明するための図である。
[図 5]図 5は、基地局の通信エリア内に構築された各アドホックネットワークにおけるネ ットワーク資源の利用率 Zと干渉量との関係を説明するための図である。
[図 6]図 6は、図 5の各アドホックネットワークの利用率 Zの設定例を示す図である。
[図 7A]図 7Aは、ロード量 X , X の算出方法を説明するための図である。
UL DL
[図 7B]図 7Bは、ロード量 X , X の算出方法を説明するための図である。
UL DL
[図 8]図 8は、基地局の通信エリア内にミニ基地局が存在する移動体通信ネットワーク の一例を示す図である。
[図 9A]図 9Aは、移動体通信ネットワークの各セルで使用されるキャリアおよびサブキ ャリアを説明するための図である。
[図 9B]図 9Bは、周波数リユースファクタが 1の場合に各セルで使用されるキャリアの 一例を示す図である。
[図 9C]図 9Cは、周波数リユースファクタが 3の場合に各セルで使用されるキャリアの 一例を示す図である。
[図 10]図 10は、本発明の第 4の実施形態に係る無線通信システムを示す図である。
[図 11]図 11は、中央基地局からの干渉量を示す模式図である。
[図 12]図 12は、各ミニ基地局の MODEとスロット構成の一例を示す図である。
[図 13]図 13は、本発明の第 5の実施形態に係る無線通信システムを示す図である。
[図 14]図 14は、タイムスロットの割当方法を説明するための模式図である。
[図 15]図 15は、基地局と移動局で行われる処理のフローチャートである。
[図 16]図 16は、閾値の設定方法を説明するための模式図である。
[図 17]図 17は、リソースの利用率の平準化方法を説明するための模式図である。
[図 18]図 18は、第 6の実施形態に係る無線通信システムを示す図で、あるフレームの タイムスロット Aにおける通信状態を示して 、る。
[図 19]図 19は、タイムスロット Bにおける通信状態を示す図である。
[図 20]図 20は、第 6の実施形態に係るタイムスロットの割当処理を示すフローチヤ一 トである。
[図 21]図 21は、タイムスロットの選択方法の一例を示す模式図である。
[図 22]図 22は、各スロット割当法の SIRの累積分布関数を示すグラフである。
[図 23]図 23は、第 7の実施形態に係るタイムスロットの割当処理を示すフローチヤ一 トである。
[図 24]図 24は、第 8の実施形態に係るタイムスロットの割当処理を示すフローチヤ一 トである。
[図 25]図 25は、移動体通信ネットワークの一例を示す図である。
[図 26]図 26は、 TDD方式と FDD方式を説明するための模式図である。
[図 27]図 27は、 TDD CDMAのフレーム構成の一例を示す図である。
[図 28]図 28は、タイムスロットの割当の一例を示す図である。 [図 29]図 29は、アドホックネットワークの一例を示す図である。
[図 30]図 30は、従来のタイムスロットの割当方法を説明するための図である。
[図 31]図 31は、ミニ基地局を用いたセルオーバーレイの一例を示す図である。
[図 32]図 32は、従来のミニ基地局のスロット構成を示す図である。
[図 33]図 33は、隣接する 2つのセルのフレーム構成例を示す図である。
[図 34]図 34は、図 33のセル間で生じる干渉を説明するための図である。
[図 35]図 35は、シングルホップ通信の一例を示す図である。
[図 36]図 36は、シングルホップ通信の一例 (端末間通信)を示す図である。
[図 37]図 37は、マルチホップ通信の一例を示す図である。
[図 38]図 38は、マルチホップ通信の一例 (端末間通信)を示す図である。
[図 39]図 39は、近距離の無線通信機器間に生じる干渉を説明するための模式図で ある。
符号の説明
[0060] 10 無線通信装置
30, 40 基地局
41 ミニ基地局
100 中央基地局
110 ミニ基地局
120 移動局
210 基地局
220a, 220b, 220c 移動局
310 基地局
320a, 320b, 320c 移動局(中継端末)
320d, 320e, 320f 移動局(通信端末) 発明を実施するための最良の形態
[0061] 以下に示す実施形態のうち、第 1〜第 3の実施形態は本発明の第 1の態様に、第 4 の実施形態は本発明の第 2の態様に、第 5の実施形態は本発明の第 3の態様に、第 6〜第 8の実施形態は本発明の第 4の態様に、それぞれ対応するものである。
[0062] [第 1の実施形態]
図 1は、本発明の第 1の実施形態に係る無線通信システムを示すもので、図中符号 10は無線通信装置、符号 30は移動体通信ネットワークの基地局である。
無線通信装置 10は、周囲に存在する他の無線通信装置とアドホックネットワークを 構築して、当該アドホックネットワーク内の無線通信装置どうしで相互に通信を行う機 能と、移動体通信ネットワークの基地局 30と通信を行う機能とを具備し、それぞれの 通信方式に共通の TDD— CDMA方式を採用して同一周波数帯を使用するように なっている。この無線通信装置 10は、例えば、携帯電話や、通信機能を有する PDA やパーソナルコンピュータ等の情報端末により構成されている。
[0063] 図 2は、無線通信装置 10の要部構成を示すブロック図である。この図 2に示すよう に、無線通信装置 10は、送信器 11、受信器 12、アンテナ 13、制御部 14および記憶 部 15を有している。
[0064] 送信器 11は、送信信号を生成する送信データ処理部 l la、搬送波を送信信号で 一次変調する一次変調部 l lb、一次変調によって得られた変調信号を拡散符号で 拡散変調 (二次変調)する拡散部 1 lc、拡散変調された信号を増幅する増幅部 1 Id 等を備えている。すなわち、上記送信データ処理部 11aで生成された送信信号は、 一次変調部 l ibにて所定の変調方式 (QPSK、 16QAM等)で一次変調された後、 拡散部 11cにて拡散符号により拡散変調され、その後、増幅部 l idにて増幅されて アンテナ 13から電波として放射されるようになっている。
[0065] 一方、受信器 12は、アンテナ 13から受信した受信信号に含まれる不要なノイズ成 分を除去する帯域フィルタ 12a、この帯域フィルタ 12aを通過した受信信号を拡散符 号で逆拡散する逆拡散部 12b、逆拡散によって得られた信号を復調する復調部 12c 、復調された信号に基づいて各種データ処理を行う受信データ処理部 12d等を備え ている。すなわち、アンテナ 13で受信した受信信号は、ノイズ成分が帯域フィルタ 12 aで除去された後、送信側と同一の拡散符号によって逆拡散され、その後、復調部 1 2cにて復調されてベースバンド波形に戻されるようになって!/、る。
[0066] 制御部 14は、記憶部 15に記憶された制御情報等に基づ 、て送信器 11や受信器 12等の制御を行うもので、この制御部 14によって、送信と受信の切替制御や、送信 電力の出力制御、或いはアドホックネットワークと移動体通信ネットワークとの切替制 御や同期制御等が行われるようになつている。例えば、移動体通信ネットワークの基 地局 30、或いはアドホックネットワーク内の他の無線通信装置と無線回線を使って通 信する際には、後述するタイムスロットの割当に基づいて送信と受信の切替が行われ て、 TDD方式で通信が行われるようになっている。
[0067] また、本実施形態では、制御部 14は、移動体通信ネットワークのアップリンクのとき の干渉量 I を測定する処理、測定した干渉量 I と基地局 30から通知された基準値
UL UL
Y (後述)とに基づいて、アドホックネットワーク内の通信で用いるネットワーク資源の 利用率 Zを設定する処理、その設定に基づいてネットワーク資源を割り当てる処理を それぞれ実行するようになって 、る。
[0068] ここで、上記ネットワーク資源には、タイムスロットと拡散符号が含まれる。タイムス口 ットは、 TDD— CDMAの無線フレームを複数に分割してなるもので、ここでは 15個 のタイムスロットが設けられている。また、拡散符号には、チヤネライゼーシヨンコード( channelisation code)とスクランブノレコード(scrambling code)の 2種類が用いられて!/ヽ る。チヤネライゼーシヨンコードは、 OVSF (Orthogonal Variable Spreading Factor :直 交可変拡散率)符号であり、移動体通信ネットワークでは、受信側 (基地局または移 動局)において送信側 (移動局または基地局)の識別に使用される一方、アドホック ネットワークでは、ネットワーク内の送信ノードや受信ノードの識別、或いは制御信号 とデータ信号の識別等に使用される。一方、スクランブルコードは、移動体通信ネット ワークとアドホックネットワークの識別に用いられ、移動体通信ネットワークにおいては 、基地局および移動局の属するセルの識別に用いられる。すなわち、近隣のセル間 で重複しないように、セル毎にスクランブルコードが設定されている。 TDD-CDMA では、先ず、チヤネライゼーシヨンコードによって拡散処理が行われ、次いで、スクラ ンブルコードによって拡散処理が行われる。
[0069] 図 3は、移動体通信ネットワークの基地局の要部構成を示すブロック図である。この 図 3に示すように、基地局 30は、送信器 31、受信器 32、アンテナ 33、制御部 34およ び記憶部 35等を有し、このうち送信器 31、受信器 32およびアンテナ 33は、上記無 線通信装置 10の対応する各構成要素とほぼ同様の機能を有している。
[0070] 制御部 34は、本発明に係るロード量演算手段を構成しており、移動体通信ネットヮ ークのアップリンクおよびダウンリンクで現在使用中のネットワーク資源力もロード量 X (%)を求める処理を実行する。 TDD— CDMA方式で通信を行う場合、ネットワーク 資源には、上述したように拡散符号とタイムスロットの 2つの資源が存在し、基地局 30 は、それらの資源を用いてユーザに通信のサービスを提供する。本実施形態では、 それら 2つの資源の利用率、詳細には、基地局 30の通信エリア(セル)内で利用可能 な拡散符号(チヤネライゼーシヨンコード)とタイムスロットのすべての組合せの中で、 移動体通信ネットワークの通信に使用されている拡散符号とタイムスロットの組合せ の割合のことを、ロード量 X(%)と呼ぶ。例えば、基地局 30の通信エリア内で利用可 能な拡散符号の数 (符号量)を 16、タイムスロットの数 (スロット数)を 15として、図 4A に示すように、移動体通信ネットワークの通信で使用されて 、る符号量が 12でスロッ ト数が 15のときには、ロード量 Xは 75%となり、図 4Bに示すように、符号量が 16でス ロット数が 5のときには、ロード量 Xは約 33%となる。
[0071] また、制御部 34は、本発明に係る基準値設定手段および基準値通知手段を構成 しており、上記のようにして求めたロード量 Xと、当該基地局 30の通信エリア内に存 在するアドホックネットワークの数 Nとに基づいて、アドホックネットワーク内の通信で 用いるネットワーク資源の利用率の基準値 Yを設定した後、設定した基準値 Yを無線 通信装置 10に対して通知する処理を実行する。基準値 Yは、ロード量 Xとアドホック ネットワーク数 Nを、 Y=f (X, N)に代入することにより求めることができる。 Y=f (X, N)はロード量 Xとアドホックネットワーク数 Nの減少関数となっていて、ロード量 Xとァ ドホックネットワーク数 Nが大きくなるほど基準値 Yが小さぐまた、ロード量 Xとアドホッ クネットワーク数 Nが小さくなるほど基準値 Yが大きくなるように数式ィ匕されている。な お、ここでは、アドホックネットワーク数 Nをカ卩味して基準値 Yを求めるようにしている 力 ロード量 Xのみ力も基準値 Yを求めるようにしてもょ 、。
[0072] 次に、上記構成力もなる無線通信システムによって実行されるネットワーク資源の割 当処理の処理フローについて説明する。
先ず、基地局 30において、上述したように、移動体通信ネットワークのアップリンク およびダウンリンクで現在使用中のタイムスロットの数 (スロット数)および拡散符号の 数 (符号量)からロード量 x(%)を求める処理が行われる。
[0073] 次いで、基地局 30において、上記のようにして求めたロード量 Xと、当該基地局 30 の通信エリア内に存在するアドホックネットワークの数 Nとに基づいて、アドホックネッ トワーク内の通信で用いるネットワーク資源の利用率の基準値 Y(%)を設定する処理 が行われる。
基準値 Υの算出に用いる数式としては、例えば、以下の数式等を用いることが可能 である。
[0074] [数 1]
Υ - - X · Ν γ 2 · (1 0 0—一 )
Ν
[0075] これら数式において、 klおよび k2は係数であり、その値としては、例えば、 kl = 10 00, 1500、 k2 = l, 2などの値を設定することが可能である。また、基準値 Yの採り得 る範囲は 0%≤Y≤ 100%であり、上記数式による計算結果が 100%を上回るときに は Υ= 100%として設定する。
[0076] その後、基地局 30において、上記のようにして設定した基準値 Υを無線通信装置 1 0に対して通知する処理を実行する。この通知は、基地局 30の通信エリア内に存在 する不特定多数の無線通信装置 10に対して所定周期毎に繰り返し発信 (ブロードキ ャスト)するものであっても、或 、は特定の無線通信装置 10からの要求に応答して送 信するものであってもよ 、。
[0077] 基準値 Υの通知を受けた無線通信装置 10は、移動体通信ネットワークのアップリン クのときに測定した干渉量 I と、基地局 30から通知された基準値 Υとに基づいて、ァ
UL
ドホックネットワーク内の通信で用いるネットワーク資源の利用率 Ζ (%)を設定する処 理を行う。
干渉量 I 力 S小さいときには、図 5のアドホックネットワーク ΑΝ2のように、近隣に移
UL
動体通信ネットワークの移動局 Μが存在しないと考えられる一方、干渉量 I が大きい ときには、図 5のアドホックネットワーク AN1のように、近隣に移動体通信ネットワーク の移動局 Mが存在すると考えられる。したがって、この干渉量 I に応じた補正を基準
UL
値 Yに加えるようにすれば、それぞれのアドホックネットワークに最適な利用率 Zを求 めることができる。ここでは、調整値を士 a (%)として、干渉量 I が上限値(閾値) S1
UL
を上回るときに Ζ=Υ— α、干渉量 I が下限値 S2 (S2く S 1)を下回るときに Ζ=Υ+
UL
α、干渉量 I が両閾値 S I, S2の間にあるときに Z=Yにより、それぞれ利用率 Zを求
UL
める。例えば、ロード量 Xを 80%、調整値 αを 20%、基準値 Υの導出式を Υ= 2 (10 Ο—Χ)として、近隣に移動局 Μが存在するアドホックネットワーク AN1の干渉量 I が
UL
(S K I )、近隣に移動局 Mが存在しないアドホックネットワーク AN2の干渉量 I が
UL UL
(I < S2)、やや離れた位置に移動局 Mが存在するアドホックネットワーク AN3の干
UL
渉量 I 力 (S2く I く S1)である場合、図 6に示すように、アドホックネットワーク AN1
UL UL
の利用率 Zは、 Z=Y— αより 20%、アドホックネットワーク ΑΝ2の利用率 Ζは、 Ζ=Υ + αより 60%、アドホックネットワーク ΑΝ3の利用率 Ζは、 Ζ=Υより 40%となる。ここ では、閾値を用いて調整値を決定しているが、閾値を用いずに、干渉量 I に所定の
UL
係数を乗じた値を調整値とすることも可能である。
利用率 Ζの設定後、無線通信装置 10においては、利用率 Ζに基づいてネットワーク 資源を割り当てる処理が行われる。具体的には、すべてのタイムスロットの中から、利 用率 Ζに相当する数のタイムスロットを 1フレーム毎にランダムに選出して、そのタイム スロットをアドホックネットワーク用のタイムスロットとして割り当てる処理が行われる。例 えば、アドホックネットワーク AN1の場合には、利用率 Ζが 20%であるので、 15個のう ちの 3個のタイムスロットが 1フレーム毎にランダムに選出される。同様に、アドホックネ ットワーク ΑΝ2の場合には 9個のタイムスロット力 アドホックネットワーク ΑΝ3の場合 には 6個のタイムスロットが、 1フレーム毎にそれぞれランダムに選出される。ここでは 、選出した各タイムスロットですべての拡散符号(16個)をアドホックネットワーク内の 通信に使用するという前提でタイムスロットの割り当てを行うようにしている力 例えば 全体の 1Z2にあたる拡散符号 (8個)をアドホックネットワーク内の通信に使用すると いう前提でタイムスロットの割り当てを行うようにしてもよい。その場合、各アドホックネ ットワーク AN1, ΑΝ2, ΑΝ3で選出されるスロット数がそれぞれ上記の 2倍となる。 [0079] また、上記以外の方法として、基地局 30の通信エリア内で利用可能な拡散符号と タイムスロットのすべての組合せの中から、利用率 Zに相当する数の組合せを 1フレ ーム毎にランダムに選出して、その選出した拡散符号とタイムスロットの組合せをアド ホックネットワーク用のネットワーク資源として割り当てる方法もある。例えば、基地局 3 0の通信エリア内で利用可能な拡散符号の数が 16、タイムスロットの数が 15である場 合、それらの組合せ総数は 240通りとなる。この内、アドホックネットワーク AN1の場 合には、利用率 Zが 20%であるので、 48通りの組合せが 1フレーム毎にランダムに選 択される。同様に、アドホックネットワーク AN2の場合には 144通りの組合せ力 アド ホックネットワーク AN3の場合には 96通りの組合せ力 1フレーム毎にそれぞれラン ダムに選択される。
[0080] 次に、無線通信装置 10によって実行されるアドホックネットワークのセットアップ処 理について説明する。ここでは、上記無線通信装置 10をノード Aとして説明し、アドホ ックネットワーク全体を管理する無線通信装置をマスタ、当該マスタの管理下で無線 通信を行う無線通信装置をスレーブと称することとする。
この処理は、アドホックモードに通信モードの切換が行われた場合や、移動体通信 ネットワークよりもアドホックネットワークの SIR (Signal to Interference Ratio :信号対干 渉比)の方が強!、場合などに開始される。
[0081] 先ず、ノード Aが、アドホックネットワーク内にマスタが存在するか否かを探索し、そ の探索結果に基づ 、て、当該ノード Aのノード種別をマスタまたはスレーブの何れか に設定する処理を行う。すなわち、ノード Aが、マスタ力 発せられるパイロット信号( 制御信号)を検出する処理を行い、その結果、パイロット信号を検出できた場合には 、ノード種別をスレーブに設定し、パイロット信号を検出できな力つた場合には、ノード 種別をマスタに設定する。
[0082] ここで、ノード種別がスレーブに設定された場合には、ノード Aが、予め設定された 共有チャネル(Common Channel)を利用して、アドホックネットワークへの接続要求と ノード情報(例えば、ノード Aの ID、アドレスなど)をマスタに対して送信する処理を行 う。マスタは、ネットワークへの接続要求とノード情報をノード Aから受信すると、受信 したノード情報に基づ 、て、記憶部 15内のネットワーク情報 (各スレーブおよびマスタ のノード情報、ネットワーク資源の割当に関する情報、 QoSのパラメータなど)を更新 する。その後、ノード Aは、マスタ力も ACK (接続許可応答)を受信した後、上記ネット ワーク情報をマスタ力 取得して記憶部 15に記憶する処理を行う。これにより、ノード Aがスレーブとしてアドホックネットワーク内に組み入れられた状態となる。
[0083] 一方、ノード種別がマスタに設定された場合には、ノード Aが、基準値 Yや拡散符 号など、アドホックネットワークの構築に必要な情報を基地局 30から取得する処理を 行う。その後、ノード Aは、所定周期毎にパイロット信号を繰り返し発信するとともに、 スレーブ力も出力される制御信号を監視しながら、定期的に、基準値 Yを用いてネッ トワーク資源を割り当てる処理、ネットワーク情報を更新する処理、各スレーブの通信 状態を検出する処理、移動体通信ネットワークにおける通信タイミングに合致するよう にアドホックネットワークの通信タイミングを設定する処理(同期処理)等を行う。これ により、ノード Aをマスタとするアドホックネットワークが構築され、当該アドホックネット ワークの維持管理がノード Aによって行われる。
[0084] 次に、上記のようにして構築されたアドホックネットワーク内において、各ノード間で データ信号を送受信する際の処理について説明する。例えば、ノード Aがスレーブに 設定されている場合に、当該ノード Aが、スレーブに設定されている他の無線通信装 置 (以下、ノード Bと称する)との通信を開始する際には、先ず、ノード Aが、通信相手 となるノード Bの IDを指定して、通信チャネルの割当要求を、共有チャネルを利用し てマスタに対して送信する処理を行う。これを受けて、マスタは、記憶部 15内のネット ワーク情報を参照して、ノード Bの通信状態を確認するとともに、ノード Α·Β間の通信 チャネル (ノード Α· Β間の通信で使用するタイムスロットと拡散符号の組合せ)を割り 当てる処理を実行する。すなわち、上述したネットワーク資源の割当処理によって割 り当てられたアドホックネットワーク用のネットワーク資源の中力も何れかを選択して、 ノード Α·Β間の通信用に割り当てる処理を実行する。
[0085] その後、マスタは、割り当てた通信チャネルを、通信要求のあったノード Αとその通 信相手となるノード Bに対して通知する処理を行う。ノード Aおよびノード Bは、通信チ ャネルの割当通知をマスタ力 受信すると、割り当てられた通信チャネルを利用して、 データ信号の送受信をノード間で直接行う。 その際に、ノード Aおよびノード Bは、 ACM (Adapting Coding and Modulation)等で 用いられている適応符号化変調を使用して通信を行う。適応符号化変調とは、伝送 路の状態に応じて変調方式と符号化率の組合せを選択するもので、具体的には、表 1に示すように、干渉量の大きいときは、低速であるが安定性に優れた変調方式 (例 えば、 QPSK: Quadrature Phase Shift Keying)と誤り訂正能力の大きい符号化率を 選択して、符号ィ匕変調レベル (MCSレベル)を低くし、一方、干渉量の小さいときは、 高速な変調方式(例えば、 16QAM : Quadrature Amplitude Modulation)と誤り訂正 能力の小さい符号ィ匕率を選択して、符号ィ匕変調レベルを高くするというものである。 この適応符号化変調を採用することにより、伝送路の状態に応じた最大限のデータ レートで通信を行うことが可能となる。なお、この適応符号化変調は、アドホックネット ワーク内における通信時だけではなぐ移動体通信ネットワークの基地局 30との通信 時にち適用されるちのである。
[0086] [表 1]
Figure imgf000030_0001
[0087] 以上のように、第 1の実施形態によれば、移動体通信ネットワークのネットワーク資 源の利用状態に応じて、アドホックネットワーク内の通信で用いるネットワーク資源の 利用率 Zを設定し、その設定の範囲内でアドホックネットワーク内の通信を行うように したので、ネットワーク資源の利用効率を向上させることができるのは勿論のこと、ネッ トワーク間で相互に干渉が生じるのを抑制することができる。
したがって、アドホックネットワークと移動体通信ネットワークにおける通信に、 TDD 方式をベースとする共通の通信方式を採用して同一周波数帯を使用する場合にお いても、良好な通信状態を確保することができるとともに、スループットや通信容量の 低下を回避することができる。
[0088] また、本実施形態では、すべてのタイムスロットの中から、上記利用率 Zに相当する 数のタイムスロットを 1フレーム毎にランダムに選出して、そのタイムスロットをアドホッ クネットワーク用のタイムスロットとして割り当てるようにしたので、タイムスロットの割当 制御が容易になる上に、タイムスロット間で干渉量に偏りが生じ難くなり、移動体通信 ネットワークの特定の端末がアドホックネットワーク力 強い干渉を受けるのを防止す ることがでさる。
[0089] [第 2の実施形態]
次に、本発明の第 2の実施形態を説明する。ただし、第 1の実施形態で示した構成 要素と共通する要素には同一の符号を付し、その説明を簡略化する。
上述した第 1の実施形態においては、移動体通信ネットワークのアップリンクとダウ ンリンクの区別をせずに全体のロード量 Xを求め、このロード量 Xから利用率 Zを導き 出すようにしたが、この第 2の実施形態においては、移動体通信ネットワークのアップ リンクとダウンリンクを区別してそれぞれのロード量 X , X を求め、アップリンクにお
UL DL
けるロード量 X 力もダウンリンク用の利用率 Z を、ダウンリンクにおけるロード量 X
UL DL DL
力もアップリンク用の利用率 Z をそれぞれ求めるようにして!、る。
UL
[0090] 具体的には、先ず、基地局 30において、移動体通信ネットワークのアップリンクに おけるロード量 X と、ダウンリンクにおけるロード量 X とをそれぞれ求める処理が行
UL DL
われる。例えば図 7Aに示すように、 1フレーム内の 15個のタイムスロットの中で 12個 のタイムスロットが移動体通信ネットワークのダウンリンクに設定され、その内、移動体 通信ネットワークの通信に使用されているタイムスロットの数が 6でそれぞれの符号量 力 S16のときには、ダウンリンクにおけるロード量 X は 50%となり、またアップリンクに
DL
設定された 3個のタイムスロットの内、移動体通信ネットワークの通信に使用されてい るタイムスロットの数が 2でそれぞれの符号量が 16のときには、アップリンクにおける口 ード量 X は約 67%となる。また、図 7Bに示すように、ダウンリンクに設定された 12個
UL
のタイムスロットの内、移動体通信ネットワークの通信に使用されているタイムスロット の数が 12でそれぞれの符号量が 8のときには、ロード量 X は 50%となり、またアップ
DL
リンクに設定された 3個のタイムスロットの内、移動体通信ネットワークの通信に使用さ れているタイムスロットの数が 3でそれぞれの符号量が 12のときには、ロード量 X は
UL
75%となる。
[0091] 次いで、基地局 30において、移動体通信ネットワークのアップリンクにおけるロード 量 X 力 ダウンリンク用の基準値 Y (第 1基準値)を、ダウンリンクにおけるロード量
UL DL
X 力 アップリンク用の基準値 Y (第 2基準値)を導き出す処理が行われる。これら
DL UL
基準値 Y , Y の導出には、第 1の実施形態で示した基準値 Yの算出式が用いられ
DL UL
る。
[0092] その後、基地局 30は、無線通信装置 10に基準値 Υ , Y を通知する処理を行い
DL UL
、この通知を受けた無線通信装置 10は、移動体通信ネットワークのアップリンクのとき に測定した干渉量 I とダウンリンク用の基準値 Y とに基づいてダウンリンク用の利用
UL DL
率 Z (第 1利用率)を設定するとともに、移動体通信ネットワークのダウンリンクのとき
DL
に測定した干渉量 I とアップリンク用の基準値 Y とに基づいてアップリンク用の利用
DL UL
率 Z (第 2利用率)を設定する処理を行う。すなわち、上述した第 1の実施形態と同
UL
様に、干渉量 I に応じた補正を基準値 Y にカ卩えることにより、ダウンリンク用の利用
UL DL
率 Z を導き出し、干渉量 I に応じた補正を基準値 Y に加えることにより、アップリン
DL DL UL
ク用の利用率 Z を導き出す処理を行う。
UL
[0093] 例えば、移動体通信ネットワークのアップリンクにおけるロード量 X を 90%、ダウン
UL
リンクにおけるロード量 X を 70%、基準値 Y の導出式を Y = 2 ( 100 -X )、基
DL DL DL UL
準値 Y の導出式を Y = 2 ( 100— X )、干渉量 I に対応する調整値 α を 20%、
UL UL DL UL UL
干渉量 I に対応する調整値 α を 10%とした場合に、ダウンリンク用の利用率 Ζ お
DL DL DL
よびアップリンク用の利用率 Z 1S 干渉量 I , I の測定結果から、 Z =Υ + α
UL UL DL DL DL UL
、Z =Y — a とそれぞれ表されるときには、ダウンリンク用の利用率 Z 力 0%、
UL UL DL DL
アップリンク用の利用率 Z が 50%となる。
UL
[0094] 利用率 Z , Z の設定後、無線通信装置 10においては、利用率 Z , Z の設定に
DL UL DL UL
基づいてネットワーク資源を割り当てる処理が行われる。具体的には、移動体通信ネ ットワークのダウンリンクに設定されたすベてのタイムスロットの中から、利用率 Z に
DL
相当する数のタイムスロットを、また、アップリンクに設定されたすベてのタイムスロット の中から、利用率 Z に相当する数のタイムスロットをそれぞれランダムに選出して、 それらタイムスロットをアドホックネットワーク用のタイムスロットとして割り当てる処理が 行われる。例えば、ダウンリンク用の利用率 Z 力 0%、アップリンク用の利用率 Z
DL UL
が 50%と設定されたアドホックネットワークの場合には、ダウンリンクに設定された 12 個のタイムスロット中の 4個または 5個と、アップリンクに設定された 3個のタイムスロット 中の 1個または 2個が 1フレーム毎にランダムに選出される。そして、選出されたタイム スロットを使用して、アドホックネットワーク内の通信が行われることとなる。
[0095] 以上のように、この第 2の実施形態によれば、アドホックネットワーク内の通信で用い るネットワーク資源の利用率を、移動体通信ネットワークのアップリンクとダウンリンクと に分けてそれぞれ設定し、それら設定の範囲内でアドホックネットワーク内の通信を 行うようにしたので、例えば、移動体通信ネットワークのアップリンクとダウンリンクとの 間でネットワーク資源の利用状態に差異があるような場合であっても、アドホックネット ワークにおいて、その差異に応じたネットワーク資源の割当を適切に行うことが可能と なり、これによつて、ネットワーク資源の利用効率の更なる向上を図ることができるとと もに、ネットワーク間で相互に干渉が生じるのをより一層効果的に抑制することができ る。
[0096] なお、移動体通信ネットワークのアップリンクとダウンリンクに割り当てるタイムスロット の比率や配置は、トラフィックの特性等に応じて随時変更するものであってもよぐそ の場合には、変更の都度、基地局 30からその通信エリア内に存在するすべての無 線通信装置 10に対して変更内容を知らせる通知を送信するようにすればよい。そう することで、上述した手順と同様に、アドホックネットワーク内においてネットワーク資 源の割当を適切に行うことができる。
[0097] [第 3の実施形態]
図 8は、本発明の第 3の実施形態に係る無線通信システムを示すもので、図中符号 40は基地局、 41はミニ基地局である。
本実施形態では、基地局 40の通信エリア (セル)内に複数のミニ基地局 41が設置 され、それらミニ基地局 41と基地局 40とが LAN等の通信ネットワークを介して無線ネ ットワーク制御装置(RNC : Radio Network Controller Equipment) 42にそれぞれ接 続されている。 [0098] 基地局 40は、その通信エリア内に存在する移動局 Mと通信を行い、ミニ基地局 41 は、上記通信エリア内であつて当該ミニ基地局 41の近傍の特定エリア内に存在する 移動局 Mと通信を行うようなっている。基地局 40とミニ基地局 41は、何れも複信方式 を TDD方式とする通信方式(例えば TDD— CDMA方式、 TDD— TDMA方式など
)を採用して同一周波数帯を使用するようになっている。また、ミニ基地局 41は、上記 通信エリア内でアップリンクに設定されているタイムスロットと、ダウンリンクに設定され ているタイムスロットの何れか一方または両方を使用して、上記特定エリア内の移動 局 Mと通信を行うようになっている。なお、本実施形態において、移動局 Mは、アドホ ック通信機能を有する無線通信装置であっても、アドホック通信機能を持たな 、無線 通信装置であってもよい。
[0099] 基地局 40は、第 1の実施形態と同様、上記通信エリア内で現在使用中のネットヮー ク資源(当該基地局 40と移動局 M間の通信で現在使用中のネットワーク資源)力も口 ード量 X(%)を求めて、このロード量 Xに基づいて、上記特定エリア内の通信で用い るネットワーク資源の利用率の基準値 Y(%)を設定した後、設定した基準値 Υをミニ 基地局 41に対して通知する処理を実行する。
一方、ミニ基地局 41は、上記通信エリア内のアップリンクのときの干渉量 I を測定
UL
する処理、測定した干渉量 I と基地局 40から通知された基準値 Υとに基づいて、上
UL
記特定エリア内の通信で用いるネットワーク資源の利用率 Ζ (%)を設定する処理、そ の設定に基づ 、てネットワーク資源を割り当てる処理をそれぞれ実行するようになつ ている。
[0100] ロード量 X、基準値 Υおよび利用率 Ζは何れも、第 1の実施形態と同様の方法で求 めることができ、例えば、基地局 40におけるロード量 Xを 60%、基準値 Υの導出式を Υ= 100—Χ、干渉量 I に対応する調整値 aを 5%とした場合、基準値 Yは 40%、
UL
禾 IJ用率 Zは、 35≤Z≤45となる。
[0101] 利用率 Zの設定後、ミニ基地局 41においては、利用率 Zの設定に基づいてネットヮ ーク資源を割り当てる処理が行われる。具体的には、すべてのタイムスロットの中から 、利用率 Zに相当する数のタイムスロットを 1フレーム毎にランダムに選出して、そのタ ィムスロットを上記特定エリア内の通信用タイムスロットとして割り当てる処理が行われ る。例えば、利用率 Zが 40%の場合には、 15個のうちの 6個のタイムスロットが 1フレ ーム毎にランダムに選出され、その選出されたタイムスロットが、上記特定エリア内の ミニ基地局 41と移動局 M間の通信で使用されることとなる。
[0102] 以上のように、第 3の実施形態によれば、基地局 40におけるネットワーク資源の利 用状態に応じて、上記特定エリア内の通信で用 、るネットワーク資源の利用率を設 定し、その設定の範囲内でミニ基地局 41が上記特定エリア内の移動局 Mと通信を行 うようにしたので、ネットワーク資源の利用効率を向上させることができるのは勿論のこ と、上記特定エリアの内外で相互干渉が生じるのを極力抑制することができる。
したがって、基地局 40とミニ基地局 41とが同一周波数帯を使用する場合において も、良好な通信状態を確保することができるとともに、スループットや通信容量の低下 を回避することができる。
[0103] なお、以上の各実施形態においては、アドホックネットワークのマスタまたはミニ基 地局 41が、アドホックネットワーク内または上記特定エリア内の通信用タイムスロットと して、利用率 Zに相当する数のタイムスロットを 1フレーム毎にランダムに選出するよう にしたが、本発明はこれに限定されるものではなぐ例えば、移動体通信ネットワーク の移動局力 の干渉量若しくは位置情報を元にして、互いの干渉量が最も少なくな るようなタイムスロットの組合せを選出するようにしてもょ 、。
[0104] また、以上の各実施形態においては、各ネットワーク (移動体通信ネットワーク (基 地局の通信エリア内、ミニ基地局の通信エリア内)、アドホックネットワーク)で使用す る通信方式として、 TDD— CDMA方式を例示した力 本発明はこれに限定されるも のではなぐ各ネットワークで使用する通信方式は、 TDD方式をベースとする通信方 式であれば、例えば、 TDD—TDMA方式や TDD— OFDMに基づいた多重ァクセ ス方式などであってもよい。また、それぞれのネットワークで使用する通信方式は、複 信方式に TDD方式を使用するものであれば全く同一である必要はなぐ例えば一方 を TDD - CDMA方式、他方を TDD - TDMA方式または TDD - OFDMに基づ V、た多重アクセス方式とすることも可能である。
[0105] なお、 OFDM方式の場合には、図 9Aに示すように、それぞれのキャリア(Carrier) f 、 f 、 f が多数のサブキャリア(Sub- Carrier)によって構成され、そのうちの一部または 全部力 セル内の移動局と基地局間の通信に用いられる。
例えば CDMAシステムのように、周波数リユースファクタ(Frequency Reuse Factor )力^の場合には、図 9Bに示すように、すべてのセル内で同じキャリア f 、 f 、 f が使用
1 2 3 される(すなわち、各セルですベてのサブキャリアが使用される)ために、基地局どうし が互いに干渉となり、各セルの境界部における干渉を低減するためには逆拡散が必 要になる。一方、例えば多くの GSMシステムのように、リユースファクタが 3の場合に は、図 9Cに示すように、各セル毎に異なるキャリア(サブキャリア群)が使用されるた めに、各セルの境界部における干渉はそれほど大きくはならな!、。
図 9Cのシステムのように、リユースファクタが 1ではなぐ互いに隣接するセル間で 異なるキャリア(サブキャリア群)が使用される場合には、上記特定エリア内の通信用 キャリア(サブキャリア群)またはアドホックネットワーク内の通信用キャリア(サブキヤリ ァ群)として、システム全体のキャリア f 、 f 、 f
1 2 3を割り当てるようにしても、或いは所属 するセルで使用されて ヽるキャリアや、所属するセル以外で使用されて ヽるキャリア のみを割り当てるようにしてもょ 、。
[0106] 各ユーザ (各無線通信装置または各移動局)にサブキャリアを割り当てる方法として は、例えば、利用可能なすべてのサブキャリアをフレーム毎に異なるユーザに割り当 てる方法や、ユーザ毎に異なるサブキャリア群 (サブセット)を割り当てる方法など、種 々の方法が提案されている力 何れを用いるようにしてもよい。また、サブキャリアの 割り当てに際しては、周波数ダイバシティを実現するためにサブキャリアホッピング (S ub-carrier Hopping)を用いることも可能である。これらの OFDMのシステムにおいて 、対象となる移動体通信ネットワークのユーザ力 アドホックネットワークやミニ基地局 力 離れた位置に存在する場合には、そのユーザに割り当てられたサブキャリアをァ ドホックネットワークやミニ基地局でリユースすることが可能であり、また、例えば、アド ホックネットワークやミニ基地局から離れた位置にセルが存在する場合には、そのセ ルに割り当てられたサブキャリアをアドホックネットワークやミニ基地局でリユースする ことが可能である。
[0107] [第 4の実施形態]
図 10は、本発明の第 4の実施形態に係る無線通信システムを示すもので、図中符 号 100は中央基地局、 110はミニ基地局、 120は移動局である。
中央基地局 100の通信エリアとなるセル A内には、複数のミニ基地局 110が設置 され、それらミニ基地局 110によって、予め設定された局所的なエリア A (例えば建 し 物や地下設備の内部など)に存在する移動局 120との通信が行われるようになって いる。すなわち、セル A内に存在する移動局 120のうち、上記局所的な通信エリア A に存在する移動局 120はミニ基地局 110と通信を行い、それ以外の移動局 120は し
中央基地局 100と通信を行うようになって ヽる。
[0108] そして、中央基地局 100と移動局 120間のネットワーク(以下、メインネットワークと 称する。 )における通信には、 TDD方式を複信方式とする TDD— CDMAが用いら れ、これと同じ通信方式力 各ミニ基地局 110と移動局 120間のネットワーク(以下、 サブネットワークと称する。 )における通信にも用いられている。また、双方のネットヮ ークにおいては、同一周波数帯が用いられている。中央基地局 100とミニ基地局 11 0とは、 LAN等の通信ネットワークを介して図示省略の無線ネットワーク制御装置 (R NC)にそれぞれ接続され、メインネットワークにおける通信と、各サブネットワークに おける通信とが、互いに同期を取って行われるように構成されて 、る。
[0109] 中央基地局 100およびミニ基地局 110は、第 1の実施形態と同様、送信器、受信器 、アンテナ、制御部および記憶部等を有している。
[0110] ミニ基地局 110の制御部は、本発明に係る干渉量測定手段およびタイムスロット設 定手段を構成しており、ミニ基地局 110のスロット構成を設定する際に、中央基地局 100からの干渉量を測定するとともに、その測定値に応じて、中央基地局 100のスロ ット構成に対する自由度を設定し、その自由度の範囲内で、基本構成に変更を加え てミニ基地局 110のスロット構成を設定する制御を行う。
[0111] 移動局 120は、例えば、携帯電話、通信機能を有する PDAやパーソナルコンビュ ータ等のユーザ機器により構成されている。移動局 120は、基地局 100, 110と同様 、送信器、受信器、アンテナ、制御部および記憶部等を備え、中央基地局 100また はミニ基地局 110と、 TDD - CDMA方式を用いて通信を行うようになって!/、る。
[0112] 次に、各ミニ基地局 110によって行われるタイムスロットの設定処理について説明 する。 先ず、メインネットワークのダウンリンクにおいて、中央基地局 100からの干渉量(電 波レベル)を測定する処理が行われる。一般に、電波は距離が遠くなるほど弱まるた め、図 11に示すように、セル A の中央付近では強い干渉量が測定され、セル A の 境界付近では弱い干渉量が測定されることとなる。図 11においては、矢印の太さが 干渉の強さを示している。
[0113] 次いで、測定した干渉量に応じて、当該ミニ基地局 110のスロット構成の自由度を 設定する処理が行われる。具体的には、測定した干渉量と、予め設定された一また は複数の閾値とを比較し、その比較結果に基づいて、スロット割当の指標となる MO DEの設定を行う。本実施形態では、閾値として干渉レベル 1および干渉レベル 2 (干 渉レベル 1 >干渉レベル 2)を設け、以下の判定式を用いて MODEの設定を行う。
[0114] If干渉量(測定値)≥干渉レベル 1 → MODE1 · · · (1)
If干渉量(測定値)≤干渉レベル 2 → MODE3 · · · (2)
Otherwise → MODE2 · · · (3)
[0115] 図 12に示すように、干渉レベル 1よりも干渉量 (測定値)が多い場合、そのミニ基地 局 110は中央基地局 100から近い場所に存在すると考えられる。そのため、互いに 干渉にならないように、中央基地局 100のスロット構成 (基本構成)に対するスロット利 用自由度が最も低い MODE 1が選択される。
一方、干渉レベル 2よりも干渉量 (測定値)が少ない場合、そのミニ基地局 110はセ ル境界付近に存在すると推定される。よって、互いに及ぼす干渉は少ないと考えられ るため、スロット利用自由度が最も高い MODE3が選択される。
また、干渉量 (測定値)が上記の何れにも該当しない場合には、中程度の設定であ る MODE2が選択される。
[0116] 例えば、 MODE1のミニ基地局 110においては、図 12に示すように、中央基地局 1 00のスロット構成 (基本構成 CO)と全く同じスロット構成 C1 (ダウンリンク:アップリンク = 1 : 1)が採用される。また、 MODE2のミニ基地局 110においては、基本構成 C0と 全く同じスロット構成 C1と、基本構成 C0中の 2つのタイムスロットをアップリンクからダ ゥンリンクに変更したスロット構成 C2 (ダウンリンク:アップリンク = 2: 1)の何れか一方 が選択される。また、 MODE3のミニ基地局 110においては、上記スロット構成 C1と 、上記スロット構成 C2と、基本構成 CO中の 3つのタイムスロットをアップリンクからダウ ンリンクに変更したスロット構成 C3 (ダウンリンク:アップリンク = 3: 1)の何れか一つが 選択される。
[0117] このように、各ミニ基地局 110で選択可能なスロット構成は、 MODEによって異なり 、干渉量 (測定値)の少ないミニ基地局 110ほど、基本構成 COから乖離したスロット 構成 (すなわち、ダウンリンクとアップリンクの設定が基本構成 COと反対のタイムスロッ トを数多く含むスロット構成)を選択することが可能となっている。なお、各 MODEで 選択可能なスロット構成は、図 12に示すものに限定されるものではなぐダウンリンク とアップリンクの比率や配置は適宜に変更することが可能である。その場合にも、中 央基地局 100のダウンリンクで使用されているタイムスロットを、ミニ基地局 110のダウ ンリンクで使用するタイムスロットとして優先的に割り当てることが望ましい。
[0118] その後、ミニ基地局 110は、上記のように MODEに対応するスロット構成を選択し た後、その選択したスロット構成を、当該ミニ基地局 110の通信エリア A 内に存在す し
る移動局 120に対して通知し、そのスロット構成に従って移動局 120と通信を行う。 その際に、ミニ基地局 110は、第 1の実施形態と同様、適応符号化変調を使用して 通信を行う。なお、この適応符号化変調は、サブネットワーク内における通信時だけ ではなぐメインネットワーク内における通信時にも適用されるものである。
[0119] 以上のように、第 4の実施形態によれば、ミニ基地局 110のスロット構成を決定する 際に、中央基地局 100のスロット構成を基本構成 C0として、これに対する自由度を、 中央基地局 100からの干渉量の測定値に応じて設定し、その設定の範囲内で、ミニ 基地局 110のスロット構成を決定するようにしたので、中央基地局 100とミニ基地局 1 10とが同一周波数帯を使用する場合においても、双方のネットワーク間で相互に干 渉が生じるのを抑制することができ、何れのネットワークにお 、ても良好な通信状態 を確保することができる。また、各サブネットワークにおいて、メインネットワークと異な るスロット構成を採ることが可能になるため、トラフィックの特性等に応じた柔軟な対応 をとることが可能となる。これにより、スループットや通信容量の低下を回避することが でき、ネットワーク資源の利用効率を高めることができる。
[0120] なお、本実施形態においては、中央基地局 100のスロット構成 C0に対する自由度 を MODEに対応付けるとともに、各 MODEで選択可能なスロット構成を予め用意し て、その中からミニ基地局 110で使用するスロット構成を選択する構成としたが、本発 明はこれに限定されるものではなぐ例えば、ダウンリンクとアップリンクの設定が基本 構成 COと逆のタイムスロット数 RN (自由度)と、干渉量との関係を予め設定しておき、 この関係に基づいて、干渉量から上記タイムスロット数 RNを求めて、このタイムスロッ ト数 RNの範囲内で、基本構成 COに変更をカ卩えて、ミニ基地局 110のスロット構成を 設定するようにしてもよ ヽ。
[0121] また、第 4の実施形態においては、メインネットワークと各サブネットワークで使用す る通信方式として、 TDD— CDMA方式を例示した力 本発明はこれに限定されるも のではなぐ各ネットワークで使用する通信方式は、複信方式に TDD方式を用いる 通信方式であれば、例えば、 TDD—TDMA方式や TDD— OFDMに基づいた多 重アクセス方式、或いは TDD— FDMA方式(Frequency Division Multiple Access) などであってもよい。
[0122] [第 5の実施形態]
図 13は、本発明の第 5の実施形態に係る無線通信システムを示すもので、図中符 号 210は移動体通信ネットワークの基地局、 220a, 220b, 220cは移動局である。 基地局 210の通信エリアとなるセノレ内には、複数の移動局 220a, 220b, 220c力 S 存在し、それら移動局と基地局 210とが TDD— CDMA方式を用いて通信を行うよう になっている。
[0123] この TDD— CDMA方式では、前述したように、 1フレームが 15のタイムスロットによ り構成され、その長さが 10msに設定されている。本実施形態では、何れのセルにお いても、図 14に示すように、フレームの始点からスイッチングポイントまでのタイムス口 ットがダウンリンクに設定され、スイッチングポイントからフレームの終点までのタイムス ロットがアップリンクに設定されている。スイッチングポイントの位置はトラフィックの特 性等に応じて適宜に変更可能となっており、図示例では、 9番目と 10番目のタイムス ロットの間にスイッチングポイントが設けられている。
[0124] 基地局 210および移動局 220a, 220b, 220cは、第 1の実施形態と同様、送信器 、受信器、アンテナ、制御部および記憶部等を有している。基地局 210の制御部は、 本発明に係る所要送信電力導出手段およびタイムスロット割当手段を構成しており、 移動局から受信したパイロット信号の減衰情報に基づいて、当該基地局 210で所定 電力を達成するために必要な移動局の所要送信電力を求める処理や、求めた所要 送信電力に基づ 、て、移動局との通信に使用するタイムスロットを割り当てる処理等 を行う。
[0125] 上記無線通信システムにおいて、呼が発生すると、図 15に示すように、基地局 210 は、該当する移動局(例えば、移動局 220a)に対してパイロット信号を送信し (ステツ プ T1)、これを受信した移動局は、パイロット信号の減衰情報を基地局 210に対して 送信する (ステップ T2)。
基地局 210は、パイロット信号の減衰情報を受信すると、これに基づいて、当該基 地局 210で所定電力を達成するために必要な上記移動局の所要送信電力を求める (ステップ Τ3)。
[0126] 次いで、基地局 210は、求めた所要送信電力に基づいて、上記移動局との通信に 使用するタイムスロットの割り当てを行う(ステップ Τ4)。具体的には、求めた所要送信 電力と、予め設定した複数の閾値との比較により、上記所要送信電力の大きさを評 価して、その評価に対応するタイムスロットを、上記移動局との通信に使用するタイム スロットとして選択する。
[0127] 本実施形態では、各タイムスロットに振り分ける基準となる所要送信電力の上限値と 下限値が閾値として設定されている。そして、ダウンリンクの場合には、上記所要送 信電力が高くなるほど、フレームの始点に近いタイムスロット(例えば、タイムスロット 1 , 2, 3)が選択されるように、アップリンクの場合には、上記所要送信電力が高くなる ほど、フレームの終点に近いタイムスロット(例えば、タイムスロット 14, 15)が選択され るように、各閾値が設定されている。例えば、図 14に示すように、ダウンリンクに設定 されているタイムスロット 3における所要送信電力の上限値が Ρ 、下限値が Ρ 、求
23 34 めた所要送信電力が Ρである場合に、 Ρ < Ρ< Ρ の
34 23 関係が成立するときには、タイ ムスロット 3が選択され、 Ρ く Ρの関係が成立するときには、タイムスロット 1または 2が
23
選択され、 Ρ< Ρ の関係が成立するときには、タイムスロット 4〜9の何れかが選択さ
34
れる。 [0128] 一般に、実際の信号減衰は、距離減衰やシャドーイング、その他の要因の影響を 受けるが、距離による減衰が支配的である。したがって、上記割当方法によれば、基 地局 210から遠い移動局(例えば、移動局 220a)については、上記所要送信電力が 大きくなるため、フレームの始点または終点に近いタイムスロット(例えば、ダウンリンク :タイムスロット 1, 2, 3、アップリンク:タイムスロット 14, 15)が割り当てられる。一方、 基地局 210に近い移動局(例えば、移動局 220b)については、上記所要送信電力 が相対的に小さくなるため、ダウンリンク'アップリンクともに、スイッチングポイントに近 いタイムスロット(例えば、ダウンリンク:タイムスロット 7, 8, 9、アップリンク:タイムスロッ ト 10, 11)が割り当てられることとなる。
[0129] ここで、上記スイッチングポイントは、アップリンクとダウンリンクの比率に応じて随時 移動することとなるので、スイッチングポイント近傍のタイムスロット(例えば、タイムス口 ット 9, 10)は、アップリンクとダウンリンクの設定が変わり易ぐそのため隣接するセル 間でその設定が異なる可能性が高い。反対に、フレームの始点または終点近傍のタ ィムスロット(例えば、タイムスロット 1〜3, 14, 15)は、アップリンクとダウンリンクの設 定が殆ど変わることがないため、隣接するセル間でその設定が異なる可能性も低い。 このため、基地局 210から遠い移動局(例えば、移動局 220a)については、隣接する セル間で、通信方向が異なる可能性が低くなり、相互に干渉が生じ難くなる。一方、 基地局 210に近い移動局(例えば、移動局 220b)については、隣接するセル間で、 通信方向が異なる可能性が高くなるが、上記所要送信電力が低く抑えられるために 、仮に通信方向の設定が反対になったとしても、大きな干渉にはならない。
[0130] なお、上記閾値は、各タイムスロットにおけるネットワーク資源の利用率がほぼ均等 になるように、すなわち、各タイムスロットにほぼ均等に負荷が分散するように設定す ることが望ましい。その設定パラメータとしては、例えば、セル半径、伝播環境を近似 するパスロスモデル (あるいは実測値)、アップリンク'ダウンリンクのスロット数等を用 いることが可能である。本実施形態では、図 16に示すように、各閾値に対応する仮想 円(所要送信電力 Pが閾値と等しくなる地点を結んだ円) cl, c2, c3, · · ·をセル内に 描いたときに、隣接する仮想円の間にそれぞれ形成されるドーナツ形状の領域 rl, r 2, r3, · · ·の面積が互いにほぼ等しくなるように、各閾値を設定している。この方法の 場合、セル内でユーザがランダムに発生することを仮定すると、各領域 rl, r2, r3, · • 'で通信を行う移動局の数、すなわち各タイムスロットを使用する移動局の数に偏り が生じ難くなり、各タイムスロットにほぼ均等に負荷が分散するものと考えられる。
[0131] し力しながら、実際のシステムにおいては、タイムスロット間で、ネットワーク資源の 利用率に偏りが生じる可能性がある。そこで、このような現象の発生を回避するため に、上記のようにしてタイムスロットの割り当てを行った後に各タイムスロットの利用率 をそれぞれ求め、それら利用率が平準化するように、タイムスロットの再割り当てを行 うことが望ましい。具体的には、図 17に示すように、ステップ T4で割り当てたタイムス ロット(タイムスロット 3)を中心にその前後数スロットを探索し、その中から利用率の最 も低 、タイムスロットを、移動局との通信に使用するタイムスロットとして選択することが 可能である。
[0132] こうして割り当てたタイムスロットは、所要送信電力の情報とともに、基地局 210から 移動局に通知され、これを受けた移動局は、その通知に従って基地局 210と通信を 行う。
[0133] 以上のように、本実施形態によれば、パイロット信号の減衰情報に基づいて、基地 局 210で所定電力を達成するために必要な移動局の所要送信電力を求めて、この 所要送信電力が高くなるほど、フレームの始点または終点に近ぐまた所要送信電力 が低くなるほど、スイッチングポイントに近くなるように、タイムスロットの割り当てを行う ので、隣接するセル間で相互に干渉が生じるのを抑制することができ、スループット 特性の劣化を回避することができる。したがって、各セルにおいて、アップリンクとダウ ンリンクのタイムスロットの比率 (スイッチングポイントの位置)を自由に設定することが でき、トラフィックの変動等に対して柔軟に対応することができる。
[0134] なお、本実施形態では、タイムスロット毎に、所要送信電力の上限値および下限値 となる閾値を設定するようにした力 本発明はこれに限定されるものではなぐ例えば 、タイムスロットを複数ずつグループ化して、グループ毎に所要送信電力の閾値を設 定することも可能である。この場合、選択されたグループの中から、ネットワーク資源 の利用率が最も低 、タイムスロットを選択するようにすればよ!、。
また、上記閾値は、静的に設定するようにしても、トラフィック状況やそのシステムの 特性等に応じて動的に設定するようにしてもよい。また、過去のデータ等から所要送 信電力の発生分布を推定して、その推定に基づいて、リソースの利用率がタイムス口 ット間で平均化するように各閾値を設定することも可能である。
なお、本実施形態で示したタイムスロットの割当方法は、非常に簡易なアルゴリズム で自立分散的であるため、ミニ基地局を用いたセルオーバーレイシステムにも容易に 適用可能である。
[0135] [第 6の実施形態]
図 18および図 19は、本発明の第 6の実施形態に係る無線通信システムを示すもの で、図中符号 310は基地局、 320a, 320b, 320cは移動局(中継端末)、 320d, 32 Oe, 320fは移動局(通信端末)である。
基地局 310は、その通信エリアとなるセル内に存在する移動局 320a, 320b, 320 c, 320d, 320e, 320fと、直接または他の移動局 320a, 320b, 320cを介して、無 線で通信を行うよう【こなって ヽる。それら無線通信機器 310, 320a, 320b, 320c, 3 20d, 320e, 320f間の通信には、多重に TDD方式、多元接続に CDMA方式と TD MA方式とを組み合わせた TD— CDMA方式が用いられ、各々の通信において共 通の周波数帯が使用されている。
[0136] TD— CDMA方式では、前述した図 27に示すように、 1フレームが 15のタイムス口 ットにより構成され、その長さが 10msに設定されている。また、各タイムスロットには、 アップリンクとダウンリンクの何れか一方が割り当てられている。図 18は、あるフレーム のタイムスロット Aにおける通信状態、図 19はタイムスロット Bにおける通信状態をそ れぞれ示している。これら図面に示すように、各タイムスロットには、その時間枠で通 信を行う無線通信機器の組合せとその通信方向が予め設定されている。
[0137] 基地局 310および移動局 320a, 320b, 320c, 320d, 320e, 320fは、第 1の実 施形態と同様、送信器、受信器、アンテナ、制御部および記憶部等を有している。
[0138] 制御部は、本発明に係る干渉量測定手段および干渉量通知手段を構成しており、 当該制御部を有する無線通信機器が第 2無線通信機器 (受信側の無線通信機器)と なる場合に、その通信相手となる第 1無線通信機器 (送信側の無線通信機器)との通 信開始後、予め設定された所定条件が成立する毎に (例えば、基地局 310から処理 実行の指示がある毎に)、各タイムスロットにおける干渉量を測定し、その測定結果を 第 1無線通信機器に対して通知する処理を実行する。また、制御部は、本発明に係 るタイムスロット選択手段およびタイムスロット通知手段を構成しており、当該制御部 を有する無線通信機器が第 1無線通信機器 (送信側の無線通信機器)となる場合に 、その通信相手となる第 2無線通信機器 (受信側の無線通信機器)から受信した各タ ィムスロットの干渉量に基づいて、次に使用するタイムスロットを選択し、その選択した タイムスロットを第 2無線通信機器に対して通知する処理を実行する。
[0139] 次に、上記無線通信システムにおいて行われるタイムスロットの割当処理について 、図 20のフローチャートに基づいて説明する。
このタイムスロットの割当処理は、第 1無線通信機器 (送信側の無線通信機器:例え ば基地局)と第 2無線通信機器 (受信側の無線通信機器:例えば移動局)の通信開 始後に随時行われる処理で、ここでは、基地局 310から処理実行の指示がある毎に 順次行われる構成となって ヽる。
[0140] 先ず、ステップ S1では、基地局 310が、現在接続状態にある無線通信機器 (移動 局)の中から何れか 1つを選択する処理を行う。通常、基地局 310には複数の移動局 が接続されているため、それら移動局の処理タイミングが互いに重ならないように、本 実施形態では 1フレーム毎または複数フレーム毎に 1移動局を選択する。その選択 にあたっては、前回選択されて力 最も時間の経過している移動局を選択するのが 望ましいが、これに限定されるものではない。
[0141] 次いで、ステップ S2では、基地局 310が、ステップ S1で選択した無線通信機器に 対して制御信号を送信することにより処理実行の指示を行う。なお、選択した無線通 信機器が中継端末の場合には、これに繋がる無線通信機器 (通信端末)に対しても 同様に指示を行う。
[0142] 次 、で、ステップ S3では、基地局 310から指示を受けた受信側の無線通信機器 ( 以下、この無線通信機器を第 2無線通信機器として説明する。)が、各タイムスロット の干渉電力を測定する処理を行う。この干渉電力は、図 18および図 19に示すように 、基地局 310からの干渉電力と、他の移動局力 の干渉電力とを合計した値となる。 基地局 310からの干渉電力は、基地局 310がすべてのタイムスロットを利用して送信 を行っているため、タイムスロット間で殆ど差は無ぐほぼ一定の値となる。しかしなが ら、他の移動局からの干渉電力は、タイムスロットによって、送信を行う移動局が異な るため、それら移動局の位置 (第 2無線通信機器との距離)に応じた差異が生じること となる。
[0143] 例えば、第 2無線通信機器を移動局 320aとした場合、タイムスロット Aにおいては、 基地局 310から移動局 320a, 320cへの通信と、移動局 320bから移動局 320eへの 通信が行われていることから、第 2無線通信機器 (移動局 320a)が受信する干渉電 力は、基地局 310からの干渉電力と、移動局 320bからの干渉電力とを合計したもの となる。一方、タイムスロット Bにおいては、基地局 310から移動局 320a, 320bへの 通信と、移動局 320cから移動局 320fへの通信が行われていることから、第 2無線通 信機器 (移動局 320a)が受信する干渉電力は、基地局 310からの干渉電力と、移動 局 320cからの干渉電力とを合計したものとなる。このように、第 2無線通信機器が受 ける干渉量は、タイムスロットによって異なり、また同一タイムスロットであっても、移動 局の位置がそれぞれ異なることから、第 2無線通信機器がどの移動局であるかによつ ても干渉量に違いが出てくる。
[0144] ステップ S4では、第 2無線通信機器が、各タイムスロットの干渉量の測定結果を、通 信相手となる第 1無線通信機器に対して通知する処理を行う。
ステップ S5では、第 1無線通信機器が、各タイムスロットについて、第 2無線通信機 器との通信に割当可能な割当電力(以下、見込み割当電力 P
exと称する。)を求めた 後、この見込み割当電力 P と、第 2無線通信機器力 通知された干渉量 Iとを引数と ex
する評価関数 f (P , I)の関数値 Mをそれぞれ求め、それら関数値 Mの比較結果に ex
基づいて、次に使用するタイムスロット (第 2無線通信機器への送信用タイムスロット) を選択する処理を行う。
[0145] 上記評価関数 f (P , I)としては、例えば、数 2を用いることができる。
ex
[0146] [数 2]
M = / ( ,/ ) = ^f- [0147] また、上記見込み割当電力 P は、例えば、数 3から求めることができる。 [0148] [数 3] p Γ M A X Γ g
e x N
[0149] ここで、 P は第 1無線通信機器の最大出力電力、 Pは所望の通信速度を保証す
max g
る上で最低限必要となる最低所要電力、 Nは接続端末数である。接続端末数 Nは、 第 2無線通信機器がそのタイムスロットを使用すると仮定したときに、第 1無線通信機 器に接続される無線通信機器の数を表しており、例えば、第 2無線通信機器が現在 使用しているタイムスロットの接続端末数 Nは、現在の接続端末数 N'と同じ数値とな り、第 2無線通信機器が現在使用していないタイムスロットの接続端末数 Nは、現在 の接続端末数 N'に、第 2無線通信機器の分" 1"を加えた数値となる。なお、ベストェ フォートサービス (QoSの保証を必要としないサービス)の場合には、最低所要電力 P 力 SOとなり、また最大出力電力 P は定数であるので、見込み割当電力 P の算定式 g max ex
を、数 4に示すように簡略ィ匕することが可能である。また、接続端末数 Nが 1である場 合 (例えば、第 1無線通信機器が中継端末で、その中継対象が第 2無線通信機器の みである場合など)には、見込み割当電力 P
exの考慮を省略し、干渉量 Iのみを考慮 してタイムスロットの選定を行うことも可能である。
[0150] 画
Pe =丄
N
[0151] 例えば、第 2無線通信機器が現在使用しているタイムスロットが図 21のタイムスロッ ト T2で、第 1無線通信機器の最大出力電力 P が 1. 5 (W)、各タイムスロット Tl, T
max
2, T3の最低所要電力 P が 0.3, 0.3, 0.3 (W)、各タイムスロット Tl, T2, T3の現在
g
の接続端末数 N,が 1, 3, 3である場合、各タイムスロット Tl, T2, T3の接続端末数 Nは 2, 3, 4となり、各タイムスロット Tl, T2, T3の見込み割当電力 P は 0.6, 0.4,
ex
0.3 (W)となる。そして、各タイムスロット Tl, T2, T3の干渉量 I力0.05, 0.04, 0.02 (W)である場合、各タイムスロット Tl, T2, T3の評価関数 f (P , I)の関数値 Mは、 1
ex
2, 10, 15となる。この場合、タイムスロット T3の関数値 Mが最大となるので、タイムス ロット T3が、次に使用するタイムスロットとして選択されることとなる。 [0152] ステップ S6では、第 1無線通信機器が、ステップ S5で選択したタイムスロットを第 2 無線通信機器に対して通知する処理を行う。このステップ S6では、ステップ S5で選 択したタイムスロットと、第 2無線通信機器が現在使用しているタイムスロットとを比較 して、両者が一致しない場合にのみ、ステップ S5で選択したタイムスロットを第 2無線 通信機器に対して通知する(すなわち、両者が一致する場合には、通知を省略する) ようにしてもよい。
[0153] ステップ S7では、第 1無線通信機器が、ステップ S5で選択したタイムスロットを使用 して、第 2無線通信機器と通信を行う。本実施形態では、ステップ S6の通知を行う際 に使用したフレームの次のフレームから、ステップ S5で選択したタイムスロットを使用 する。
[0154] こうしてステップ S1〜S7の一連の処理が終了したら、再びステップ S1に戻って、基 地局 310が、現在接続状態にある無線通信機器の中から何れか 1局 (第 2無線通信 機器以外の移動局)を選択し、その無線通信機器に対して処理実行の指示を行う。 すなわち、上記タイムスロットの割当処理によれば、基地局 310と接続状態にある各 無線通信機器において、順番に、ステップ S3〜S7の処理が行われ、それが一巡し たところで、再び最初の無線通信機器に戻って、同様に、ステップ S3〜S7の処理が 行われる。これにより、各無線通信機器では、通信を開始して力 終了するまでの間 、ステップ S3〜S7の処理が繰り返し行われ、その都度、最適なタイムスロットが選択 されることとなる。
[0155] 以上のように、本実施形態によれば、第 1無線通信機器 (送信側の無線通信機器) と第 2無線通信機器 (受信側の無線通信機器)間で通信を開始した後、基地局 310 力も処理実行の指示がある毎に、第 2無線通信機器が各タイムスロットの干渉量 Iを 測定し、この干渉量 Iと予め求めた見込み割当電力 P とに基づいて、第 1無線通信 ex
機器が、第 2無線通信機器との通信で次に使用するタイムスロットを順次選択するよ うにしたので、 TD— CDMA方式とマルチホップ通信を組み合わせたときに従来問 題となっていた、近距離の無線通信機器どうしの相互干渉を大幅に抑制することが できる。これにより、通信不可率を小さくすることができ、 SIR (Signal to Interference R atio)の増大を見込むことができる。さらに、適応符号化変調と組み合わせることにより 、高速な通信を実現することができる。
[0156] 図 22は、各スロット割当法のパフォーマンスをシミュレーションにより比較したもので 、セル内の移動局数を 50としたときの SIRの累積分布関数を示している。このグラフ において、横軸は SIRであり、縦軸は累積分布関数 (CDF)である。また、 " X "は本 発明に係る割当法(Dynamic Slot Allocation)を示しており、 "□ "は従来の割当法で ある SSA (Sequential Slot Allocation)法、 "0, ¾PSA (Pre Slot Allocation)法、 "〇,, は中継を行わない場合 (Non Relay)をそれぞれ示している。 SSA法は、無線通信機 器力も通信要求がある度に順番にタイムスロットを割り当てる方法である。一方、 PSA 法は、本発明に係る割当法と同様、干渉量を考慮してタイムスロットを選択する方法 である。この PSA法では、タイムスロットの選択を行うのが通信開始前の 1回のみであ り、通信開始後も随時タイムスロットの選択を行う本発明に係る割当法とは、この点に おいて相違する。なお、この PSA法は周知技術ではなぐ本発明に係る割当法の効 果を検証するために比較例として本発明者等が考案した割当法である。
[0157] 図 22に示すように、 SSA法や PSA法と比較して、本発明に係る割当法 (Dynamic S lot Allocation)は全体的に SIRが高くなつていることが分かる。また、 SSA法や PSA 法では、中継を行わない場合 (Non Relay)よりも SIRが低い領域が存在するのに対し て、本発明に係る割当法では、すべての領域に亘つて、中継を行わない場合よりも S IRが高くなつて!/、ることが分かる。
[0158] [第 7の実施形態]
次に、本発明の第 7の実施形態を説明する。ただし、第 6の実施形態で示した構成 要素と共通する要素には同一の符号を付し、その説明を簡略化する。
上述した第 6の実施形態においては、送信側の無線通信機器によって、次に使用 するタイムスロットを選択するようにした力 この第 7の実施形態においては、受信側 の無線通信機器によって、次に使用するタイムスロットを選択するようにしている。
[0159] 図 23は、第 7の実施形態に係るタイムスロットの割当処理を示すフローチャートであ る。この処理が開始されると、先ず、基地局 310が、現在接続状態にある無線通信機 器の中から何れ力 1つを選択し (ステップ S11)、その選択した無線通信機器に対し て処理実行の指示を行う(ステップ S 12)。 [0160] その後、基地局 310から指示を受けた受信側の無線通信機器 (第 2無線通信機器 )力 各タイムスロットの干渉量を測定する処理を行う一方 (ステップ S 13)、その通信 相手となる第 1無線通信機器が、各タイムスロットについて、第 2無線通信機器との通 信に割当可能な見込み割当電力 P を計算し (ステップ S 14)、その計算結果を第 2 ex
無線通信機器に対して通知する処理を行う(ステップ S 15)。
[0161] 第 2無線通信機器は、各タイムスロットの見込み割当電力 P の計算結果を第 1無 ex
線通信機器から受信すると、各タイムスロットについて、見込み割当電力 P と、ステツ ex プ S13で測定した干渉量 Iとを引数とする評価関数 f (P , I)の関数値 Mをそれぞれ ex
求め、それら関数値 Mの比較結果に基づいて、次に使用するタイムスロット(第 1無線 通信機器からの受信用タイムスロット)を選択し (ステップ S16)、その選択したタイムス ロットを第 1無線通信機器に対して通知する処理を行う (ステップ S17)。
[0162] 第 1無線通信機器は、第 2無線通信機器が選択したタイムスロットの通知を受けると 、その通知を受けた次のフレームから、第 2無線通信機器が指定したタイムスロットを 使用して第 2無線通信機器と通信を行う (ステップ S18)。
[0163] 本実施形態によれば、第 1無線通信機器 (送信側の無線通信機器)と第 2無線通信 機器 (受信側の無線通信機器)間で通信を開始した後、基地局 310から処理実行の 指示がある毎に、第 2無線通信機器が各タイムスロットの干渉量 Iを測定し、この干渉 量 Iと、第 1無線通信機器から通知された見込み割当電力 P
exとに基づいて、第 2無線 通信機器が、第 1無線通信機器との通信で次に使用するタイムスロットを順次選択す るようにしたので、至近距離に複数の無線通信機器が存在するような通信環境 (特に 、マルチホップ通信を行う無線通信機器が近傍に存在するような通信環境)にあって も、それら無線通信機器間で相互に干渉が生じるのを抑制することができ、これによ り、スループットや通信容量の低下を回避して、高速な通信を実現することができる。 また、第 1無線通信機器と第 2無線通信機器の通信途中で、例えば他の無線通信機 器の出現または消滅、若しくは送信側または受信側の無線通信機器の移動により、 各タイムスロットの干渉状態に変化が生じたとしても、その変化に速やかに対応して、 干渉量の少ない最適なタイムスロットを適宜に選択することができる。
[0164] なお、本実施形態においては、次に使用するタイムスロットを第 2無線通信機器が 決定する構成とした力 本発明はこれに限定されるものではなぐ例えば、次に使用 するタイムスロットの候補 (例えば、評価関数の値が上位の複数のタイムスロット)を第
2無線通信機器が選択して、その候補の中力 次に使用するタイムスロットを第 1無 線通信機器が選択'決定する構成とすることも可能である。
[0165] また、本実施形態においては、第 1無線通信機器が見込み割当電力 P を計算し ex てその計算結果を第 2無線通信機器に対して通知する構成としたが、例えば、第 1無 線通信機器が接続端末数 N (または現在の接続端末数 N' )を第 2無線通信機器に 対して通知して、第 2無線通信機器が、通知された接続端末数 Nから見込み割当電 力 P
exを計算する構成とすることも可能である。
[0166] [第 8の実施形態]
次に、本発明の第 8の実施形態を説明する。ただし、第 6の実施形態で示した構成 要素と共通する要素には同一の符号を付し、その説明を簡略化する。
第 6の実施形態のタイムスロットの割当処理は、ダウンリンクとアップリンクの両タイム スロットに適用できるものであるが、アップリンクに関しては、送信側の無線通信機器( 第 1無線通信機器)が常に移動局となり、これに接続される無線通信機器の数が 1と なるので、以下に示すように、見込み割当電力 P の考慮を省略して、処理を簡略化 ex
することが可能である。
[0167] 図 24は、第 8の実施形態に係るタイムスロットの割当処理を示すフローチャートであ る。この処理が開始されると、先ず、基地局 310が、現在接続状態にある無線通信機 器の中から何れ力 1つを選択し (ステップ S21)、その選択した無線通信機器に対し て処理実行の指示を行う(ステップ S22)。
[0168] その後、基地局 310から指示を受けた受信側の無線通信機器 (第 2無線通信機器 )力 各タイムスロットの干渉量を測定して (ステップ S23)、その中力も最も干渉量の 少ないタイムスロットを、次に使用するタイムスロット(第 1無線通信機器からの受信用 タイムスロット)として選択し (ステップ S 24)、その選択したタイムスロットを第 1無線通 信機器に対して通知する処理を行う(ステップ S25)。
[0169] 第 1無線通信機器は、第 2無線通信機器が選択したタイムスロットの通知を受けると 、その通知を受けた次のフレームから、第 2無線通信機器が指定したタイムスロットを 使用して第 2無線通信機器と通信を行う (ステップ S26)。
[0170] 本実施形態によれば、第 1無線通信機器 (送信側の無線通信機器)と第 2無線通信 機器 (受信側の無線通信機器)間で通信を開始した後、基地局 310から処理実行の 指示がある毎に、第 2無線通信機器が各タイムスロットの干渉量 Iを測定し、その中か ら最も干渉量 Iの少な ヽタイムスロットを、第 1無線通信機器との通信で次に使用する タイムスロットとして順次選択するようにしたので、第 6の実施形態および第 7の実施 形態と同様、至近距離に複数の無線通信機器が存在するような通信環境にあっても 、それら無線通信機器間で相互に干渉が生じるのを抑制することができる。また、アツ プリンタのタイムスロットにおいては、見込み割当電力 P の考慮を省略することがで ex
きるため、タイムスロットの割当処理を第 6の実施形態よりも簡略ィ匕することができる。
[0171] なお、以上の第 6〜第 8の各実施形態においては、第 1無線通信機器と第 2無線通 信機器の通信途中で適応的にタイムスロットを選択する際に、図 20、図 23および図 24に示すアルゴリズムを用いるようにした力 それらアルゴリズムを、第 1無線通信機 器と第 2無線通信機器間の通信で最初に使用するタイムスロットを決定する際に用い ることち可會である。
[0172] また、第 6〜第 8の各実施形態においては、無線通信機器間で使用する通信方式 として、 TD— CDMA方式にマルチホップ通信を組み合わせたシステムを例示した 力 本発明は、これに限定されるものではなぐ例えば TD— SCDMA(Time Division - synchronous Code Division Multiple Accessノ方式や TDD— FDMA方式 (Freque ncy Division Multiple Access)にマルチホップ通信を組み合わせたシステムなど、タイ ムスロットによって異なる干渉が発生し得るシステム全般に適用することが可能である 。例えば、移動体通信ネットワークとアドホックネットワークを組み合わせたノヽイブリツド システムやセルオーバーレイシステム、ランダムスロットアロケーションなどの TD— C DMA方式をベースとした種々の発展システムに本発明を適用することも可能である
[0173] また、第 6〜第 8の各実施形態においては、 TDD方式に適用する場合について例 示したが、 FDD方式に適用することも可能である。さらに、どのフレームで通信を行う かを決められる方式では、本発明をフレーム選択に適用することもできる。その場合、 OFDM方式や TDMA方式の概念を含まな!/、CDMA方式など、干渉が問題となる 通信全般に適用可能である。
産業上の利用可能性
本発明によれば、アドホックネットワークと移動体通信ネットワークにおける通信に同 一周波数帯を使用する場合においても、或いは基地局とミニ基地局とが同一周波数 帯を使用する場合においても、相互に干渉が発生するのを抑制することができ、良好 な通信状態を確保することができる。
また、隣接するセルまたはセル内の至近距離に無線通信機器が存在する場合にお いても、それら無線通信機器間において相互に干渉が生じるのを抑制することができ 、スループットや通信容量の低下を回避することができる。

Claims

請求の範囲
[1] 周囲に存在する他の無線通信装置とアドホックネットワークを構築して上記他の無 線通信装置と TDD— CDMA方式、 TDD—TDMA方式および TDD— OFDMに 基づいた多重アクセス方式の何れかの通信方式で通信を行うとともに、これと同じ周 波数帯域を使用して TDD方式で移動体通信ネットワークの基地局と無線で通信を 行う無線通信装置であって、
上記基地局の通信エリア内で利用可能なネットワーク資源の中で、移動体通信ネッ トワークの通信に使用されているネットワーク資源の割合をロード量として、このロード 量に応じて、アドホックネットワーク内の通信で用いるネットワーク資源の利用率を設 定し、その設定の範囲内でアドホックネットワーク内の通信を行うようになっていること を特徴とする無線通信装置。
[2] 上記ロード量が高くなるほど、アドホックネットワーク内の通信で用いるネットワーク 資源の利用率が低くなるように設定されていることを特徴とする請求項 1に記載の無 線通信装置。
[3] 上記基地局の通信エリア内で利用可能なネットワーク資源には少なくともタイムス口 ットが含まれ、上記利用率に相当する数のタイムスロットがアドホックネットワーク内の 通信で利用されるようになって 、ることを特徴とする請求項 1に記載の無線通信装置
移動体通信ネットワークの基地局との通信と、アドホックネットワーク内の上記他の 無線通信装置との通信に使用される通信方式は、何れも TDD— CDMA方式であり 上記基地局の通信エリア内で利用可能なネットワーク資源には、上記基地局の通 信エリア内で利用可能な拡散符号とタイムスロットのすべての組合せが含まれ、それ ら組合せの中で上記利用率に相当する数の組合せがアドホックネットワーク内の通 信で利用されるようになって 、ることを特徴とする請求項 1に記載の無線通信装置。
[5] 移動体通信ネットワークの基地局と、
上記基地局との通信に TDD— CDMA方式、 TDD— TDMA方式および TDD— OFDMに基づいた多重アクセス方式の何れかの通信方式を用いるとともに、アドホッ クネットワーク内の他の無線通信装置との通信に、上記基地局との通信と同じ周波数 帯域を使用して複信方式に TDD方式を使用する無線通信装置とを有する無線通信 システムであって、
上記基地局の通信エリア内で利用可能なネットワーク資源の中で、移動体通信ネッ トワークの通信に使用されているネットワーク資源の割合をロード量として、
上記基地局は、上記ロード量を求めるロード量演算手段と、
上記ロード量に基づいて、アドホックネットワーク内の通信で用いるネットワーク資源 の利用率の基準値を設定する基準値設定手段と、
設定した基準値を上記無線通信装置に対して通知する基準値通知手段とを備え、 上記無線通信装置は、上記基地局から通知された基準値に基づいて、アドホック ネットワーク内の通信で用いるネットワーク資源の利用率を設定し、その設定の範囲 内でアドホックネットワーク内の通信を行うようになっていることを特徴とする無線通信 システム。
[6] 上記無線通信装置は、移動体通信ネットワークのアップリンクのときにその干渉量を 測定して、その干渉量に応じた補正を上記基準値に加えることにより、上記利用率を 導き出すことを特徴とする請求項 5に記載の無線通信システム。
[7] 上記基地局は、上記基準値を Y、上記ロード量を X、上記基地局の通信エリア内に 存在するアドホックネットワークの数を Νとして、
上記基準値 Υを、上記ロード量 Xと上記アドホックネットワーク数 Νの減少関数であ る Y=f (X, N)より導き出すことを特徴とする請求項 5に記載の無線通信システム。
[8] 上記基地局は、上記基準値を Y、上記ロード量を Xとして、 上記基準値 Yを、上記ロード量 Xの減少関数である Y=f (X)より導き出すことを特 徴とする請求項 5に記載の無線通信システム。
[9] 上記ロード量演算手段は、移動体通信ネットワークのアップリンクにおけるロード量 と、ダウンリンクにおけるロード量とをそれぞれ求め、
上記基準値設定手段は、移動体通信ネットワークのアップリンクにおけるロード量に 応じて第 1基準値を設定する一方、移動体通信ネットワークのダウンリンクにおける口 ード量に応じて第 2基準値を設定し、
上記無線通信装置は、上記基地局から通知された上記第 1基準値に基づいて第 1 利用率を、上記第 2基準値に基づいて第 2利用率をそれぞれ設定した後、
移動体通信ネットワークのダウンリンクのときには、上記第 1利用率の範囲内でアド ホックネットワーク内の通信を行い、移動体通信ネットワークのアップリンクのときには 、上記第 2利用率の範囲内でアドホックネットワーク内の通信を行うようになっているこ とを特徴とする請求項 5に記載の無線通信システム。
[10] 上記無線通信装置は、移動体通信ネットワークのアップリンクのときの干渉量と、移 動体通信ネットワークのダウンリンクのときの干渉量とをそれぞれ測定し、
上記アップリンクのときの干渉量に応じた補正を上記第 1基準値に加えることにより 、上記第 1利用率を導き出すとともに、上記ダウンリンクのときの干渉量に応じた補正 を上記第 2基準値に加えることにより、上記第 2利用率を導き出すことを特徴とする請 求項 9に記載の無線通信システム。
[11] 上記無線通信装置は、すべてのタイムスロットの中から、上記利用率に相当する数 のタイムスロットを 1フレーム毎にランダムに選出して、そのタイムスロットをアドホックネ ットワーク用のタイムスロットとして割り当てることを特徴とする請求項 5に記載の無線 通信システム。
[12] 上記無線通信装置は、すべてのタイムスロットの中から、上記利用率に相当する数 のタイムスロットを選出して、そのタイムスロットをアドホックネットワーク用のタイムス口 ットとして割り当てるとともに、上記利用率に相当する数のタイムスロットを選出する際 に、移動体通信ネットワークの移動局からの干渉量または移動局の位置情報を取得 し、その取得した干渉量または位置情報に基づいて、アドホックネットワークと移動体 通信ネットワークの干渉量が最も少なくなるようなタイムスロットの組合せを選出するこ とを特徴とする請求項 5に記載の無線通信システム。
[13] 上記無線通信装置は、上記基地局の通信エリア内で利用可能な拡散符号とタイム スロットのすべての組合せの中から、上記利用率に相当する数の組合せを 1フレーム 毎にランダムに選出して、その選出した拡散符号とタイムスロットの組合せをアドホッ クネットワーク用のネットワーク資源として割り当てることを特徴とする請求項 5に記載 の無線通信システム。
[14] 上記無線通信装置は、伝送路の状態に適応した変調方式と符号化率の組合せを 選択する適応符号化変調を用いて、通信を行うことを特徴とする請求項 5に記載の 無線通信システム。
[15] 周囲に存在する他の無線通信装置とアドホックネットワークを構築して上記他の無 線通信装置と TDD— CDMA方式、 TDD—TDMA方式および TDD— OFDMに 基づいた多重アクセス方式の何れかの通信方式で通信を行う無線通信装置を移動 局として、当該移動局との間で、上記アドホックネットワークと同じ周波数帯域を使用 して TDD方式で通信を行う移動体通信ネットワークの基地局であって、
上記基地局の通信エリア内で利用可能なネットワーク資源の中で、移動体通信ネッ トワークの通信に使用されているネットワーク資源の割合をロード量として、このロード 量を求めるロード量演算手段と、
上記ロード量に基づいて、アドホックネットワーク内の通信で用いるネットワーク資源 の利用率の基準値を設定する基準値設定手段と、
設定した基準値を上記無線通信装置に対して通知する基準値通知手段とを備える ことを特徴とする基地局。
[16] 移動体通信ネットワークの基地局と、
上記基地局との通信に TDD— CDMA方式、 TDD— TDMA方式および TDD— OFDMに基づいた多重アクセス方式の何れかの通信方式を用いるとともに、アドホッ クネットワーク内の他の無線通信装置との通信に、上記基地局との通信と同じ周波数 帯域を使用して複信方式に TDD方式を使用する無線通信装置とを有する無線通信 システムにおけるネットワーク資源の割当方法であって、
上記基地局の通信エリア内で利用可能なネットワーク資源の中で、移動体通信ネッ トワークの通信に使用されているネットワーク資源の割合をロード量として、このロード 量を求めるステップと、
上記ロード量に応じて、アドホックネットワーク内の通信で用いるネットワーク資源の 利用率を設定するステップとを有し、
上記無線通信装置が上記利用率の範囲内でアドホックネットワーク内の通信を行う ようにしたことを特徴とするネットワーク資源の割当方法。
[17] TDD— CDMA方式、 TDD—TDMA方式および TDD— OFDMに基づいた多 重アクセス方式の何れかの通信方式で、通信エリア内に存在する移動局と通信を行 う基地局と、
上記通信エリア内の特定エリア内に存在する移動局と、上記基地局と同じ周波数 帯域を使用して TDD方式で通信を行うミニ基地局とを有し、
上記基地局と上記ミニ基地局とが通信ネットワークを介して互いに接続された無線 通信システムであって、
上記通信エリア内で利用可能なネットワーク資源の中で、上記基地局との通信に使 用されているネットワーク資源の割合をロード量として、
上記基地局は、上記ロード量を求めるロード量演算手段と、
上記ロード量に基づいて、上記特定エリア内の通信で用いるネットワーク資源の利 用率の基準値を設定する基準値設定手段と、 設定した基準値を上記ミニ基地局に対して通知する基準値通知手段とを備え、 上記ミニ基地局は、上記基地局から通知された基準値に基づいて、上記特定エリ ァ内の通信で用いるネットワーク資源の利用率を設定し、その設定の範囲内で上記 特定エリア内の移動局と通信を行うようになっていることを特徴とする無線通信システ ム。
[18] 中央基地局と、この中央基地局のセル内に設置されたミニ基地局とを有し、上記セ ル内に存在する移動局が上記中央基地局または上記ミニ基地局と TDD方式を用い て通信を行う無線通信システムであって、
上記ミニ基地局は、
上記中央基地局からの干渉量を測定する干渉量測定手段と、
上記ミニ基地局で使用するタイムスロットの構成を設定する際に、上記中央基地局 で使用するタイムスロットの構成を基本構成として、これに対する自由度を、上記干渉 量測定手段により測定した干渉量に応じて設定し、その自由度の範囲内で、上記ミ 二基地局で使用するタイムスロットの構成を設定するタイムスロット設定手段とを備え 上記タイムスロット設定手段により設定したタイムスロットの構成に従って、上記ミニ 基地局の通信エリア内に存在する移動局と通信を行うことを特徴とする無線通信シス テム。
[19] 上記タイムスロット設定手段は、上記干渉量が多い場合に、上記ミニ基地局で使用 するタイムスロットの自由度を低く設定し、上記干渉量が少ない場合に、上記ミニ基 地局で使用するタイムスロットの自由度を高く設定することを特徴とする請求項 18に 記載の無線通信システム。
[20] 上記タイムスロット設定手段は、上記中央基地局のダウンリンクで使用されているタ ィムスロットを、上記ミニ基地局のダウンリンクで使用するタイムスロットとして優先的に 割り当てることを特徴とする請求項 18に記載の無線通信システム。
[21] 上記タイムスロット設定手段は、上記干渉量と、予め設定された閾値との比較により 、干渉の強さを評価して、その評価に対応する自由度のスロット構成を予め用意した 候補の中から選択することを特徴とする請求項 18に記載の無線通信システム。
[22] 中央基地局のセル内に設置されて、そのセル内の局所的なエリアに存在する移動 局と TDD方式を用いて通信を行うミニ基地局であって、
上記中央基地局からの干渉量を測定する干渉量測定手段と、
当該ミニ基地局で使用するタイムスロットの構成を設定する際に、上記中央基地局 で使用するタイムスロットの構成を基本構成として、これに対する自由度を、上記干渉 量測定手段により測定した干渉量に応じて設定し、その自由度の範囲内で、当該ミ 二基地局で使用するタイムスロットの構成を設定するタイムスロット設定手段とを備え 上記タイムスロット設定手段により設定したタイムスロットの構成に従って、当該ミニ 基地局の通信エリア内に存在する移動局と通信を行うことを特徴とするミニ基地局。
[23] 基地局と、この基地局と TDD方式を用いて通信を行う移動局とを有する無線通信 システムであって、
上記基地局は、パイロット信号を上記移動局に対して送信するパイロット信号送信 手段を備える一方、上記移動局は、上記基地局から受信したパイロット信号の減衰 情報を上記基地局に対して送信する減衰情報送信手段を備え、
上記基地局は、
上記移動局力も受信したパイロット信号の減衰情報に基づいて、当該基地局で所 定電力を達成するために必要な上記移動局の所要送信電力を求める所要送信電力 導出手段と、
上記所要送信電力に基づ 、て、上記移動局との通信に使用するタイムスロットを割 り当てるタイムスロット割当手段とをさらに備え、
上記タイムスロット割当手段は、 複数のタイムスロットからなるフレーム内の所定位置にスイッチングポイントを設けて 、フレームの始点から上記スイッチングポイントまでのタイムスロットをダウンリンクに、 上記スイッチングポイントからフレームの終点までのタイムスロットをアップリンクにそれ ぞれ設定するとともに、
上記所要送信電力が高くなるほど、フレームの始点または終点に近ぐ上記所要送 信電力が低くなるほど、上記スイッチングポイントに近くなるように、タイムスロットの割 り当てを行うことを特徴とする無線通信システム。
[24] 上記タイムスロット割当手段は、
上記所要送信電力が高い場合に、フレームの始点に近いタイムスロットをダウンリン クに、フレームの終点に近いタイムスロットをアップリンクに、それぞれ割り当てることを 特徴とする請求項 23に記載の無線通信システム。
[25] 上記タイムスロット割当手段は、
各タイムスロットにおけるネットワーク資源の利用率をそれぞれ求め、それら利用率 が平準化するように、タイムスロットの再割り当てを行うことを特徴とする請求項 23に 記載の無線通信システム。
[26] 上記タイムスロット割当手段は、
上記所要送信電力と、予め設定された閾値との比較により、上記所要送信電力の 大きさを評価して、その評価に対応するタイムスロットを、上記移動局との通信に使用 するタイムスロットとして選択することを特徴とする請求項 23に記載の無線通信システ ム。
[27] 上記タイムスロット割当手段は、
上記基地局力 の距離と上記所要送信電力との相関関係に基づいて、各閾値に 対応する仮想円をセル内に描 ヽたときに、隣接する仮想円の間にそれぞれ形成され るドーナツ形状の領域の面積が互いにほぼ等しくなるように、各閾値を設定すること を特徴とする請求項 26に記載の無線通信システム。
[28] 基地局と、この基地局と TDD方式を用いて通信を行う移動局とを有する無線通信 システムであって、
上記基地局は、パイロット信号を上記移動局に対して送信するパイロット信号送信 手段を備える一方、上記移動局は、上記基地局から受信したパイロット信号の減衰 情報を上記基地局に対して送信する減衰情報送信手段を備え、
上記基地局は、
上記移動局力も受信したパイロット信号の減衰情報に基づいて、当該基地局で所 定電力を達成するために必要な上記移動局の所要送信電力を求める所要送信電力 導出手段と、
上記所要送信電力に基づ 、て、上記移動局との通信に使用するタイムスロットを割 り当てるタイムスロット割当手段とをさらに備え、
上記タイムスロット割当手段は、
複数のタイムスロットからなるフレーム内の所定位置にスイッチングポイントを設けて 、フレームの始点から上記スイッチングポイントまでのタイムスロットをアップリンクに、 上記スイッチングポイントからフレームの終点までのタイムスロットをダウンリンクにそれ ぞれ設定するとともに、
上記所要送信電力が高くなるほど、フレームの始点または終点に近ぐ上記所要送 信電力が低くなるほど、上記スイッチングポイントに近くなるように、タイムスロットの割 り当てを行うことを特徴とする無線通信システム。
[29] 複数のタイムスロットからなるフレームを基本単位として、このフレームに含まれる何 れかのタイムスロットを使用して互いに通信を行う複数の無線通信機器を有する無線 通信システムであって、
送信側となる無線通信機器を第 1無線通信機器、受信側となる無線通信機器を第 2無線通信機器として、
上記第 2無線通信機器は、 上記第 1無線通信機器との通信開始後、予め設定された所定条件が成立する毎に
、各タイムスロットの干渉量を測定する干渉量測定手段と、
上記干渉量測定手段により測定した各タイムスロットの干渉量を、上記第 1無線通 信機器に対して通知する干渉量通知手段とを備える一方、
上記第 1無線通信機器は、
上記第 2無線通信機器力 通知された各タイムスロットの干渉量に基づいて、次に 使用するタイムスロットを選択するタイムスロット選択手段と、
上記タイムスロット選択手段により選択したタイムスロットを上記第 2無線通信機器に 対して通知するタイムスロット通知手段とを備え、
上記第 1無線通信機器は、上記タイムスロット選択手段により選択したタイムスロット を上記第 2無線通信機器に対して通知した後、そのタイムスロットを使用して上記第 2 無線通信機器と通信を行うことを特徴とする無線通信システム。
[30] 上記タイムスロット選択手段は、各タイムスロットについて、上記第 2無線通信機器と の通信に割当可能な割当電力を求めた後、この割当電力と、上記第 2無線通信機器 から通知された干渉量とを引数とする評価関数の関数値をそれぞれ求め、それら関 数値の比較結果に基づいて、次に使用するタイムスロットを選択することを特徴とす る請求項 29に記載の無線通信システム。
[31] 上記タイムスロット選択手段は、上記割当電力を上記干渉量で除した値が最大とな るタイムスロットを、次に使用するタイムスロットとして選択することを特徴とする請求項
30に記載の無線通信システム。
[32] 上記干渉量測定手段は、上記第 1無線通信機器との通信途中で、干渉量の測定 を複数回行い、その都度、上記タイムスロット選択手段は、次に使用するタイムスロッ トの選択を行うことを特徴とする請求項 29に記載の無線通信システム。
[33] 上記第 1無線通信機器が移動体通信ネットワークの基地局であり、上記第 2無線通 信機器が移動体通信ネットワークの移動局であることを特徴とする請求項 29に記載 の無線通信システム。
[34] 上記第 1無線通信機器は、上記第 2無線通信機器と他の無線通信機器間の中継 処理を行う中継端末であることを特徴とする請求項 29に記載の無線通信システム。
[35] 複数のタイムスロットからなるフレームを基本単位として、このフレームに含まれる何 れかのタイムスロットを使用して互いに通信を行う複数の無線通信機器を有する無線 通信システムであって、
送信側となる無線通信機器を第 1無線通信機器、受信側となる無線通信機器を第 2無線通信機器として、
上記第 1無線通信機器は、
各タイムスロットについて、上記第 2無線通信機器との通信に割当可能な割当電力 を求め、これを上記第 2無線通信機器に対して通知する割当電力通知手段を備える 一方、
上記第 2無線通信機器は、
上記第 1無線通信機器との通信開始後、予め設定された所定条件が成立する毎に
、各タイムスロットの干渉量を測定する干渉量測定手段と、
上記干渉量測定手段により測定した各タイムスロットの干渉量と、上記第 1無線通 信機器力も通知された各タイムスロットの割当電力とに基づ 、て、次に使用するタイ ムスロットを選択するタイムスロット選択手段と、
選択したタイムスロットを上記第 1無線通信機器に対して通知するタイムスロット通知 手段とを備え、
上記第 1無線通信機器は、上記第 2無線通信機器カゝらタイムスロットの通知を受け た後、そのタイムスロットを使用して上記第 2無線通信機器と通信を行うことを特徴と する無線通信システム。
[36] 複数のタイムスロットからなるフレームを基本単位として、このフレームに含まれる何 れかのタイムスロットを使用して互いに通信を行う複数の無線通信機器を有する無線 通信システムであって、
送信側となる無線通信機器を第 1無線通信機器、受信側となる無線通信機器を第 2無線通信機器として、
上記第 2無線通信機器は、
上記第 1無線通信機器との通信開始後、予め設定された所定条件が成立する毎に 、各タイムスロットの干渉量を測定する干渉量測定手段と、
各タイムスロットの干渉量を測定した後、その中で最も干渉量の少な 、タイムスロット を、次に使用するタイムスロットとして選択するタイムスロット選択手段と、
選択したタイムスロットを上記第 1無線通信機器に対して通知するタイムスロット通知 手段とを備え、
上記第 1無線通信機器は、上記第 2無線通信機器カゝらタイムスロットの通知を受け た後、そのタイムスロットを使用して上記第 2無線通信機器と通信を行うことを特徴と する無線通信システム。
[37] 複数のタイムスロットからなるフレームを基本単位として、このフレームに含まれる何 れかのタイムスロットを使用して無線通信機器どうしが互いに通信を行う無線通信シ ステムであって、
送信側となる無線通信機器を第 1無線通信機器、受信側となる無線通信機器を第 2無線通信機器として、
上記第 1無線通信機器は、
各タイムスロットについて、上記第 2無線通信機器との通信に割当可能な割当電力 を求め、これを上記第 2無線通信機器に対して通知する割当電力通知手段を備える 一方、
上記第 2無線通信機器は、
上記第 1無線通信機器との通信開始後、予め設定された所定条件が成立する毎に 、各タイムスロットの干渉量を測定する干渉量測定手段と、
上記干渉量測定手段により測定した各タイムスロットの干渉量と、上記第 1無線通 信機器力も通知された各タイムスロットの割当電力とに基づ 、て、次に使用するタイ ムスロットの候補を選択するタイムスロット選択手段と、
選択したタイムスロットの候補を、上記第 1無線通信機器に対して通知するタイムス ロット通知手段とを備え、
上記第 1無線通信機器は、
上記第 2無線通信機器力 通知されたタイムスロットの候補の中から、次に使用す るタイムスロットを選択して、これを上記第 2無線通信機器に対して通知した後、その タイムスロットを使用して上記第 2無線通信機器と通信を行うことを特徴とする無線通 信システム。
PCT/JP2006/309227 2005-05-13 2006-05-08 無線通信装置、基地局および無線通信システム WO2006120990A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005141231A JP2006319755A (ja) 2005-05-13 2005-05-13 無線通信装置、無線通信システム、基地局およびネットワーク資源の割当方法
JP2005-141231 2005-05-13
JP2006009931A JP2007194821A (ja) 2006-01-18 2006-01-18 無線通信システム
JP2006-009932 2006-01-18
JP2006-009931 2006-01-18
JP2006009932A JP2007194822A (ja) 2006-01-18 2006-01-18 無線通信システムおよびミニ基地局

Publications (1)

Publication Number Publication Date
WO2006120990A1 true WO2006120990A1 (ja) 2006-11-16

Family

ID=37396498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309227 WO2006120990A1 (ja) 2005-05-13 2006-05-08 無線通信装置、基地局および無線通信システム

Country Status (1)

Country Link
WO (1) WO2006120990A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512706A (ja) * 2008-01-07 2011-04-21 クゥアルコム・インコーポレイテッド 無線通信システムにおけるtdd動作
CN101690371B (zh) * 2007-05-01 2012-08-08 株式会社Ntt都科摩 基站装置以及通信控制方法
JP5067427B2 (ja) * 2007-12-05 2012-11-07 富士通株式会社 パラメータ収集方法、無線基地局、及び、中継局
JP2013098990A (ja) * 2011-11-02 2013-05-20 Industrial Technology Research Institute 直接通信方法およびそれを用いた直接通信装置およびコーディネータ装置
JP2013138433A (ja) * 2007-07-10 2013-07-11 Qualcomm Inc 無線ピアツーピア(p2p)ネットワークにおけるwanインフラストラクチャリソースの再使用のための方法及び装置
EP3567947A4 (en) * 2017-01-06 2020-08-19 ZTE Corporation DATA TRANSFER METHOD AND DEVICE AND STORAGE MEDIUM

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284149A (ja) * 1994-04-05 1995-10-27 Toshiba Corp 移動無線通信システム
JPH08265835A (ja) * 1995-03-23 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> 移動無線通信方法
JPH11331928A (ja) * 1998-05-19 1999-11-30 Ntt Mobil Commun Network Inc 無線通信システム、無線通信システムにおける無線資源割当て方法並びに移動通信システムの基地局及び移動機
WO2003017696A1 (en) * 2001-08-17 2003-02-27 Interdigital Technology Corporation Interference reduction in a time division duplex communication system using code division multiple access
JP2004166123A (ja) * 2002-11-15 2004-06-10 Matsushita Electric Ind Co Ltd 基地局装置及びmcs選択方法
JP2005124121A (ja) * 2003-09-24 2005-05-12 Keio Gijuku 無線通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284149A (ja) * 1994-04-05 1995-10-27 Toshiba Corp 移動無線通信システム
JPH08265835A (ja) * 1995-03-23 1996-10-11 Nippon Telegr & Teleph Corp <Ntt> 移動無線通信方法
JPH11331928A (ja) * 1998-05-19 1999-11-30 Ntt Mobil Commun Network Inc 無線通信システム、無線通信システムにおける無線資源割当て方法並びに移動通信システムの基地局及び移動機
WO2003017696A1 (en) * 2001-08-17 2003-02-27 Interdigital Technology Corporation Interference reduction in a time division duplex communication system using code division multiple access
JP2004166123A (ja) * 2002-11-15 2004-06-10 Matsushita Electric Ind Co Ltd 基地局装置及びmcs選択方法
JP2005124121A (ja) * 2003-09-24 2005-05-12 Keio Gijuku 無線通信装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690371B (zh) * 2007-05-01 2012-08-08 株式会社Ntt都科摩 基站装置以及通信控制方法
JP2013138433A (ja) * 2007-07-10 2013-07-11 Qualcomm Inc 無線ピアツーピア(p2p)ネットワークにおけるwanインフラストラクチャリソースの再使用のための方法及び装置
JP5067427B2 (ja) * 2007-12-05 2012-11-07 富士通株式会社 パラメータ収集方法、無線基地局、及び、中継局
JP2011512706A (ja) * 2008-01-07 2011-04-21 クゥアルコム・インコーポレイテッド 無線通信システムにおけるtdd動作
US8780790B2 (en) 2008-01-07 2014-07-15 Qualcomm Incorporated TDD operation in wireless communication systems
JP2013098990A (ja) * 2011-11-02 2013-05-20 Industrial Technology Research Institute 直接通信方法およびそれを用いた直接通信装置およびコーディネータ装置
US9014093B2 (en) 2011-11-02 2015-04-21 Industrial Technology Research Institute Direct communication method and direct communication device and coordinator device using the same
EP3567947A4 (en) * 2017-01-06 2020-08-19 ZTE Corporation DATA TRANSFER METHOD AND DEVICE AND STORAGE MEDIUM
US11160088B2 (en) 2017-01-06 2021-10-26 Xi'an Zhongxing New Software Co., Ltd. Data transmission method and device, and storage medium
US11672000B2 (en) 2017-01-06 2023-06-06 Xi'an Zhongxing New Software Co., Ltd. Data transmission method and device, and storage medium

Similar Documents

Publication Publication Date Title
Doppler et al. Mode selection for device-to-device communication underlaying an LTE-advanced network
KR101061654B1 (ko) 멀티-유저 통신 시스템들에서 제어된 중첩 코딩
US5491837A (en) Method and system for channel allocation using power control and mobile-assisted handover measurements
US7333824B2 (en) Method and apparatus for supporting P2P communication in TDD CDMA communication systems
KR101296021B1 (ko) 무선 통신 시스템에서의 디바이스 대 디바이스 통신을 위한 동적 통신 자원 할당을 위한 장치 및 방법
EP2179547B1 (en) Active successive interference cancellation in peer-to-peer networks
US20070259681A1 (en) Method and Apparatus for Interference Based User Equipment Management in a Wireless Communication Network
US20060205408A1 (en) Radio communications apparatus, radio communications system, and base station equipment
WO2004110091A1 (ja) 無線通信装置、無線通信方法、通信チャネルの割当方法および割当装置
EP2475209A2 (en) Radio communication method and radio base station
US20140135028A1 (en) Scheduling and rate control coordination accounting for interference cancellation at a mobile terminal
EP2171930B1 (en) Successive interference cancellation based on two rate feedback in peer-to-peer networks
IL205365A (en) Resource matching in wireless communication systems
WO2006120990A1 (ja) 無線通信装置、基地局および無線通信システム
US20070274263A1 (en) Slot allocation method for use in cellular radio communication system and base station for use in the same system
JP5706848B2 (ja) 無線通信システム、無線基地局および通信制御方法
JP4029778B2 (ja) 無線通信装置および無線通信方法
JP2006319755A (ja) 無線通信装置、無線通信システム、基地局およびネットワーク資源の割当方法
JP2005101716A (ja) 通信チャネルの割当方法および割当装置、無線通信装置
Liu et al. Optimizing channel allocation for D2D overlaying multi-channel downlink cellular networks
Qianxi et al. Radio resource management for network assisted D2D in cellular uplink
JP2005124121A (ja) 無線通信装置
JP2008118460A (ja) 無線通信システムおよびタイムスロットの割当方法
JP5839608B2 (ja) 無線通信システム及び受信装置
JP2007194821A (ja) 無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746059

Country of ref document: EP

Kind code of ref document: A1