WO2006120981A1 - Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム - Google Patents

Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム Download PDF

Info

Publication number
WO2006120981A1
WO2006120981A1 PCT/JP2006/309174 JP2006309174W WO2006120981A1 WO 2006120981 A1 WO2006120981 A1 WO 2006120981A1 JP 2006309174 W JP2006309174 W JP 2006309174W WO 2006120981 A1 WO2006120981 A1 WO 2006120981A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
less
gas fuel
fuel cell
petroleum gas
Prior art date
Application number
PCT/JP2006/309174
Other languages
English (en)
French (fr)
Inventor
Gakuji Takegoshi
Hisashi Katsuno
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US11/910,551 priority Critical patent/US20090151237A1/en
Priority to CA002607800A priority patent/CA2607800A1/en
Priority to EP06746024A priority patent/EP1881056A4/en
Publication of WO2006120981A1 publication Critical patent/WO2006120981A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a liquefied petroleum gas fuel supplied by a natural vaporization supply system suitable for an LP gas type fuel cell system, a desulfurization method thereof, and a desulfurized liquefied petroleum gas fuel.
  • the present invention relates to a fuel cell system using a hydrogen-containing gas obtained in this way.
  • Patent Document 1 discloses that a fuel for a fuel cell system has a saturated content of 60 mol% or more, an olefin component of 0 mol% or less, a butadiene content of 0.5 mol% or less, and a saturated content of 4 or more carbon atoms.
  • a fuel for a fuel cell system comprising a hydrocarbon compound that is 0.1 mol% or more of isoparaffin and is a gas at room temperature.
  • liquid petroleum gas used as household fuel are usually 80% by volume or higher for hydrocarbon compounds with 3 carbon atoms and 5% by volume or less for hydrocarbon compounds with 2 carbon atoms.
  • the content of hydrocarbon compounds with 4 carbon atoms is less than 20% by volume.
  • liquefied petroleum gas fuel usually contains various sulfur compounds of several ppm to several tens of ppm. ing.
  • the desulfurizer In the production of hydrogen used in fuel cells, the desulfurizer is installed in the fuel cell system, but it is heated using the exhaust heat of the reformer or using an electric heater. Heating in such a way leads to a decrease in the efficiency of the fuel cell system, and therefore, a desulfurizing agent that functions efficiently at temperatures of 80 ° C. or lower is generally desired!
  • Patent Document 2 discloses a zeolite desulfurization agent that can efficiently remove sulfur compounds even when the concentration of water in city gas is relatively high. However, the zeolitic desulfurizing agent should sufficiently remove sulfur carbonyl in liquid petroleum gas. I can't.
  • Patent Document 3 discloses a metal oxide-based desulfurization agent as a desulfurization agent that can efficiently remove the sulfur carbonyl sulfide.
  • a method for removing a sulfur compound in a gaseous hydrocarbon compound is selected from the group consisting of a desulfurization agent layer containing zeolite, a metal element, a metal oxide, and a metal component-supported oxide.
  • a method for removing sulfur compounds using a desulfurizer combined with a desulfurizing agent layer containing at least one kind is disclosed.
  • the total sulfur concentration, the sulfur concentration of a specific sulfur compound, the methanol concentration, and the water concentration in the liquid meteorite oil gas fuel are below specific values.
  • the effect of liquefied petroleum gas fuel having a specific hydrocarbon compound composition on desulfurization performance is not described at all.
  • Non-Patent Document 1 Masami Ikematsu, “Engine Technology”, Sankai-do Co., Ltd., January 2001, No. 3, No. 1, p. 35
  • Patent Document 1 Pamphlet of International Publication No. 02Z000813
  • Patent Document 2 JP 2001-286753
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-130216
  • Patent Document 4 International Publication No.04Z058927 Pamphlet
  • the present invention has been made in view of such a situation, and even if it is supplied as a fuel for an LP gas type fuel cell system by a natural vaporization supply method, it is hardly affected by the composition change of the supply gas. Even with minimal use of desulfurization agent, the desulfurization agent functions efficiently, improving the desulfurization effect, and preventing damage to the reforming catalyst in the reformer for hydrogen production located downstream from the desulfurizer.
  • the liquefied petroleum gas fuel for LP gas fuel cells that enables stable reformer operation and stable power generation, the desulfurization method thereof, and the liquefied petroleum gas fuel desulfurized by the desulfurization method are modified. The purpose is to provide a fuel cell system that uses hydrogen-containing gas obtained by quality treatment.
  • the present inventors have determined that the total sulfur concentration in the liquefied petroleum gas fuel, the sulfur concentration of a specific sulfur compound, the methanol concentration, and the water concentration It was found that a liquid petroleum gas fuel having a specific hydrocarbon compound composition having a degree equal to or less than a specific value can solve the above problems, and the present invention has been completed based on this finding. That is, the present invention
  • a liquefied petroleum gas supplied to a fuel cell system by a natural vaporization supply system The content of hydrocarbon compounds with 2 carbon atoms is 3% by volume or less, and the content of hydrocarbon compounds with 4 carbon atoms is 3 volumes.
  • Sulfuric acid having a total sulfur concentration of 10 mass ppm or less, sulfur concentration of carbonyl sulfide of 2 mass ppm or less, sulfur concentration of methyl mercabtan of 3 mass ppm or less, and boiling point of dimethyl disulfide or more.
  • LP gas type fuel cell in which the sulfur content of the compound is 2 mass ppm or less, the methanol concentration is 50 mass ppm or less, the water concentration is 50 mass ppm or less, and the balance is a hydrocarbon compound containing 3 carbon atoms.
  • Any one of the above (1) to (4) is characterized in that the liquefied petroleum gas fuel for LP gas type fuel cells described in item 1 is naturally vaporized and then desulfurized using a desulfurizing agent. Desulfurization method,
  • a desulfurization agent containing zeolite, together with zeolite, Ag component, Cu component, Ni component, Zn component, Mn component, Fe component, Co component, alkali metal component, alkaline earth metal component, and rare earth metal component comprising at least one metal component selected
  • Zeolite has beta (BEA) and Z or faujasite (FAU) structures.
  • BEA beta
  • FAU faujasite
  • At least one type of desulfurization agent selected from metal elements, metal oxides and metal component-supported oxides is an Ag component, Cu component, Ni component, Zn component, Mn component, Fe component
  • the desulfurization agent in the desulfurizer functions efficiently even when the minimum desulfurization agent is used, and the desulfurization effect is improved and the desulfurization force is reformed for hydrogen production.
  • the liquefied petroleum gas fuel for LP gas fuel cells, the desulfurization method thereof, and the desulfurization method that can prevent damage to the reforming catalyst in the reactor and enable stable reformer operation and stable power generation
  • a fuel cell system using a hydrogen-containing gas obtained by reforming a liquefied petroleum gas fuel that has been more desulfurized can be provided.
  • FIG. 1 is an example of a schematic flow diagram of a fuel cell system of the present invention.
  • Fuel supply line 23 Desulfurizer
  • the liquid petroleum gas used as the fuel is a liquid petroleum gas supplied to the fuel cell system by a natural vaporization supply system, and the content of the hydrocarbon compound having 2 carbon atoms is less than the capacity%.
  • the content of hydrocarbon compounds with 4 carbon atoms is 3% by volume or less, the total sulfur concentration is 10 mass ppm or less, the sulfur concentration of carbon sulfide is 2 mass ppm or less, and the sulfur concentration of methyl mercaptan is 3 mass Sulfur concentration of 2 ppm or less, methanol concentration is 50 mass ppm or less, moisture concentration is 50 mass ppm or less, and the balance is carbon.
  • the hydrocarbon compound having 3 carbon atoms is paraffin having 3 carbon atoms and Z or olefin, and the hydrocarbon compound having 2 carbon atoms is also paraffin having 2 carbon atoms and Z or olefin.
  • the hydrocarbon compound having 4 carbon atoms is at least one hydrocarbon compound in which the medium strength of paraffin, olefin and olefin is selected.
  • the content of hydrocarbon compounds with 3 carbon atoms is preferably 96% by volume or less, and less than 96% by volume
  • the liquid liquid petroleum gas is used as a hydrogen raw material for fuel cells in the vaporization supply system
  • Variations in the composition of the hydrocarbon compounds in the supplied gas may become large, making it difficult to adjust the gas flow rate.
  • the steam Z carbon ratio may fluctuate and the operation of the reformer may become unstable.
  • composition for each carbon number is measured by the analysis method described in JIS K 2240 “Liquid petroleum gas 5.9 composition analysis method”.
  • the total sulfur concentration in the liquid petroleum gas fuel of the present invention is 10 mass ppm or less, preferably 7 mass ppm or less, more preferably 5 mass ppm or less. 2 mass ppm or less, preferably 1 mass ppm or less, the sulfur concentration of methyl mercabtan is 3 mass ppm or less, preferably 2 mass ppm or less, and the sulfur concentration of a sulfur compound having a boiling point of dimethyldisulfide or more is 2 ppm by mass or less, preferably 1 ppm by mass or less.
  • examples of sulfur compounds having a boiling point of dimethyldisulfide (boiling point 110 ° C) or more usually contained in liquid petroleum gas fuels include methyl ethyl disulfide, jet disulfide, Examples thereof include methylpropyl disulfide and thiophene.
  • the concentration of sulfur compounds is determined by the SCD detector (chemiluminescence sulfur detector, Sullur Chemilu Measured by gas chromatography with a minescence detector. For example, the measurement can be performed under the following conditions.
  • Separation column DB—1, length: 60 m, membrane pressure: 5 m, ID: 0.32 mm, split ratio: 1: 5, carrier gas: helium, flow rate: 23 mlZ min, temperature: 40 ° C for 4 min Hold, heat up to 200 ° C in 10 ° CZ minutes and hold at 200 ° C for 15 minutes
  • the methanol concentration in the liquid petroleum gas fuel of the present invention is 50 mass ppm or less, preferably 30 mass ppm. If it exceeds 50 mass ppm, the effect on the desulfurizing agent is increased. As a result, the amount of the desulfurizing agent to be used is increased, and the size of the fuel cell system itself is restricted.
  • the methanol concentration is measured according to the Japan LP Gas Association Standard (JLPGA-S-06T).
  • the water concentration in the liquid petroleum gas fuel of the present invention is 50 mass ppm or less, preferably ⁇ m or more and 30 mass ppm or less. If it exceeds 50 mass ppm, the effect on the desulfurizing agent will be large. As a result, the amount of the desulfurizing agent used will increase, and the size of the fuel cell system itself will be restricted, resulting in an economic disadvantage.
  • the water concentration is measured according to Japan LP Gas Association Standard CFLPGA-S-03).
  • SOFC solid oxide fuel cell
  • PEFC solid polymer fuel cell
  • MCFC molten carbonate fuel cells
  • liquid petroleum gas fuel there are no particular restrictions on the method for producing liquid petroleum gas fuel.
  • a method of refining and compressing gas components produced as a by-product from the oil field 'natural gas field and a method of refining crude oil.
  • liquefied petroleum gas components obtained with crude oil atmospheric distillation equipment and liquefied petroleum gas components obtained with naphtha catalytic reforming equipment and catalytic cracking equipment are separated by distillation, and sulfur components are removed.
  • liquid petroleum gas fuel can be obtained at the primary base of desired purity by performing distillation separation.
  • the sulfur component is removed by a method appropriately selected from the hydrodesulfurization method, the soda cleaning method, the ammine cleaning method, and the Marlox method.
  • Liquid ⁇ petroleum gas fuel mainly containing propane and butane components can be distilled and separated in a depropanizer tower.
  • propane purity increase the top reflux ratio of the distillation tower, This is achieved by distilling and separating under conditions such as lowering.
  • the total sulfur component when the sulfur component is removed by hydrodesulfurization, the total sulfur component can be lowered by increasing the reaction temperature.
  • methyl mercaptan when removing sulfur by the soda cleaning method, adjust the amount of circulating soda and liquefied petroleum gas to an optimal ratio. When this ratio is high, the sulfur-rich compound is back-extracted into the liquid petroleum gas fuel, and the desired sulfur concentration cannot be obtained.
  • the desired sulfur concentration can be obtained by improving the separation of dimethyl disulfide and liquid petroleum gas fuel with a settler of Marrox equipment. Can be adjusted.
  • the water concentration is adjusted by increasing or decreasing the reflux ratio of the depropanizer or passing through the dehydrator.
  • liquid petroleum gas used as fuel for fuel cells a small amount of sulfur component not removed in the above-mentioned crude oil refining process and a sulfur component added as an odorant, for example, mercaptan such as methyl mercaptan, etc. , Sulfur sulfides such as carbosulfides, hydrogen sulfide, sulfides, disulfides, thiophenes, hydrothiophenes.
  • the desulfurization treatment of the liquid petroleum gas fuel of the present invention is performed using a conventionally known desulfurizing agent.
  • a desulfurizing agent used in order to maximize the performance of the desulfurizing agent used, it is preferable to use liquid petroleum gas fuel with as low a sulfur content as possible, compared to other sulfur compounds. Use the one that contains as little sulfur carbonate as possible.
  • the liquid petroleum gas fuel is desulfurized using a desulfurizing agent.
  • a desulfurizing agent containing zeolite and a desulfurizing agent consisting of at least one selected from Z or metal elements, metal oxides and metal component-supported oxides are preferred.
  • the desulfurizing agent A a conventionally known one can be used without any particular limitation.
  • a zeolite which is a combination of one or more of
  • zeolite those having beta (BEA) and Z or faujasite structure (FAU) are particularly preferred! /.
  • Preferred examples of the alkali metal component include potassium and sodium.
  • examples of the alkaline earth metal component include calcium and magnesium.
  • Preferred examples of the rare earth metal component include lanthanum cerium.
  • Ag component and Z or Cu component are particularly preferable.
  • the desulfurizing agent A can be prepared by supporting the metal component on the zeolite. Specifically, an aqueous solution containing a water-soluble compound of the target metal component and zeolite are brought into contact with each other by a stirring method, an impregnation method, a distribution method, etc., and then appropriately washed with water and then dried and fired. Can be obtained.
  • the content of the thus metal component in the resulting desulfurizing agent A as the metal element typically 1 to 40 weight 0/0, preferably from 5 to 30 mass 0/0.
  • At least one type of desulfurization agent selected from metal elements, metal oxides and metal component-supported oxides is composed of an Ag component, a Cu component, a Ni component, Zn component, Mn component, Fe component, Co component, Si component, A1 component, alkali metal component, alkaline earth
  • desulfurization agent B is composed of an Ag component, a Cu component, a Ni component, Zn component, Mn component, Fe component, Co component, Si component, A1 component, alkali metal component, alkaline earth
  • the alkali metal component is a power such as potassium or sodium.
  • the alkaline earth metal component is a calcium or magnesium.
  • Preferred examples of the 1S rare earth metal component include lanthanum and cerium.
  • the desulfurizing agent B is preferably a porous inorganic oxide support on which each of the above metal components is supported, and in particular, one in which at least one of an Ag component, a Cu component, a Ni component and a cerium component is supported is preferable. It is.
  • Each metal component can be supported by a normal supporting method such as a coprecipitation method or an impregnation method.
  • porous inorganic oxide carrier examples include at least one selected from silica, alumina, silica-alumina, titania, zirconia, magnesia, ceria, diatomaceous earth, clay, clay, or acid-zinc strength. Of these, silica supports, alumina supports, and silica-alumina supports are preferred.
  • the supported total metal content (as oxide) is usually 5 to 90% by mass and the support is 95 to 10% by mass from the viewpoint of desulfurization performance and mechanical strength of the desulfurizing agent.
  • the above-mentioned total metal content (as oxide) is preferably 40 to 90 mass% when supported by the coprecipitation method, and further 70 to 90 mass% when supported by the impregnation method. Is preferably 5-40% by weight! / ,.
  • an acidic aqueous solution or aqueous dispersion containing a nickel source, a copper source and an aluminum source, and a basic aqueous solution containing a key source and an inorganic base are prepared.
  • nickel sources used in the former acidic aqueous solution or dispersion include nickel chloride, nitric acid-nickel, nickel sulfate, nickel acetate, nickel carbonate, and hydrates such as these.
  • Examples include copper chloride, copper nitrate, copper sulfate, copper acetate, and hydrates thereof. These nickel sources and copper sources may be used alone or in combination of two or more.
  • Examples of the aluminum source include alumina hydrates such as pseudo boehmite, boehmite alumina, bayerite and dipsite, and ⁇ -alumina. Among these, Mite, boehmite alumina and ⁇ -alumina are preferred. These can be used in the form of powder or sol. This aluminum source can be used alone or in combination of two or more.
  • the source of key used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing.
  • orthocaic acid, metacaic acid, and Those sodium salts and potassium salts, water glass, etc. are mentioned. These may be used singly or in combination of two or more, but water glass which is a kind of sodium silicate hydrate is particularly suitable.
  • alkali metal carbonates and hydroxides are preferable, for example, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like. These may be used alone or in combination of two or more. Particularly, sodium carbonate alone or a combination of sodium carbonate and sodium hydroxide is preferred.
  • the amount of the organic base used should be selected so that, in the next step, when the acidic aqueous solution or aqueous dispersion and this basic aqueous solution are mixed, the mixed solution becomes a substantially neutral base. It is advantageous.
  • the inorganic base may be used in the total amount for the preparation of the basic aqueous solution, or a part of the inorganic base may be used in the acidic aqueous solution or the mixture of the aqueous dispersion and the basic aqueous solution in the next step. May be added.
  • the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution are each heated to about 50 to 90 ° C, and then both are mixed. After mixing, if necessary, after further adding an aqueous solution containing an inorganic base heated to 50 to 90 ° C, the mixture is stirred at a temperature of about 50 to 90 ° C for about 0.5 to 3 hours. To complete the reaction.
  • the produced solid is sufficiently washed and separated into solid and liquid, or the produced solid is separated into solid and liquid and washed sufficiently, and then the obtained solid is washed at 80 to 150 ° C by a known method. Dry at a moderate temperature.
  • the dried product thus obtained is preferably calcined at a temperature in the range of 200 to 400 ° C. to obtain a desulfurization agent B in which nickel and copper are supported on a support. If the firing temperature is outside the above range, it will be difficult to obtain a Ni-Cu desulfurization agent with the desired performance.
  • a method for preparing a silver-supported desulfurizing agent using alumina as a carrier suitable as the desulfurizing agent B will be described.
  • the supported amount of silver is preferably in the range of 5-30% by mass.
  • Prepare an aqueous solution containing the silver source examples include silver nitrate, silver acetate, and silver sulfate. These silver sources may be used alone or in combination.
  • As the alumina ⁇ type, ⁇ type,% type, ⁇ type and 7? Type alumina can be mentioned. ⁇ type,% type and 7? Type are preferably used.
  • An aqueous solution containing the above silver source is impregnated and supported on alumina, dried at a temperature of about 80-150 ° C, and then fired at a temperature of about 200-400 ° C.
  • a desulfurizing agent B in which silver is supported on an alumina support is obtained.
  • the desulfurizing agent to be used may be one kind, or a combination of desulfurizing agents having different adsorption characteristics for each sulfur compound. In order to maximize performance, it is desirable to use liquid petroleum gas, etc. with as low a sulfur content as possible.
  • the temperature is usually selected in a range of ⁇ 20 to 100 ° C.
  • GHSV gas space velocity
  • the liquefied petroleum gas fuel that has been subjected to desulfurization treatment is subjected to partial oxidation reforming catalyst, autothermal reforming catalyst, steam reforming catalyst, or carbon dioxide.
  • partial oxidation reforming catalyst autothermal reforming catalyst
  • steam reforming catalyst or carbon dioxide.
  • the concentration of sulfur compounds in the desulfurized liquefied petroleum gas fuel is preferably 0.05 mass ppm or less from the viewpoint of the life of each reforming catalyst. 02 Mass ppm or less is preferred.
  • the partial acid reforming is a method for producing hydrogen by a partial acid reaction of a hydrocarbon compound of a liquid petroleum gas fuel, which is usually reacted in the presence of a partial oxidation reforming catalyst.
  • the pressure is normal pressure to 5 MPa'G, and the reaction temperature is 400 to 1,100.
  • C, GHSV1, 000-100,000h—reforming reaction is carried out under conditions of oxygen (O) Z carbon molar ratio of 0.2-0.8.
  • Autothermal reforming is a method in which partial oxidation reforming and steam reforming are combined.
  • the reaction pressure is usually from normal pressure to 5 MPa'G, and the reaction temperature is from 400 to 1. , 100 ° C, oxygen (O) Z carbon molar ratio 0.1 to 1, steam Z carbon molar ratio 0.1 to 10, GHS
  • Vl the reforming reaction is carried out in conditions of 000 ⁇ 100,000h _1.
  • steam reforming is a method for producing hydrogen by bringing steam into contact with a hydrocarbon compound, and usually in the presence of a steam reforming catalyst, reaction pressure is normal pressure to 3 MPa'G, reaction temperature. 200-900.
  • the reforming reaction is carried out under the conditions of C, steam Z carbon molar ratio of 1.5 to 10, and GHSVl, 000 to 100,000h- 1 .
  • Carbon dioxide reforming is a method in which a reaction between a hydrocarbon compound and carbon dioxide occurs to produce hydrogen.
  • the reaction temperature for hydrogen production is usually 200 to 1,300. C, preferably 400 to 1,200 ° C, more preferably 500 to 900 ° C.
  • the carbon dioxide Z carbon molar ratio is usually from 0.1 to 5, preferably from 0.1 to 3.
  • steam Z carbon molar ratio is usually from 0.1 to 10, preferably from 0.4 to 4.
  • oxygen Z carbon molar ratio is usually 0.1 to 1, preferably 0.2 to 0.8.
  • the reaction pressure is usually 0 to: L0 MPa'G, preferably 0 to 5 MPa'G, more preferably 0 to 3 MPa'G. About GHSV, it is the same as that of the case of the said steam reforming.
  • the partial oxidation reforming catalyst, autothermal reforming catalyst, steam reforming catalyst, and carbon dioxide reforming catalyst can be appropriately selected from conventionally known catalysts.
  • ruthenium-based and nickel-based catalysts are preferred.
  • the carrier for these catalysts include a carrier containing at least one selected from the group consisting of manganese oxide, cerium oxide and zirconium.
  • the support may be a support made of only these metal oxides, or may be a support made by adding the above metal oxide to another refractory porous inorganic oxide such as alumina. Yo ...
  • the reaction method of the above reforming reaction may be either a continuous flow method or a batch method, but a continuous flow method is preferable.
  • any of a fixed bed type, a moving bed type and a fluidized bed type without particular limitation can be adopted, but a fixed bed type is preferred.
  • a fixed bed type is preferred.
  • a tubular reactor can be used.
  • the hydrocarbon compound undergoes steam reforming reaction, autothermal reforming reaction, partial oxidation reforming reaction, and carbon dioxide reforming reaction to generate hydrogen. And is suitably used in a hydrogen production process of a fuel cell.
  • a fuel cell system using a liquid petroleum gas for an LP gas type fuel cell includes a desulfurizer provided with a desulfurizing agent, a reformer provided with a reforming catalyst, a CO shift catalyst, and the like. And a fuel cell using hydrogen produced by the reformer as a fuel. This fuel cell system will be described with reference to FIG.
  • the fuel in the liquid petroleum gas cylinder 21 is introduced into the desulfurizer 23 via the fuel supply line 22 by a vaporization method.
  • the desulfurizer 23 is filled with, for example, the desulfurizing agents A and Z or the desulfurizing agent B described above.
  • the fuel gas desulfurized by the desulfurizer 23 is mixed with the water that has passed through the water pump 24 in the water tank force, and then sent to the reformer 31 together with the air sent from the air blower 35.
  • the reformer 31 is filled with a reforming catalyst. From the fuel mixture (a mixed gas containing hydrocarbon compounds, water vapor and oxygen) sent to the reformer 31, any of the above reforming reactions is performed. This produces hydrogen.
  • Reference numeral 38 denotes a fuel gas flow rate adjusting valve.
  • the hydrogen produced in this way is reduced through the CO converter 32 and the CO selective oxidizer 33 to the extent that the CO concentration affects the characteristics of the fuel cell.
  • the catalyst used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst, or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst, platinum in the CO selective oxidizer 33. Or a mixed catalyst thereof. If the CO concentration in the hydrogen produced by the reforming reaction is low, the CO converter 32 and the CO selective oxidizer 33 need not be installed.
  • the fuel cell 34 is an example of a solid polymer fuel cell including a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B.
  • the hydrogen-rich gas obtained by the above method is applied to the negative electrode side, and the aerodynamic force sent from the air blower 35 is applied to the positive electrode side, respectively, after performing an appropriate calo-humidity treatment if necessary (humidifier not shown) be introduced.
  • an air / water separator 36 is connected to the positive electrode 34B side to separate water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side, and the water is used for the generation of water vapor. Can be used. Since heat is generated in the fuel cell 34 with power generation, an exhaust heat recovery device 37 can be attached to recover the heat for effective use.
  • the exhaust heat recovery device 37 includes a heat exchanger 37A attached to the fuel cell 34 to take away the heat generated during the reaction, a heat exchanger 37B for exchanging heat taken by the heat exchanger 37A with water, A cooler 37C, heat exchangers 37A and 37B, and a pump 37D that circulates the refrigerant to the cooler 37C are provided, and the hot water obtained in the heat exchange ⁇ 3 7B can be effectively used in other facilities. .
  • ⁇ -type zeolite (Tosohichi Co., Ltd. “: HSZ-930 ⁇ ”) 2000 ° C calcined product 2000g, silver nitrate (Wako Pure Chemical Industries, Ltd., special grade) 350g was dissolved in 10 liters of water. The resulting solution was poured into an aqueous solution and stirred for 4 hours for ion exchange. Thereafter, the solid material is washed with water, filtered, dried with a blower at 120 ° C for 12 hours, and calcined at 400 ° C for 3 hours to obtain a desulfurization agent A containing 6% by mass of Ag. It was.
  • Nickel sulfate hexahydrate (Wako Pure Chemical Industries, Ltd., special grade) 7300g and copper sulfate pentahydrate (Wako Pure Chemical Industries, Ltd., special grade) 1513g were heated to 80 ° C. Dissolved in 80 liters of water, and pseudo boehmite (manufactured by Catalytic Chemical Industry Co., Ltd., “C-AP”, 67 mass% as AI O)
  • Preparation solution A 3 liters of 0.5 mol / liter sulfuric acid aqueous solution was added and adjusted to pH 2 (Preparation solution A). Also, 6000 g of sodium carbonate was dissolved in 80 liters of water heated to 80 ° C, and 1802 g of water glass (Nihon Kagaku Kogyo Co., Ltd., “J-1”, Si concentration: 29% by mass) was added. Added (preparation solution B). Preparation liquid A and preparation liquid B were mixed while being kept at 80 ° C. and stirred for 1 hour.
  • the precipitated cake is washed with 600 liters of water, filtered, dried in a blow dryer at 120 ° C for 12 hours, and further calcined at 350 ° C for 3 hours.
  • a desulfurizing agent B containing 50% by mass of Ni and 3% by mass of Cul was obtained.
  • Liquefied petroleum gas fuel 1 having the properties shown in Table 1 below was supplied to an lkW-class LP gas-type polymer electrolyte fuel cell (PEFC) system using a natural vaporization supply system.
  • the system has a built-in desulfurizer, reformer, fuel cell stack, and inverter.
  • the desulfurizer is a stainless steel container with a diameter of 4 cm. This is filled with 300 ml of desulfurizing agent A and 150 ml of desulfurizing agent B.
  • the reformer is filled with 600 ml of commercial reforming catalyst, 1 liter of commercial shift catalyst, and 0, 25 liter of commercial selective oxidation catalyst. With a thermal mass flow controller (manufactured by Okura Riken Co., Ltd.), the flow rate of liquid and petroleum gas fuel 1 is 1.8 liters each.
  • liquefied petroleum gas fuel 1 was supplied to the fuel cell system.
  • the desulfurization treatment conditions are normal pressure and room temperature.
  • the reformer operating conditions are a reformer outlet temperature of 700 ° C and a pressure of 0.03 MPa'G.
  • the water supply was adjusted so that the steam Z carbon molar ratio at the beginning of the supply of liquid petroleum gas fuel 1 was 1Z3.
  • the current value was set to 33.3 A, and the voltage was measured to be 39.0 V and 38.6 V, respectively. It was.
  • Example 2 This was carried out in the same manner as in Example 1 except that liquid petroleum gas fuel 2 listed in Table 1 was used.
  • the current value was set to 33.3 A and the voltage was measured, and it was 39.0 V and 38.3 V, respectively. It was.
  • Example 3 This was carried out in the same manner as in Example 1 except that liquid petroleum gas fuel 3 shown in Table 2 was used.
  • the current value was set to 33.3 A and the voltage was measured, and it was 38.7 V and 37. OV, respectively.
  • the upstream side of a stainless steel desulfurizer with an inner diameter of 10 mm was filled with 2 ml of desulfurizing agent A and 2 ml of desulfurizing agent B on the downstream side.
  • the temperature of the desulfurizer was 20 ° C., and at 20 liters Z, liquid petroleum gas fuel 1 shown in Table 1 was supplied to the desulfurizer.
  • An automatic sampling port was provided at the outlet of the desulfurizer, and the total sulfur concentration was measured by a gas chromatography method equipped with an SCD detector (Sulfor Chemiluminescence Detector). The measurement was performed under the following conditions.
  • Separation column DB-1, length: 60m, membrane pressure: 5 / ⁇ ⁇ , ID: 0.32mm, split ratio: 1: 5, carrier gas: helium, flow rate: 23mlZ min, temperature: 4 at 40 ° C Held for 10 minutes, heated to 200 ° C in 10 ° CZ minutes, and held at 200 ° C for 15 minutes. As a result, after 160 hours, the total sulfur concentration at the desulfurizer outlet reached 0.05 mass ppm.
  • Example 3 The same operation as in Example 3 was carried out except that the liquid petroleum gas fuel 2 shown in Table 1 was supplied to the desulfurizer. As a result, after 172 hours, the total sulfur concentration at the outlet of the desulfurizer reached 0.05 mass ppm.
  • Example 3 The same operation as in Example 3 was performed except that the liquid petroleum gas fuel 4 shown in Table 2 was supplied to the desulfurizer. As a result, after 136 hours, the total sulfur concentration at the outlet of the desulfurizer reached 0.05 mass ppm.
  • Example 3 The same operation as in Example 3 was performed except that the liquid petroleum gas fuel 5 shown in Table 2 was supplied to the desulfurizer. As a result, after 132 hours, the total sulfur concentration at the outlet of the desulfurizer reached 0.05 mass ppm.
  • Example 3 The same operation as in Example 3 was performed except that the liquid petroleum gas fuel 6 shown in Table 2 was supplied to the desulfurizer. As a result, after 128 hours, the total sulfur concentration at the outlet of the desulfurizer reached 0.05 mass ppm.
  • Example 3 The same as in Example 3 except that the liquid petroleum gas fuel 7 listed in Table 3 was supplied to the desulfurizer. gave. As a result, after 120 hours, the total sulfur concentration at the outlet of the desulfurizer reached 0.05 mass ppm.
  • Example 3 The same operation as in Example 3 was performed except that the liquid petroleum gas fuel 8 shown in Table 3 was supplied to the desulfurizer. As a result, after 86 hours, the total sulfur concentration at the outlet of the desulfurizer reached 0.05 mass ppm.
  • Example 3 The same operation as in Example 3 was performed except that the liquid petroleum gas fuel 9 shown in Table 3 was supplied to the desulfurizer. As a result, after 142 hours, the total sulfur concentration at the outlet of the desulfurizer reached 0.05 mass ppm.
  • composition analysis method of IS K 2240 5.9.
  • numerical values stipulated in 5.9.8 of the same method were calculated up to 3 decimal places for Olefin and Giolefin, and summarized to 2 decimal places.
  • DMDS stands for dimethyl disulfide.
  • composition analysis method of IS K 2240 5.9.
  • composition analysis method of IS K 2240 5.9.
  • DMDS dimethyl disulfide
  • the desulfurization agent in the desulfurizer functions efficiently even with the use of the minimum desulfurization agent, the desulfurization effect is improved, and the desulfurizer power is disposed in the reformer for hydrogen production arranged downstream.
  • Liquefied petroleum gas fuel for LP gas fuel cells which can prevent damage to the reforming catalyst and enable stable reformer operation and stable power generation, desulfurization method thereof, and desulfurization by the desulfurization method
  • a fuel cell system using a hydrogen-containing gas obtained by reforming a treated liquefied petroleum gas fuel can be provided.

Abstract

 自然気化供給方式で燃料電池システムに供給されるLPガス型燃料電池用石油ガス燃料であって、炭素数2の炭化水素化合物の含量が3容量%以下、炭素数4の炭化水素化合物の含量が3容量%以下で、かつ、全硫黄濃度が10質量ppm以下、硫化カルボニルの硫黄濃度が2質量ppm以下、メチルメルカプタンの硫黄濃度が3質量ppm以下、ジメチルジスルフィド以上の沸点を有する硫黄化合物の硫黄濃度が2質量ppm以下で、メタノール濃度が50質量ppm以下、水分濃度が50質量ppm以下で、残分が炭素数3の炭化水素化合物からなり、最小限の脱硫剤の使用でも脱硫剤が効率よく機能して、脱硫効果が向上し、脱硫器から下流に配置されている水素製造用の改質器中の改質触媒の損傷を防止でき、安定した改質器の運転と、安定な電力発生を可能とするLPガス型燃料電池用石油ガス燃料、その脱硫方法及び該脱硫方法を用いて脱硫処理された液化石油ガス燃料を改質処理して得られた水素含有ガスを用いる燃料電池システムを提供することである。

Description

明 細 書
LPガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システ ム
技術分野
[0001] 本発明は, LPガス型燃料電池システムに好適な、自然気化供給方式で供給される 液化石油ガス燃料、それの脱硫方法及び脱硫処理された液化石油ガス燃料を用い て改質処理して得られる水素含有ガスを用いた燃料電池システムに関する。
背景技術
[0002] 近年、将来の地球環境に対する危機感の高まりから、地球にやさ ヽエネルギー 供給システムの開発が求められ、エネルギー効率が高いこと及び排出ガスがクリーン である点から、燃料電池、水素エンジン等の水素を燃料とするシステムが脚光を浴び ている。なかでも、燃料電池への水素の供給方法としては、圧縮あるいは液ィ匕といつ た形で直接水素を供給する方法の他、メタノール等の含酸素燃料、及びナフサ等の 炭化水素系燃料の改質による供給方法が知られている (例えば、非特許文献 1参照 。;)。このうち、直接水素を供給する方法は、そのまま燃料として利用できる利点はあ るが、常温で気体のため貯蔵性および車両等に用いた場合の搭載性に問題がある。 一方、液ィ匕石油ガス等の炭化水素系燃料の改質による水素の製造は、既存の燃料 供給インフラが使用できること、トータルでのエネルギー効率が高いこと等により注目 を集めている。
[0003] 特許文献 1には、燃料電池システム用燃料として、飽和分が 60モル%以上、ォレフ イン分力 0モル%以下、ブタジエン分が 0. 5モル%以下、炭素数 4以上の飽和分中 のイソパラフィンが 0. 1モル%以上であり、常温で気体である炭化水素化合物からな る燃料電池システム用燃料が開示されて 、る。
また、家庭用燃料として使用される液ィ匕石油ガスの性状は、通常,炭素数 3の炭化 水素化合物の含量が 80容量%以上,炭素数 2の炭化水素化合物の含量が 5容量% 以下,炭素数 4の炭化水素化合物の含量が 20容量%以下である。また、液化石油 ガス燃料には、各種の硫黄化合物が通常、数質量 ppm〜数十質量 ppm程度含まれ ている。
これらの液化石油ガスのガス機器への供給方法としては, 自然気化供給方式,熱 源を用いた蒸発供給方式がある。蒸発供給方式では,使用される液化石油ガス量を 順次蒸発し,供給ガスを発生させるため,ボンべ内の炭化水素化合物組成と供給ガ スとの糸且成はほぼ同一である。
一方, 自然気化供給方式では,ボンべ中の液ィ匕石油ガスの消費量の増加とともに 、供給されるガス中の硫黄濃度が増加するといつた特性があることから、脱硫を完全 に行なうことは難しかった。また、ボンべ内に充填された沸点の低い炭化水素化合物 の方が,蒸発しやすいため,ボンべ内の液ィ匕石油ガスの使用とともに,燃料電池シス テムに供給される炭化水素化合物は徐々に重質ィ匕していき、その結果、かかる燃料 ガスを用いると水素の発生量が減少し、必要な電力を得るために燃料電池へのガス の供給量を増カロさせると 、つた操作が必要となって 、た。
し力しながら、液ィ匕石油ガスの組成変化に追従して、その供給量を正確に測定する 手段はなぐ所望の電力量を得るための燃料供給量は概算し、この概算値に従った 供給を行い,さらに,得られた電力量を供給量にフィードバックして,徐々に供給量を 調整して!/、くと!/、う方法をとる必要があった。
また、脱硫器から下流へ微量の硫黄化合物が漏れ出すと、下流側にある改質器中 の改質触媒を損傷し、燃料電池に連続的に供給される所定の水素量が得られなくな る。そのため、改質触媒が損傷した場合は、改質器を取り外して交換する作業を行な わねばならず、高価な改質器の交換は、工業的にも極めて不利である。従って、微 量といえども、脱硫器力も硫黄ィ匕合物が漏れ出さないようにすることが重要である。ま た、燃料電池に使用される水素の製造においては、脱硫器は、燃料電池システム内 に設置されるが、改質器の排熱を利用して加熱したり、電気ヒーターを用いるなど特 別な方法で加熱することは、燃料電池システムの効率低下に繋がるため、概ね、 80 °C以下の温度で効率よく機能する脱硫剤が望まれて!/ヽる。
特許文献 2には、都市ガス中の水分濃度が比較的高濃度であっても効率よく硫黄 化合物を除去することのできるゼォライト系脱硫剤が開示されている。しかしながら、 該ゼオライト系脱硫剤では液ィ匕石油ガス中の硫ィ匕カルボニルを十分に除去すること ができない。また、特許文献 3には、該硫ィ匕カルボニルを効率よく除去することのでき る脱硫剤として、金属酸化物系の脱硫剤が開示されている。特許文献 4には、ガス状 炭化水素化合物中の硫黄ィヒ合物の除去方法として、ゼォライトを含有する脱硫剤層 と、金属元素、金属酸化物及び金属成分担持酸化物よりなる群から選ばれる少なくと も一種を含有する脱硫剤層とを組み合わせた脱硫器を用いて硫黄化合物を除去す る方法が開示されている。しカゝしながら、前記特許文献 3や特許文献 4には、液ィ匕石 油ガス燃料中の全硫黄濃度、特定の硫黄化合物の硫黄濃度、メタノール濃度及び 水分濃度が特定の値以下である特定の炭化水素化合物組成を有する液化石油ガス 燃料が脱硫性能に及ぼす影響にっ 、てはなんら記載されてな 、。
[0005] 非特許文献 1 :池松正榭, 「エンジンテクノロジー」, (株)山海堂, 2001 年 1月,第 3 卷,第 1号, p. 35
特許文献 1:国際公開第 02Z000813号パンフレット
特許文献 2:特開 2001— 286753公報
特許文献 3 :特開 2004— 130216公報
特許文献 4:国際公開第 04Z058927号パンフレット
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、このような状況に鑑みてなされたもので、 LPガス型燃料電池システム用 燃料として、自然気化供給方式で供給しても、供給ガスの組成変化の影響を受けに くぐ最小限の脱硫剤の使用でも脱硫剤が効率よく機能して、脱硫効果が向上し、脱 硫器から下流に配置されている水素製造用の改質器中の改質触媒の損傷を防止で き、安定した改質器の運転と、安定な電力発生を可能とした LPガス型燃料電池用液 化石油ガス燃料、それの脱硫方法及び該脱硫方法により脱硫処理された液化石油 ガス燃料を改質処理して得られた水素含有ガスを用 Vヽる燃料電池システムを提供す ることを目的とする。
課題を解決するための手段
[0007] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、液化石油ガス 燃料中の全硫黄濃度、特定の硫黄化合物の硫黄濃度、メタノール濃度及び水分濃 度が特定の値以下である特定の炭化水素化合物組成を有する液ィヒ石油ガス燃料が 、上記の課題を解決できることを見出し、この知見に基づいて本発明を完成した。 すなわち、本発明は、
(1)自然気化供給方式で燃料電池システムに供給される液化石油ガスであって、炭 素数 2の炭化水素化合物の含量が 3容量%以下、炭素数 4の炭化水素化合物の含 量が 3容量%以下で、かつ、全硫黄濃度が 10質量 ppm以下、硫化カルボ二ルの硫 黄濃度が 2質量 ppm以下、メチルメルカブタンの硫黄濃度が 3質量 ppm以下、ジメチ ルジスルフイド以上の沸点を有する硫黄ィ匕合物の硫黄濃度が 2質量 ppm以下で、メ タノール濃度が 50質量 ppm以下、水分濃度が 50質量 ppm以下で、残分が炭素数 3 の炭化水素化合物カゝらなる LPガス型燃料電池用液ィ匕石油ガス燃料、
(2)炭素数 2の炭化水素化合物の含量が 1容量%以下、炭素数 4の炭化水素化合物 の含量が 2容量%以下で、残分が炭素数 3の炭化水素化合物である上記(1)に記載 の LPガス型燃料電池用液化石油ガス燃料、
(3)炭素数 3のォレフインの含量が 0. 1容量%以下、炭素数 4のォレフイン及び Z又 はジォレフインの含量が 0. 1容量%以下である上記(1)又は(2)に記載の LPガス型 燃料電池用液化石油ガス燃料、
(4)炭素数 4のジォレフインの含量が 0. 03容量0 /0以下である上記(1)〜(3)の 、ず れか 1項に記載の LPガス型燃料電池用液化石油ガス燃料、
(5)上記(1)〜 (4)の ヽずれか 1項に記載の LPガス型燃料電池用液化石油ガス燃 料を自然気化させた後、脱硫剤を用いて脱硫処理することを特徴とする脱硫方法、
(6)脱硫剤が、ゼォライトを含む脱硫剤及び Z又は金属元素、金属酸化物及び金属 成分担持酸ィ匕物の中から選ばれる少なくとも一種力 なる脱硫剤である上記(5)に 記載の脱硫方法、
(7)ゼォライトを含む脱硫剤が、ゼォライトと共に、 Ag成分、 Cu成分、 Ni成分、 Zn成 分、 Mn成分、 Fe成分、 Co成分、アルカリ金属成分、アルカリ土類金属成分及び希 土類金属成分よりなる群力 選ばれる少なくとも一種の金属成分を含むものである上 記(6)に記載の脱硫方法、
(8)ゼォライトが、ベータ(BEA)及び Z又はフォージャサイト (FAU)構造を有するも のである上記 (6)又は(7)に記載の脱硫方法、
(9)金属元素、金属酸ィ匕物及び金属成分担持酸ィ匕物の中力 選ばれる少なくとも一 種からなる脱硫剤が、 Ag成分、 Cu成分、 Ni成分、 Zn成分、 Mn成分、 Fe成分、 Co 成分、 Si成分、 A1成分、アルカリ金属成分、アルカリ土類金属成分及び希土類金属 成分よりなる群力 選ばれる少なくとも一種の金属成分を含むものである上記(6)に 記載の脱硫方法、
[0009] (10)上記(5)〜(9)の ヽずれか 1項に記載の脱硫方法で脱硫処理された液化石油 ガス燃料を改質処理し、これにより得られた水素含有ガスを用いることを特徴とする L Pガス型燃料電池システム、
(11)改質処理が、部分酸化改質処理、自己熱改質処理、水蒸気改質処理又は二 酸化炭素改質処理である上記(10)に記載の LPガス型燃料電池システム、 である。
発明の効果
[0010] 本発明によれば、最小限の脱硫剤の使用でも脱硫器中の脱硫剤が効率よく機能し 、脱硫効果が向上して脱硫器力 下流に配置されている水素製造用の改質器中の 改質触媒の損傷を防止でき、安定した改質器の運転と、安定な電力発生とを可能に する LPガス型燃料電池用液化石油ガス燃料、それの脱硫方法及び該脱硫方法によ り脱硫処理された液化石油ガス燃料を改質処理して得られた水素含有ガスを用いる 燃料電池システムを提供することができる。
図面の簡単な説明
[0011] [図 1]本発明の燃料電池システムの概略の流れ図の一例である。
符号の説明
[0012] 1:燃料電池システム
11 :水供給管
12 :燃料導入管
20 :水素製造システム
21 :液化石油ガスボンベ
22 :燃料供給ライン 23 :脱硫器
24 :水ポンプ
31 :改質器
31 A:改質器のパーナ
32 : CO変成器
33 : CO選択酸化器
34 :燃料電池
34A:燃料電池負極
34B:燃料電池正極
34C:燃料電池高分子電解質
35 :空気ブロワ一
36 :気水分離器
37 :排熱回収装置
37A:熱交換器
37B:熱交換器
37C :冷却器
37D:冷媒循環ポンプ
38 :流量調節バルブ
発明を実施するための最良の形態
以下に、本発明を更に詳細に説明する。
本発明において、燃料として用いる液ィ匕石油ガスは、自然気化供給方式で燃料電 池システムに供給される液ィ匕石油ガスであって、炭素数 2の炭化水素化合物の含量 力^容量%以下、炭素数 4の炭化水素化合物の含量が 3容量%以下で、かつ、全硫 黄濃度が 10質量 ppm以下、硫化カルボ-ルの硫黄濃度が 2質量 ppm以下、メチル メルカブタンの硫黄濃度が 3質量 ppm以下、ジメチルジスルフイド以上の沸点を有す る硫黄ィ匕合物の硫黄濃度が 2質量 ppm以下で、メタノール濃度が 50質量 ppm以下、 水分濃度が 50質量 ppm以下で、残分が炭素数 3の炭化水素化合物からなる LPガス 型燃料電池用液化石油ガス燃料である。 [0014] 炭素数 3の炭化水素化合物は、炭素数 3のパラフィン及び Z又はォレフィンであり、 炭素数 2の炭化水素化合物は、同じく炭素数 2のパラフィン及び Z又はォレフィンで ある。炭素数 4の炭化水素化合物は、炭素数 4のパラフィン、ォレフィン及びジォレフ インの中力も選ばれる少なくとも一種の炭化水素化合物である。
炭素数 3の炭化水素化合物の含量は、通常 96容量%以上が好ましぐ 96容量% 未満であると、力かる液ィ匕石油ガスを気化供給方式で燃料電池用水素原料として用 いる場合、供給されるガス中の炭化水素化合物の組成変動が大きくなり、ガス流量の 調整が困難になることがある。また、改質時に水蒸気を添加している場合には、スチ ーム Z炭素比率が変動し、改質器の運転が不安定となることがある。
炭素数 4の炭化水素化合物の含量が 3容量%を超える場合,かかる液化石油ガス 燃料を気化供給方式で燃料電池用水素原料として用いると、ボンベの使用末期に, 炭素数 4の炭化水素化合物の組成が増大し,改質器で所定電力を得るための十分 な水素が発生しなくなることがある。
上記の炭素数毎の組成は、 JIS K 2240「液ィ匕石油ガス 5. 9組成分析法」に記載 の分析法で測定される。
[0015] 本発明の液ィ匕石油ガス燃料中の全硫黄濃度は、 10質量 ppm以下、好ましくは 7質 量 ppm以下、より好ましくは 5質量 ppm以下であり、硫ィ匕カルボニルの硫黄濃度は、 2質量 ppm以下,好ましくは 1質量 ppm以下、メチルメルカブタンの硫黄濃度は、 3質 量 ppm以下、好ましくは 2質量 ppm以下、ジメチルジスルフイド以上の沸点を有する 硫黄化合物の硫黄濃度は、 2質量 ppm以下、好ましくは 1質量 ppm以下である。全 硫黄濃度が 10質量 ppmを超えると,また、硫化カルボニル、メチルメルカブタン及び ジメチルジスルフイド以上の沸点を有する硫黄ィ匕合物の硫黄濃度が上記の上限を超 えると、脱硫剤に与える影響が大きぐ結果として、使用する脱硫剤の量が増加し、燃 料電池システム自体の大きさに制約を受ける他、経済的に不利になる。
ここで、液ィ匕石油ガス燃料中に通常含まれるジメチルジスルフイド (沸点 110°C)以 上の沸点を有する硫黄ィ匕合物としては、例えば、メチルェチルジスルフイド、ジェチ ルジスルフイド、メチルプロピルジスルフイド、チォフェン等を挙げることができる。 なお、硫黄ィ匕合物の濃度は、 SCD検出器 (化学発光硫黄検出器、 Sullur Chemilu minescence Detector)を備えたガスクロマトグラフィー法により測定する。測定は、例 えば、以下の条件で行なうことができる。分離カラム: DB— 1、長さ:60m、膜圧:5 m、 ID : 0. 32mm,スプリット比: 1 : 5、キャリアーガス:ヘリウム、流量: 23mlZ分、温 度: 40°Cで 4分間保持し、 10°CZ分で 200°Cまで昇温し、 200°Cで 15分間保持する
[0016] 本発明の液ィ匕石油ガス燃料中のメタノール濃度は、 50質量 ppm以下、好ましくは 3 0質量 ppmである。 50質量 ppmを超えると脱硫剤に与える影響が大きぐ結果として 、使用する脱硫剤の量が増加し、燃料電池システム自体の大きさに制約を受ける他、 経済的に不利になる。
該メタノール濃度の測定は、日本 LPガス協会規格 (JLPGA— S— 06T)により測定 する。
[0017] 本発明の液ィ匕石油ガス燃料中の水分濃度は、 50質量 ppm以下、好ましくは ΙΟρρ m以上、 30質量 ppm以下である。 50質量 ppmを超えると脱硫剤に与える影響が大 きぐ結果として、使用する脱硫剤の量が増加し、燃料電池システム自体の大きさに 制約を受ける他、経済的に不利になる。
該水分濃度の測定は、日本 LPガス協会規格 CFLPGA— S— 03)により測定する。
[0018] 本発明の液化石油ガス燃料を用いる燃料電池の形式には、特に制限はなぐ例え ば、固体酸化物形燃料電池 (SOFC)、固体高分子形燃料電池 (PEFC)、リン酸形 燃料電池 (PAFC)、溶融炭酸塩形燃料電池 (MCFC)など 1/ヽずれの燃料電池にも 適用可能である。
[0019] 液ィ匕石油ガス燃料の製造方法については、特に制限はない。例えば,油田'天然 ガス田から副生するガス成分を精製し,圧縮して製造する方法及び原油を精製する 工程で製造する方法がある。原油を精製する工程では,原油常圧蒸留装置で得られ る液化石油ガス成分やナフサ接触改質装置や接触分解装置などで得られる液化石 油ガス成分を蒸留分離後,硫黄成分を除去し,さらに蒸留分離することで所望の純 度の一次基地での液ィ匕石油ガス燃料を得ることができる。硫黄成分の除去は、水素 化脱硫法,ソーダ洗浄法,ァミン洗浄法,マーロックス法の中から適宜選択される方 法で行われる。 主にプロパンとブタン成分を含む液ィ匕石油ガス燃料は、脱プロパン塔で蒸留分離 される力 プロパン純度を向上させるためには、蒸留塔の塔頂還流比を増カロさせたり 、塔頂温度を低くするなどの条件で蒸留分離することにより達成される。
全硫黄成分については、水素化脱硫法で硫黄成分除去を行なう場合は、反応温 度を高くすることにより全硫黄成分を低下させることができる。
メチルメルカプタンについては、ソーダ洗浄法で硫黄分の除去を行なう場合は、循 環するソーダ量と液化石油ガスの処理量を最適な比率に調整する。この比率が高 、 と液ィヒ石油ガス燃料中に硫黄ィヒ合物が逆抽出され、所望の硫黄濃度が得られなくな る。
ジメチルジスルフイド以上の沸点を有する硫黄ィ匕合物にっ 、ては、マーロックス装 置のセトラーでジメチルジスルフイドと液ィ匕石油ガス燃料の分離を向上させることによ り所望の硫黄濃度に調整することができる。
硫ィ匕カルボニルにつ ヽては、流動接触分解装置カゝら製造される液ィ匕石油ガス中に 多く含まれるため、最終製品製造時に極力この液ィ匕石油ガス燃料を使用しないこと が肝要である。また、必要に応じて金属系脱硫剤を充填した脱硫塔で、製造段階で 該硫ィ匕カルボニルを除去する。
水分濃度については、脱プロパン塔の還流比を増減させたり、脱水塔を通すことで その濃度を調整する。
通常、燃料電池の燃料として用いる液ィ匕石油ガス中には、上記の原油精製工程で 除去されなかった微量の硫黄成分及び着臭剤として添加された硫黄成分、例えば、 メチルメルカブタン等のメルカプタン類、硫化カルボ-ル、硫化水素、スルフイド類、 ジスルフイド、チォフェン、ヒドロチォフェン類等の硫黄ィ匕合物が含まれている。液ィ匕 石油ガス燃料を改質して燃料電池用水素を製造する場合、前述のように触媒の被毒 を防ぐためには、これらの硫黄ィ匕合物を極力低減させることが要求される。従って、 従来公知の脱硫剤を用いて本発明の液ィ匕石油ガス燃料の脱硫処理が行なわれる。 また、使用される脱硫剤の性能を最大限に発揮させるには、できるだけ硫黄分含有 量が少ない液ィ匕石油ガス燃料を用いることが好ましぐそのためには他の硫黄ィ匕合 物に比べて脱硫されにくい硫ィ匕カルボ-ルの含有量ができるだけ少な 、ものを用い [0021] 本発明の脱硫方法にお!ヽては、前記の液ィ匕石油ガス燃料が脱硫剤を用いて脱硫 処理される。
この脱硫剤としては、ゼォライトを含む脱硫剤及び Z又は金属元素、金属酸化物及 び金属成分担持酸化物の中から選ばれる少なくとも一種からなる脱硫剤が好ま ヽ 該ゼオライトを含む脱硫剤(以下、脱硫剤 Aということがある)としては、特に制限は なぐ従来公知のものを使用することができる。該脱硫剤 Aとしては、例えば、 |8型、 X 型、 Y型ゼオライトなどの一種又は二種以上を組み合わせたゼォライトを担体として 用いて、 Ag成分、 Cu成分、 Ni成分、 Zn成分、 Mn成分、 Fe成分、 Co成分、アルカリ 金属成分、アルカリ土類金属成分及び希土類金属成分の中から選ばれる少なくとも 一種の金属成分を担持したものを挙げることができる。前記ゼォライトとしては、特に 、ベータ(BEA)及び Z又はフォージャサイト構造 (FAU)を有するものが好まし!/、。 また、アルカリ金属成分としては、カリウムやナトリウムなどが、アルカリ土類金属成分 としては、カルシウムやマグネシウムなど力 希土類金属成分としては、ランタンゃセリ ゥムなどが好ましく挙げられる。これら金属成分の中で、特に Ag成分及び Z又は Cu 成分が好ましい。
[0022] 脱硫剤 Aは、前記ゼォライトに前記の金属成分を担持させることにより調製すること ができる。具体的には、目的の金属成分の水溶性化合物を含む水溶液とゼォライトと を、攪拌法、含浸法、流通法などにより接触させ、次いで、適宜、水などで洗浄後、乾 燥、焼成処理することにより得られる。
このようにして得られた脱硫剤 A中の金属成分の含有量は、金属元素として、通常 1〜40質量0 /0、好ましくは 5〜30質量0 /0の範囲である。
[0023] 金属元素、金属酸化物及び金属成分担持酸化物の中から選ばれる少なくとも一種 カゝらなる脱硫剤(以下、脱硫剤 Bということがある)は、 Ag成分、 Cu成分、 Ni成分、 Zn 成分、 Mn成分、 Fe成分、 Co成分、 Si成分、 A1成分、アルカリ金属成分、アルカリ土 類金属成分及び希土類金属成分の中から選ばれる少なくとも一種の金属成分を担 持したものを好ましく挙げることができる。ここで、アルカリ金属成分としては、カリウム やナトリウムなど力 アルカリ土類金属成分としては、カルシウムやマグネシウムなど
1S 希土類金属成分としては、ランタンやセリウムなどが好ましく挙げられる。
該脱硫剤 Bは、多孔質無機酸化物担体に前記各金属成分を担持させたものが好ま しぐ特に Ag成分、 Cu成分、 Ni成分及びセリウム成分のうち少なくとも一種を担持さ せたものが好適である。各金属成分は、共沈法や含浸法等の通常の担持方法で担 持することができる。
[0024] 前記多孔質無機酸化物担体としては、例えば、シリカ、アルミナ、シリカ一アルミナ、 チタ二了、ジルコユア、マグネシア、セリア、珪藻土、白土、粘土又は酸ィ匕亜鉛力も選 ばれる少なくとも一種が挙げられ、このうち、シリカ担体、アルミナ担体、シリカ一アル ミナ担体が好ましい。
以下に、該脱硫剤 Bとして、好適なシリカ一アルミナを担体とする Ni—Cu系脱硫剤 の調製方法について説明する。
該脱硫剤 Bにおいては、脱硫性能及び脱硫剤の機械的強度などの点から、担持し た総金属含有量 (酸化物換算)が通常 5〜90質量%で、かつ、担体が 95〜10質量 %の範囲が好ましぐ上記総金属含有量 (酸化物換算)は、共沈法で担持される場合 は 40〜90質量%、更に 70〜90質量%であり、含浸法で担持される場合は 5〜40 質量%であることが好まし!/、。
はじめに、ニッケル源、銅源及びアルミニウム源を含む酸性の水溶液又は水分散 液と、ケィ素源及び無機塩基を含む塩基性水溶液を調製する。前者の酸性の水溶 液又は水分散液に用いられるニッケル源としては、例えば塩ィ匕ニッケル、硝酸-ッケ ル、硫酸ニッケル、酢酸ニッケル、炭酸ニッケル及びこれらの水和物など力 銅源とし ては、例えば塩化銅、硝酸銅、硫酸銅、酢酸銅及びこれらの水和物などが挙げられ る。これらのニッケル源や銅源は、それぞれ単独で用いても、二種以上を組み合わせ て用いてもよい。
[0025] また、アルミニウム源としては、擬ベーマイト、ベーマイトアルミナ、バイャライト、ジプ サイトなどのアルミナ水和物や、 γ —アルミナなどが挙げられる。これらの中で擬ベー マイト、ベーマイトアルミナ及び γ —アルミナが好適である。これらは粉体状又はゾル の形態で用いることができる。また、このアルミニウム源は一種用いてもよぐ二種以 上を組み合わせ用いてもょ 、。
[0026] 一方、塩基性水溶液に用いられるケィ素源としては、アルカリ水溶液に可溶であつ て、焼成によりシリカになるものであれば、特に制限されず、例えばオルトケィ酸、メタ ケィ酸、及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。これらは 一種用いてもよぐ二種以上を組み合わせて用いてもよいが、特にケィ酸ナトリウム水 和物の一種である水ガラスが好適である。
また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが好ましぐ例えば 炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸ィ匕カリウムなどが挙げられる。こ れらは単独で用いてもよぐ二種以上を組み合わせて用いてよいが、特に炭酸ナトリ ゥム単独又は炭酸ナトリウムと水酸ィ匕ナトリウムとの組み合わせが好適である。この無 機塩基の使用量は、次の工程において、酸性の水溶液又は水分散液と、この塩基 性水溶液を混合した場合、混合液が実質上中性カゝら塩基になるように選ぶのが有利 である。
また、この無機塩基は、全量を該塩基性水溶液の調製に用いてもよいし、又はその 一部を、次の工程における上記酸性の水溶液又は水分散液と塩基性水溶液との混 合液に加えてもよい。
[0027] このようにして調製した酸性水溶液又は水分散液と塩基性水溶液を、それぞれ 50 〜90°C程度に加温したのち、両者を混合する。混合後、必要に応じて、 50〜90°C に加温された無機塩基を含む水溶液を更に加えたのち、混合液を 50〜90°C程度の 温度において 0. 5〜3時間程度攪拌し、反応を完結させる。
次に、生成した固形物を充分に洗浄したのち固液分離するか、又は生成した固形 物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により 80〜 150°C程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましく は 200〜400°Cの範囲の温度において焼成することにより、担体上にニッケル及び 銅が担持された脱硫剤 Bが得られる。焼成温度が上記範囲を逸脱すると所望の性能 をもつ Ni— Cu系脱硫剤が得られにくい。 [0028] 次に、該脱硫剤 Bとして好適なアルミナを担体とする銀担持脱硫剤の調製方法に ついて説明する。
脱硫性能の観点力も銀の担持量は 5〜30質量%の範囲が好ま 、。銀源を含む 水溶液を調製する。銀源としては、例えば硝酸銀、酢酸銀、硫酸銀が挙げられる。こ れらの銀源はそれぞれ単独で用いてもよいし、組み合わせて用いてもよい。アルミナ としては γ型、 φ型、%型、 δ型、 7?型のアルミナが挙げられる力 γ型、%型、 7?型 が好ましく用いられる。上記銀源を含む水溶液を、アルミナに含浸担持し、 80-150 °C程度の温度にお!、て乾燥し、次 、で 200〜400°C程度の温度にお!、て焼成する ことによりアルミナ担体上に銀が担持された脱硫剤 Bが得られる。
[0029] また、用いる脱硫剤は一種であっても良いし、硫黄ィ匕合物毎の吸着特性の異なる 脱硫剤を組み合わせて使用してもよい。性能を最大限に発揮させるには、できるだけ 硫黄分含有量が少な 、液ィ匕石油ガス等を用いることが望まし 、。
また、本発明における脱硫剤を用いる脱硫処理の条件としては、通常、温度は、 - 20〜100°Cの範囲で選ばれ、 GHSV (ガス空間速度)は、
Figure imgf000015_0001
好まし <は 100〜2,
Figure imgf000015_0002
より好まし <は 100〜1, OOOh— 1の範囲で選ばれる。
[0030] 次に、本発明の燃料電池システムに用いる水素の製造方法においては、脱硫処理 された液化石油ガス燃料を、部分酸化改質触媒、自己熱改質触媒、水蒸気改質触 媒又は二酸化炭素改質触媒と接触させることにより、それぞれ部分酸化改質、自己 熱改質、水蒸気改質又は二酸ィ匕炭素改質して、水素を製造する。
この改質処理にお!、ては、脱硫処理された液化石油ガス燃料中の硫黄化合物の 濃度は、各改質触媒の寿命の点から、 0. 05質量 ppm以下が好ましぐ特に 0. 02質 量 ppm以下が好ましい。
前記部分酸ィ匕改質は、液ィ匕石油ガス燃料の炭化水素化合物の部分酸ィ匕反応によ り、水素を製造する方法であって、部分酸化改質触媒の存在下、通常、反応圧力は 、常圧〜 5MPa'G、反応温度は、 400〜1, 100。C、 GHSV1, 000〜100,000h— 酸素(O )Z炭素モル比 0. 2〜0. 8の条件で改質反応が行われる。
2
また、自己熱改質は、部分酸化改質と水蒸気改質とを組み合わせた方法であって 、自己熱改質触媒の存在下、通常、反応圧力常圧〜 5MPa'G、反応温度 400〜1, 100°C、酸素(O )Z炭素モル比 0. 1〜1、スチーム Z炭素モル比 0. 1〜10、 GHS
2
Vl,000〜100,000h_1の条件で改質反応が行われる。
[0031] さらに、水蒸気改質は、炭化水素化合物に水蒸気を接触させて、水素を製造する 方法であって、水蒸気改質触媒の存在下、通常、反応圧力常圧〜 3MPa'G、反応 温度 200〜900。C、スチーム Z炭素モル比 1. 5〜10、 GHSVl,000〜100,000h— 1 の条件で改質反応が行われる。
二酸化炭素改質は、炭化水素化合物と二酸化炭素との反応が起こり、水素を製造 する方法であって、水素製造の反応条件としては、通常、反応温度は 200〜1, 300 。C、好ましくは 400〜1, 200°C、より好ましくは 500〜900°Cである。二酸化炭素 Z 炭素モル比は、通常、 0. 1〜5、好ましくは、 0. 1〜3である。水蒸気を入れる場合に は、スチーム Z炭素モル比は、通常、 0. 1〜10、好ましくは 0. 4〜4である。酸素を 入れる場合には、酸素 Z炭素モル比は、通常、 0. 1〜1、好ましくは 0. 2〜0. 8であ る。反応圧力は、通常、 0〜: L0MPa'G、好ましくは 0〜5MPa'G、より好ましくは 0〜 3MPa'Gである。 GHSVについては、前記水蒸気改質の場合と同様である。
[0032] 前記の部分酸化改質触媒、自己熱改質触媒、水蒸気改質触媒及び二酸化炭素改 質触媒としては、従来公知の各触媒の中から適宣選択して用いることができるが、特 にルテニウム系及びニッケル系触媒が好適である。また、これらの触媒の担体として は、酸化マンガン、酸ィ匕セリウム及びジルコユアの中力 選ばれる少なくとも一種を含 む担体を好ましく挙げることができる。該担体は、これらの金属酸化物のみからなる担 体であってもよぐアルミナなどの他の耐火性多孔質無機酸化物に、上記金属酸ィ匕 物を含有させてなる担体であってもよ 、。
[0033] 以上の改質反応の反応方式としては、連続流通式、回分式のいずれの方式であつ てもよいが、連続流通式が好ましい。
[0034] 反応形式としては、特に制限はなぐ固定床式,移動床式,流動床式いずれも採用 できるが、固定床式が好ましい。反応器の形式としても特に制限はなぐ例えば管型 反応器等を用いることができる。
上記のような条件で改質触媒を用いて、炭化水素化合物の水蒸気改質反応、自己 熱改質反応、部分酸化改質反応、二酸化炭素改質反応を行なわせることにより水素 を得ることができ、燃料電池の水素製造プロセスに好適に使用される。
[0035] 本発明の LPガス型燃料電池用液ィ匕石油ガスを用いた燃料電池システムは、脱硫 剤を備えた脱硫器と、改質触媒, CO変成触媒等を備えた改質器と、該改質器により 製造される水素を燃料とする燃料電池とを有することを特徴とする。この燃料電池シ ステムを図 1により説明する。
液ィ匕石油ガスボンベ 21内の燃料は、気化方式により、燃料供給ライン 22を経て脱 硫器 23に導入される。脱硫器 23には、例えば前記の脱硫剤 A及び Z又は脱硫剤 B などを充填する。脱硫器 23で脱硫された燃料ガスは、水タンク力も水ポンプ 24を経 た水と混合した後、空気ブロア一 35から送り出された空気と共に改質器 31に送り込 まれる。改質器 31には改質触媒が充填されており、改質器 31に送り込まれた燃料混 合物 (炭化水素化合物、水蒸気及び酸素を含む混合気体)から、前述した改質反応 のいずれか〖こよって水素が製造される。なお、符号 38は燃料ガスの流量調節ノ レブ である。
[0036] このようにして製造された水素は、 CO変成器 32、 CO選択酸化器 33を通じて CO 濃度が燃料電池の特性に及ぼさなヽ程度まで低減される。これらの反応器に用いる 触媒例としては、 CO変成器 32には、鉄 クロム系触媒、銅 亜鉛系触媒又は貴金 属系触媒が挙げられ、 CO選択酸化器 33には、ルテニウム系触媒、白金系触媒又は それらの混合触媒が挙げられる。改質反応で製造された水素中の CO濃度が低い場 合、 CO変成器 32と CO選択酸化器 33を取り付けなくてもよ 、。
[0037] 燃料電池 34は、負極 34Aと正極 34Bとの間に高分子電解質 34Cを備えた固体高 分子形燃料電池の例である。負極側には上記の方法で得られた水素リッチガスが、 正極側には空気ブロア一 35から送られる空気力 それぞれ必要であれば適当なカロ 湿処理を行った後 (加湿装置は図示せず)導入される。
この時、負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極 側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極 34A、 34B間に 直流電流が発生する。その場合、負極には、白金黒もしくは活性炭担持の Pt触媒又 は Pt— Ru合金触媒などが使用され、正極には、白金黒もしくは活性炭担持の Pt触 媒などが使用される。 [0038] 負極 34A側に改質器 31のパーナ 31 Aを接続して余った水素を燃料とすることがで きる。また、正極 34B側に気水分離器 36を接続し、正極 34B側に供給された空気中 の酸素と水素との結合により生じた水と排気ガスとを分離し、水を水蒸気の生成に利 用することができる。燃料電池 34では発電に伴って熱が発生するため、排熱回収装 置 37を付設してこの熱を回収して有効利用することができる。排熱回収装置 37は、 燃料電池 34に付設され反応時に生じた熱を奪う熱交換器 37Aと、この熱交換器 37 Aで奪った熱を水と熱交換するための熱交換器 37Bと、冷却器 37Cと、これら熱交換 器 37A、 37B及び冷却器 37Cへ冷媒を循環させるポンプ 37Dとを備え、熱交^^ 3 7Bにおいて得られる温水は他の設備などで有効に利用することができる。
実施例
[0039] 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではな!/、。
[0040] (1)脱硫剤 Aの調製
β型ゼオライト(東ソ一 (株)製「: HSZ— 930ΝΗΑ」)の 500°C焼成物 2000gを、硝 酸銀 (和光純薬工業 (株)製、特級) 350gを水 10リットルに溶解してなる水溶液に投 入し、 4時間攪拌してイオン交換を行った。その後、固形物を水にて洗浄したのち、ろ 取し、送風機にて 120°Cで 12時間乾燥し、 400°Cで 3時間焼成処理することにより、 Ag6質量%を含む脱硫剤 Aを得た。
[0041] (2)脱硫剤 Bの調製
硫酸ニッケル · 6水和物(和光純薬工業 (株)製、特級) 7300g及び硫酸銅 · 5水和 物(和光純薬工業 (株)製、特級) 1513gを、 80°Cに加温した水 80リットルに溶解し、 これに擬ベーマイト (触媒化成工業 (株)製、「C— AP」、 AI Oとして 67質量%) 160
2 3
gを混合したのち、 0. 5モル/リットル濃度の硫酸水溶液 3リットルをカ卩えて pH2に調 整した (調製液 A)。また、 80°Cに加温した水 80リットルに炭酸ナトリウム 6000gを溶 解し、水ガラス(日本ィ匕学工業 (株)製、「J— 1号」、 Si濃度: 29質量%) 1802gを加え た (調製液 B)。上記調製液 A及び調製液 Bを、それぞれ 80°Cに保ちながら混合し、 1 時間攪拌した。その後、沈殿ケーキを、水 600リットルで洗浄したのち、ろ取し、送風 乾燥機にて 120°Cで 12時間乾燥し、さらに 350°Cで 3時間焼成処理することにより、 Ni50質量%及び Cul3質量%を含む脱硫剤 Bを得た。
(3)改質触媒
市販のルテニウム系改質触媒を使用した。
(4)使用液ィ匕石油ガス燃料 1〜9の性状を表 1〜3に示した。
[0042] 実施例 1
後記の表 1に示す性状を有する液化石油ガス燃料 1を自然気化供給方式で、 lkW 級 LPガス型固体高分子形燃料電池 (PEFC)システムに供給した。システム内には 脱硫器、改質器、燃料電池セルスタック、インバーターなどが内蔵されている。脱硫 器は、直径 4cmのステンレス製容器である。この中に脱硫剤 A300ml、脱硫剤 B150 mlが充填されている。改質器の中には巿販改質触媒が 600ml,市販シフト触媒が 1 リットル,巿販選択酸化触媒が 0, 25リットル充填されている。サーマルマスフローコン トローラー((株)大倉理研製)で液ィ匕石油ガス燃料 1の流量を、それぞれ 1. 8リットル
Z分に調整し,液化石油ガス燃料 1を燃料電池システムに供給した。脱硫処理条件 は、常圧、室温である。改質器の運転条件は、改質器出口温度 700°C,圧力: 0. 03 MPa'Gである。また,水の供給量は液ィ匕石油ガス燃料 1の供給開始初期のスチー ム Z炭素モル比が 1Z3となるように調整した。液化石油ガス燃料 1の使用量が 0. 5 質量%及び 98質量%となった時点で,電流値を 33. 3Aに設定し,電圧を測定した ところ、それぞれ 39. 0V及び 38. 6Vであった。
[0043] 実施例 2
表 1に記載の液ィ匕石油ガス燃料 2を使用する以外は実施例 1と同様にして実施した 。液化石油ガス燃料 2の使用量が 0. 5質量%及び 98質量%となった時点で,電流 値を 33. 3Aに設定し,電圧を測定したところ、それぞれ 39. 0V及び 38. 3Vであつ た。
[0044] 比較例 1
表 2に記載の液ィ匕石油ガス燃料 3を使用する以外は実施例 1と同様にして実施した 。液化石油ガス燃料 3の使用量が 0. 5質量%及び 98質量%となった時点で,電流 値を 33. 3Aに設定し,電圧を測定したところ、それぞれ 38. 7V及び 37. OVであつ [0045] 実施例 3
内径 10mmのステンレス製の脱硫器の上流側に脱硫剤 Aを 2ml、下流側に脱硫剤 Bを 2ml充填した。脱硫器の温度を 20°Cとし、 20リットル Z時で、表 1に記載の液ィ匕 石油ガス燃料 1を脱硫器に供給した。脱硫器の出口に自動サンプリングポートを設け 、 SCD検出器(ィ匕学発光硫黄検出器、 Sulfor Chemiluminescence Detector)を備えた ガスクロマトグラフィー法により全硫黄濃度の測定を行なった。測定は以下の条件で 行なった。分離カラム: DB— 1、長さ:60m、膜圧:5 /ζ πι、 ID: 0. 32mm、スプリット 比: 1 : 5、キャリアーガス:ヘリウム、流量: 23mlZ分、温度: 40°Cで 4分間保持し、 10 °CZ分で 200°Cまで昇温し、 200°Cで 15分間保持した。その結果、 160時間経過し た後、脱硫器出口の全硫黄濃度が 0. 05質量 ppmに到達した。
[0046] 実施例 4
表 1に記載の液ィ匕石油ガス燃料 2を脱硫器に供給する以外は実施例 3と同様に実 施した。その結果、 172時間経過した後、脱硫器出口の全硫黄濃度が 0. 05質量 pp mに到達した。
[0047] 比較例 2
表 2に記載の液ィ匕石油ガス燃料 4を脱硫器に供給する以外は実施例 3と同様に実 施した。その結果、 136時間経過した後、脱硫器出口の全硫黄濃度が 0. 05質量 pp mに到達した。
[0048] 比較例 3
表 2に記載の液ィ匕石油ガス燃料 5を脱硫器に供給する以外は実施例 3と同様に実 施した。その結果、 132時間経過した後、脱硫器出口の全硫黄濃度が 0. 05質量 pp mに到達した。
[0049] 比較例 4
表 2に記載の液ィ匕石油ガス燃料 6を脱硫器に供給する以外は実施例 3と同様に実 施した。その結果、 128時間経過した後、脱硫器出口の全硫黄濃度が 0. 05質量 pp mに到達した。
[0050] 比較例 5
表 3に記載の液ィ匕石油ガス燃料 7を脱硫器に供給する以外は実施例 3と同様に実 施した。その結果、 120時間経過した後、脱硫器出口の全硫黄濃度が 0. 05質量 pp mに到達した。
[0051] 比較例 6
表 3に記載の液ィ匕石油ガス燃料 8を脱硫器に供給する以外は実施例 3と同様に実 施した。その結果、 86時間経過した後、脱硫器出口の全硫黄濃度が 0. 05質量 ppm に到達した。
[0052] 比較例 7
表 3に記載の液ィ匕石油ガス燃料 9を脱硫器に供給する以外は実施例 3と同様に実 施した。その結果、 142時間経過した後、脱硫器出口の全硫黄濃度が 0. 05質量 pp mに到達した。
[0053] [表 1]
Figure imgf000021_0001
注 1 :組成〖お IS K 2240 5. 9の「組成分析法」に従い分析した。 但し、同法の 5. 9. 8に規定される数値の算出は、ォレフィン、 ジォレフインにっ 、ては小数点 3桁まで算出し、小数点 2桁に纏めた。 注 2: DMDSはジメチルジスルフイドを表す。
* 1 : DMDSの沸点未満のメルカプタン類の硫黄濃度の総和
* 2: DMDSの沸点未満のスルフイド類の硫黄濃度の総和
* 3: DMDS以上の硫黄化合物の硫黄濃度の総和
[表 2]
Figure imgf000022_0001
注 1 :組成〖お IS K 2240 5. 9の「組成分析法」に従い分析した。
但し、同法の 5. 9. 8に規定される数値の算出は、ォレフィン、 ジォレフインにっ 、ては小数点 3桁まで算出し、小数点 2桁に纏めた。 注 2: DMDSはジメチルジスルフイドを表す。
* 1: DMDSの沸点未満のメルカプタン類の硫黄濃度の総和
* 2: DMDSの沸点未満のスルフイド類の硫黄濃度の総和 * 3: DMDS以上の硫黄化合物の硫黄濃度の総和
[表 3]
Figure imgf000023_0001
注 1 :組成〖お IS K 2240 5. 9の「組成分析法」に従い分析した。
但し、同法の 5. 9. 8に規定される数値の算出は、ォレフィン、ジォレフインに つ!、ては小数点 3桁まで算出し、小数点 2桁に纏めた。
注 2: DMDSはジメチルジスルフイドを表す。
* 1: DMDSの沸点未満のメルカプタン類の硫黄濃度の総和
* 2: DMDSの沸点未満のスルフイド類の硫黄濃度の総和
* 3: DMDS以上の硫黄化合物の硫黄濃度の総和
産業上の利用可能性
本発明によれば、最小限の脱硫剤の使用でも脱硫器中の脱硫剤が効率よく機能し 、脱硫効果が向上して脱硫器力 下流に配置されている水素製造用の改質器中の 改質触媒の損傷を防止でき、安定した改質器の運転と、安定な電力発生とを可能に する LPガス型燃料電池用液化石油ガス燃料、それの脱硫方法及び該脱硫方法によ り脱硫処理された液化石油ガス燃料を改質処理して得られた水素含有ガスを用いる 燃料電池システムを提供することができる。

Claims

請求の範囲
[1] 自然気化供給方式で燃料電池システムに供給される液化石油ガスであって、炭素 数 2の炭化水素化合物の含量が 3容量%以下、炭素数 4の炭化水素化合物の含量 力^容量%以下で、かつ、全硫黄濃度が 10質量 ppm以下、硫化カルボニルの硫黄 濃度が 2質量 ppm以下、メチルメルカブタンの硫黄濃度が 3質量 ppm以下、ジメチル ジスルフイド以上の沸点を有する硫黄ィ匕合物の硫黄濃度が 2質量 ppm以下で、メタノ ール濃度が 50質量 ppm以下、水分濃度が 50質量 ppm以下で、残分が炭素数 3の 炭化水素化合物からなる LPガス型燃料電池用液ィ匕石油ガス燃料。
[2] 炭素数 2の炭化水素化合物の含量が 1容量%以下、炭素数 4の炭化水素化合物の 含量が 2容量%以下で、残分が炭素数 3の炭化水素化合物である請求項 1に記載の LPガス型燃料電池用液化石油ガス燃料。
[3] 炭素数 3のォレフインの含量が 0. 1容量0 /0以下、炭素数 4のォレフイン及び/又は ジォレフインの含量が 0. 1容量%以下である請求項 1に記載の LPガス型燃料電池 用液化石油ガス燃料。
[4] 炭素数 4のジォレフインの含量が 0. 03容量%以下である請求項 3に記載の LPガス 型燃料電池用液化石油ガス燃料。
[5] 請求項 1〜4の ヽずれか 1項に記載の LPガス型燃料電池用液化石油ガス燃料を自 然気化させた後、脱硫剤を用いて脱硫処理することを特徴とする脱硫方法。
[6] 脱硫剤が、ゼォライトを含む脱硫剤及び Z又は金属元素、金属酸化物及び金属成 分担持酸ィ匕物の中から選ばれる少なくとも一種力 なる脱硫剤である請求項 5に記 載の脱硫方法。
[7] ゼォライトを含む脱硫剤が、ゼォライトと共に、 Ag成分、 Cu成分、 Ni成分、 Zn成分 、 Mn成分、 Fe成分、 Co成分、アルカリ金属成分、アルカリ土類金属成分及び希土 類金属成分よりなる群力 選ばれる少なくとも一種の金属成分を含むものである請求 項 6に記載の脱硫方法。
[8] ゼォライトが、ベータ(BEA)及び Z又はフォージャサイト (FAU)構造を有するもの である請求項 6に記載の脱硫方法。
[9] 金属元素、金属酸化物及び金属成分担持酸化物の中から選ばれる少なくとも一種 カゝらなる脱硫剤力 Ag成分、 Cu成分、 Ni成分、 Zn成分、 Mn成分、 Fe成分、 Co成 分、 Si成分、 A1成分、アルカリ金属成分、アルカリ土類金属成分及び希土類金属成 分よりなる群力 選ばれる少なくとも一種の金属成分を含むものである請求項 6に記 載の脱硫方法。
[10] 請求項 5に記載の脱硫方法で脱硫処理された液化石油ガス燃料を改質処理し、こ れにより得られた水素含有ガスを用いることを特徴とする LPガス型燃料電池システム
[11] 改質処理が、部分酸化改質処理、自己熱改質処理、水蒸気改質処理又は二酸化 炭素改質処理である請求項 10に記載の LPガス型燃料電池システム。
PCT/JP2006/309174 2005-05-12 2006-05-02 Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム WO2006120981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/910,551 US20090151237A1 (en) 2005-05-12 2006-05-02 Liquefied Petroleum Gas For LP Gas Fuel Cell, Method of Desulfurizing the Same and Fuel System
CA002607800A CA2607800A1 (en) 2005-05-12 2006-05-02 Liquefied petroleum gas for lp gas fuel cell, method of desulfurizing the same and fuel cell system
EP06746024A EP1881056A4 (en) 2005-05-12 2006-05-02 LIQUEFIED GAS FOR A LIQUEFIED GAS FUEL CELL, DECOILING METHOD AND FUEL CELL SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-139339 2005-05-12
JP2005139339A JP2006318721A (ja) 2005-05-12 2005-05-12 Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム

Publications (1)

Publication Number Publication Date
WO2006120981A1 true WO2006120981A1 (ja) 2006-11-16

Family

ID=37396491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309174 WO2006120981A1 (ja) 2005-05-12 2006-05-02 Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム

Country Status (8)

Country Link
US (1) US20090151237A1 (ja)
EP (1) EP1881056A4 (ja)
JP (1) JP2006318721A (ja)
KR (1) KR20080005949A (ja)
CN (1) CN101175842A (ja)
CA (1) CA2607800A1 (ja)
TW (1) TW200710215A (ja)
WO (1) WO2006120981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105797564A (zh) * 2016-05-19 2016-07-27 山东成泰化工有限公司 一种液化气脱硫的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444945B2 (en) 2002-12-26 2013-05-21 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
JP4969091B2 (ja) * 2005-11-29 2012-07-04 Jx日鉱日石エネルギー株式会社 炭化水素系燃料の脱硫方法
JP4969090B2 (ja) * 2005-11-29 2012-07-04 Jx日鉱日石エネルギー株式会社 炭化水素系燃料の脱硫方法
WO2008145148A1 (de) 2007-05-25 2008-12-04 Truma Gerätetechnik GmbH & Co. KG Mit flüssiggas betriebenes brennstoffzellensystem
FR2918297B1 (fr) * 2007-07-06 2011-03-25 Inst Francais Du Petrole Purification d'une coupe olefinique par adsorption sur des cogranules alumine-faujasite.
EP2624937B1 (en) 2010-10-05 2018-12-19 Precision Combustion, Inc. Process for reforming a high sulfur-containing liquid fuel
RU2451717C1 (ru) * 2011-01-11 2012-05-27 Ахмед Ибрагим Шакер Салех Способ приготовления и состав присадки для десульфуризации серосодержащих топлив
WO2012141766A1 (en) 2011-04-11 2012-10-18 Precision Combustion, Inc. Process of reforming a sulfur-containing liquid fuel
DE102012023531B4 (de) * 2012-11-30 2014-07-31 Diehl Aerospace Gmbh Verfahren zur Versorgung der Kabine eines Fahrzeugs mit einem Betriebsstoff
US9126879B2 (en) 2013-06-18 2015-09-08 Uop Llc Process for treating a hydrocarbon stream and an apparatus relating thereto
US9284493B2 (en) 2013-06-18 2016-03-15 Uop Llc Process for treating a liquid hydrocarbon stream
US9327211B2 (en) 2013-06-18 2016-05-03 Uop Llc Process for removing carbonyl sulfide in a gas phase hydrocarbon stream and apparatus relating thereto
US9283496B2 (en) 2013-06-18 2016-03-15 Uop Llc Process for separating at least one amine from one or more hydrocarbons, and apparatus relating thereto
CN105561759B (zh) * 2014-10-14 2018-09-25 中国石油化工股份有限公司 利用烷基化反应同时脱除工业气体中硫化氢和硫醇类物质的方法
JP6383927B2 (ja) * 2014-12-03 2018-09-05 平岡織染株式会社 臭気吸着メッシュシート及びその臭気吸着性能の回復方法
ZA201608590B (en) * 2016-12-13 2019-04-24 Univ Of Venda Defloridation treatment of water with trimetal magnesium/cerium/manganese oxide modified diatomaceous earth
CN109115564A (zh) * 2017-06-26 2019-01-01 中国石油天然气股份有限公司 一种天然气取样装置及方法
US11365358B2 (en) * 2020-05-21 2022-06-21 Saudi Arabian Oil Company Conversion of light naphtha to enhanced value products in an integrated two-zone reactor process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290660A (ja) * 2002-03-29 2003-10-14 Idemitsu Kosan Co Ltd 脱硫剤及びそれを用いた燃料電池用水素の製造方法
JP2004130216A (ja) * 2002-10-10 2004-04-30 Idemitsu Kosan Co Ltd 炭化水素含有ガス用脱硫剤及び燃料電池用水素の製造方法
WO2004058927A1 (ja) * 2002-12-26 2004-07-15 Idemitsu Kosan Co., Ltd. 炭化水素含有ガス中の硫黄化合物除去方法
JP2005060422A (ja) * 2003-08-12 2005-03-10 Mitsubishi Heavy Ind Ltd Lpgの脱硫システムおよび脱硫方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043154A1 (en) * 2000-08-25 2002-04-18 Engelhard Corporation Zeolite compounds for removal of sulfur compounds from gases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003290660A (ja) * 2002-03-29 2003-10-14 Idemitsu Kosan Co Ltd 脱硫剤及びそれを用いた燃料電池用水素の製造方法
JP2004130216A (ja) * 2002-10-10 2004-04-30 Idemitsu Kosan Co Ltd 炭化水素含有ガス用脱硫剤及び燃料電池用水素の製造方法
WO2004058927A1 (ja) * 2002-12-26 2004-07-15 Idemitsu Kosan Co., Ltd. 炭化水素含有ガス中の硫黄化合物除去方法
JP2005060422A (ja) * 2003-08-12 2005-03-10 Mitsubishi Heavy Ind Ltd Lpgの脱硫システムおよび脱硫方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1881056A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105797564A (zh) * 2016-05-19 2016-07-27 山东成泰化工有限公司 一种液化气脱硫的方法

Also Published As

Publication number Publication date
TW200710215A (en) 2007-03-16
JP2006318721A (ja) 2006-11-24
CA2607800A1 (en) 2006-11-16
EP1881056A4 (en) 2011-02-23
KR20080005949A (ko) 2008-01-15
EP1881056A1 (en) 2008-01-23
CN101175842A (zh) 2008-05-07
US20090151237A1 (en) 2009-06-18

Similar Documents

Publication Publication Date Title
WO2006120981A1 (ja) Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム
JP5220265B2 (ja) 炭化水素含有ガス中の硫黄化合物除去方法
WO2006101079A1 (ja) 脱硫剤及びこれを用いた脱硫方法
US7556872B2 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
WO2006068135A1 (ja) 有機硫黄化合物含有燃料油用脱硫剤及び燃料電池用水素の製造方法
JP4722429B2 (ja) 金属担持ゼオライト成型体の製造方法及び該ゼオライトを含有する硫黄化合物除去用吸着剤
JP4676690B2 (ja) 金属イオン交換ゼオライト及びその製造方法、並びに該金属イオン交換ゼオライトを含む硫黄化合物除去用吸着剤
WO2008149587A1 (ja) 炭化水素系燃料の脱硫システム
JP2006036616A (ja) ゼオライトの製造方法及び該ゼオライトを含む硫黄化合物除去用吸着剤
JP4267483B2 (ja) 硫黄化合物除去用吸着剤及び燃料電池用水素の製造方法
JP2006316154A (ja) Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム
JP2006265480A (ja) 炭化水素含有ガスの脱硫方法及び燃料電池システム
JP2006277980A (ja) 燃料電池用燃料の脱硫方法
JP4961102B2 (ja) ゼオライトの製造方法及び該ゼオライトを含む硫黄化合物除去用吸着剤
JP4953584B2 (ja) 燃料電池システム
JP2006274206A (ja) Lpガス燃料電池用液化石油ガス
JP4339134B2 (ja) ガス状炭化水素化合物の脱硫剤成形体及び脱硫方法
JP2006290941A (ja) Lpガス燃料電池用液化石油ガス
JP2006339119A (ja) 液化石油ガス型燃料電池用の燃料補給方法
JP5809413B2 (ja) 燃料電池用脱硫システム、燃料電池用水素製造システム、燃料電池システム及び炭化水素系燃料の脱硫方法
JP2006299088A (ja) Lpガス型燃料電池用液化石油ガス及びそれを用いた燃料電池用水素の製造方法
JP2006290987A (ja) Lpガス燃料電池用液化石油ガス
JP2006117921A (ja) 液体燃料の硫黄除去方法及び水素の製造方法と燃料電池システム
JP2006294578A (ja) Lpガス燃料電池用液化石油ガス
JP2005093214A (ja) 燃料電池用水素製造システムへの液化石油ガス供給方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680016370.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006746024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910551

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2607800

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020077026064

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006746024

Country of ref document: EP