WO2006120945A1 - 混合器及び反応装置 - Google Patents

混合器及び反応装置 Download PDF

Info

Publication number
WO2006120945A1
WO2006120945A1 PCT/JP2006/309022 JP2006309022W WO2006120945A1 WO 2006120945 A1 WO2006120945 A1 WO 2006120945A1 JP 2006309022 W JP2006309022 W JP 2006309022W WO 2006120945 A1 WO2006120945 A1 WO 2006120945A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
mixer
reaction
stirrer
mixing space
Prior art date
Application number
PCT/JP2006/309022
Other languages
English (en)
French (fr)
Inventor
Masao Shinoda
Akira Goto
Kazuya Hirata
Miyuki Yamada
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Publication of WO2006120945A1 publication Critical patent/WO2006120945A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2722Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces provided with ribs, ridges or grooves on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/272Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces
    • B01F27/2724Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed axially between the surfaces of the rotor and the stator, e.g. the stator rotor system formed by conical or cylindrical surfaces the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • B01F33/452Magnetic mixers; Mixers with magnetically driven stirrers using independent floating stirring elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00867Microreactors placed in series, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing

Definitions

  • the present invention relates to a mixer and a reaction apparatus suitable for continuously performing chemical reactions, particularly organic chemical synthesis.
  • raw materials such as reagents are put into a container 200 and this is predetermined by a stirring member such as a stirring blade 202.
  • a stirring member such as a stirring blade 202.
  • a so-called forced stirring mixer 210, 2 12 using a stirring member such as a stirring element 206 and a stirring blade 208 in a container 204 through which a fluid is continuously circulated is often used in liquid chromatograph gradient devices (eluent mixing devices).
  • a stirring member such as a stirring element 206 and a stirring blade 208 in a container 204 through which a fluid is continuously circulated.
  • liquid chromatograph gradient devices eluent mixing devices.
  • FIG. 33 each reagent is always present in an excessive amount in the introduction portion of the container 204, density unevenness exists, and mixing is performed at a uniform concentration ratio. And high efficiency mixing cannot be achieved.
  • microchannel chip that causes various chemical reactions while flowing a solution or a gas using a flow channel (micro flow channel) having a small flow channel cross-sectional area has attracted attention.
  • a microchannel chip is provided with a flow path that connects the mixing, heating, reaction, and other areas on a single chip, and if a material (raw material) is supplied to this, a specific reaction is performed. It is configured to be.
  • the mixing region is usually formed by joining a plurality of flow paths.
  • Microchannel chips are basically capable of continuous processes and can be controlled in detail.
  • A is a frequency factor
  • Ea is an active energy
  • R is the gas constant
  • T is the absolute temperature
  • k is called a rate constant. The larger the value, the faster the reaction rate.
  • microchannel chips do not promote mixing by stirring.
  • reaction vessels such as test tubes, beakers, or flasks
  • microchannel chips do not promote mixing by stirring.
  • Molecular diffusion and turbulent diffusion act to mix the fluid.
  • turbulent diffusion has a great effect on mixing. For example, when milk is dropped into coffee, it is more intuitive that mixing with turbulent diffusion while stirring with a spoon or the like is more intuitive than waiting for milk to mix by molecular diffusion. Can understand.
  • FIG. 35 (a) and Fig. 35 (b) show flow visualization photographs when an obstacle (cylinder) is placed in the flow field. For example, in FIG. 35 (&), which is 13 ⁇ 4? 32, it can be seen that the flow flows in a clean layer on the downstream side of the obstacle, and there is no turbulence. Such a clean laminar flow is called laminar flow.
  • a staggered vortex street called Karman vortex street is formed on the downstream side of the obstacle, and it can be seen that mixing is promoted by the effect of the vortex.
  • the Re number is 10 3 to 10 5
  • vortices discharged from the left and right sides of the obstacle diffuse toward the downstream and the entire flow becomes irregularly turbulent.
  • Such a flow field is called turbulent flow.
  • the Re number is about 1000, and transition to laminar turbulent flow is obtained. It can be said that it is better that the flow path width of the reactor is larger and the flow velocity is larger.
  • the typical microchip mixing channel of the conventional technology was about 100 m wide and operated at a flow rate of about 0.01 m / s.
  • the Re number under these conditions is calculated assuming that the representative dimension D is 100 m of the channel width, the flow velocity is 0.001 m / s in the mixing channel, and the flowing fluid is water.
  • the microchannel chip has a very small flow path itself, the amount itself generated by force reaction, which is suitable for continuous synthesis of difficult-to-react substances, is small.
  • the shape of the mixing channel cannot be changed flexibly and easily with a microchannel chip, if the target chemical reaction cannot be achieved after manufacturing, it must be manufactured again. As a result, the chip becomes expensive and the manufacturing time is increased, so that the cost of work optimization for process optimization is increased.
  • the microchannel chip has a disadvantage in that the cleaning property in the mixer channel is low, and foreign substances and products are clogged and the clogging is easy.
  • the present invention has been made in view of the above circumstances, and at the time of reagent charging, promotes diffusion in a mixer to quickly and continuously perform a chemical reaction to obtain a sufficient production rate.
  • An object of the present invention is to provide a mixer and a reaction apparatus that can realize high reaction efficiency by detailed temperature control and the like.
  • the mixer according to claim 1 is a reaction system that performs continuous processing.
  • a mixer used in the stem which forms a mixing space having at least two inlet channels and at least one outlet channel for supplying different fluids, respectively, and agitation disposed in the mixing space And a drive mechanism for driving the stirrer.
  • the fluid is forcibly stirred in the mixing space and quickly and reliably mixed.
  • the mixing space is formed in rotational symmetry, and the stirrer is arranged around a rotational symmetry axis of the mixing space. It is a rotating rotor.
  • the stirrer has a radial portion extending from a rotational symmetry axis of the mixing space toward a peripheral portion. It is characterized by doing. Thereby, the fluid is vigorously stirred when the radial portion moves in the fluid.
  • the mixer according to claim 4 is the invention according to any one of claims 1 to 3 and claim 3, wherein the container has a container body and a lid. And This makes internal cleaning and maintenance easier.
  • the mixer according to claim 5 is the invention according to any one of claims 1 to 4 and claim 4, wherein the drive mechanism drives the stirrer remotely. It is characterized by that. This prevents entry of contaminants from the drive train.
  • the mixer according to claim 6 is the invention according to any one of claims 1 to 5 and claim 5, wherein the drive mechanism is directly connected to the stirrer to drive it. It is characterized by what it does. This facilitates control of the driving speed.
  • the mixer according to claim 7 is provided with a temperature adjustment mechanism for adjusting the temperature of the mixing space according to the invention according to any one of claims 1 and 6 and claim 6. It is characterized by being beaten! This promotes the reaction while maintaining a temperature suitable for the reaction.
  • the mixer according to claim 8 is characterized in that, in the invention according to claim 2, a minute gap is formed between the opposing surfaces of the rotor and the container.
  • the mixer according to claim 9 is characterized in that, in the invention according to claim 8, the minute gap is formed by conical surfaces facing each other.
  • the at least two introduction flow paths open close to each other in the mixing space. It is characterized by that.
  • the mixer according to claim 11 is the invention according to any one of claims 1 to 9, wherein the at least two introduction flow paths are upstream of the opening to the mixing space. It is characterized by merging.
  • a reaction apparatus includes a mixer according to any one of claims 1 to 11, a supply source for supplying a raw material fluid thereto, and a reaction product in the mixer. And a collection container for collection.
  • the reaction apparatus according to claim 13 is characterized in that, in the invention according to claim 12, there is provided a control device for controlling the stirring speed by the stirring bar in the mixer.
  • the reaction apparatus according to claim 14 is characterized in that in the invention according to claim 12 or claim 13, the reaction apparatus has a control device for controlling the temperature in the mixer.
  • a reaction apparatus is characterized in that, according to the invention according to any one of claims 12 to 14, the reaction apparatus includes an analysis apparatus for analyzing the reaction product.
  • ⁇ 1 (a) perspective view and (b) cross-sectional view showing a mixer according to an embodiment of the present invention. 2] Schematic diagrams showing the operation of the mixer of FIG. 1, (a) a front sectional view, and (b) a plan sectional view.
  • FIG. 5-1 (c) is a diagram showing a modification of the mixer of the embodiment of FIG.
  • FIG. 6 (a) to (d) are diagrams showing various modifications of the base portion 152a.
  • FIGS. 7A to 7D are diagrams showing various modifications of the cover portion 162.
  • FIG. 8 is a view showing another modification of the cover section 162.
  • FIG. 9 (a) to (d) are diagrams showing various modifications of the base portion 152a.
  • FIG. 10 (a) is a diagram showing a mixer according to another embodiment.
  • FIG. 10 (b) is a diagram showing a mixer according to another embodiment.
  • FIG. 11] (a) to (c) are diagrams showing a mixer according to another embodiment.
  • FIG. 12 (a) and (b) are diagrams showing a mixer according to still another embodiment.
  • FIG. 13 is a view showing a mixer according to still another embodiment.
  • FIG. 14 is a view showing a mixer according to still another embodiment.
  • (a) and (b) are diagrams illustrating a first example of the mixer according to the embodiment of the present invention.
  • FIG. 16 is a graph showing the results of the example described in FIG. 15, and (a) is a time yield diagram showing an example of the reaction results.
  • FIG. 16-1 is a graph showing the results of the example described in FIG. 15, and (b) is a product flow rate yield diagram.
  • FIG. 17 is a graph showing the relationship between the ratio of the flow rate of the introduced fluid to the peripheral speed of the stirrer and the yield in the example described in FIG.
  • FIG. 18 (a) and (b) are diagrams for explaining another embodiment of the mixer of the embodiment of the present invention. [19] FIG. 19 is a graph showing the results of the second embodiment described in FIG.
  • FIG. 20 is a diagram illustrating a mixer according to another embodiment of the present invention.
  • FIG. 20A is a diagram for explaining a third embodiment of the present invention.
  • FIG. 20 is a diagram for explaining a third embodiment of the present invention.
  • FIG. 21 (a) is a diagram showing a mixer according to another embodiment of the present invention.
  • FIG. 21-1 (b) is a diagram showing a mixer according to another embodiment of the present invention.
  • FIG. 22] (a) to (c) are diagrams showing the configuration of the base portion 152a.
  • FIG. 23 is a diagram showing another embodiment of a stirrer.
  • FIG. 24 is a view showing a mixer according to still another embodiment.
  • FIG. 25 is a view showing a mixer according to still another embodiment.
  • FIG. 26 is a diagram showing the configuration of the stirrer of the embodiment described in FIG.
  • FIG. 27 is a view showing a mixer according to still another embodiment, and (a) is an external view.
  • FIG. 27-1 is a view showing a mixer according to still another embodiment, and (b) is a cross-sectional view.
  • FIG. 27-2 is a view showing a mixer according to still another embodiment, and (c) is a view taken along arrow c in (b).
  • FIG. 28 is a view showing a mixer according to still another embodiment, and (a) is a cross-sectional view.
  • FIG. 28-1 is a diagram showing a mixer according to still another embodiment, and (b) to (d) are views taken along arrows b to d in (a).
  • FIG. 29 is a view showing an introduction channel 156 of a mixer according to still another embodiment.
  • FIG. 29-1 is a view showing an introduction channel 156 of a mixer according to still another embodiment.
  • FIG. 29-2 is a view showing an introduction channel 156 of a mixer according to still another embodiment.
  • FIG. 30 is a diagram showing a conventional batch mixer.
  • FIG. 31 is a view showing a conventional continuous mixer.
  • FIG. 32 is a view showing another example of a conventional continuous mixer.
  • FIG. 33 is a diagram showing the operation of a conventional continuous mixer.
  • FIG. 34 is a graph showing a change in energy in a chemical reaction.
  • FIG. 35 is a diagram showing a flow state when an obstacle is placed in the flow field.
  • the mixer is a reactor at the same time, and the mixing system is a reaction system.
  • FIG. 1 shows a mixer according to a first embodiment of the present invention, in which a mixing space 14 is formed by a base part (container body) 10 and a cover part (lid part) 12 covering the base part (container body) 10.
  • a mixing vessel 16 is configured, and a stirring bar 18 is provided in the mixing space 14.
  • the mixing space 14 is formed rotationally symmetrical around the vertical axis, and is a slightly flat cylindrical space in this embodiment.
  • the base portion 10 is provided with two introduction flow passages 20 that are opened at positions facing each other with the axis line on the outer peripheral surface side, and the cover portion 12 is provided with a lead-out flow passage 22 that opens substantially on the central axis line.
  • a joint 24 is provided at each outer end so that a tube 26 for supplying or discharging fluid can be attached.
  • Cover 12 and base Part 10 has a seal structure necessary for processing, and maintenance and the like can be easily performed by a simple opening / closing mechanism.
  • This mixer can be easily connected to the fluid supply source, other mixers, etc. by the joint 24 and the tube 26, so that the assembly, maintenance, or design change of the processing system can be easily performed.
  • the representative dimension (inner diameter) D of the mixing space 14 is desirably 200 mm or less, more preferably 100 mm or less, and even more preferably 10 mm or less.
  • the stirrer 18 is a member extending in a direction perpendicular to the axis of the mixing space 14, and is driven around the axis of the mixing space 14 by a drive mechanism 28 installed below the mixing container 16. It is forcibly rotated.
  • This drive mechanism 28 rotates the stirrer 18 remotely by rotating a disk 34 on which a permanent magnet 32 is mounted by means of a motor 30, and is provided with a power supply device 36 and a controller 38.
  • the controller 38 adjusts the rotation speed of the motor 30 so as to be optimal for obtaining the product in a high yield with respect to the target chemical reaction.
  • the stirrer 18 has a columnar shape in which the central portion swells and has a flat shape with different heights h and widths w that do not need to be a complete rotating body around a force axis that is a so-called football shape. May be.
  • the mixing of the fluid in the container can also be promoted by changing the rotational speed with time or by reversing the rotation speed.
  • the material of the stirrer 18 is a magnetic material or metal coated with a material having characteristics of an organic fluid-resistant material such as a tetrafluoroethylene polymer, ceramic, or glass.
  • an organic fluid-resistant material such as a tetrafluoroethylene polymer, ceramic, or glass.
  • the stirrer 18 itself may be formed of a material having characteristics of an organic fluid-resistant fluid.
  • the shape and size of the stirring bar 18 are set in accordance with the shape and size of the mixing space 14. That is, the gap formed between the stirrer 18 and the mixing space 14 is a flow path through which the introduced mixed fluid passes, and is stirred and mixed by the swirl flow formed by the rotation of the stirrer 18. It is a space where is made.
  • the shape and size of such a space is generated by the rotation speed of the stirring bar 18, physical properties such as the viscosity of the fluid to be mixed, and the reaction that occurs as a result of mixing. It is necessary to determine the physical properties of the material to be determined.
  • the joint 24 may be V, the shape of the deviation, or the standard as long as a general pipe screw or the like is formed.
  • the main point is to introduce the reagent into the mixer or reactor according to the present invention, or to connect the pipe 26 and the mixer without leakage (connecting) the pipe for extracting the product after mixing. If so, it ’s okay.
  • each fluid has a velocity component in the center direction and the circumferential direction, and as shown in Fig. 2 (b), first, a layered vortex flow is formed, and each fluid collides with the stirrer 18 and moves up and down. As a whole, it gradually flows upward.
  • the relative velocity of the inflowing fluid with respect to the stirrer 18 is increased, and more A strong shearing force can be generated, and the mixing efficiency is further improved.
  • the role of the stirring bar 18 is to give a strong shearing force to the fluid flowing into the container. If the mixing vessel 16 has a mechanism for applying such shearing force to the inflowing fluid, not only the stirrer 18, the fluid layer of each supply fluid is instantly miniaturized. Note that the supply fluid is not limited to a liquid.
  • one of the fluids is a gas
  • the bubbles that are torn off with a strong shearing force are microbubbled (fine bubbles), and are mixed into the mixing container 16. Evenly distributed.
  • the bubble surface area with respect to the gas volume increases dramatically, so that the reaction efficiency is improved.
  • the ratio of the diameter D of the mixing space 14 to the length ds of the stirrer 18 (ds / D) is close to
  • the rotation of the stirrer 18 effectively removes each mixed supply fluid (without waste), thereby effectively forming a thin layer of the supply fluid in the mixing space 14. .
  • This also reduces the intermolecular distance between the supply fluids, facilitating mixing by molecular diffusion.
  • this ratio is too small, the rotational speed of the stirrer 18 becomes small, or the fluid flow becomes unsmooth, which is counterproductive.
  • Vc ⁇ ⁇ ds ⁇ ⁇ ⁇ ⁇ ⁇ Equation 5
  • (Ds is the length of the stirring bar 18).
  • the relative (circumferential) speed which is the difference between the flow speed and the peripheral speed of the stirrer 18, increases, that is, if the ratio of the introduction flow speed Z and the peripheral speed of the stirrer decreases, it is introduced into the mixing space 14.
  • the fluid layers of the supplied fluids are made finer, the fluid layers between the supply fluids become thinner, and the number of layers of the supplied fluids in the mixing space 14 increases. As a result, the intermolecular distance between the supply fluids is reduced, so that mixing by molecular diffusion is promoted.
  • Supply fluid introduction speed The ratio of the peripheral speed of the Z stirrer is 1Z3 or less, more preferably 1/5 or less, and even more preferably 1/8 or less.
  • stirrer 18 by forming the stirrer 18 with a smooth curved surface, smooth rotation and flow can be ensured even if the dimensional difference is reduced.
  • the volume ratio of the volume of the mixing space 14 and the volume of the stirrer 18 (stirrer volume Z mixing space 14 volumes) may be reduced, but a stagnation region is created when the dimensional difference increases. End up.
  • it is only necessary to increase the flatness ratio ( hZw) of the stirrer 18 to be greater than 1.
  • the remotely driven stirrer as in this embodiment may be used. 18 and a simple rod is difficult because the posture becomes unstable. It can be used in the case of a radial stirrer 18 that extends in three or more directions as described later, or a system that is directly driven by a drive shaft.
  • the volume ratio of the volume of the mixing space 14 to the volume of the stirring bar 18 must be selected to be optimal for the target reaction.
  • the volume ratio (rotating body in the precipitation reaction) If the product (Z mixing chamber volume) is reduced, it is possible to suppress the stop of the stirrer 18 due to the retention of precipitates in the mixing space 14.
  • the volume ratio may be 5% to 80%, more preferably 15% to 60%, and even more preferably 20% to 40%.
  • the optimum value is selected according to the target chemical reaction in a timely manner. None ,.
  • Another factor that is important in controlling the mixing state is the passage time of the fluid in the mixing container 16 as a whole. This can be adjusted by the supply pressure of the fluid, the degree of constriction in the introduction flow path 20 and the introduction flow path 22, and the like. Therefore, the inner diameters di and de of the introduction flow path 20 and the discharge flow path 22 must be set so that sufficient mixing or a reaction time associated therewith can be obtained.
  • the number of layers of the supply fluid in the mixing space 14 is related to the product ( ⁇ 1 ⁇ ) of the rotational speed ⁇ per unit time of the stirrer 18 and time T.
  • the thickness of one layer is a function of a value obtained by dividing the mixed space 14 diameter D by the number of layers.
  • the fluid layer of the supply fluid in the mixing space 14 becomes finer and the D becomes smaller as the rotation speed ⁇ of the stirrer 18 having a smaller mixing space 14 diameter D is larger.
  • the residence time of the supply fluid in the mixing space 14 is reduced, so that an effective mixing can be achieved in a short time.
  • the inside diameter of the supply fluid introduction flow path and the mixed (reaction) product discharge flow path 22 formed in the cover section 12 and the base section 10 should be ⁇ 8.0 mm or less, more preferably ⁇ 1.0 mm or less. Is desirable.
  • the mixing action in the mixer according to the present invention is governed by a combination of complex factors. These include fluid supply, discharge rate, fluid viscosity, feed fluid mixing ratio, types of reactions and products resulting from mixing.
  • the remotely-driven stirrer 18 as in this embodiment has an advantage of preventing the contamination of the fluid by the drive mechanism 28, but it is also difficult to completely control the rotation speed of the stirrer 18. Therefore, it is desirable to try the shape, dimensions, and other conditions of each part of the apparatus for each mode of mixing or reaction treatment and adopt the optimum one. In the following, various variations of this device will be described.
  • Fig. 4 is a modification of the shape of the stirrer 18.
  • (a) is a capsule type that is hemispherical at both ends and cylindrical at the center,
  • (b) is cylindrical, and
  • (c) is prismatic.
  • (D) is football tie
  • (E) shows a cylindrical shape
  • (f) shows a prismatic shape made into a cross shape.
  • Each of them has a radial portion 40 having an axis extending in a direction perpendicular to the rotation axis (the axis of the mixing space 14).
  • the cross-sectional shape of the radial portion 40 is not limited to the above example, and any curved or linear shape can be adopted.
  • the curved shape may be a circle, an ellipse, or an appropriate secondary or cubic closed curve
  • the linear shape may be an arbitrary polygon including a triangle.
  • a curved shape and a linear shape may be mixed.
  • a vertically flat ellipse is difficult to adopt because it falls down in the types (a) and (b), but it can be used in the types (d) and (e).
  • the number of the radial portions 40 is not limited to the cases 2 and 4 shown above, and an appropriate number can be adopted. It is not necessary for each of the radial portions 40 to have the same shape, length and other dimensions. For example, one direction intersecting in (e) may be shortened. This is because actions such as ensuring the stability of the posture can be obtained. Further, the radiating portion 40 of (a) and (d) is not an isometric section along its axis, but the others are isotropic along the axis, and it is obvious that either may be used. It is desirable to chamfer (round) the corners appropriately.
  • FIG. 5 (a) shows the shape of the ceiling portion of the mixing space 14 matched with the shape of the upper surface of the stirring bar 18, thereby reducing the stagnation of the fluid flow.
  • a large shearing force acts on the fluid and exerts a strong stirring action when passing through a narrow flow path formed by two members that transfer relative to each other.
  • Fig. 5 (b) is a diagram using (b), (c), etc. of Fig. 4, which also reduces the stagnation of the flow of the fluid. Smooth rotation is promoted.
  • the volume of the mixing space 14 and the volume of the stirring bar 18 of the mixer, the diameter of the mixing space 14 and the length of the stirring bar 18, or the height of the mixing space 14 and the diameter of the stirring bar 18 The dimensional relationship of (outer diameter), or each dimension itself, is a factor that affects the mixing result as described above, and it is necessary to perform various trials and find a suitable one for each processing condition. is there.
  • the diameter ratio between the diameter of the mixing space 14 and the rotating diameter of the stirring bar 18 (stirring bar rotating diameter Z mixing space 14 diameter) is preferably 50% or more. This is because when the supply fluid in the mixing space 14 is mixed by driving the stirrer 18, the stirrer 18 is driven. This is the effective range where the effect of promoting mixing is exerted by the rotating flow (swirl flow) generated by
  • the force with the introduction channel 20 on the bottom and the discharge channel 22 on the top is, of course, not limited to this.
  • the introduction channel 20 is provided on the outer peripheral surface and the outlet channel 22 is provided on the axis, the present invention is not limited to this. If there is convenience in the operation of the mixer, any one of the two inlet channels 20 provided in the above example may be used as the outlet channel 22. In that case, the mixing action by the flow of the fluid is different from that described above, but it is sufficient that sufficient mixing is performed as a result. The same applies to the embodiments described later.
  • FIGS another embodiment relating to the method of forming the introduction flow path 20 and the discharge flow path 22 will be described with reference to FIGS.
  • Fig. 6 shows an introduction flow path 20 or a discharge flow path 22 (hereinafter referred to as a liquid introduction flow path) on the base portion 10 side, and (a) and (b) show three liquid introduction flows.
  • Force provided with a path and suitable for mixing three fluids For example, it is also suitable for mixing two fluids with different flow rates.
  • (a) is a gamma-shaped force with an equiangular arrangement
  • (b) is a T-shape, and other angular arrangements may be used.
  • C) is an example of a four-fluid flow path and (d) is an example of a six-fluid flow path. These are also suitable for dispersing and supplying two fluids.
  • FIG. 7 shows an example of formation of the liquid introduction flow path on the cover part 12 side.
  • (a) is the same as Fig. 1.
  • (B) shows a plurality of liquid introduction flow paths 22b that open to the periphery of the mixed space 14 as one flow path.
  • (C) shows a case where a plurality of liquid introduction flow paths 22 c opened at the radial intermediate portion of the mixing space 14 are merged into one flow path 22.
  • a recess 42 is formed in the opening of the liquid introduction flow path on the lower surface of the cover part 12 to promote the discharge of the gas generated in the mixing space 14.
  • a protrusion 44 protruding into the mixing space 14 is formed on the lower surface of the cover 12, and a plurality of liquid introduction channels 22 d are formed on the outer periphery of the protrusion 44.
  • This example also has an effect of promoting the discharge of the gas generated in the mixing space 14.
  • Fig. 8 shows another embodiment of the cover portion 12, which has a structure in which the channel cross-sectional area is narrowed in the downstream portion of the outlet channel 22a. Since the fluid mixed in the mixing container 16 is guided to the narrow channel cross-sectional area, the distance between the refined fluid masses is further reduced, and the effect of promoting rapid mixing by molecular diffusion can be obtained. Stirring in the conventional batch process cannot be expected to be effective due to stirring and mixing, and a mixer using a microchannel chip can only be expected to be effective due to diffusion mixing. Therefore, a high mixing effect can be obtained.
  • FIG. 8 shows a form in which a part of the pipe is narrowed, the effect of diffusion mixing can be increased regardless of the form if the structure can reduce the cross-sectional area of the flow path.
  • FIG. 9 shows another example of the liquid introduction flow path provided in the base portion 10.
  • (a) is the force that opens the flow path to the outer periphery of the mixing space 14 described above.
  • the liquid introduction flow path 20c is opened substantially in the center.
  • (d) shows a pre-mixing by fluid mixing of the supply fluid before the flow paths from the two introduction flow paths 20 are guided to the mixing space 14 and then the mixed fluid 14 is guided to the mixing space 14.
  • the base portion 10 and the cover portion 12 described above can be used in appropriate combinations.
  • These liquid introduction channels can be used as both the introduction channel 20 and the outlet channel 22 as described above.
  • FIG. 10 shows another embodiment of the drive mechanism 28 of the stirring bar 18.
  • (a) is a combination of the mixing container 16 and the drive mechanism 28 by an appropriate method such as screwing or bonding.
  • (B) shows that the stirring bar 18 in the mixing space 14 is mechanically integrated by a motor 30 and a shaft 46 which are drive mechanisms 28.
  • Earlier remote-driven stirrer 18 Is suitable for preventing contamination, but the rotational speed of the stirrer 18 and the rotational speed of the motor 30 of the drive mechanism 28 do not always coincide with each other, and there is a delay in control.
  • Such discrepancies and delays are due to friction between the stirrer 18 and the mixing wall 14 and the viscous resistance of the fluid, and depending on the target chemical reaction, strict speed control is required. And delays can be a problem.
  • This embodiment is for dealing with problems.
  • a shaft seal 50 is provided for avoiding entry of objects and supply fluid in the mixing space 14 to the drive mechanism 28.
  • the shaft seal 50 is made of an organic chemical-resistant material such as a tetrafluoroethylene polymer.
  • FIG. 11 shows another embodiment of the drive mechanism 28 of the stirrer 18.
  • a magnetic drive mechanism 70 using a plurality of coils is provided on both the lower surface side and the upper surface side of the mixing container 16.
  • a plurality of coils 72 are installed on the upper and lower surfaces of the mixing container 16 at equal positions on the same circumference, and the current to each coil 72 is output from the coil excitation controller 74.
  • the stirrer 18 is a magnetic material or a magnetic material coated with rosin or the like.
  • the excitation current is sequentially input from the controller 74 to the coils 72 arranged on the same circumference on the upper and lower surfaces, and the coils 72 are sequentially given polarity (N, S). It magnetizes and thereby rotates the stirrer 18A, and uses the principle of a so-called stepping motor. If the upper and lower coils 72 are always excited so as to have the same polarity as the stirrer 18A, the stirrer 18A can be expected to drive automatically.
  • a minute protrusion (notch) 76 is provided on the upper surface of the stirring bar 18A as shown in the shape example of the stirring bar 18A in the drawing.
  • FIG. 12 shows a mixer according to another embodiment of the present invention.
  • (A) shows the heater on the base 10
  • Heater 52 and a temperature sensor 53 that detects the temperature of the mixing chamber are installed to adjust the temperature of the mixed fluid.
  • mixing and reaction can be performed under optimal temperature conditions in various chemical reactions, and an effect of obtaining a product in a high yield can be obtained.
  • the heater 52 is preferably installed in the mixed space 14 or as a wall that forms the mixed space 14, but if it is in a positional relationship capable of controlling the temperature in the mixed space 14, Even if it is a partition wall, it may be in any position such as an upper part, a lower part, or an outer periphery, or may have a plate shape or a bar shape.
  • the heater 52 and the temperature sensor 53 may be installed in the supply fluid introduction flow path 20 formed in the base portion 10 or the cover portion 12.
  • the heater 52 is preferably driven by a DC or AC power source and can be variably controlled by the controller 38, but may be a constant temperature output.
  • FIG. 12 (b) is a combination of the direct drive type stirrer 18 described in FIG. 10 (b) and the heater 52.
  • the heater 52 is installed between the shaft seal 50 and the mixing space 14, and the temperature sensor 53 is installed at a position for detecting the temperature in the mixing chamber. It may be installed in the fluid introduction flow path 20 or both.
  • the temperature control of the mixing space 14 by the heater 52 and the temperature sensor 53 and the optimum rotational speed control of the stirrer 18 by the controller 38 are used to obtain the optimum temperature for obtaining a product in the target chemical reaction. Under such conditions, mixing or reaction is performed under the condition of the number of revolutions of the stirrer 18, and the effect of obtaining the product in a high yield is obtained.
  • the controller 38 may be provided separately for each of the heater 52 and the drive mechanism 28, or may be controlled simultaneously using a computer or a sequencer.
  • FIG. 13 shows still another embodiment of the present invention.
  • a temperature control means instead of the heater 52, a heating medium flow channel 54 for flowing a heating or cooling medium M to the base 10 is provided.
  • the temperature sensor 53 is installed at a position for detecting the temperature of the mixing chamber.
  • a flow rate adjusting valve for adjusting the flow rate of the heating or cooling medium M is provided, and the temperature of the mixing space 14 can be adjusted.
  • the flow rate adjusting valve may be electrically controlled and automatically controlled by the controller 38, but may be manually operated.
  • a heat transfer plate in which such a heat medium flow path 54 is formed may be installed below the base portion 10. This makes it possible to achieve optimum temperature control for the target chemical reaction by calorie heat or cooling, and to perform the chemical reaction with high efficiency.
  • the heat medium channel 54 may be installed in the mixing space 14, the supply fluid introduction channel 20, or both, or may be installed in the cover 12. Such a heat medium flow path 54 may be used in the mixer of the stirrer direct drive type shown in FIG.
  • the internal pressure of the entire container can be increased in addition to the temperature by increasing the line pressure in the pump that pumps the supply fluid.
  • Optimal pressure conditions according to the target reaction process by placing pressure sensors in appropriate positions where the pressure in each flow path or in the mixing chamber can be detected, and applying pressure control based on the signals. Can be set.
  • FIG. 14 shows another embodiment of the present invention, in which an analyzer 56 is installed in the mixer shown in FIG. 10 (b).
  • the analyzer 56 is installed in the outlet pipe 58 connected to the outlet channel 22 of the mixer via the joint 24.
  • the analyzer 56 may be installed in the outlet channel 22 in the mixer.
  • the analysis device 56 is a device that analyzes the components of the mixed (reaction) product, such as a device that analyzes the components of the mixed (reaction) product, such as a guchimatography device.
  • the components of the product after mixing (reaction) by the mixer are sequentially analyzed, and the analysis results (such as yield) are output to the controller 38 in real time.
  • the controller 38 makes a judgment based on the result of this analysis, and outputs a control signal for the motor speed and the temperature of the heater 52 to the motor and the heater 52, so that the component (yield) of the target product is maximized. These are controlled so as to become a value or a target value. This technique makes it possible to efficiently obtain the desired product of the required components (yield).
  • FIG. 15 (a) shows a configuration in which a chemical reaction is performed by the mixer of the embodiment of FIG. 10 (a).
  • the dimensions of the mixing space 14 of the mixer used for the reaction are a diameter of 9 mm and a height of 3.5 mm, and the shape of the stirrer 18 is a capsule having a diameter of 3 mm and a length of 8 mm.
  • the rotation speed of the stirring bar 18 was lOOOrpm.
  • the chemical reaction carried out is the reaction of diisopropylphenol (acetylation) shown in Fig. 2 (b).
  • A 1M 2,6 Diisopropylphenol 1M 1,3 Dimethoxybenzene / Pyridine and B: n eat
  • the supply fluid of Acetic Anhydride was supplied by a syringe 60, and a recycle container 62 was connected to the outlet channel 22.
  • the mixer having a small volume as in the present invention has an advantage that temperature control is easy.
  • the volume inside the mixer excluding the volume of the stirring bar 18 ( ⁇ 3 mm, length 8 mm) from the mixing space 149 mm (height 3.5 mm) is
  • the temperature of the reagent needs to be increased by 20 ° C in order to promote the chemical reaction in the mixer section.
  • the specific heat of the reagent is 4.2 [kJ / kg'K] and the specific gravity of the reagent is 1000 [kg / m 3], the required heat is
  • the temperature can be adjusted with an extremely small amount of heat, and the necessary heating and cooling device is sufficient if it is inexpensive and simple.
  • FIG. 16 (a) is a time yield diagram showing an example of the result of the reaction. This indicates that the mixer can obtain a product with a high yield in the same mixing time as compared with the conventional method shown in FIG.
  • Fig. 16 (b) is a product flow rate-yield diagram, which is a result of comparing a general conventional microreactor with a mixer for the same example.
  • the general conventional microreactor used here as a comparative example is for Y-type two-liquid mixing. From this result, it can be seen that the mixer of the present invention can obtain many products in a high yield as compared with an example of a general microreactor.
  • the results of these chemical reactions using a mixer are only examples, and it is considered that the same effect can be obtained in other embodiments of the force mixer.
  • FIG. 17 shows an example of the result of the chemical reaction in the embodiment of FIG. 15, and shows the relationship between the flow rate of the introduced fluid and the ratio of the peripheral speed of the stirrer 18 to the yield. From this, the supply fluid Introduction speed Z Stirrer 18 Peripheral speed ratio is 1/3, yield 20%, speed ratio 1/10, yield 40%, speed ratio 1/50, yield 85% or more. I understand.
  • FIG. 18 is an example showing the result of a chemical reaction performed by arranging the mixers according to the present invention in series.
  • the flow exiting from the outlet channel 22 of the first mixing vessel 16 is guided to a second mixing vessel (stirring vessel) 16A having one inlet channel, where And is derived.
  • the flow from the second mixing container 16A is further guided to a third mixing container (stirring container) 16A having one introduction channel.
  • the flow from the outlet flow path of the first mixing container 16 is divided into two flow paths by a T-shaped branch pipe, and then the second mixing is performed. There is also a method that leads to two introduction flow channels facing each other across the center of the container 16.
  • the size of the mixing space 14 is 9 mm in diameter and 3.5 mm in height
  • the shape of the stirrer 18 is a capsule having a diameter of 3 mm and a length of 8 mm.
  • the rotation speed of the stirring bar 18 was lOOOrpm.
  • the chemical reaction carried out is the diisopropylphenol reaction (acetylene cake) shown in Fig. 15 (b).
  • B neat Acetic Anhydride feed fluids were fed by Syringe 60.
  • FIG. 19 shows the experimental results. From this, it can be seen that the mixer in which the mixing vessel 16 and the stirring vessel 16A are arranged in series can obtain a product with a higher yield in the same mixing time as compared with the case shown in FIG.
  • FIG. 18 shows an example in which the mixing vessel 16 and the stirring vessel 16A are connected by a tubular pipe, but this is only one form of the serial arrangement of the mixing vessels 16 and 16A. For example, as shown in FIG. Good results can be obtained regardless of the embodiment, such as arranging the mixing containers 16 and 16A in a stacked structure in series. Note that the stirrer 18 in the second mixing vessel 16A in FIG.
  • the number of rotations of the stirrer 18 in the first and second mixing vessels 16, 16A is set to an optimum value for each reaction mixing and does not necessarily have to be the same.
  • a correlated transfer alkyly reaction (see equation: FIG. 20A (a)) was performed using the shape of the stirrer as a parameter.
  • the configuration of the mixer is the same as that shown in FIG. 15 (a).
  • the stirrers used in this reaction are force push type (Fig. 4 (a)) and cross shape (Fig. 4 (e)), and the actual volume of the mixing space in the stirring and mixing chamber using each stirrer. Are 0.18 ml (capsule type) and 0.08 ml (cross shape).
  • the reaction product with the power of the mixer was derived and then enantiomerized (stopped reaction) with an aqueous ammonium chloride solution.
  • FIGS. 21 to 26 show still another embodiment of the present invention.
  • a rotor (stirrer) 118 is a rotor having a shape substantially similar to the internal space of the mixing vessel 116.
  • a micro-gap part G is formed between the opposing surfaces.
  • the microgap portion G is formed by conical surfaces facing each other, but is not limited to a conical surface having a straight ridgeline, and may be an appropriate rotating body such as a spherical surface (the ridgeline is Circles) and other rotator shapes whose ridges are appropriate curves (for example, parabola, ellipse, etc.) can be employed.
  • 21A and 21B show the mixer according to the first embodiment of the present invention, in which a mixing space 114 is formed by a base portion 110 and a cover portion 112 covering the base portion 110.
  • a mixing container 1 16 is configured, and a stirring bar 118 is provided in the mixing space 114.
  • the mixing space 114 is formed rotationally symmetrical around the vertical axis, and in this embodiment is a substantially conical space.
  • the base portion 110 is composed of three plate-like members, that is, a bottom plate 11 Oa, a middle plate 110b, and a top plate 110c.
  • the bottom plate 110a is a flat plate, and the middle plate 110b and the top plate 110c are This is a ring-shaped member constituting a part of the side wall of the mixing container 116.
  • the middle plate 110b has a plurality of (six in this example) radial grooves 120b opened on the inner peripheral surface, and the upper plate 110c and the bottom plate 110a have circumferential grooves 120a and 120c, respectively. ing . These constitute the raw material fluid introduction flow path 120. Since the radial grooves 120b are alternately opened upward or downward, they are alternately communicated with the circumferential grooves 120a and 120c of the top plate 110c or the bottom plate 110a. is doing.
  • Each of the circumferential grooves 120a and 120c is provided with an opening 124 for the raw material fluid on the outer peripheral surface of the upper plate 110c or the bottom plate 110a. Accordingly, the raw material fluids alternately flow into the mixing space 114 and mix as shown in FIG. 21 (b).
  • the cover portion 112 is integrated with the base portion 110 so as to form a conical space therein, and an outlet channel 122 is formed along the axis at the top.
  • the base part 110 and the cover part 112 are made of an organic chemical (reagent) corrosion-resistant resin, ceramic, stainless steel, or the like.
  • the respective parts constituting the base part 110 and the cover part 112 are fixed together with bolts or the like through bonding or knocking to be integrated.
  • a micro size adjustment can be performed by inserting a shim 126 between the upper plate 110c and the cover 112 and fixing them.
  • the cover portion 112 is formed with a temperature control jacket 128 that holds and distributes the heat medium along the side wall of the conical surface, and a heat medium supply path is connected thereto.
  • the temperature control jacket 128 is preferably formed of a material having corrosion resistance to organic chemicals and a high heat transfer coefficient. For example, there is a method in which glass lining is applied to aluminum.
  • the temperature control of the temperature control jacket 128 is performed by changing the temperature and the flow rate of the heat medium flowing through the temperature control jacket 128.
  • the reaction temperature of the medicine is controlled.
  • a fluid heat medium is used as the temperature control medium of the temperature control jacket 128.
  • a temperature control device such as a Peltier element may be used as a medium and may be electrically performed.
  • the rotor 118 (stirrer) is composed of a conical rotor body 130 similar to the internal space of the mixing vessel 116, and a cross-shaped stirring member 132 attached to the lower surface thereof. A convex part 134 (pivot) is provided at the center part.
  • the rotor body 130 is made of a resin, ceramic, stainless steel, etc., which is resistant to organic chemicals (reagents).
  • the stirring member and the rotor 118 are attached by various general joining methods such as screwing, or alternatively, the stirring member and the rotor 118 may be integrated with the stirring member.
  • As the shape of the stirring member 132 various shapes such as a saddle shape and a streamline shape are appropriately selected according to the target chemical reaction.
  • the stirring member 132 preferably has radially extending portions.
  • the stirrer 132 is made of a metal or magnetic material coated with a resin or ceramic having corrosion resistance to organic chemicals (reagents).
  • a magnetic drive type stirrer shown in FIG. 10 is appropriately used.
  • the convex portion 134 is inserted into a concave portion 136 (pivot receiving portion) provided at the center of the upper surface of the bottom plate 110a to prevent the rotation shaft from swinging. Since the opposing surfaces of the convex portion 134 and the concave portion 136 serve as bearing surfaces, it is preferable to provide a groove 138 (group) for reducing and alleviating sliding friction between them as shown in FIG. As shown in this figure, by adopting a spiral shape (circumferential force is also directed toward the central axis) as the groove 138, a high pressure region is generated at the center of the bottom surface as the rotor 118 rotates. The sliding friction can be further reduced.
  • a magnet stabilizer 142 composed of the permanent magnet 140 is provided at a corresponding portion of the top of the rotor 118 and the cover portion 112. . This prevents the top from swinging and reduces the load between the convex part 134 and the concave part 136 by attraction by the permanent magnet 140.
  • the width of the micro gap G between the rotor main body 130 and the side wall of the mixing vessel 116 may be set to a predetermined value for temperature control or the like for accurately performing mixing and subsequent reaction. preferable. This can be easily adjusted from 10 m to 500 m, for example, by changing the thickness of the shim 126 installed between the cover part 112 and the base part 110.
  • the gap between bottom plate 110a and the bottom surface of rotor 118 (the lower end of stirring member 132) is preferably set to a predetermined value in order to sufficiently perform the stirring operation.
  • Hp-Hb Hp-Hb ⁇ lmm, more desirably Hp-Hb ⁇ 0.5 mm, and further desirably Hp-Hb ⁇ 0.2 mm.
  • hr is 1.0 mm, more desirably hr is 0.5 mm, and further desirably hr is less than 0.2 mm. is there.
  • each raw material fluid when each raw material fluid is supplied from the introduction port 124, each raw material fluid passes through the flow path formed in the intermediate plate 110b, and the radial direction is formed alternately in the circumferential direction. It is introduced into the mixing space 114 from the flow path.
  • the raw material fluid is stirred and mixed by the strong shearing force generated by the stirring member 132 of the magnetically driven rotor 118.
  • the agitated and mixed product is immediately formed downstream thereof and flows into the microgap G, and is subjected to precise reaction temperature control using a large specific interface area by the temperature control jacket 128, and further by molecular diffusion. Rapid mixing is performed, and reaction and mixing proceed.
  • the mixed or reaction product is led out from a lead-out flow path 122 formed in the cover part 112.
  • the reaction temperature control performed here refers to monitoring the analysis result of an analysis apparatus such as a chromatography apparatus installed downstream of the mixer or the reactor according to the present invention, and the target chemical reaction.
  • the following method is used to maximize the yield of the product produced by
  • Analytical device monitoring results are input to the temperature control jacket controller, and the controller uses PID and other control laws to maximize yield.
  • a control system (electrical signal) for temperature adjustment like this is calculated, and a feedback system is configured to output the input signal (electrical signal) to the temperature control jacket.
  • FIG. 24 is a modification of the embodiment of FIG. 21, and the basic configuration is the same as described above.
  • the width of the downstream portion of the microgap portion G is set so as to gradually increase toward the downstream side. Thereby, even when precipitates such as crystals are generated due to the progress of the reaction, it is possible to avoid clogging of the microgap portion G due to the precipitates.
  • a device capable of avoiding blockage can be configured by appropriately combining the micro space and the downstream macro space.
  • the microgap G is adjusted to a pitch of 10 ⁇ m or more from the 10 ⁇ m force to 500 ⁇ m by adjusting shim 126, preferably 5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the widened gap communicates with the outlet flow path 122 having a tube diameter of 8 mm.
  • the gap of the microgap portion G is set to a minimum of 10 m. This maximizes mixing by molecular diffusion in the micro space.
  • the width of the microgap part G is arbitrarily changed depending on the size of the precipitates.
  • pressure sensors are installed upstream and downstream of the mixer or reactor according to the present invention to monitor the upstream and downstream pressures, and the pressure loss ⁇ ⁇ ( ⁇ ⁇ in the mixer or reactor according to the present invention is monitored.
  • I Upstream pressure Pu—Downstream pressure Pd I) Changes may be monitored.
  • the interval of the microgap is increased by the pitch until it falls within the specified value.
  • the clearance of the microgap G can be reduced to the limit of clogging, and mixing by molecular diffusion can be promoted as much as possible.
  • FIG. 25 is a further modification of the embodiment of FIG.
  • the rotor 118 and the mixing container 116 are configured to expand in diameter toward the downstream side, that is, toward the outlet flow path 122 side.
  • the rotor 118 is in the shape of a truncated cone with the small diameter face down rather than the conical shape. Therefore, the micro gap portion G is also formed between the upper surface of the truncated cone connecting only between the side wall and the conical surface and the top plate 144 of the mixing container 116, and forms a longer micro gap channel.
  • a blade 146 for generating a pump action is provided on the surface of the side surface of the rotor 118 in contact with the microgap part G.
  • the blades 146 may be configured by forming radial, spiral, or curved protrusions or grooves on the outer peripheral surface of the rotor 118.
  • the required discharge performance of a device for example, a pump for pumping the raw material fluid can be reduced, or an external device can be omitted by pumping by itself.
  • the height (depth) of the blade 146 or the groove is preferably 10 ⁇ m to 500 ⁇ m, but it is suitable according to the required pressure rise and flow rate. It can be changed as appropriate.
  • the rotor 118 and the mixing vessel 116 have a conical shape or a truncated cone shape, but are not limited to these shapes.
  • it may be a simple cylindrical shape, or a more complicated shape, for example, the diameter of the rotor 118 changes so as to both expand and contract, or the ridgeline in the cross section is a curved line.
  • the various shapes can work according to the purpose.
  • Fig. 27 shows a mixer according to yet another embodiment of the present invention.
  • a recess that forms a mixing space 154 is formed on the base portion 152 side of the mixing container 150, and the introduction flow path 156 is a vertical flow path 160 that descends from a joint 158 on the upper surface of the base section 152.
  • a horizontal flow path 164 formed by a groove formed on the joint surface of the base portion 152 and the cover portion 162.
  • the outlet channel 166 is led out in the lateral direction from a presser part 162a installed on the cover part 162.
  • FIG. 1 shows a recess that forms a mixing space 154
  • the introduction flow path 156 is a vertical flow path 160 that descends from a joint 158 on the upper surface of the base section 152.
  • a horizontal flow path 164 formed by a groove formed on the joint surface of the base portion 152 and the cover portion 162.
  • the outlet channel 166 is led out in the lateral direction from a presser part 162a installed
  • the coil 168 is equally arranged on the same circumference on the upper surface of the base portion 152 and the lower surface of the cover portion 162, and an excitation current is input from the controller 169. Is magnetized with a sequential polarity, thereby rotating the rotor 170. If the upper and lower coils 168 are always excited so as to have the same polarity as the rotor 170, the rotor 170 can be automatically levitated in the mixing space 154.
  • a temperature adjusting means 171 is provided on the lower surface of the base portion 152.
  • a controller 173 that feedback-controls the operation of the temperature adjusting means 171 in accordance with a control law such as PID control can control the temperature of the fluid in the introduction flow path 156 and the mixing space 154 via the base portion 152.
  • the temperature control means 171 various types such as an electric plate type heater Peltier element or a heat transfer block (plate) for adjusting the temperature of the temperature controlled body by passing a heating or cooling medium are used.
  • the temperature adjusting means 171 may be installed at another part of the mixer or reactor.
  • an electric valve that adjusts the flow rate of the heating or cooling medium is installed before or after the heat transfer block, and an electric valve that adjusts the opening of the electric valve.
  • Input signal current or voltage
  • the introduction flow path 156 (horizontal flow path 164) extends from the lower end of the vertical flow path 160 toward the center in the radial direction, and then branches into two to circulate. It extends about 80 degrees in the direction and further obliquely toward the center, and opens into the mixing space 154 at 90 degrees from the radial flow path. That is, the flow paths for supplying the reagent A and the reagent B are open to the mixing space 154 at positions close to each other and at an angle at which the jet flow collides.
  • the mixer of this embodiment is useful for the so-called diffusion-controlled reaction in which it is difficult to efficiently obtain the target product by the conventional batch method.
  • a diffusion-controlled reaction is a reaction with a high molecular diffusion rate.
  • FIG. 28 shows a mixer according to an embodiment obtained by further developing the embodiment shown in FIG.
  • the base portion 152a is composed of two base portions 174a and 174b.
  • An annular flow path 176a of the first introduction flow path 156a is formed on the upper surface of the lower base portion 174a as shown in the same figure (b), and as shown in FIG.
  • an annular channel 176b of the second introduction channel 156b is formed at a position that does not overlap with the annular channel 176a of the first introduction channel 156a.
  • Through holes 178 arranged in the circumferential direction and the like are formed at positions corresponding to the annular flow paths 176a and 176b of the introduction flow path 156a and the second introduction flow path 156b. Then, on the lower surface of the cover portion 162, as shown in FIG. 4 (d), through holes 178 from the first introduction flow path 156a and the second introduction flow path 156b are paired adjacent to each other and mixed.
  • a V-shaped liquid introduction flow path 179 that opens at the same position in the space 154 is formed.
  • the base plates 174a and 174b, and the cover plate 162 and the base plates 174a and 174b are joined together by bonding or screwing via packing.
  • the introduction channel 156 that was opened only at two places in FIG. 27 can be opened at more places. Accordingly, it is possible to obtain the effects of suppressing the explosion, such as uniform mixing and reaction in the mixing space 154, which are the effects of the embodiment of FIG.
  • FIG. 29 shows a mixer according to still another embodiment of the present invention.
  • the introduction channel 156a and the second introduction channel 156b are joined before entering the mixing space 154, and It is premixed.
  • the example of FIG. 29 (a) is a modification of the shape of the horizontal flow path 164 of the cover portion 162 of FIG. 27 (c), and the branched introduction flow paths 156a and 156b respectively extend 90 degrees in the circumferential direction.
  • the premixing flow path 180a that merges and then extends in the radial direction toward the mixing space 154 is formed. That is, mixing of the two reagents A and B is started in the pre-mixing flow path 180a in the previous stage that enters the mixing space 154.
  • the mixing reagent is surely made uniform when introduced into the mixing space 154.
  • This embodiment is preferably used for reactions that do not cause adverse effects due to premixing.
  • the shape of the confluence is a Y-shaped path that is not a T-shaped path, so that the premixed flow path 180b is set short.
  • the angle of the oblique channel By changing the angle of the oblique channel, the length of the premix channel 180b can be changed. The length may be set appropriately according to the reaction.
  • the inclined flow path 182 reaching the premixing flow path 180c is branched to perform merging in multiple stages.
  • the reagent introduced into the mixing space 154 becomes multi-layered, and each fluid layer becomes thin. Accordingly, the intermolecular distance between the reagents is also reduced, so that mixing is promoted by the effect of improving the mixing efficiency by molecular diffusion.
  • FIG. 29 (d) is a view corresponding to the drawing of the cover portion 162 of FIG. 28 (d), and a Y-shaped premixing flow path 180d is provided at the tip of the liquid introduction flow path 179.
  • This is a premixed type.
  • a large number of introduction flow paths 156a and 156b having a premixing flow path 180d are opened in the mixing space 154.
  • the form of the introduction flow path in each embodiment of FIG. 29 may be selected as appropriate according to the type of reaction.
  • the cross-sectional area of the introduction channel 156 is lmm 2 or less, preferably 0.25 mm 2 or less, more preferably 0.01 mm 2 or less.
  • the cross-sectional dimensions of the introduction flow paths 156, 156a, and 156b must satisfy the condition of W ⁇ H when the width is W and the depth is H, as shown in Fig. 29 (e) and (f). Is desirable.
  • the cross-sectional shape of the introduction flow paths 156, 156a, 156b is selected every time depending on the target chemical reaction such as a rectangular shape or a semicircular shape.
  • the reaction-controlled reaction usually does not proceed in a state where the reagent is mixed in the container, and conventionally, forcibly stirring for a long time has been required to obtain the target product in a high yield.
  • high yield target generation is achieved in a short time by mixing by molecular diffusion in the micro space of the premixing channels 180a to 180d and forced mixing in the micro reaction chamber. It became possible to get things.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Accessories For Mixers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

 充分な生産速度を得ることができ、かつ反応を連続的に行って生産システムを自動化することができるような混合器を提供する。  この混合器は、連続処理を行う反応システムにおいて用いる混合器である。これは、それぞれ異なる流体を供給する少なくとも2つの導入流路20と少なくとも1つの導出流路22を有する混合空間14を形成する容器16と、混合空間14に配置された撹拌子18と、この攪拌子18を駆動する駆動機構28とを有する。撹拌子18を駆動することにより、混合空間14において流体が強制的に撹拌され、迅速にかつ確実に混合される。                                                                                    

Description

明 細 書
混合器及び反応装置
技術分野
[0001] この発明は、化学反応、特に有機化学合成を連続的に行うのに好適な混合器およ び反応装置に関する。
背景技術
[0002] 従来、複数の原料を混合させて化学反応を行う方法として、図 30に示すように、容 器 200に試薬等の原料を投入し、攪拌翼 202のような撹拌部材によってこれを所定 時間混合させるようにするバッチ式プロセスが有る力 あら力じめ決められた容量でし 力 生成物を得られず、また、 1回のバッチ処理で所望の生成物を得るために比較的 大きな容器を使用せざるを得ず、十分な混合や詳細な温度条件を設定することが難 しい。
[0003] また、図 31や図 32に示すような、連続して流体を流通させる容器 204中で、撹拌 子 206や攪拌翼 208のような撹拌部材を用いるいわゆる強制攪拌型ミキサー 210, 2 12が、液体クロマトグラフのグラジェント装置 (溶離液混合装置)に多く用いられてい る。し力しながら、これらの装置では、図 33に示すように、容器 204の導入部に各試 薬が常に過多の状態で存在し、濃度ムラが存在し、均一濃度比にて混合を実施する ことが困難であり、高効率混合が達成できない。
[0004] 一方、近年、微小な流路断面積の流路 (微小流路)を用いて溶液や気体を流通さ せながら種々の化学反応を起こさせるマイクロチャンネルチップが注目されて 、る。 マイクロチャンネルチップは、 1つのチップ上に混合、加熱、反応等のための領域とこ れらを連通させる流路が設けられており、これに素材 (原料)を供給すれば、特定の 反応が実行されるように構成されている。混合領域は、通常、複数の流路を合流させ ること〖こより形成されている。マイクロチャンネルチップでは、基本的に連続プロセス が可能であり、詳細な温度制御を行うことも可能である。
[0005] ここで一般的な化学反応にお!/、ては、反応ごとに好適な温度条件が存在する。こ れは化学反応にお 、て温度を上げると、溶液中の粒子の熱運動エネルギが大きくな ることに起因する。化学反応が起こるためには、原子、分子、イオンなどの粒子が衝 突して粒子の間で原子の組替えが起こらなければならな 、。粒子間で起こる原子の 組替えは、衝突した粒子のすべてに起こるわけではない。図 34に示すように、活性 化工ネルギと呼ばれるある一定以上のエネルギをもつ粒子の間で、 ヽつたんェネル ギの高い不安定な状態の活性錯合体がつくられて、活性錯合体を形成した粒子の みが生成物に変化する。なお、図 34の縦軸はエネルギ、横軸は反応の進行方向を 示す。ここで反応物より生成物のエネルギが低い場合が発熱反応、逆の場合が吸熱 反応であり、図 34は発熱反応の場合を示す。よって化学反応においては、温度を上 げると反応速度が増加する傾向にある。この傾向は下記の式 1に示すァレニウスの式 によっても明確に示される。
[0006] [数 1]
E
k ~A exp 式 1
RT
[0007] ここで Aは頻度因子、 Eaは活性ィ匕エネルギであり、これらは反応に固有な定数である 。また Rは気体定数、 Tは絶対温度である。さらに kは速度定数と呼ばれ、大きくなる ほど反応速度は速くなる。
[0008] しカゝしながら、極端に高温な反応では、反応前の試薬を化学的に分解する等の好 ましくない現象が生じる。そのため化学反応ごとに好適な温度条件が存在し、反応領 域における温度管理は非常に重要である。温度管理が不十分であると、化学反応が 予定通りに行われず、目的とする主生成物の収量低下などの生産性が悪いシステム を余儀なくされる。ところが、従来のようにフラスコ、ビーカー、および大きな反応槽を 用いた化学反応では、ある程度の量の試薬溶液を用いて化学反応させるため反応 領域全域を迅速に、かつ均一に温度調整することが非常に困難であった。これに対 して、マイクロチャンネルチップにおける化学反応では、反応領域における試薬溶液 の質量が極少であるため、温度設定を迅速に、かつ均一に行える。そのため化学反 応に好適な温度条件を得ることが可能となる。これはマイクロチャンネルチップを用い た化学反応において、大きな利点の一つとして挙げることができる。
[0009] ところがマイクロチャネルチップ運用時には、様々な懸念事項も存在する。マイクロ チャンネルチップ運用時の最も大きな懸念事項の一つとして、マイクロチャンネルチ ップで異なる種類の試薬を混合した際に、十分に混合が進まないことが挙げられる。 一般的にマイクロチャンネルチップでは試験管、ビーカー、またはフラスコなどの反応 容器 (混合器)と比較して、攪拌などによる混合が促進されない。流体が混合するに は、分子拡散と乱流拡散が作用する。分子拡散と比較して乱流拡散は、混合の際に 大きな効果がある。例えばコーヒーにミルクを落とした際に、静観して分子拡散によつ てミルクが混合するのを待つより、スプーン等で攪拌し乱流拡散によって混合したほう が早く確実に混合することからも直感的に理解できる。
[0010] 上記の事柄を指標するものとして、理論的には流体工学の用語であるレイノルズ数
Reを用いる。レイノルズ数 Reの定義式を式 2に示す。
[0011] [数 2]
Ώ DV
Re = · · .式 2
V
[0012] ここで Vは流速、および Vは動粘性係数である。 Dは代表寸法と呼ばれ、流体が流れ る流路の断面寸法 (幅や高さ)などを用いる。 Re数が小さい流れを層流、 Reが大きい 流れを乱流と呼ぶ。層流および乱流の流動様相の一例として、流れ場中に障害物( 円柱)を置いた場合の流れの可視化写真を図 35 (a)、および図 35 (b)に示す。例え ば1¾?32でぁる図35 (&)においては、障害物の下流側で流れはきれいな層状に流れ 、乱れなどが生じていないことが分かる。このようなきれいな層状の流れを層流と呼ぶ 。ところが Re?161の図 35 (b)においては、障害物の下流側ではカルマン渦列と呼ば れる千鳥状の渦列が生じ、渦の効果によって混合が促進されているのがうかがえる。 また図示してはいないが、 Re数が 103〜105の領域では、障害物の左右から放出され る渦は、下流に行くに従って拡散し、流れ全体が不規則に乱れた流れになる。このよ うな流れ場を乱流と呼ぶ。 [0013] マイクロチャンネルチップ内の流れのような管内流れにおいては、 Re数が 1000程度 で層流力 乱流に遷移することが知られており、乱流の拡散効果を得るためには式 1 よりリアクターの流路幅は大きぐ流速も大きいほうが良いと言える。従来の技術の代 表的なマイクロチップの混合流路は幅 100 m程度であり、流速は 0.01m/s程度で運 用されていた。該条件における Re数は、代表寸法 Dを流路幅の 100 m、混合流路 内で流速を 0.001m/s、および流れる流体を水と仮定して試算すると、
[0014] [数 3]
n 100x lO"6 x 0.001 , lt
Re = —6 = ] ' · '式 3
10- 6
[0015] となり Re数が小さい層流領域であるため、混合流路ではきれいな層状の流れとなり、 混合が促進されづら 、ことが予測される。
[0016] さらに、マイクロチャンネルチップは、流路自体が微小であるから、難反応物質の連 続合成には適している力 反応による生成量自体が小さい。また、マイクロチャンネル チップでは、混合流路の形状を柔軟、容易に変更できないので、製造後に、目的と する化学反応が達成できな力 た場合には、再度、製作する必要がある。そのため にチップが高価となり、製作時間も力かるのでプロセス最適化の作業効率が悪ぐコ ストも高くなる。また、マイクロチャンネルチップでは、混合器流路内の洗浄性が低ぐ 異物や生成物が詰まり安 、と 、う不利点も有る。
発明の開示
発明が解決しょうとする課題
[0017] この発明は、前記事情に鑑みて為されたもので、試薬投入の際に混合器内におい て拡散を促進させて化学反応を迅速かつ連続的に行い、充分な生産速度を得ること ができ、かつ詳細な温度制御などにより高い反応効率を実現できるような混合器及び 反応装置を提供することを目的とする。
課題を解決するための手段
[0018] 前記目的を達成するために、請求項 1に記載の混合器は、連続処理を行う反応シ ステムにお 1、て用いる混合器であって、それぞれ異なる流体を供給する少なくとも 2 つの導入流路と少なくとも 1つの導出流路を有する混合空間を形成する容器と、前記 混合空間に配置された撹拌子と、該攪拌子を駆動する駆動機構とを有することを特 徴とする。
[0019] 請求項 1に記載の発明においては、撹拌子を駆動することにより、混合空間におい て流体が強制的に撹拌され、迅速にかつ確実に混合される。
[0020] 請求項 2に記載の混合器は、請求項 1に記載の発明にお 、て、前記混合空間は回 転対称に形成され、前記撹拌子は、前記混合空間の回転対称軸まわりに回転する 回転子であることを特徴とする。
[0021] 請求項 3に記載の混合器は、請求項 1または請求項 2に記載の発明において、前 記撹拌子は、前記混合空間の回転対称軸から周縁部に向けて延びる放射状部を有 することを特徴とする。これにより、放射状部が流体中で移動する時に流体を強く撹 拌する。
[0022] 請求項 4に記載の混合器は、請求項 1な!、し請求項 3の 、ずれかに記載の発明に おいて、前記容器は、容器本体と蓋部とを有することを特徴とする。これ〖こより、内部 の洗浄やメンテナンスが容易となる。
[0023] 請求項 5に記載の混合器は、請求項 1な!、し請求項 4の 、ずれかに記載の発明に おいて、前記駆動機構は、前記撹拌子を遠隔的に駆動するものであることを特徴と する。これにより、駆動系からの汚染物の進入が防止される。
[0024] 請求項 6に記載の混合器は、請求項 1な!、し請求項 5の 、ずれかに記載の発明に おいて、前記駆動機構は、前記撹拌子に直結してこれを駆動するものであることを特 徴とする。これにより、駆動速度の制御が容易となる。
[0025] 請求項 7に記載の混合器は、請求項 1な!、し請求項 6の 、ずれかに記載の発明に お!ヽて、前記混合空間の温度を調整する温度調整機構が設けられて!/ヽることを特徴 とする。これにより、反応に適した温度に維持して反応を促進させる。
[0026] 請求項 8に記載の混合器は、請求項 2に記載の発明にお 、て、前記回転子と前記 容器の対向面間に微小隙間が形成されていることを特徴とする。
[0027] これにより、原料流体が微小隙間を通過する際に、回転子の回転による剪断作用と ともに、分子拡散によって混合が促進される。
[0028] 請求項 9に記載の混合器は、請求項 8に記載の発明にお 、て、前記微小隙間は、 互いに対向する円錐面により形成されて!ヽることを特徴とする。
[0029] 請求項 10に記載の混合器は、請求項 1ないし請求項 9のいずれかに記載の発明 において、前記少なくとも 2つの導入流路は、前記混合空間において互いに近接し て開口していることを特徴とする。
[0030] これにより、混合空間へ流入した直後に混合が迅速に進行し、濃度が不均一にな る状態を抑制する。
[0031] 請求項 11記載の混合器は、請求項 1ないし請求項 9のいずれかに記載の発明に おいて、前記少なくとも 2つの導入流路は、前記混合空間への開口部より上流側で 合流して ヽることを特徴とする。
[0032] これにより、混合空間へ流入する前に混合を進行させ、濃度が不均一になる状態を 抑制する。
[0033] 請求項 12に記載の反応装置は、請求項 1ないし請求項 11のいずれかに記載の混 合器と、これに原料流体を供給する供給源と、前記混合器における反応生成物を回 収する回収容器とを有することを特徴とする。
[0034] 請求項 13に記載の反応装置は、請求項 12に記載の発明において、前記混合器 における撹拌子による撹拌速度を制御する制御装置を有することを特徴とする。
[0035] 請求項 14に記載の反応装置は、請求項 12または請求項 13に記載の発明におい て、前記混合器における温度を制御する制御装置を有することを特徴とする。
[0036] 請求項 15に記載の反応装置は、請求項 12ないし請求項 14のいずれかに記載の 発明にお 1ヽて、前記反応生成物を分析する分析装置を有することを特徴とする。 発明の効果
[0037] 請求項 1ないし請求項 12に記載の混合器によれば、混合空間に配置された撹拌 子の撹拌力によって、確実な混合を実用性のある処理速度で実行することができる。
[0038] 請求項 13ないし請求項 15に記載の反応装置によれば、混合空間に配置された撹 拌子の撹拌力によって、確実な混合を実用性のある処理速度で実行することができ 、品質の良い反応生成物を生産性良く得ることができる。 図面の簡単な説明
圆 1]この発明の実施の形態の混合器を示す、(a)外観斜視図、(b)断面図である。 圆 2]図 1の混合器の作用を示す概略図であり、(a)正面断面図、(b)平面断面図で ある。
圆 3]図 1の混合器の変形例を示す平面断面図である。
圆 4] (a)な 、し (f)は、撹拌子の各種変形例を示す図である。
[図 5] (a)及び (b)は、図 1の実施の形態の混合器の変形例を示す図である。
[図 5-1] (c)は、図 1の実施の形態の混合器の変形例を示す図である。
[図 6] (a)ないし (d)は、ベース部 152aの各種変形例を示す図である。
[図 7] (a)ないし (d)は、カバー部 162の各種変形例を示す図である。
[図 8]カバー部 162の他の変形例を示す図である。
[図 9] (a)ないし (d)は、ベース部 152aの各種変形例を示す図である。
[図 10] (a)は、他の実施の形態の混合器を示す図である。
[図 10-1] (b)は、他の実施の形態の混合器を示す図である。
[図 11] (a)ないし (c)は、他の実施の形態の混合器を示す図である。
[図 12] (a)及び (b)は、さらに他の実施の形態の混合器を示す図である。
[図 13]さらに他の実施の形態の混合器を示す図である。
[図 14]さらに他の実施の形態の混合器を示す図である。
圆 15] (a)及び (b)は、この発明の実施の形態の混合器による第 1の実施例を説明す る図である。
[図 16]図 15で説明した実施例の結果を示すグラフであり、(a)は、反応の結果の一 例を示す時間 収率図である。
[図 16-1]図 15で説明した実施例の結果を示すグラフであり、(b)は、生成物流量 収率図である。
[図 17]図 15で説明した実施例にお 、て、導入流体の流速と攪拌子の周速度の比と 収率の関係を示すグラフである。
[図 18] (a)及び (b)は、この発明の実施の形態の混合器の他の実施の形態を説明す る図である。 圆 19]図 18で説明した第 2の実施例の結果を示すグラフである。
圆 20]この発明の他の実施の形態の混合器を説明する図である。
[図 20A]この発明の第 3の実施例を説明する図である。
圆 20A-1]この発明の第 3の実施例を説明する図である。
[図 21] (a)は、この発明の、他の実施の形態の混合器を示す図である。
[図 21-1] (b)は、この発明の、他の実施の形態の混合器を示す図である。
[図 22] (a)ないし (c)は、ベース部 152aの構成を示す図である。
[図 23]スターラの他の実施の形態を示す図である。
[図 24]さらに他の実施の形態の混合器を示す図である。
[図 25]さらに他の実施の形態の混合器を示す図である。
圆 26]図 25で説明した実施の形態のスターラの構成を示す図である。
圆 27]さらに他の実施の形態の混合器を示す図であり、 (a)は外観図である。
[図 27-1]さらに他の実施の形態の混合器を示す図であり、 (b)は断面図である。
[図 27-2]さらに他の実施の形態の混合器を示す図であり、 (c)は (b)の c矢視図であ る。
[図 28]さらに他の実施の形態の混合器を示す図であり、 (a)は断面図である。
[図 28-1]さらに他の実施の形態の混合器を示す図であり、(b)〜(d)は、(a)の b〜d 矢視図である。
[図 29]さらに他の実施の形態の混合器の導入流路 156を示す図である。
[図 29-1]さらに他の実施の形態の混合器の導入流路 156を示す図である。
[図 29-2]さらに他の実施の形態の混合器の導入流路 156を示す図である。
[図 30]従来のバッチ式の混合器を示す図である。
[図 31]従来の連続式の混合器を示す図である。
[図 32]従来の連続式の混合器の他の例を示す図である。
[図 33]従来の連続式の混合器の作用を示す図である。
[図 34]化学反応におけるエネルギの変化を示すグラフである。
[図 35]流れ場中に障害物を置 ヽた場合の流れの状態を示す図である。
符号の説明 [0040] 10, 110, 152 ベース部
12, 112, 162 カノ一部
14, 114, 154 混合空間
16, 116 混合器
18, 118, 170 撹拌子
20, 120, 156 導入流路
22, 122, 166 導出流路
28 駆動機構
38, 169, 173 コントローラ
40 放射状部
52 ヒータ
53 温度センサ
54 熱媒体流路
56 分析装置
171 温度調節手段
180a〜180d 予混合流路
発明を実施するための最良の形態
[0041] 以下、図面を参照してこの発明の実施の形態を説明する。なお、以下の実施の形 態では、混合によって反応を起こさせて、生成物を得ることを目的とするので、混合 器は同時に反応器であり、混合システムは反応システムである。
[0042] 図 1は、この発明の第 1の実施の形態の混合器であって、ベース部 (容器本体) 10 及びこれを覆うカバー部(蓋部) 12によって内部に混合空間 14が形成された混合容 器 16が構成されており、混合空間 14内には撹拌子 18が設けられている。混合空間 14は垂直軸線回りに回転対称に形成され、この実施の形態ではやや扁平な筒状の 空間である。ベース部 10には、外周面側に軸線を挟んで対向する位置に開口する 2 つの導入流路 20が設けられ、カバー部 12にはほぼ中心軸線上に開口する導出流 路 22が設けられ、それぞれの外端部には継手 24が設けられて、流体を供給または 排出するチューブ 26を取り付けることができるようになつている。カバー部 12とベース 部 10は、処理に必要なシール構造を備えており、また、簡便な開閉機構によってメン テナンス等が簡単にできるようになつている。この混合器は、継手 24とチューブ 26で 流体供給源や他の混合器その他と簡単に接続することができるので、処理システム の組立、保守、あるいは設計変更等が容易に行える。
[0043] 混合空間 14の大きさを小さくすれば、混合空間内の流体の容積に対する表面積の 比率が大きくなるため、容器内流体の温度制御や流体混合が促進される効果が得ら れる。混合空間 14の代表寸法(内径) Dは、 200mm以下、より好ましくは 100mm以下 、さらに好ましくは 10mm以下であることが望ましい。
[0044] 撹拌子 18は、この実施の形態では、混合空間 14の軸線に直交する方向に延びる 部材であり、混合容器 16の下側に設置された駆動機構 28によって、混合空間 14の 軸線回りに強制回転駆動される。この駆動機構 28は、モータ 30によって永久磁石 3 2が搭載されている円盤 34を回転させることにより、撹拌子 18を遠隔的に回転させる もので、電源装置 36とコントローラ 38が設けられている。コントローラ 38は、目的とす る化学反応に対し、生成物を高収率で得るために最適となるようにモータ 30の回転 数の調整を行う。この実施の形態では、撹拌子 18は中央部が膨らんだ柱状で、いわ ゆるフットボール状である力 軸回りに完全な回転体である必要はなぐ高さ hと幅 w が異なる扁平な形状であってもよい。なお、回転数を時間的に変動もしくは、正逆転 させることにより、容器内の流体の混合を促進することもできる。
[0045] 撹拌子 18の材質は、磁性体もしくは金属にテトラフルォロエチレン重合体やセラミ ック、ガラスをはじめとする耐有機系流体の特性を有する材料をコーティングしたもの を使用する。勿論、撹拌子 18自身を耐有機系流体の特性を有する材料で形成して もよい。撹拌子 18の形状や寸法は、混合空間 14の形状、寸法に合わせて設定され る。すなわち、撹拌子 18と混合空間 14の間に形成される隙間は、導入した被混合流 体が通過する流路であり、かつ、撹拌子 18が回転することによって形成される旋回流 によって撹拌混合がなされる空間である。導入流路 20から導出流路 22に至る流路 において流体が滞留したり、他の流体と混合する機会が無いまま導出したりすること が無いように設定される。このような空間の形状、寸法は、撹拌子 18の回転速度や、 混合される流体の粘性等の物理的性質、及び混合の結果起こる反応によって生成 する物質の物理的性質等も考慮して決定される必要がある。
[0046] 継手 24は一般的な配管用のネジなどが形成されて 、れば、 V、ずれの形状、規格 でもよい。継手 24に関して、要はこの発明による混合器もしくは反応器へ試薬を導入 もしくは、混合後の生成物を導出するための配管、もしくはチューブ 26と混合器を漏 洩なしに接合 (連結)できる構造であれば 、ずれでもよ 、。
[0047] 以下、上記のように構成された混合器を用いて 2つの流体の混合を行う場合の作用 を、図 2を参照して説明する。 2つの流体は、ポンプ等の作用によって、同図(a)のよ うに、混合容器 16の下部近傍において互いに対向する周方向位置に設けられた導 入流路 20から混合空間 14の中心に向けて圧送され、上部の導出流路 22から導出 する。この過程において、混合空間 14では、同図(b)のように、撹拌子 18は空間内 の流体を剪断するように回転しているので、流体は周方向に流れるとともに上下方向 にランダムに流動する。従って、各流体は中心方向と周方向の速度成分を持って、 同図(b)のように、まず層状の渦流れを形成し、撹拌子 18に衝突する毎に上下に流 動して撹拌され、全体として徐々に上方向に流れる。
[0048] この過程において、撹拌子 18の回転により、混合空間 14内に導入される各供給流 体には、剪断力が作用し、各供給流体の流体層は微細化され、各供給流体は薄層 を形成しながら混合される。これにより、混合'拡散し反応する両供給流体間の分子 間距離が小さくなり、混合及び反応効率が向上する。
[0049] 図 3に示すように、混合容器 16への導入流路 20aは、混合空間 14の中心へ向かう 方向から周方向へ傾ければ、攪拌子 18に対する流入流体の相対速度を速め、より 強い剪断力を生じさせることができ、混合効率が一層向上する。攪拌子 18の役割は 、容器へ流入した流体に強い剪断力を与えることに有る。攪拌子 18に限らず、混合 容器 16がこうした剪断力を流入流体に与える機構を有して 、れば、各供給流体の流 体層は瞬時に微細化される。なお、供給流体は液体に限定されるものではなぐ例え ば流体の一方が気体である場合には、強い剪断力で引きちぎられた気泡はマイクロ バブル化 (微細気泡化)し、混合容器 16内に均一に分散される。マイクロバブルでは 、気体容積に対するバブル表面積が飛躍的に増大するため、反応効率が向上する。
[0050] この混合器では、混合空間 14の直径 Dと撹拌子 18の長さ dsの比(ds/D)カ^に近 いほど、撹拌子 18の回転により、各混合供給流体の搔きとりが効果的 (無駄がなく) になされ、それにより、混合空間 14内での供給流体の薄層が効果的に形成される。 これにより、供給流体同士の分子間距離も小さくなるので、分子拡散による混合が促 進される。一方、この比が小さすぎると、撹拌子 18の回転速度が小さくなつて、あるい は、流体の流れが円滑でなくなって逆効果になるので注意を要する。
[0051] 撹拌子 18の回転速度について説明すると、この混合器では、供給流体の導入流 速 Vは、
ν= (4^) / ( π -di2) · · ·式 4
で求められ (Qは供給流体の供給量 QAまたは QB、 diは導入流路 20の内径)、撹拌 子 18の周速度 Vcは、
Vc = π · ds · ω · · ·式 5
で求められる(dsは攪拌子 18の長さ)。ここで、流速と撹拌子 18の周速度との差であ る、相対 (周)速度が大きくなれば、すなわち、導入流速 Z撹拌子周速の比が小さく なれば、混合空間 14内に導入された各供給流体の流体層は微細化され、各供給流 体間の流体層は薄くなり、混合空間 14内での供給流体の積層数が多くなる。それに より、供給流体同士の分子間距離も小さくなるので、分子拡散による混合が促進され る。供給流体の導入速度 Z撹拌子の周速の比が 1Z3以下、より好ましくは 1/5以下 、さらに好ましくは 1/8以下であることが望ましい。
[0052] 図示する例では、撹拌子 18を滑らかな曲面で形成することによって、寸法差を小さ くしても円滑な回転や流れを確保することができる。同じ効果を得るために、混合空 間 14の容積と撹拌子 18の体積の体積比 (撹拌子体積 Z混合空間 14容積)を小さく してもよいが、寸法差が大きくなるとよどみ領域ができてしまう。寸法差を小さくしてか つ体積比を小さくするには、撹拌子 18の扁平比(=hZw)を 1より大きくしてやれば よいが、この実施の形態のような遠隔的に駆動される撹拌子 18で、かつ単純な棒状 では姿勢が不安定になるので難しい。後述するような 3方向以上に延びる放射状の 撹拌子 18や、駆動軸で直接駆動される方式の場合には採用可能である。
[0053] また、混合空間 14の容積と撹拌子 18の体積の体積比は対象とする反応に対し、最 適なものを選択することが必要である。例えば、析出系の反応では体積比(回転体体 積 Z混合室容積)を小さくすれば、析出物の混合空間 14への滞留による、撹拌子 1 8の停止を抑制することが可能となる。体積比としては、 5%〜80%、より好ましくは 15 %〜60%、さらに好ましくは 20%〜40%が良いが、適時、対象とする化学反応により 最適値を選択することは言うまでも無 、。
[0054] 混合状態を制御する上で重要となる他の因子としては、混合容器 16における流体 の全体としての通過時間が挙げられる。これは、流体の供給圧力や導入流路 20、導 出流路 22での絞り度等によって調整することができる。従って、充分な混合あるいは それに伴う反応時間を得ることができるように、導入流路 20、導出流路 22の内径 di、 deを設定しなければならな 、。
[0055] この通過時間を Tとすると、混合空間 14内の供給流体の層数は、撹拌子 18の単位 時間当たりの回転数 ωと時間 Tの積(ω ·Τ)に関係する。またここで、一つの層の厚 みは、混合空間 14直径 Dを前記層数で割った値の関数となる。これにより、この発明 による混合器では、混合空間 14直径 Dが小さぐ撹拌子 18の回転数 ωが大きいほど 、混合空間 14内の供給流体の流体層が微細化し、より Dが小さくなれば、混合空間 1 4内の供給流体の滞留時間が減少して、短時間で効果的な混合が達成される作用 が生じる。なお、カバー部 12およびベース部 10に形成する供給流体の導入用流路 および混合 (反応)生成物の導出流路 22の内径は、 φ 8.0mm以下、より望ましくは φ 1.0mm以下であることが望ましい。
[0056] 上述したように、この発明による混合器における混合の作用は、複雑な因子の組み 合わせによって支配される。これらの中には、流体の供給、排出速度、流体の粘性、 供給流体の混合比、混合の結果起こる反応や生成物の種類等が挙げられる。特に、 この実施の形態のような遠隔駆動の撹拌子 18では、駆動機構 28による流体の汚染 を防止することができる利点があるが、撹拌子 18の回転速度を完全に制御することも 難しい。そこで、混合あるいは反応処理の態様毎に、装置の各部の形状、寸法、その 他の条件を試行して、最適のものを採用することが望ましい。以下に、この装置の種 々のバリエーションを説明する。
[0057] 図 4は、撹拌子 18の形状の変形例であり、 (a)は、両端が半球で中央が筒状のカブ セルタイプ、(b)は円柱状、(c)は角柱状のものである。また、(d)はフットボールタイ プを、(e)は円柱状を、(f)は角柱状をそれぞれを十字状にしたものである。これらは 、いずれも回転軸線 (混合空間 14の軸線)に直交する方向に延びる軸線を持つ放射 状部 40を有している。このような放射状部 40の断面形状は、上記例に限られるもの ではなぐ任意の曲線的、直線的形状が採用可能である。例えば、曲線形状としては 、円、楕円、あるいは適宜の 2次、 3次の閉曲線が挙げられ、直線形状としては、三角 形をはじめとする任意の多角形が挙げられる。勿論、曲線形状と直線形状の混合形 状でもよい。例えば、上述したように、縦に扁平な楕円は(a)や (b)のタイプでは倒れ てしまうので採用しにくいが、(d)、(e)のタイプでは採用可能であろう。
[0058] また、放射状部 40の数は、上で示した 2、 4の場合に限られず、適宜の数を採用す ることができる。放射状部 40のそれぞれの形状、長さその他の寸法を同じにする必 要は無い。例えば、(e)において交差する 1つの方向を短くしてもよい。それによつて 姿勢の安定を確保する等の作用を得ることができるからである。また、(a)、(d)の放 射状部 40は、その軸線に沿って等断面ではないが、他は軸線に沿って等方的であ り、いずれでもよいことは明らかである。角部は適宜に面取りする(丸める)ことが望ま しい。
[0059] 図 5 (a)は、混合空間 14の天井部分の形状を撹拌子 18の上面の形状に合わせた もので、それによつて流体の流れの淀みを軽減させるようにしている。これにより、流 体力 互いに相対移送する 2つの部材によって形成された狭い流路を通過する時に 、流体に大きな剪断力が作用し、強い撹拌作用を発揮するものと考えられる。図 5 (b )は、図 4の(b)、(c)等を用いた図であり、やはり、流体の流れの淀みを軽減させるも のであるが、下面側を曲線形状として撹拌子 18の円滑な回転を促進している。
[0060] 上記の各例において、混合器の混合空間 14の容積と撹拌子 18の体積もしくは、混 合空間 14直径と撹拌子 18の長さ、もしくは混合空間 14の高さと撹拌子 18の直径( 外周径)の寸法的な関係、あるいは各寸法自体は、既述のように混合結果に影響を 与える因子であり、種々試行してそれぞれの処理の条件に好適なものを見つけること が必要である。なお、混合空間 14の直径と撹拌子 18の回転直径の直径比率 (撹拌 子回転直径 Z混合空間 14直径)は、 50%以上であることが望ましい。これは、混合 空間 14内の供給流体を撹拌子 18の駆動により混合するに際して、撹拌子 18の駆動 により発生する回転流 (旋回流)により混合を促進させる効果が作用する有効範囲で ある。
[0061] また、図 5 (c)に示すように、混合器における導入流路の高さ方向位置 hiと攪拌子 1 8の高さ方向中心位置 hsとの間には最適な位置関係があり、容器内に流体が導入さ れた瞬間に強 、せん断力をカ卩えるために、
hs-h/2 < hi < hs +h/2 '…式 6
の関係を満足して 、ることが望ま 、。
[0062] また、上記の例において、導入流路 20を下に、導出流路 22を上に設けた力 勿論 、これに限られるものではない。また、導入流路 20を外周面に、導出流路 22を軸線 上に設けたが、これに限られるものではない。混合器の運用上の利便性があれば、 上記の例にお 、て設けた 2つの導入流路 20の 、ずれかを導出流路 22として用いて も良い。その場合、流体の流れによる混合作用は上述したものと異なるが、結果とし て充分な混合がなされれば良い。これは、後述する実施の形態についても同様であ る。以下、導入流路 20と導出流路 22の形成の仕方に関する他の実施の形態を、図 6ないし図 9により説明する。
[0063] 図 6は、ベース部 10側の導入流路 20または導出流路 22 (以下、導液流路と言う。 ) を示すもので、(a)、 (b)は 3つの導液流路を設けたもので、 3つの流体を混合させる のに好適である力 例えば、流量の異なる 2流体を混合するのにも好適である。 (a) は等角度配置の γ字状である力 (b)は T字状であり、他の角度配置でもよい。(c)は 4導液流路、(d)は 6導液流路の例であり、これらは 2流体を分散して供給して混合す るのにも好適である。これにより、流速と撹拌子 18の相対 (周)速度が大きくなるから である。導液流路の数については適宜に設定可能である。また、各導液流路にどの 供給流体を導入するか、いずれかを導出流路 22とするかも、対象とする化学反応に より都度選択することができる。例えば、(d)における 6導液流路の場合に、異なる 2 流体を各流路から交互に導入すれば、図 2 (b)に示した流体層はより微細に積層さ れた構造となるので、混合を一層促進させることができる。
[0064] 図 7は、カバー部 12側の導液流路の形成についての例を示す。 (a)は、図 1と同様 である。(b)は、混合空間 14の周辺部に開口する複数の導液流路 22bを 1つの流路 22に合流させたもので、(c)は、混合空間 14の径方向中間部に開口する複数の導 液流路 22cを 1つの流路 22に合流させたものである。(c)の例では、カバー部 12の 下面の導液流路の開口部に凹部 42を形成して、混合空間 14で生成した気体の排 出を促進するようにしている。また、(d)は、カバー部 12の下面に混合空間 14に突出 する突起部 44を形成し、その突起部 44の外周に複数の導液流路 22dを形成したも のである。この例も、混合空間 14で生成した気体の排出を促進する効果を有する。
[0065] 図 8は、カバー部 12の他の実施の形態を示すもので、導出流路 22aの下流部分に おいて流路断面積を狭くした構造を有するものである。混合容器 16内で混合された 流体が、狭い流路断面積部に導かれることにより、微細化した流体塊同士の距離が 一層狭まり、分子拡散による急速混合を促進する効果が得られる。従来のバッチ式 プロセスにおける攪拌では、攪拌混合による効果し力期待できず、また、マイクロチヤ ネルチップを用いた混合器では拡散混合による効果しか期待できな 、のに対し、本 発明では両者の混合作用の相乗効果が期待できるため高い混合効果が得られる。 なお、図 8では管路の一部を絞った形態を示しているが、流路断面積を少なくできる 構造であれば、その形態によらず、拡散混合の効果が増大できる。
[0066] 図 9は、ベース部 10に設けた導液流路の他の例を示すものである。 (a)は、先に説 明した混合空間 14の外周に流路が開口するものである力 (b)は、導液流路 20bが 混合空間 14の外周ではなぐ屈曲して径方向中間の底部に開口し、さらに、(c)では 、導液流路 20cはほぼ中央に開口する。また、(d)は、 2つの導入流路 20からの流路 を混合空間 14に導く前に、供給流体の流体混合による予備混合を行い、その後混 合空間 14に導くものである。なお、上述したベース部 10とカバー部 12はそれぞれ適 宜に組み合わせて用いることができることは言うまでもない。これらの導液流路は、い ずれも導入流路 20としても導出流路 22としても使用することができるのは、先に説明 した通りである。
[0067] 図 10は、撹拌子 18の駆動機構 28の他の実施の形態を示すものである。 (a)は、混 合容器 16と駆動機構 28をネジ止めもしくは接着をはじめとする適宜の手法により一 体ィ匕したものである。(b)は、混合空間 14内の撹拌子 18を駆動機構 28であるモータ 30とシャフト 46により機械的に一体ィ匕したものである。先の遠隔駆動式の撹拌子 18 は、汚染を防ぐのに好適であるが、撹拌子 18の回転数と駆動機構 28のモータ 30の 回転数は必ずしも一致せず、また制御の遅れも有る。このような不一致や遅れは、撹 拌子 18と混合空間 14壁との摩擦や流体の粘性抵抗によるもので、目的とする化学 反応によっては、厳密な速度制御が必要であり、このような不一致や遅れが問題とな る場合がある。この実施の形態は、問題点に対処するためのものである。
[0068] この実施の形態では、モータ 30の出力軸に撹拌子 18がシャフト 46により直結され ているので、スラストおよびラジアル方向加重を受ける軸受 48と、駆動機構 28から混 合空間 14への汚染物の進入及び、混合空間 14内の供給流体の駆動機構 28への 進入を回避するためのシャフトシール 50が設けられている。シャフトシール 50の材質 は、テトラフルォロエチレン重合体をはじめとする、耐有機系薬品のものを使用する。
[0069] 図 11は攪拌子 18の駆動機構 28の他の実施の形態を示すものである。この実施の 形態では、混合容器 16の下面側と上面側の両者に複数のコイルを用いた磁気駆動 機構 70を有している。混合容器 16の上下面には同一円周上の等配位置にコイル 7 2を複数設置し、各コイル 72への電流はコイル励磁用コントローラ 74より出力する。ま たここで、攪拌子 18は磁性体もしくは磁性体に榭脂などをコーティングしたものを用 いる。
[0070] 本駆動形態では、上下面の同一円周上の等配設置したコイル 72に、順次、励磁電 流をコントローラ 74より入力し、コイル 72に順次極性 (N, S)を持たせて磁化し、それ により攪拌子 18Aを回転させるもので、いわゆるステッピングモータの原理を利用す るものである。なお、上下面のコイル 72には常に攪拌子 18Aに対して同極になるよう に励磁すれば、攪拌子 18Aの自動浮上駆動が期待できる。
[0071] また、この実施の形態では、励磁電流をコントロールすることで、意図的に攪拌子 1 8Aを上面あるいは下面のいずれかに偏らせて回転することが可能になる。例えば上 面の磁場を ON、下面の磁場を OFFとすることにより攪拌子 18Aを導出流路 22の存 在する上面に近接させ、攪拌子 18Aと上面との間に幅の狭いマイクロ空間を構成す るものである。このとき、壁面との微少距離を確保するための一手段として、図中の攪 拌子 18Aの形状例の如ぐ攪拌子 18A上面には微少な突起 (ノッチ) 76を設ける。こ うしたマイクロ空間を通過して導出流路 22へ向力 間に、容器内で混合した各流体 はマイクロ空間の特性により急速に分子拡散混合し、高 ヽ混合効率を実現することが できる。
[0072] 本実施の形態では、反応の状況に応じて磁場の ON'OFF制御を行うことにより、 最適な反応を実現することも可能である。
[0073] 図 12は、この発明の他の実施の形態の混合器である。(a)は、ベース部 10にヒータ
(加熱器) 52、混合室の温度を検知する温度センサ 53を設置して、混合した流体の 温度調整を行うものである。これにより、各種の化学反応において最適な温度条件で 混合及び反応を行わせることが可能となり、高収率にて生成物を得られる効果が得ら れる。
[0074] なお、この発明によるヒータ 52は、混合空間 14に併設もしくは混合空間 14を形成 する壁として設置されることが望ましいが、混合空間 14内の温度を制御できる位置関 係にあれば、隔壁されていても、上部、下部、外周などいずれの位置であっても、板 状、棒状などの形状でもよい。また、ヒータ 52および温度センサ 53は、ベース部 10も しくはカバー部 12に形成される、供給流体の導入流路 20中に設置してもよい。ヒー タ 52は、直流もしくは交流電源により駆動し、コントローラ 38により可変に温度制御 可能なものが望ましいが、一定温度出力のものでもよい。
[0075] 図 12 (b)は、図 10 (b)で説明した直結駆動型の撹拌子 18と、ヒータ 52を組み合わ せたものである。この実施の形態では、ヒータ 52は、シャフトシール 50と混合空間 14 の間に設置され、温度センサ 53は、混合室内の温度を検出する位置に設置している 力 両者は、混合空間 14もしくは供給流体の導入流路 20の中、もしくは両方に設置 してもよい。この実施の形態では、ヒータ 52と温度センサ 53による混合空間 14の温 度制御と、コントローラ 38による撹拌子 18の最適回転数制御により、目的とする化学 反応において生成物を得るのに最適な温度条件、撹拌子 18の回転数条件下で混 合もしくは反応がなされ、高収率にて生成物を得られる効果が得られる。なお、コント ローラ 38はヒータ 52、駆動機構 28のおのおの別個に設けても、コンピュータもしくは シーケンサなどを用いて、両者を同時に制御してもよい。
[0076] 図 13は、この発明のさらに他の実施の形態である。これは、温度制御手段としてヒ ータ 52の代わりにベース部 10に加熱もしくは冷却用の媒体 Mを流す熱媒体流路 54 を形成し、かつ温度センサ 53を混合室の温度を検出する位置に設置したものである 。図示していないが、加熱もしくは冷却媒体 Mの流量を調節する流量調整弁が設け られ、混合空間 14の温度を調整することが可能である。流量調整弁は電動式として コントローラ 38により自動制御してもよいが、手動式でもよい。このような熱媒体流路 5 4を形成した伝熱プレートをベース部 10の下側に設置してもよい。これによつて、カロ 熱もしくは冷却により目的とする化学反応に最適な温度制御を達成し、化学反応を 高効率に行うことが可能となる。なお、熱媒体流路 54は、混合空間 14もしくは供給流 体の導入流路 20中もしくは両方に設置してもよ 、し、カバー部 12に設置してもよ 、。 このような熱媒体流路 54を、図 12 (b)の撹拌子直結駆動式の混合器に用いても良 い。
[0077] 本発明では、供給流体を圧送するポンプにおけるライン圧力を増大することにより、 温度に加え、容器全体の内圧を増大させることができる。各流路中、もしくは混合室 内の圧力を検出可能な適切な位置に圧力センサを配置することにより、その信号に 基づく圧力制御を施すことにより、対象とする反応プロセスに応じた最適な圧力条件 を設定することができる。
[0078] 図 14は、この発明の他の実施の形態であり、図 10 (b)の混合器に分析装置 56を 設置したものである。分析装置 56は、混合器の導出流路 22に継手 24を介して接続 される導出配管 58に設置される。なお、分析装置 56は、混合器内の導出流路 22に 設置してもよい。分析装置 56は、混合 (反応)生成物の成分を分析する装置であり、ク 口マトグラフィ装置のように混合 (反応)生成物の成分を分析する装置などである。
[0079] この実施の形態では、混合器による混合 (反応)後の生成物の成分を逐次分析し、 分析結果 (収率など)をリアルタイムでコントローラ 38に出力する。コントローラ 38は、 この分析結果に基づいて所定の判断基準により判断を行い、電動機回転数とヒータ 52の温度の制御信号を電動機およびヒータ 52に出力し、目的生成物の成分 (収率) が最大値もしくは目標値となるようにこれらを制御する。この手法により、所要成分 (収 率)の目的生成物を効率的に得ることが可能となる。
[0080] なお、上述した実施の形態における混合器では、混合空間 14をメンテナンスする 場合、分解'取り外しを行うのは、カバー部 12のみであり、簡便に混合空間 14の洗浄 などのメンテナンスが可能である。また、同様にメンテナンス後の組立も非常に簡便 であり、カバー部 12を設置するのみである。従って、混合器は、既存のマイクロリアク タと比較して、保守、管理が簡便である。
実施例
[0081] (実施例 1)
図 15 (a)は、図 10 (a)の実施の形態の混合器により、化学反応を実施した構成で ある。供給流体の導入流路 20は中心を挟んで対向する 2つであり、導出流路 22は 上方に中心軸に沿って設けられている。反応に用いた混合器の混合空間 14の寸法 は、直径 φ 9mm、高さ 3.5mmであり、撹拌子 18の形状は、カプセル状で直径が φ 3m m、長さが 8mmのものである。なお、撹拌子 18の回転数は lOOOrpmとした。実施した化 学反応は、同図(b)に示す、ジイソプロピルフエノールの反応(ァセチル化)であり、 混合器に、 A: 1M 2,6 Diisopropylphenol 1M 1,3 Dimethoxybenzene/Pyridineと、 B: n eat Acetic Anhydrideの供給流体をシリンジ 60により供給し、導出流路 22に回収容 器 62を接続した。
[0082] 上記の条件では混合器内部には、攪拌子 18の回転によって直径 φ 9mm,回転速 度 lOOOrpmの渦が定在していると予測される。よって代表寸法を 9mm、接線速度 0.5m /sとして式 2より Re数を求めると
[0083] [数 4]
. · .式 7
Figure imgf000022_0001
[0084] となる。
[0085] この Re数の状態では、流れが乱流に遷移している可能性も高ぐ拡散混合のみで なく乱流混合の効果も期待される。言及するまでもな 、が前記 (コーヒーにミルクの例 )のごとく混合においては、拡散混合と比較して乱流混合の効果は絶大である。よつ て本混合器を用いれば、マイクロチャネルチップでは著しく困難であった試薬の混合 が容易に達成できると予測される。 [0086] さらに、本発明のような微小な容積の混合器には、温度制御が容易であるといった 利点も有する。例えば前記混合空間 14 9mm、高さ 3.5mm)から攪拌子 18の体積 分( φ 3mm、長さ 8mm)を除いた混合器内部の容積は、
[0087] [数 5]
Λ- Χ92 xlO"6c ,Λ— j πχ3ι xlO"6
3.¾ X 10 * χ8。χ 11Λ0.3 J =,1.,7 X, 1ハ0 _7 m 3 ' · '式 8。
4 4
[0088] である。本混合器に流量 0.47mL/minで連続的に 2種類の試薬を投入'混合する場合 を考えると、試薬が混合器内に滞在する時間は
[0089] [数 6]
( ? 。-,) 。.4 = 10.
670 0 式 9
[0090] である。
ここで、本混合器部分において、化学反応を促進するために試薬の温度を 20°C上昇 させる必要があると仮定する。試薬の比熱を 4.2[kJ/kg'K]、試薬の比重を 1000[kg/m 3]として試算すると、必要な熱量は
[0091] [数 7]
1.7x1ο-7 X .2 1000x20
= 1.3x10— 3 式 10
10.9
[0092] となるため極めて小さい熱量で温度調整が可能であり、必要とする加熱 ·冷却の装置 も安価で簡略なもので十分である。
[0093] これを従来の混合槽などを用いた場合、例えば小形のもので lOOmLの容積の混合 槽に先に試算した熱量で温度調節を試みた場合を検討する。同様に試薬の温度が 2 0°C上昇するまでに要する時間は、 [0094] [数 8]
!OO x lO"6 x 4,2 1000 x 20
ー3 = 6.5 X 103 J≤1 , 8A . . .式 i
1.3 x 10
[0095] を要する。さらに混合槽周辺への熱放射などを鑑みると現実的な加熱'冷却を行うた めには、もっと大掛力りなシステムが不可欠であると予測される。よって本混合器では 、化学反応に大きな影響を及ぼす温度調節を、極めて簡単な装置によって達成する ことが可能である。
[0096] 以上の簡単な試算結果力 予測できることとして、本混合器がマイクロチャンネルチ ップと同様の温度調整機能を有し、さらにマイクロチャンネルチップでは困難であつ た混合を迅速に促進できる機能を有して ヽるため、化学反応装置としては理想的な 形態であると言える。なお今回の試算は様々な仮定の基に試算したものであって、実 際に本混合器を運用する際には、用いる試薬および混合器自体の物性、用いる周 辺環境、および流量などの運転条件を厳密に考慮'検討した上で運用すべきである
[0097] 図 16 (a)は、反応の結果の一例を示す時間 収率図である。これより、混合器は、 図 30に示す従来手法の一例と比較して、同一混合時間で高い収率で生成物を得ら れていることがわ力る。
[0098] また、図 16 (b)は、生成物流量-収率図であり、同じ実施例について、一般的な従 来のマイクロリアクタと混合器を比較した結果である。ここで比較例として用いた一般 的な従来のマイクロリアクタは、 Y型 2液混合用である。この結果より、この発明の混合 器は、一般的マイクロリアクタの一例と比較して、多くの生成物を高収率で得ることが できていることがわかる。なお、混合器を用いたこれらの化学反応結果はあくまでも一 例である力 混合器のその他の実施の形態においても、同一の効果が得られると考 えられる。
[0099] 図 17は、図 15の実施の形態での化学反応の結果の一例を示しており、導入流体 の流速と攪拌子 18の周速度の比と収率の関係を示している。これより、供給流体の 導入速度 Z攪拌子 18の周速度の速度比が 1/3において収率 20%、速度比 1/10に おいて収率 40%、速度比 1/50において収率 85%以上が得られることがわかる。
(実施例 2)
図 18は、本発明による混合器を直列に配置することにより、化学反応を実施した結 果を示す例である。図 18 (a)では、第 1の混合容器 16の導出流路 22から出た流れ は、一つの導入流路を有する第 2の混合容器 (撹拌容器) 16Aに導かれて、ここでさ らに撹拌されて、導出される。また、図 18 (b)では、第 2の混合容器 16Aからの流れ は、さらに一つの導入流路を有する第 3の混合容器 (撹拌容器) 16Aに導かれる。な お、本配置例の他の形態としては、第 1の混合容器 16の導出流路から出た流れを、 T字状の分岐管により二つの流路に 2分割した後、第 2の混合容器 16の中心を挟ん で対向する 2つの導入流路に導く手法などもある。
[0100] ここで、混合空間 14の寸法は、直径 φ 9mm、高さ 3.5mmであり、撹拌子 18の形状は 、カプセル状で直径が φ 3mm、長さが 8mmのものである。なお、撹拌子 18の回転数 は lOOOrpmとした。実施した化学反応は、図 15 (b)に示した、ジイソプロピルフエノー ルの反応(ァセチルイ匕)であり、第 1の混合容器 16に、 A: 1M 2,6 Diisopropylphenol 1 M 1,3 Dimethoxybenzene/ Pyridineと、 B: neat Acetic Anhydrideの供給流体をシリン ジ 60により供給した。
[0101] 図 19に実験結果を示す。これより、混合容器 16と撹拌容器 16Aを直列に配置した 混合器は、図 16に示す事例と比較して、同一混合時間でより高い収率で生成物を 得られていることがわかる。なお、図 18ではチューブ状の配管で混合容器 16と撹拌 容器 16Aを接続した事例を示したが、これは混合容器 16, 16Aの直列配置の一形 態に過ぎず、例えば、図 20の様に混合容器 16, 16Aを積み重ねた積層構造により 直列配置するなど、その実施の形態に関わらず良好な結果を得ることができる。なお 、図 20における第 2の混合容器 16A内の攪拌子 18は、独立した駆動機構を内蔵す る構造の場合や、あるいは第 1の混合容器 16内の攪拌子 18と直結する構造の場合 などがあり、第 1と第 2の混合容器 16, 16A内の攪拌子 18の回転数はそれぞれの反 応混合に最適な値とし、必ずしも同一である必要は無い。
[0102] 上記では直列運用による混合'反応効率の向上の実施例を示したが、本発明によ る混合容器 16を多数並列配置し、所定の生産量を確保するような運用も可能である ことは言うまでも無い。その場合には、生成物の品質を確保するために、個々の混合 容器 16からの生成物魏合した集合容器において生成物の品質を分析し、並列シ ステム全体を運用する形態と、個々の反応容器におけるセンサリング、制御機構を用 いて最終生成物の品質を確保するように個別に制御する形態、さらにはこれらの組 合せの運用形態がある。
[0103] 以上の実施例では、化学反応における本発明の優位性を示したが、本発明は化学 反応を伴わない流体混合の目的に使用することが可能であることは言うまでも無い。 導入流路 20から流入した流体は、攪拌子 18による強い剪断力の作用で微細化され 容器内の流体と混合されるため、ェマルジヨンの生成などにも適している。
(実施例 3)
本実施例は、本発明による混合器を用いて、攪拌子形状をパラメータとし、相関移 動アルキルィ匕反応 (ィ匕学式:図 20A (a)参照)を行ったものである。なお、混合器の構 成は、前記図 15(a)に記載のものと同一である。また、本反応に用いた攪拌子は、力 プセル型(図 4(a))および十字型(図 4(e))であり、各々の攪拌子を用いた攪拌混合室 の混合空間の実容積は、 0.18ml (カプセル型)および 0.08ml (十字型)である。なお、 混合器単体の性能を比較するため、混合器力もの反応生成物は、導出後、塩化アン モニゥム水溶液にてタエンチ (反応停止)した。
[0104] 実施結果を図 20A (b)に示す。この結果より、発明による混合器が従来のマイクロリ ァクタ (Y型)以上の性能であることが明らかであること、また、本反応においてはカブ セル型よりも十字型攪拌子が最適であることがわかる。
[0105] 図 21ないし図 26はこの発明のさらに他の実施の形態を示すもので、回転子 (撹拌 子) 118は、混合容器 116の内部空間にほぼ相似する形状を有する回転体であり、 それによつて両者の対向面間にマイクロギャップ (微小隙間)部 Gが形成されているも のである。以下に説明する実施の形態では、マイクロギャップ部 Gは、互いに対向す る円錐面によって形成されているが、稜線が直線である円錐面に限られず、適宜の 回転体、例えば、球面 (稜線が円)、その他、稜線が適宜の曲線 (例えば、放物線、 楕円等)であるような回転体形状を採用することができる。 [0106] 図 21 (a) , (b)は、この発明の第 1の実施の形態の混合器であって、ベース部 110 及びこれを覆うカバー部 112によって内部に混合空間 114が形成された混合容器 1 16が構成されており、混合空間 114内には撹拌子 118が設けられている。混合空間 114は垂直軸線回りに回転対称に形成され、この実施の形態ではほぼ円錐形の空 間である。ベース部 110は、図 22に示すように、 3枚の板状部材、すなわち、底板 11 Oa、中板 110b、上板 110cから構成され、底板 110aは平板状、中板 110bおよび上 板 110cは混合容器 116の側壁の一部を構成するリング状部材である。中板 110bに は、内周面に開口する複数の(この例では 6本)径方向溝 120bが等間隔に形成され 、上板 110cおよび底板 110aにはそれぞれ周方向溝 120a, 120cが形成されている 。これらは、原料流体の導入流路 120を構成するもので、径方向溝 120bは交互に上 又は下に開口しているので、上板 110c又は底板 110aの周方向溝 120a, 120cに 交互に連通している。各周方向溝 120a, 120cには、上板 110c又は底板 110aの外 周面においてそれぞれの原料流体の導入口 124が開口して設けられている。従って 、各原料流体は、図 21 (b)に示すように、混合空間 114に交互に流入し、混合する。
[0107] カバー部 112は、ベース部 110と一体になつて、内部に円錐形状の空間を形成す るようになっており、上部に軸線に沿って導出流路 122が形成されている。これらべ ース部 110およびカバー部 112の材質は耐有機薬品 (試薬)耐腐食性を有する、榭 脂もしくはセラミック、ステンレスなどを用いる。ベース部 110を構成する各部および、 これとカバー部 112とは、各々接着もしくはノ ッキンを介してボルトなどで固定し、一 体化する。この実施の形態では、上板 110cとカバー部 112の間にシム 126を挿入し て両者を固定することにより、ミクロな寸法調整を行うことができるようになつている。
[0108] カバー部 112には、円錐面の側壁に沿って熱媒体を保持し流通させる温調ジャケ ット 128が形成され、これには熱媒体供給路が連結されている。温調ジャケット 128は 有機薬品に対する耐食性を有し、かつ熱伝達率の高い材質で形成するのが望ましく 、例えば、アルミニウムにグラスライニングを施して利用する方法などがある。温調ジャ ケット 128の温度制御は、温調ジャケット 128に流通させる熱媒体の温度や流通量を 変えることにより行う。これにより、温調ジャケット 128を介して、カバー部 112、ベース 部 110、回転子 118により形成される、マイクロギャップ部 Gを通過する流体 (反応試 薬)の反応温度の制御を行う。なお、本例では温調ジャケット 128の温度制御媒体と して、流体熱媒体を利用したが、ペルチェ素子などの温調デバイスを媒体として利用 し、電気的に行っても構わない。
[0109] 回転子 118 (撹拌子)は、混合容器 116の内部空間と相似の円錐形の回転子本体 130と、その下面に取り付けられた十字状の撹拌部材 132とから構成され、下面の中 心部には、凸部 134 (ピボット)が設けられている。回転子本体 130の材質は、耐有機 薬品 (試薬)耐腐食性を有する、榭脂もしくはセラミック、ステンレスなどを用いる。撹 拌部材と回転子 118の取り付けはネジ止めなど種々の一般的な接合方法で行うが、 あるいは撹拌部材と一体構造としてもよい。撹拌部材 132の形状は、対象とする化学 反応に応じて、卍型や流線形形状など種々の形状を適時選択する。撹拌部材 132 は、放射状に延びる部分を有するのが好ましい。撹拌部材 132は金属もしくは磁性 体の表面に、有機薬品 (試薬)への耐腐食性を有する榭脂もしくはセラミックなどをコ 一ティングしたものを用いる。回転子 118の回転駆動には、図 10の磁気駆動型スタ ーラ (マグネット攪拌機)などの手段を適宜に用いる。
[0110] 凸部 134は、底板 110aの上面の中心に設けられた凹部 136 (ピボット受け部)に挿 入され、回転軸の振れを防止するものである。凸部 134と凹部 136の対向する面は、 軸受面となるので、図 23に示すように、この間の摺動摩擦を低減'緩和するための溝 138 (グループ)を設けるとよい。この図のように、溝 138として渦巻状の形態(円周側 力も中心軸に向力 方向)を採用することにより、回転子 118の回転に伴ってその底 面の中心部に高圧域を発生させ、摺動摩擦をさらに低減させることができる。なお、こ の実施の形態では、回転子 118の回転を安定ィ匕させるために、回転子 118の頂部と カバー部 112の対応箇所に、永久磁石 140で構成したマグネットスタビライザー 142 が設けられている。これにより頂部の振れを防ぐとともに、永久磁石 140による吸引に よって、凸部 134と凹部 136の間の負荷を軽減する。
[0111] 回転子本体 130と混合容器 116の側壁の間のマイクロギャップ部 Gの幅は、混合や それに続く反応を的確に行うための温度制御等のために、所定の値に設定すること が好ましい。これは、カバー部 112とベース部 110間に設置するシム 126の厚さを変 えることにより、例えば 10 mから 500 mまで容易に調節することが可能である。 [0112] また、底板 110aと回転子 118の底面 (撹拌部材 132の下端)との隙間は、撹拌作 用を充分に行うために所定値に設定するのが好ましい。これは、凸部 134が回転子 1 18の底面力も突出する高さ Hpと底板 110aの凹部 136の深さ Hbにより調節すること ができる。ここで、 Hp- Hb〈lmmであることが望ましぐより望ましくは Hp- Hb〈0.5mm、さ らに望ましくは、 Hp- Hb〈0.2mmである。
[0113] また、撹拌部材 132の位置において、混合空間 114の内径に対する回転子 118の 外径 (撹拌部材 132の回転直径)の差、すなわちラジアル方向の隙間 hrは、各導入 流体に対し、回転子 118の回転によりせん断力を効果的に効力せ、混合の促進を図 るために、 hrく 1.0mmであることが望ましぐより望ましくは hrく 0.5mm、さらに望ましく は hr< 0.2mmである。
[0114] 以上のような構成の混合器において、各原料流体を導入口 124より供給すると、各 原料流体は各々中板 110bに形成された流路を経て、周方向交互に形成された径 方向流路より混合空間 114内に導入される。原料流体は、磁気駆動される回転子 11 8の撹拌部材 132によって発生する強力なせん断力により、攪拌混合される。攪拌混 合された生成物は、その後直ちに、その下流に形成されマイクロギャップ部 Gに流入 し、温調ジャケット 128による大きな比界面積を利用する精緻な反応温度制御を受け ながら、さらに分子拡散による急速混合がなされ、反応や混合が進行する。混合又は 反応生成物はカバー部 112に形成された導出流路 122より導出される。上記の動作 により、対象とする化学反応 (混合)が迅速かつ高収率で達成される。
[0115] なお、ここで行う、反応温度制御とは、本発明による混合器もしくは反応器の下流に 設置されるクロマトグラフィー装置をはじめとする分析装置の分析結果をモニタリング し、対象とする化学反応による生成物の収率が最大となるように、以下の手法を用い るものである。
(a) 温調ジャケット 128への電気信号をマニュアルで調整する。但しこの場合は、あら 力じめ、「入力電気信号と温調ジャケット接液面の温度の関係線図」を実験的に得て おく。
(b) 分析装置のモニタリング結果 (電気信号)を温調ジャケット制御用コントローラに 入力し、該コントローラにおいて PIDやその他の制御則を用いて、収率が最大になる ような温度調整用の制御信号 (電気信号)を計算し、温調ジャケットへの入力信号 (電 気信号)を出力するようなフィードバック系を構成する。
[0116] 図 24は、図 21の実施の形態の変形例であり、基本的な構成は、上記と同じである 。この実施の形態では、マイクロギャップ部 Gの下流側部分の幅が下流側に向けて徐 々に拡大するように、設定されている。これにより、反応の進行により結晶などの析出 物が発生する場合であっても、析出物によるマイクロギャップ部 Gの閉塞を回避する ことができる。すなわち、マイクロ空間と下流側のマクロ空間を適切に組み合わせるこ とにより、閉塞を回避することが可能なデバイスを構成することができる。この例の場 合、マイクロギャップ部 Gはシム 126の調整により 10 μ m力ら 500 μ mまで 10 μ m以 上のピッチ、望ましくは 5 μ m以上、より好ましくは 1 μ m以上のピッチ間で可変可能 であり、拡大したギャップは管径 8mmの導出流路 122に連通している。
[0117] この実施の形態の混合器又は反応器では、例えば、析出物を発生しない反応では 、マイクロギャップ部 Gの空隙を最小の 10 mに設定する。これにより、微小空間で の分子拡散による混合が最大限に促進される。これに対し、析出物を発生する析出 系の反応においては、析出物のサイズにより任意にマイクロギャップ部 Gの幅を変え る。
[0118] また、本発明による混合器もしくは反応器の上流および下流に圧力センサを設置し 、上流と下流の圧力をモニタリングし、本発明による混合器もしくは反応器内の圧力 損失 Δ Ρ ( Δ Ρ= I上流圧力 Pu—下流圧力 Pd I )の変化を監視するようにしてもよい 。ここでは、化学反応中に規定値以上の圧力損失 Δ Ρが発生した場合、規定値内に 入るまでマイクロギャップの間隔を前記ピッチで大きくする。これにより、析出系反応 においても、閉塞の限界までマイクロギャップ部 Gのクリアランスを小さくでき、可能な 限りに分子拡散による混合を促進することが可能となる。
[0119] 図 25は、図 21の実施の形態のさらなる変形例である。この実施の形態では、回転 子 118および混合容器 116が、下流側、すなわち、導出流路 122側に向けて拡径す るようになっている。回転子 118は、円錐形ではなぐ小径面を下にした円錐台形状 である。従って、マイクロギャップ部 Gは、側壁と円錐面の間だけでなぐ円錐台の上 面と混合容器 116の天板 144との間にも形成されており、より長い微小隙間流路を構 築している。
[0120] なお、この例では、図 26に示すように、マイクロギャップ部 Gに接する回転子 118の 側面の表面に、ポンプ作用を発生させるための羽根 146を設けている。この羽根 14 6は、回転子 118の外周面に、放射状、渦巻状、あるいは湾曲した突起や溝を形成 すること〖こより構成して ヽる。
[0121] この構成により、例えば、原料流体を圧送するための装置 (例えば、ポンプ)の必要 吐出性能を低減させる、あるいは自力で圧送することにより外部装置を省くことが可 能になる。マイクロ空間の特長を維持するために、羽根 146あるいは溝の高さ(深さ) は 10 μ m〜500 μ mとすることが望ま U、が、必要とされる圧力上昇や流量に応じて適 宜に変更することができる。
[0122] なお、上記においては、回転子 118および混合容器 116の形状を、円錐形又は円 錐台状としたが、これらの形状に限られるものではない。例えば、単純な円筒形でも よいし、より複雑な形状、例えば、回転子 118の径が拡大と収縮の双方を行うように 変化するもの、あるいは、断面における稜線が曲線であるもの等、多種多様な形状を 、目的に合わせて作用することができる。
[0123] 図 27は、この発明のさらに他の実施の形態の混合器を示すものである。この実施 の形態では、混合容器 150のベース部 152側に混合空間 154を構成する凹部が形 成されており、導入流路 156は、ベース部 152の上面の継手 158から下降する垂直 流路 160と、ベース部 152とカバー部 162の接合面に形成された溝によって構成さ れる水平流路 164とからなっている。同図(a)に示すように、導出流路 166は、カバ 一部 162の上に設置した押え部 162aから横方向に導出されている。同図(b)に示 すように、ベース部 152の上面およびカバー部 162の下面には、コイル 168が同一 円周上に等配置されており、励磁電流をコントローラ 169より入力し、コイル 168に順 次極性を持たせて磁化し、それにより回転子 170を回転させるようになつている。な お、上下面のコイル 168を常に回転子 170に対して同極となるように励磁すれば、回 転子 170を混合空間 154内で自動浮上駆動させることが可能である。
[0124] また、ベース部 152の下面には、温度調節手段 171が設けられている。これにより、 例えば、導入流路 156に設けた温度センサ 172と、これの出力に基づいていわゆる PID制御などの制御則に従って温度調節手段 171の動作をフィードバック制御する コントローラ 173により、ベース部 152を介して導入流路 156や混合空間 154中の流 体の温度を制御することができる。温度調節手段 171としては、電気式プレート型ヒ ータゃペルチェ素子または、加熱もしくは冷却媒体を通過させて被温度調節体の温 度を調節する伝熱ブロック (板)など種々のものを利用する。なお、温度調節手段 171 は、該混合器もしくは反応器の他の箇所に設置しても良い。また、伝熱ブロックを利 用する際には、加熱もしくは冷却媒体の流量を調節する電動バルブなどを伝熱プロ ックの前段もしくは後段に設置し、該電動バルブの開度を調整する電気的信号 (電 流もしくは電圧)をコントローラ 173より入力する。
[0125] 図 27 (c)に示すように、導入流路 156 (水平流路 164)は、垂直流路 160下端から それぞれ径方向に中心に向かつて延びた後、 2つに分岐して周方向に約 80度ほど 延び、さらに中心側に斜めに延び、混合空間 154に径方向流路から 90度のところで 開口している。つまり試薬 Aと試薬 Bを供給する流路はそれぞれ近接する位置で、か つ噴出流が衝突するような角度で混合空間 154に開口している。従って、試薬 Aと試 薬 Bは混合空間 154に入ってすぐに衝突し、さらに回転子 170によって撹拌されるの で、図 33に示すような混合空間 154内での濃度ムラの状態が無くなり、均一な混合 比のもとでの反応が可能となる。また、この実施の形態では、中途半端な混合状態が ほとんど無いため、いわゆる爆発性反応のような高速反応においても、爆発の危険 '性が極めて低くなる。
[0126] この実施の形態の混合器は、従来のバッチ手法では目的生成物を効率的に得るこ とが困難であった、いわゆる、拡散律速の反応に対して有用である。拡散律速の反 応は、分子拡散速度が速い反応であり、例えば、
A+B→C + D (Α,Β :反応試薬 C :目的生成物 D :副生成物)
のような反応を例にすると、拡散律速の場合、目的生成物 Cから副生成物 Dへ分子拡 散により連続的に高速で変化する。この際、従来の手法(図 31や図 32)では、反応 器内の反応容積が大きいため、滞留時間が長くなり、目的生成物 Cの段階で反応を 停止させることが困難であった。しかし、図 27 (c)のような流路構成を採ることにより、 各試薬 Α,Βを予混合せずに微小反応容積の混合空間 154に導き、微小反応容積内 で、短時間に高速強制混合を行うことで、副生成物の発生を抑制し、目的生成物を 高収率で得ることが可能になった。
[0127] 図 28は、図 27の実施の形態をさらに発展させた実施の形態の混合器である。この 実施の形態では、同図(a)に示すように、ベース部 152aは、 2枚のベース部 174a、 1 74bにより構成される。そして、下側のベース部 174aの上面には、同図(b)に示すよ うに第 1の導入流路 156aの環状流路 176aが形成され、同図(c)に示すように、上側 のベース板 174bの下面には、第 1の導入流路 156aの環状流路 176aとは重ならな い位置に第 2の導入流路 156bの環状流路 176bが形成されているとともに、第 1の 導入流路 156aおよび第 2の導入流路 156bの環状流路 176a, 176b上に相当する 位置に、周方向等配置された貫通孔 178が形成されている。そして、カバー部 162 の下面には、同図(d)に示すように、第 1の導入流路 156aおよび第 2の導入流路 15 6bからの貫通孔 178を隣接するどうし対にして、混合空間 154の同じ位置に開口さ せる V字状の導液流路 179が形成されている。なお、ベース板 174a, 174bどうし、 およびこれとカバー部 162はそれぞれ接着もしくはパッキンを介したネジ止めなどに より結合する。
[0128] このような構成により、図 27では 2ケ所でのみ開口していた導入流路 156を、より多 くの箇所で開口させることができる。従って、図 27の実施の形態の効果である混合空 間 154内での均一な混合と反応、および爆発を抑制する効果等をより顕著に得ること ができる。
[0129] 図 29は、この発明のさらに他の実施の形態の混合器を示すもので、導入流路 156 aおよび第 2の導入流路 156bを、混合空間 154に入る前に合流させて、予混合させ るものである。図 29 (a)の例は、図 27 (c)のカバー部 162の水平流路 164の形状を 変形したもので、それぞれ分岐した導入流路 156a, 156bは、周方向へ 90度延びた ところで合流し、それから径方向に混合空間 154へ向けて延びる予混合流路 180aと なる。すなわち、 2つの試薬 A, Bは、混合空間 154へ入る前段の予混合流路 180a で混合が開始される。これにより、混合空間 154への導入時点では、確実に混合用 試薬が均一化される。この実施の形態は、予混合による弊害が出ないような反応に 用いるのが好適である。 [0130] 図 29 (b)の例では、合流点の形状を T字路ではなぐ Y字路としたもので、これによ り、予混合流路 180bを短く設定している。斜めの流路の角度を変えることにより、予 混合流路 180bの長さを変えることができる。長さの設定は、反応に応じて適宜に行 えばよい。
[0131] また、図 29 (c)の例では、予混合流路 180cに至る傾斜流路 182を分岐させて、合 流を多段で行うようにしたものである。これにより、混合空間 154内に導入される試薬 が多層化し、各流体層は薄くなる。従って、試薬同士の分子間距離も小さくなるので 、分子拡散による混合効率向上の効果により混合が促進される。
[0132] さらに、図 29 (d)は、図 28 (d)のカバー部 162の図面に対応する図であり、導液流 路 179の先に Y字路状の予混合流路 180dを設けて、予混合させる形式としたもので ある。これにより、予混合流路 180dを有する導入流路 156a, 156bが混合空間 154 に多数が開口するようになっている。図 29の各実施の形態の導入流路の形態は、反 応の種類等に応じて適宜に選択すればょ 、。
[0133] なお、図 29の各実施の形態では、各導入流路 156の断面積は lmm2以下、好ましく は 0.25mm2以下、より好ましくは 0.01mm2以下である。また、導入流路 156, 156a, 15 6bの断面寸法は、図 29 (e) , (f)に記載のとおり、幅を W、深さを Hとした場合、 W≤H の条件であることが望ましい。また、導入流路 156, 156a, 156bの断面形状は、矩 形型や半円型など対象とする化学反応に応じて都度選択する。なお、図 29では図 示していないが、図 27に示したような温度調節手段 171、温度センサ 172、温度コン トローラ 173を用いるのは、特に有効である。微細流路においては、温度の制御をよ り精密に行うことができるからである。
[0134] このように導入流路 156, 156a, 156bを微小化することにより、混合空間 156まで の過程で分子拡散を利用した拡散混合を行い、混合効率を向上させることが可能と なる。従って、導入流路 156, 156a, 156bの微小化による分子拡散による混合促進 と微小反応室内の攪拌による混合促進の両者を併用した相乗効果を利用して、高効 率混合を達成することができる。なお、混合空間 154からり導出口までの流路断面積 を微小化することにより、混合試薬間の分子拡散が助長され、混合効率 (収率)が向 上することは言うまでもな 、。 従って、例えば、この実施の形態の混合器は、反応律速の化学反応において有用 である。反応律速の反応は、通常、試薬を容器内に混入した状態では反応は進まず 、従来、高収率で目的生成物を得るために、長時間の強制攪拌が必要であった。こ れに対し、図 29の各実施の形態では、予混合流路 180a〜180dの微小空間内での 分子拡散による混合と微小反応室内での強制混合により短時間で高収率の目的生 成物を得ることが可能となった。

Claims

請求の範囲
[I] 連続処理を行う反応システムにお 、て用いる混合器であって、
それぞれ異なる流体を供給する少なくとも 2つの導入流路と少なくとも 1つの導出流 路を有する混合空間を形成する容器と、
前記混合空間に配置された撹拌子と、
該攪拌子を駆動する駆動機構とを有することを特徴とする混合器。
[2] 前記混合空間は回転対称に形成され、前記撹拌子は、前記混合空間の回転対称 軸まわりに回転する回転子であることを特徴とする請求項 1に記載の混合器。
[3] 前記撹拌子は、前記混合空間の回転対称軸から周縁部に向けて延びる放射状部 を有することを特徴とする請求項 1または請求項 2に記載の混合器。
[4] 前記容器は、容器本体と蓋部とを有することを特徴とする請求項 1な!ヽし請求項 3 の!、ずれかに記載の混合器。
[5] 前記駆動機構は、前記撹拌子を遠隔的に駆動するものであることを特徴とする請 求項 1な!、し請求項 4の 、ずれかに記載の混合器。
[6] 前記駆動機構は、前記撹拌子に直結してこれを駆動するものであることを特徴とす る請求項 1な 、し請求項 5の 、ずれかに記載の混合器。
[7] 前記混合空間の温度を調整する温度調整機構が設けられて!/ヽることを特徴とする 請求項 1な!、し請求項 6の 、ずれかに記載の混合器。
[8] 前記回転子と前記容器の対向面間に微小隙間が形成されていることを特徴とする 請求項 2に記載の混合器。
[9] 前記微小隙間は、互いに対向する円錐面により形成されていることを特徴とする請 求項 8に記載の混合器。
[10] 前記少なくとも 2つの導入流路は、前記混合空間において互いに近接して開口して
V、ることを特徴とする請求項 1な 、し請求項 9の 、ずれかに記載の混合器。
[II] 前記少なくとも 2つの導入流路は、前記混合空間への開口部より上流側で合流して
V、ることを特徴とする請求項 1な 、し請求項 9の 、ずれかに記載の混合器。
[12] 請求項 1な!ヽし請求項 11の!ヽずれかに記載の混合器と、これに原料流体を供給す る供給源と、前記混合器における反応生成物を回収する回収容器とを有することを 特徴とする反応装置。
[13] 前記混合器における撹拌子による撹拌速度を制御する制御装置を有することを特 徴とする請求項 12に記載の反応装置。
[14] 前記混合器における温度を制御する制御装置を有することを特徴とする請求項 12 または請求項 13に記載の反応装置。
[15] 前記反応生成物を分析する分析装置を有することを特徴とする請求項 12ないし請 求項 14の 、ずれかに記載の反応装置。
PCT/JP2006/309022 2005-05-12 2006-04-28 混合器及び反応装置 WO2006120945A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005140400 2005-05-12
JP2005-140400 2005-05-12
JP2005-213654 2005-07-25
JP2005213654 2005-07-25
JP2005369580A JP4252993B2 (ja) 2005-05-12 2005-12-22 混合器及び反応装置
JP2005-369580 2005-12-22

Publications (1)

Publication Number Publication Date
WO2006120945A1 true WO2006120945A1 (ja) 2006-11-16

Family

ID=37396454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309022 WO2006120945A1 (ja) 2005-05-12 2006-04-28 混合器及び反応装置

Country Status (2)

Country Link
JP (1) JP4252993B2 (ja)
WO (1) WO2006120945A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2434998A (en) * 2006-02-14 2007-08-15 Bel Art Prod Inc Magnetic Stirring arrangement
WO2008068019A1 (en) * 2006-12-06 2008-06-12 Ashe Morris Ltd Improved flow reactor
JP2010001357A (ja) * 2008-06-19 2010-01-07 Hakujisha:Kk 合成油の製造装置及び合成油の製造方法
EP2177210A1 (en) * 2007-07-06 2010-04-21 M Technique Co., Ltd. Method of producing microparticles to be ingested into the body, microparticles to be ingested into the body and dispersion and medicinal composition containing the same
EP2179966A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Process for production of ceramic nanoparticle
GB2475401A (en) * 2009-11-11 2011-05-18 Ashe Morris Ltd Agitated cell reactors
CN101626824B (zh) * 2006-12-06 2013-03-27 阿什莫里斯有限公司 改进的流动反应器
JP2014210250A (ja) * 2013-04-22 2014-11-13 株式会社神戸製鋼所 処理装置及び処理方法
EP3175912A3 (de) * 2015-11-11 2017-09-06 2mag AG Magnetrührer für eine magnetrührvorrichtung
US9956533B2 (en) 2010-04-06 2018-05-01 Ashe Morris Ltd. Tubular reactor and process
WO2020235519A1 (ja) * 2019-05-20 2020-11-26 国立大学法人 鹿児島大学 気泡形成装置及び気泡形成方法
US11504682B2 (en) 2019-12-23 2022-11-22 Pall Corporation Mixer base assembly for mixing vessels and method of use
US11565222B2 (en) 2019-12-23 2023-01-31 Pall Corporation Mixer base assembly for mixing vessels and method of use
FR3126629A1 (fr) * 2021-09-03 2023-03-10 Elvesys Procédé de dilution, mélange et livraison des fluides et dispositif pour le contrôle des réactions chimiques et biochimiques sur un système microfluidique
US11623190B2 (en) 2019-07-01 2023-04-11 Oakwood Laboratories, Llc System and method for making microspheres and emulsions

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482057B1 (ko) * 2007-07-06 2015-01-13 엠. 테크닉 가부시키가이샤 유체 처리 장치 및 처리 방법
US8911545B2 (en) 2007-07-06 2014-12-16 M. Technique Co., Ltd. Method for producing pigment nanoparticles by forced ultrathin film rotary reaction method, pigment nanoparticles, and inkjet ink using the same
JP2009018251A (ja) * 2007-07-11 2009-01-29 Reika Kogyo Kk 均質化装置
JP4654450B2 (ja) * 2007-11-09 2011-03-23 エム・テクニック株式会社 有機化合物の製造方法
JP5205948B2 (ja) * 2007-12-14 2013-06-05 セイコーエプソン株式会社 検査容器、検査装置、並びに検査方法
JP5240794B2 (ja) 2009-06-30 2013-07-17 日本電波工業株式会社 感知装置
JP5503360B2 (ja) * 2010-01-15 2014-05-28 シスメックス株式会社 試料調製装置
WO2011122586A1 (ja) * 2010-03-29 2011-10-06 国立大学法人横浜国立大学 化学・物理処理装置及び化学・物理処理方法
CN102589952B (zh) * 2012-03-13 2013-10-16 中国农业大学 一种土壤养分浸提装置及其工作方法
JP5429416B2 (ja) * 2013-02-04 2014-02-26 セイコーエプソン株式会社 検査容器、検査装置、並びに検査方法
JP2019507717A (ja) 2016-02-26 2019-03-22 ナノテック エナジー,インク. 炭素質組成物を処理するための方法、装置、およびシステム
NL2017029B1 (en) * 2016-06-23 2018-01-17 Flowid Holding B V Spinning disc reactor
TWI623351B (zh) * 2016-11-21 2018-05-11 牟敦剛 磁性耦合組件以及磁性耦合攪拌裝置
JP2018094457A (ja) 2016-12-08 2018-06-21 株式会社Ihi 反応装置
JP6897079B2 (ja) 2016-12-08 2021-06-30 株式会社Ihi 熱処理装置
RU2768926C1 (ru) * 2021-04-30 2022-03-25 Общество с ограниченной ответственностью "Энергетические технологии" Реактор смешения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220371A (ja) * 1992-02-14 1993-08-31 Koji Toda 超音波攪拌装置
JP2000192030A (ja) * 1998-12-25 2000-07-11 Fuji Photo Film Co Ltd 希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体の製造方法及びそれに用いる反応装置
JP2002143671A (ja) * 1998-08-13 2002-05-21 Symyx Technologies Inc 反応器制御システム及びモニタリング方法
JP2004321063A (ja) * 2003-04-24 2004-11-18 Yaskawa Electric Corp マイクロリアクタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220371A (ja) * 1992-02-14 1993-08-31 Koji Toda 超音波攪拌装置
JP2002143671A (ja) * 1998-08-13 2002-05-21 Symyx Technologies Inc 反応器制御システム及びモニタリング方法
JP2000192030A (ja) * 1998-12-25 2000-07-11 Fuji Photo Film Co Ltd 希土類賦活アルカリ土類金属弗化ハロゲン化物系輝尽性蛍光体の製造方法及びそれに用いる反応装置
JP2004321063A (ja) * 2003-04-24 2004-11-18 Yaskawa Electric Corp マイクロリアクタ

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748893B2 (en) 2006-02-14 2010-07-06 Bel-Art Products, Inc. Magnetic stirring arrangement
GB2434998A (en) * 2006-02-14 2007-08-15 Bel Art Prod Inc Magnetic Stirring arrangement
WO2008068019A1 (en) * 2006-12-06 2008-06-12 Ashe Morris Ltd Improved flow reactor
US8425106B2 (en) 2006-12-06 2013-04-23 Ashe Morris Ltd. Flow reactor
CN101626824B (zh) * 2006-12-06 2013-03-27 阿什莫里斯有限公司 改进的流动反应器
EP2177210A1 (en) * 2007-07-06 2010-04-21 M Technique Co., Ltd. Method of producing microparticles to be ingested into the body, microparticles to be ingested into the body and dispersion and medicinal composition containing the same
EP2179966A4 (en) * 2007-07-06 2013-01-02 M Tech Co Ltd PROCESS FOR PRODUCING CERAMIC NANOPARTICLES
EP2177210A4 (en) * 2007-07-06 2013-01-23 M Tech Co Ltd METHOD FOR THE PRODUCTION OF MICROPARTICLES FOR INCLUSION IN THE BODY, MICROPARTICLES FOR INCLUSION IN THE BODY, DISPERSION AND MEDICAL COMPOSITION THEREWITH
EP2179966A1 (en) * 2007-07-06 2010-04-28 M Technique Co., Ltd. Process for production of ceramic nanoparticle
US8623415B2 (en) 2007-07-06 2014-01-07 M. Technique Co., Ltd. Method for producing biologically ingestible microparticles, biologically ingestible microparticles, and dispersion and pharmaceutical composition containing the same
JP2010001357A (ja) * 2008-06-19 2010-01-07 Hakujisha:Kk 合成油の製造装置及び合成油の製造方法
GB2475401A (en) * 2009-11-11 2011-05-18 Ashe Morris Ltd Agitated cell reactors
GB2475401B (en) * 2009-11-11 2015-03-18 Ashe Morris Ltd Improved agitated cell reactor
US9956533B2 (en) 2010-04-06 2018-05-01 Ashe Morris Ltd. Tubular reactor and process
JP2014210250A (ja) * 2013-04-22 2014-11-13 株式会社神戸製鋼所 処理装置及び処理方法
US9744516B2 (en) 2013-04-22 2017-08-29 Kobe Steel, Ltd. Processing device and processing method
EP3175912A3 (de) * 2015-11-11 2017-09-06 2mag AG Magnetrührer für eine magnetrührvorrichtung
WO2020235519A1 (ja) * 2019-05-20 2020-11-26 国立大学法人 鹿児島大学 気泡形成装置及び気泡形成方法
EP3974048A4 (en) * 2019-05-20 2023-06-28 Kagoshima University Bubble formation device and bubble formation method
US11623190B2 (en) 2019-07-01 2023-04-11 Oakwood Laboratories, Llc System and method for making microspheres and emulsions
EP3993898A4 (en) * 2019-07-01 2023-08-23 Oakwood Laboratories, Llc SYSTEM AND PROCESS FOR PRODUCTION OF MICROBEADS AND EMULSIONS
US11504682B2 (en) 2019-12-23 2022-11-22 Pall Corporation Mixer base assembly for mixing vessels and method of use
US11565222B2 (en) 2019-12-23 2023-01-31 Pall Corporation Mixer base assembly for mixing vessels and method of use
FR3126629A1 (fr) * 2021-09-03 2023-03-10 Elvesys Procédé de dilution, mélange et livraison des fluides et dispositif pour le contrôle des réactions chimiques et biochimiques sur un système microfluidique

Also Published As

Publication number Publication date
JP4252993B2 (ja) 2009-04-08
JP2007054817A (ja) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2006120945A1 (ja) 混合器及び反応装置
Lee et al. Passive mixers in microfluidic systems: A review
Xia et al. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers
Capretto et al. Micromixing within microfluidic devices
US7534404B2 (en) Methods of operating surface reactors and reactors employing such methods
Barabash et al. Theory and practice of mixing: A review
JP6204235B2 (ja) プロセス強化マイクロ流体装置
Shi et al. Numerical investigation of the secondary flow effect of lateral structure of micromixing channel on laminar flow
Kurt et al. Continuous reactive precipitation in a coiled flow inverter: inert particle tracking, modular design, and production of uniform CaCO3 particles
JP4798174B2 (ja) 乳化装置
Su et al. Influence of hydrodynamics on liquid mixing during Taylor flow in a microchannel
Santos et al. State of the art of mini/micro jet reactors
KR20120090935A (ko) 관형 유통식 반응 장치
JP5648986B2 (ja) 流体処理装置及び流体処理方法
JP2007252987A (ja) 無機微粒子及びその製造方法
JP2010046634A (ja) 反応装置及び反応プラント
JP2007252979A (ja) マイクロリアクタによる化合物の製造方法、そのマイクロリアクタ、及びマイクロリアクタ用の分流器
JP2006528541A (ja) 静止型マイクロミキサーのための構成部品、当該構成部品から構成されたマイクロミキサー、および混合、分散または化学反応の実施のためのそれらの使用
JP2011504221A (ja) マイクロ流体の自励発振ミキサおよび装置ならびにその使用方法
Ahmadi et al. The effects of baffle configuration and number on inertial mixing in a curved serpentine micromixer: Experimental and numerical study
Kakavandi et al. Liquid–liquid two-phase mass transfer in T-type micromixers with different junctions and cylindrical pits
JP3939556B2 (ja) マイクロミキサー
KR20210102270A (ko) 유체 처리 장치
Xu et al. High-throughput production of droplets using mini hydrodynamic focusing devices with recirculation
WO2019198095A1 (en) Method and apparatus for passive mixing of multiphase fluids

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745881

Country of ref document: EP

Kind code of ref document: A1