WO2006120901A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2006120901A1
WO2006120901A1 PCT/JP2006/308710 JP2006308710W WO2006120901A1 WO 2006120901 A1 WO2006120901 A1 WO 2006120901A1 JP 2006308710 W JP2006308710 W JP 2006308710W WO 2006120901 A1 WO2006120901 A1 WO 2006120901A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power
power supply
output
fuel
Prior art date
Application number
PCT/JP2006/308710
Other languages
English (en)
French (fr)
Inventor
Yasuaki Norimatsu
Akihiko Kanouda
Mutsumi Kikuchi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to CN2006800146581A priority Critical patent/CN101167228B/zh
Priority to US11/913,681 priority patent/US7876069B2/en
Publication of WO2006120901A1 publication Critical patent/WO2006120901A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04246Short circuiting means for defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S320/00Electricity: battery or capacitor charging or discharging
    • Y10S320/18Indicator or display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S320/00Electricity: battery or capacitor charging or discharging
    • Y10S320/18Indicator or display
    • Y10S320/21State of charge of battery

Definitions

  • the present invention relates to a power supply device that supplies power by being connected to an electronic device equipped with power storage means such as a secondary battery.
  • the present invention is a power supply device that has power storage means and is used by being connected to an electronic device that indicates that the power storage means is in a charged state when the power storage means is being charged.
  • a power source capable of supplying power to the device, and a transmission means for transmitting predetermined information by intermittently changing the output power of the power source, and when the power is supplied to the electronic device, the display mode in the electronic device Accordingly, the predetermined information displayed by the display function of the electronic device when the power is supplied to the electronic device when the power is supplied to the electronic device. Can be displayed. For example, if the remaining battery level information of the power supply device is transmitted, the user can check the remaining battery level with a display corresponding to the intermittent output power on the display means of the electronic device.
  • the present invention it is possible to confirm predetermined information such as the remaining battery level simply by intermittently changing the power output to the electronic device.
  • the installation of means can be omitted, the cost can be reduced, and the energy density can be improved. Thereby, a power supply device with a long continuous use time can be obtained.
  • FIG. 1 is a circuit diagram of a power supply device according to a first embodiment.
  • FIG. 2 A diagram showing output power when the number of pulses is changed in accordance with the out-of-fuel condition and the fuel cell abnormality.
  • FIG. 3 is a diagram showing output power when the number of pulses is changed according to the remaining amount of fuel as an example of time division.
  • FIG. 5 is a cross-sectional view showing a configuration of a fuel cartridge.
  • FIG. 6 is a circuit diagram of a power supply device according to a second embodiment.
  • FIG. 7 is a diagram showing output power when the number of pulses is changed according to the remaining amount of fuel as an example of time division.
  • FIG. 8 is a circuit diagram of a power supply device according to a third embodiment.
  • FIG. 9 is a graph showing output characteristics of a fuel cell.
  • FIG. 10 is a circuit diagram of a power supply device according to a fourth embodiment.
  • FIG. 11 is an explanatory diagram when the power supply device is used in a portable personal computer.
  • FIG. 12 is a circuit diagram of a power supply device provided with a protection circuit.
  • FIG. 13 is a circuit diagram of a power supply device provided with another protection circuit.
  • FIG. 14 is a circuit diagram of a power supply device when a control function of a control IC is used as a protection circuit.
  • FIG. 15 is a circuit diagram of the power supply device when the output switch is omitted.
  • FIG. 16 is a circuit diagram of the power supply device when the power storage means is omitted.
  • FIG. 17 is a circuit diagram of the power supply apparatus when control is performed based on the output current of the fuel cell.
  • FIG. 1 is a circuit diagram of a power supply device according to the first embodiment.
  • the power supply device 10 of the first embodiment includes a battery 1 and power storage means 2 as a power source, a circuit unit 3, a control IC 4, and an output switch 5.
  • Battery 1 is connected in parallel with power storage means 2, and both ends thereof are connected to input terminal Vin and ground (GND) terminal of circuit section 3.
  • the positive terminal of battery 1 and power storage means 2 is connected to the Vin terminal of circuit part 3, and the negative terminal is connected to the darnd (GND) terminal.
  • Circuit part 3 is a circuit that transforms the output voltage to output power.
  • the output terminal Vout is connected to the output terminal V +, and the ground terminal is connected to the output terminal V— through the output switch 5 consisting of an N-channel power MOSFET.
  • the control terminal of output switch 5 is connected to the output switch drive terminal of control IC4.
  • the positive terminal of power storage means 2 is connected to the EDLC voltage input terminal of control IC4.
  • the control IC 4 outputs detection values of the fuel remaining amount detector 6 and the temperature sensor 7.
  • the control IC 4 determines the remaining battery level and the battery status of the battery 1 and the storage unit 2 based on the voltage of the battery 1 and the storage unit 2 and the detection value of the fuel remaining amount detector 6 and the temperature sensor 7, and determines the result. Using the results as information, output switch 5 is turned on and off for transmission. Where control IC4 and output Switch 5 corresponds to the transmission means in the claims.
  • a fuel cell is used for the battery 1.
  • the power supply 10 is connected to a portable electronic device, so a direct methanol fuel cell (DMFC) that uses methanol aqueous solution as fuel is used. You can use the fuel cell you use.
  • DMFC direct methanol fuel cell
  • the electric storage means 2 uses an electric double layer capacitor (EDLC).
  • EDLC electric double layer capacitor
  • the power storage means 2 is charged by the battery 1 and outputs power when the power supplied by the battery 1 alone is insufficient. Therefore, the power storage means 2 is not an electric double-layer capacitor, for example, a lithium-based battery. It is also possible to use the next battery. In this case, it is desirable to use a high output type used in, for example, a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • the battery 1 and the power storage means 2 are used in combination to supply power
  • the battery 1 is a power source characterized by high energy density
  • the power storage means 2 is a combination of power sources characterized by high output density.
  • a combination of a lithium ion battery for battery 1 and an electric double layer capacitor for power storage means 2 can also be used.
  • a DCZDC converter is used for the circuit unit 3 to transform, and its output voltage corresponds to the voltage of the portable electronic device.
  • a step-up converter is used to reduce the number of series in the battery 1 and the power storage means 2, but a step-up / step-down converter or a step-down converter may be used depending on the voltage of the portable electronic device to be applied. .
  • the battery 1 is referred to as a fuel cell 1
  • the power storage means 2 is referred to as an electric double layer capacitor 2
  • the circuit unit 3 is referred to as a DCZ DC converter 3.
  • the fuel remaining amount detector 6 and the temperature sensor 7 detect the remaining amount of fuel in the fuel cell 1 and the temperature of the fuel cell 1.
  • a portable electronic device is used as a power supply target of the power supply device 10, and the output power of the fuel cell 1 is adjusted to an average value of power required by a portable electronic device (not shown). It is set to be smaller than the maximum power, and the shortage of power is supplied from the electric double layer capacitor 2. By making such settings, you can The power supply device 10 can be made smaller than the case where it is set according to the maximum power of the slave device. By the way, because the output power of the fuel cell 1 is set according to the average value, the power supply device 10 outputs power to the outside when the power is stored in the electric double layer capacitor 2, and the electric double layer capacitor 2 is When charging, stop the power output to the outside. This control is realized by the control IC 4 acquiring the voltage of the electric double layer capacitor 2 and turning on / off the output switch 5 in accordance with the voltage of the electric double layer capacitor 2.
  • the control IC 4 checks the voltage of the electric double layer capacitor 2 input via the EDLC voltage input terminal, and if the voltage exceeds the upper limit voltage set as the threshold value, the control IC 4 controls the output switch 5. Output a signal and turn on output switch 5. At this time, the fuel cell 1 and the electric double layer capacitor 2 are in a state of outputting electric power in parallel, and electric power is output to the portable electronic device connected to the output terminals V + and V ⁇ . According to the power output, the voltage of the electric double layer capacitor 2 decreases, and at the same time, the output voltage of the fuel cell 1 also decreases. When the voltage of the electric double layer capacitor 2 reaches the lower limit voltage value set as the threshold value, the control IC 4 stops outputting the control signal and turns off the output switch 5.
  • the control IC 4 When the output of electric power to the outside is stopped by turning off the output switch 5, the output voltage of the fuel cell 1 is increased by reducing the load, and the electric double layer capacitor 2 is charged. When the voltage of the electric double layer capacitor 2 reaches the upper limit voltage set as a threshold value by charging, the control IC 4 outputs a control signal to turn on the output switch 5. As a result, the fuel cell 1 and the electric double layer capacitor 2 again supply power to the portable electronic device. In this way, as shown in FIG. 2 (a), the power supply pulse P is repeatedly output at a constant interval to supply power to the portable electronic device.
  • the fuel cell 1 is provided with a fuel remaining amount detector 6 and a temperature sensor 7, and the control IC 4 determines whether the fuel supply state of the fuel cell 1 or the abnormality of the fuel cell 1 is based on the detection signals. If it is determined that there is no fuel or there is an abnormality in the fuel cell 1, the power supply pulse P shown in (a) of Fig. 2 is changed to the pulse groups Pl and P2 in (b) and (c). Output in time division. That is, the control IC 4 has a plurality of control patterns corresponding to the out of fuel and the abnormality of the fuel cell 1, and when it is determined that there is an out of fuel or the abnormality of the fuel cell 1, the corresponding control pattern is applied and the output switch is applied. By turning on and off 5 Power supply pulse P is time-shared.
  • a pulse group P1 obtained by dividing the normal power supply pulse P is output to the portable electronic device, as shown in (b) of FIG.
  • a pulse group P2 obtained by dividing the normal power supply pulse P is output to the portable electronic device as shown in (c).
  • the pulse width that is output when the fuel runs out is set to be smaller than the pulse width that is output when the fuel cell 1 is abnormal, and the pause time for each pulse group is set in the same way.
  • a portable electronic device is usually provided with a charging instruction lamp that lights up when power is supplied, so that the user can determine that the power supply 10 is not in an abnormal state when the charging instruction lamp blinks. It is possible to recognize that the condition is out of fuel or that the fuel cell 1 is abnormal. In this case, the battery state on the power supply device 10 side can be recognized only by using a standard charge display function provided in a normal portable electronic device.
  • the portable electronic device may be provided with a function for checking the number and width of pulses, and the check result may be displayed on another display means such as voice.
  • the division of the power supply pulse can be performed by applying a control pattern to each power supply pulse P as shown in FIG. 2, but the first power supply pulse is detected after an abnormality is detected. It is also possible to limit to P only.
  • the control pattern the number of pulses to be divided can be changed according to the fuel state or the abnormal state of the fuel cell 1.
  • the number of pulses may be changed according to the number of power supply pulses P so that the number of pulses is two at the first time and the number of pulses is three at the second time.
  • FIG. 3 is a diagram showing output power when the number of pulses is changed according to the remaining amount of fuel as an example of time division.
  • the fuel state of the fuel cell can be confirmed by counting the number of pulses on the portable electronic device side. If the portable electronic device is equipped with a charge indicator lamp, the fuel status can be confirmed by blinking the charge indicator lamp.
  • FIG. 4 is an explanatory diagram when the power supply device is used connected to a mobile phone.
  • the cellular phone 20 is used as the portable electronic device, and the power supply device 10 is connected to the cellular phone 20 by the cord 12.
  • the power supply device 10 includes the circuit shown in FIG. 1, and the cord 12 is connected to the output terminals V + and V ⁇ of the circuit. Therefore, it is possible to supply power to the mobile phone 20 under the control of the power supply device 10 side.
  • the mobile phone 20 is equipped with a charge indicator lamp 21 as a standard function, and the charge indicator lamp 21 lights up when the secondary battery built in the mobile phone 20 is being charged. . Therefore, when the power supply device 10 supplies power to the mobile phone 20 as the mobile electronic device, the charging indicator lamp 21 blinks according to the power pulse shown in FIG. 2 or FIG. As a result, a user who does not modify the portable electronic device can recognize that the fuel cell 1 is out of fuel, the fuel cell 1 is abnormal, or the fuel state is in the blinking state of the charge indicator lamp 21. For mobile phones that display a charging mark on the LCD when charging, you can also check by flashing the charging mark.
  • the state of the fuel cell 1 can be roughly divided as described above.
  • the power using methanol aqueous solution The fuel has approached almost zero.
  • the power from the fuel cell 1 decreases, so the duty ratio of power supply to the mobile phone becomes very small. That is, the lighting time of the charging indicator lamp 21 is shortened.
  • the temperature of the fuel cell rises with the reaction, but it occurs when the output is limited by control when the temperature exceeds a certain threshold (for example, 45 ° C) or when the fuel cell generates power.
  • a common point for fuel exhaustion and fuel cell abnormality is a decrease in output.
  • the fuel can be confirmed. If it runs out, the user can easily solve the problem by replacing the fuel cartridge.
  • a power pulse with a width different from that at the time of running out of fuel is output, so that it can be distinguished from running out of fuel by the blinking state of the lamp 21. It is possible to take countermeasures such as cutting off.
  • FIG. 5 is a cross-sectional view showing a fuel cartridge used in a fuel cell.
  • Electrodes 1A and IB are provided opposite to each other on the inner peripheral surface of the fuel cartridge 1C.
  • the fuel FR3 composed of the methanol aqueous solution is adapted to receive pressure from the compressed gas GR3 through the separating member 20A.
  • the space above the separating member 20A is always filled with the fuel FR3. Since the area of electrodes 1A and IB with which fuel FR3 contacts depends on the remaining amount of fuel FR3 in fuel cartridge 1C, the remaining amount of fuel can be detected by measuring the resistance between electrodes 1A and IB.
  • the output current requested from the portable electronic device increases, power generation is not performed as required, and if the temperature remains low, it can be determined that the methanol is in a low concentration state inside the fuel cell 1. .
  • the control IC 4 detects these abnormalities, the corresponding pattern is applied as described above, and the power supply pulse P is output in a time-sharing manner as shown in FIG. The user can recognize it when the charging indicator lamp 21 blinks.
  • the power supply device 10 of the first embodiment it is possible to determine the remaining amount of fuel, abnormality in the fuel cell, etc. without providing the power supply device 10 with a battery status display function. Therefore, cost can be reduced. In addition, since energy for display is not used, energy density can be improved.
  • the power pulse Can be detected by a circuit and used for control such as display or switching the portable electronic device to a low power consumption mode in another manner.
  • the fuel cell is used as the battery 1 in the first embodiment, it is possible to extend the usage time by replenishing the fuel by replacing the fuel cartridge 1C. In order to enable continuous use, it is possible to use a replaceable primary battery instead of the fuel cell 1 and supply power by combining the primary battery and the electric double layer capacitor 2. .
  • control IC4 a dedicated IC is desirable to realize its function, but it can be replaced by a comparator or a microcomputer.
  • the output switch 5 may use a N-channel power MOSFET on the ground side, a P-channel power MOSFET on the V + side, or be replaced by another switching element. It is also possible to do.
  • the power supply pulse P to be supplied is time-divided to transmit information such as the fuel state of the fuel cell 1 and the abnormality of the fuel cell 1 to the mobile phone 20, and the charge display function of the mobile phone 20 as a standard function
  • the output switch 5 can be turned on and off as described above to transmit and display information such as the fuel state and the abnormality of the fuel cell 1.
  • various information such as voltage information and abnormal current information of the fuel cell 1 can be used.
  • FIG. 6 is a circuit diagram of a power supply device according to the second embodiment. This power supply is shown in Figure 1 The difference is that a switching switch 8a that can be operated by the user is added to the control IC 4a for the power supply device shown in FIG.
  • the fuel cell 1, the electric double layer capacitor 2, the output switch 5, and the like are the same as those in the first embodiment.
  • the change-over switch 8a uses a tact switch or push switch which is a general direct current (DC) switch.
  • the power supply pulse P shown in (a) of Fig. 2 is changed to the pulse groups Pl and P2 of (b) and (c). In this way, the output is divided in time. For this reason, when there is an abnormality, a power pulse obtained by dividing the power supply pulse P is always output.
  • the division of the power supply pulse P that is, the display of the battery state is performed as required by the user's operation.
  • the control IC 4a performs normal control when the switch 8a is opened.
  • the voltage of the electric double layer capacitor 2 input via the EDLC voltage input terminal is checked, and when the voltage exceeds the set upper limit voltage, a control signal is output to the output switch 5 and the output switch 5 is turned on.
  • the power is output by the fuel cell 1 and the electric double layer capacitor 2.
  • the voltage of the electric double layer capacitor 2 decreases, and at the same time, the output voltage of the fuel cell 1 also decreases.
  • the control IC 4 stops the power supply by stopping the output of the control signal.
  • a normal power supply pulse P is output as shown in FIG. 2 (a) or FIG. 3 (a). Such control is continued while the switch 8a is open. Then, when the changeover switch 8a is closed, an input signal is input to the control IC 4a as shown in FIG. 7 (e), whereby the control IC 4a causes the fuel remaining amount detector 6 and the temperature sensor 7 to When the detected value is input and it is determined that the fuel has run out or the fuel cell 1 is abnormal, the power supply pulse P is time-divided by turning on and off the output switch 5 by applying the corresponding control pattern.
  • FIG. 7 is a diagram showing the output power when the number of pulses is changed according to the remaining amount of fuel as an example of time division.
  • the normal power supply pulse P is set to (b). As shown, output is divided into three pulses. When the fuel is in the remaining amount, it is divided into two nozzles and output as shown in (c). When the amount of remaining fuel is small, it is divided into one pulse with a smaller pulse width as shown in (d).
  • the control IC 4a detects a change in the state of the input switch 8a due to a user's operation, and uses information inside the power supply device such as fuel remaining amount information to supply power to the portable electronic device.
  • P is displayed by time division.
  • the normal power supply pulse P is transmitted in a time-sharing manner, but may be realized by the number of power supply pulses having the same interval or a certain interval.
  • Control for performing the above power supply pulse control The control of IC4a can be realized by dividing the interval between the upper limit voltage and the lower limit voltage (or upper limit current force, lower limit current) into several equal parts, or with a timer function, etc. can do. In FIG.
  • the power supply pulse changed in one cycle after the user's operation is transmitted, but it may be transmitted continuously for several cycles, or in the normal number of pulses, for example, the first time
  • the method of displaying information to the user may be used as in the case of 2 pulses and 2 pulses.
  • FIG. 8 is a circuit diagram of a power supply device according to the third embodiment.
  • the power supply device 10 shown in FIG. 8 is different from the power supply device shown in FIG. 1 in that a switching switch (pulse change switch) 8b is provided. The rest is the same.
  • the change-over switch 8b uses a slide switch or the like. Of course, a plurality of push switches may be used instead of the slide switches.
  • the upper limit voltage or the lower limit voltage for determining the voltage of the electric double layer capacitor 2 is changed in the control IC 4b.
  • the fuel cell has output characteristics in which the output voltage decreases as the output current increases.
  • the lower limit voltage and upper limit voltage for controlling the voltage of the electric double layer capacitor 2 are set in accordance with the use range 1 in FIG. 9 for example, the upper limit voltage is switched to the lower one, for example, the use range 2 or the use range. 2 is used, the period of the power supply pulse P shown in (a) of FIG. 2 is accelerated, and as a result, the periods of the pulse groups Pl and P2 shown in (b) and (c) of FIG. 2 are also accelerated.
  • FIG. 10 is a circuit diagram of a power supply device according to the fourth embodiment.
  • an output terminal for an interrupt signal is usually provided at the connection terminal 31. Therefore, an interrupt signal can be input by providing INT12 as an input terminal for an interrupt signal in addition to the power output terminal corresponding to the power supply device 10.
  • This interrupt signal is output when the power supply 10 is correctly connected to the connection terminal 31 and power is supplied. Therefore, when used in a portable personal computer 20 'that outputs such an interrupt signal, input an interrupt signal in addition to the power supply output terminals V + and V- as shown in Fig. 10.
  • This interrupt signal is input to the control IC4c via the INT pin. Only when an interrupt signal is input, the power supply 10 checks the battery status and transmits the power supply pulse P in a time-sharing manner. The operation after the interrupt signal is input from the portable personal computer 20 ′ is the same as in the second embodiment.
  • the switch 8a when the switch 8a is connected to the control IC 4a and the user operates the switch 8a, the remaining amount of fuel or the abnormality of the fuel cell 1 is carried.
  • an interrupt signal (input signal) from the portable electronic device is used instead of the input switch 8a that can be operated by the user, as shown in FIG.
  • the power supply pulse P is time-divided and the state of the fuel cell 1 is displayed.
  • a portable personal computer 20 ′ is used as the portable electronic device.
  • the portable personal computer 20 ′ recognizes the power supply device 10 as a sub-battery when a power supply pulse is input. On the screen, for example, as shown in FIG. 11, an image indicating that the main battery and the sub battery are connected is displayed simultaneously.
  • the portable personal computer 20 ′ outputs an interrupt signal to the INT terminal connected to the interrupt input terminal.
  • the power supply device 10 transmits a power supply pulse P
  • the portable personal computer 20 ′ displays the remaining fuel amount of the power supply device 10 on the screen by counting the number of pulses, for example.
  • the portable personal computer 20 When the portable personal computer 20 'interrupts the INT pin, it may overlap with the normal power supply period, so it is desirable that the pulse count is rising.
  • the portable personal computer 20 ′ After outputting an interrupt signal to the INT terminal, for example, when there is no response for a certain period of time or when an abnormality of the fuel battery 1 is transmitted, power is not supplied from the power supply 10 by the portable personal computer 20 ′. Delete the sub battery display from the screen. As a result, the user can recognize that the power supply apparatus 10 is not supplying power. At this time, information may be displayed to the user by a pop-up display or the like.
  • the voltage of the primary battery or the secondary battery decreases as the battery discharges. Can be done by monitoring the voltage.
  • set the lower limit voltage to the battery discharge stop voltage (2.7 V or 3.0 V for lithium batteries).
  • the upper limit voltage may be a voltage in the vicinity of the lower limit voltage (lower limit voltage + 0. IV, etc.), or the upper limit voltage may be set with a timer function that counts the time when the voltage has exceeded the lower limit voltage without special provision. Good.
  • the control IC 4 detects that the voltage of the primary battery or the secondary battery 1 has reached the lower limit voltage, and the discharge is stopped by controlling the output switch 5 to be turned off.
  • the voltage of the primary battery or the secondary battery 1 rises because the discharge is stopped.
  • the discharge is resumed, and if the voltage does not recover to the upper limit voltage, the discharge is terminated.
  • the time during which the charge indicator lamp on the portable electronic device is lit is gradually shortened, and the user can detect that the battery 1 has run out.
  • the fuel cell 1 uses a direct methanol fuel cell.
  • OCV open circuit voltage
  • the lower limit voltage used is very large. Therefore, especially in Fig. 9, when the use range 1 or 2 with a high upper limit voltage is set as the control range, the electric double layer capacitor 2 may be used in the vicinity of its withstand voltage limit. In this case, in order to protect the electric double layer capacitor 2, it is desirable to mount a protection circuit for limiting the voltage in the circuit.
  • FIG. 12 is a circuit diagram of a power supply device provided with a protection circuit. This protection circuit 9a is connected to the input terminal Vin side of the DCZD C converter 3, and becomes conductive when the voltage of the fuel cell 1 rises above the set cut voltage, and limits the maximum output voltage of the fuel cell 1 below the cut voltage. .
  • the protection circuit 9b may be connected to the output terminal Vout side of the DCZDC converter 3 as shown in FIG. In this case, since the voltage at the output terminal Vout is higher than the input terminal Vin of the DCZDC converter 3, the current to be cut can be reduced, and therefore an element with a small allowable loss can be used, which is advantageous for downsizing.
  • the output terminal is connected to the ground (GND) via the resistor 9c, and the control IC 4c Can cut the voltage by turning on the output terminal.
  • FIG. 15 is a circuit diagram of the power supply device when the output switch is omitted from the power supply device of FIG.
  • the output switch drive terminal of the control IC 4 is directly connected to the control terminal of the DCZDC converter 3a.
  • ON / OFF of the output power of the DCZDC converter 3a is realized by the control IC 4 controlling the output voltage of the DCZDC converter 3a.
  • FIG. 16 is a circuit diagram of the power supply device when the power storage means is omitted from the power supply device of FIG. Since there is no power storage means in this circuit, the output of the fuel cell 1 needs to be set larger than the maximum power of the portable electronic device. In this case, it is not necessary to supply power with the power supply pulse as in the above embodiments, and continuous power supply can be performed.
  • a constant number of electric power is supplied to the output power at a predetermined duty ratio. This is achieved by forming pulses.
  • the output power of the fuel cell is controlled by controlling the voltage of the fuel cell 1, but the control can be realized based on either the voltage value or the current value. Especially when the current value is used as the output, the output changes that are affected by the environment such as temperature and humidity are large. Therefore, it is desirable to change the upper and lower limits by sensing environmental information.
  • FIG. 17 is a circuit diagram of the power supply apparatus when control is performed based on the output current of the fuel cell.
  • the control IC4 controls the output switch 5 to turn on and off the output power.
  • a resistance R is provided between the fuel cell 1 and the electric double layer capacitor 2, and the output current of the fuel cell 1 is set to the resistance R. Change the voltage to, and input it to the current input terminal of the control IC4.
  • the control IC 4 turns on the output switch 5 at the lower limit current value based on the output current value of the fuel cell 1 and outputs electric power. At the upper limit current value, the output switch is turned off and the power output is cut off. According to this, the same effect as the above-described embodiment in which the control based on the voltage is performed can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

燃料電池1と電気2重層キャパシタ2が並列に接続され電力供給を行う。DC/DCコンバータ3は、燃料電池1および電気2重層キャパシタ2の電圧を昇圧して電力を出力する。DC/DCコンバータ3の出力経路上に出力スイッチ5を設けた。制御IC4が、出力スイッチ5を制御することによって出力電力をオン/オフできるようなっている。燃料電池1の燃料切れや燃料電池1の異常があった場合には、制御IC4は、出力スイッチ5を制御し、出力電力を断続的に変化させる。これによって、携帯電子機器としての携帯電話に接続して使用する場合、携帯電話の充電指示ランプの点滅状態で燃料切れまたは燃料電池異常を利用者が認識することができる。

Description

明 細 書
電源装置
技術分野
[0001] 本発明は、二次電池などの蓄電手段を搭載した電子機器に接続して電力供給を 行う電源装置に関する。
背景技術
[0002] 近年の電子技術の進歩によって、携帯電話機、携帯型パソコン、オーディオ 'ビジ ュアル機器、モパイル端末機器など携帯電子機器の普及が急速に進んでいる。この ような携帯電子機器に使用される二次電池は、従来のシール鉛バッテリからニッケル •カドミウム電池、ニッケル水素電池、さらにはリチウムイオン電池へと発展し、そのい ずれにおいても、エネルギー密度を高めるため、電池活物質や高容量の電池構造 の開発が行われ、より使用時間の長い電源を実現する努力が払われている。一方、 携帯電子機器においては、低消費電力化への努力がなされ、機能当たりの消費電 力も低下しているが、ユーザニーズ向上のため、今後も新機能を追加し機能を高め ていく必要があるため、トータルの消費電力が益々増加することが予想される。
[0003] 携帯電子機器においては、スペースの制限力 搭載する二次電池に容量が限られ ている。このため、長い使用時間を確保する場合は、外部から接続して電力供給を 行う電源装置を使用する必要がある。サブバッテリとも呼ばれるこの電源装置を使用 するとき、特に電池残量の確認が必要のため、従来、電源装置において発光ダイォ ードゃ液晶表示器を設けて、発光ダイオードや液晶表示器で電池残量を表示するよ うになつている。
[0004] しかしながら、電源装置に発光ダイオードや液晶表示器などの表示機能を設けた 場合、それだけに製造コストが高くなり、また、表示にエネルギーが使用されるため、 電源装置のエネルギー密度の低下を招くと 、う問題がある。
従って、コスト高になることなぐまたエネルギー密度を低下させずに、電池残量を 含めて内部状態を利用者が確認可能な電源装置が望まれている。
発明の開示 [0005] 本発明は、蓄電手段を有するとともに、該蓄電手段が充電されているときに充電状 態であることを表示する電子機器に接続して使用される電源装置であって、前記電 子機器に電力供給可能な電力源と、前記電力源の出力電力を断続的に変化させて 所定の情報を送信する送信手段とを備え、前記電子機器への電力供給時に、前記 電子機器における表示態様の変化によって前記所定の情報を表示させるものとした これによつて、電子機器に対して電力供給を行うとき、出力される電力の変化で電 子機器の表示機能で送信された所定の情報を表示することができる。例えば電源装 置の電池残量情報を送信すれば、電子機器の表示手段における出力電力の断続に 応じた表示で、利用者が電池残量を確認することができる。
[0006] 本発明によれば、電子機器に出力される電力を断続的に変化させることだけで、電 池残量など所定の情報を確認することができるので、電源装置にお!ヽて表示手段の 設置を省くことができ、コストの低下を図り、エネルギー密度を向上させることができる 。これにより連続使用時間の長い電源装置を得ることができる。
[0007] 前記した本発明の諸側面および効果、並びに、他の効果および更なる特徴は、添 付の図面を参照して後述する本発明の例示的かつ非制限的な実施の形態の詳細な 説明により、一層明ら力となるであろう。
図面の簡単な説明
[0008] [図 1]第 1の実施形態における電源装置の回路図である。
[図 2]燃料切れおよび燃料電池異常に応じてパルス数を変化させた場合の出力電力 を示す図である。
[図 3]時分割の例として燃料残量に応じてパルス数を変化させた場合の出力電力を 示す図である。
圆 4]電源装置を携帯電話に使用した場合の説明図である。
[図 5]燃料カートリッジの構成を示す断面図である。
[図 6]第 2の実施形態における電源装置の回路図である。
[図 7]時分割の例として燃料残量に応じてパルス数を変化させた場合の出力電力を 示す図である。 [図 8]第 3の実施形態における電源装置の回路図である。
[図 9]燃料電池の出力特性を示す図である。
[図 10]第 4の実施形態における電源装置の回路図である。
[図 11]電源装置を携帯型パソコンに使用した場合の説明図である。
[図 12]保護回路を設けた電源装置の回路図である。
[図 13]別の保護回路を設けた電源装置の回路図である。
[図 14]保護回路として、制御 ICの制御機能を利用した場合の電源装置の回路図で ある。
[図 15]出力スィッチを省略した場合の電源装置の回路図である。
[図 16]蓄電手段を省略した場合の電源装置の回路図である。
[図 17]燃料電池の出力電流に基づいて制御を行った場合の電源装置の回路図であ る。
発明を実施するための最良の形態
以下、本発明の実施の形態について、図に基づいて説明する。
図 1は、第 1の実施形態における電源装置の回路図である。
第 1の実施形態の電源装置 10は、図 1に示すように、電力源としての電池 1および 蓄電手段 2と、回路部 3と、制御 IC4と、出力スィッチ 5とを備えている。電池 1は蓄電 手段 2と並列に接続され、その両端が回路部 3の入力端子 Vin、グランド (GND)端 子に接続される。回路部 3の Vin端子に電池 1および蓄電手段 2のプラス端子、ダラ ンド (GND)端子にマイナス端子が接続され、回路部 3はそれらの出力電圧を変圧し て電力を出力する回路で、その出力端子 Voutが出力端子 V+に、グランド端子が N チャネルパワー MOSFETで構成された出力スィッチ 5を介して出力端子 V—に接続 される。出力スィッチ 5の制御端子が制御 IC4の出力スィッチ駆動端子に接続される 。蓄電手段 2のプラス端子が制御 IC4の EDLC電圧入力端子に接続される。制御 IC 4には、燃料残量検出器 6および温度センサ 7の検出値が出力される。制御 IC4は、 電池 1および蓄電手段 2の電圧および燃料残量検出器 6、温度センサ 7の検出値に 基づいて、電池 1および蓄電手段 2の電池残量および電池状態を判断し、判断の結 果を情報として、出力スィッチ 5をオン Zオフさせて送信する。ここで、制御 IC4と出力 スィッチ 5が請求の範囲における送信手段に相当する。
[0010] 第 1の実施形態では、電池 1に燃料電池が使用される。燃料電池としては、電源装 置 10が携帯電子機器に接続して使用されるため、メタノール水溶液を燃料とする直 接メタノール型燃料電池 (DMFC)を使用するが、改質型や直接水素燃料を使用す る燃料電池を用いても構わな 、。
蓄電手段 2は電気 2重層キャパシタ (EDLC)が使用される。蓄電手段 2は電池 1に より充電され、電池 1単独で供給電力が不足のとき、電力を出力するためのものであ ることから、蓄電手段 2は電気 2重層キャパシタでなく例えばリチウム系の二次バッテ リを使用することも可能である。この場合、例えばハイブリッド電気自動車 (HEV)など に用いられる高出力タイプのものを使用するのが望まし 、。
電池 1と蓄電手段 2に関して、その組み合わせで電力供給を行うため、電池 1が高 エネルギー密度を特徴とする電源で、蓄電手段 2が高出力密度を特徴とする電源の 組み合わせであればよぐ例えば電池 1にリチウムイオン電池、蓄電手段 2に電気 2 重層キャパシタという組み合わせを使用することもできる。
[0011] 回路部 3は変圧するため DCZDCコンバータが使用され、その出力電圧は、携帯 電子機器の電圧に対応するようになっている。第 1の実施形態では電池 1および蓄 電手段 2における直列個数の低減のために昇圧コンバータを使用するが、適用する 携帯電子機器の電圧によっては昇降圧型コンバータや降圧型コンバータを用いても 構わない。
[0012] 以下、電池 1に直接メタノール型燃料電池、蓄電手段 2に電気 2重層キャパシタを 使用するものとして説明を行う。なお、他の実施形態を含めて以下の説明では、電池 1は燃料電池 1と称し、蓄電手段 2は電気 2重層キャパシタ 2と称し、回路部 3は DCZ DCコンバータ 3と称することにする。なお、燃料残量検出器 6および温度センサ 7が 燃料電池 1の燃料残量および燃料電池 1の温度を検出するようになっている。
[0013] 第 1の実施形態では、電源装置 10の電力供給対象として携帯電子機器が用いら れ、燃料電池 1の出力電力は図示しない携帯電子機器の必要とする電力の平均値 に合わせ、その最大電力より小さく設定され、不足分の電力については電気 2重層キ ャパシタ 2から供給されるようになっている。このような設定を行うことによって、携帯電 子機器の最大電力に合わせて設定した場合より、電源装置 10の小型化を図ることが できる。ちなみに、燃料電池 1の出力電力を平均値に合わせて設定したため、電源 装置 10は、電気 2重層キャパシタ 2に電力が蓄積されたとき、外部への電力出力を行 い、電気 2重層キャパシタ 2を充電するときは、外部への電力出力を停止する。この制 御は、制御 IC4が電気 2重層キャパシタ 2の電圧を取得し、電気 2重層キャパシタ 2の 電圧に応じて出力スィッチ 5をオン/オフさせることによって実現している。
[0014] すなわち、制御 IC4は、 EDLC電圧入力端子を経由して入力された電気 2重層キヤ パシタ 2の電圧をチェックし、電圧が閾値として設定された上限電圧を超えると、出力 スィッチ 5に制御信号を出力し出力スィッチ 5をオンさせる。このとき、燃料電池 1と電 気 2重層キャパシタ 2が並列に電力を出力する状態になり、出力端子 V+、 V—に接 続される携帯電子機器に対して電力が出力されることになる。電力の出力に従い電 気 2重層キャパシタ 2の電圧が低下し、同時に燃料電池 1の出力電圧も低下する。そ して、電気 2重層キャパシタ 2の電圧が閾値として設定された下限電圧値に達すると、 制御 IC4が制御信号の出力を停止し出力スィッチ 5をオフさせる。
[0015] 出力スィッチ 5をオフさせることによって外部への電力出力が停止されると、負荷の 軽減によって燃料電池 1の出力電圧が上昇し、電気 2重層キャパシタ 2に対して充電 が行われる。充電によって電気 2重層キャパシタ 2の電圧が閾値として設定された上 限電圧に達すると、制御 IC4は、制御信号を出力して出力スィッチ 5をオンさせる。こ れによって、燃料電池 1と電気 2重層キャパシタ 2は再び携帯電子機器に対して電力 供給を行う。このように携帯電子機器には、図 2の(a)に示すように、一定の間隔で電 力供給パルス Pが繰り返して出力されて、電力供給が行われる。
[0016] 燃料電池 1には燃料残量検出器 6および温度センサ 7が設けられ、制御 IC4は、そ れらの検出信号に基づいて、燃料電池 1の燃料供給状態または燃料電池 1の異常が ある否かを判断し、燃料切れまたは燃料電池 1の異常があると判断した場合、図 2の( a)に示す電力供給パルス Pを (b) (c)におけるパルス群 Pl、 P2のように時分割して 出力させる。すなわち、制御 IC4には燃料切れおよび燃料電池 1の異常に対応した 複数の制御パターンを備え、燃料切れまたは燃料電池 1の異常があると判断した場 合、対応した制御パターンを適用し、出力スィッチ 5をオン Zオフさせることによって 電力供給パルス Pを時分割させる。
[0017] これによつて、燃料切れの場合は、図 2の (b)に示すように、通常時の電力供給パ ルス Pを分割したパルス群 P1が携帯電子機器へ出力される。また燃料電池 1の異常 の場合には、(c)に示すように通常時の電力供給パルス Pを分割したパルス群 P2が 携帯電子機器へ出力される。ここで、燃料切れ時に出力されるパルス幅が燃料電池 1の異常時に出力されるパルス幅より小さく設定され、それぞれのパルス群における 休止時間は同じように設定されているので、携帯電子機器側でその違いを読み取る ことによって、燃料電池 1が燃料切れか燃料電池 1の異常といった状態を確認するこ とができる。携帯電子機器には通常、電力が供給されたときに点灯する充電指示ラン プが備えられているので、充電指示ランプの点滅状態で利用者が電源装置 10の状 態が通常ではないと判断でき、その状態が燃料切れまたは燃料電池 1の異常を認識 することができる。この場合、通常の携帯電子機器に備えられている標準の充電表示 機能を利用するだけで電源装置 10側の電池状態を認識することができる。もちろん 、携帯電子機器にパルスの数と幅をチヱックする機能を設けて、チヱックした結果を 音声など別の表示手段で表示しても構わな 、。
[0018] また、電力供給パルスの分割は、図 2に示すように個々の電力供給パルス Pに対し て制御パターンを適用して行うこともできるが、異常などを検出したのち最初の電力 供給パルス Pだけに限定して行うことも可能である。制御パターンとしては、分割する パルス数について燃料状態または燃料電池 1の異常態様に応じて変化させることも できる。電力供給パルスの分割については、例えば 1回目はノ ルス数 2つ、 2回目は パルス数 3つと ヽうように、電力供給パルス Pの回数に応じてパルス数を変化させても よい。
[0019] 図 3は、時分割の例として燃料残量に応じてパルス数を変化させた場合の出力電 力を示す図である。
図 3の(a)に示す通常時の電力供給パルス Pに対して燃料残量大のときは、(b)の パルス群 P1のように 3つのパルスに分割して出力させている。また燃料残量中のとき は、(c)のパルス群 P2のように 2つのノルスに分割して出力させている。燃料残量小 のときは、(d)のパルス P3のようにパルス幅を小さくして出力させている。なお、図 3で は、パルス群 PIとパルス群 P2では、パルス数だけが異なり、パルス幅および休止時 間は同じである。
このような場合でも、携帯電子機器側でパルス数を数えることによって燃料電池の 燃料状態を確認することができる。携帯電子機器に充電表示ランプが備えられた場 合は、充電表示ランプの短 、点滅で燃料状態を確認することができる。
[0020] 図 4は、電源装置を携帯電話に接続して使用する場合の説明図である。
ここで、携帯電子機器として携帯電話 20が使用され、電源装置 10はコード 12によ つて携帯電話 20に接続される。電源装置 10には図 1に示す回路が内蔵され、コード 12は、回路の出力端子 V+、 V—と接続されている。したがって、電源装置 10側の 制御で、携帯電話 20に対して電力供給を行うことが可能である。
携帯電話 20には標準機能として充電表示ランプ 21が搭載されており、充電表示ラ ンプ 21は携帯電話 20内蔵の二次電池に対して充電が行われているとき、点灯する 仕組みになっている。したがって、電源装置 10が携帯電子機器としての携帯電話 20 に対して電力供給を行うとき、充電表示ランプ 21は図 2または図 3に示す電力パルス にしたがって点滅することになる。これによつて、携帯電子機器に対して改造すること なぐ利用者は、充電表示ランプ 21の点滅状態で燃料電池 1に燃料切れまたは燃料 電池 1の異常あるいは燃料状態を認識することができる。なお、液晶表示器に充電時 に充電マークが表示される携帯電話の場合は、充電マークの点滅で確認することも できる。
[0021] 燃料電池 1の状態は、大きく分けると以上のように燃料残量 (燃料切れ)や燃料電 池の異常になる力 燃料に関して言えば、メタノール水溶液を用いる力 燃料がほぼ ゼロに近づいたときは燃料電池 1からの電力が低下するため、携帯電話への電力供 給のデューティ (Duty)比が非常に小さくなる。すなわち、充電表示ランプ 21の点灯 時間が短くなる。電池 1の異常状態について言うと、燃料電池の温度は反応に伴い 上昇するが、ある閾値 (例えば 45°C)以上になった場合の制御による出力制限や燃 料電池の発電に伴って発生する空気極の水詰まりによる酸素供給の阻害や燃料極 の二酸ィ匕炭素詰まりによるメタノール水溶液供給の阻害により出力低下した場合が 主に挙げられる。 [0022] 燃料切れや燃料電池異常に共通する点として、出力低下が挙げられるが、前記の ように利用者が携帯電話 20に備えられた充電表示ランプ 21の点滅状態によって確 認できるので、燃料切れの場合は利用者が燃料カートリッジを交換することで容易に 問題解決できる。また、燃料電池 1の異常の場合は、図 2に示すように、燃料切れ時 と異なる幅の電力パルスが出力されるので、ランプ 21の点滅状態により燃料切れと 区別して判別することでき、電源を切るなどの対応策をとることが可能である。
[0023] 次に、燃料残量および燃料電池異常の検出について説明する。
図 5は、燃料電池に使用される燃料カートリッジを示す断面図である。
燃料カートリッジ 1Cの内周面に、電極 1A、 IBが互いに対向して設けられている。メ タノール水溶液によって構成された燃料 FR3は、隔離部材 20Aを介して圧縮ガス G R3からの圧力を受けるようになつている。燃料 FR3を使用した場合、隔離部材 20A が上方へ移動するため、隔離部材 20Aの上方の空間は常に燃料 FR3で満たされて いる。燃料カートリッジ 1C内の燃料 FR3の残量によって、燃料 FR3が接触する電極 1A、 IBの面積が異なるため、電極 1A、 IB間の抵抗を測ることによって燃料残量を 検出できる。
[0024] 燃料電池 1では、例えば水詰まりや二酸ィ匕炭素詰まりが生じると、出力電圧が急激 に低下するため、その電圧の急激な低下を検出することによって、水詰まりや二酸化 炭素詰まりを検出する。
また、燃料電池 1内部で、メタノール濃度が異常に高い場合、出力電圧が上昇しな いのに、温度が上昇する現象があるので、出力電圧が低いにも関わらず高い温度を 検出したとき、メタノールが高濃度状態であると判断することができる。
また、携帯電子機器から要求する出力電流が増カロした場合は、要求に応じた発電 を行わず、温度が低いままの場合は、燃料電池 1の内部でメタノールが低濃度状態 にあると判断できる。
制御 IC4は、これらの異常を検出した場合、前記したように、対応するパターンを適 用し、図 2示すように電力供給パルス Pを時分割して出力させることにより、例えば携 帯電話 20の充電表示ランプ 21の点滅状態で利用者がそれを認識することができる [0025] 以上説明したように、第 1の実施形態の電源装置 10によれば、電源装置 10に電池 状態の表示機能を設けなくても燃料残量や燃料電池異常などを判断することができ るので、コストの低下を図ることができる。また表示のためのエネルギーが使用されな いことにより、エネルギー密度を向上させることができる。
[0026] なお、第 1の実施形態では、充電表示ランプ 21の点滅状態で利用者が燃料切れ や燃料電池 1の異常を確認することを例として説明したが、携帯電子機器側で、電力 パルスの幅や数を回路によって検出し、別の態様で表示または携帯電子機器を低消 費電力モードに切り替えるなどの制御に用いることもできる。
電池 1としては、第 1の実施形態では燃料電池を使用するため、燃料カートリッジ 1 Cの差し替えなどで燃料を補給することにより使用時間を延ばすことが可能となるの が特徴であるが、同様に連続して使用することを可能とするために燃料電池 1の代わ りに交換可能な一次電池を使用し、一次電池と電気 2重層キャパシタ 2との組み合わ せで電力供給を行うことも可能である。
[0027] 制御 IC4としてはその機能を実現するために専用 ICが望ましいが、コンパレータや マイコンなどで代替可能である。
最後に、出力スィッチ 5は、図 1に示すようにグランド側に Nチャネルパワー MOSF ETを使用する力 V +側に Pチャネルパワー MOSFETを使用しても構わないし、そ の他のスイッチング素子で代替することも可能である。
本実施形態では、供給する電力供給パルス Pを時分割して燃料電池 1の燃料状態 や燃料電池 1の異常などの情報を携帯電話 20に送信し、標準機能として携帯電話 2 0の充電表示機能を利用して表示させるようにしたが、燃料電池 1の電力で賄える場 合は、電気 2重層キャパシタ 2が電力を出力しないため、携帯電子機器には連続した 電力が供給されることになるが、この場合でも、一定の時間間隔で、前記したように出 カスイッチ 5をオン Zオフさせて、燃料状態や燃料電池 1の異常などの情報を送信し 表示させることができる。なお、携帯電子機器に送信する情報としては、燃料電池 1 の電圧情報、異常電流情報など様々な情報を用いることが可能である。
[0028] 次に、第 2の実施形態について説明する。
図 6は、第 2の実施形態における電源装置の回路図である。この電源装置は、図 1 に示す電源装置に対して制御 IC4aに利用者により操作可能な切り替えスィッチ 8a が追加された点で異なる。燃料電池 1と、電気 2重層キャパシタ 2と、出力スィッチ 5な どは第 1の実施形態と同様である。
切り替えスィッチ 8aは、一般的な直流(DC)スィッチであるタクトスイッチやプッシュ スィッチを使用する。
[0029] 第 1の実施形態では、燃料切れまたは燃料電池 1の異常と判断した場合、図 2の(a )に示す電力供給パルス Pを (b)、(c)のパルス群 Pl、 P2のように時分割して出力さ せるようにしている。このため、異常のあるときは、常に電力供給パルス Pを分割した 電力パルスが出力される。第 2の実施形態では、電力供給パルス Pの分割、すなわち 電池状態の表示は、利用者の操作によって必要に応じて行うようにしている。
すなわち、制御 IC4aでは、切り替えスィッチ 8aが開いたとき、通常時の制御を行う 。このとき、 EDLC電圧入力端子を経由して入力された電気 2重層キャパシタ 2の電 圧をチェックし、電圧が設定された上限電圧を超えると、出力スィッチ 5に制御信号を 出力し出力スィッチ 5をオンさせ、燃料電池 1と電気 2重層キャパシタ 2によって電力 を出力させる。放電に従い電気 2重層キャパシタ 2の電圧が低下し、同時に燃料電池 1の出力電圧も低下する。そして、電気 2重層キャパシタ 2の電圧が設定された下限 電圧値に達すると、制御 IC4が制御信号の出力を停止させることによって電力供給を 停止させる。
[0030] この場合は、図 2の(a)または図 3の(a)に示すように通常の電力供給パルス Pが出 力される。このような制御は、切り替えスィッチ 8aが開いている間に続けられる。そし て、切り替えスィッチ 8aを閉じると、図 7の(e)に示すように制御 IC4aに入力信号が入 力され、これによつて、制御 IC4aは、燃料残量検出器 6および温度センサ 7の検出値 を入力し、燃料切れまたは燃料電池 1の異常と判断した場合、対応した制御パターン を適用して出力スィッチ 5をオン Zオフさせることによって電力供給パルス Pを時分割 させる。
図 7は、時分割の例として燃料残量に応じてパルス数を変化させた場合の出力電 力を示す図である。
ここでは、図 3と同様に、燃料残量大のときは、通常時の電力供給パルス Pを (b)に 示すように 3つのノ ルスに分割して出力させる。また燃料残量中のときは、(c)に示す ように 2つのノ ルスに分割して出力させる。燃料残量小のときは、(d)に示すようにパ ルス幅を小さくした 1つのパルスに分割して出力させる。
[0031] 第 2の実施形態によれば、制御 IC4aが利用者の操作による入力スィッチ 8aの状態 変化を検出し、燃料残量情報などの電源装置内部の情報を携帯電子機器への電力 供給パルス Pを時分割することによって表示させている。なお、ここでは、図 7に示す ように通常の電力供給パルス Pを時分割して送信するが、同間隔または一定以上の 間隔を持った電力供給パルスの回数により実現してもよい。以上の電力供給パルス 制御を行うための制御 IC4aの制御としては上限電圧から下限電圧 (もしくは上限電 流力 下限電流)の間隔を数等分することで実現したり、タイマ機能などで実現したり することができる。なお、図 7では、利用者の操作後に 1周期において変化させた電 力供給パルスを送信するが、何周期か連続で送信してもよいし、通常のパルス数回 分で、例えば 1回目はパルス 2回、 2回目はパルス 3回のように利用者に情報表示す る方法でも構わない。
[0032] 次に、第 3の実施形態について説明する。
図 8は、第 3の実施形態における電源装置の回路図である。図 8に示す電源装置 1 0は、図 1に示す電源装置に対して切り替えスィッチ (パルス変更スィッチ) 8bを設け た点で異なる。それ以外は同じである。切り替えスィッチ 8bは、スライドスィッチなどを 使用する。もちろん、スライドスィッチの代わりに、プッシュスィッチなどを複数使用し てもよい。
[0033] この切り替えスィッチ 8bの切り替えによって、制御 IC4bにおいて、電気 2重層キヤ パシタ 2の電圧を判断するための上限電圧または下限電圧を変えるようにしている。 燃料電池は、図 9に示すように出力電流の増加にしたがって出力電圧が低下する 出力特性を有する。このため、電気 2重層キャパシタ 2の電圧を制御するための下限 電圧、上限電圧を、例えば図 9において使用範囲 1に合わせて設定すれば、例えば 上限電圧を低い方に切り替え使用範囲 2または使用範囲 3を使用した場合、図 2の( a)に示す電力供給パルス Pの周期が早まり、その結果、図 2の(b)、 (c)に示すパル ス群 Pl、 P2の周期も早まるので、利用者の好みに応じて表示の周期を変更できる効 果が得られる。もちろん、上限電圧と下限電圧の両方の閾値を変化させてもよい。ま た、各入力スィッチ 8bの状態をそれぞれ携帯電子機器に割り当てて、利用者の操作 により、選択した携帯電子機器の特性に対応した電力供給パルスを供給するようにし ても構わない。
[0034] 次に、第 4の実施形態について説明する。
図 10は、第 4の実施形態における電源装置の回路図である。
携帯電子機器として例えば図 11に示す携帯型パソコン 20'の場合、通常、接続端 子 31に割り込み信号の出力端子を設けるようになつている。このため、電源装置 10 にそれに対応して、電力出力端子のほかに割り込み信号の入力端子として INT12を 設けることによって、割り込み信号の入力が可能である。この割り込み信号は、接続 端子 31に電源装置 10が正しく接続され、電力の供給が行われたときに出力されるも のである。したがって、このような割り込み信号が出力される携帯型パソコン 20'に使 用する場合は、図 10に示すように電力供給用の出力端子 V+と V—の二端子に加え て、割り込み信号を入力可能な INT端子を備えて構成し、この割り込み信号は、 INT 端子によって制御 IC4cに入力される。電源装置 10は、割り込み信号が入力されたと きのみ、電池状態をチェックし電力供給パルス Pを時分割して送信する。携帯型パソ コン 20'から割込信号が入力されてからの動作は第 2の実施形態と同様である。
[0035] すなわち、第 2の実施形態では、図 6に示すように制御 IC4aに切り替えスィッチ 8a を接続し利用者が切り替えスィッチ 8aを操作することによって、燃料残量または燃料 電池 1の異常を携帯電子機器側に表示するようにしたが、第 4の実施形態では、利用 者が操作可能な入力スィッチ 8aの代わりに携帯電子機器側からの割り込み信号 (入 力信号)で、図 7に示すように電力供給パルス Pを時分割し、燃料電池 1の状態を表 示させている。
[0036] ここで、携帯電子機器として携帯型パソコン 20'が使用されているが、携帯型バソコ ン 20'では、電力供給パルスが入力されることにより、電源装置 10をサブバッテリとし て認識し、画面上に例えば図 11に示すようにメインバッテリとサブバッテリが接続され ていることを画像で同時に表示する。そして電力供給パルス Pの入力後に、携帯型パ ソコン 20'が割込入力端子に接続された INT端子に割り込み信号を出力し、これによ つて、電源装置 10が電力供給パルス Pを送信し、携帯型パソコン 20'が例えばパル ス数をカウントすることによって画面上で電源装置 10の燃料残量を表示する。携帯 型パソコン 20'が INT端子に割り込みをかけたときに、通常時の電力供給期間と重な る場合がありえるので、パルス数のカウントは立ち上がりである方が望ましい。なお、 I NT端子に割り込み信号を出力した後、例えば一定期間応答がない場合や燃料電 池 1の異常が送信された場合は、携帯型パソコン 20'で電源装置 10から電力が供給 されていないとしてサブバッテリの表示を画面上から削除する。これによつて、利用者 は電源装置 10が電力供給していないことを認識することができる。なお、このときに ポップアップ表示などでユーザに情報表示を行っても構わない。
[0037] 次に、変形例として、電池 1に燃料電池 1ではなぐ一次電池や二次電池を使用し た場合を説明する。
例えば図 1に示す回路において、電池 1は、燃料電池 1でなぐ一次電池または二 次電池を使った場合、放電に伴 、一次電池または二次電池の電圧が低下するため 、電池残量を判定するためにその電圧を監視することによって行うことができる。その 電池残量を表示させるため、例えば下限電圧を電池の放電停止電圧(リチウム電池 の場合は 2. 7Vや 3. 0V)に設定する。上限電圧は前記下限電圧付近の電圧 (下限 電圧 + 0. IVなど)にしてもよいし、上限電圧は特に設けずに下限電圧以上の電圧 になった時間をカウントするタイマ機能で設定してもよい。
[0038] 上限電圧と下限電圧を前記のように設定することにより、携帯電子機器への残量検 知を実現することができる。まず、一次電池または二次電池 1の電圧が下限電圧に達 したのを制御 IC4が検知し、出力スィッチ 5をオフに制御することで放電を止める。次 に、一次電池または二次電池 1は放電が止められたため電圧が上昇する。このとき一 次電池または二次電池 1の電圧が上限電圧に到達した場合は放電を再開し、上限 電圧まで電圧が回復しなカゝつた場合は放電終了となる。このとき、携帯電子機器側の 充電表示ランプが点灯している時間は次第に短くなり、利用者は電池 1の残量切れ を検知することができる。
[0039] 次に、電気 2重層キャパシタの保護回路を説明する。
前記各実施の形態では、燃料電池 1が直接メタノール型燃料電池を使用するため 、その特性は、図 9の特性図に示すように特に最大電圧である開路電圧 (OCV)と使 用する下限電圧との差が非常に大きい。そのため、特に図 9において、上限電圧の 高い使用範囲 1または使用範囲 2を制御範囲とする場合には、電気 2重層キャパシタ 2はその耐電圧の限界付近で使われる可能性がある。この場合、電気 2重層キャパシ タ 2を保護するために回路に電圧を制限する保護回路を搭載することが望ましい。 図 12は、保護回路を設けた電源装置の回路図である。この保護回路 9aは DCZD Cコンバータ 3の入力端子 Vin側に接続され、燃料電池 1の電圧が設定されたカット 電圧以上に上昇すると導通し、燃料電池 1の最高出力電圧をカット電圧以下に制限 する。
[0040] この場合、 DC/DCコンバータ 3が昇圧コンバータである場合は保護回路 9aがカツ トする電流値が大きくなり、保護回路 9aにおける各素子の許容損失の大きなものが 必要となる。
このようなことを防止するために、図 13に示すように DCZDCコンバータ 3の出力端 子 Vout側に保護回路 9bを接続する構成にしてもよい。この場合、出力端子 Voutの 電圧は、 DCZDCコンバータ 3の入力端子 Vinよりも高いため、カットする電流を小さ くすることができ、したがって許容損失の小さな素子が使えるため小型化に有利であ る。
[0041] 保護回路としては、例えば図 14に示すように、制御 IC4cに DCZDCコンバータ 3 の出力を電源として使用した場合、出力端子を抵抗 9cを介してグランド (GND)に接 続し、制御 IC4cが出力端子をオンさせることによって、電圧をカットすることもできる。
[0042] 次に、他の変形例について説明する。
図 15は、図 1の電源装置に対して出力スィッチを省略した場合の電源装置の回路 図である。
ここでは、制御 IC4の出力スィッチ駆動端子が DCZDCコンバータ 3aの制御端子 と直接に接続される。 DCZDCコンバータ 3aの出力電力のオン Zオフは、制御 IC4 が DCZDCコンバータ 3aの出力電圧を制御することによって実現する。
[0043] 図 16は、図 1の電源装置に対して蓄電手段を省略した場合の電源装置の回路図 である。 この回路には、蓄電手段がないため、燃料電池 1の出力は、携帯電子機器の最大 電力より大きく設定する必要がある。この場合、前記各実施形態のように電力供給パ ルスで電力供給する必要がなくなり、連続した電力供給を行うことができる。ここで、 燃料残量および燃料電池 1の異常を表示するために、前記同様に出力スィッチ 5ま たは DCZDCコンバータ 3を制御することによって、出力電力に所定のデューティ比 で、一定数の電力供給パルスを形成することによって実現する。
[0044] 前記各実施形態では、燃料電池 1の電圧を制御することによって、燃料電池の出 力電力を制御したが、前記制御は電圧値、電流値どちらを基にしても実現可能であ る。特に電流値を基にする場合は、温度や湿度などの環境に影響される出力変化が 大きいため、環境情報をセンシングして上限値と下限値を変化させることが望ましい
[0045] 図 17は、燃料電池の出力電流に基づいて制御を行った場合の電源装置の回路図 である。
前記各実施形態および変形例では、燃料電池 1の出力電圧に基づ!ヽて制御 IC4 が出力スィッチ 5を制御して出力電力をオン Zオフさせた力 ここでは、燃料電池 1と 電気 2重層キャパシタ 2の間に抵抗 Rを設け、燃料電池 1の出力電流を抵抗 Rで電圧 に変えて、制御 IC4の電流入力端子に入力させる。制御 IC4では、燃料電池 1の出 力電流値に基づいて下限電流値で出力スィッチ 5をオンし電力を出力させる。上限 電流値では出力スィッチをオフにし、電力の出力を遮断させる。これによつても、電圧 に基づいた制御を行う前記実施の形態と同様な効果が得られる。

Claims

請求の範囲
[1] 蓄電手段を有するとともに、該蓄電手段が充電されているときに充電状態であること を表示する電子機器に接続して使用される電源装置であって、
前記電子機器に電力供給可能な電力源と、
前記電力源の出力電力を断続的に変化させて所定の情報を送信する送信手段と を備え、
前記電子機器への電力供給時に、前記電子機器における表示態様の変化によつ て前記所定の情報を表示させることを特徴とする電源装置。
[2] 前記電子機器には、前記蓄電手段が充電されているときに点灯またはマークで充 電表示を行う充電表示ランプまたは液晶表示器を少なくとも 1つ備え、前記充電表示 ランプまたはマークの点滅によって、前記所定の情報を表示させることを特徴とする 請求の範囲第 1項に記載の電源装置。
[3] 前記電力源に一次電池または二次電池が使用され、前記所定の情報は、前記一 次電池または二次電池の電池残量情報とすることを特徴とする請求の範囲第 1項ま たは第 2項に記載の電源装置。
[4] 前記電力源に燃料電池が使用され、前記所定の情報は、前記燃料電池の状態情 報とすることを特徴とする請求の範囲第 1項または第 2項に記載の電源装置。
[5] 前記燃料電池の状態情報は、前記燃料電池の燃料残量情報を含むものであること を特徴とする請求の範囲第 4項に記載の電源装置。
[6] 前記燃料電池の状態情報は、前記燃料電池の温度情報を含むものであることを特 徴とする請求の範囲第 4項に記載の電源装置。
[7] 前記燃料電池の状態情報は、前記燃料電池の異常情報を含むものであることを特 徴とする請求の範囲第 4項に記載の電源装置。
[8] 前記燃料電池の異常情報は、前記燃料電池の異常温度情報であることを特徴とす る請求の範囲第 7項に記載の電源装置。
[9] 前記燃料電池は直接メタノール型燃料電池とし、前記燃料電池の異常情報は、前 記燃料電池の空気極または燃料極の詰まり情報であることを特徴とする請求の範囲 第 7項に記載の電源装置。
[10] 前記燃料電池は直接メタノール型燃料電池とし、前記燃料電池の異常情報は、前 記燃料電池の燃料であるメタノールまたは水分が不足する情報であることを特徴とす る請求の範囲第 7項に記載の電源装置。
[11] 利用者によって操作可能な切替スィッチを有し、前記切替スィッチが操作されたと き、前記送信手段は、前記電力源の出力電力を断続的に変化させ、前記所定の情 報を送信することを特徴とする請求の範囲第 1項力も第 10項のいずれか 1項に記載 の電源装置。
[12] 前記電力源は周期的に前記電子機器にパルス状の電力を出力するものとし、 前記送信手段は、前記出力電力のパルス数または周波数あるいはデューティ比の うち少なくとも 1つを変化させて、前記所定の情報を送信することを特徴とする請求の 範囲第 1項から第 11項のいずれか 1項に記載の電源装置。
[13] 前記電力源には、燃料電池と蓄電手段が備えられ、
前記送信手段は、前記蓄電手段が電力を出力している間に前記出力電力を断続 的に変化させて、前記所定の情報を送信することを特徴とする請求の範囲第 1項力 第 12項のいずれか 1項に記載の電源装置。
[14] 前記燃料電池または前記蓄電手段における電圧または電流の少なくとも 1つに基 づ 、て前記電子機器への電力供給の開始と停止を制御し、パルス状の電力を出力 することを特徴とする請求の範囲第 13項に記載の電源装置。
[15] 利用者によって操作可能なパルス変更スィッチを有し、前記パルス変更スィッチが 操作されたとき、出力する電力供給パルスと隣接する 2つの電力供給パルスの間に ある電力非供給期間のうち少なくとも 1つの時間間隔を変化させることを特徴とする請 求の範囲第 13項に記載の電源装置。
[16] 前記蓄電手段は、電気 2重層キャパシタを使用することを特徴とする請求の範囲第
13項または第 14項に記載の電源装置。
[17] 前記蓄電手段は、リチウム系二次電池を使用することを特徴とする請求の範囲第 1
3項または第 14項に記載の電源装置。
PCT/JP2006/308710 2005-05-06 2006-04-26 電源装置 WO2006120901A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2006800146581A CN101167228B (zh) 2005-05-06 2006-04-26 电源装置
US11/913,681 US7876069B2 (en) 2005-05-06 2006-04-26 Electrical power unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005135014A JP4410722B2 (ja) 2005-05-06 2005-05-06 電源装置
JP2005-135014 2005-05-06

Publications (1)

Publication Number Publication Date
WO2006120901A1 true WO2006120901A1 (ja) 2006-11-16

Family

ID=37396411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308710 WO2006120901A1 (ja) 2005-05-06 2006-04-26 電源装置

Country Status (4)

Country Link
US (1) US7876069B2 (ja)
JP (1) JP4410722B2 (ja)
CN (1) CN101167228B (ja)
WO (1) WO2006120901A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398412B2 (en) 2009-03-16 2013-03-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Housing, electrical coupling including said housing, and vehicle including such a coupling

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201006091A (en) * 2008-07-18 2010-02-01 Nan Ya Printed Circuit Board Battery management systems and methods
TW201010086A (en) * 2008-08-20 2010-03-01 Delta Electronics Inc Solar power converting package
JP5267050B2 (ja) * 2008-10-30 2013-08-21 株式会社豊田自動織機 バッテリ残量モニタシステム
US8980491B2 (en) * 2010-06-16 2015-03-17 Apple Inc. Fuel cell system to power a portable computing device
JP2012186925A (ja) * 2011-03-07 2012-09-27 Nippon Signal Co Ltd:The 車両用充電システム
JP5919991B2 (ja) * 2011-11-29 2016-05-18 ソニー株式会社 電子機器、給電装置および給電システム
CN107742915B (zh) * 2013-12-06 2021-02-19 深圳市大疆创新科技有限公司 电池以及具有该电池的飞行器
US9592744B2 (en) 2013-12-06 2017-03-14 SZ DJI Technology Co., Ltd Battery and unmanned aerial vehicle with the battery
TWI497867B (zh) * 2014-02-24 2015-08-21 台達電子工業股份有限公司 輸出電源保護裝置及其操作方法
GB2524973A (en) * 2014-04-07 2015-10-14 Intelligent Energy Ltd Power supply apparatus
JP2016154110A (ja) * 2015-02-20 2016-08-25 株式会社東芝 バッテリおよびバッテリのためのアラーム提示方法
US20170117730A1 (en) * 2015-06-26 2017-04-27 The Regents Of The University Of California Efficient supercapacitor charging technique by a hysteretic charging scheme
US20170136893A1 (en) * 2015-11-13 2017-05-18 NextEv USA, Inc. Vehicle skin charging system and method
US10553846B1 (en) * 2016-03-29 2020-02-04 Amazon Technologies, Inc. System for thermal management of a battery
JP6642496B2 (ja) * 2017-01-11 2020-02-05 株式会社デンソー 電源装置及び電源システム
KR102049642B1 (ko) * 2017-11-24 2019-11-27 (주)두산 모빌리티 이노베이션 드론용 연료전지 파워팩 및 그것의 상태정보 모니터링 방법
JP7436295B2 (ja) 2020-06-02 2024-02-21 株式会社やまびこ バッテリーパック、システム、動作状態伝送方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07295685A (ja) * 1994-04-28 1995-11-10 Citizen Watch Co Ltd 情報処理システム
JP3140806B2 (ja) * 1991-08-27 2001-03-05 松下電工株式会社 充電装置
JP2004220845A (ja) * 2003-01-10 2004-08-05 Toshiba Corp 電子機器システムおよび動作制御方法
JP2005032039A (ja) * 2003-07-07 2005-02-03 Sony Corp 電子機器及び電子機器の電源管理制御方法、並びに電源装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195693A (ja) * 1995-01-17 1996-07-30 Tokai Rika Co Ltd 送信機及び受信機並びに送受信装置
US6428918B1 (en) * 2000-04-07 2002-08-06 Avista Laboratories, Inc. Fuel cell power systems, direct current voltage converters, fuel cell power generation methods, power conditioning methods and direct current power conditioning methods
JP4744673B2 (ja) * 2000-06-30 2011-08-10 パナソニック株式会社 充電装置、電池パック及びそれらを用いた充電システム
JP3830910B2 (ja) * 2003-03-04 2006-10-11 株式会社東芝 燃料電池ユニットおよび状態表示制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140806B2 (ja) * 1991-08-27 2001-03-05 松下電工株式会社 充電装置
JPH07295685A (ja) * 1994-04-28 1995-11-10 Citizen Watch Co Ltd 情報処理システム
JP2004220845A (ja) * 2003-01-10 2004-08-05 Toshiba Corp 電子機器システムおよび動作制御方法
JP2005032039A (ja) * 2003-07-07 2005-02-03 Sony Corp 電子機器及び電子機器の電源管理制御方法、並びに電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398412B2 (en) 2009-03-16 2013-03-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Housing, electrical coupling including said housing, and vehicle including such a coupling

Also Published As

Publication number Publication date
CN101167228B (zh) 2011-07-27
JP2006314156A (ja) 2006-11-16
US20090079382A1 (en) 2009-03-26
US7876069B2 (en) 2011-01-25
JP4410722B2 (ja) 2010-02-03
CN101167228A (zh) 2008-04-23

Similar Documents

Publication Publication Date Title
JP4410722B2 (ja) 電源装置
JP5356315B2 (ja) バッテリパック
JP4829999B2 (ja) 電源装置及び電池パック
US7928696B2 (en) Method for ensuring safe use of a battery pack after impact
KR101916970B1 (ko) 배터리 관리 시스템 및 그를 포함하는 배터리 팩
SK14672000A3 (sk) Primárna batéria so zabudovaným konvertorom
US10688241B2 (en) Multi-mode power supply system for a portable infusion device
JP2006128088A (ja) 燃料電池を用いた電源装置およびその制御方法
KR20040087884A (ko) 전지용 전원 회로 및 전지 팩
TW201728036A (zh) 具備無線通訊功能之電池式電源裝置
KR101273811B1 (ko) 에너지 저장체의 전압 안정화 장치 및 그 방법
KR20070109017A (ko) 이동형 전자기기의 외부 보조 배터리
KR20210053103A (ko) 배터리 감시 장치 및 방법
JP4646929B2 (ja) 充電器
CN209881427U (zh) 一种镍铬电池用新型充电器
KR20080043114A (ko) 전기에너지 저장장치의 과충전 방지유닛 및 이를 구비한장치
KR101140244B1 (ko) 축전지 팩 모듈
EP2571136B1 (en) Power supply device
KR200330442Y1 (ko) 2차 전지의 충전 회로
KR102161289B1 (ko) 외장 배터리
KR20230170946A (ko) 충전 제어 회로, 방법 및 장치, 충전 시스템, 분리형 무화 장치
RU2009137189A (ru) Электрический приводной инструмент, корпус инструмента и аккумуляторный источник питания
KR20230152429A (ko) 셀 밸런싱 방법 및 이를 적용한 배터리 팩
JP2000260485A (ja) 電池の状態の表示装置を有する電池パック

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014658.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11913681

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06745688

Country of ref document: EP

Kind code of ref document: A1