WO2006120183A1 - Verfahren zur herstellung von vakuumisolations-paneelen - Google Patents

Verfahren zur herstellung von vakuumisolations-paneelen Download PDF

Info

Publication number
WO2006120183A1
WO2006120183A1 PCT/EP2006/062136 EP2006062136W WO2006120183A1 WO 2006120183 A1 WO2006120183 A1 WO 2006120183A1 EP 2006062136 W EP2006062136 W EP 2006062136W WO 2006120183 A1 WO2006120183 A1 WO 2006120183A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
open
vacuum insulation
insulation panels
cell
Prior art date
Application number
PCT/EP2006/062136
Other languages
English (en)
French (fr)
Inventor
Johann Klassen
Jörg Krogmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36677078&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006120183(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2006245777A priority Critical patent/AU2006245777B2/en
Priority to EP20060755080 priority patent/EP1893905B1/de
Priority to PL06755080T priority patent/PL1893905T3/pl
Priority to US11/913,795 priority patent/US20080199678A1/en
Priority to DE200650005120 priority patent/DE502006005120D1/de
Priority to AT06755080T priority patent/ATE445802T1/de
Priority to JP2008510560A priority patent/JP2008540955A/ja
Priority to NZ563010A priority patent/NZ563010A/en
Publication of WO2006120183A1 publication Critical patent/WO2006120183A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5627After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1285Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/005Avoiding skin formation; Making foams with porous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]

Definitions

  • the invention relates to vacuum insulation panels, a process for their preparation and open-cell rigid polyurethane foams which can be used for use as core material in vacuum insulation panels.
  • Vacuum insulation units are used, inter alia, for refrigerator housings, containers for refrigerated vehicles or district heating pipes. Due to their lower thermal conductivity, they offer advantages over conventional insulation materials. Thus, the energy saving potential compared to closed-cell polyurethane rigid foams is about 20-30%.
  • Such vacuum insulation units generally consist of a heat-insulating core material, for example open-cell polyurethane (PUR) rigid foam, open-cell extruded polystyrene foam, silica gels, glass fibers, plastic fillings, pressed regrind made of rigid polyurethane foam or semi-rigid foam or perlite a gas-tight film packed, evacuated and sealed airtight.
  • PUR polyurethane
  • vacuum insulation units can be made by incorporating a foam system for open celled rigid polyurethane foams into the interior of the double wall of a double walled enclosure, such as a refrigerated furniture door or cabinet, where the system hardens to open cell foam, and subsequent evacuation.
  • a vacuum pump can be connected to the foam-filled double wall, through which the vacuum can be renewed if necessary.
  • EP 905159 and EP 905158 disclose processes for the production of open-celled rigid foams, preference being given to using an esterification product of fatty acids and polyfunctional alcohols as emulsifying aids to support the storage-stable blowing agent-containing emulsion.
  • combinations of perfluoroalkanes and alkanes are used as physical blowing agents.
  • the use of perfluoroalkanes to produce fine cells is already known from EP 351 614.
  • the morphology of the cells of the open-cell polyurethane humectants used as core material has a major influence on the thermal conductivity of the vacuum insulation panels.
  • EP 967 243 it is known to compress open-celled rigid polyurethane foams for use as core material for vacuum insulation panels during the foaming process. This is done in two stages. Prior to the gelation of the foam, it is compressed to a volume of 40 to 60% of the volume of the free-foamed foam and in a second stage during the rise time to a volume of 20 to 30% of the volume of the free-foamed foam.
  • This compression is intended to increase the content of open cells in the foam.
  • the foams thus obtained can be used to vacuum insulation panels with a reduced thermal conductivity.
  • a disadvantage of this method is an increased density of the foam and a poor Entform by the high compression during the reaction phase.
  • From WO 99/36636 a method for the production of vacuum insulation panels is known in which the panels are compressed during or after evacuation. This is intended to achieve a reduction in the thermal conductivity as far as a wrinkle-free surface of the elements.
  • the disadvantage here is that it may come through the subsequent compression to damage the elements, in particular the weld.
  • Object of the present invention was therefore to develop vacuum insulation panels using open-cell foam as the core material, which are easy to prepare and have a low thermal conductivity.
  • the invention accordingly vacuum insulation panels, consisting of a molded body made of open-cell foam, which is packaged in a gas-tight film, evacuated and sealed airtight, characterized in that the open-cell foam is compressed after curing and before evacuation.
  • the invention further relates to a process for the production of vacuum insulation panels by enveloping a shaped body of open-cell foam with a gas-tight film and subsequent evacuation and gas-tight welding of the film, characterized in that the shaped body is compressed from open-cell foam after curing.
  • the open-cell foams commonly used for the production of vacuum insulation panels can be used, these are, for example, polystyrene foam, Polyolefinschaum, such as polyethylene or Polypropylene foam, polyacrylate foam, phenol-formaldehyde foams, polyvinyl chloride foam, and in particular polyurethane-hard or hard foam, in particular rigid polyurethane foam.
  • the compaction calculated as panel thickness before pressing: Panel thickness after pressing, is preferably in the range between 2 and 3.8. A particularly low thermal conductivity is achieved with a compression in the range between 3 and 3.5.
  • the compression of the foam is done as described before evacuation of the vacuum insulation panel.
  • the pressing takes place after the shaping of the core for the vacuum insulation panel.
  • the pressing can preferably be done by means of a hydraulic or pneumatic press. It must be ensured, in particular during compression after wrapping the foam with the film, that there is no mechanical damage.
  • the surfaces of the pressing device must be very smooth and must have no sharp-edged or pointed bumps.
  • the surface of the press should be parallel to the surface of the body to be compacted.
  • pressing can change the orientation of the cells very much in the direction of an anisotropy up to the cell breakage.
  • the length-to-side ratio of the foam cells is thereby increased in the direction of the length, until finally a cell break occurs on further pressure increase.
  • the pressing can be carried out in one or more stages. Preferably, the pressing takes place in one stage.
  • the deterioration of the mechanical properties of the foams associated with the compression of the foam can be tolerated since vacuum insulation panels are generally not subject to any great mechanical stress. More important for the application is that they are dimensionally stable in the application. This is given in the vacuum insulation panels according to the invention.
  • Another of the method according to the invention is that the property profile of the hard foam is changed by the compression in the direction of higher flexibility, so that non-planar VIPs can be easily manufactured, for example for use in the pipe insulation. It is often the case that the thermal conductivity does not decrease with increasing compression. Often, the thermal conductivity goes through a minimum with increasing compression, and then rise again. The optimum for the respective type of foam optimum can be easily determined by the expert by preliminary experiments. Often the compression also depends on the required component size. In any case, the thermal conductivity of foams which have been subjected to compression is lower than that of non-compressed foams.
  • all described open-cell foams in particular open-celled rigid polyurethane foams, can be used for the vacuum insulation panels according to the invention.
  • the preparation of the open-cell rigid polyurethane foams is carried out by known processes by reacting polyisocyanates with compounds having at least two isocyanate-reactive hydrogen atoms.
  • the polyisocyanates used are preferably aromatic polyisocyanates, more preferably isomers of diphenylmethane diisocyanate (MDI) and mixtures of diphenylmethane diisocyanate and polyphenylenepolymethylene polyisocyanates (crude MDI).
  • MDI diphenylmethane diisocyanate
  • CAde MDI polyphenylenepolymethylene polyisocyanates
  • polyether alcohols and / or polyester alcohols are generally used as compounds having at least two isocyanate-reactive hydrogen atoms.
  • the polyester alcohols are usually formed by condensation of polyfunctional alcohols, preferably diols, having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms, with polyfunctional carboxylic acids having 2 to 12 carbon atoms, for example succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, Decanedicarboxylic acid, maleic acid, fumaric acid and preferably phthalic acid, isophthalic acid, terephthalic acid and the isomeric naphthalene dicarboxylic acids.
  • the polyester alcohols usually have a functionality between 2 and 8, in particular 4 to 8.
  • Polyether polyols used in particular as polyhydroxyl compounds are prepared by known processes, for example by anionic polymerization of alkylene oxides in the presence of alkali metal hydroxides.
  • the alkylene oxides used are preferably ethylene oxide and 1, 2-propylene oxide.
  • the alkylene oxides can be used individually, alternately in succession or as mixtures.
  • Suitable starter molecules are, for example: water, organic dicarboxylic acids, such as succinic acid, adipic acid, phthalic acid and terephthalic acid, aliphatic and aromatic, optionally N-mono-, N, N- and N, N'-dialkyl-substituted diamines with 1 to 4 carbon atoms in the alkyl radical, such as optionally mono- and dialkyl-substituted ethylenediamine, diethylenetriamine, triethylenetetramine, 1, 3-propylenediamine, 1, 3 or 1, 4-butylenediamine, 1, 2, 1, 3, 1, 4 -, 1, 5 and 1, 6-hexamethylenediamine, aniline, phenylenediamines, 2,3-, 2,4-, 3,4- and 2,6-toluenediamine and 4,4
  • alkanolamines e.g. Ethanolamine, N-methyl and N-ethylethanolamine
  • dialkanolamines e.g. Diethanolamine, N-methyl and N-ethyldiethanolamine and trialkanolamines such as e.g. Triethanolamine and ammonia.
  • polyhydric especially dihydric and / or trihydric alcohols, such as ethanediol, propanediol-1, 2 and -1, 3, diethylene glycol, dipropylene glycol, butanediol-1, 4, hexanediol-1, 6, glycerol, pentaerythritol, sorbitol and Sucrose, polyhydric phenols, such as 4,4'-dihydroxy-diphenylmethane and 4,4'-dihydroxy-diphenyl-propane-2,2, resoles, e.g. oligomeric condensation products of phenol and formaldehyde and Mannich condensates of phenols, formaldehyde and dialkanolamines and melamine.
  • dihydric and / or trihydric alcohols such as ethanediol, propanediol-1, 2 and -1, 3, diethylene glycol, dipropylene glycol, butanedi
  • the polyether polyols have a functionality of preferably 2 to 8 and in particular 3 and 6 and hydroxyl numbers of preferably 120 mgKOH / g to 770 mgKOH / g and especially 240 mgKOH / g to 570 mgKOH / g.
  • the compounds having at least two isocyanate-reactive hydrogen atoms also include the optionally used chain extenders and crosslinkers.
  • chain extenders and crosslinkers are preferably used alkanolamines and in particular diols and / or triols having molecular weights less than 400, preferably 60 to 300.
  • chain extenders, crosslinking agents or mixtures thereof are used to prepare the isocyanate-based rigid foams, these are expediently present in an amount of from 0 to 20% by weight, preferably from 2 to 5% by weight, based on the weight of the compounds with at least two Isocyanate groups reactive hydrogen atoms used.
  • the process of the invention is usually carried out in the presence of blowing agents, catalysts and, if necessary, auxiliaries and / or additives.
  • the customary and known polyurethane catalysts can be used.
  • compounds are used which greatly accelerate the reaction of the isocyanate groups with the isocyanate-reactive groups.
  • organic metal compounds are used, preferably organic tin compounds, such as tin (II) salts of organic acids.
  • strongly basic amines examples include secondary aliphatic amines, imidazoles, amidines, triazines and alkanolamines.
  • the catalysts can, depending on requirements, be used alone or in any mixtures with one another.
  • propellant preferably water can be used which reacts with isocyanate groups with elimination of carbon dioxide.
  • water instead of, but preferably in combination with water and so-called physical blowing agents can be used. These are compounds which are inert to the starting components and which are usually liquid at room temperature and evaporate under the conditions of the urethane reaction. The boiling point of these compounds is preferably below 110 ° C., in particular below 80 ° C.
  • the physical blowing agents also include inert gases which are introduced into or dissolved in the starting components, for example carbon dioxide, nitrogen or noble gases.
  • the liquid at room temperature compounds are usually selected from the group comprising alkanes and / or cycloalkanes having at least 4 carbon atoms, dialkyl ethers, esters, ketones, acetals, fluoroalkanes having 1 to 8 carbon atoms, and tetraalkylsilanes having 1 to 3 carbon atoms in the alkyl chain, in particular Tetra methyl silane.
  • Examples which may be mentioned are propane, n-butane, iso- and cyclobutane, n-, iso- and cyclopentane, cyclohexane, dimethyl ether, methyl ethyl ether, methyl butyl ether, formic acid methyl ester, acetone, and fluoroalkanes which can be degraded in the troposphere and Therefore, for the ozone layer are harmless, such as trifluoromethane, difluoro methane, 1, 1, 1, 3,3-pentafluorobutane, 1, 1, 1, 3,3-pentafluoropropane, 1, 1, 1, 1, 2-tetrafluoroethane, difluoroethane and heptafluoropropane.
  • the said physical blowing agents can be used alone or in any combination with each other.
  • auxiliaries and / or additives are the substances known per se for this purpose, for example surface-active substances, foam stabilizers, cell regulators, Fillers, pigments, dyes, flame retardants, anti-hydrolysis agents, antistatic agents, fungistatic and bacteriostatic agents are used.
  • the polyisocyanates a) and the compounds having at least two isocyanate-reactive hydrogen atoms b) are reacted in amounts such that the equivalence ratio of NCO groups of the polyisocyanates a) to the sum of the reactive hydrogen atoms of the components b) 0.85 to 1, 75: 1, preferably 1, 0 to 1, 3: 1 and in particular about 1, 0 to 1, 15: 1, is.
  • a ratio of NCO groups of the polyisocyanates a) to the sum of the reactive hydrogen atoms of component b) is usually from 1.6 to 60: 1 , preferably 3.0 to 8: 1 applied.
  • the isocyanate-based rigid foams can be prepared batchwise or continuously by the prepolymer or preferably by the one-shot method with the aid of known mixing devices.
  • the vacuum insulation panels can be manufactured in various forms, for example as rigid panels, or with other non-planar geometries. Their preparation and the materials that can be used are known per se. It is common practice to weld together a getter material along with the core material to prevent any later outgassing of volatile substances from affecting the vacuum.
  • a film As wrapping material for the vacuum insulation panels is generally used a film.
  • Preferred films are composite films, in particular multilayer composite films with a vapor-deposited or laminated metal layer, for example of aluminum. Suitable films consist for. Example of polyester, polyvinyl chloride, polyolefins such Polyethylene or polypropylene, or polyvinyl alcohol.
  • inliners of refrigerators, pipe jackets or metal layers may also be considered as the shell material.
  • the foam is initially produced in a manner known per se. Thereafter, the foams obtained, unless they have already been prepared as corresponding moldings, brought into the mold, which they have as the core of the vacuum insulation panel. This is preferably done by separating, in particular sawing, in appropriate plate size. When separating is separated in particular parallel to the foaming, since due to the anisotropy of the foams, the resulting plate then has a lower thermal conductivity.
  • the shaped bodies are then packed in the gastight envelope, preferably the composite foil, evacuated and welded in a gas-tight manner.
  • the vacuum insulation panels produced by the process according to the invention can be used for the insulation of refrigerators, containers and buildings as well as for the sheathing of pipes. Due to their flexibility, they can be easily deformed, which is particularly advantageous when used as a pipe jacket.
  • a block of rigid polyurethane foam with the thickness given in the table is compressed by means of a hydraulic press to the thicknesses given in the table and the thermal conductivity in the direction of the compression is determined. The results can also be found in the table.
  • Foam I is a rigid polyurethane foam made on a double belt.
  • Foam II is a rigid polyurethane foam made as a block foam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Vakuum-Isolationspaneelen durch Umhüllen eines Formkörpers aus offenzelligem Schaumstoff mit einer gasdichten Folie und nachfolgender Evakuierung und gasdichten Verschwei- ßen der Folie, dadurch gekennzeichnet, dass der Formkörper aus offenzelligem Schaumstoff nach der Aushärtung und vor der Evakuierung komprimiert wird.

Description

Verfahren zur Herstellung von Vakuumisolations-Paneelen
Beschreibung
Gegenstand der Erfindung sind Vakuum-Isolationspaneele, ein Verfahren zu ihrer Herstellung sowie offenzellige Polyurethan-Hartschaumstoffe, die für den Einsatz als Kernmaterial in Vakuumisolationspaneelen eingesetzt werden können.
Vakuumisolationseinheiten finden unter anderem Anwendung für Kühlgerätegehäuse, Behälter für Kühlfahrzeuge oder Fernwärmerohre. Aufgrund ihrer geringeren Wärmeleitfähigkeit bieten sie Vorteile gegenüber üblichen Dämmstoffen. So liegt das Energieeinsparpotential gegenüber geschlossenzelligen Polyurethan-Hartschaumstoffen bei etwa 20-30%.
Solche Vakuumisolationseinheiten bestehen in der Regel aus einem wärmeisolierenden Kernmaterial, beispielsweise offenzelligem Polyurethan (PUR)-Hartschaum, offen- zelligem extrudiertem Polystyrolschaum, Kieselgelen, Glasfasern, Kunststoffschüttun- gen, gepresstem Mahlgut aus PUR-Hartschaum bzw. -Halbhartschaum oder Perlite., welches in eine gasdichte Folie verpackt, evakuiert und luftdicht eingeschweißt wird.
Bei einer weiteren Ausführungsform können Vakuumisolationseinheiten durch Einbringen eines Schaumsystems für offenzellige Polyurethan-Hartschaumstoffe in das Innere der Doppelwand eines doppelwandigen Gehäuses, beispielsweise eine Kühlmöbeltür oder ein Kühlmöbelgehäuse, wo das System zu einem offenzelligen Schaum aushär- tet, und nachfolgende Evakuierung hergestellt werden. Bei dieser Ausführungsform kann eine Vakuumpumpe mit der Mit Schaum gefüllten Doppelwand verbunden werden, durch die das Vakuum bei Bedarf erneuert werden kann.
Bei der Verwendung von Polyurethan-Hartschaumstoffen ist es wesentlich, dass die Zellen des Schaums offen sind, um eine vollständige Evakuierung des Vakuum- Isolationspaneels zu erreichen.
EP 905159 sowie EP 905158 offenbaren Verfahren zur Herstellung von offenzelligen Hartschaumstoffen, wobei bevorzugt ein Veresterungsprodukt aus Fettsäuren und mehrfunktionellen Alkoholen als Emulgierhilfsmittel zur Unterstützung der lagerstabilen treibmittelhaltigen Emulsion eingesetzt wird. Dabei werden insbesondere Kombinationen von Perfluoralkanen und Alkanen als physikalische Treibmittel eingesetzt. Der Einsatz von Perfluoralkanen zur Erzeugung feiner Zellen ist bereits aus EP 351 614 bekannt.
Einen großen Einfluss auf die Wärmeleitfähigkeit der Vakuum-Isolationspaneele hat auch die Morphologie der Zellen der als Kernmaterial eingesetzten offenzelligen Polyurethan - H artsch au mstof f e. Aus EP 967 243 ist bekannt, offenzellige Polyurethan-Hartschaumstoffe für den Einsatz als Kernmaterial für Vakuum-Isolationspaneele während des Schäumprozesses zu komprimieren. Dies erfolgt in zwei Stufen. Vor der Gelzeit des Schaums wird dieser auf ein Volumen von 40 bis 60 % des Volumens des frei geschäumten Schaums und in einer zweiten Stufe während der Steigzeit auf ein Volumen von 20 bis 30 % des Volumens des frei geschäumten Schaumskomprimiert.
Durch diese Kompression soll der Gehalt an offenen Zellen im Schaum erhöht werden. Die so erhaltenen Schäume können zu Vakuum-Isolationspaneelen mit einer reduzierten Wärmeleitfähigkeit eingesetzt werden. Nachteilig bei diesem Verfahren sind eine erhöhte Dichte des Schaums sowie ein schlechteres Entformverhalten durch die hohe Verdichtung während der Reaktionsphase. Aus WO 99/36636 ist ein Verfahren zur Herstellung von Vakuum-Isolationspaneelen bekannt, bei dem die Paneele während oder nach dem Evakuieren komprimiert werden. Dadurch soll eine Verringerung der Wärmeleitfähigkeit soweit eine faltenfreie Oberfläche der Elemente erreicht werden. Nachteilig ist hierbei, dass es durch die nachträgliche Kompression zu einer Beschädigung der Elemente, insbesondere der Schweißnaht, kommen kann. Dabei ist auch die Gefahr groß, dass durch die Kompression die Folie an den Oberflächen oder beson- ders an den Ecken beschädigt wird, beispielsweise durch kleine Mikrorisse, die die Lebensdauer der VIPs negativ beeinflussen können. Außerdem kommt es zu einem unerwünschten Druckanstieg im Paneel.
Aufgabe der vorliegenden Erfindung war es daher, Vakuum-Isolationspaneele unter Verwendung von offenzelligen Schaumstoffen als Kernmaterial zu entwickeln, die einfach herstellbar sind und eine geringe Wärmeleitfähigkeit aufweisen.
Gegenstand der Erfindung sind demzufolge Vakuum-Isolationspaneele, bestehend aus einem Formkörper aus offenzelligem Schaumstoff, welcher in eine gasdichte Folie ver- packt, evakuiert und luftdicht eingeschweißt wird, dadurch gekennzeichnet, dass der offenzellige Schaumstoff nach der Aushärtung und vor der Evakuierung komprimiert wird.
Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung von Vakuum- Isolationspaneelen durch Umhüllen eines Formkörpers aus offenzelligem Schaumstoff mit einer gasdichten Folie und nachfolgender Evakuierung und gasdichten Verschweißen der Folie, dadurch gekennzeichnet, dass der Formkörper aus offenzelligem Schaumstoff nach der Aushärtung komprimiert wird.
Als Schaumstoffe können die zur Herstellung der Vakuum-Isolationspaneele üblicherweise eingesetzten offenzelligen Schaumstoffe verwendet werden, hierbei handelt es sich beispielsweise um Polystyrolschaum, Polyolefinschaum, wie Polyethylen- oder Polypropylenschaum, Polyacrylatschaum, Phenol-Formaldehydschaumstoffe, Polyvinylchlorid-Schaum, und insbesondere Polyurethan -H albhart- oder Hartschaum, insbesondere Polyurethan-Hartschaum.
Die Verdichtung, berechnet als Paneeldicke vor dem Verpressen : Paneldicke nach dem Verpressen, liegt vorzugsweise im Bereich zwischen 2 und 3,8. Eine besonders niedrige Wärmeleitfähigkeit wird bei einer Verdichtung im Bereich zwischen 3 und 3,5 erreicht.
Im folgenden werden die Begriffe Komprimieren und Verpressen synonym verwendet.
Das Verpressen des Schaumstoffs erfolgt, wie beschrieben, vor der Evakuierung des Vakuum-Isolationspaneels. Insbesondere erfolgt das Verpressen nach der Formgebung des Kerns für das Vakuum-Isolationspaneel.
Das Verpressen kann vorzugsweise mittels einer hydraulischen oder pneumatischen Presse erfolgen. Dabei muss, insbesondere beim Verpressen nach dem Umhüllen des Schaumstoffs mit der Folie, gewährleistet sein, dass es zu keiner mechanischen Beschädigung kommt. Insbesondere müssen die Oberflächen der Pressvorrichtung sehr glatt sein und dürfen keine scharfkantigen oder spitzen Unebenheiten aufweisen. Vorzugsweise sollte die Oberfläche der Presse parallel zur Oberfläche des zu verpressenden Körpers sein.
Durch das Verpressen kann, je nach der aufgewandten Kraft, die Orientierung der ZeI- len sehr stark in Richtung einer Anisotrpoie bis hin zum Zellbruch verändert werden. Das Längen-Seiten-Verhältnis der Schaumzellen wird dabei in Richtung der Länge erhöht, bis bei weiterer Druckerhöhung schließlich ein Zellbruch auftritt.
Das Verpressen kann dabei in einer oder in mehreren Stufen vorgenommen werden. Bevorzugt erfolgt das Verpressen in einer Stufe.
Die mit dem Verpressen des Schaumstoffs einhergehende Verschlechterung der mechanischen Eigenschaften der Schaumstoffe kann toleriert werden, da Vakuum- Isolationspaneele im allgemeinen keiner starken mechanischen Beanspruchung unter- liegen. Wichtiger für die Anwendung ist, dass sie bei der Anwendung dimensionsstabil sind. Dies ist bei den erfindungsgemäßen Vakuumisolationspaneelen gegeben. Ein weiterer des erfindungsgemäßen Verfahrens ist, dass das Eigenschaftsprofil des Hartschaums durch die Kompression in Richtung höhere Flexibilität verändert wird, so dass auch nicht planare VIPs einfach hergestellt werden können, beispielsweise für den Einsatz in der Rohrdämmung. Häufig ist es so, dass die Wärmeleitfähigkeit nicht mit zunehmender Kompression sinkt. Oft durchläuft die Wärmeleitfähigkeit mit steigender Kompression ein Minimum, um danach wieder anzusteigen. Das für den jeweiligen Schaumtyp geltende Optimum kann vom Fachmann durch Vorversuche leicht ermittelt werden. Häufig hängt die Kompression auch von der geforderten Bauteilgröße ab. In jedem Falle ist die Wärmeleitfähigkeit von Schaumstoffen, die einem Verpressen unterworfen wurden, geringer als die von nicht verpressten Schaumstoffen.
Prinzipiell können alle beschriebenen offenzelligen Schaumstoffe, insbesondere offen- zellige Polyurethan-Hartschaumstoffe, für die erfindungsgemäßen Vakuum- Isolationspaneele eingesetzt werden.
Die Herstellung der offenzelligen Polyurethan-Hartschaumstoffe erfolgt nach bekannten Verfahren durch Umsetzung von Polyisocyanaten mit Verbindungen mit mindes- tens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen.
Als Polyisocyanate werden vorzugsweise aromatische Polyisocyanate eingesetzt, besonders bevorzugt Isomere des Diphenylmethandiisocyanats (MDI) und Gemische aus Diphenylmethandiisocyanats und Polyphenylenpolymethylenpolyisocyanaten (Roh- MDI).
Als Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen werden zumeist Polyetheralkohole und/oder Polyesteralkohole eingesetzt.
Die Polyesteralkohole werden zumeist durch Kondensation von mehrfunktionellen Alkoholen, vorzugsweise Diolen, mit 2 bis 12 Kohlenstoffatomen, vorzugsweise 2 bis 6 Kohlenstoffatomen, mit mehrfunktionellen Carbonsäuren mit 2 bis 12 Kohlenstoff ato- men, beispielsweise Bernsteinsäure, Glutarsäure, Adipinsäure, Korksäure, Azelainsäure, Sebacinsäure, Decandicarbonsäure, Maleinsäure, Fumarsäure und vorzugsweise Phthalsäure, Isophthalsäure, Terephthalsäure und die isomeren Naphthalindicarbon- säuren, hergestellt.
Die Polyesteralkohole haben zumeist eine Funktionalität zwischen 2 und 8, insbesondere 4 bis 8.
Insbesondere als Polyhydroxylverbindungen verwendet werden Polyetherpolyole, die nach bekannten Verfahren, beispielsweise durch anionische Polymerisation von Alky- lenoxiden in Gegenwart von Alkalihydroxiden, hergestellt werden.
Als Alkylenoxide werden vorzugsweise Ethylenoxid und 1 ,2-Propylenoxid eingesetzt. Die Alkylenoxide können einzeln, alternierend nacheinander oder als Mischungen verwendet werden. Als Startermoleküle kommen beispielsweise in Betracht: Wasser, organische Dicar- bonsäuren, wie z.B. Bernsteinsäure, Adipinsäure, Phthalsäure und Terephthalsäure, aliphatische und aromatische, gegebenenfalls N-mono-, N, N- und N,N'-dialkylsubstitu- ierte Diamine mit 1 bis 4 Kohlenstoffatomen im Alkylrest, wie z.B. gegebenenfalls mono- und dialkylsubstituiertes Ethylendiamin, Diethylentriamin, Triethylentetramin, 1 ,3-Propylendiamin, 1 ,3- bzw. 1 ,4-Butylendiamin, 1 ,2-, 1 ,3-, 1 ,4-, 1 ,5- und 1 ,6-Hexa- methylendiamin, Anilin, Phenylendiamine, 2,3-, 2,4-, 3,4- und 2,6-Toluylendiamin und 4,4'-, 2,4'- und 2,2'-Diamino-diphenylmethan.
Als Startermoleküle kommen ferner in Betracht: Alkanolamine, wie z.B. Ethanolamin, N-Methyl- und N-Ethylethanolamin, Dialkanolamine, wie z.B. Diethanolamin, N-Methyl- und N-Ethyldiethanolamin und Trialkanolamine wie z.B. Triethanolamin und Ammoniak.
Weiterhin eingesetzt werden mehrwertige, insbesondere zwei- und/oder dreiwertige Alkohole, wie Ethandiol, Propandiol-1 ,2 und -1 ,3, Diethylenglykol, Dipropylenglykol, Butandiol-1 ,4, Hexandiol-1 ,6, Glycerin, Pentaerythrit, Sorbit und Saccharose, mehrwertige Phenole, wie z.B. 4,4'-Dihydroxy-diphenylmethan und 4,4'-Dihydroxy-diphenyl- propan-2,2, Resole, wie z.B. oligomere Kondensationsprodukte aus Phenol und Form- aldehyd und Mannich-Kondensate aus Phenolen, Formaldehyd und Dialkanolaminen sowie Melamin.
Die Polyetherpolyole besitzen eine Funktionalität von vorzugsweise 2 bis 8 und insbesondere 3 und 6 und Hydroxylzahlen von vorzugsweise 120 mgKOH/g bis 770 mgKOH/g und insbesondere 240 mgKOH/g bis 570 mgKOH/g.
Zu den Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen gehören auch die gegebenenfalls mitverwendeten Kettenverlängerer und Vernetzer. Zur Modifizierung der mechanischen Eigenschaften kann sich der Zusatz von difunktionellen Kettenverlängerungsmitteln, tri- und höherfunktionellen Vernetzungsmitteln oder gegebenenfalls auch Gemischen davon als vorteilhaft erweisen. Als Kettenverlängerungs- und/oder Vernetzungsmittel verwendet werden vorzugsweise Alkanolamine und insbesondere Diole und/oder Triole mit Molekulargewichten kleiner als 400, vorzugsweise 60 bis 300.
Sofern zur Herstellung der Hartschaumstoffe auf Isocyanatbasis Kettenverlängerungsmittel, Vernetzungsmittel oder Mischungen davon Anwendung finden, kommen diese zweckmäßigerweise in einer Menge von 0 bis 20 Gew.-%, vorzugsweise 2 bis 5 Gew.-%, bezogen auf das Gewicht der Verbindungen mit mindestens zwei mit Isocy- anatgruppen reaktiven Wasserstoffatomen zum Einsatz. Das erfindungsgemäße Verfahren wird üblicherweise in Anwesenheit von Treibmitteln, Katalysatoren sowie, falls erforderlich, Hilfs- und/oder Zusatzstoffen durchgeführt.
Als Katalysatoren können die üblichen und bekannten Polyurethan-Katalysatoren ein- gesetzt werden. Insbesondere werden Verbindungen eingesetzt, welche die Reaktion der Isocyanatgruppen mit den mit Isocyanatgruppen reaktiven Gruppen stark beschleunigen. Insbesondere eingesetzt werden organische Metallverbindungen, vorzugsweise organische Zinnverbindungen, wie Zinn(ll)-salze von organischen Säuren.
Weiterhin können als Katalysatoren stark basische Amine eingesetzt werden. Beispiele hierfür sind sekundäre aliphatische Amine, Imidazole, Amidine, Triazine sowie Alkano- lamine.
Die Katalysatoren können, je nach Erfordernis, allein oder in beliebigen Mischungen untereinander eingesetzt werden.
Als Treibmittel kann vorzugsweise Wasser verwendet werden, das mit Isocyanatgruppen unter Abspaltung von Kohlendioxid reagiert. An Stelle von, vorzugsweise jedoch in Kombination mit Wasser können auch sogenannte physikalische Treibmittel eingesetzt werden. Dabei handelt es sich um gegenüber den Einsatzkomponenten inerte Verbindungen, die zumeist bei Raumtemperatur flüssig sind und bei den Bedingungen der Urethanreaktion verdampfen. Vorzugsweise liegt der Siedepunkt dieser Verbindungen unter 1100C, insbesondere unter 800C. Zu den physikalischen Treibmitteln zählen auch inerte Gase, die in die Einsatzkomponenten eingebracht bzw. in ihnen gelöst werden, beispielsweise Kohlendioxid, Stickstoff oder Edelgase.
Die bei Raumtemperatur flüssigen Verbindungen werden zumeist ausgewählt aus der Gruppe, enthaltend Alkane und/oder Cycloalkane mit mindestens 4 Kohlenstoffatomen, Dialkylether, Ester, Ketone, Acetale, Fluoralkane mit 1 bis 8 Kohlenstoffatomen, und Tetraalkylsilane mit 1 bis 3 Kohlenstoffatomen in der Alkylkette, insbesondere Tetra- methylsilan.
Als Beispiele seien genannt Propan, n-Butan, iso- und Cyclobutan , n-, iso- und Cyclo- pentan, Cyclohexan, Dimethylether, Methylethylether, Methylbutylether, Ameisensäu- remethylester, Aceton, sowie Fluoralkane, die in der Troposphäre abgebaut werden können und deshalb für die Ozonschicht unschädlich sind, wie Trifluormethan, Difluor- methan, 1 ,1 ,1 ,3,3-Pentafluorbutan, 1 ,1 ,1 ,3,3-Pentafluorpropan, 1 ,1 ,1 ,2-Tetrafluorethan, Difluorethan und Heptafluorpropan. Die genannten physikalischen Treibmittel können allein oder in beliebigen Kombinationen untereinander eingesetzt werden.
Als Hilfsmittel und/oder Zusatzstoffe kommen die für diesen Zweck an sich bekannten Stoffe, beispielsweise oberflächenaktive Substanzen, Schaumstabilisatoren, Zellregler, Füllstoffe, Pigmente, Farbstoffe, Flammschutzmittel, Hydrolyseschutzmittel, Antistatika, fungistatisch und bakteriostatisch wirkende Mittel zum Einsatz.
Nähere Angaben über die zur Durchführung des erfindungsgemäßen Verfahrens ein- gesetzten Ausgangsstoffe, Treibmittel, Katalysatoren sowie Hilfs- und/oder Zusatzstoffe finden sich beispielsweise im Kunststoffhandbuch, Band 7, „Polyurethane" Carl- Hanser- Verlag München, 1. Auflage, 1966, 2. Auflage, 1983 und 3. Auflage, 1993.
Zur Herstellung der Hartschaumstoffe auf Isocyanatbasis werden die Polyisocyanate a) und die Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen b) in solchen Mengen zur Umsetzung gebracht, dass das Äquivalenz- Verhältnis von NCO-Gruppen der Polyisocyanate a) zur Summe der reaktiven Wasserstoffatome der Komponenten b) 0,85 bis 1 ,75:1 , vorzugsweise 1 ,0 bis 1 ,3:1 und insbesondere ungefähr 1 ,0 bis 1 ,15:1 , beträgt. Sofern die Urethangruppen enthalten- den Schaumstoffe durch die Bildung von Isocyanuratgruppen modifiziert werden, beispielsweise zur Erhöhung der Flammwidrigkeit, wird üblicherweise ein Verhältnis von NCO-Gruppen der Polyisocyanate a) zur Summe der reaktiven Wasserstoffatome der Komponente b) von 1 ,6 bis 60:1 , vorzugsweise 3,0 bis 8:1 angewandt.
Die Hartschaumstoffe auf Isocyanatbasis können diskontinuierlich oder kontinuierlich nach dem Prepolymer- oder vorzugsweise nach dem one shot-Verfahren mit Hilfe bekannter Mischvorrichtungen hergestellt werden.
Als besonders vorteilhaft hat es sich erwiesen, nach dem Zweikomponenten-Verfahren zu arbeiten und die Verbindungen mit mindestens zwei mit Isocyanatgruppen reaktiven Wasserstoffatomen zusammen mit den Treibmitteln, den Katalysatoren sowie den Hilfs- und/oder Zusatzstoffen zu einer sogenannten Polyolkomponente zu vereinigen und diese mit den Polyisocyanaten oder Mischungen aus den Polyisocyanaten und gegebenenfalls Treibmitteln, auch als Isocyanatkomponente bezeichnet, zur Umset- zung zu bringen.
Die Vakuumisolationspaneele können in verschiedenen Formen hergestellt werden, beispielsweise als starre Paneele, oder auch mit anderen, nicht planaren Geometrien. Ihre Herstellung und die verwendbaren Materialien sind an sich bekannt. Es ist üblich, gemeinsam mit dem Kernmaterial auch ein Gettermaterial mit einzuschweißen, um zu verhindern, dass später ausgasende flüchtige Substanzen das Vakuum beeinträchtigen.
Als Hüllmaterial für die Vakuumisolationpaneele verwendet man im allgemeinen eine Folie. Bevorzugte Folien sind Verbundfolien, insbesondere Mehrschichtverbundfolien mit einer aufgedampften oder auflaminierten Metallschicht, beispielsweise aus Aluminium. Geeignete Folien bestehen z. B. aus Polyester, Polyvinylchlorid, Polyolefinen wie Polyethylen oder Polypropylen, oder Polyvinylalkohol. Als Hüllmaterial kommen beispielsweise auch Inliner von Kühlschränken, Rohrummantelungen oder Metallschichten in Betracht.
Bei der Herstellung von Vakuumisolationspaneelen unter Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten Polyurethan-Hartschaumstoffe wird zunächst in an sich bekannter Weise der Schaum hergestellt. Danach werden die erhaltenen Schaumstoffe, sofern sie nicht bereits als entsprechende Formkörper hergestellt wurden, in die Form gebracht, die sie als Kern des Vakuum-Isolationspaneels haben. Dies geschieht vorzugsweise durch trennen, insbesondere sägen, in entsprechende Plattengröße. Beim Trennen wird insbesondere parallel zur Schäumrichtung getrennt, da auf Grund der Anisotropie der Schaumstoffe die entstehende Platte dann eine geringere Wärmeleitfähigkeit aufweist. Die Formkörper werden danach in die gasdichte Umhüllung, vorzugsweise die Verbund-Folie, verpackt, evakuiert und gasdicht ver- schweißt.
Die nach dem erfindungsgemäßen Verfahren hergestellten Vakuumisolationspaneele können zur Isolierung von Kühlgeräten, Containern und Gebäuden sowie zur Umman- telung von Rohren eingesetzt werden. Auf Grund ihrer Flexibilität können sie leicht ver- formt werden, was insbesondere beim Einsatz als Rohrummantelung von Vorteil ist.
Die Erfindung soll an den nachstehenden Beispielen näher beschrieben werden.
Beispiele 1 bis 3 und Vergleichsbeispiel
Ein Block aus Polyurethan-Hartschaum mit der in der Tabelle angegebenen Dicke wird mit einer hydraulischen Presse auf die in der Tabelle angegebenen Dicken komprimiert und die Wärmeleitfähigkeit in Richtung der Kompression ermittelt. Die Ergebnisse finden sich ebenfalls in der Tabelle.
Figure imgf000009_0001
Beispiel 1 Beispiel 2 Beispiel 3 Vergleichsbeispiel Einheit
3. Verpressen 6 mm Dicke WLF 6,1 mW/m K
Bei Schaum I handelt es sich um einen Polyurethan-Hartschaumstoff, der auf einem Doppelband hergestellt wurde. Bei Schaum Il handelt es sich um einen Polyurethan- Hartschaumstoff, der als Blockschaum hergestellt wurde.

Claims

Patentansprüche
1 . Verfahren zur Herstellung von Vakuum-Isolationspaneelen durch Umhüllen eines Formkörpers aus offenzelligem Schaumstoff mit einer gasdichten Folie und nach- folgender Evakuierung und gasdichten Verschweißen der Folie, dadurch gekennzeichnet, dass der Formkörper aus offenzelligem Schaumstoff nach der Aushärtung und vor der Evakuierung komprimiert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der offenzellige Schaumstoff ein Polyurethan-Hartschaumstoff ist.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der offenzellige Schaumstoff in einer Stufe komprimiert wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der offenzellige Schaumstoff in mindestens zwei Stufen komprimiert wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Verdichtung, berechnet als Paneeldicke vor dem Verpressen : Paneldicke nach dem Verpressen, im Bereich zwischen 2 und 3,8 liegt.
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Verdichtung, berechnet als Paneeldicke vor dem Verpressen : Paneldicke nach dem Verpressen, im Bereich zwischen 3 und 3,5 liegt.
7. Vakuum-Isolationspaneele, bestehend aus einem Formkörper aus offenzelligem Hartschaumstoff, welcher in eine gasdichte Folie verpackt, evakuiert und luftdicht eingeschweißt wird, dadurch gekennzeichnet, dass der offenzellige Polyurethan- Hartschaumstoff nach der Aushärtung und vor der Evakuierung komprimiert wird.
PCT/EP2006/062136 2005-05-09 2006-05-08 Verfahren zur herstellung von vakuumisolations-paneelen WO2006120183A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2006245777A AU2006245777B2 (en) 2005-05-09 2006-05-08 Method for the production of vacuum insulation panels
EP20060755080 EP1893905B1 (de) 2005-05-09 2006-05-08 Verfahren zur herstellung von vakuumisolations-paneelen
PL06755080T PL1893905T3 (pl) 2005-05-09 2006-05-08 Sposób wytwarzania próżniowych paneli izolacyjnych
US11/913,795 US20080199678A1 (en) 2005-05-09 2006-05-08 Method for the Production of Vacuum Insulation Panels
DE200650005120 DE502006005120D1 (de) 2005-05-09 2006-05-08 Verfahren zur herstellung von vakuumisolations-paneelen
AT06755080T ATE445802T1 (de) 2005-05-09 2006-05-08 Verfahren zur herstellung von vakuumisolations- paneelen
JP2008510560A JP2008540955A (ja) 2005-05-09 2006-05-08 真空断熱パネルの製造方法
NZ563010A NZ563010A (en) 2005-05-09 2006-05-08 Method for the production of vacuum insulation panels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510021994 DE102005021994A1 (de) 2005-05-09 2005-05-09 Verfahren zur Herstellung von Vakuumisolations-Paneelen
DE102005021994.2 2005-05-09

Publications (1)

Publication Number Publication Date
WO2006120183A1 true WO2006120183A1 (de) 2006-11-16

Family

ID=36677078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/062136 WO2006120183A1 (de) 2005-05-09 2006-05-08 Verfahren zur herstellung von vakuumisolations-paneelen

Country Status (14)

Country Link
US (1) US20080199678A1 (de)
EP (1) EP1893905B1 (de)
JP (1) JP2008540955A (de)
KR (1) KR20080008382A (de)
CN (1) CN100580303C (de)
AT (1) ATE445802T1 (de)
AU (1) AU2006245777B2 (de)
DE (2) DE102005021994A1 (de)
ES (1) ES2331536T3 (de)
NZ (1) NZ563010A (de)
PL (1) PL1893905T3 (de)
RU (1) RU2421656C2 (de)
SI (1) SI1893905T1 (de)
WO (1) WO2006120183A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081797A2 (de) 2009-01-14 2010-07-22 Basf Se Vakuumisolationseinheiten mit gettermaterialien
CN102635171A (zh) * 2012-05-05 2012-08-15 陈宏宇 一种整体式真空绝热保温板的制备方法
WO2012119892A1 (de) 2011-03-04 2012-09-13 Basf Se Verbundelemente
WO2012164310A3 (en) * 2011-06-03 2013-03-07 Acell Industries Limited Composite materials and uses thereof
US9126386B2 (en) 2011-03-04 2015-09-08 Basf Se Composite elements
WO2017180145A1 (en) * 2016-04-15 2017-10-19 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
RU205795U1 (ru) * 2021-04-26 2021-08-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Вакуумная звукоизолирующая панель
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2583809C2 (ru) * 2010-09-22 2016-05-10 Басф Се Фиксация вакуумных изоляционных панелей в холодильных установках
CN102493564A (zh) * 2011-12-21 2012-06-13 江苏秀强玻璃工艺股份有限公司 一种建筑外墙用真空保温板及其生产方法
EP3720892B1 (de) * 2017-12-05 2022-01-19 Basf Se Verfahren zur herstellung von urethangruppen und isocyanuratgruppen enthaltenden offenzelligen hartschaumstoffen
CN113498462A (zh) * 2019-03-08 2021-10-12 松下知识产权经营株式会社 绝热片及其制造方法
CN113710715A (zh) 2019-04-15 2021-11-26 巴斯夫欧洲公司 一种基于整体有机气凝胶的模制品
EP4121469A1 (de) 2020-03-17 2023-01-25 aerogel-it GmbH Dünnes und flexibles wärmedämmmaterial auf basis eines monolithischen organischen aerogels
EP4286438A1 (de) 2022-05-31 2023-12-06 Covestro Deutschland AG Komprimierter, offenzelliger, feinzelliger pur/pir-hartschaumstoff

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862032A2 (de) * 1997-02-27 1998-09-02 Mitsubishi Denki Kabushiki Kaisha Vakuumisoliertes Paneel und dessen Herstellungsverfahren
DE19726732A1 (de) * 1997-06-24 1999-01-07 Bayer Ag Kombiniertes Vakuumisolierpaneel aus Polystyrol und Polyurethan sowie dessen Verwendung bei der Herstellung von Dämmelementen
DE19917787A1 (de) * 1999-04-20 2000-11-02 Bayer Ag Komprimierte Polyurethanhartschaumstoffe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025974A (en) * 1972-01-10 1977-05-31 Lea James M Air mattress and method of making the same
US4454248A (en) * 1982-09-29 1984-06-12 The Boeing Company Open cell rigid thermoset foams and method
US5259080A (en) * 1990-12-12 1993-11-09 Lumex, Inc. Damped air displacement support system
JPH06213561A (ja) * 1993-01-18 1994-08-02 Hitachi Ltd 断熱材及びそれを用いた冷蔵庫
US5977197A (en) * 1996-02-02 1999-11-02 The Dow Chemical Company Compressed, extruded, evacuated open-cell polymer foams and evacuated insulation panels containing them
EP1047845A1 (de) * 1998-01-19 2000-11-02 Huntsman Ici Chemicals Llc Evakuiertes isolationspaneel
CN1270782C (zh) * 2000-04-26 2006-08-23 陶氏环球技术公司 带有高垂直毛细作用的吸收性耐久泡沫胶乳组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0862032A2 (de) * 1997-02-27 1998-09-02 Mitsubishi Denki Kabushiki Kaisha Vakuumisoliertes Paneel und dessen Herstellungsverfahren
DE19726732A1 (de) * 1997-06-24 1999-01-07 Bayer Ag Kombiniertes Vakuumisolierpaneel aus Polystyrol und Polyurethan sowie dessen Verwendung bei der Herstellung von Dämmelementen
DE19917787A1 (de) * 1999-04-20 2000-11-02 Bayer Ag Komprimierte Polyurethanhartschaumstoffe

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081797A2 (de) 2009-01-14 2010-07-22 Basf Se Vakuumisolationseinheiten mit gettermaterialien
US8647417B2 (en) 2009-01-14 2014-02-11 Basf Se Vacuum insulation units comprising getter materials
US9126386B2 (en) 2011-03-04 2015-09-08 Basf Se Composite elements
WO2012119892A1 (de) 2011-03-04 2012-09-13 Basf Se Verbundelemente
WO2012164310A3 (en) * 2011-06-03 2013-03-07 Acell Industries Limited Composite materials and uses thereof
US10744735B2 (en) 2011-06-03 2020-08-18 Acell Industries Limited Composite materials and uses thereof
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
CN102635171B (zh) * 2012-05-05 2014-06-18 陈宏宇 一种整体式真空绝热保温板的制备方法
CN102635171A (zh) * 2012-05-05 2012-08-15 陈宏宇 一种整体式真空绝热保温板的制备方法
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2017180145A1 (en) * 2016-04-15 2017-10-19 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
RU205795U1 (ru) * 2021-04-26 2021-08-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Вакуумная звукоизолирующая панель

Also Published As

Publication number Publication date
DE102005021994A1 (de) 2006-11-23
ES2331536T3 (es) 2010-01-07
CN100580303C (zh) 2010-01-13
EP1893905B1 (de) 2009-10-14
KR20080008382A (ko) 2008-01-23
DE502006005120D1 (de) 2009-11-26
EP1893905A1 (de) 2008-03-05
ATE445802T1 (de) 2009-10-15
AU2006245777B2 (en) 2011-02-10
PL1893905T3 (pl) 2010-03-31
NZ563010A (en) 2009-10-30
AU2006245777A1 (en) 2006-11-16
CN101171451A (zh) 2008-04-30
JP2008540955A (ja) 2008-11-20
SI1893905T1 (sl) 2010-01-29
US20080199678A1 (en) 2008-08-21
RU2007145272A (ru) 2009-06-20
RU2421656C2 (ru) 2011-06-20

Similar Documents

Publication Publication Date Title
EP1893905B1 (de) Verfahren zur herstellung von vakuumisolations-paneelen
EP1799736B2 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
KR100548660B1 (ko) 연속 기포 경질 폴리우레탄 발포체 및 이의 제조방법
EP2618980B1 (de) Fixierung von vakuumisolationspaneelen in kühlvorrichtungen
JPH071479A (ja) 断熱性構造体の製造法
EP2072548B1 (de) Verfahren zur Herstellung von Urethangruppen und Isocyanuratgruppen enthaltenden Hartschaumstoffen
EP1664616A1 (de) Formkörper zur wärmeisolation
WO2010084058A1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP3365507B1 (de) Sandwichaufbau enthaltend ein vip und verfahren zu dessen herstellung
WO2016202912A1 (de) Verfahren zur herstellung von polyurethan-hartschaumstoffen
EP1512707B1 (de) Offenzellige Polyurethan-Hartschaumstoffe
EP2668237B1 (de) Polyurethan mit verbesserten dämm-eigenschaften
EP1138709B1 (de) Verfahren zur Herstellung von Hartschaumstoffen auf Isocyanatbasis
DE102005057998A1 (de) Polyurethan-Hartschaumstoffe
EP1842976B1 (de) Beschichtete Schaumstoffplatte
KR102078410B1 (ko) 개선된 성질을 갖는 절연 파이프를 제조하는 방법
CN111372963B (zh) 制备包含氨基甲酸酯基和异氰脲酸酯基的开孔硬质泡沫的方法
DE102008040471A1 (de) Verfahren zur Herstellung von Polyurethan-Hartschaumstoffen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006755080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008510560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 563010

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 11913795

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680015656.4

Country of ref document: CN

Ref document number: 2006245777

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077027486

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006245777

Country of ref document: AU

Date of ref document: 20060508

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006245777

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: A20071520

Country of ref document: BY

WWE Wipo information: entry into national phase

Ref document number: 2007145272

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006755080

Country of ref document: EP