WO2006118945A2 - Local delivery of an active agent from an orthopedic implant - Google Patents

Local delivery of an active agent from an orthopedic implant Download PDF

Info

Publication number
WO2006118945A2
WO2006118945A2 PCT/US2006/016017 US2006016017W WO2006118945A2 WO 2006118945 A2 WO2006118945 A2 WO 2006118945A2 US 2006016017 W US2006016017 W US 2006016017W WO 2006118945 A2 WO2006118945 A2 WO 2006118945A2
Authority
WO
WIPO (PCT)
Prior art keywords
active agent
accordance
agent
component
spinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2006/016017
Other languages
English (en)
French (fr)
Other versions
WO2006118945A3 (en
WO2006118945A8 (en
Inventor
Kent M Anderson
Matthew M Morrison
Jonathan Dewey
Aurelien Bruneau
Fred J Molz
Thomas Carls
Eric C Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDGI Holdings Inc
Original Assignee
SDGI Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SDGI Holdings Inc filed Critical SDGI Holdings Inc
Priority to AU2006242532A priority Critical patent/AU2006242532A1/en
Priority to CA002605685A priority patent/CA2605685A1/en
Priority to EP06758671A priority patent/EP1903964A2/en
Priority to JP2008509115A priority patent/JP2008539032A/ja
Publication of WO2006118945A2 publication Critical patent/WO2006118945A2/en
Publication of WO2006118945A8 publication Critical patent/WO2006118945A8/en
Publication of WO2006118945A3 publication Critical patent/WO2006118945A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7031Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other made wholly or partly of flexible material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00004(bio)absorbable, (bio)resorbable or resorptive

Definitions

  • Implants can be positioned between adjacent spinous processes to provide resistance to vertebral movement as a result of extension of the spinal column. These implants can provide a shock absorber or bumper that dynamically limits spinal extension.
  • the implants can also be secured to the adjacent spinous processes with looped cables or straps that extend completely about the spinous processes and implant to maintain positioning of the implant between the spinous processes while also limiting spinal flexion to provide dynamic stabilization along the spinal midline. They can alternatively be held in place by other means, such as, for example, by tethers affixed to other spinal elements.
  • Other implants can be configured for placement between transverse processes of adjacent vertebrae or between other posterior spinal elements to provide dynamic stabilization at uni-lateral or bi-lateral locations of the posterior vertebral elements.
  • dynamic spinal stabilization devices a wide variety of other types of posterior vertebral appliances are known for use in rigid posterior spinal fixation systems, such as rods, plates, tethers and staples, for example.
  • one or more therapeutic active agents such as, for example, anti-inflammatory agents, analgesic agents, anti-microbial or anti-viral agents, and the like are administered to the patient.
  • therapeutic active agents such as, for example, anti-inflammatory agents, analgesic agents, anti-microbial or anti-viral agents, and the like are administered to the patient.
  • systemic administration of many types of active agents can have harmful effects or otherwise be undesirable.
  • alternative therapeutic agents could be selected for administration to a post-operative patient that would otherwise be desirable were it not for undesirable effects associated with systemic administration thereof.
  • the present invention provides a variety of orthopedic implant devices that include at least one structural component and at least one component effective to deliver an active agent to the patient locally at the site of the implant.
  • an orthopedic implant device including at least one structural component configured to provide structural support to one or more bones or joints; at least one active agent-delivery component; and an active agent impregnated in or adsorbed on or otherwise contained in said at least one active agent-delivery component.
  • the implant device is configured to release the active agent locally after the implant device is implanted in a patient.
  • the active agent-delivery component comprises an absorbent or adsorbent or biodegradable material.
  • the active agent-delivery component comprises a micromechanical machine.
  • An exemplary orthopedic implant in accordance with the invention is a dynamic spinal stabilization device that includes a spacer member extending between opposite first and second ends and mat includes a component for locally delivering an active agent.
  • the spacer member is positionable between adjacent upper and lower spinous processes of a spinal motion segment.
  • the active agent-delivery component can be an integral part of the spacer member or a separate component.
  • the spacer member includes a compressible body to dynamically limit movement of the upper and lower spinous processes toward one another upon extension of the spinal motion segment.
  • the spacer member is rigid.
  • An upper engaging member and a lower engaging member each extend from the spacer member and are engageable with the spinal motion segment to limit flexion of the spinal motion segment.
  • At least one of the upper and lower engaging members is a tether, such as, for example, a cable or strap, that is structured for positioning about the upper or lower spinous processes, respectively, and for being crimped around the spacer or to the spacer.
  • the engaging members contact the respective spinous processes to limit flexion of the spinal motion segment.
  • at least one of the upper and lower engaging members is structured for positioning along a surface of a lamina adjacent a respective one of the upper and lower spinous processes.
  • the upper engaging member can include a hook end portion positionable along a superior surface of an upper lamina adjacent the upper spinous process and the lower engaging member can include a hook end portion positionable along an inferior surface of the lower spinous process.
  • Another exemplary orthopedic implant in accordance with the invention is a spinal implant that includes at least two anchor members, such as pedicle screws, configured to be
  • the spacer member includes a flexible and/or compressible body sized and shaped to extend between the anchor members to dynamically limit movement of the anchor members toward one another upon extension of the spinal motion segment, and also includes a component for locally delivering an active agent.
  • [0 members and the spacer member can also define apertures therethrough for receiving a tether or a rod, i.e., a rigid rod or a flexible rod, as is well known in the art.
  • the spacer member can be positioned within a sheath, which passes through apertures defined in the anchor members.
  • the spacer member can be a rigid spacer member.
  • [ 5 component can be an integral part of the spacer member or a ⁇ separate component.
  • Another exemplary orthopedic implant in accordance with the invention is a spinal implant that includes a spacer member extending between opposite upper and lower ends, the upper and lower ends each including a pair of arms, and a recessed surface between the pair of arms, the arms structured to receive a respective adjacent one of upper and lower
  • the spacer member includes a compressible body sized and shaped to extend between the upper and lower transverse processes to dynamically limit movement of the upper and lower transverse processes toward one another upon extension of the spinal motion segment, and also includes a component for locally delivering an active agent.
  • the spacer includes a compressible body sized and shaped to extend between the upper and lower transverse processes to dynamically limit movement of the upper and lower transverse processes toward one another upon extension of the spinal motion segment, and also includes a component for locally delivering an active agent.
  • a spinal implant system can include a first spacer member extending between opposite upper and lower ends structured to receive a respective adjacent one of upper and lower transverse processes of a spinal motion segment at a first side of the spinal midline, and a second spacer i0 member extending between opposite upper and lower ends structured to receive a respective adjacent one of upper and lower transverse processes of a spinal motion segment at a second side of the spinal midline.
  • each of the spacer members preferably includes a compressible body sized and shaped to extend between the upper and lower transverse processes to dynamically limit movement of the upper and lower transverse processes toward one another upon extension of the spinal motion segment.
  • an orthopedic implant device or a spacer member or other component of an implant device, includes an internal structural component contained within an outer sheath.
  • An active agent-delivery component that includes an absorbent or adsorbent or biodegradable layer can be positioned between the internal structural component and the outer sheath or on the external side of the outer sheath, or impregnated in the outer sheath material.
  • the sheath can be, for example, a porous or permeable fabric or mesh, or an impermeable material.
  • a posterior spinal dynamic stabilization device, or a spacer member therefor, that is configured to be positioned between adjacent spinous processes or adjacent transverse processes can comprise an inner silicone core wrapped in a woven polyester fabric.
  • an active agent-delivery component can be positioned between the silicone core and the polyester fabric or on the exterior surface of the fabric, or an active agent can be impregnated in the fabric itself.
  • orthopedic implant devices that are contemplated by the invention include, without limitation, posterior vertebral appliances for use in rigid posterior spinal fixation systems, such as, for example, rods, plates, tethers and staples; and bone stabilization members positionable along adjacent bone portions outside an interspace between the bone portions, such as, for example, bone plates and artificial ligaments.
  • bone stabilization members find advantageous use, for example, for stabilization of joints, such as hip or knee joints.
  • Such devices can include an active agent-delivery component formed as an integral part of the appliance or as a separate layer or component.
  • an active agent-delivery layer is affixed to at least a portion of the exterior surface of an orthopedic implant device.
  • the active agent-delivery layer or component in alternative embodiments can comprise a biodegradable matrix material having an active agent dispersed therein that releases the active agent upon degradation or erosion of the matrix after implantation of the device, or a porous structure that releases an active agent by wicking action or other action without being degraded in situ, or an adsorbent material that releases an active agent from the surface of the component.
  • the active agent-delivery layer or component can be formed of a rigid material or of an elastic material in various alternative embodiments of the invention.
  • the invention provides an orthopedic implant device that defines at least one aperture, and an active agent delivery component is configured to be positioned in the aperture as an insert.
  • the insert in alternative embodiments can comprise a biodegradable matrix material having an active agent dispersed therein, that releases the active agent upon
  • the active agent-delivery component is of the biodegradable, porous or
  • [0 adsorbant type it can be formed of a rigid material or of an elastic material in various alternative embodiments of the invention.
  • a posterior spinal fixation device or dynamic spinal stabilization device including an active agent-delivery component that comprises an elastic material having the active agent absorbed therein or adsorbed
  • the device is configured such that, after implantation of the device, a dose of the active agent is caused to be released at an increased rate by compressing the active agent-delivery component, or by stretching the active agent-delivery component, or by applying a torque to the active agent-delivery component.
  • the compression, stretching, and/or torque can be exerted upon the active agent-delivery component after implantation of tO the device by vertebral movement as a result of extension of the spinal column, flexion of the spinal column, bending of the spinal column or rotation of the spinal column.
  • a method for delivering an active agent to a patient at a location adjacent an orthopedic implant device includes (1) providing an orthopedic implant device comprising an active agent-delivery component,
  • the active agent-delivery component having an active agent impregnated therein or adsorbed thereon or otherwise contained therein and configured to release the active agent locally after the device is implanted in a patient; and (2) surgically implanting the device in a posterior spinal location.
  • the active agent-delivery component can include an elastic material having the active agent absorbed therein or adsorbed thereon. In an embodiment having an active
  • the method can further include, after the implanting, causing a dose of the active agent to be released or released at an increased rate by (a) compressing the active agent-delivery component, (b) stretching the active agent-delivery component, or (c) applying a torque to the active agent-delivery component.
  • FIG. 1 is a perspective view of a posterior portion of spinal column motion segment with an implant assembly engaged thereto.
  • FIG. 2 is a cross-sectional view of one embodiment of the spinal motion segment of Fig. 1 showing structure of a first orthopedic implant device of the invention.
  • FIG. 3 is a cross-sectional view of another embodiment of the spinal motion segment of
  • FIG. 1 showing structure of a second orthopedic implant device of the invention.
  • FIG. 4 is a cross-sectional view of yet another embodiment of the spinal motion segment of Fig. 1 showing structure of a third orthopedic implant device of the invention.
  • FIG. 5 is an elevation view of another embodiment implant assembly.
  • FIG. 6 is a perspective view of a posterior portion of spinal column motion segment with an implant assembly engaged thereto.
  • FIG. 7 is an elevation view of another embodiment implant assembly.
  • FIG. 8 is an elevation view of a posterior portion of a spinal column motion segment with implant assemblies engaged thereto.
  • FIG. 9 is a lateral view of the spinal column motion segment of Fig. 8.
  • the implant device includes an active agent-delivery component in addition to one or more structural components of the device.
  • one or more of the structural components themselves have an active agent impregnated therein or adsorbed thereto for local release to a patient after surgical placement of the device.
  • active agent means a substance having a therapeutic effect on the patient.
  • Non-limiting examples of broad categories of useful active agents that can be used in accordance with the present invention are those included within the following categories: anabolic agents, anti-coagulants, anti-infective agents, anti-inflammatory agents, anti-neoplastic agents, anti-pyretic and analgesic agents, anti-spasmodic agents, anti- thrombotic agents, antihistamines, biologicals, such as bone morphogenetic proteins, diagnostic agents, neuromuscular drugs, nutritional agents, vasodilators, and pro-drugs.
  • these and other active agents suitable for use in connection with the invention are well know to persons of ordinary skill in the art, and many are available in the literature. Representative examples are set forth in U.S. Patent No. 6,419,709 to Mao et al., which is hereby incorporated by reference herein.
  • Active agents can be in different forms, such as uncharged molecules, components of molecular complexes, or non-irritating, pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulphate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc.
  • pharmacologically acceptable salts such as hydrochloride, hydrobromide, sulphate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc.
  • salts of metals, amines, or organic cations e.g. quaternary ammonium
  • simple derivatives of the drags such as ethers, esters, amides, etc.
  • body pH, enzymes, etc. can be employed.
  • the invention provides orthopedic implant devices that comprise at least one structural component configured to provide structural support to one or more bones or joints, at least one active agent-delivery component; and an active agent impregnated in or adsorbed on or otherwise contained within said at least one active agent-delivery component.
  • the active agent-delivery component comprises an absorbent or adsorbent or biodegradable material.
  • the implant device is configured to release the active agent locally after the implant device is implanted in a patient. The active agent is, therefore, released only at the site where it is desired, i.e., where the prosthetic article is positioned.
  • the term "absorbent” is used to refer to a solid object or component in the form of a porous matrix that defines internal interconnections, channels, voids and recesses, and that is effective to take in and contain a second substance (i.e., an active agent) and release the second substance when conditions permit.
  • a second substance i.e., an active agent
  • the second substance can be released via a wicking action or other flowing action resulting from the passage of a fluid past or through the pores, channels, voids and/or recesses or release can result from a squeezing, stretching or torquing action exerted upon the absorbent object or component that causes compression of all or a portion of the absorbent object forcing the second substance from the voids and recesses through one or more pores.
  • the porous matrix is rigid, or substantially rigid, and nonbiodegradable
  • release of the active agent will typically result from water diffusing into the matrix, dissolving the active agent, and diffusing or wicking the active agent through the channels, voids and recesses and out of the component through the pores.
  • the active agent can be released in the same manner, or release can be accelerated by compression, stretching or torquing of the matrix, which squeezes active agent from the voids, recesses and channels of the matrix.
  • adsorbent is used herein to refer to an object or component that is capable of attaching and accumulating other substances to its surface without any chemical action.
  • an object or component having an active agent adsorbed thereon would hold the active agent to its surface prior to implantation of the device, and then release the active agent after implantation of the device, thereby resulting in local delivery of the active agent. It is also contemplated that the release of the active agent will typically occur without chemical alteration of the underlying surface or of the active agent.
  • biodegradable refers to an object or component that is capable of being decomposed into innocuous products by biological agents or otherwise eroded under the conditions present in the environment in which the device is placed during surgery.
  • a biodegradable component is contemplated that includes an active agent seeded, embedded or otherwise dispersed therein, such that, as the component is decomposed or eroded after implantation of the device, the active agent is released, thereby resulting in local delivery of the active agent.
  • the biodegradable matrix, or carrier can comprise, for example, a biodegradable polymer or a biodegradable ceramic.
  • the term “impregnated” refers to a relationship between two materials whereby one material is completely or partially filled, or saturated, with the other.
  • the term “impregnated” can refer to an absorbent material that has an active agent absorbed therein, or to a biodegradable material having an active agent seeded, embedded or otherwise dispersed therein.
  • such wording is intended to refer to any one of the named features or any combination of the features.
  • this wording is intended to refer to an object or component that is absorbent and biodegradable, an object or component that is adsorbent and biodegradable, an object or component that is absorbent and adsorbent, or an object or component that is absorbent, adsorbent and biodegradable.
  • Implants are positionable between posterior spinal elements, such as, for example, adjacent spinous processes of a spinal motion segment and/or between adjacent transverse processes to rigidly or dynamically stabilize and limit extension, flexion, bending and/or rotation movements of the spinal column.
  • the implant includes a spacer member received between the spinous
  • the implant further includes engaging members extending from each of the upper and lower ends of the spacer member. The engaging members engage the spinal motion segment to limit flexion. In one representative embodiment of the invention, such an interspinous dynamic stabilization
  • the engaging members can have a wide variety of configurations.
  • the engaging members are tethers, such as, for example, cables or straps, configured to be fastened around the spinous processes
  • At least one of the engaging members is structured to engage a surface of the lamina adjacent the respective spinous process.
  • the lamina provides a stable support surface suited to resisting loads applied thereto by the implant in resisting flexion of the motion segment. Engagement of the lamina with the engaging member also reduces torsional loading on the posterior vertebral
  • each of the upper and lower engaging members of the implant assembly is engageable along a surface of a lamina adjacent the respective spinous process.
  • the engaging members engage surfaces of the lamina opposite the surfaces of the spinous process supported by the respective end of the spacer member.
  • the engaging members include hooked ends, and the hooked end of the upper engaging member extends along the superior surface of the upper lamina and the hooked end of the lower engaging member extends along the inferior surface of the lower member.
  • the engaging members are movably coupled with the spacer member.
  • At least one of the upper and lower engaging members includes a resilient connecting portion allowing limited flexion of the motion segment while maintain engagement of the engaging member with the lamina.
  • the implant device is an anchor-based system, such as a pedicle screw-based system.
  • a pedicle screw-based system pedicle screws are inserted into adjacent vertebrae in a manner whereby a rod or cable or other structure can be affixed thereto to provide structural support to the subject motion segment.
  • a dynamic stabilization system can include a flexible rod or a cable affixed to the pedicle screws, and a rigid fixation system can be provided by connecting the pedicle screws to a rigid rod.
  • Such a system can be configured to deliver an active agent, for example, by coating one or more components of the system with an active agent delivery coating, by inserting an active agent delivery component into an aperture formed in a component of the system, or by positioning a compressible spacer element comprising an active agent delivery component between anchoring members.
  • the implant device includes a spacer member received between the transverse processes that is compressible to allow extension motion of the motion segment while maintaining a distraction force between the transverse processes.
  • spacer members can be positioned bi-laterally relative to a spinal motion segment in order to provide bi-lateral stabilization.
  • unilateral stabilization is provided by the implant system.
  • multi-level vertebral stabilization is contemplated for either uni-lateral or bi-lateral systems.
  • One or more of the stabilization devices in such a system can be configured to deliver an active agent in accordance with the invention.
  • the implant systems may be employed either alone or in combination with other implants, such as rods, plates, tethers, interbody fusion devices, interbody spacers, artificial discs, annulus repair system, or staples, for example.
  • implants such as rods, plates, tethers, interbody fusion devices, interbody spacers, artificial discs, annulus repair system, or staples, for example.
  • one or more engaging members in the form of a cable or tether is typically used to couple the implant to one or more posterior vertebral elements or implants.
  • the engaging member or members can be engaged to the spacer member, or extend through the spacer member.
  • the engaging members can be engaged to the posterior elements in a configuration that limits spinal flexion, or simply in a manner that prevents the spacer member from being displaced from its implantation location between the transverse processes.
  • FIG. 1 depicted in Fig. 1 is an inter-spinous dynamic fixation device 30, which is but one example of a type of posterior spinal implant that can be configured to deliver an active agent as contemplated by the invention, and thus is one preferred form of the invention.
  • a spinal column segment 10 including an upper vertebra 11, a lower vertebra 15 and a spinal disc 13 therebetween.
  • the vertebrae 11, 15 and disc 13 comprise a spinal motion segment, it being understood that a spinal motion segment may include multiple vertebral levels.
  • Upper vertebra 11 includes an upper spinous process 12 extending from an upper lamina 16.
  • Lower vertebra 15 includes a lower spinous process 14 extending from a lower lamina 18.
  • the spinous processes 12, 14 and laminae 16, 18 comprise posterior elements of the vertebrae of the spinal motion segment.
  • Spinal implant device 30 is positioned in engagement with the posterior vertebral elements to provide dynamic spinal stabilization.
  • Spinal implant device 30 is a spacer member extending between and contacting adjacent surfaces of spinous processes 12, 14 to limit movement of the spinous processes toward one another as a result of extension of the spinal motion segment.
  • device 30 can include an upper end 34 in contact with inferior surface 22 of spinous process 12, and a lower end 36 in contact with superior surface 26 of spinous process 14.
  • Device 30 can include a body structured to resiliently compress in response to extension of the spinal motion segment, providing resistance to the extension forces and limiting movement of the spinous processes 12, 14 toward one another as device 30 is compressed.
  • Implant device 30 can be affixed to vertebra 11 and vertebra 15 in any suitable manner, many alternatives of which are known in the art, and a few of which are discussed herein.
  • Device 30 can be fabricated from one or more components that are flexible or exhibit at least some flexibility. Examples of such components include woven fabric tubing, woven and non-woven mesh, or braided or woven structures, sutures, tethers, cords, planar members, bands, wires, cables, or any other component capable of extending between and supporting the adjacent spinous processes.
  • device 30 is fabricated from one or more components that are elastic, and is itself elastic, so it can assume various shapes during and after insertion and attachment.
  • the term "elastic” refers to a physical characteristic of a material whereby it is capable of being compressed, stretched or twisted, and capable of resuming its original shape after being compressed, stretched or twisted.
  • Device 30 can be made from any biocompatible material, material of synthetic or natural origin, and material of a resorbable or non-resorbable ⁇ nature.
  • spacer member material include autograft, allograft or xenograft; tissue materials including soft tissues, connective tissues, demineralized bone matrix and combinations thereof; resorbable materials including polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, calcium phosphate, hydroxyapatite, bioactive glass, collagen, albumin, fibrinogen and combinations thereof; and non-resorbable materials including polyethylene, polyester, polyvinyl alcohol, polyacrylonitrile, polyamide, polytetrafluorethylene, poly-paraphenylene terephthalamide, polyetheretherketone, cellulose, titanium, silicone and combinations thereof.
  • Device 30 can be manufactured of a uniform composition, or can be formed using multiple diverse materials. It is of course understood that device 30 would be formed of one or more compressible materials where it is desired for the device to be used in an application where it is desirable for device 30 to be compressible.
  • device 30 has an exterior surface and an active agent-delivery component layer is affixed to at least a portion of said exterior surface. Active agent-delivery layer can be formed on the surface of device 30 in a wide variety of ways known in the art.
  • device 30 comprises an internal structural component 32 contained within an outer sheath 34.
  • the internal structural component or the outer sheath comprises an absorbent or adsorbent material having an active agent impregnated therein or adsorbed thereon, and is configured to release the active agent locally after the implant device is implanted in a patient.
  • inner structural component 32 comprises silicone, which is wrapped in an outer sheath 34 that comprises polyester fabric.
  • device 30 includes an absorbent or adsorbent or biodegradable active agent-delivery layer 36 positioned between internal structural component 32 and the outer sheath 34.
  • device 30 includes an absorbent or adsorbent or biodegradable active agent-delivery layer 36 positioned on the exterior surface 33 of outer sheath 34.
  • device 30 defines aperture 38, and insert 40 is an active agent-delivery component configured to be positioned in the aperture. After the device is implanted, the active agent is released from insert 40 into the area surrounding the device for local administration of the active agent to the affected area.
  • insert 40 is an active agent-delivery component comprising an absorbent or adsorbent or biodegradable material.
  • insert 40 is a micromechanical machine configured to release an active agent in an active mechanical manner rather than a passive manner.
  • the micromechanical machine can be a micropump configured to actively release a controlled amount of active agent over time, either as a steady stream or in incremental boluses.
  • the micromechanical machine can be configured to release a dose of active agent, for example, by opening a valve or actuating a pump, in response to a signal, such as, for example, a physiological condition sensed by the micromechanical machine or a signal received from an ex vivo signaling device.
  • signals that can be utilized in accordance with the invention include, for example, increased local pressure at the device location, an increased or decreased concentration of a chemical at the device location, increased temperature at the device location, electrical signals, electromagnetic signals, optical signals, magnetic fields and the like.
  • a spinal column segment 110 including an upper vertebra 111, a lower vertebra 115 and a spinal disc 113 therebetween.
  • a spinal motion segment may include multiple vertebral levels.
  • Upper vertebra 111 includes an upper spinous process 112 extending from an upper lamina 116.
  • Lower vertebra 115 includes a lower spinous process 114 extending from a lower lamina 118.
  • the spinous processes ll2, 114 and laminae 116, 118 comprise posterior elements of the vertebrae of the spinal motion segment.
  • a spinal implant assembly 130 is positioned in engagement with the posterior vertebral elements to provide dynamic spinal stabilization.
  • Spinal implant assembly 130 includes a spacer member 132 extending between and contacting adjacent surfaces of spinous processes 112, 114 to limit movement of the spinous processes toward one another as a result of extension of the spinal motion segment.
  • spacer member 132 can include an upper end 134 in contact with inferior surface 122 of spinous process 112, and a lower end 136 in contact with superior surface 126 of spinous process 114.
  • Spacer member 132 can include a body structured to resiliently compress in response to extension of the spinal motion segment, providing resistance to the extension forces and limiting movement of the spinous processes 112, 114 toward one another as spacer member 132 is compressed.
  • Implant assembly 130 can include an upper engaging member 150 and a lower engaging member 170 extending from spacer member 132.
  • Upper engaging member 150 preferably extends along and contacts a superior surface 120. of spinous process 112, and lower engaging member 170 extends along and contacts an inferior surface 124 of spinous process 114.
  • Engaging members 150, 170 which are preferably tethers, such as cables or straps, thus limit movement of the spinous processes 112, 114 away from one another as a result of flexion of the motion segment.
  • upper engaging member 150 preferably tethers, such as cables or straps
  • Engaging members 150, 170 can be movably coupled with spacer member 132 to facilitate manipulation of the engaging members 150, 170 and placement over the spinous processes or the spinal lamina.
  • device 130 can be manufactured of a uniform composition, or can be formed using multiple diverse materials. It is of course understood that spacer member 132 would be formed of one or more compressible materials where it is desired for the implant to be used in an application where it is desirable for spacer member 132 to be compressible.
  • spacer member 132 has an exterior surface and an active agent-delivery component layer is affixed to at least a portion of said exterior surface. Active agent-delivery layer can be formed on the surface of spacer member 132 in a wide variety of ways known in the art.
  • spacer member 132, like device 30, can have alternative structures as represented cross-sectionally in Figs. 2-4, and can include the aperture/insert configuration as represented in Fig. 5.
  • Some implant assembly embodiments contemplated by the invention utilize a connecting member (not shown) connected to engaging members 150, 170 that extends through the body of spacer member 132 so that it is not exposed to the anatomy outside and adjacent spacer member 132 when implanted.
  • This arrangement avoids exposure of the connecting member to the spinal foramen and neural elements, for example.
  • the connection of the connecting member to the engaging members at locations along the respective arms 142, 144, also avoids exposure to the foramen.
  • the connecting member can be positioned through one or more passages formed in the spacer member, or the spacer member can be over-molded about the connecting member.
  • connecting members including cables, wires, sutures, cords, bands, belts, rigid links or rods, and flexible links or rods, for example.
  • the present invention contemplates that the connecting members and/or the engaging members can have an active agent-delivery component associated therewith, in addition to or instead of having an active agent-delivery component associated with spacer member 132.
  • these elements can be made of woven or otherwise porous structural materials and have an active agent impregnated therein, or these elements can have an active agent-delivery layer provided therein or thereon, which can be an absorbable or biodegradable material having an active agent impregnated therein, or can be a material having an active agent adorbed thereto.
  • an anchor-based spinal stabilization or spinal fixation device such as, for example, a pedicle screw-based system 230
  • System 230 includes first anchor (also referred to herein as a pedicle screw in relation to some embodiments) 232 configured to be anchored in a first vertebra
  • System 230 also includes spacer element 236 configured for placement between head portion 233 of first anchor 232 and head portion 235 of second anchor 234.
  • Spacer member 236 can have many or all of the same attributes as the spacer members discussed above with respect to an interspinous dynamic stabilization device. As will be appreciated by a person skilled in the art, once anchors 232, 234 are rigidly connected to adjacent vertebrae in a patient's spine, flexion, extension, bending or twisting of the spine will cause anchors 232, 234 to move relative to one another. Where spacer 236 comprises a compressible material, extension of the patient's spine can be limited by
  • spacer 236 between heads 233, 235 of anchors 232, 234.
  • spacer 236 comprises a compressible, absorbent material with an active agent impregnated therein
  • compression can cause release of the active agent as in dynamic stabilization devices described above.
  • spacer 236 defines a channel therethrough (not shown) for
  • the tether, rod or other structure can pass through the channel and pass through apertures 237, 238 formed in heads 233, 235, respectively, and can be attached thereto using means known in the art to provide spinal stabilization or spinal fixation functionality.
  • spacer 236 can be enveloped in a sheath (not shown) that is configured to envelope spacer 236
  • spacer 236, like device 30, can be manufactured of a uniform composition, or can be formed using multiple diverse materials. It is of course understood that spacer 236 would be formed of one or more compressible materials where it is desired for the implant to be used in an application where it is desirable for spacer 236 to be
  • spacer 236 has an exterior surface and an active agent-delivery component layer is affixed to at least a portion of said exterior surface.
  • Active agent-delivery layer can be formed on the surface of spacer 236 in a wide variety of ways known in the art.
  • spacer 236, like device 30, can have alternative structures as represented cross-sectionally in Figs. 2-4, and can include the aperture/insert configuration as
  • a spinal column segment 410 including an upper vertebra 411, a lower vertebra 415 and a spinal disc 413 therebetween along a central axis 421 of the spinal column.
  • the vertebrae 411, 415 and disc 413 comprise a spinal motion segment, it being understood that a spinal motion segment may include multiple vertebral levels.
  • Upper vertebra 411, 415 and disc 413 comprise a spinal motion segment, it being understood that a spinal motion segment may include multiple vertebral levels.
  • vertebra 411 includes a first upper transverse process 412 and a second upper transverse process 416.
  • Lower vertebra 415 includes a first lower transverse process 414 and a second lower transverse process 418.
  • the transverse processes 412, 414, 416, 418 comprise posterior elements of the vertebrae of the spinal motion segment along with the spinous processes 417, 419, facets, pedicles and other posterior structures of each vertebrae 411, 415.
  • a spinal implant 430 is positioned in engagement with the posterior vertebral elements to provide dynamic spinal stabilization.
  • Spinal implant 430 includes a spacer member 432 extending between and contacting adjacent surfaces of transverse processes 412, 414 to limit movement of the spinous processes toward one another as a result of extension of the spinal motion segment.
  • spacer member 432 can include an upper end 434 in contact with inferior surface 422 of transverse process 412, and a lower end 436 in contact with superior surface 426 of transverse process 414.
  • Spacer member 432 can include a body structured to resiliently compress in response to extension of the spinal extension, providing resistance to the extension forces and limiting movement of the transverse processes 412, 414 toward one another as spacer member 432 is compressed.
  • Spacer member 432 can be manufactured of a uniform composition, or can be formed using multiple diverse materials. It is of course understood that spacer member 432 would be formed of one or more compressible materials where it is desired for the device to be used in an application where it is desirable for spacer spacer member 432 to be compressible.
  • spacer member 432 has an exterior surface and an active agent-delivery component layer is affixed to at least a portion of said exterior surface. Active agent-delivery layer can be formed on the surface of spacer member 432 in a wide variety of ways known in the art. Similarly, spacer member
  • Figs. 432 like device 30 and spacer member 130, can have alternative structures as represented cross-sectionally in Figs. 2-4, and can include the aperture/insert configuration as represented in Fig. 5.
  • Fig. 8 further shows a second spinal implant 430 on the other side of central axis 421 of the spinal column.
  • the second spacer member 432 can be structured like the other implant
  • the implants 430 work bi-laterally to provide bilateral stabilization of spinal column segment 410. Additional implants 430 may be provided at one or more additional vertebral levels for multi-level stabilization procedures. It is further contemplated that implants 430 may be employed to uni-laterally stabilize one or more vertebral levels.
  • the spinal implants either alone or in combination, can function to distract the spinal space and/or the spinal foramen to relieve nerve root pressure, decompress spinal elements. The implants provide overall stability while maintaining motion capabilities of the spinal motion segment.
  • spacer member 432 includes a pair of upper arms 442 and a
  • Upper arms 442 define a concavely curved upper surface 435 therebetween, and lower arms 444 define a concavely curved lower surface 437 therebetween.
  • the concavely curved surfaces 435, 437 can conform generally to or be conformable to the surface of the transverse process against which the surface is positioned.
  • Arms 442, 444 extend along opposite sides of and receive the respective transverse process
  • spacer member 432 includes an anteriorly oriented surface 446 and a posteriorly oriented surface 448.
  • Anteriorly oriented surface 446 can include a concave curvature to fit over the exiting nerve root 428 and prevent or avoid any impingement thereof.
  • Posteriorly oriented surface 448 can be convexly curved
  • each of the arm pairs 442, 444 includes an anterior arm 442a, 444a and a posterior arm 442b, 444b.
  • anterior arms 442a, 444a have a thickness that is less than the thickness of the posterior arms 442b, 444b. The reduced thickness limits the amount of spacer material in the area where nerve root 428 exits the spinal foramen, increasing the
  • An engaging member (not shown) can be employed to secure the spacer member in place.
  • the engaging member can be in the form of a tether, cord, wire, cable, suture, band, strap, belt, or other suitable structure for manipulation and securement to one or more posterior vertebral elements.
  • the engaging member can be wrapped or positioned around
  • the engaging member can be coupled to the spacer member in any suitable manner.
  • the engaging member is movably coupled to the spacer member.
  • the engaging member can be integrally formed with the spacer member, or can be attached by a fastener, suture, anchor, cable, link, over-molding, thermal welding or bonding,
  • the spacer member can be provided with ears, eyelets, recesses or other suitable structure to facilitate engagement of the engaging member to the spacer member.
  • the engaging member may be employed in spinal stabilization procedures where it is desired to limit spinal flexion by, for example, wrapping the engaging member about the superior surface of the upper transverse process and the inferior surface of the lower transverse process.
  • the engaging member may alternatively be employed as a
  • the engaging member can be secured to the spacer member either before or after the spacing member is placed between the transverse processes.
  • the engaging member can be engaged to other engaging members of other implant assemblies or to other implants engaged
  • the engaging members can have an active agent-delivery component associated therewith, in addition to or instead of having an active agent-delivery component associated with spacer 430.
  • these elements can be made of woven or otherwise porous structural materials and have an active agent impregnated therein, or these elements can have an active
  • L 5 agent-delivery layer provided therein or thereon, which can be an absorbable or biodegradable material having an active agent impregnated therein, or can be a material having an active agent adorbed thereto.
  • the engaging members described herein can be made from any one or combinations of biocompatible material, including synthetic or natural autograft, allograft
  • tissue materials include hard tissues, connective tissues, demineralized bone matrix and combinations thereof.
  • resorbable materials are polylactide, polyglycolide, tyrosine-derived polycarbonate, polyanhydride, polyorthoester, polyphosphazene, calcium phosphate, hydroxyapatite, bioactive glass, and combinations t5 thereof.
  • non-resorbable materials are carbon-reinforced polymer composites, silicone, PEEK, shape-memory alloys, titanium, titanium alloys, cobalt chrome alloys, stainless steel, and combinations thereof.
  • the present invention provides in one aspect a posterior spinal fixation
  • the active agent-delivery component has an active agent impregnated therein or adsorbed thereon or otherwise contained therein and is configured to release the active agent locally after the device is implanted in a patient.
  • the device is a dynamic stabilization device configured for placement between adjacent spinous processes, between adjacent transverse processes or between other posterior vertebral elements.
  • the device is an inter-spinous process dynamic
  • the device is an inter-transverse process dynamic stabilization device. In yet another embodiment, the device is an anchor-based stabilization or fixation system.
  • an inventive device comprises at least one structural component configured to provide spinal stabilization, and at least a portion of at least one
  • [0 of the structural components has the active agent impregnated therein or adsorbed thereon.
  • one preferred device comprises an internal structural component contained within an outer sheath, wherein the outer sheath includes an absorbent or adsorbent or biodegradable material having the active agent impregnated therein or adsorbed thereon.
  • the active agent can be selected, for example, from the group consisting of an anabolic
  • agent an anti-coagulant, an anti-infective agent, an anti-inflammatory agent, an antineoplastic agent, an anti-pyretic agent, an analgesic agent, an anti-spasmodic agent, an anti-thrombotic agent, an antihistamine, a biological, a bone morphogenetic protein, a diagnostic agent, a neuromuscular drug, a nutritional agent, a vasodilator, and a pro-drug.
  • the amount of active agent incorporated in the device can vary depending on the
  • a variety of devices in a variety of sizes and shapes can be fashioned according to the present invention to include the active agent-delivery component, and which are intended to provide dosage regimes for therapy of a variety of conditions. The upper and lower limits will depend on the activity of the active agent and
  • an inventive device comprises at least one structural component configured to provide spinal stabilization and at least one active agent-delivery component retained by the structural component.
  • the device includes an internal structural component positioned within an
  • the active agent-delivery component comprises an absorbent or adsorbent or biodegradable layer positioned between the internal structural component and the outer sheath.
  • the device has an exterior surface and the active agent-delivery component comprises an active agent-delivery layer affixed to at least a portion of said exterior surface.
  • the structural component defines at least one aperture and the active agent-delivery component is an insert configured to be positioned in the aperture.
  • the insert in certain preferred embodiments comprises a micromechanical machine.
  • the active agent-delivery component comprises an elastic material having the active agent absorbed therein or adsorbed thereon.
  • the device after implantation of device, releases the active agent, preferably in a sustained release manner, or in a controllable or semi-controllable manner.
  • the device can be configured such that, after implantation of the device, a dose of the active agent is caused to be released or released at an increased rate by compressing the active agent-delivery component, or by stretching the component, or by applying a torque to the component.
  • the device is an inter-spinous process dynamic stabilization device, and the device is configured such that, after implantation, compressive pressure, stretching or torque is exerted upon the active agent-delivery component by vertebral movement as a result of extension of the spinal column, flexion of the spinal column, bending of the spinal column or rotation of the spinal column.
  • the device is an inter-transverse process dynamic stabilization device, and the device is configured such that, after implantation, compression, stretching or torque is exerted upon the active agent-delivery component by vertebral movement as a result of extension of the spinal column, flexion of the spinal column, bending of the spinal column or rotation of the spinal column.
  • the device is an anchor- based fixation or stabilization system.
  • an orthopedic implant device comprising an active agent-delivery component, wherein the active agent-delivery component comprises an elastic material having the active agent absorbed therein or adsorbed thereon, wherein the device is configured to release the active agent locally after the device is implanted in a patient, and wherein the device is configured such that a dose of the active agent is caused to be released or released at an increased rate by (a) exerting compressive pressure upon the active agent-delivery component, (b) stretching the component, or (c) applying a torque to the component.
  • the device includes an internal structural component positioned within an outer sheath, and the outer sheath comprises an absorbent or adsorbent or biodegradable material having the active agent impregnated therein or adsorbed thereon.
  • the device includes an internal structural component positioned within an outer sheath, and the active agent-delivery component comprises an absorbent or adsorbent or biodegradable layer positioned between the internal structural component and the outer sheath.
  • the device has an exterior surface and the active agent-delivery component comprises an active agent-delivery layer affixed to at least a portion of the exterior surface.
  • the at least one structural component defines at least one aperture and the active agent-delivery component is an insert configured to be positioned in the aperture.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)
PCT/US2006/016017 2005-04-29 2006-04-27 Local delivery of an active agent from an orthopedic implant Ceased WO2006118945A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2006242532A AU2006242532A1 (en) 2005-04-29 2006-04-27 Local delivery of an active agent from an orthopedic implant
CA002605685A CA2605685A1 (en) 2005-04-29 2006-04-27 Local delivery of an active agent from an orthopedic implant
EP06758671A EP1903964A2 (en) 2005-04-29 2006-04-27 Local delivery of an active agent from an orthopedic implant
JP2008509115A JP2008539032A (ja) 2005-04-29 2006-04-27 後部脊椎固定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/117,891 US20060247623A1 (en) 2005-04-29 2005-04-29 Local delivery of an active agent from an orthopedic implant

Publications (3)

Publication Number Publication Date
WO2006118945A2 true WO2006118945A2 (en) 2006-11-09
WO2006118945A8 WO2006118945A8 (en) 2006-12-21
WO2006118945A3 WO2006118945A3 (en) 2007-06-21

Family

ID=37235434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/016017 Ceased WO2006118945A2 (en) 2005-04-29 2006-04-27 Local delivery of an active agent from an orthopedic implant

Country Status (6)

Country Link
US (2) US20060247623A1 (enExample)
EP (1) EP1903964A2 (enExample)
JP (1) JP2008539032A (enExample)
AU (1) AU2006242532A1 (enExample)
CA (1) CA2605685A1 (enExample)
WO (1) WO2006118945A2 (enExample)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
US9861398B2 (en) 2004-10-20 2018-01-09 Vertiflex, Inc. Interspinous spacer
US9877749B2 (en) 2004-10-20 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9956011B2 (en) 2004-10-20 2018-05-01 Vertiflex, Inc. Interspinous spacer
US10039576B2 (en) 2004-10-20 2018-08-07 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10058358B2 (en) 2004-10-20 2018-08-28 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10080587B2 (en) 2004-10-20 2018-09-25 Vertiflex, Inc. Methods for treating a patient's spine
US10166047B2 (en) 2004-10-20 2019-01-01 Vertiflex, Inc. Interspinous spacer
US10258389B2 (en) 2004-10-20 2019-04-16 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10278744B2 (en) 2004-10-20 2019-05-07 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10292738B2 (en) 2004-10-20 2019-05-21 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US10524772B2 (en) 2014-05-07 2020-01-07 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US10588663B2 (en) 2006-10-18 2020-03-17 Vertiflex, Inc. Dilator
US10610267B2 (en) 2004-10-20 2020-04-07 Vertiflex, Inc. Spacer insertion instrument
US10653456B2 (en) 2005-02-04 2020-05-19 Vertiflex, Inc. Interspinous spacer
US11229461B2 (en) 2006-10-18 2022-01-25 Vertiflex, Inc. Interspinous spacer
US12102542B2 (en) 2022-02-15 2024-10-01 Boston Scientific Neuromodulation Corporation Interspinous spacer and methods and systems utilizing the interspinous spacer
US12390340B2 (en) 2023-03-15 2025-08-19 Boston Scientific Neuromodulation Corporation Interspinous spacer with a range of deployment positions and methods and systems
US12433646B2 (en) 2023-02-21 2025-10-07 Boston Scientific Neuromodulation Corporation Interspinous spacer with actuator locking arrangements and methods and systems

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086212A1 (en) 1997-01-02 2008-04-10 St. Francis Medical Technologies, Inc. Spine distraction implant
US7201751B2 (en) 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US7306628B2 (en) 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US8128661B2 (en) 1997-01-02 2012-03-06 Kyphon Sarl Interspinous process distraction system and method with positionable wing and method
US7959652B2 (en) 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US20080215058A1 (en) * 1997-01-02 2008-09-04 Zucherman James F Spine distraction implant and method
US7115557B2 (en) * 1998-09-25 2006-10-03 Sciaticon Ab Use of certain drugs for treating nerve root injury
FR2844179B1 (fr) 2002-09-10 2004-12-03 Jean Taylor Ensemble de soutien vertebral posterieur
US8070778B2 (en) 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US7549999B2 (en) 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US7909853B2 (en) 2004-09-23 2011-03-22 Kyphon Sarl Interspinous process implant including a binder and method of implantation
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US8221463B2 (en) 2002-10-29 2012-07-17 Kyphon Sarl Interspinous process implants and methods of use
US7749252B2 (en) * 2005-03-21 2010-07-06 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
DE102004046163A1 (de) 2004-08-12 2006-02-23 Columbus Trading-Partners Pos und Brendel GbR (vertretungsberechtigte Gesellschafter Karin Brendel, 95503 Hummeltal und Bohumila Pos, 95445 Bayreuth) Kindersitz für Kraftfahrzeuge
US8012209B2 (en) 2004-09-23 2011-09-06 Kyphon Sarl Interspinous process implant including a binder, binder aligner and method of implantation
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8123782B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Interspinous spacer
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
US8277488B2 (en) 2004-10-20 2012-10-02 Vertiflex, Inc. Interspinous spacer
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8613747B2 (en) 2004-10-20 2013-12-24 Vertiflex, Inc. Spacer insertion instrument
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US8025680B2 (en) 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8945183B2 (en) 2004-10-20 2015-02-03 Vertiflex, Inc. Interspinous process spacer instrument system with deployment indicator
US7935134B2 (en) 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
US8162985B2 (en) 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
EP1807012B1 (en) * 2004-10-25 2016-07-06 Lanx, LLC Nterspinous distraction devices
US9055981B2 (en) 2004-10-25 2015-06-16 Lanx, Inc. Spinal implants and methods
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US7927354B2 (en) 2005-02-17 2011-04-19 Kyphon Sarl Percutaneous spinal implants and methods
US8038698B2 (en) 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US8043335B2 (en) * 2005-02-17 2011-10-25 Kyphon Sarl Percutaneous spinal implants and methods
US8096995B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US7988709B2 (en) 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US7993342B2 (en) 2005-02-17 2011-08-09 Kyphon Sarl Percutaneous spinal implants and methods
US8092459B2 (en) 2005-02-17 2012-01-10 Kyphon Sarl Percutaneous spinal implants and methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US8066742B2 (en) 2005-03-31 2011-11-29 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8034079B2 (en) 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US7789898B2 (en) 2005-04-15 2010-09-07 Warsaw Orthopedic, Inc. Transverse process/laminar spacer
US7727233B2 (en) 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US20070005064A1 (en) * 2005-06-27 2007-01-04 Sdgi Holdings Intervertebral prosthetic device for spinal stabilization and method of implanting same
FR2887434B1 (fr) 2005-06-28 2008-03-28 Jean Taylor Materiel de traitement chirurgical de deux vertebres
US8523865B2 (en) 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
US7862591B2 (en) 2005-11-10 2011-01-04 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070173823A1 (en) 2006-01-18 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US7815663B2 (en) * 2006-01-27 2010-10-19 Warsaw Orthopedic, Inc. Vertebral rods and methods of use
US7691130B2 (en) 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US7837711B2 (en) 2006-01-27 2010-11-23 Warsaw Orthopedic, Inc. Artificial spinous process for the sacrum and methods of use
EP1978900B1 (en) * 2006-02-01 2012-03-07 Synthes GmbH Interspinous process spacer
US7520888B2 (en) * 2006-02-14 2009-04-21 Warsaw Orthopedic, Inc. Treatment of the vertebral column
US8262698B2 (en) 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US7985246B2 (en) 2006-03-31 2011-07-26 Warsaw Orthopedic, Inc. Methods and instruments for delivering interspinous process spacers
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8105357B2 (en) 2006-04-28 2012-01-31 Warsaw Orthopedic, Inc. Interspinous process brace
US8348978B2 (en) 2006-04-28 2013-01-08 Warsaw Orthopedic, Inc. Interosteotic implant
US20070270823A1 (en) 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Multi-chamber expandable interspinous process brace
US8252031B2 (en) 2006-04-28 2012-08-28 Warsaw Orthopedic, Inc. Molding device for an expandable interspinous process implant
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US8147517B2 (en) 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US20070272259A1 (en) * 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical procedure for inserting a device between anatomical structures
US20070276496A1 (en) 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical spacer with shape control
US8172882B2 (en) 2006-06-14 2012-05-08 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8048119B2 (en) 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
WO2008024607A2 (en) * 2006-08-25 2008-02-28 Loubert Suddaby Expandable spinous process distractor
US20080051896A1 (en) * 2006-08-25 2008-02-28 Loubert Suddaby Expandable Spinous Process Distractor
US20080086115A1 (en) 2006-09-07 2008-04-10 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
US8096996B2 (en) 2007-03-20 2012-01-17 Exactech, Inc. Rod reducer
FR2908035B1 (fr) 2006-11-08 2009-05-01 Jean Taylor Implant interepineux
US20080114357A1 (en) 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Inter-transverse process spacer device and method for use in correcting a spinal deformity
US7879104B2 (en) 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
US7955392B2 (en) 2006-12-14 2011-06-07 Warsaw Orthopedic, Inc. Interspinous process devices and methods
US9265532B2 (en) 2007-01-11 2016-02-23 Lanx, Inc. Interspinous implants and methods
US7842074B2 (en) 2007-02-26 2010-11-30 Abdou M Samy Spinal stabilization systems and methods of use
US8840646B2 (en) * 2007-05-10 2014-09-23 Warsaw Orthopedic, Inc. Spinous process implants and methods
US20080294199A1 (en) * 2007-05-25 2008-11-27 Andrew Kohm Spinous process implants and methods of using the same
US8070779B2 (en) * 2007-06-04 2011-12-06 K2M, Inc. Percutaneous interspinous process device and method
US8052721B2 (en) 2007-06-05 2011-11-08 Spartek Medical, Inc. Multi-dimensional horizontal rod for a dynamic stabilization and motion preservation spinal implantation system and method
US8048121B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a defelction rod system anchored to a bone anchor and method
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8057514B2 (en) 2007-06-05 2011-11-15 Spartek Medical, Inc. Deflection rod system dimensioned for deflection to a load characteristic for dynamic stabilization and motion preservation spinal implantation system and method
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8109970B2 (en) 2007-06-05 2012-02-07 Spartek Medical, Inc. Deflection rod system with a deflection contouring shield for a spine implant and method
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8348976B2 (en) 2007-08-27 2013-01-08 Kyphon Sarl Spinous-process implants and methods of using the same
EP2214736B1 (en) * 2007-10-29 2014-03-05 Zimmer, Inc. Medical implants and methods for delivering biologically active agents
WO2009086397A2 (en) 2007-12-28 2009-07-09 Osteomed Spine, Inc. Bone tissue fixation device and method
US9408641B2 (en) 2008-02-02 2016-08-09 Globus Medical, Inc. Spinal rod link reducer
US9050141B2 (en) 2008-02-02 2015-06-09 Texas Scottish Rite Hospital For Children Pedicle screw
US9345517B2 (en) 2008-02-02 2016-05-24 Globus Medical, Inc. Pedicle screw having a removable rod coupling
US9579126B2 (en) 2008-02-02 2017-02-28 Globus Medical, Inc. Spinal rod link reducer
US8105358B2 (en) 2008-02-04 2012-01-31 Kyphon Sarl Medical implants and methods
US8048125B2 (en) 2008-02-26 2011-11-01 Spartek Medical, Inc. Versatile offset polyaxial connector and method for dynamic stabilization of the spine
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US20100030224A1 (en) 2008-02-26 2010-02-04 Spartek Medical, Inc. Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8057517B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
CA2725116A1 (en) * 2008-06-02 2009-12-10 Synthes Usa, Llc Inflatable interspinous spacer
US9642658B2 (en) * 2008-10-15 2017-05-09 Orthoclip Llc Device and method for delivery of therapeutic agents via internal implants
EP2337526A4 (en) * 2008-10-15 2013-07-31 Replication Medical Inc INTERLEPINOUS IMPLANT OF DILATABLE STABILIZATION
EP2346421A1 (en) * 2008-10-15 2011-07-27 Bioshape Solutions Inc. Device and method for delivery of therapeutic agents via internal implants
US8623056B2 (en) * 2008-10-23 2014-01-07 Linares Medical Devices, Llc Support insert associated with spinal vertebrae
US8114131B2 (en) 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
JP2012508597A (ja) * 2008-11-12 2012-04-12 シンピライカ スパイン, インコーポレイテッド 調整される拘束装置および使用方法
US8114135B2 (en) 2009-01-16 2012-02-14 Kyphon Sarl Adjustable surgical cables and methods for treating spinal stenosis
US20110137345A1 (en) * 2009-03-18 2011-06-09 Caleb Stoll Posterior lumbar fusion
CN102448392A (zh) 2009-03-31 2012-05-09 兰克斯股份有限公司 棘突植入物及相关方法
US8333791B2 (en) * 2009-04-24 2012-12-18 Warsaw Orthopedic, Inc. Medical implant with tie configured to deliver a therapeutic substance
US8372117B2 (en) 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8157842B2 (en) 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
WO2011005508A2 (en) 2009-06-23 2011-01-13 Osteomed Bone tissue clamp
US8721686B2 (en) 2009-06-23 2014-05-13 Osteomed Llc Spinous process fusion implants and insertion, compression, and locking instrumentation
EP2456374A1 (en) 2009-08-10 2012-05-30 OsteoMed LLC Spinous process fusion implants
US8771317B2 (en) 2009-10-28 2014-07-08 Warsaw Orthopedic, Inc. Interspinous process implant and method of implantation
CN102695465A (zh) 2009-12-02 2012-09-26 斯帕泰克医疗股份有限公司 结合具有可偏转柱和复合脊柱杆的骨锚固件的小轮廓脊柱假体
EP2512357B1 (en) 2009-12-15 2016-07-13 Vertiflex, Inc. Spinal spacer for cervical and other vertebra, and associated systems
US8114132B2 (en) 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US8317831B2 (en) 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8834568B2 (en) * 2010-02-04 2014-09-16 Paul S. Shapiro Surgical technique using a contoured allograft cartilage as a spacer of the carpo-metacarpal joint of the thumb or tarso-metatarsal joint of the toe
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US20110307018A1 (en) 2010-06-10 2011-12-15 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US8814908B2 (en) 2010-07-26 2014-08-26 Warsaw Orthopedic, Inc. Injectable flexible interspinous process device system
US20120215262A1 (en) * 2011-02-16 2012-08-23 Interventional Spine, Inc. Spinous process spacer and implantation procedure
US8496689B2 (en) 2011-02-23 2013-07-30 Farzad Massoudi Spinal implant device with fusion cage and fixation plates and method of implanting
US8562650B2 (en) 2011-03-01 2013-10-22 Warsaw Orthopedic, Inc. Percutaneous spinous process fusion plate assembly and method
US8425560B2 (en) 2011-03-09 2013-04-23 Farzad Massoudi Spinal implant device with fixation plates and lag screws and method of implanting
US8591548B2 (en) 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
WO2012145700A1 (en) 2011-04-21 2012-10-26 Osteomed Llc. Bone plates, screws, and instruments
US20120323276A1 (en) 2011-06-17 2012-12-20 Bryan Okamoto Expandable interspinous device
US9149306B2 (en) 2011-06-21 2015-10-06 Seaspine, Inc. Spinous process device
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US10660674B2 (en) * 2012-07-17 2020-05-26 Gomboc, LLC Magnetically levitated spinous process implants and methods thereof
CN104602629A (zh) 2012-08-31 2015-05-06 新南创新公司 骨稳固器设备以及使用其的方法
US9700435B2 (en) 2013-03-14 2017-07-11 Warsaw Orthopedic, Inc. Surgical delivery system and method
PL229568B1 (pl) * 2013-05-30 2018-07-31 Ammono Spolka Akcyjna Sposób wytwarzania monokrystalicznego azotku zawierającego gal i monokrystaliczny azotek zawierający gal, wytworzony tym sposobem
CN105592811B (zh) 2013-08-30 2018-06-22 新南创新公司 脊柱稳定装置
US9814496B2 (en) 2015-09-15 2017-11-14 Hydra Medical, LLC Interspinous stabilization implant
US10335207B2 (en) 2015-12-29 2019-07-02 Nuvasive, Inc. Spinous process plate fixation assembly
US11678995B2 (en) 2018-07-20 2023-06-20 Fellowship Of Orthopaedic Researchers, Inc. Magnetic intervertebral disc replacement devices and methods thereof

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2677369A (en) * 1952-03-26 1954-05-04 Fred L Knowles Apparatus for treatment of the spinal column
US2774350A (en) * 1952-09-08 1956-12-18 Jr Carl S Cleveland Spinal clamp or splint
US3648691A (en) * 1970-02-24 1972-03-14 Univ Colorado State Res Found Method of applying vertebral appliance
US3693616A (en) * 1970-06-26 1972-09-26 Robert Roaf Device for correcting scoliotic curves
US3986212A (en) * 1975-04-11 1976-10-19 Glasrock Products, Inc. Composite prosthetic device with porous polymeric coating
US4011602A (en) * 1975-10-06 1977-03-15 Battelle Memorial Institute Porous expandable device for attachment to bone tissue
PL114098B1 (en) * 1978-04-14 1981-01-31 Wyzsza Szkola Inzynierska Apparatus for correcting spinal curvature
US4554914A (en) * 1983-10-04 1985-11-26 Kapp John P Prosthetic vertebral body
US4604995A (en) * 1984-03-30 1986-08-12 Stephens David C Spinal stabilizer
US4573454A (en) * 1984-05-17 1986-03-04 Hoffman Gregory A Spinal fixation apparatus
US4693886A (en) * 1985-04-22 1987-09-15 Alza Corporation Osmotic device with inert core
US4688970A (en) * 1985-08-09 1987-08-25 Dresser Industries, Inc. Power drill and automatic control system therefore
FR2623085B1 (fr) * 1987-11-16 1992-08-14 Breard Francis Implant chirurgical pour limiter le mouvement relatif des vertebres
CA1294843C (en) * 1988-04-07 1992-01-28 Paul Y. Wang Implant for percutaneous sampling of serous fluid and for delivering drug upon external compression
GB8825909D0 (en) * 1988-11-04 1988-12-07 Showell A W Sugicraft Ltd Pedicle engaging means
US5201734A (en) * 1988-12-21 1993-04-13 Zimmer, Inc. Spinal locking sleeve assembly
US5047055A (en) * 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
FR2693364B1 (fr) * 1992-07-07 1995-06-30 Erpios Snc Prothese intervertebrale permettant une stabilisation des contraintes rotatoires et de flexion-extension.
GB9217578D0 (en) * 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
US5496318A (en) * 1993-01-08 1996-03-05 Advanced Spine Fixation Systems, Inc. Interspinous segmental spine fixation device
WO1994021308A1 (en) * 1993-03-18 1994-09-29 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
US5947893A (en) * 1994-04-27 1999-09-07 Board Of Regents, The University Of Texas System Method of making a porous prothesis with biodegradable coatings
FR2721501B1 (fr) * 1994-06-24 1996-08-23 Fairant Paulette Prothèses des facettes articulaires vertébrales.
FR2722980B1 (fr) * 1994-07-26 1996-09-27 Samani Jacques Implant vertebral inter-epineux
EP0700671B1 (en) * 1994-09-08 2001-08-08 Stryker Technologies Corporation Hydrogel intervertebral disc nucleus
FR2728159B1 (fr) * 1994-12-16 1997-06-27 Tornier Sa Prothese discale elastique
FR2729556B1 (fr) * 1995-01-23 1998-10-16 Sofamor Dispositif d'osteosynthese rachidienne a crochet median et appuis d'ancrage vertebral
US5690649A (en) * 1995-12-05 1997-11-25 Li Medical Technologies, Inc. Anchor and anchor installation tool and method
US6143948A (en) * 1996-05-10 2000-11-07 Isotis B.V. Device for incorporation and release of biologically active agents
US5810815A (en) * 1996-09-20 1998-09-22 Morales; Jose A. Surgical apparatus for use in the treatment of spinal deformities
US5860977A (en) * 1997-01-02 1999-01-19 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6451019B1 (en) * 1998-10-20 2002-09-17 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US6514256B2 (en) * 1997-01-02 2003-02-04 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US20020143331A1 (en) * 1998-10-20 2002-10-03 Zucherman James F. Inter-spinous process implant and method with deformable spacer
US5836948A (en) * 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6068630A (en) * 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US6695842B2 (en) * 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
US7306628B2 (en) * 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US6034296A (en) * 1997-03-11 2000-03-07 Elvin; Niell Implantable bone strain telemetry sensing system and method
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
ATE380509T1 (de) * 1997-10-27 2007-12-15 St Francis Medical Tech Inc Wirbelsäulen distraktionsimplantat
FR2775183B1 (fr) * 1998-02-20 2000-08-04 Jean Taylor Prothese inter-epineuse
US6419709B1 (en) * 1998-10-02 2002-07-16 Guilford Pharmaceuticals, Inc. Biodegradable terephthalate polyester-poly(Phosphite) compositions, articles, and methods of using the same
US7029473B2 (en) * 1998-10-20 2006-04-18 St. Francis Medical Technologies, Inc. Deflectable spacer for use as an interspinous process implant and method
AU2400200A (en) * 1998-12-31 2000-07-31 Ball Semiconductor Inc. Miniature implanted orthopedic sensors
US6245108B1 (en) * 1999-02-25 2001-06-12 Spineco Spinal fusion implant
US6541021B1 (en) * 1999-03-18 2003-04-01 Durect Corporation Devices and methods for pain management
US20040024465A1 (en) * 1999-08-18 2004-02-05 Gregory Lambrecht Devices and method for augmenting a vertebral disc
JP4172883B2 (ja) * 1999-09-08 2008-10-29 Hoya株式会社 薬物徐放用担体および薬物徐放用担体の製造方法
US7090668B1 (en) * 1999-10-29 2006-08-15 Cytori Therapeutics, Inc. Time-released substance delivery device
AU1914001A (en) * 1999-10-29 2001-05-14 James Peter Amis Time-released substance delivery device
US6579533B1 (en) * 1999-11-30 2003-06-17 Bioasborbable Concepts, Ltd. Bioabsorbable drug delivery system for local treatment and prevention of infections
US6312431B1 (en) * 2000-04-24 2001-11-06 Wilson T. Asfora Vertebrae linking system
FR2811540B1 (fr) * 2000-07-12 2003-04-25 Spine Next Sa Implant intervertebral amortissant
US6827743B2 (en) * 2001-02-28 2004-12-07 Sdgi Holdings, Inc. Woven orthopedic implants
JP2004537354A (ja) * 2001-07-20 2004-12-16 スパイナル・コンセプツ・インコーポレーテッド 脊椎安定化システムおよび方法
US6736815B2 (en) * 2001-09-06 2004-05-18 Core Medical, Inc. Apparatus and methods for treating spinal discs
US6733534B2 (en) * 2002-01-29 2004-05-11 Sdgi Holdings, Inc. System and method for spine spacing
ATE552789T1 (de) * 2002-05-08 2012-04-15 Stephen Ritland Dynamische fixierungsvorrichtung
US7048736B2 (en) * 2002-05-17 2006-05-23 Sdgi Holdings, Inc. Device for fixation of spinous processes
US20030220643A1 (en) * 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
US7041309B2 (en) * 2002-06-13 2006-05-09 Neuropro Technologies, Inc. Spinal fusion using an HMG-CoA reductase inhibitor
DE10236691B4 (de) * 2002-08-09 2005-12-01 Biedermann Motech Gmbh Dynamische Stabilisierungseinrichtung für Knochen, insbesondere für Wirbel
US20040147906A1 (en) * 2003-01-12 2004-07-29 Voyiazis Sophocles S Implantable interface system
FR2850009B1 (fr) * 2003-01-20 2005-12-23 Spine Next Sa Ensemble de traitement de la degenerescence d'un disque intervertebral
US7270679B2 (en) * 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
US7190273B2 (en) * 2003-07-11 2007-03-13 Depuy Products, Inc. Joint endoprosthesis with ambient condition sensing
US7377942B2 (en) * 2003-08-06 2008-05-27 Warsaw Orthopedic, Inc. Posterior elements motion restoring device
WO2005051871A2 (en) * 2003-11-20 2005-06-09 Angiotech International Ag Implantable sensors and implantable pumps and anti-scarring agents
US7776073B2 (en) * 2004-06-30 2010-08-17 Depuy Spine, Inc. In-situ formed posterolateral fusion system
US20060036323A1 (en) * 2004-08-03 2006-02-16 Carl Alan L Facet device and method
US20060085073A1 (en) * 2004-10-18 2006-04-20 Kamshad Raiszadeh Medical device systems for the spine
US8409282B2 (en) * 2004-10-20 2013-04-02 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
DE102005005694A1 (de) * 2005-02-08 2006-08-17 Henning Kloss Dornfortsatzspreizer
US7998174B2 (en) * 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US7780709B2 (en) * 2005-04-12 2010-08-24 Warsaw Orthopedic, Inc. Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US7789898B2 (en) * 2005-04-15 2010-09-07 Warsaw Orthopedic, Inc. Transverse process/laminar spacer
US9237908B2 (en) * 2005-04-21 2016-01-19 Spine Wave, Inc. Dynamic stabilization system for the spine
US7727233B2 (en) * 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US7998173B2 (en) * 2005-11-22 2011-08-16 Richard Perkins Adjustable spinous process spacer device and method of treating spinal stenosis
WO2007067547A2 (en) * 2005-12-06 2007-06-14 Globus Medical, Inc. Facet joint prosthesis
US8062337B2 (en) * 2006-05-04 2011-11-22 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10080587B2 (en) 2004-10-20 2018-09-25 Vertiflex, Inc. Methods for treating a patient's spine
US10292738B2 (en) 2004-10-20 2019-05-21 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilizing the motion or adjusting the position of the spine
US9877749B2 (en) 2004-10-20 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9956011B2 (en) 2004-10-20 2018-05-01 Vertiflex, Inc. Interspinous spacer
US10039576B2 (en) 2004-10-20 2018-08-07 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10058358B2 (en) 2004-10-20 2018-08-28 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US9861398B2 (en) 2004-10-20 2018-01-09 Vertiflex, Inc. Interspinous spacer
US10258389B2 (en) 2004-10-20 2019-04-16 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10709481B2 (en) 2004-10-20 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10278744B2 (en) 2004-10-20 2019-05-07 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US10166047B2 (en) 2004-10-20 2019-01-01 Vertiflex, Inc. Interspinous spacer
US11076893B2 (en) 2004-10-20 2021-08-03 Vertiflex, Inc. Methods for treating a patient's spine
US10835295B2 (en) 2004-10-20 2020-11-17 Vertiflex, Inc. Interspinous spacer
US10610267B2 (en) 2004-10-20 2020-04-07 Vertiflex, Inc. Spacer insertion instrument
US10835297B2 (en) 2004-10-20 2020-11-17 Vertiflex, Inc. Interspinous spacer
US10653456B2 (en) 2005-02-04 2020-05-19 Vertiflex, Inc. Interspinous spacer
US12035947B2 (en) 2006-10-18 2024-07-16 Boston Scientific Neuromodulation Corporation Devices and methods for treating a patient's spine
US10588663B2 (en) 2006-10-18 2020-03-17 Vertiflex, Inc. Dilator
US11013539B2 (en) 2006-10-18 2021-05-25 Vertiflex, Inc. Methods for treating a patient's spine
US11229461B2 (en) 2006-10-18 2022-01-25 Vertiflex, Inc. Interspinous spacer
US12226130B2 (en) 2006-10-18 2025-02-18 Vertiflex, Inc. Interspinous spacer
US11986221B2 (en) 2006-10-18 2024-05-21 Vertiflex, Inc. Interspinous spacer
US12035946B2 (en) 2006-10-18 2024-07-16 Boston Scientific Neuromodulation Corporation Interspinous spacer
US9675303B2 (en) 2013-03-15 2017-06-13 Vertiflex, Inc. Visualization systems, instruments and methods of using the same in spinal decompression procedures
US10524772B2 (en) 2014-05-07 2020-01-07 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US12035884B2 (en) 2014-05-07 2024-07-16 Boston Scientific Neuromodulation Corporation Spinal nerve decompression systems, dilation systems, and methods of using the same
US11357489B2 (en) 2014-05-07 2022-06-14 Vertiflex, Inc. Spinal nerve decompression systems, dilation systems, and methods of using the same
US12102542B2 (en) 2022-02-15 2024-10-01 Boston Scientific Neuromodulation Corporation Interspinous spacer and methods and systems utilizing the interspinous spacer
US12433646B2 (en) 2023-02-21 2025-10-07 Boston Scientific Neuromodulation Corporation Interspinous spacer with actuator locking arrangements and methods and systems
US12390340B2 (en) 2023-03-15 2025-08-19 Boston Scientific Neuromodulation Corporation Interspinous spacer with a range of deployment positions and methods and systems

Also Published As

Publication number Publication date
CA2605685A1 (en) 2006-11-09
EP1903964A2 (en) 2008-04-02
AU2006242532A1 (en) 2006-11-09
JP2008539032A (ja) 2008-11-13
WO2006118945A3 (en) 2007-06-21
US20110022091A1 (en) 2011-01-27
US20060247623A1 (en) 2006-11-02
WO2006118945A8 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
US20060247623A1 (en) Local delivery of an active agent from an orthopedic implant
US10080590B2 (en) Spinal stabilization system and methods of use
US7780709B2 (en) Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US8317832B2 (en) Implants and methods for inter-spinous process dynamic stabilization of spinal motion segment
EP2061391B1 (en) Intercostal spacer device for correcting a spinal deformity
JP5047176B2 (ja) 棘突起間安定デバイス
US20100152779A1 (en) Inter-transverse process spacer device and method for use in correcting a spinal deformity
US8372116B2 (en) Systems and devices for dynamic stabilization of the spine
US20110060366A1 (en) Facet Joint Implant and Related Methods
AU2006235096A1 (en) Implants and methods for posterior dynamic stabilization of a spinal motion segment
US20100268278A1 (en) Tension band

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006242532

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006242532

Country of ref document: AU

Date of ref document: 20060427

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2605685

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2008509115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006758671

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU