WO2006118071A1 - 尿素合成装置およびその改造方法 - Google Patents

尿素合成装置およびその改造方法 Download PDF

Info

Publication number
WO2006118071A1
WO2006118071A1 PCT/JP2006/308529 JP2006308529W WO2006118071A1 WO 2006118071 A1 WO2006118071 A1 WO 2006118071A1 JP 2006308529 W JP2006308529 W JP 2006308529W WO 2006118071 A1 WO2006118071 A1 WO 2006118071A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis
tube
condenser
urea
carbon dioxide
Prior art date
Application number
PCT/JP2006/308529
Other languages
English (en)
French (fr)
Inventor
Yasuhiko Kojima
Original Assignee
Toyo Engineering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corporation filed Critical Toyo Engineering Corporation
Priority to CN200680014157.3A priority Critical patent/CN101166715B/zh
Priority to US11/909,765 priority patent/US7582795B2/en
Priority to JP2007514707A priority patent/JPWO2006118071A1/ja
Priority to CH02085/06A priority patent/CH698707B1/de
Priority to EP06745607A priority patent/EP1876171B1/en
Publication of WO2006118071A1 publication Critical patent/WO2006118071A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/02Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
    • C07C273/04Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds from carbon dioxide and ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • B01D5/003Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium within column(s)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49732Repairing by attaching repair preform, e.g., remaking, restoring, or patching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49718Repairing
    • Y10T29/49746Repairing by applying fluent material, e.g., coating, casting

Definitions

  • the present invention relates to a urea synthesizer that synthesizes urea using ammonia and carbon dioxide as raw materials. More specifically, the present invention relates to an apparatus used in a stripping urea process for stripping a urea synthesis solution obtained in a synthesis tube for synthesizing urea.
  • Patent Document 1 describes a urea process in which the raw materials are ammonia and carbon dioxide, and all or part of urea synthesis is performed in a combined reactor. In this process, gas from the stripper is fed to the vertical combined reactor, and all or part of this gas is
  • ammonia carbamate is condensed in the ammonia carbamate, and the ammonia carbamate is sent to the scrubber area via the downcomer, and ammonia and carbon dioxide are partly synthesized into urea in the condensation area of the combined reactor. It is disclosed that further conversion to urea takes place in the reaction zone in the combined reactor.
  • Patent Document 2 describes a combined reaction apparatus in which raw materials are ammonia and carbon dioxide, and is composed of two synthesis zones and one condensation zone installed in a vertical shape.
  • the apparatus is a vertical combined reactor.
  • This combined reactor has two reaction zones separated by a high-pressure condensation zone.
  • a composite reactor with two reaction zones and a high pressure condensation zone outside the reactor is also shown, and a process using this device is also disclosed. It also shows a method in which all or part of the gas supplied from the stripper is supplied to the high-pressure condensing zone. It is disclosed that it is preferable that the gas power from the stripper is supplied to the second reaction zone of the combined reactor installed in a vertical shape via an ammonia ejector.
  • Patent Document 3 in a urea synthesis method including a stripping step of unreacted ammonia and carbon dioxide at a pressure substantially equal to the urea synthesis pressure with a raw material carbon dioxide, and a condensing step of a mixed gas from the stripping step, An improvement method that can place the device on the ground is described.
  • urea synthesis method mixed gas from stripper is used as absorption medium
  • a vertical condenser is installed above the urea synthesis tower to bring it into contact with the body under cooling and condensed, and a first down pipe that communicates the top of the condenser and the bottom of the synthesis pipe is provided.
  • the condensate is allowed to flow down to the bottom of the synthesis tower by gravity, and this condensate is subjected to urea synthesis together with a part of the raw material ammonia or carbon dioxide supplied here, and then opened to the top of the synthesis tube.
  • the urea synthesis solution generated through the down pipe is introduced into the stripper by gravity, and unreacted ammonia and carbon dioxide are separated as the above mixed gas by the remainder of the raw carbon dioxide, and introduced into the bottom of the condenser for condensation.
  • the condensate from the vertical condenser is sucked by an ejector using a preheated raw material liquid ammonia as a driving fluid and introduced into the bottom of the urea synthesis tower for urea synthesis. That.
  • Patent Document 4 describes a urea synthesis method in which condensation of a gas mixture of unreacted ammonia and carbon dioxide and urea synthesis are performed in one container, and the required volume of equipment per unit production is small. ing.
  • a mixed gas obtained by stripping unreacted ammonia and unreacted carbon dioxide with raw carbon dioxide and an absorption medium are supplied to the bottom of a vertical condensation synthesis tower, and raw liquid ammonia is used as a vertical type.
  • Supply to the bottom and middle part of the condensation synthesis tower cool the part from the bottom to the middle part of the vertical condensation synthesis tower to condense the mixed gas, and perform urea synthesis. It is disclosed that the liquid is introduced from the top of the vertical condensation synthesis tower to the top of the stripper and subjected to stripping with unreacted ammonia and carbon dioxide raw material carbon dioxide in the urea synthesis liquid.
  • Patent Document 5 a synthesis tube is placed horizontally in a CO stripping urea process.
  • Patent Document 6 and Patent Document 7 disclose a process of introducing a urea synthesis solution exiting a horizontal submerged condenser into a synthesis tube using an ejector.
  • Patent Document 1 International Publication WO 00/43358
  • Patent Document 2 International Publication WO 01/72700
  • Patent Document 3 Japanese Patent Laid-Open No. 10-182587
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2002-20360
  • Patent Document 5 Japanese Patent Application Laid-Open No. 59-122452
  • Patent Document 6 Japanese Patent Laid-Open No. 11-180942
  • Patent Document 7 International Publication WO 00/00466
  • a vertical submerged condenser for condensing gas from a stripper has been provided in the vertical direction above a synthesis pipe for synthesizing urea.
  • the vertical submerged condenser is heavy because it has a cooling pipe and a tube plate to which the cooling pipe is fixed. Installing the condenser above the synthesis tube means installing the condenser at a relatively high place. When such a heavy object is installed at a high position, it is not easy to install and fix the equipment, and the cost tends to increase.
  • FIG. 2 of Patent Document 1 a vertical composite reactor having a condensing region is arranged below the paper surface from the reactor.
  • the process fluid is flowed to the tube side, so the residence time is short. Therefore, since there is virtually no production of water by synthesizing urea in the tube, it is not possible to expect the effect of reducing the vapor pressure due to the production of urea with a vapor pressure of zero, which has no absorption effect of ammonia gas or carbon dioxide gas.
  • it is difficult to uniformly disperse the process fluid into each tube and two thick tube sheets are required to withstand high pressures exceeding 13 MPa, increasing the weight and cost.
  • Patent Document 4 shows a vertical condensing and synthesizing tower having a condensing part below and a synthesizing part above.
  • the condensing unit and the synthesizing unit are not partitioned here, and the condensing unit and the synthesizing unit are areas in one container, and this device is used to supply the synthesizing solution from here to the stripper. It is necessary to place a pump or blower at a high place.
  • An object of the present invention is to provide a urea synthesizer in which a heavy condenser can be installed at a relatively low position, and various problems caused by flowing a process fluid into a tube in the condenser can be avoided.
  • Another object of the present invention is to provide a remodeling method capable of obtaining the above urea synthesizer by remodeling an existing urea synthesizer.
  • the present invention is as follows.
  • a urea synthesizing device comprising a circulating means for circulating the liquid obtained from the vertical submerged condenser force to the synthesis tube, wherein the vertical submerged condenser is disposed below the synthesis tube.
  • a method for remodeling a urea synthesizer in which a circulating means for circulating the obtained liquid into the synthesis tube is installed, and the vertical submerged condenser is disposed below the synthesis tube.
  • a vertical submerged condenser having a shell-and-tube structure and condensing the mixed gas into an absorption medium on the shell side under cooling by a cooling medium flowing on the tube side;
  • a method for remodeling a urea synthesizing apparatus wherein a circulation means for circulating the liquid obtained from the vertical submerged condenser force to the synthesis pipe is installed, and the vertical submerged condenser is arranged below the synthesis pipe.
  • the vertical liquid film falling condenser includes a cooling means
  • a urea synthesizer in which a heavy condenser can be installed at a relatively low position, and various problems caused by flowing a process fluid into a tube in the condenser can be avoided.
  • FIG. 1 is a flowchart showing one embodiment of the urea synthesizer of the present invention.
  • FIG. 2 is a flowchart showing another embodiment of the urea synthesizer of the present invention.
  • FIG. 3 is a flowchart showing still another embodiment of the urea synthesizer of the present invention.
  • FIG. 4 is a flowchart showing still another embodiment of the urea synthesizer of the present invention.
  • FIG. 5 is a flowchart showing still another embodiment of the urea synthesizer of the present invention.
  • FIG. 6 is a flowchart for explaining the urea production apparatus.
  • Condenser tube side outlet cooling medium (boiler water and steam)
  • the vertical submerged condenser is simply referred to as a condenser.
  • the vertical submerged condenser is a condenser having a vertical shell and tube heat exchanger structure in which all of the cooling pipes are immersed in the liquid phase on the shell side.
  • Fig. 1 is a flow diagram showing an embodiment of the urea synthesizer of the present invention suitable for a CO stripping urea production process.
  • This equipment consists of a synthesis tube A containing a synthesis zone, a condenser B containing a condensation zone, a stripper C that processes unreacted components in the synthesis solution 4 at the synthesis tube outlet, and an uncondensed gas from the condenser in the absorption medium. It has a scrubber D to be absorbed and an ejector E for boosting.
  • the synthesis zone means a zone where the reaction of Formula 2 mainly proceeds among the reactions of Formulas 1 and 2 described later, and the condensation zone means that ammonia gas and / or carbon dioxide gas is absorbed into the absorption medium. It means the region where the reaction of Formula 2, which is the dehydration reaction of the ammoniacal mate produced by the reaction of Formula 1 together with the reaction of Formula 1, proceeds.
  • These devices may be installed individually, or may be combined with a synthesis tube and a condenser, or a condenser and a scrubber if desired.
  • the composite tube is appropriately determined from the standpoint of economics, whether vertical or horizontal.
  • the condenser is disposed below the synthesis tube.
  • the upper end of the condenser It is provided below in the vertical direction from the upper end of the tube.
  • ammonia carnomate (hereinafter sometimes referred to as carbamate) is generated by the reaction of ammonia and carbon dioxide. Dehydration of the carbamate produced produces urea. The reaction rate of carbamate formation is fast, and the urea formation reaction due to carbamate dehydration is an equilibrium reaction.
  • the raw liquid ammonia 1 is pressurized to a desired pressure by an ammonia pump (not shown), and a part la thereof is heated by the heat exchanger G and supplied to the ejector E.
  • the urea synthesis solution 6 from the condenser B is supplied to the ejector 1 and the pressure is increased.
  • the gaseous gaseous carbon dioxide 2 is pressurized to a desired pressure by the carbon dioxide gas compressor H, and the majority 2a is supplied to the stripper C. Part 2b of the remaining carbon dioxide is supplied to synthesis tube A for the purpose of controlling the temperature of the synthesis tube and supplying anticorrosive oxygen.
  • the anticorrosive air is usually supplied to the first suction side or intermediate stage of the carbon dioxide gas compressor (not shown).
  • the heat exchanger G a known heat exchanger having a structure capable of heating the raw material ammonia can be appropriately employed.
  • a heat medium for heating in the heat exchanger G a fluid having a desired temperature level can be appropriately used.
  • a small part of the total ammonia raw material can be supplied as raw material ammonia lb to the condenser for corrosion protection of the welded portion of the condenser tube sheet. There is no supply line for this raw material ammonia lb.
  • Carbon dioxide 2c is used as a stripping agent in the downstream decomposition step. Force This carbon dioxide 2c line may not be provided.
  • the synthesis solution 8 containing ammonia from the ejector E is supplied to the synthesis tube in the same manner as carbon dioxide.
  • This ejector constitutes a circulation means for circulating the liquid 6 obtained from the condenser B to the synthesis tube A.
  • the circulation means is a gas-liquid separator?
  • Ejector one E, line Line 3, 6 and 8 and line 6 is provided with a control valve for adjusting the liquid level of gas-liquid separator F.
  • other boosting means such as a pump can be used instead of the ejector.
  • the ejector is preferred because of its simple structure and excellent durability and maintainability.
  • the operating condition of the ejector (the differential pressure between lines 6 and 8) can be, for example, 0.2 MPa or more and IMPa or less.
  • the urea synthesis reaction preferably proceeds to near the equilibrium synthesis rate, and urea is synthesized.
  • pressure is 13MPaG or more and 25MPaG or less (G in pressure unit means gauge pressure)
  • temperature is 170 ° C or more and 210 ° C or less
  • ammonia (Ammonium mucano mate and converted to urea) Molar ratio (hereinafter referred to as N / C) of carbon dioxide (including ammonia converted) and carbon dioxide (including carbon dioxide converted to urea) is 3.0 to 4.5 and water (urea synthesis) (Excluding water produced in the reaction) and carbon dioxide (including ammonia carbonate and carbon dioxide converted to urea) with a molar ratio (hereinafter referred to as H / C) of 1.0 or less, residence time It is preferable to synthesize urea in 10 minutes or more and 40 minutes or less.
  • the synthesis temperature can be controlled by, for example, the preheating temperature of ammonia la driving the ejector and / or the amount of carbon dioxide 2b supplied to the synthesis tube.
  • N / C can be determined, for example, by continuously measuring the density of the synthesis tube outlet liquid 4 with a densitometer or by periodically sampling and quantitatively analyzing the synthesis pipe outlet liquid 4.
  • N / C can be adjusted, for example, by adjusting the amount of ammonia la supplied to the ejector.
  • H ZC is often determined by the amount of water required for absorption by a recovery device (not shown in Fig. 1) that recovers unreacted substances (ammonia and carbon dioxide) discharged from the synthesis tube. Since water inhibits the urea synthesis reaction in equilibrium (lower HZC is better in terms of synthesis equilibrium), it is preferable to minimize the amount of water supplied to this collector. The collection device will be described later.
  • the urea synthesis rate on the basis of carbon dioxide is determined by the chemical equilibrium, and is about 60% to 75% when NZC is in the range of 3.0 to 4.5.
  • the synthesis rate based on carbon dioxide refers to the number of moles of carbon dioxide supplied to the device or area under consideration, and the number of moles of converted carbon dioxide converted to urea. The ratio is usually expressed in%.
  • Setting the synthesis pressure to 13MPaG or higher is a viewpoint that makes it possible to adopt an operating pressure with a margin for the synthesis equilibrium pressure at a temperature preferable for urea synthesis (170 ° C or higher), and synthesis by gasification. It is preferable from the viewpoint of preventing the rate from decreasing.
  • a synthesis pressure of 25 MPaG or less is preferable from the viewpoint of suppressing energy for boosting raw material ammonia, raw material carbon dioxide gas, and unreacted carbamate liquid 6 and from the viewpoint of equipment cost.
  • the carbamate liquid refers to a liquid obtained by recovering unreacted ammonia and carbon dioxide as an aqueous mate aqueous solution in a recovery step downstream from the synthesis step.
  • Setting the synthesis temperature to 170 ° C or higher is preferable from the viewpoint of preventing a slow reaction rate of urea formation. Further, the temperature of 210 ° C or less is preferable from the viewpoint of preventing an increase in the risk of active corrosion in addition to an increase in the corrosion rate.
  • N / C is preferably 3.0 or more from the viewpoint of the equilibrium synthesis rate, and is preferably 4.5 or less from the viewpoint of preventing the ammonia vapor pressure from increasing and the gas phase from being easily generated.
  • H / C is preferably 1.0 or less, more preferably 0.7 or less.
  • HZC may be zero, but H / C is necessary for absorption by a recovery device (not shown in Fig. 1) that recovers unreacted substances (ammonia and carbon dioxide) that exit the urea synthesizer. It is often determined by the amount of water. For example, HZC can be 0.4 or higher.
  • the residence time of the process fluid in the synthesis tube is preferably 10 minutes or more from the viewpoint of advancing the urea synthesis reaction. Even if the residence time exceeds 40 minutes, the equilibrium synthesis rate has already been reached, and a further increase in the synthesis rate cannot be expected. Therefore, 40 minutes or less is preferable.
  • Urea is synthesized in the condensation zone in the condenser B and the synthesis zone in the synthesis tube A, and the effluent 4 containing urea exiting the synthesis tube is supplied to the stripper C.
  • the effluent 4 at the synthesis tube outlet Urea, water, carbamate, and unreacted ammonia are present in the liquid phase, and some unreacted ammonia and carbon dioxide are present in the gas phase together with the inert gas.
  • the inert gas refers to air and raw material introduced to prevent corrosion of a urea synthesizer composed of, for example, a synthesis tube, a stripper, a condenser, a scrubber, and a pipe connecting them. It is a general term for impurities such as hydrogen, nitrogen, etc. contained in carbon dioxide.
  • the synthesis tube effluent 4 supplied to the stripper C is heated by the heating steam, and the carbamate contained in the synthesis tube effluent is thermally decomposed.
  • unreacted ammonia and unreacted carbon dioxide in the synthesis tube effluent are CO stripped by the supplied raw material carbon dioxide 2a, and separated into gaseous components 5 containing carbon dioxide, ammonia and inert gas 5 and synthesis solution 10.
  • the urea concentration of this synthetic solution is usually 40% by mass or more and 60% by mass or less.
  • Stripping means that components dissolved in a solution are dissipated from the liquid by heating and / or contact with a stripping agent (a gas that is usually insoluble or difficult to dissolve in the solution) and separated as a gas phase. Say what you do.
  • a stripping agent a gas that is usually insoluble or difficult to dissolve in the solution
  • the stripper C has a shell-and-tube heat exchange structure, and the heating steam 15 is supplied on the shell side, and the condensed water 16 condensed with the steam is discharged.
  • the synthesis tube effluent is heated as it passes through the tube side.
  • stripper C also has a gas-liquid separation function, it is not necessary to separately provide a gas-liquid separator for gas-liquid separation of synthesis tube effluent 4.
  • the gaseous component 5 from the stripper is fed to the condenser.
  • the seal side of the condenser and the stripper are connected.
  • the synthesis solution 10 from the stripper is sent to a decomposition apparatus (not shown in FIG. 1), and the urea component is further purified.
  • the scrubber D is supplied with an absorbing medium.
  • Recycled carbamate liquid 11 recovered by a decomposition device and a recovery device (not shown in Fig. 1) is used as this absorbing medium.
  • the decomposition device, the recovery device, and the recycled carbamate liquid will be described later.
  • the recycled carbamate liquid 11 is supplied to the scrubber D as an absorbing medium. Then, it comes into contact with the gaseous component 7 from the condenser B, absorbs a part of the ammonia and carbon dioxide contained in the gaseous component 7, and is supplied from the line 9 to the condenser. Ammonia, carbon dioxide gas, and inert gas that have not been absorbed by the recycled carbamate liquid 11 are sent from line 12 to the recovery unit.
  • Scrubbing refers to an operation of purifying a gas by absorbing a certain component in the gas by bringing the gas and the liquid into contact with each other.
  • the condenser has a pressure of 13 MPaG to 25 MPaG, a temperature of 160 ° C to 200 ° C, N / C of 2.5 to 4.0, H / C of 1.0 or less, and residence time. It is preferable to operate for 10 minutes or more and 30 minutes or less.
  • N / C of the condenser is secondarily determined by N / C of the synthesis tube.
  • the composition of the stripper outlet gas 5 is generally determined by the N / C of the synthesis tube, and the N / C of the condenser is also determined.
  • the H / C of the condenser is determined by the amount of water required to absorb the unreacted substances (ammonia and carbon dioxide) leaving the urea synthesizer. Since water hinders the urea synthesis reaction in equilibrium (lower H / C is better in terms of synthesis equilibrium), it is preferable that the amount of water supplied to this recovery device be minimal.
  • the condenser and stripper are operated at substantially the same pressure as the synthesis tube.
  • the temperature of the process fluid in the condenser is preferably 160 ° C or higher from the viewpoint of the reaction rate of urea formation, and 200 ° C from the viewpoint of suppressing the decrease in the condensation rate accompanying the increase in vapor pressure and the corrosion of equipment materials. C or less is preferable.
  • N / C of the process fluid in the condenser increases from the viewpoint of suppressing a decrease in the condensation rate due to an increase in the partial pressure of carbon dioxide in the urea synthesis liquid. From the viewpoint of suppressing the reduction of the condensation rate, 4.0 or less is preferable.
  • H / C is preferably 1.0 or less.
  • the residence time in the condenser is preferably 10 minutes or more.
  • the residence time in the condenser is preferable.
  • the stripper C force is absorbed into the scrubber D via the condenser B and the gas-liquid separator F, and the carnomate mate liquid 9 that has absorbed a part of the gaseous component 7 is supplied to the condenser.
  • Condenser In this case, the carbamate liquid 9 and the gaseous component 5 come into contact with each other, and ammonia and carbon dioxide are absorbed and condensed in the carnotate liquid. To produce urea.
  • the conversion rate based on carbon dioxide in the condenser is, for example, 20% or more and 60% or less.
  • Ammonia and carbon dioxide that have not been condensed in the condensation zone are separated together with the inert gas at the top of the condenser or a gas-liquid separator, and sent to a recovery device or a scrubber.
  • these mixed gases are separated from the liquid by the gas-liquid separator F and sent to the scrubber D.
  • the liquid 6 obtained by gas-liquid separation of the condenser outlet fluid 3 is supplied to the ejector E, sent to the synthesis tube using the raw material ammonia as a driving source, and further subjected to the urea synthesis reaction.
  • the synthesis tube A may be a vertical or horizontal reactor in which a baffle plate, a gas distributor, and the like are installed. If desired, a structure integrated with a condenser or the like can be adopted. However, even when the synthesis tube and the condenser have a body structure, the synthesis tube and the condenser are separated by a partition plate or the like and are independent.
  • the stripper a structure capable of performing gas-liquid contact and / or a structure capable of decomposing force-nomate in the synthesis liquid 4 and releasing dissolved gas by heating can be appropriately employed.
  • the stripper can have, for example, a vertical shell-and-tube heat exchange structure as shown in FIG.
  • a heat medium such as steam is supplied to the shell side
  • the synthetic solution 4 is supplied to the tube side
  • heat can be supplied from the shell side to the tube side.
  • a strip tower or a packed tower can be used as the stripper. A combination of these may be employed.
  • a structure that can be scrubbed can be adopted as appropriate, and it is possible to employ a packed tower packed with a packing, a shell and tube structure, a plate tower, and a combination thereof.
  • the scrubber is operated at substantially the same pressure as the synthesis tube, and the temperature is normally operated at 100 ° C or higher and 180 ° C or lower.
  • the scrubber generates heat of absorption due to gas absorption. If it has a shell-and-tube structure, the heat of absorption is removed by a cooling medium. It will be a positive decision.
  • the scrubber may be incorporated into the condenser as appropriate, or may be integrated with the condenser.
  • a vertical submerged condenser having a structure capable of condensing gaseous components, absorbing ammonia and carbon dioxide, and performing a urea synthesis reaction according to Reaction Formula 1 and Reaction Formula 2 can be appropriately employed.
  • the vertical type has the advantage that the gas is uniformly dispersed in the condenser, and the installation area is small, making it easy to increase the gas residence time.
  • the urea synthesis reaction occurs in the liquid phase, it is desirable to insert a cooling pipe into the liquid. Therefore, a vertical submerged condenser is used.
  • a structure in which a U tube is installed as a cooling means can be adopted.
  • This structure is suitable for the submerged type. In other words, it is easy to keep the U tube completely immersed in the liquid phase.
  • a cooling medium such as boiler water can be supplied to the tube side.
  • a process fluid such as liquid ammonia or urea solution as a cooling medium, the process can be preheated or heated simultaneously with the cooling of the shell side fluid.
  • the condenser may be integrated with the synthesis tube.
  • FIG. 1 shows an example in which a vertical synthesis tube and a condenser are integrated.
  • a condenser is installed in the lower part of the synthesis tube via a partition plate and integrated.
  • the pressurized raw material ammonia la and the liquid 6 obtained from the condenser are supplied to the ejector E, and the mixed fluid 8 is supplied to the lower part of the synthesis tube A.
  • a part 2b of the pressurized raw material carbon dioxide containing air (for example, supplied from the intermediate stage of the boosting means H) is supplied to the synthesis tube. These supplied raw materials rise in the synthesis tube, and during this time, a reaction according to Reaction Formula 1 and Reaction Formula 2 occurs in the synthesis tube, and urea and the like are generated.
  • a baffle plate is preferably installed in the synthesis tube to promote mixing and reaction.
  • the reaction solution which has preferably reached equilibrium, passes through a down pipe with an inlet at the top of the synthesis pipe, descends in the down pipe, and is supplied from line 4 to the top of the stripper.
  • Boosted The raw material carbon dioxide 2a is supplied from the lower part of the stripper and strips the decomposition products of unreacted ammonia and carnomate in the synthesis solution 4.
  • the stripper shown in FIG. 1 has a vertical shell and tube heat exchange structure. On the tube side, unreacted substances (carbamate) and excess ammonia in the synthesis liquid 4 are stored as gas components (ammonia and carbon dioxide) by countercurrent contact between the synthesis liquid 4 from the synthesis tube and the raw carbon dioxide 2a. Ripped. Steam is supplied to the shell side and used as a heat source for carbamate decomposition.
  • a U-tube is installed as a cooling means, and the cooling water (boiler water) 13 is supplied to the 13-force tube and the fluid 14 (mixed fluid of boiler water and steam) supplied for cooling is supplied. It is discharged from the U tube.
  • Carnomate liquid 9 and gas component 5 from the stripper supplied to the condenser shell as an absorption medium come into contact with each other while rising inside the condenser, and are cooled to condense the gas component. It is absorbed into the kraft mate solution to form carno Vite, which further causes a urea synthesis reaction.
  • the gas-liquid separator F is installed independently.
  • the fluid 3 discharged from the condenser is separated into the gas component 7 and the liquid 6, and the gas is supplied to the scrubber and the liquid is supplied to the ejector.
  • the U tube when the U tube is provided at the upper part of the condenser, the U tube extends downward from the tube plate. In such a case, when a gas phase portion is generated inside the condenser, the gas-liquid interface comes into contact with the outer surface of the tube. In other words, the tube spans both the gas phase and the liquid phase. Under these circumstances, the tube may be susceptible to corrosion due to carbamate condensation.
  • the tube plate is provided at the bottom of the condenser, particularly at the bottom, the U tube extends upward from the tube plate, and the U is located at the top of the condenser. An area where no tube is present can be provided. Therefore, the U-tube can be completely immersed in the liquid even if the gas phase portion exists inside the condenser. In this way, there is no fear of corrosion as described above, which is preferable.
  • the urea synthesis solution obtained in the synthesis tube can be separated into gas and liquid at the top of the synthesis tube, or no gas-liquid separation means is provided in the synthesis tube. Can also be supplied to the stripper in a gas-liquid mixed phase.
  • a urea production apparatus including a urea synthesizer
  • Fig. 6 shows an outline of the urea production equipment.
  • the urea production apparatus has a urea synthesis apparatus, a recovery apparatus, a decomposition apparatus, a concentration apparatus, and a commercialization apparatus.
  • a raw material ammonia 1 and a raw material carbon dioxide 2 are supplied to the urea synthesizer.
  • the urea synthesis solution 10 that has been stripped from the urea synthesis device is sent to the decomposition device.
  • the supplied urea synthesis liquid is heated under reduced pressure, whereby unreacted ammonia and carnomate contained in the urea synthesis liquid are decomposed and separated as a gas 21 containing ammonia and carbon dioxide.
  • the remaining liquid phase becomes, for example, a urea aqueous solution 22 of about 68% by mass and is sent to a concentrating device downstream of the decomposition device.
  • the urea aqueous solution 22 obtained in the decomposition device is heated under vacuum.
  • molten urea 23 of about 99.7% by mass.
  • This molten urea is sent to a productizer downstream of the concentrator, cooled and solidified, and commercialized as granular urea 24.
  • the gas 21 containing ammonia and carbon dioxide separated by the cracking device and the gas 12 containing ammonia, carbon dioxide and inert gas that were not absorbed by the recycled carnomate liquid by the scrubber were collected by the recovery device. It is absorbed in water and recovered as an aqueous ammonium carnotate solution. After this aqueous solution is pressurized, the recycled carbamate solution 11 and And returned to the urea synthesizer.
  • FIG. 2 shows another embodiment of the present invention. This configuration differs from that shown in Fig. 1 in that scrubber D is incorporated between synthesis tube A and condenser B.
  • the upper part of the condenser has a gas phase part, and the scrubber is provided in this gas phase part.
  • Recycled carnotate 11 is fed to the built-in scrubber D.
  • the scrubber since the scrubber is installed in the synthesis tube, it is not necessary to install not only the scrubber but also a gas-liquid separator. Therefore, it is effective in reducing high-pressure piping, equipment costs, and construction costs.
  • Gas-liquid separation can be performed by providing a gas phase portion in the upper part of the condenser B. Gas component 7 rises from the gas-liquid interface and is purified by scrubber D and sent to line 12, while liquid component 6 is sent to ejector 1E via a down pipe having an inlet below the gas-liquid interface. .
  • the carbamate liquid 9 having absorbed a part of the gas component 7 is supplied to the lower part of the condenser through the down pipe.
  • Fig. 3 shows still another embodiment of the present invention.
  • scrubber D is incorporated in condenser B and synthesis tube A is provided separately. Similar to the configuration of Fig. 2, the scrubber is provided in the gas phase section above the condenser.
  • a gas-liquid separator is not required by providing a gas phase portion at the top of the condenser to perform gas-liquid separation.
  • this embodiment is suitable for remodeling an old plant urea synthesizer having an existing synthesis pipe, for example, a solution circulation (non-stripping) urea synthesizer.
  • a stripper C, condenser B, and circulation means to circulate the liquid that also provides the condenser power to the synthesis pipe are added to the existing synthesis pipe plant.
  • the condenser B is placed vertically below the synthesis pipe A. In this way, it is possible to increase equipment capacity and increase efficiency.
  • FIG. 4 shows still another embodiment of the present invention.
  • the synthesis tube A is placed horizontally in the form shown in FIG.
  • the height of the equipment especially the top of the synthesis tube
  • the height of the equipment can be reduced, which is effective in reducing equipment costs.
  • the existing stripping urea synthesizer with synthesis tube, stripper, and vertical liquid film flow-down condenser is used in the vertical submerged condenser and the vertical submerged condenser.
  • This existing synthesizer can be modified by installing a circulation means to circulate the liquid to the synthesis tube.
  • the scrubber D is separately installed at a position higher than the synthesis pipe A, and the vertical liquid film falling condenser I and the synthesis pipe A are installed at a position higher than the stripper C.
  • Vertical submerged condenser B and edge are added to the CO stripping type urea synthesizer.
  • the vertical liquid film falling condenser I outlet effluent 19 (including the mixed gas separated by the stripper and not condensed by the condenser I) is supplied to the vertical submerged condenser B.
  • the shell side of the vertical submerged condenser is connected to the vertical liquid film falling condenser.
  • the synthetic tube outlet gas 20 is scrubbed by a scrubber D.
  • the vertical liquid film falling condenser I is provided with a cooling means for condensation.
  • the boiler water 17 is supplied to the shell side of the condenser I, the boiler water is heated, and the boiler water 18 partially steamed is discharged from the shell.
  • the stripper outlet liquid 10 may be used as a cooling medium for cooling the vertically placed liquid film falling condenser I in place of the boiler water 17.
  • the stripper outlet liquid is heated in the decomposition process performed downstream of the urea synthesizer, but a part of the heating can be performed together with the cooling of the vertical liquid film falling condenser I, which is efficient.
  • a line that leads the stripper outlet liquid to the shell side of condenser I can be installed, and the heated stripper outlet liquid discharged from the shell side can be used in the downstream decomposition process.
  • Table 1 shows the mass balance, temperature, and pressure for a production example of 1725 t / day of urea (where t represents 10 3 kg) when using a urea synthesizer of the form shown in Fig. 1.
  • the supplied ammonia la was mixed at the pressure 15.2 MPaG of the synthesis liquid 6 from the gas-liquid separator F with the ejector 1 E, and supplied to the synthesis pipe A with the pressure of 15.5 MPaG and the line 8 force synthesis zone. It was.
  • the synthesis tube A was operated at pressure: 15.5 MPaG, temperature: 182 ° C, NZC: 3.7, H / C: 0.58, residence time: 20 minutes, and urea was synthesized.
  • the conversion rate based on carbon dioxide in the synthesis tube was 63%.
  • the synthesis solution 4 containing urea from the down pipe at the top of the synthesis tube A was supplied to the stripper C.
  • Intermediate pressure steam 15 is supplied to the shell side of stripper C, supplying heat for carnot mate decomposition, and exiting as condensed water 16.
  • Example 1 The same examination as in Example 1 was performed except that the urea synthesizer having the configuration shown in FIG. 2 was used. The material balance and the like were the same as in Example 1 as shown in Table 1.
  • Example 1 The same examination as in Example 1 was performed except that the urea synthesizer having the configuration shown in FIG. 3 was used. The material balance and the like were the same as in Example 1 as shown in Table 1.
  • Example 1 The same examination as in Example 1 was performed except that the urea synthesizer having the configuration shown in FIG. 4 was used. The material balance and the like were the same as in Example 1 as shown in Table 1.
  • Example 5 A production example of 1725 tons of urea on the Z day when the urea synthesizer of the form shown in Fig. 5 was used was examined.
  • the gas component exiting the stripper C is partially condensed by the shell-and-tube type liquid film descending vertical condenser I and then sent to the condenser B.
  • Boiler water 17 is supplied to the shell side of the liquid film descending vertical condenser, part of which becomes low-pressure steam by heat recovery, and exits from line 18 as a mixed-phase flow of boiler water and low-pressure steam.
  • Example 1 The supply conditions of the raw material ammonia and the raw material carbon dioxide, and the operating conditions of the synthesis tube A, the condenser B, and the stripper C are the same as in Example 1.
  • the urea synthesizer of the present invention is suitably used for urea production in which urea is produced from ammonia and carbon dioxide.
  • the method for remodeling a urea synthesizer according to the present invention is suitable for remodeling an existing urea synthesizer to increase production and increase efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 尿素合成装置及びその改造方法において重い凝縮器を比較的低い位置に設置可能、又凝縮器にてチューブ内にプロセス流体を流すことによる問題を回避可能とする。NH3とCO2とを反応させ、尿素、未反応のNH3及びCO2並びに水を含む合成液を得る合成管;合成液を原料CO2の少なくとも一部でストリッピングし未反応のNH3及びCO2を含むガスを分離するストリッパー;シェルアンドチューブ構造を有しチューブ側を流通する冷却媒体による冷却下にシェル側にて上記ガスを吸収媒体中に凝縮させる縦型サブマージ凝縮器;及びこの凝縮器から得られる液を合成管に循環する循環手段を有し、この凝縮器が合成管より下方に配された尿素合成装置。合成管を有する尿素合成装置の改造方法であって上記ストリッパー、縦型サブマージ凝縮器及び循環手段を設置し、この凝縮器を合成管より下方に配する。

Description

明 細 書
尿素合成装置およびその改造方法
技術分野
[0001] 本発明は、アンモニアおよび二酸化炭素を原料として、尿素を合成する尿素合成 装置に関する。さらに詳しくは、尿素を合成する合成管で得られた尿素合成液をスト リツビングするストリッピング式尿素プロセスに用いる装置に関する。
背景技術
[0002] ストリツビング式尿素プロセスに関しては、次のような技術が知られている。
[0003] 特許文献 1には、原料がアンモニアと二酸化炭素であり、尿素合成の全部或いは 一部が複合反応器中で行われる尿素プロセスが記載されている。このプロセスでは、 ストリッパーからのガスは縦型複合反応器に供給され、このガスの全部或いは一部が
、アンモニゥムカーバメイト中に凝縮し、このアンモニゥムカーバメイトはスクラバー域 力 凝縮部にダウンカマーを介して送られ、アンモニアと二酸化炭素は複合反応器 の凝縮域中で一部が尿素に合成され、さらなる尿素への転化は、複合反応器中の反 応域で行われることが開示されている。
[0004] 特許文献 2には、原料がアンモニアと二酸化炭素であり、縦型に設置された 2つの 合成域と 1つの凝縮域から構成される複合反応装置が記載されている。装置は縦型 の複合反応器であり、この複合反応器は、高圧の凝縮域により、 2つの反応域が分離 されたものである。また、 2つの反応域と反応器の外側に高圧の凝縮域のある複合反 応器も示され、さらに、この装置を使用したプロセスも開示されている。また、ストリッパ 一から供給されるガスの全部あるいは一部が高圧の凝縮域に供給される方法も示さ れている。ストリッパーからのガス力 アンモニアェジェクタ一を介して、縦型に設置さ れた複合反応器の第 2の反応域に供給されることが好ましいと開示されている。
[0005] 特許文献 3には、尿素合成圧力とほぼ等しい圧力における未反応アンモニアおよ び二酸化炭素の原料二酸化炭素によるストリツビング工程およびストリツビング工程か らの混合ガスの凝縮工程を含む尿素合成法において、装置の地上置きが可能な改 良方法が記載されている。尿素合成法として、ストリッパーからの混合ガスを吸収媒 体と冷却下に接触させて凝縮させるための縦型凝縮器を尿素合成塔の上方に設け 、この凝縮器の頂部とこの合成管の底部とを連通する第 1のダウンパイプを設けて生 成した凝縮液を合成塔の底部に重力で流下させ、この凝縮液をここに供給される原 料アンモニアまたは二酸化炭素の一部とともに尿素合成に付し、合成管の頂部に開 口する第 2のダウンパイプを経て生成した尿素合成液を重力によりストリッパーに導 入し、未反応アンモニアおよび二酸化炭素を原料二酸化炭素の残部により上記混合 ガスとして分離して上記凝縮器の底部に導入して凝縮させること、或いは縦型凝縮 器からの凝縮液を、予熱した原料液体アンモニアを駆動流体とするェジェクタ一によ り吸引して尿素合成塔の底部に導入して尿素合成に付すことが開示されている。
[0006] 特許文献 4には、未反応アンモニアおよび二酸化炭素の混合ガスの凝縮と尿素合 成とがーつの容器内で行われる、単位生産量当たりの機器必要容積が小さい尿素 合成法が記載されている。
[0007] 尿素合成法として、未反応アンモニアおよび未反応二酸化炭素を原料二酸化炭素 によってストリツビングして得られる混合ガスと吸収媒体とを縦型凝縮合成塔の底部に 供給し、原料液体アンモニアを縦型凝縮合成塔の底部および中間部に供給し、縦型 凝縮合成塔の底部から中間部までの部分を冷却して混合ガスの凝縮を行わせるとと もに尿素合成を行わせ、生成した尿素合成液を縦型凝縮合成塔の頂部からストリツ パーの頂部に導入して尿素合成液中の未反応アンモニアおよび二酸化炭素の原料 二酸化炭素によるストリツビングに付すことが開示されている。
[0008] 特許文献 5には、 COストリツビング式尿素プロセスにおいて、合成管を横置きにす
2
ることで合成工程のための装置の高さが大幅に減少できることが開示されている。
[0009] 特許文献 6および特許文献 7には、横型サブマージ凝縮器を出た尿素合成液をェ ジェクタ一を用いて合成管に導入するプロセスが開示されている。
特許文献 1 :国際公開 WO 00/43358号公報
特許文献 2:国際公開 WO 01/72700号公報
特許文献 3:特開平 10— 182587号公報
特許文献 4 :特開 2002— 20360号公報
特許文献 5:特開昭 59— 122452号公報 特許文献 6:特開平 11一 180942号公報
特許文献 7:国際公開 WO 00/00466号公報
発明の開示
発明が解決しょうとする課題
[0010] 従来、ストリッパーからのガスを凝縮する縦型サブマージ凝縮器は、尿素を合成す る合成管より鉛直方向において上方に設けられていた。
[0011] しかし、縦型サブマージ凝縮器は冷却管、さらには冷却管が固定された管板を有 するために重い。合成管より上方に凝縮器を設置することは、凝縮器を比較的高所 に設置することを意味する。このような重量物を高い位置に設置する場合、その機器 の据え付けや固定が容易ではなぐまたコストが増大する傾向がある。
[0012] 特許文献 1の図 2においては、凝縮領域を有する縦型複合反応器が反応器より紙 面下方に配されている。しかし、ここに示される縦型複合反応器では、チューブ側に プロセス流体が流されているため、滞留時間が短レ、。従って、チューブ内では尿素を 合成することによる水の生成が実質的に無いのでアンモニアガスや二酸化炭素ガス の吸収効果がなぐ蒸気圧がゼロである尿素の生成による蒸気圧低下の効果が期待 できない。またプロセス流体の各チューブへの均一な分散が困難である、 13MPaを 超える高圧に耐えるため厚肉の管板が 2枚必要であり、重量とコストが増すといった 問題がある。
[0013] また、特許文献 4には、下方に凝縮部、上方に合成部を有する縦型凝縮合成塔が 示されている。しかし、ここでは凝縮部と合成部との間は仕切られておらず、凝縮部と 合成部は一つの容器内の領域であり、ここからストリッパーに合成液を供給するため には、この機器を高所に置ぐまたはポンプゃブロワ一を設置することが必要である。
[0014] 本発明の目的は、重い凝縮器を比較的低い位置に設置可能で、凝縮器において チューブ内にプロセス流体を流すことによる諸問題を回避できる尿素合成装置を提 供することである。
[0015] 本発明の別の目的は、既存の尿素合成装置を改造して上記のような尿素合成装置 を得ることのできる改造方法を提供することである。
課題を解決するための手段 [0016] 本発明は以下の通りである。
[0017] 1)アンモニアと二酸化炭素とを反応させて、尿素、未反応アンモニア、未反応二酸 化炭素および水を含む尿素合成液を得る合成管;
該尿素合成液を、原料二酸化炭素の少なくとも一部を用いてストリツビングし、該未 反応アンモニアおよび未反応二酸化炭素を含む混合ガスを分離するストリッパー; シェルアンドチューブ構造を有し、チューブ側を流通する冷却媒体による冷却下に 、シェル側にて該混合ガスを吸収媒体中に凝縮させる縦型サブマージ凝縮器;およ び
該縦型サブマージ凝縮器力ら得られる液を該合成管に循環する循環手段を有し、 該縦型サブマージ凝縮器が該合成管より下方に配された尿素合成装置。
[0018] 2)前記循環手段が、原料アンモニアを駆動源としたェジェクタ一を有する 1)記載 の装置。
[0019] 3)前記合成管と縦型サブマージ凝縮器とが互いに仕切られて一体化され、合成管 が縦型サブマージ;凝縮器の上部に配された 1)または 2)記載の装置。
[0020] 4)さらに前記縦型サブマージ凝縮器で凝縮しなかったガスをスクラビングするスクラ バーを有し、該スクラバーが前記縦型サブマージ凝縮器の内部に配された 3)記載の 装置。
[0021] 5)さらに前記縦型サブマージ凝縮器で凝縮しなかったガスをスクラビングするスクラ バーを有し、前記縦型サブマージ凝縮器と該スクラバーが一体化された 1)または 2) 記載の装置。
[0022] 6)前記スクラバーが前記縦型サブマージ凝縮器の内部に配された 5)記載の装置 [0023] 7)前記合成管が横型である 5)または 6)記載の装置。
[0024] 8)アンモニアと二酸化炭素とを反応させて、尿素、未反応アンモニア、未反応二酸 化炭素および水を含む尿素合成液を得る合成管を有する既存の尿素合成装置の改 造方法であって、
該尿素合成液を、原料二酸化炭素の少なくとも一部を用いてストリツビングし、該未 反応アンモニアおよび未反応二酸化炭素を含む混合ガスを分離するストリッパー; シェルアンドチューブ構造を有し、チューブ側を流通する冷却媒体による冷却下に 、シェル側にて該混合ガスを吸収媒体中に凝縮させる縦型サブマージ凝縮器;およ び
該縦型サブマージ凝縮器力 得られる液を該合成管に循環する循環手段を設置し 該縦型サブマージ凝縮器を該合成管より下方に配する尿素合成装置の改造方法。
[0025] 9)アンモニアと二酸化炭素とを反応させて、尿素、未反応アンモニア、未反応二酸 化炭素および水を含む尿素合成液を得る合成管;
該尿素合成液を、原料二酸化炭素の少なくとも一部を用いてストリツビングし、該未 反応アンモニアおよび未反応二酸化炭素を含む混合ガスを分離するストリッパー;お よび
該混合ガスを凝縮させる縦型液膜流下式凝縮器
を有する既存の尿素合成装置を改造する方法であって、
シェルアンドチューブ構造を有し、チューブ側を流通する冷却媒体による冷却下に 、シェル側にて該混合ガスを吸収媒体中に凝縮させる縦型サブマージ凝縮器;およ び
該縦型サブマージ凝縮器力ら得られる液を該合成管に循環する循環手段を設置し 該縦型サブマージ凝縮器を該合成管より下方に配する尿素合成装置の改造方法。
[0026] 10)前記縦型液膜流下式凝縮器が冷却手段を備え、
前記ストリッパーの出口液を、該冷却手段に導くラインをさらに設ける 9)記載の改造 方法。
発明の効果
[0027] 本発明によれば、重い凝縮器を比較的低い位置に設置可能で、凝縮器において チューブ内にプロセス流体を流すことによる諸問題を回避できる尿素合成装置が提 供される。
[0028] また、既存の尿素合成装置を改造して上記のような尿素合成装置を得ることのでき る改造方法が提供される。 図面の簡単な説明
[0029] [図 1]本発明の尿素合成装置の一形態を示すフロー図である。
[図 2]本発明の尿素合成装置の別の形態を示すフロー図である。
[図 3]本発明の尿素合成装置のさらに別の形態を示すフロー図である。
[図 4]本発明の尿素合成装置のさらに別の形態を示すフロー図である。
[図 5]本発明の尿素合成装置のさらに別の形態を示すフロー図である。
[図 6]尿素製造装置を説明するためのフロー図である。
符号の説明
[0030] A:合成塔
B:凝縮器
C:ストリッパー
D:スクラバー
E:ェジヱクタ一
F:気Sセパレータ
G:アンモニア予熱器
H:二酸化炭素圧縮機
I:液膜降下式縦型凝縮器
1:原料アンモニア
2:原料二酸化炭素
3:凝縮器出口合成液
4:合成管出口合成液
5:ストリッパートップ出口ガス
6:気液セパレータ出口液
7:気液セパレータ出口ガス
8:ェジヱクタ一出口液
9:スクラバー出口液
10:ストリッパー出口液
11:リサイクルカーバメイト液 12 :スクラバー出口ガス
13:凝縮器チューブ側入り口冷却媒体 (ボイラ水)
14:凝縮器チューブ側出口冷却媒体 (ボイラ水および蒸気)
15:ストリッパーシェル側加熱用蒸気
16:ストリッパーシェル側出口凝縮水
21:分解装置から得られるアンモニアおよび二酸化炭素を含むガス
22:分解装置から得られる尿素水溶液
23 ;溶融尿素
24 :粒状尿素
発明を実施するための最良の形態
[0031] 以下に図面を用いて本発明を説明するが、本発明はこれによって限定されるもので はない。なお図 1〜5には各機器の鉛直方向の位置関係を示してある。
[0032] 以下、場合により、縦型サブマージ凝縮器を単に凝縮器と称する。
[0033] 縦型サブマージ凝縮器とは、冷却管の全てがシェル側の液相内に浸る、縦型のシ エルアンドチューブ式熱交換器構造を有する凝縮器である。
[0034] 図 1は、 COストリッピング式尿素製造プロセスに好適な本発明の尿素合成装置の 一形態を示すフロー図である。この装置は、合成域を含む合成管 A、凝縮域を含む 凝縮器 B、合成管出口の合成液 4中の未反応成分を処理するストリッパー C、吸収媒 体に凝縮器からの未凝縮ガスを吸収させるスクラバー Dおよび昇圧のためのェジエタ ター Eを有する。
[0035] ここで、合成域は後述する式 1および 2の反応のうち主に式 2の反応が進行する領 域を意味し、凝縮域はアンモニアガスおよび/または二酸化炭素ガスを吸収媒体中 に凝縮させ、式 1の反応とともに式 1の反応で生成したアンモニゥムカーノくメイトの脱 水反応である式 2の反応を進行させる領域を意味する。
[0036] これらの機器は、個別に設置しても良ぐまた、所望により合成管と凝縮器、凝縮器 とスクラバー等を組み合わせても良い。また、合成管は縦型でも横型でもよぐ経済性 などの観点から適宜決定される。
[0037] 本発明では、凝縮器が合成管より下方に配される。つまり、凝縮器の上端が、合成 管の上端より鉛直方向において下に設けられる。
[0038] 凝縮域および合成域では、下記式 1および式 2に示されるように、アンモニアと二酸 化炭素の反応によるアンモニゥムカーノメイト(以下場合によりカーバメイトと称す。 ) が生成し、生成したカーバメイトの脱水により尿素が生成する。カーバメイト生成の反 応速度は速ぐまた、カーバメイトの脱水による尿素の生成反応は平衡反応である。
[0039] [化 1]
2 NH3+ C 02 → NH2C 02NH4 (発熱反応) 式 1
NH2C 02NH4 ^ C O (NH2) 2 + H20 (吸熱反応) 式 2
[0040] 原料の液体アンモニア 1は、所望の圧力までアンモニアポンプ(図示せず)で昇圧 され、その一部 laが熱交換器 Gによって加熱されてェジヱクタ一 Eに供給される。ェ ジェクタ一には、凝縮器 Bからの尿素合成液 6が供給され、昇圧される。一方、原料 のガス状二酸化炭素 2は、炭酸ガス圧縮機 Hにより所望の圧力まで昇圧され、その大 半 2aがストリッパー Cに供給される。残りの二酸化炭素の一部 2bは、合成管の温度 制御と防食酸素を供給する目的で、合成管 Aに供給される。防食空気は、通常炭酸 ガス圧縮機の一段目吸い込み側または中間段に供給される(不図示)。なお熱交換 器 Gとしては、原料アンモニアを加熱することのできる構造を有する公知の熱交換器 を適宜採用することができる。熱交換器 Gにおける加熱用の熱媒体としては、所望の 温度レベルを有する流体を適宜使用することができる。
[0041] 全アンモニア原料のごく一部を、原料アンモニア lbとして、凝縮器管板の溶接部の 防食用に凝縮器に供給するこができる。この原料アンモニア lbの供給ラインはなくて ちょい。
[0042] 二酸化炭素 2cは、下流の分解工程におけるストリツビング剤として用いられるものだ 力 この二酸化炭素 2cのラインはなくてもよい。
[0043] ェジヱクタ一 Eからのアンモニアを含む合成液 8は、二酸化炭素と同様に合成管に 供給される。
[0044] このェジェクタ一は、凝縮器 Bから得られる液 6を合成管 Aに循環する循環手段を 構成するものである。図 1では、循環手段は気液セパレータ?、ェジヱクタ一 E、並び にライン 3、 6および 8を有し、またライン 6には気液セパレータ Fの液面調整のための 調節弁が設けられる。循環のために、ェジヱクタ一に替えて、ポンプなど他の昇圧手 段を用いることもできるが、構造が簡単であり、耐久性やメンテナンス性に優れるため ェジェクタ一が好ましい。ェジェクタ一の運転条件(ライン 6と 8との差圧)は、例えば 0 . 2Mpa以上 IMPa以下とすることができる。
[0045] 合成管内部の合成域では、好ましくは平衡合成率近くまで尿素合成反応が進み、 尿素が合成される。合成管内部では、圧力が 13MPaG以上 25MPaG以下 (圧力単 位における Gはゲージ圧を意味する。)、温度が 170°C以上 210°C以下、アンモニア (アンモニゥムカーノくメイトおよび尿素に転化したアンモニアを含む)と二酸化炭素( アンモニゥムカーノくメイトおよび尿素に転化した二酸化炭素を含む)のモル比(以下 、 N/Cという。)が 3. 0以上 4. 5以下、水 (尿素合成反応で生成した水は除く)と二 酸化炭素(アンモニゥムカーノくメイトおよび尿素に転化した二酸化炭素を含む)のモ ル比(以下、 H/Cという。)が 1. 0以下、滞留時間が 10分以上 40分以下にて尿素を 合成することが好ましい。
[0046] 合成温度は、例えば、ェジェクタ一を駆動するアンモニア laの予熱温度および/ま たは合成管へ供給する二酸化炭素 2bの量によって制御できる。 N/Cは、例えば、 合成管出口液 4の密度を密度計で連続的に測定することで、または合成管出口液 4 を定期的にサンプリングして定量分析することで把握できる。 N/Cの調整は、例え ば、ェジヱクタ一に供給するアンモニア laの量を調整することで行うことができる。 H ZCは合成管から排出される未反応物(アンモニアと二酸化炭素)を回収する回収装 置(図 1には不図示)にてその吸収に必要な水の量で決まる場合が多レ、。水は平衡 上、尿素合成反応を阻害する(合成平衡上は、 HZCは低いほどよい)ので、この回 収装置に供給される水の量は必要最小限とすることが好ましい。なお回収装置につ いては後述する。
[0047] 合成管において、二酸化炭素基準での尿素合成率は化学平衡によって決まり、 N ZCが 3. 0以上 4. 5以下の範囲では、 60%以上 75%以下程度となる。
[0048] なお、二酸化炭素基準の合成率とは、考慮対象としている機器もしくは領域に供給 された二酸化炭素のモル数と、供給された二酸化炭素のうち尿素に転化したモル数 の比であり、通常%で示される。
[0049] 合成圧力を 13MPaG以上とすることは、尿素の合成に好ましい温度(170°C以上) における合成平衡圧力に対して余裕のある運転圧を採用可能とする観点、およびガ ス化による合成率の低下を防止する観点から好ましい。合成圧力を 25MPaG以下と することは、原料アンモニア、原料炭酸ガス、および未反応カーバメイト液 6を昇圧す るためのエネルギーを抑制することができる観点から、また、設備コストの観点から好 ましい。
[0050] なお、カーバメイト液とは、合成工程より下流の回収工程にて未反応アンモニアお よび二酸化炭素をアンモニゥムカーノくメイト水溶液として回収した液のことをいう。
[0051] 合成温度を 170°C以上とすることは、尿素生成の反応速度が遅くなることを防止す る観点から好ましい。また、 210°C以下とすることは、腐食速度の増加に加えていわ ゆる活性腐食のリスクが高まることを防止する観点から、好ましい。
[0052] N/Cは、平衡合成率の観点から 3. 0以上が好ましぐまた、アンモニア蒸気圧が 上がって気相が生成しやすくなることを防止する観点から 4. 5以下が好ましい。
[0053] 前記式 1および 2に示すように、尿素合成におけるアンモニアと二酸化炭素の量論 比(N/C)は 2である力 実際には、尿素平衡合成率を上げるため、過剰のアンモニ ァが供給され、過剰の未反応アンモニアが存在する状態にあることが好ましい。
[0054] また、尿素合成率の観点から H/Cは 1. 0以下が好ましぐ 0. 7以下がより好ましい 。 HZCはゼロであってもよレ、が、 H/Cは尿素合成装置を出る未反応物(アンモニア と二酸化炭素)を回収する回収装置(図 1には不図示)にてその吸収に必要な水の量 で決まる場合が多 実際には多少の水が存在することが多レ、。例えば HZCは 0. 4 以上とすることができる。
[0055] 合成管におけるプロセス流体の滞留時間を 10分以上とすることは、尿素合成反応 を進行させる観点から好ましい。滞留時間が 40分を越えても、既に平衡合成率近く に達しており、それ以上の合成率の上昇はほとんど期待できないので、 40分以下が 好ましい。
[0056] 凝縮器 B内の凝縮域と合成管 A内の合成域で尿素が合成され、合成管を出た尿素 を含む流出物 4は、ストリッパー Cへ供給される。合成管出口の流出物 4中には、合成 された尿素、水、カーバメイト、未反応のアンモニアが液相として、また、一部の未反 応のアンモニアと二酸化炭素はイナートガスとともに気相として存在する。
[0057] ここで、イナートガスとは、例えば合成管、ストリッパー、凝縮器、スクラバーおよびそ れらを結合する配管などで構成される尿素合成装置の腐食を防止するために導入さ れた空気と原料二酸化炭素中に含まれてレ、る水素、窒素等の不純物の総称である。
[0058] ストリッパー Cに供給された合成管流出物 4は、加熱用蒸気によって加熱され、合成 管流出物に含まれるカーバメイトが加熱分解される。また、供給された原料二酸化炭 素 2aによって合成管流出物中の未反応アンモニアや未反応二酸化炭素が COストリ ッビングされ、二酸化炭素、アンモニアおよびイナートガスを含むガス状成分 5と合成 液 10に分離される。この合成液の尿素濃度は通常 40質量%以上 60質量%以下で ある。
[0059] ストリツビングとは、溶液中に溶存する成分を、加熱および/またはストリツビング剤( 通常はその溶液に溶解しない、またはしづらいガス)との接触により液中から放散さ せ、気相として分離する操作のことを言う。
[0060] ストリッパー Cは、シェルアンドチューブ型の熱交換構造を有し、シェル側では加熱 用蒸気 15が供給され、この蒸気が凝縮した凝縮水 16が排出される。合成管流出物 はチューブ側を通過する際に、加熱される。前述のように、加熱によるストリツビングと 二酸化炭素によるストリツビングの両者を行うことが、ストリッピング効果に優れるのみ ならずカーノ メイト分解効果もあるため好ましい。なお、ストリッパー Cは気液分離の 機能も有するので、合成管流出物 4を気液分離する気液セパレータを別途設ける必 要はない。
[0061] ストリッパーからのガス状成分 5は、凝縮器に供給される。このために凝縮器のシヱ ル側とストリッパーとが接続される。一方、ストリッパーからの合成液 10は、分解装置( 図 1では不図示)に送られ、さらに尿素成分が精製される。
[0062] スクラバー Dには吸収媒体が供給される。この吸収媒体として分解装置および回収 装置(図 1では不図示)で回収されたリサイクルカーバメイト液 11を用いる。分解装置 、回収装置およびリサイクルカーバメイト液については後述する。
[0063] ここでは、吸収媒体として上記リサイクルカーバメイト液 11がスクラバー Dに供給さ れ、凝縮器 Bからのガス状成分 7と接触し、ガス状成分 7に含まれるアンモニアと炭酸 ガスの一部を吸収し、ライン 9から凝縮器に供給される。リサイクルカーバメイト液 11 に吸収されなかったアンモニア、炭酸ガス、イナートガスは、ライン 12から回収装置に 送られる。
[0064] スクラビングとは、ガス中のある成分を、ガスと液を接触させることで、液中に吸収さ せ、ガスを浄化する操作をいう。
[0065] 凝縮器は、圧力が 13MPaG以上 25MPaG以下、温度が 160°C以上 200°C以下、 N/Cが 2. 5以上 4. 0以下、 H/Cが 1. 0以下、滞留時間が 10分以上 30分以下で 運転することが好ましい。
[0066] 凝縮器の N/Cは、合成管の N/Cにより二次的に決まる。つまり、合成管の N/C で、ストリッパー出口ガス 5の組成が概ね決まり、凝縮器の N/Cも決まってくる。凝縮 器の H/Cは尿素合成装置を出る未反応物(アンモニアと二酸化炭素)を回収する 回収装置にてその吸収に必要な水の量で決まる。水は平衡上、尿素合成反応を阻 害する(合成平衡上は、 H/Cは低いほどよい)ので、この回収装置に供給される水 の量は必要最小限であることが好ましレ、。
[0067] 凝縮部とストリッパーは、実質的に合成管と同じ圧力で運転される。
[0068] 凝縮器内のプロセス流体の温度は尿素生成の反応速度の観点から 160°C以上が 好ましぐ蒸気圧の上昇に伴う凝縮率の低下および機器材料の腐食を抑制する観点 から 200°C以下が好ましい。
[0069] 凝縮器内のプロセス流体の N/Cは、尿素合成液の二酸化炭素分圧の上昇による 凝縮率の低下を抑制する観点から 2. 5以上が好ましぐアンモニアの蒸気圧が上昇 し凝縮率が低下することを抑制する観点から 4. 0以下が好ましい。
[0070] また、尿素合成率の観点から H/Cは 1. 0以下が好ましい。
[0071] 尿素合成率の低下による蒸気圧の上昇と凝縮率の低下を抑制する観点から、凝縮 器内の滞留時間は 10分以上が好ましい。また 30分を越えても、尿素合成率の顕著 な上昇は望めないので、 30分以下が好ましい。
[0072] ストリッパー C力も凝縮器 Bおよび気液セパレータ Fを経由してスクラバー Dに供給さ れるガス状成分 7の一部を吸収したカーノくメイト液 9は、凝縮器に供給される。凝縮器 では、カーバメイト液 9とガス状成分 5が接触し、アンモニアおよび二酸化炭素がカー ノメイト液に吸収されかつ凝縮し、さらに式 1に示されるカーバメイトの生成反応と、式 2で示されるカーバメイトの脱水反応により尿素が生成される。
[0073] 凝縮器での二酸化炭素基準の転化率は、例えば 20%以上 60%以下である。
[0074] 凝縮域で凝縮しなかったアンモニアおよび二酸化炭素はイナートガスとともに凝縮 器の頂部もしくは気液セパレータにて分離され、回収装置もしくはスクラバーに送ら れる。ここでは、これらの混合ガスが気液セパレータ Fで液から分離されてスクラバー Dに送られる。
[0075] 凝縮器出口流体 3を気液分離して得られた液 6は、ェジヱクタ一 Eに供給され、原 料アンモニアを駆動源として、合成管に送られ、さらなる尿素合成反応に供せられる
[0076] 以下に、それぞれの構成機器の詳細について説明する。
[0077] 合成管 Aは、縦型あるいは横型の反応器で、内部にバッフルプレート、ガス分散器 等が設置されたものとすることができる。また、所望により、凝縮器等と一体化された 構造を採用することもできる。ただし、合成管と凝縮器とがー体構造とされる場合でも 、合成管と凝縮器とは仕切板などによって仕切られ、独立している。
[0078] ストリッパーは、気液接触を行いうる構造および/または加熱により合成液 4中の力 ーノメイト分解と溶解ガスの放出ができる構造を適宜採用できる。
[0079] ストリッパーは、例えば、図 1に示すように縦型のシェルアンドチューブ型熱交換構 造を有することができる。この場合、シェル側にスチーム等の熱媒体を供給し、チュー ブ側に合成液 4を供給し、シェル側からチューブ側へ熱が供給できる。このような構 造以外にもストリッパーに、棚段塔、充填塔を用いることもできる。これらの組み合わ せを採用してもよい。
[0080] スクラバーの構造としては、スクラビングしうる構造を適宜採用でき、充填物の充填 された充填塔、シェルアンドチューブ構造、棚段塔およびそれらの組み合わせを採 用すること力 Sできる。スクラバーは、合成管と実質的に同圧力で運転され、温度は通 常 100°C以上 180°C以下で運転される。スクラバーでは、ガスの吸収による吸収熱が 発生するが、シェルアンドチューブ構造とすれば、冷却媒体により吸収熱を除去、回 収することぁ可肯 となる。
[0081] また、スクラバーは、適宜、凝縮器に組み込んでも良くまた凝縮器と一体化しても良 レ、。
[0082] 凝縮器としては、ガス状成分の凝縮、アンモニアおよび二酸化炭素の吸収および 反応式 1および反応式 2による尿素合成反応をおこすことができる構造の縦型サブマ ージ凝縮器を適宜採用できる。縦型であると、ガスが凝縮器内を均一分散しやすぐ 設置面積が小さぐガスの滞留時間を長くとりやすいというメリットがある。また、尿素 合成反応は液相で起こるため、液の中に冷却管を挿入することが望まれる。従って、 縦型サブマージ凝縮器を用いる。
[0083] ;凝縮器として、例えば、図 1に示すように、冷却手段として Uチューブが設置されて レ、る構造を採用することができる。この構造はサブマージ型とするに好適である。つま り、 Uチューブを完全に液相に浸っている状態にすることが容易である。チューブ側 には、ボイラー水等の冷却媒体を供給することができる。また、冷却媒体として液体ァ ンモユア、尿素液などのプロセス流体を流すことで、シェル側流体の冷却と同時にこ れらプロセスの予熱ゃ加熱を行うこともできる。
[0084] Uチューブを用いれば、管板は一枚でよい。これは、軽量化のために効果的である
[0085] また、所望により、凝縮器を合成管と一体化してもよい。
[0086] 図 1には、縦型の合成管と凝縮器が一体化された例が示される。合成管の下部に 仕切り板を介して凝縮器が設置され一体化されたものである。
[0087] 昇圧された原料アンモニア laと凝縮器から得られる液 6はェジヱクタ一 Eに供給さ れ、これらの混合流体 8が合成管 Aの下部に供給される。空気(例えば昇圧手段 Hの 中間段から供給される)を含む昇圧された原料二酸化炭素の一部 2bが、合成管に供 給される。これら供給された原料は、合成管内を上昇し、この間に合成管内で反応式 1および反応式 2に従った反応が起こり、尿素等が生成する。合成管内には、混合と 反応を促進するためにバッフルプレートが設置されていることが好ましい。反応が好 ましくはほぼ平衡に達した合成液は、合成管上部に入口が設置されたダウンパイプ を通り、ダウンパイプ内を下降し、ライン 4からストリッパー上部に供給される。昇圧さ れた原料二酸化炭素 2aは、ストリッパー下部より供給され、合成液 4中の未反応アン モユアとカーノ メイトの分解生成物をストリッピングする。
[0088] 図 1に示すストリッパーは、縦型シェルアンドチューブ型熱交換構造を有する。チュ ーブ側では、合成管からの合成液 4と原料二酸化炭素 2aとの向流接触により、合成 液 4中の未反応物(カーバメイト)と過剰アンモニアがガス成分 (アンモニアと炭酸ガス )としてストリッピングされる。シェル側には、スチームが供給され、カーバメイト分解の 熱源として使われる。
[0089] ストリッパー上部からのガス成分 5は、凝縮器下部に供給される。スクラバーからの カーノくメイト液 9も同様に凝縮器下部に供給される。
[0090] 凝縮器内には、冷却手段として Uチューブが設置され、冷却用の水(ボイラ水) 13 力 チューブに供給され、冷却に供された流体 14 (ボイラ水とスチームの混合流体) が Uチューブから排出される。
[0091] 凝縮器シェル部に吸収媒体として供給されたカーノくメイト液 9およびストリッパーか らのガス成分 5は、凝縮器内部を上昇しつつ互いに接触し、冷却され、ガス成分が凝 縮しかつカーノくメイト液に吸収され、カーノ Vイトが生成し、さらに尿素合成反応を起 こす。
[0092] 図 1では、気液セパレータ Fが独立して設置されている。気液セパレータでは、凝縮 器から排出される流体 3がガス成分 7と液 6に分離され、ガスはスクラバーに、液はェ ジェクタ一に供給される。
[0093] このように、凝縮器を合成管より下方に配置することにより、重量がかさむ Uチュー ブなどの冷却管およびその管板を比較的低いところに配置できるので、機器の据付
、固定が容易である。
[0094] また、 Uチューブが凝縮器の上部に設けられる場合、管板から Uチューブが下向き に延在する構造になる。このような場合、凝縮器内部に気相部が生じると、チューブ 外表面に気液界面が接触することになる。つまりチューブが気相部と液相部の両方 にまたがることになる。このような状況では、カーバメイト凝縮によるチューブの腐食を 起こし易い場合がある。しかし、図 1に示した凝縮器では、管板が凝縮器の下部、特 には底部に設けられ、管板から Uチューブが上向きに延在し、凝縮器の上部には U チューブが存在しない領域を設けることができる。従って、凝縮器内部に気相部が存 在したとしても、 Uチューブは液に完全に坦没させておくことができる。このようにすれ ば、上記のような腐食の恐れは皆無であるので好ましレ、。
[0095] 凝縮器と合成管を一体化する場合、凝縮器を合成管の上に設けると、管板から U チューブを下向きに延在させざるを得なレ、。しかし、凝縮器と合成管を一体化する場 合であっても、凝縮器を合成管の下方に設けることにより、上記のように凝縮器上部 に Uチューブが存在しない領域を設けることができ、上記のような腐食を防止できる ので好ましい。
[0096] なお、合成管で得られる尿素合成液にっレ、ては、合成管の頂部で気液分離するこ とができ、あるいは合成管内には気液分離手段は設けず、尿素合成液を気液混相の ままでストリッパーに供給することもできる。
[0097] ここで、尿素合成装置を含む尿素製造装置の例について説明する。図 6に尿素製 造装置の概略を示す。尿素製造装置は、尿素合成装置、回収装置、分解装置、濃 縮装置および製品化装置を有する。尿素合成装置には原料アンモニア 1および原料 二酸化炭素 2が供給される。尿素合成装置からストリッピングを経た尿素合成液 10が 分解装置に送られる。
[0098] 分解装置では、供給された尿素合成液を減圧下で加熱することにより、尿素合成 液中に含まれる未反応アンモニアおよびカーノ メイトが分解され、アンモニアおよび 二酸化炭素を含むガス 21として分離される。残りの液相は、例えば 68質量%程度の 尿素水溶液 22となり、分解装置下流の濃縮装置に送られる。
[0099] 濃縮装置では、分解装置で得られた尿素水溶液 22を真空下で加熱することにより
、水分をほぼ完全に蒸発分離し、例えば 99. 7質量%程度の溶融尿素 23を得る。こ の溶融尿素は、濃縮装置下流の製品化装置に送られて冷却および固化され、粒状 尿素 24として製品化される。
[0100] 一方、分解装置で分離されたアンモニアおよび二酸化炭素を含むガス 21と、スクラ バーでリサイクルカーノメイト液に吸収されなかったアンモニア、二酸化炭素およびィ ナートガスを含むガス 12は、回収装置にて水に吸収され、アンモニゥムカーノ メイト 水溶液として回収され、この水溶液が昇圧されたうえでリサイクルカーバメイト液 11と して尿素合成装置に戻される。
[0101] 図 2に、本発明の別の形態を示す。この形態は、スクラバー Dが合成管 Aと凝縮器 B の間に組み込まれた点で図 1に示した形態と異なる。凝縮器の上部には気相部が存 在し、スクラバーはこの気相部内に設けられる。
[0102] リサイクルカーノ メイト液 11が、組み込まれたスクラバー Dに供給される。この形態 では、スクラバーが合成管内に設置されることで、スクラバーだけでなく気液セパレー タを別に設置する必要がない。従って、高圧配管の削減、機器費の削減、工事費の 削減のために有効である。気液分離は、凝縮器 B内の上部に気相部分を設けること によって行うことができる。ガス成分 7は気液界面から上昇してスクラバー Dにて浄化 されライン 12へと送られ、一方、液成分 6は、気液界面の下方に入口を有するダウン パイプを経てェジェクタ一 Eに送られる。ガス成分 7の一部を吸収したカーバメイト液 9 は、ダウンパイプを通って凝縮器下部に供給される。
[0103] 図 3には、本発明のさらに別の形態を示す。この形態は、スクラバー Dが凝縮器 Bに 組み込まれ、合成管 Aは別途単独で設けたものである。図 2の形態と同様、スクラバ 一は凝縮器上部の気相部に設けられる。また、凝縮器の上部に気相部分を設けて気 液分離を行うことにより、気液セパレータは不要となる。
[0104] この形態では、凝縮器と合成管を別にすることで、機器の製作および輸送、また据 え付け工事などの工事がしゃすい。また、この形態は既設の合成管を有する旧式の プラントの尿素合成装置、例えば溶液循環式 (非ストリツビング式)尿素合成装置を改 造するに好適である。既設の合成管を有するプラントに、ストリッパー C、凝縮器 B、凝 縮器力も得られる液を合成管に循環する循環手段などを追加し、この際、凝縮器 Bを 合成管 Aより鉛直下方に配してこの形態にし、設備能力の増大や高効率化を図るこ とがでさる。
[0105] 図 4には、本発明のさらに別の形態を示す。この形態は、図 3に示す形態において 合成管 Aを横置きにしたものである。横置きの合成管を用いることにより、機器 (特に は合成管のトップ)の高さを低くすることができ、設備コストの低減に効果的である。
[0106] 合成管、ストリッパーおよび縦型液膜流下式凝縮器を有する既存のストリッピング式 尿素合成装置に、縦型サブマージ凝縮器および縦型サブマージ凝縮器力 得られ る液を合成管に循環する循環手段を設置して、この既存の合成装置を改造すること もできる。例えば図 5に示す形態は、スクラバー Dが合成管 Aより高い位置に別に設 置され、縦置液膜流下式凝縮器 Iと合成管 Aがストリッパー Cよりも高い位置に設置さ れている既設 COストリツビング式尿素合成装置に、縦型サブマージ凝縮器 Bとェジ
2
エタター E、また適宜配管を追加することで、尿素の増産を図るために好適である。
[0107] なお、縦置液膜流下式凝縮器 I出口流出物 19 (ストリッパーで分離され凝縮器 Iで は凝縮しなかった混合ガスを含む)が縦型サブマージ凝縮器 Bに供給される。このた めに縦型サブマージ凝縮器のシェル側が縦置液膜流下式凝縮器に接続される。合 成管出口ガス 20はスクラバー Dにてスクラビングされる。
[0108] また縦置液膜流下式凝縮器 Iには凝縮のために冷却手段が備わる。例えば凝縮器 Iのシェル側にボイラ水 17を供給し、ボイラ水は加熱され、一部が蒸気となったボイラ 水 18がシェルから排出される。
[0109] あるいは、縦置液膜流下式凝縮器 Iを冷却する冷却媒体として、ボイラ水 17に替え て、ストリッパー出口液 10を用いることもできる。尿素合成装置の下流で行われる分 解工程でストリッパー出口液を加熱するが、その加熱の一部を縦置液膜流下式凝縮 器 Iの冷却とともに行うことができ、効率的である。例えば凝縮器 Iのシェル側にストリツ パー出口液を導くラインを設け、シェル側から排出される加熱されたストリッパー出口 液を下流の分解工程にて利用すればょレ、。
実施例
[0110] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限 定されるものではない。
[0111] 〔実施例 1〕
図 1に示す形態の尿素合成装置を用いた場合の、尿素 1725t/日(tはトンすなわ ち 103kgを示す)の生産例につき、物質収支と温度、圧力を表 1に示す。
[0112] 圧力 23MPaG、温度 30°Cの原料アンモニア 1のうち、 39· 7t/時を熱交換器 Gで 加熱して 140°Cにしたうえでライン laからェジェクタ一 Eに供給し、 1. Ot/時をライン lbを通して凝縮器 Bに供給した。一方、圧力 0. lMPaG、温度 40°Cの二酸化炭素 2 を圧縮機 Hで昇圧して圧力 16MPaG、温度 120°Cの二酸化炭素とし、ライン 2a通し て 41. 2t/時をストリッパー Cに、ライン 2bを通して 9. It/時を合成管 Aへ供給し、 尿素を生産した。
[0113] 供給されたアンモニア laは、気液セパレータ Fからの圧力 15. 2MPaGの合成液 6 とェジヱクタ一 Eで混合され、圧力 15. 5MPaGでライン 8力 合成域のある合成管 A へ供給された。
[0114] 合成管 Aは、圧力: 15. 5MPaG、温度: 182°C、 NZC : 3. 7、H/C : 0. 58、滞留 時間:20分で運転され、尿素が合成された。合成管における二酸化炭素基準の転化 率は、 63%であった。
[0115] 合成管 Aの上部のダウンパイプからの尿素を含む合成液 4は、ストリッパー Cに供給 された。ストリッパー Cのシェル側には、中圧蒸気 15が供給され、カーノくメイト分解の ための熱を供給し、凝縮水 16となって出ていく。ストリッパー Cのチューブ側では、上 部温度: 184°C、下部温度: 171°C、圧力: 15. 5MPaGでカーバメイトの分解とストリ ッビングが行われ、ガス状成分が上部で分離され、ガス状成分 5は、凝縮器 Bへ送ら れ、ストリッパー Cの底部を出た合成液 10は、分解装置へ送られた。
[0116] ストリッパー C力 のガス状成分 134· 6t/時(ライン 5)とリサイクルカーバメイト液 6 2. 2t/時 (ライン 11)が凝縮器に送られる。凝縮器では、温度: 180°C、圧力: 15. 2 MPaG、 N/C : 2. 9、 H/C : 0. 65、滞留時間: 20分で運転され、尿素等が合成さ れた。凝縮器における二酸化炭素基準の転化率は、 46%であった。
[0117] 〔実施例 2〕
図 2に示す形態の尿素合成装置を用いた以外は実施例 1と同様の検討を行った。 物質収支等は実施例 1と同様表 1に示される結果となった。
[0118] 〔実施例 3〕
図 3に示す形態の尿素合成装置を用いた以外は実施例 1と同様の検討を行った。 物質収支等は実施例 1と同様表 1に示される結果となった。
[0119] 〔実施例 4〕
図 4に示す形態の尿素合成装置を用いた以外は実施例 1と同様の検討を行った。 物質収支等は実施例 1と同様表 1に示される結果となった。
[0120] 〔実施例 5〕 図 5に示す形態の尿素合成装置を用いた場合の、尿素 1725トン Z日の生産例に ついて検討した。図 5に示す形態では、ストリッパー Cを出たガス成分は、シェルアン ドチューブ型の液膜降下式縦型凝縮器 Iで部分的に凝縮した後、凝縮器 Bに送られ る。液膜降下式縦型凝縮器のシェル側にはボイラ水 17が供給され、熱回収により一 部が低圧蒸気となり、ライン 18からボイラ水と低圧蒸気の混相流として出て行く。原料 アンモニアおよび原料二酸化炭素の供給条件、合成管 A、凝縮器 B、ストリッパー C の運転条件は実施例 1と同じである。物質収支等は実施例 1と同様表 1に示される結 果となった。
[表 1]
表 1
Figure imgf000023_0001
産業上の利用可能性
本発明の尿素合成装置は、アンモニアおよび二酸化炭素から尿素を製造する尿素 製造に好適に用いられる。また本発明の尿素合成装置の改造方法は、既存の尿素 合成装置を改造して増産や高効率化を図るために好適である。

Claims

請求の範囲
[1] アンモニアと二酸化炭素とを反応させて、尿素、未反応アンモニア、未反応二酸化 炭素および水を含む尿素合成液を得る合成管;
該尿素合成液を、原料二酸化炭素の少なくとも一部を用いてストリツビングし、該未 反応アンモニアおよび未反応二酸化炭素を含む混合ガスを分離するストリッパー; シェルアンドチューブ構造を有し、チューブ側を流通する冷却媒体による冷却下に 、シェル側にて該混合ガスを吸収媒体中に凝縮させる縦型サブマージ凝縮器;およ び
該縦型サブマージ凝縮器力ら得られる液を該合成管に循環する循環手段を有し、 該縦型サブマージ凝縮器が該合成管より下方に配された尿素合成装置。
[2] 前記循環手段が、原料アンモニアを駆動源としたェジェクタ一を有する請求項 1記 載の装置。
[3] 前記合成管と縦型サブマージ凝縮器とが互いに仕切られて一体化され、合成管が 縦型サブマージ凝縮器の上部に配された請求項 1または 2記載の装置。
[4] さらに前記縦型サブマージ凝縮器で凝縮しなかったガスをスクラビングするスクラバ 一を有し、該スクラバーが前記縦型サブマージ凝縮器の内部に配された請求項 3記 載の装置。
[5] さらに前記縦型サブマージ凝縮器で凝縮しなかったガスをスクラビングするスクラバ 一を有し、前記縦型サブマージ凝縮器と該スクラバーが一体化された請求項 1または 2記載の装置。
[6] 前記スクラバーが前記縦型サブマージ凝縮器の内部に配された請求項 5記載の装 置。
[7] 前記合成管が横型である請求項 5または 6記載の装置。
[8] アンモニアと二酸化炭素とを反応させて、尿素、未反応アンモニア、未反応二酸化 炭素および水を含む尿素合成液を得る合成管を有する既存の尿素合成装置の改造 方法であって、
該尿素合成液を、原料二酸化炭素の少なくとも一部を用いてストリツビングし、該未 反応アンモニアおよび未反応二酸化炭素を含む混合ガスを分離するストリッパー; シェルアンドチューブ構造を有し、チューブ側を流通する冷却媒体による冷却下に 、シェル側にて該混合ガスを吸収媒体中に凝縮させる縦型サブマージ凝縮器;およ び
該縦型サブマージ凝縮器力 得られる液を該合成管に循環する循環手段を設置し 該縦型サブマージ凝縮器を該合成管より下方に配する尿素合成装置の改造方法。
[9] アンモニアと二酸化炭素とを反応させて、尿素、未反応アンモニア、未反応二酸化 炭素および水を含む尿素合成液を得る合成管;
該尿素合成液を、原料二酸化炭素の少なくとも一部を用いてストリツビングし、該未 反応アンモニアおよび未反応二酸化炭素を含む混合ガスを分離するストリッパー;お よび
該混合ガスを凝縮させる縦型液膜流下式凝縮器
を有する既存の尿素合成装置を改造する方法であって、
シェルアンドチューブ構造を有し、チューブ側を流通する冷却媒体による冷却下に 、シェル側にて該混合ガスを吸収媒体中に凝縮させる縦型サブマージ凝縮器;およ び
該縦型サブマージ凝縮器力ら得られる液を該合成管に循環する循環手段を設置し 該縦型サブマージ凝縮器を該合成管より下方に配する尿素合成装置の改造方法。
[10] 前記縦型液膜流下式凝縮器が冷却手段を備え、
前記ストリッパーの出口液を、該冷却手段に導くラインをさらに設ける請求項 9記載の 改造方法。
PCT/JP2006/308529 2005-04-27 2006-04-24 尿素合成装置およびその改造方法 WO2006118071A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200680014157.3A CN101166715B (zh) 2005-04-27 2006-04-24 尿素合成装置及其改造方法
US11/909,765 US7582795B2 (en) 2005-04-27 2006-04-24 Apparatus for synthesizing urea and method for revamping the same
JP2007514707A JPWO2006118071A1 (ja) 2005-04-27 2006-04-24 尿素合成装置およびその改造方法
CH02085/06A CH698707B1 (de) 2005-04-27 2006-04-24 Vorrichtung zur Synthese von Harnstoff und Kit zum Nachrüsten einer bestehenden solchen Vorrichtung.
EP06745607A EP1876171B1 (en) 2005-04-27 2006-04-24 Apparatus for urea synthesis and method of improving the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-129880 2005-04-27
JP2005129880 2005-04-27

Publications (1)

Publication Number Publication Date
WO2006118071A1 true WO2006118071A1 (ja) 2006-11-09

Family

ID=37307871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308529 WO2006118071A1 (ja) 2005-04-27 2006-04-24 尿素合成装置およびその改造方法

Country Status (6)

Country Link
US (1) US7582795B2 (ja)
EP (1) EP1876171B1 (ja)
JP (1) JPWO2006118071A1 (ja)
CN (1) CN101166715B (ja)
CH (1) CH698707B1 (ja)
WO (1) WO2006118071A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519327A (ja) * 2012-05-03 2015-07-09 スタミカーボン・ベー・フェー アンモニア及び二酸化炭素から尿素を製造するための方法、並びに装置
US20160228862A1 (en) * 2008-07-31 2016-08-11 Casale Sa Process and plant for the production of a urea solution for use in scr process for reduction of nox
JPWO2017043390A1 (ja) * 2015-09-08 2018-08-02 東洋エンジニアリング株式会社 尿素製造方法及び尿素製造装置
WO2020183717A1 (en) 2019-03-14 2020-09-17 Toyo Engineering Corporation Process and apparatus for urea production
US12084406B2 (en) 2019-07-05 2024-09-10 Stamicarbon B.V. Ferritic steel parts in urea plants

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8424181B2 (en) * 2009-04-17 2013-04-23 Exxonmobil Research And Engineering Company High pressure revamp of low pressure distillate hydrotreating process units
CN102971287B (zh) * 2010-06-16 2014-11-12 三井化学株式会社 氨基甲酸酯的制造方法、异氰酸酯的制造方法、氨基甲酸酯的制造装置、及异氰酸酯的制造装置
EP2602245A1 (en) * 2011-12-05 2013-06-12 Urea Casale SA A process for synthesis of urea and a related arrangement for a reaction section of a urea plant
US20140079619A1 (en) * 2012-09-20 2014-03-20 Honeywell International Inc. Manufacture of pf5
JP6329159B2 (ja) * 2013-02-08 2018-05-23 東洋エンジニアリング株式会社 燃焼排ガスからの二酸化炭素回収プロセス
EP3135665A1 (en) * 2015-08-25 2017-03-01 Casale SA A reactor-condenser for the synthesis of urea
EP3219703A1 (en) * 2016-03-17 2017-09-20 Casale SA Combined apparatus for the synthesis of urea
JP7088770B2 (ja) * 2018-07-26 2022-06-21 東洋エンジニアリング株式会社 尿素製造方法および装置
JP7157684B2 (ja) 2019-03-14 2022-10-20 東洋エンジニアリング株式会社 尿素製造方法および装置
JP2024506980A (ja) 2021-02-22 2024-02-15 スタミカーボン・ベー・フェー 尿素製造プロセス及び並列mpユニットを備えたプラント
CN113479905B (zh) * 2021-06-29 2022-08-05 福州大学化肥催化剂国家工程研究中心 一种自除氧合成氨塔及可再生能源合成氨系统
EP4212227A1 (en) * 2022-01-18 2023-07-19 Yara International ASA Liquid/vapor separator
CN118286997B (zh) * 2024-03-28 2024-09-20 山东福富新材料科技有限公司 尿素合成系统及合成方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122452A (ja) 1982-12-29 1984-07-14 Toyo Eng Corp 尿素合成管
JPH10120643A (ja) * 1996-10-24 1998-05-12 Toyo Eng Corp 改良された尿素合成方法
JPH10182586A (ja) * 1996-12-20 1998-07-07 Toyo Eng Corp 尿素の合成方法
JPH10182587A (ja) 1996-10-07 1998-07-07 Toyo Eng Corp 改良された尿素合成方法および装置
JPH11180942A (ja) 1997-12-18 1999-07-06 Toyo Eng Corp 改良された尿素の合成方法および装置
WO2000000466A1 (en) 1998-06-29 2000-01-06 Dsm N.V. Process for the preparation of urea
WO2000043358A1 (en) 1999-01-25 2000-07-27 Dsm N.V. Process for the preparation of urea
WO2001072700A1 (en) 2000-03-27 2001-10-04 Dsm N.V. Installation and process for the preparation of urea
EP1170284A2 (en) 2000-07-04 2002-01-09 Toyo Engineering Corporation Urea synthesis process and apparatus
JP2002145850A (ja) * 2000-11-01 2002-05-22 Toyo Eng Corp 尿素製造方法
EP1279663A1 (en) 2001-07-23 2003-01-29 Toyo Engineering Corporation Urea synthesis process
JP2003104949A (ja) 2001-07-23 2003-04-09 Toyo Eng Corp 尿素合成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8400839A (nl) * 1984-03-16 1985-10-16 Unie Van Kunstmestfab Bv Werkwijze voor de bereiding van ureum.
JP4426415B2 (ja) * 2004-10-01 2010-03-03 東洋エンジニアリング株式会社 反応装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122452A (ja) 1982-12-29 1984-07-14 Toyo Eng Corp 尿素合成管
JPH10182587A (ja) 1996-10-07 1998-07-07 Toyo Eng Corp 改良された尿素合成方法および装置
JPH10120643A (ja) * 1996-10-24 1998-05-12 Toyo Eng Corp 改良された尿素合成方法
JPH10182586A (ja) * 1996-12-20 1998-07-07 Toyo Eng Corp 尿素の合成方法
JPH11180942A (ja) 1997-12-18 1999-07-06 Toyo Eng Corp 改良された尿素の合成方法および装置
WO2000000466A1 (en) 1998-06-29 2000-01-06 Dsm N.V. Process for the preparation of urea
WO2000043358A1 (en) 1999-01-25 2000-07-27 Dsm N.V. Process for the preparation of urea
WO2001072700A1 (en) 2000-03-27 2001-10-04 Dsm N.V. Installation and process for the preparation of urea
EP1170284A2 (en) 2000-07-04 2002-01-09 Toyo Engineering Corporation Urea synthesis process and apparatus
JP2002020360A (ja) 2000-07-04 2002-01-23 Toyo Eng Corp 尿素合成方法および装置
JP2002145850A (ja) * 2000-11-01 2002-05-22 Toyo Eng Corp 尿素製造方法
EP1279663A1 (en) 2001-07-23 2003-01-29 Toyo Engineering Corporation Urea synthesis process
JP2003104949A (ja) 2001-07-23 2003-04-09 Toyo Eng Corp 尿素合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1876171A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160228862A1 (en) * 2008-07-31 2016-08-11 Casale Sa Process and plant for the production of a urea solution for use in scr process for reduction of nox
JP2015519327A (ja) * 2012-05-03 2015-07-09 スタミカーボン・ベー・フェー アンモニア及び二酸化炭素から尿素を製造するための方法、並びに装置
US9505712B2 (en) 2012-05-03 2016-11-29 Stamicarbon B.V. Method and apparatus for the production of urea from ammonia and carbon dioxide
JPWO2017043390A1 (ja) * 2015-09-08 2018-08-02 東洋エンジニアリング株式会社 尿素製造方法及び尿素製造装置
WO2020183717A1 (en) 2019-03-14 2020-09-17 Toyo Engineering Corporation Process and apparatus for urea production
JP2022522448A (ja) * 2019-03-14 2022-04-19 東洋エンジニアリング株式会社 尿素製造方法および装置
JP7252365B2 (ja) 2019-03-14 2023-04-04 東洋エンジニアリング株式会社 尿素製造方法および装置
US12084406B2 (en) 2019-07-05 2024-09-10 Stamicarbon B.V. Ferritic steel parts in urea plants

Also Published As

Publication number Publication date
EP1876171B1 (en) 2011-12-07
US20090062566A1 (en) 2009-03-05
CN101166715A (zh) 2008-04-23
EP1876171A4 (en) 2009-08-12
CN101166715B (zh) 2011-11-30
EP1876171A1 (en) 2008-01-09
US7582795B2 (en) 2009-09-01
CH698707B1 (de) 2009-10-15
JPWO2006118071A1 (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2006118071A1 (ja) 尿素合成装置およびその改造方法
JP4994226B2 (ja) 尿素合成装置
US10501407B2 (en) Urea manufacturing method and urea manufacturing apparatus
US7498464B2 (en) Method and apparatus for synthesizing urea
AU709689B2 (en) Improved urea synthesis process and apparatus therefor
JP2022508407A (ja) 尿素製造プロセス及び低圧回収部における熱統合を有するプラント
CN115916745B (zh) 热汽提尿素装置和方法
MX2014008371A (es) Proceso para la sintesis de urea que comprende una corriente de estabilizacion en el fondo separador.
US9512069B2 (en) Urea synthesis process and plant
JP4191879B2 (ja) 尿素合成方法および装置
CN113574049B (zh) 尿素制备的方法和装置
JP2023514990A (ja) ウレアを合成するためのプロセスおよびプラント
WO2023145821A1 (ja) 尿素合成方法
AU718170B2 (en) Improved urea synthesis process and apparatus therefor
JPS58203956A (ja) 尿素合成法の改良

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014157.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514707

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11909765

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006745607

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745607

Country of ref document: EP