WO2006114495A2 - Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications - Google Patents

Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications Download PDF

Info

Publication number
WO2006114495A2
WO2006114495A2 PCT/FR2006/000821 FR2006000821W WO2006114495A2 WO 2006114495 A2 WO2006114495 A2 WO 2006114495A2 FR 2006000821 W FR2006000821 W FR 2006000821W WO 2006114495 A2 WO2006114495 A2 WO 2006114495A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
structure according
mixture
cells
carbon nanotubes
Prior art date
Application number
PCT/FR2006/000821
Other languages
English (en)
Other versions
WO2006114495A3 (fr
Inventor
Nour-Eddine El Bounia
Thomas-Maurice Roussel
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2008508251A priority Critical patent/JP2008539295A/ja
Priority to EP06743695A priority patent/EP1877474A2/fr
Priority to US11/910,747 priority patent/US20110039089A1/en
Publication of WO2006114495A2 publication Critical patent/WO2006114495A2/fr
Publication of WO2006114495A3 publication Critical patent/WO2006114495A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing

Definitions

  • the present invention relates to a polymeric cellular structure comprising carbon nanotubes (CNTs), its method of preparation and its applications in the manufacture of lightened structure.
  • CNTs carbon nanotubes
  • Polymeric foams are attracting increasing interest. Thanks to their unique microcellular structure, these expanded plastics have superior mechanical properties, such as impact resistance, hardness and fatigue life when compared to raw polymer. These excellent properties allow them to continually find utilities in a very large number of applications.
  • the polystyrene foams produced in extrusion plate form using supercritical fluids (so-called direct gassing process) find applications in the field of food packaging, thermal insulation and household refrigeration (refrigerators )
  • the thermal conductivity of the foam depends on several parameters: the intrinsic density of the polymer, the size of the cells, the number of cells, the density of the foam and the thermal conductivity of the expansion gas that one seeks to keep inside the cells. In general, the gas tends to diffuse through cell walls resulting in a decrease in the insulation rate. The management of these various parameters makes it possible to obtain high performance foam.
  • carbon nanotubes are known and used for their excellent properties of electrical and thermal conductivity as well as their mechanical properties. They are thus more and more used as additives to bring to these materials, especially those of polymeric type, expanded or not, these electrical, thermal and / or mechanical properties (WO 03/085681, WO 91/03057, US5744235, US5445327, US54663230).
  • carbon nanotubes are found in many fields, in particular in electronics (depending on the temperature and their structure, they can be conductors, semiconductors or insulators), in mechanics, for example for the reinforcement of composite materials (carbon nanotubes are a hundred times stronger and six times lighter than steel) and electromechanical (they can expand or contract by charge injection).
  • carbon nanotubes in polymer compositions intended for the packaging of electronic components, the manufacture of fuel lines (fuel line), antistatic coatings or coatings, in thermistors, electrodes may be mentioned. for super-abilities, etc.
  • conductive organic compositions are generally known which are generally formulations based on polymeric substances of which at least one component is semi-crystalline in nature, for example polyethylene, and which contains conductive additives, the best known being black carbon (J. of PoI Sci.
  • the object of the invention is to propose new polymeric cellular structures comprising carbon nanotubes.
  • the subject of the invention is a cellular polymeric structure comprising carbon nanotubes, in particular a structure in which the percentage by weight of carbon nanotubes in the polymer structure is less than 60%, preferably between 10 and 50%, or preferably between 0.1 and 3%.
  • the average size of the cells is less than 150 microns, preferably between 20 and 80 microns.
  • the empty volume is at least 50%, preferably between 50% and 99%.
  • the apparent density is less than 100 kg / m 3 , preferably between 10 and 60 kg / m 3 .
  • the polymer is chosen from the group consisting of thermoplastic or thermosetting (co) polymers, elastomers and resins, preferably chosen from PVDF, EVA, PEBA, PA or even better the chosen polymer is a polystyrene or a polyurethane.
  • the structure according to the invention comprises the residues of a blowing agent, in particular the blowing agent is chosen from the group consisting of organic or inorganic liquid or gaseous compounds, solid chemical components. capable of generating cells by decomposition, gaseous compounds or a mixture thereof.
  • a blowing agent is chosen from the group consisting of organic or inorganic liquid or gaseous compounds, solid chemical components. capable of generating cells by decomposition, gaseous compounds or a mixture thereof.
  • the walls of the cells also comprise pores.
  • the invention also relates to the use of a structure as described above in the fields of food packaging, insulation, lightweight structural materials, the manufacture of membranes, electrodes.
  • the invention also relates to the process for preparing a polymeric cell structure comprising the steps of a) preparing the polymer / NTC composite mixture; b) solubilization during which the blowing agent is introduced which solubilizes in the mixture; c) subjecting the mixture to chemical or physical conditions to create cells in the polymerized structure.
  • the blowing agent used in the process is a supercritical gas, preferably supercritical CO 2 or a fluorinated gas chosen from chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).
  • the mixture of step c) is subjected to decompression to create the cells.
  • the polymer resulting from step c) is subjected to carbonization followed by a step of graphitization at a temperature above 1000 ° C.
  • FIG. 1 shows the evolution of the viscosity as a function of the shear gradient of different NTC / polystyrene lacqrenel450 mixture marketed by Total Petrochemicals.
  • Figures 2 and 3 show the evolution of the cell diameter and the density of the foam as a function of different% of incorporated CNT and as a function of the expansion temperature used in the foaming process.
  • Figure 4 shows the orientation of the CNTs during expansion via the biaxial flow of the molten polymer.
  • the invention provides a cellular polymeric structure comprising carbon nanotubes.
  • the carbon nanotubes used in the invention have a shape ratio (L / D) greater than or equal to 5 and preferably greater than or equal to 50 and advantageously greater than or equal to 100.
  • the carbon nanotubes generally have a tabular structure of diameter less than 100 nm, preferably between 0.4 and 50 nm and / or in general of length greater than 5 times their diameter, preferably greater than 50 times their diameter and advantageously from 100 to 100000 or from 1000 to 1000 10000 times their diameter.
  • Carbon nanotubes consist of an allotropic variety of carbon in a sp 2 configuration consisting of a long single, double or multi-walled tube of aromatic rings contiguous to each other, aggregated or not.
  • the nanotube When the nanotube consists of a single tube, we speak of mono-wall, two tubes we speak of double walls. Beyond that, we will talk about multi walls.
  • the outer surface of the nanotubes may be uniform or textured.
  • nanotubes can be chemically or physically treated to purify or functionalize them in order to give them new properties of dispersion, and interaction with the components of the formulation such as polymer matrices, elastomers, thermosetting resins, oils, greases, water-based or solvent-based formulations such as paints, adhesives, varnishes.
  • the carbon nanotubes can be prepared by various methods, such as the Electric Arc method (C. Journet et al in Nature (London), 388 (1997) 756, the CVD gas phase method, Hipco (P. Shinv et al. in Chem Phys Lett, 1999, 313, 91), the method of
  • the polymeric cellular structure comprises one or more polymers chosen from polymers and copolymers, in particular thermoplastics, thermosetting polymers, thermoplastic resins, acrylic polymers and methacrylic polymers.
  • styrenic polymers polyolefms, polyurethanes, copolymers of ethylene such as Evatanes and Lotryl marketed by Arkema, and rubbers such as those used in sealing.
  • thermoplastic resins examples include: acrylonitrile-butadiene-styrene (AB S), acrylonitrile-ethylene / propylene-styrene (AES), methylmethacrylate-butadiene-styrene (MBS), acrylonitrile-butadiene-methylmethacrylate-styrene (ABMS ), acrylonitrile-n-butylacrylate-styrene (AAS), polystyrene modified gums, resins of: polyethylene, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, cellulose acetate, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphenyleneoxide, polyketone, polysulphone, polyphenylenesulphide, resins: fluorinated, silicone, polyimide, polybenzimidazole.
  • ABS acrylonitrile-butadiene-styrene
  • AES acryl
  • thermosetting resins examples include resins based on phenol, urea, melamine, xylene, diallylphthalate, epoxy, aniline, furan, polyurethane, etc.
  • thermoplastic elastomers of PVC, urethane, polyester, polyamide (PA) type thermoplastic elastomers of polybutadiene type such as 1,2-polybutadiene or trans-1,4-polybutadiene resins
  • polyethylene type elastomers such as methylcarboxylate-polyethylene, ethylene-vinyl acetate (EVA), ethylene-ethylacrylate copolymers, chlorinated polyethylene, fluorinated-type thermoplastic elastomers such as polyvinylidene fluorides (PVDF), polyether esters and polyether amides such as polyetherblock polyamine (PEBA) etc.
  • PVDF polyvinylidene fluorides
  • PEBA polyetherblock polyamine
  • polystyrene sulfonate PSS
  • polystyrene sulfonate PSS
  • poly (1-vinylpyrrolidone-co-vinyl acetate poly (1-vinylpyrrolidone-co-acrylic acid
  • poly (1-vinylpyrrolidone-co-dimethylaminoethyl methacrylate) polyvinyl sulfate
  • dextran dextran sulfate
  • gelatin bovine serum albumin
  • poly (methyl methacrylate-co-ethyl acrylate) polyallyl amino, and combinations thereof.
  • Polymers chosen from PVDF, EVA, PEBA and PA are preferably used.
  • the cellular polymeric structure is porous.
  • the structure has a total void volume or a total pore volume of at least 50%, preferably greater than 80% and preferably greater than 92% or more preferably between 50 and 99%.
  • the pores or cells of the structure may be open or fe ⁇ inflated depending on the intended application.
  • the average cell size or pores dso is defined by the mean diameter of
  • the average diameter of the d 5 o cells is less than 150 microns, preferably less than 100 microns, preferably less than 80 microns and more preferably less than 10 microns.
  • the average diameter of the dso cells is between 5 and 80 microns, preferably between 30 and 50 microns.
  • the porosity value is defined by the ratio of the void volume to the geometric volume of the structure. It can be connected to the true density of notions have vr, which is the theoretical density of the bulk material and bulk density of app (or "bulk density” in English) of material comprising pores accessible or not.
  • vr the theoretical density of the bulk material and bulk density of app (or "bulk density” in English) of material comprising pores accessible or not.
  • the structure has an apparent density of less than 100 kg / m 3 , preferably between 10 and 60 kg / m 3 .
  • the density is measured by a pyknometer.
  • the process for preparing a polymeric cellular structure namely the foaming process, is well known in the field of polymeric foams.
  • the foaming process may be of a physical nature based on the use of blowing agents selected from the group consisting of organic compounds or liquid or gaseous inorganic compounds or mixtures thereof.
  • the blowing agent is chosen from the group of volatile organic compounds consisting of hydrocarbons, chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs).
  • the blowing agent is chosen from the group of inorganic compounds constituted by gases, in particular nitrogen, helium, carbon dioxide, supercritical fluids, in particular CO 2 , hydrocarbons, chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs) ...
  • the foaming process can also be of a chemical nature based on the use of a blowing agent chosen from among chemical components capable of generating cells by decomposition. It is also possible to use in the foaming processes both physical and chemical expansion agents as described above.
  • the first phase is the preparation phase of a polymer / NTC composite mixture.
  • This mixture can be prepared by melting in an internal mixer, for example of the Haak type. The mixture thus obtained is ground.
  • This method of preparation is given by way of example for the demonstration of the invention. All methods of preparation of composite based on polymers, resins and elastomers can be used. Examples that may be mentioned are single or double screw extruders, buses, static mixers, etc.
  • the mixture obtained may be used as or after dilution in a compatible matrix or not. In this case the first mixture is called master batch or master batch.
  • the second phase is the solubilization phase during which the blowing agent is introduced which is solubilized in the mixture.
  • the third phase is the creation phase of the cells in the polymer phase by subjecting the mixture to suitable chemical or physical conditions for the blowing agent to play its role.
  • blowing agent is a supercritical fluid, for example
  • the micro-cellular structures obtained have a% by weight of CNT in the polymer structure greater than 0.05%, preferably greater than 0.1%, or even more preferably between 0.1% and 3%.
  • the percentage by weight of carbon nanotubes introduced into the structure is less than 60%, preferably less than 50%, more preferably between 10 and 50% or even between 0, 1 and 15%.
  • the process described above can be followed by a step during which the polymer is carbonized followed by a high temperature graphitization step (greater than 1000 ° C.).
  • the level of CNT in the polymer is greater than 2% by weight relative to the polymer, preferably between 5 and 60% or between 10 and 50%.
  • a lightened carbonaceous material having a double porosity is thus obtained: that resulting from the foaming stage with the same diameter as the cells and a second associated with the voids left by the departure of the polymer and which is in the cell walls.
  • This second porosity which is much smaller, for example less than 5 microns, can be modulated by associating another charge with CNTs such as graphite or any type of electrically or thermally or electrically conductive filler.
  • the choice of the NTC rate with respect to the additional charge can vary from 0 to 100%, it will depend on the intended application and the porosity.
  • the invention has the advantage that the lightened materials obtained have an equivalent density compared to polymeric cellular materials without carbon nanotubes while having much smaller cell sizes. This allows in particular to aim to improve the mechanical properties, insulation or conduction of lightened material.
  • the presence of the CNTs in the polymer has the advantage of acting as a nucleating agent during the foaming process and thus to favor the production of smaller cells than those of a foam without, CNT. It is thus possible to achieve a reduction of more than 30% in the average diameter dso of the cells in the polymer structures according to the invention compared to that of the foams without NTC and at the same apparent density.
  • the electrical and / or thermal insulation or electrical and / or thermal conductor properties of the lightweight materials comprising the polymeric cell structures according to the invention depend on the levels of incorporated carbon nanotubes. It will therefore be up to those skilled in the art to choose the right rate of NTC to meet its specifications.
  • the lightweight structures with simple porosity according to the invention can be used in the following applications: packaging, insulation, lightweight materials, sealing etc.
  • the materials with double porosity can find applications of the manufacture of electrodes, membranes, ... in the energy storage markets such as batteries, supercapacities.
  • the structures according to the invention may also contain residues of the blowing agent used in the foaming process.
  • This blowing agent which remains in the cells generally has an impact on the conductivity properties of the lightened material.
  • the presence of oriented NTCs in the cell walls can only slow down the diffusion of the expansion gas. Examples
  • Carbon nanotubes obtained according to the method described in PCT patent WO 03/002456 A2 are used. These nanotubes have a diameter of between 10 and 30 nm and a length of> 0.4 ⁇ m. They are present in the final composition in dispersed form in order to take advantage of the properties of CNTs.
  • Polystyrene 1450 is produced by the company Total Petrochemcials.
  • the first is the fusion phase.
  • the polymer or composite is placed at high temperature in a reactor of the autoclave type (generally between 190.degree. C. and 200.degree. PS) under vacuum to prevent degradation of the polymer; a vacuum pump is connected to the reactor inlet valve via a flexible pipe.
  • the duration of the melting phase is generally about 2 hours.
  • the second phase is the solubilization phase.
  • the temperature set point is set for the solubilization phase.
  • the CO 2 is conveyed using a pump equipped with a cooler.
  • the inlet valve is opened by setting the setpoint to the working pressure and opening the pump air supply valve.
  • the pump starts and the pressure rises in the autoclave. When the working pressure is reached, the inlet valve closes automatically.
  • the duration of the solubilization phase is generally about 17 hours.
  • the CO 2 under high pressure is in a supercritical state and will solubilize in the polystyrene to a concentration corresponding to the saturation concentration for the working pressure and temperature.
  • the third phase is the decompression or foaming phase of the composite polymer.
  • the temperature setpoint is set at room temperature to start cooling the autoclave generally by vortexing.
  • a set point is set to open the outlet valve which causes depressurization at a speed imposed by the pressure and the pipe configuration. This results in nucleation and cell growth that causes foam formation.
  • the interior of the autoclave can be cooled by a more efficient method at the end of the depressurization. The reactor is opened quickly to recover the foams.
  • Various cellular structures according to the invention are prepared according to the method described above, with variable nanotube contents of 0 to 1%.
  • Figure 1 shows the evolution of the viscosity as a function of the shear gradient.
  • the rheological analysis of the various NTC / polystyrene 1450 mixtures shows the increase of the low shear rate viscosity. This increase is beneficial for obtaining a micro-cellular structure.
  • Figures 2 and 3 show the evolution of the cell diameter and the density of the foam according to the different% by weight of CNT incorporated and the expansion temperature used in the foaming process. From the results shown in the graphs of Figures 2 and 3 and in Table I it is clear that 5 to 0.5% by weight of CNT added to PS 1450, is decreased cell diameter of 51% in average relative to the PS 1450 pure and this while keeping a constant density. This result reflects the effect of nucleation of CNTs which results in an increase in the number of cells. Increasing the amount of carbon nanotubes in the polymer matrix has no effect on nucleation. On the other hand, it can make it possible to manage the thermal conductivity and the electrical conductivity and the mechanical rigidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

La présente invention a pour objet une structure cellulaire à base de polymère comprenant des nanotubes de carbone, son procédé de préparation et ses applications.

Description

STRUCTURE CELLULAIRE A BASE DE POLYMERE COMPRENANT DES NANOTUBES DE CARBONE, SON PROCEDE DE PREPARATION ET SES APPLICATIONS.
Domaine de l'invention. La présente invention concerne une structure cellulaire polymérique comprenant des nanotubes de carbones (NTC), son procédé de préparation et ses applications dans la fabrication de structure allégée. Art antérieur et problème technique. Les mousses polymères suscitent un intérêt croissant. Grâce à leur structure microcellulaire unique, ces plastiques expansés présentent des propriétés mécaniques supérieures, tels que la résistance à l'impact, la dureté et la vie en fatigue lorsqu'on les compare au polymère brut. Ces excellentes propriétés leur permettent de trouver continuellement des utilités dans un très grand nombre d'applications. Par exemple, actuellement les mousses de polystyrène produites sous forme de plaque par extrusion en utilisant des fluides supercritiques (procédé dit direct gassing), trouvent des applications dans le domaine de l'emballage alimentaire, de l'isolation thermique et le froid ménager (réfrigérateurs)
On connaît bien les procédés de préparation de structure cellulaire polymérique ou les mousses de polymère, en particulier les mousses de polystyrène, pour obtenir des matériaux allégés (WO2001/89794, WO1998/01501, WO2002/46284, WO2005/019310). En général, ces matériaux sont électriquement et thermiquement isolant compte tenu de la nature des polymères couramment employés et ces matériaux sont utilisables dans de nombreux domaines d'applications domestiques ou industrielles tels que l'emballage, l'isolation, les revêtements, les matériaux de structure.
Dans le domaine de l'isolation thermique à base de polymères expansés, il est bien connu de l'homme de l'art que la conductivité thermique de la mousse dépend de plusieurs paramètres : la densité intrinsèque du polymère, la taille des cellules, le nombre de cellules, la densité de la mousse et la conductivité thermique du gaz d'expansion que l'on cherche à garder à l'intérieur des cellules. En général, le gaz a tendance à diffuser aux travers des parois cellulaires d'où une diminution du taux d'isolation. La gestion de ces différents paramètres permet l'obtention de mousse de hautes performances.
Par ailleurs, les nanotubes de carbone sont connus et utilisés pour leurs excellentes propriétés de conductivité électrique et thermique ainsi que leurs propriétés mécaniques. Us sont ainsi de plus en plus utilisés en tant qu'additifs pour apporter aux matériaux notamment ceux de type polymérique expansés ou non, ces propriétés électriques, thermiques et/ou mécaniques (WO 03/085681, WO 91/03057 ; US5744235, US5445327, US54663230).
On trouve des applications des nanotubes de carbone dans de nombreux domaines, notamment en électronique (selon la température et leur structure, ils peuvent être conducteurs, semi-conducteurs ou isolants), en mécanique, par exemple pour le renfort des matériaux composites (les nanotubes de carbone sont cent fois plus résistants et six fois plus légers que l'acier) et électromécanique (ils peuvent s'allonger ou se contracter par injection de charge).
On peut par exemple citer l'utilisation de nanotubes de carbone dans des compositions polymères destinées à l'emballage de composants électroniques, à la fabrication de conduites d'essence (fuel line), de revêtements ou coating antistatiques, dans des thermistors, des électrodes pour super-capacités, etc.
Dans ce domaine, on connaît bien les compositions organiques conductrices qui sont généralement des formulations à base de substances polymériques dont au moins un composant est de nature semi-cristalline comme par exemple le polyéthylène et qui contiennent des additifs conducteurs, le plus connu étant le noir de carbone (J. of PoI. Sci.
Part B - Vol. 41, 3094-3101 (2003)) ou le PVDF (US 20020094441 Al, US 6640420).
Il existe donc toujours un besoin de développer de nouveaux matériaux allégés comme par exemple les mousses à base de polymère. Résumé de l'invention.
L'invention a pour but de proposer de nouvelles structures cellulaires polymérique comprenant des nanotubes de carbone.
La mise au point de ces nouvelles structures cellulaires polymères permet d'élargir le champ des propriétés des matériaux allégées correspondants. On peut citer notamment l'obtention de matériaux ayant des propriétés très diversifiées sur les plans mécaniques, rhéologiques, électriques, thermiques... etc. Ces nouvelles structures présentent notamment l'avantage de présenter des tailles des cellules plus petites que celles des structures polymériques de l'art antérieur, à densité au moins équivalente voire inférieure à la densité des structures de l'art antérieur. D'autres avantages apparaîtront à la lecture de la description détaillée de l'invention.
L'invention a pour objet une structure polymérique cellulaire comprenant des nanotubes de carbone en particulier une structure dans laquelle le pourcentage en poids de nanotubes de carbone dans la structure polymère est inférieur à 60%, de préférence compris entre 10 et 50% ou encore de préférence compris entre 0,1 et 3%. Dans la structure selon l'invention la taille moyenne des cellules est inférieure à 150 microns de préférence comprise entre 20 et 80 microns
Dans la structure selon l'invention le volume vide est de au moins 50%, de préférence compris entre 50% et 99%.
Dans la structure selon l'invention la densité apparente est inférieure à 100Kg/m3, de préférence comprise entre 10 et 60 Kg/m3.
Selon un mode de réalisation, le polymère est choisi dans le groupe constitué des (co)polymères thermoplastiques ou thermodurcissables, les élastomères et les résines, de préférence choisi parmi le PVDF, les EVA, les PEBA, les PA ou encore mieux le polymère choisi est un polystyrène ou un polyuréthane.
Selon un autre mode de réalisation la structure selon l'invention comprend les résidus d'un agent d'expansion, en particulier l'agent d'expansion est choisi dans le groupe constitué des composés organiques ou inorganiques liquides ou gazeux, des composants chimiques solides capables de générer des cellules par décomposition, des composés gazeux ou un mélange de ceux-ci.
Selon un autre mode de réalisation dans la structure selon l'invention, les parois des cellules comprennent aussi des pores. L'invention a aussi pour objet, l'utilisation d'une structure telle que décrite ci-dessus dans les domaines de l'emballage alimentaire, l'isolation, les matériaux de structures allégées, la fabrication de membranes, d'électrodes.
L'invention a aussi pour objet le procédé de préparation d'une structure cellulaire polymérique comprenant les étapes de a) préparation du mélange de composite polymère/NTC ; b) solubilisation durant laquelle on introduit l'agent d'expansion qui se solubilise dans le mélange ; c) soumission du mélange à des conditions chimiques ou physiques pour créer des cellules dans la structure polymérisée. Selon un mode particulier, l'agent d'expansion utilisé dans le procédé est un gaz supercritique de préférence le CO2 supercritique ou un gaz fluoré choisi parmi les chlorofluorocarbures (CFC), les hydrochlorofluorocarbures (HCFC) les hydrofiuorocarbures (HFC).
Selon une variante, dans le procédé ci dessus on soumet le mélange de l'étape c) à une décompression pour créer les cellules.
Selon une autre variante du procédé, on soumet le polymère issu de l'étape c) à une carbonisation suivie d'une étape de graphitisation à une température supérieure à 10000C. Brève description des figures.
La figure 1 montre l'évolution de la viscosité en fonction du gradient de cisaillement de différent mélange NTC/polystyrène lacqrenel450 commercialisé par Total Petrochemicals.
Les figures 2 et 3 montrent l'évolution du diamètre cellulaire et de la densité de la mousse en fonction de différent % de NTC incorporés et en fonction de la température d'expansion utilisée dans le procédé de moussage.
La figure 4 montre l'orientation des NTC lors de l'expansion via l'écoulement biaxial du polymère fondu. Exposé détaillé de modes de réalisation de l'invention.
L'invention fournit une structure polymérique cellulaire comprenant des nanotubes de carbone.
Les nanotubes de carbone utilisés dans l'invention ont un rapport de forme (L/D) supérieur ou égal à 5 et de préférence supérieur ou égale à 50 et avantageusement supérieur ou égal à 100. Les nanotubes de carbone présentent en général une structure tabulaire de diamètre inférieur à 100 nm, préférentiellement compris entre 0,4 et 50 nm et/ou en général de longueur supérieure à 5 fois leur diamètre, préférentiellement supérieure à 50 fois leur diamètre et avantageusement comprise de 100 à 100000 ou encore comprise de 1000 à 10000 fois leur diamètre.
Les nanotubes de carbone sont constitués d'une variété allotropique du carbone dans une configuration sp2 consistant en un long tube simple, double ou multi parois de cycles aromatiques accolés les uns aux autres, agrégés ou non.
Lorsque le nanotube est constitué d'un seul tube, on parlera de mono-paroi, de deux tubes on parlera de doubles parois. Au-delà, on parlera de multi parois. La surface externe des nanotubes peut être uniforme ou texturée.
On citera à titre d'exemple, les nanotubes mono-parois, les bi-parois ou les multi -parois, les nanofibres, ....
Ces nanotubes peuvent être traités chimiquement ou physiquement pour les purifier ou les fonctionnaliser dans le but de leurs conférer de nouvelles propriétés de dispersion, et d'interaction avec les composants de la formulation telles que les matrices polymère, les élastomères, les résines thermodurcissables, les huiles, les graisses, les formulations à base aqueuse ou solvant telles que les peintures, les adhésifs, les vernis.
Les nanotubes de carbone peuvent être préparés selon différents procédés, tels que le procédé Arc électrique (C. Journet et al. dans Nature (london), 388 (1997) 756, le procédé phase gaz CVD, Hipco (P. Nicolaev et al. dans Chem. Phys. Lett., 1999, 313, 91), le procédé
Laser (A.G. Rinzler et al. dans Appl. Phys. A, 1998, 67, 29), ou tout procédé donnant des formes tabulaires vides ou remplies de substances carbonées ou autres que le carbone On pourra se référer par exemple plus particulièrement aux documents WO 86/03455, WO 03/002456 pour la préparation de nanotubes de carbone multi-parois distincts ou non agrégés.
La structure cellulaire polymérique comprend un ou plusieurs polymères choisis parmi les polymères et copolymères, notamment thermoplastiques, thermodurcissables, les résines thermoplastiques, les polymères acryliques, les polymères méthacryliques.
A titre d'exemple on peut citer les polymères styréniques, les polyoléfmes, les polyuréthanes, les copolymères de l'éthylène tels que les Evatanes et les Lotryl commercialisés par Arkema, les caoutchoucs tels que ceux utilisés dans l'étanchéité. Comme exemple de résines thermoplastiques on peut citer les résines: acrylonitrile-butadiène-styrène (AB S), acrylonitrile-éthylène/propylène-styrène (AES), méthylméthacrylate-butadiène-styrène (MBS), acrylonitrile-butadiène-méthylméthacrylate-styrène (ABMS), acrylonitrile-n-butylacrylate-styrène (AAS), les gommes de: polystyrène modifié, les résines de: polyéthylène, polypropylène, polystyrène, polyméthyl-méthacrylate, chlorure de polyvinyle, acétate de cellulose, polyamide, polyester, polyacrylonitrile, polycarbonate, polyphénylèneoxide, polycétone, polysulphone, polyphénylènesulfide, les résines : fluorées, siliconées, polyimide, polybenzimidazole.
Comme exemples de résines thermodurcissables, on peut citer, les résines à base de phénol, urée, mélamine, xylène, diallylphthalate, époxy, aniline, furane, polyuréthane, etc.
Comme exemples d'élastomères thermoplastiques utilisables dans la présente invention on peut citer les élastomères de type polyoléfme, de type styrène comme les co-polymères bloc styrène-butadiène-styrène ou co-polymères bloc styrène-isoprène-styrène ou leur forme hydrogénée, les élastomères de type PVC, uréthane, polyester, polyamide(PA), les élastomères thermoplastiques de type polybutadiène comme les résines 1,2-polybutadiène ou trans-l,4-polybutadiène; les élastomères de type polyéthylène comme les copolymères méthylcarboxylate-polyéthylène, éthylène-vinylacétate (EVA), éthylène-éthylacrylate, les polyéthylène chlorés, les élastomères thermo-plastiques de type fluorés tels que les fluorures de polyvinylidène (PVDF), les polyéthers esters et les polyéthers amides comme par exemple de type polyetherbloc polyamine (PEBA) etc.,
On peut encore citer les polystyrène sulfonate (PSS), poly (1-vinyl pyrrolidone-co-vinyl acétate), poly(l- vinyl pyrrolidone-co- acide acrylique), poly (1-vinylpyrrolidone-co- dimethylaminoéthyl méthacrylate), polyvinyl sulfate, poly (sodium styrène acide sulfonique- co-acide maleique), dextran, dextran sulfate, gélatine, sérum albumine bovine, poly (méthyl méthacrylate-co-éthyl acrylate), polyallyl aminé, et leurs combinaisons. On utilise de préférence les polymères choisis parmi les PVDF, les EVA, les PEBA, les PA. La structure polymérique cellulaire est poreuse. La structure présente un volume total vide ou un volume total de pores d'au moins 50%, de préférence supérieur à 80% et de préférence supérieur à 92% ou encore de préférence compris entre 50 et 99%. Les pores ou cellules de la structure peuvent être ouverts ou feπnés selon l'application visée. La taille moyenne des cellules ou des pores dso est définie par le diamètre moyen de
50% des cellules en volume. Le diamètre moyen des cellules d5o est inférieur à 150 microns de préférence inférieur à 100 microns, de préférence inférieur à 80 microns et de préférence encore inférieur à 10 microns. Le diamètre moyen des cellules dso est compris entre 5 et 80 microns, de préférence compris entre 30 et 50 microns.
La valeur de porosité est définie par le rapport du volume de vide sur le volume géométrique de la structure. Elle peut être reliée aux notions de densité vraie dvraie, qui est la densité théorique du matériau massif et de densité apparente dapp (ou « bulk density » en anglais) du matériau comprenant les pores accessibles ou non. La relation liant la porosité vraie à la densité vraie et à la densité apparente est la suivante : Porosité = 1- (dapp /dvraie). La porosité totale est déduite de la mesure de la densité apparente à l'aide d'un pycnomètre.
La structure a une densité apparente inférieure à 100Kg/m3, de préférence comprise entre 10 et 60Kg/m3. La densité est mesurée par un pycnomètre.
Le procédé de préparation d'une structure cellulaire polymérique à savoir le procédé de moussage est bien connu dans le domaine des mousses polymères. Le procédé de moussage peut être de nature physique basé sur l'utilisation d'agents d'expansion choisi dans le groupe constitué des composés organiques ou des composés inorganiques liquides ou gazeux ou de leur mélange. De préférence, l'agent d'expansion est choisi parmi le groupe des composés organiques volatiles constitué par les hydrocarbures, les chlorofluorocarbures (CFC), les hydrochlorofluorocarbures (HCFC), les hydrofluorocarbures (HFC)...
De préférence encore, l'agent d'expansion est choisi parmi le groupe des composés inorganiques constitués par les gaz en particulier l'azote, l'hélium, le gaz carbonique, les fluides supercritiques, en particulier le CO2, les hydrocarbures, les chlorofluorocarbures (CFC), les hydrochlorofluorocarbures (HCFC), les hydrofluorocarbures (HFC)... Le procédé de moussage peut aussi être de nature chimique basé sur l'utilisation d'un agent d'expansion choisi parmi des composants chimiques capables de générer des cellules par décomposition. On peut aussi utiliser dans les procédés de moussage, à la fois des agents d'expansion physique et chimique tels que décrits ci-dessus.
Le procédé de préparation des structures cellulaires comprenant des nanotubes de carbone mis en œuvre qui se décompose en trois phases est le suivant :
La première phase est la phase préparation d'un mélange composite polymère/NTC. Ce mélange peut être préparé par voie fondue dans un mélangeur interne par exemple du type Haak. Le mélange ainsi obtenu est broyé. Cette méthode de préparation est donnée à titre d'exemple pour la démonstration de l'invention. On peut utiliser toutes les méthodes de préparation de composite à base de polymères, résines et élastomères. On peut citer par exemple les extrudeuses mono ou double vis, les bus, les mélangeurs statiques, etc .. Le mélange obtenu peut être utilisé tel que ou après dilution dans une matrice compatible ou non. Dans ce cas le premier mélange est appelé master batch ou mélange maître. La deuxième phase est la phase de solubilisation durant laquelle on introduit l'agent d'expansion qui se solubilise dans le mélange.
La troisième phase est la phase de création des cellules dans la phase polymère par soumission du mélange à des conditions chimiques ou physiques adaptées pour que l'agent d'expansion joue son rôle.
En particulier lorsque l'agent d'expansion est un fluide supercritique par exemple le
CO2, celui-ci est introduit sous haute pression et se solubilise dans mélange polymère/NTC jusqu'à une concentration à saturation puis le mélange est soumis à une décompression qui entraîne la nucléation et la croissance cellulaire à l'origine de la formation des structures cellulaires ou mousse composite polymère/NTC.
Les structures micro-cellulaires obtenues ont un % en poids de NTC dans la structure polymère supérieur à 0,05%, de préférence supérieur à 0,1%, ou encore de préférence compris entre 0,1 et 3%. Préférentiellement et aussi pour des raisons de coût de formulation, le pourcentage en poids de nanotubes de carbone introduit dans la structure est inférieur à 60%, de préférence inférieur à 50% de préférence encore compris entre 10 et 50% ou encore compris entre 0,1 et 15%.
Le procédé décrit ci-dessus peut encore être suivi par une étape durant laquelle on carbonise le polymère suivi d'une étape de graphitisation à haute température (supérieure à 10000C). Dans ce cas le taux de NTC dans le polymère est supérieur à 2% en poids par rapport au polymère, de préférence compris entre 5 et 60% ou encore compris entre 10 et 50%. On obtient alors un matériau allégé carboné ayant une double porosité : celle issue de l'étape de moussage avec le même diamètre que les cellules et une deuxième associée aux vides laissés par le départ du polymère et qui se trouve dans les parois cellulaires. Cette deuxième porosité, beaucoup plus petite, par exemple inférieure à 5 microns peut être modulée en associant une autre charge aux NTC telle que du graphite ou tout type de charge conductrices électriquement ou thermiquement ou bien isolantes. Le choix du taux de NTC par rapport à la charge additionnelle peut varier de 0 à 100%, cela dépendra de l'application visée et de la porosité.
L'invention offre l'avantage que les matériaux allégés obtenus ont une densité équivalente comparée à celle des matériaux cellulaires polymériques sans nanotubes de carbone tout en ayant des tailles de cellules nettement plus petites. Ce qui permet notamment de viser à améliorer les propriétés mécaniques, isolation ou conduction du matériau allégé. La présence des NTC dans le polymère a l'avantage de jouer le rôle d'agent de nucléation au cours du procédé de moussage et de favoriser de ce fait l'obtention de cellules plus petites que celles d'une mousse sans, NTC. On peut ainsi atteindre une diminution de plus de 30% du diamètre moyen dso des cellules dans les structures polymères selon l'invention par rapport à celui des mousses sans NTC et ce à même densité apparente. Par ailleurs, les propriétés d'isolant électrique et/ou thermique ou de conducteur électrique et/ou thermique des matériaux allégées comprenant les structures cellulaires polymériques selon l'invention dépendent des taux de nanotubes de carbone incorporés. Il reviendra donc à l'homme de l'art de choisir le bon taux de NTC de manière à répondre à son cahier des charges.
L'utilisation des composites à base de nanotubes de carbone dans le procédé de moussage présente l'avantage de conférer au composite une bonne tenue à l'état fondu. Cette propriété est évaluée par la viscosité à bas gradient de cisaillement (voire figure 1) Lors de l'expansion, les forces visqueuses s'opposent à celles induites par le gaz lors de l'expansion des cellules.
Les structures allégées à simple porosité selon l'invention peuvent être utilisées dans les applications suivantes: emballage, isolation, matériaux allégés, étanchéité etc..
Les matériaux à double porosité peut trouver des applications des la fabrications des électrodes, des membranes, ... dans les marchés du stockage de l'énergie tels que les batteries, les supercapacités.
Les structures selon l'invention peuvent aussi contenir des résidus de l'agent d'expansion utilisé dans le procédé de moussage, La présence de cet agent d'expansion qui reste dans les cellules a généralement un impact sur les propriétés de conductivité du matériau allégé final et sans être lié par une quelconque théorie, on peut avancer que la présence des NTC dans une structure polymère cellulaire peut freiner la diffusion de l'agent d'expansion notamment lorsque celui-ci est un gaz. Ceci pourrait avoir un impact positif sur le pouvoir isolant ou conducteur du matériau allégé final selon l'invention En effet, la présence de NTC orientés dans les parois cellulaires (voir figure 4) ne peut que ralentir la diffusion du gaz d'expansion. Exemples
Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.
On utilise des nanotubes de carbone obtenus selon le procédé décrit dans le brevet PCT WO 03/002456 A2. Ces nanotubes ont un diamètre compris entre 10 et 30 nm et une longueur > 0,4μm. Ils se présentent, dans la composition finale, sous forme dispersée afin de tirer profit des propriétés des NTC.
Pour la structure cellulaire expansée de référence on utilise un polystyrène 1450. Le polystyrène 1450 est produit par la société Total Petrochemcials.
Sauf indication contraire, les quantités sont exprimées en poids.
Dans ces exemples, des mélanges de polystyrène à différentes concentrations de NTC 0,5 et 1% de NTC ont été testés dans un procédé de moussage à base de CO2 supercritique selon le schéma en trois phases suivant:
La première est la phase de fusion. Le polymère ou composite est placé à haute température dans un réacteur du type autoclave (généralement entre 190°C et 200°C pour un PS) sous vide pour éviter la dégradation du polymère; une pompe à vide est connectée à la vanne d'entrée du réacteur par une conduite flexible. La durée de la phase de fusion est généralement d'environ 2 heures.
La deuxième phase est la phase de solubilisation. Après avoir arrêté la pompe à vide, on règle la consigne de température pour la phase de solubilisation. Le CO2 est acheminé à l'aide d'une pompe munie d'un refroidisseur. La vanne d'entrée est ouverte en réglant la consigne à la pression de travail et en ouvrant la vanne d'alimentation en air de la pompe. La pompe démarre et la pression s'élève dans l'autoclave. Lorsque la pression de travail est atteinte, la vanne d'entrée se ferme automatiquement. La durée de la phase de solubilisation est généralement d'environ 17 heures. Le CO2 sous haute pression est dans un état supercritique et se solubilisera dans le polystyrène jusqu'à une concentration correspondant à la concentration de saturation pour la pression et la température de travail.
La troisième phase est la phase de décompression ou de moussage du polymère composite. La consigne de température est réglée à la température ambiante pour démarrer le refroidissement de l'autoclave généralement par vortex. On règle une consigne pour ouvrir la vanne de sortie ce qui entraîne une dépressurisation à une vitesse imposée par la pression et la configuration des conduites. Ceci entraîne la nucléation et la croissance cellulaire à l'origine de la formation de la mousse. L'intérieur de l'autoclave peut être refroidi par une méthode plus efficace à la fin de la dépressurisation. On ouvre le réacteur rapidement pour récupérer les mousses.
On prépare diverses structures cellulaires selon l'invention conformément au procédé décrit ci-dessus, avec des teneurs en nanotubes variables, de 0 à 1 %.
Pour étudier leurs propriétés, nous avons choisi des structures en polystyrène contenant 0%, 0,5%, et 1% de nanotubes. Ces compositions sont référencées A, B et C. Exemple 1.
Sur quelques mélanges, nous avons réalisé des mousses en fonction de la température à une pression de CO2 de 140 bars. Les résultats obtenus en terme de densité et de taille des cellules sont donnés dans les figures 1 à 3 et le tableau 1.
Tableau 1 :
Figure imgf000011_0001
Résultats des essais.
La Figure 1 montre l'évolution de la viscosité en fonction du gradient de cisaillement. L'analyse rhéologique des différents mélanges NTC/polystyrène 1450 montre l'augmentation de la viscosité à faible gradient de cisaillement. Cette augmentation est bénéfique pour l'obtention d'une structure micro-cellulaire.
Les Figure 2 et 3 montrent l'évolution du diamètre cellulaire et de la densité de la mousse en fonction des différents % en poids de NTC incorporés et de la température d'expansion utilisée dans le procédé de moussage. A partir des résultats montrés dans les courbes des figures 2 et 3 et dans le tableau I5 on voit bien que à 0,5 % en poids de NTC additionné au PS 1450, on diminue le diamètre cellulaire de 51 % en moyenne par rapport au PS 1450 pur et ce tout en gardant une densité constante. Ce résultat traduit bien l'effet de nucléation des NTC qui se traduit par une augmentation du nombre de cellule. Augmenter la quantité de nanotubes de carbone dans la matrice de polymère n'a plus d'effet sur la nucléation. Par contre, il peut permettre de gérer la conductivité thermique et la conductivité électrique et la rigidité mécanique.

Claims

REVENDICATIONS.
1. Structure polymérique cellulaire comprenant des nanotubes de carbone dont le pourcentage en poids dans la structure polymère est inférieur à 60%, de préférence compris entre 10 et 50% ou encore de préférence compris entre 0,1 et 3%, caractérisée en ce que la taille moyenne des cellules est inférieure à 150 microns.
2. Structure polymérique cellulaire comprenant des nanotubes de carbone dont le pourcentage en poids dans la structure polymère est inférieur à 60%, de préférence compris entre 10 et 50% ou encore de préférence compris entre 0,1 et 3%, caractérisée en ce que la taille moyenne des cellules est de préférence comprise entre 20 et 80 microns
3. Structure selon l'une des revendications 1 à 2 ayant un volume vide d'au moins 50%, de préférence compris entre 50% et 99%.
4. Structure selon l'une des revendications 1 à 3 ayant une densité apparente inférieure à 100Kg/m3, de préférence comprise entre 10 et 60 Kg/m3.
5. Structure selon l'une des revendications 1 à 4 dans laquelle le polymère est choisi dans le groupe constitué des (co)polymères thermoplastiques ou thermodurcissables, les élastomères et les résines.
6. Structure selon l'une des revendications 1 à 6 dans laquelle le polymère est choisi parmi le PVDF, les EVA3 les PEBA, les PA.
7. Structure selon l'une des revendications 1 à 5 dans laquelle le polymère est un polystyrène.
8. Structure selon l'une des revendications 1 à 5 dans laquelle le polymère est un polyurethane.
9. Structure selon l'une des revendications 1 à 8 comprenant les résidus d'un agent d'expansion.
10. Structure selon la revendication 9 dans laquelle l'agent d'expansion est choisi dans le groupe constitué des composés organiques ou inorganiques liquides ou gazeux, des composants chimiques solides capables de générer des cellules par décomposition, des composés gazeux ou un mélange de ceux-ci.
11. Structure selon l'une des revendications 1 à 10 dans laquelle les parois des cellules comprennent aussi des pores.
12. Utilisation d'une structure selon l'une des revendications 1 à 11 dans les domaines de l'emballage alimentaire, l'isolation, les matériaux de structures allégées, la fabrication de membranes, d'électrodes.
13. Procédé de préparation d'une structure cellulaire polymérique selon l'une des revendications 1 à 11 comprenant les étapes de a) préparation du mélange de composite polymère/NTC ; b) solubilisation durant laquelle on introduit l'agent d'expansion qui se solubilise dans le mélange ; c) soumission du mélange à des conditions chimiques ou physiques pour créer des cellules dans la structure polymérisée.
14. Procédé selon la revendication 13 dans lequel l'agent d'expansion est un gaz supercritique de préférence le CO2 supercritique ou un gaz fluoré choisi parmi les chlorofiuorocarbures (CFC), les hydrochlorofluorocarbures (HCFC) les hydrofluorocarbures (HFC).
15. Procédé selon la revendication 13 ou 14 dans lequel on soumet le mélange de l'étape c) à une décompression pour créer les cellules.
16. Procédé selon l'une des revendications 13 à 15 dans lequel on soumet le polymère issu de l'étape c) à une carbonisation suivie d'une étape de graphitisation à une température supérieure à 10000C.
PCT/FR2006/000821 2005-04-27 2006-04-14 Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications WO2006114495A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008508251A JP2008539295A (ja) 2005-04-27 2006-04-14 カーボンナノチューブを含むポリマーをベースにした気泡構造と、その製造方法および使用
EP06743695A EP1877474A2 (fr) 2005-04-27 2006-04-14 Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications
US11/910,747 US20110039089A1 (en) 2005-04-27 2006-04-14 Polymer-based cellular structure comprising carbon nanotubes, method for its production and uses thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0504231 2005-04-27
FR0504231A FR2885131B1 (fr) 2005-04-27 2005-04-27 Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications
US75488805P 2005-12-29 2005-12-29
US60/754,888 2005-12-29

Publications (2)

Publication Number Publication Date
WO2006114495A2 true WO2006114495A2 (fr) 2006-11-02
WO2006114495A3 WO2006114495A3 (fr) 2007-01-25

Family

ID=35241295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000821 WO2006114495A2 (fr) 2005-04-27 2006-04-14 Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications

Country Status (6)

Country Link
US (1) US20110039089A1 (fr)
EP (1) EP1877474A2 (fr)
JP (1) JP2008539295A (fr)
KR (1) KR20080003843A (fr)
FR (1) FR2885131B1 (fr)
WO (1) WO2006114495A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008091308A2 (fr) * 2007-01-19 2008-07-31 Dow Global Technologies Inc. Mousse polymère contenant de longs nanotubes de carbone
WO2009092785A1 (fr) * 2008-01-25 2009-07-30 Nmc S.A. Compositions de mousse ignifuge
WO2010063888A1 (fr) * 2008-12-02 2010-06-10 Valtion Teknillinen Tutkimuskeskus Couche de catalyseur pour applications électrochimiques
WO2011042800A1 (fr) 2009-10-07 2011-04-14 Polimeri Europa S.P.A. Compositions de nanocomposites polymères de thermoplastique expansible à capacité d'isolation thermique améliorée
WO2011055198A1 (fr) 2009-11-03 2011-05-12 Polimeri Europa S.P.A. Procédé de préparation de plaquettes de graphène nanométriques qui présentent une dispersibilité élevée dans des matrices polymères de faible polarité et compositions polymères relatives

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907442B1 (fr) * 2006-10-19 2008-12-05 Arkema France Materiau composite conducteur a base de polymere thermoplastique et de nanotube de carbone
KR101470524B1 (ko) 2009-06-30 2014-12-08 한화케미칼 주식회사 혼화성이 증대된 복합탄소소재 및 이의 연속적인 제조 방법
US20110172080A1 (en) * 2009-07-24 2011-07-14 Pujari Vimal K Dry and Wet Low Friction Silicon Carbide Seal
WO2011081485A2 (fr) * 2009-12-31 2011-07-07 고려대학교 산학협력단 Composite de nanotubes de carbone-mousse de polyuréthane, et son procédé de préparation
JP5775366B2 (ja) * 2011-06-06 2015-09-09 積水化学工業株式会社 炭素質材料−ポリマー複合材料の製造方法
KR101526655B1 (ko) 2013-03-21 2015-06-05 현대자동차주식회사 탄소나노튜브 적용 발포 우레탄 폼을 이용한 자동차용 흡음재와 그 제조방법
KR102077469B1 (ko) * 2015-12-21 2020-04-03 한국건설기술연구원 단열재 및 이의 제조 방법
US10787303B2 (en) 2016-05-29 2020-09-29 Cellulose Material Solutions, LLC Packaging insulation products and methods of making and using same
US11078007B2 (en) 2016-06-27 2021-08-03 Cellulose Material Solutions, LLC Thermoplastic packaging insulation products and methods of making and using same
RU2654948C2 (ru) * 2016-11-21 2018-05-23 МСД Текнолоджис С.а.р.л. Композиционный материал на основе термопластичного полимера и способ его получения
RU2669823C1 (ru) * 2017-11-07 2018-10-16 Кирилл Олегович Морозов Способ получения нанокомпозитного материала
EP3747029B1 (fr) * 2018-01-31 2024-02-28 Illinois Institute Of Technology Procédé et appareil de stimulation de cellules pour la réparation de tissus
CN109320760B (zh) * 2018-10-11 2021-06-04 山东崧霖新材料有限公司 一种碳纳米管/聚氨酯/聚偏氟乙烯吸油泡沫的制备方法
EP3660083A1 (fr) * 2018-11-30 2020-06-03 SABIC Global Technologies B.V. Mousses polymères comprenant des nanotubes de carbone fonctionnalisés
CN109608780A (zh) * 2018-12-31 2019-04-12 王爱绿 一种阻燃发泡建筑保温板及其制备方法
TW202035544A (zh) * 2019-03-19 2020-10-01 日勝化工股份有限公司 發泡薄膜
CN111363187B (zh) * 2020-05-08 2022-06-10 浙江师范大学 一种具有多孔结构的聚偏氟乙烯基聚合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369573A (ja) * 1989-08-07 1991-03-25 Dainippon Ink & Chem Inc 炭素繊維断熱材
US6258864B1 (en) * 1999-01-20 2001-07-10 Cabot Corporation Polymer foam containing chemically modified carbonaceous filler
WO2003085681A1 (fr) * 2002-04-01 2003-10-16 World Properties, Inc. Mousses polymeres et elastomeres electroconducteurs et leurs procedes de fabrication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5445327A (en) * 1989-07-27 1995-08-29 Hyperion Catalysis International, Inc. Process for preparing composite structures
JP2862578B2 (ja) * 1989-08-14 1999-03-03 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド 樹脂組成物
MY116407A (en) * 1996-07-04 2004-01-31 Shell Int Research Process for the preparation of polymer particles
US6640420B1 (en) * 1999-09-14 2003-11-04 Tyco Electronics Corporation Process for manufacturing a composite polymeric circuit protection device
US6593384B2 (en) * 2000-05-25 2003-07-15 Trexel, Inc. Polymer foam processing with low blowing agent levels
FR2816626A1 (fr) * 2000-11-13 2002-05-17 Atofina Materiau composite polymerique conducteur a resistance auto-controlee par la temperature
EP1352022A4 (fr) * 2000-12-04 2004-03-24 Nova Chem Inc Particules cellulaires moussees d'une composition polymere expansible
FR2826646B1 (fr) * 2001-06-28 2004-05-21 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
AU2004267408B2 (en) * 2003-08-15 2009-01-08 Nova Chemicals (International) S.A. Process for processing expandable polymer particles and foam article thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369573A (ja) * 1989-08-07 1991-03-25 Dainippon Ink & Chem Inc 炭素繊維断熱材
US6258864B1 (en) * 1999-01-20 2001-07-10 Cabot Corporation Polymer foam containing chemically modified carbonaceous filler
WO2003085681A1 (fr) * 2002-04-01 2003-10-16 World Properties, Inc. Mousses polymeres et elastomeres electroconducteurs et leurs procedes de fabrication

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008091308A2 (fr) * 2007-01-19 2008-07-31 Dow Global Technologies Inc. Mousse polymère contenant de longs nanotubes de carbone
WO2008091308A3 (fr) * 2007-01-19 2009-02-19 Dow Global Technologies Inc Mousse polymère contenant de longs nanotubes de carbone
WO2009092785A1 (fr) * 2008-01-25 2009-07-30 Nmc S.A. Compositions de mousse ignifuge
WO2010063888A1 (fr) * 2008-12-02 2010-06-10 Valtion Teknillinen Tutkimuskeskus Couche de catalyseur pour applications électrochimiques
WO2011042800A1 (fr) 2009-10-07 2011-04-14 Polimeri Europa S.P.A. Compositions de nanocomposites polymères de thermoplastique expansible à capacité d'isolation thermique améliorée
WO2011055198A1 (fr) 2009-11-03 2011-05-12 Polimeri Europa S.P.A. Procédé de préparation de plaquettes de graphène nanométriques qui présentent une dispersibilité élevée dans des matrices polymères de faible polarité et compositions polymères relatives

Also Published As

Publication number Publication date
FR2885131A1 (fr) 2006-11-03
EP1877474A2 (fr) 2008-01-16
WO2006114495A3 (fr) 2007-01-25
JP2008539295A (ja) 2008-11-13
KR20080003843A (ko) 2008-01-08
US20110039089A1 (en) 2011-02-17
FR2885131B1 (fr) 2008-03-07

Similar Documents

Publication Publication Date Title
WO2006114495A2 (fr) Structure cellulaire a base de polymere comprenant des nanotubes de carbone, son procede de preparation et ses applications
EP2561011B1 (fr) Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
EP3283594B1 (fr) Materiau pour le stockage thermique
US11111343B2 (en) Gels and nanocomposites containing ANFS
EP1885790B1 (fr) Procede de dispersion de nanotubes de carbone dans une matrice polymerique
EP2780401B1 (fr) Procede de preparation d'une composition pateuse a base de charges conductrices carbonees
EP2193160A2 (fr) Procédé de préparation de matériaux composites
US7812081B2 (en) Methods of making a mixture for a PTFE membrane with inorganic materials, and compositions related thereto
EP1995274A1 (fr) Procédé de préparation de pré-composites à base de nanotubes, notamment de carbone
WO2010046606A1 (fr) Procédé de préparation d'un matériau composite thermoplastique à base de nanotubes, notamment de carbone
FR2923823A1 (fr) Aerogels de nanotubes de carbone
FR2958084A1 (fr) Melange maitre de charges conductrices carbonees pour les formulations liquides, notamment dans les batteries li-ion
WO2006072741A1 (fr) Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice et applications d'une telle composition.
EP3238295B1 (fr) Matiere active d'électrode pour batterie li/s
CA2865480C (fr) Composition de polyfluorure de vinylidene
WO2010109118A1 (fr) Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes
Esawi et al. Effect of processing technique on the dispersion of carbon nanotubes within polypropylene carbon nanotube‐composites and its effect on their mechanical properties
WO2009047456A2 (fr) Procede continu d ' obtention de fibres composites a base de particules colloïdales et fibre obtenue par ce procede
WO2017197299A1 (fr) Compositions et procédés pour la fabrication d'électrode
FR3010089A1 (fr) Composition de polymeres fluores thermoplastiques pour les tubes off-shore
WO2020201650A1 (fr) Formulation d'électrode pour batterie li-ion et procédé de fabrication d'électrode par extrusion a faible temps de séjour
FR3033328A1 (fr) Composition liquide de nanocharges carbonees pour les formulations utilisees dans les batteries au plomb.
EP3737640A1 (fr) Matiere solide agglomeree de nanotubes de carbone desagreges
FR3094710A1 (fr) Procédé de préparation d’une composition pâteuse comprenant des nanotubes de carbone
WO2020058627A1 (fr) Compositions pour plaques bipolaires et methodes de fabrication de ces compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006743695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008508251

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077024780

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006743695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910747

Country of ref document: US