WO2006112586A1 - Flat plate-type heat pipe - Google Patents

Flat plate-type heat pipe Download PDF

Info

Publication number
WO2006112586A1
WO2006112586A1 PCT/KR2006/000087 KR2006000087W WO2006112586A1 WO 2006112586 A1 WO2006112586 A1 WO 2006112586A1 KR 2006000087 W KR2006000087 W KR 2006000087W WO 2006112586 A1 WO2006112586 A1 WO 2006112586A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
flat plate
type heat
hole
present
Prior art date
Application number
PCT/KR2006/000087
Other languages
French (fr)
Inventor
Seok Hwan Moon
Gunn Hwang
Sang Choon Ko
Sung Weon Kang
Chang Auck Choi
Original Assignee
Electronics And Telecommunications Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics And Telecommunications Research Institute filed Critical Electronics And Telecommunications Research Institute
Priority to JP2007556965A priority Critical patent/JP2008531966A/en
Priority to US11/815,364 priority patent/US20080185128A1/en
Publication of WO2006112586A1 publication Critical patent/WO2006112586A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations

Abstract

Provided is a flat plate-type heat pipe formed of a flat pipe having a predetermined through-hole formed therein and a plurality of grooves extending from an inner surface of the through-hole in a longitudinal direction so that, while the interior of the heat pipe is in a vacuum state, heat in the heat pipe is discharged to the exterior due to a phase change of between liquid and gaseous states of working fluid and the working fluid flows by a capillary force produced from the plurality of grooves, whereby it is possible to obtain a strong capillary force and an excellent cooling effect while it is manufactured through a simple process.

Description

Description FLAT PLATE-TYPE HEAT PIPE
Technical Field
[1] The present invention relates to a flat plate-type heat pipe and, more particularly, to a fine structure of flat plate-type heat pipe which is formed of a flat pipe having a predetermined through-hole formed therein and a plurality of grooves having at least one corner formed at an inner surface of the through-hole such that a liquid working fluid flows by a capillary force produced in the corners, whereby it is possible to improve thermal performance, to increase productivity by manufacturing the heat pipe using a simple process, and to employ to a compact and thin electronic device. Background Art
[2] In general, chips and systems packaged in an electronic device have been highly integrated and miniaturized as semiconductor manufacturing technology is developed. According to the tendency, since heat density of components included in the electronic device is remarkably increased, it is required to employ a cooling system capable of effectively dissipating the heat density. Specially, since the electronic device is thinned together with the miniaturization thereof, the cooling system should be also miniaturized.
[3] Conventional cooling systems such as a heat sink, fan, compact heat pipe of a circular cross-section having a diameter larger than 3mm, and so on are applicable to the miniaturized electronic device.
[4] The heat sink has been widely used as a basic structure of a cooling means since it can be freely manufactured regardless of its size and thickness. However, when it is required for the heat sink to have a very small size, heat dissipation may be relatively decreased due to a reduction of a heat transfer area.
[5] It is difficult for the fan to be manufactured in a small size, and therefore, reliability of the fan may be decreased.
[6] The miniaturized heat pipe of a circular cross-section having a diameter larger than
3mm may be used to be adapted to a thin layer structure. However, since the miniaturized heat pipe is designed to have a circular cross-section, when it is pressed to be adapted to the miniaturized and thin electronic device, the heat transfer performance may be largely decreased due to a structure change of wick, and so on.
[7] Therefore, a fine heat pipe having a diameter smaller than 3mm is required to be adapted to the miniaturized and thin electronic device. Disclosure of Invention Technical Problem [8] The present invention is directed to a flat plate-type heat pipe formed of a flat pipe having a predetermined through-hole formed therein and a plurality of grooves having at least one corner formed at an inner surface of the through-hole so that a liquid working fluid flows by a capillary force produced in the corners, whereby it is possible to improve thermal performance, to increase productivity by manufacturing the heat pipe using a simple process, and to be adapted to a compact and thin electronic device. Technical Solution
[9] One aspect of the present invention is to provide a fine structure of flat plate-type heat pipe formed of a flat pipe having a predetermined through-hole formed therein and a plurality of grooves extending from an inner surface of the through-hole in a longitudinal direction so that, while the interior of the heat pipe is in a vacuum state, heat in the heat pipe is discharged to the exterior due to a phase change of between liquid and gaseous states of working fluid, and the working fluid flows by a capillary force produced from the plurality of grooves.
[10] In this process, preferably, the heat pipe further includes a separation layer for forming a plurality of flow paths in the through-hole.
[11] Preferably, each of the plurality of grooves has at least one corner from which the capillary force is produced. Advantageous Effects
[12] As can be seen from the foregoing, the flat plate-type heat pipe in accordance with the present invention is formed of a flat pipe having a predetermined through-hole formed therein and a plurality of grooves having at least one corner formed at an inner surface of the through-hole so that a liquid working fluid is flowed by a capillary force produced from the corner, whereby it is possible to obtain a strong capillary force through structural modification of the heat pipe itself, without installing a separate wick for flowing the liquid working fluid in the heat pipe, and to improve thermal performance, to increase productivity by manufacturing the heat pipe using a simple process, and to be adapted to a compact and thin electronic device.
[13] In addition, in accordance with the present invention, it is possible to form a plurality of flow paths in one flat plate-type heat pipe by forming a plurality of separation layers in the flat plate-type heat pipe.
[14] Further, in accordance with the present invention, it is very advantageous to more obtain an inner vapor flow space to improve heat transfer performance in comparison with the conventional heat pipe having the same thickness.
[15] Although the present invention has been described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that a variety of modifications and variations may be made to the present invention without departing from the spirit or scope of the present invention defined in the appended claims, and their equivalents.
Brief Description of the Drawings
[16] FIG. 1 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a first exemplary embodiment of the present invention;
[17] FIG. 2 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a second exemplary embodiment of the present invention;
[18] FIG. 3 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a third exemplary embodiment of the present invention;
[19] FIG. 4 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a fourth exemplary embodiment of the present invention; and
[20] FIG. 5 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a fifth exemplary embodiment of the present invention. Mode for the Invention
[21] The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thickness of layers and regions are exaggerated for clarity. Like reference numerals designate like elements throughout the specification.
[22] FIG. 1 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a first exemplary embodiment of the present invention.
[23] Referring to FTG. 1, the flat plate-type heat pipe in accordance with the first embodiment of the present invention is formed of a body 100 having a flat plate shape.
[24] Preferably, the flat body 100 is made of a metal pipe manufactured using an extrusion process.
[25] In addition, the body 100 has a predetermined through-hole 105 through which a working fluid introduced from the exterior flows.
[26] A plurality of grooves 110 having a rectangular section and extending in a longitudinal direction of the through-hole 105 are formed in an inner surface of the through-hole 105.
[27] Corners 115 are formed at lower sides of the rectangular section grooves 110 to produce a capillary force such that the liquid working fluid flows.
[28] Additionally, a plurality of separation layers 120 may be formed in the through-hole
105 to form a plurality of flow paths. [29] As described above, the flat plate-type heat pipe in accordance with the first embodiment of the present invention is capable of flowing the liquid working fluid using the capillary force produced at the corners 115 of the respective rectangular section grooves 110, without using the conventional wick functioning as a passageway allowing the liquid working fluid to be flowed (returned) from a condenser section to an evaporation section. That is, the corners 115 of the rectangular section grooves 110 can function as the conventional wick.
[30] In addition, the flat plate-type heat pipe in accordance with the first embodiment of the present invention is capable of discharging inner heat to the exterior using a phase change between liquid and gaseous states of the liquid working fluid injected into the heat pipe in the state that the heat pipe is in a vacuum state.
[31] FIG. 2 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a second exemplary embodiment of the present invention.
[32] Referring to FTG. 2, the flat plate-type heat pipe in accordance with the second embodiment of the present invention is formed of a body 200 having a flat pipe shape, similar to that of the first embodiment.
[33] The body 200 has a predetermined through-hole 205 through which a working fluid introduced from the exterior flows, and a plurality of grooves 210 having a V-shaped cross-section and extending in a longitudinal direction of the through-hole 205 are formed in an inner surface of the through-hole 205.
[34] Corners 215 are formed at lower sides of the V-shaped grooves 210 to produce a capillary force such that the liquid working fluid flows.
[35] Additionally, a plurality of separation layers 220 may be formed in the through-hole
205 to form a plurality of flow paths.
[36] Meanwhile, since the flat plate-type heat pipe in accordance with the second embodiment of the present invention has the same function and effect as the first embodiment of the present invention, the description of the second embodiment will not be repeated.
[37] FIG. 3 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a third exemplary embodiment of the present invention.
[38] Referring to FIG. 3, the flat plate-type heat pipe in accordance with a third exemplary embodiment of the present invention is formed of a body 300 having a flat pipe shape, similar to that of the first embodiment of the present invention.
[39] The body 300 has a predetermined through-hole 305 through which a working fluid introduced from the exterior flows, and a plurality of grooves 310 having a trapezoid or dovetail cross-section (
) with an upper width smaller than a lower width and extending in a longitudinal direction of the through-hole 305 are formed in an inner surface of the through-hole
305. [40] Corners 315 are formed at lower sides of the trapezoid or dovetail grooves 310 to produce a capillary force such that the liquid working fluid flows. [41] Additionally, a plurality of separation layers 320 may be formed in the through-hole
305 to form a plurality of flow paths. [42] Meanwhile, since the flat plate-type heat pipe in accordance with the third embodiment of the present invention has the same function and effect as the first embodiment of the present invention, the description of the third embodiment will not be repeated. [43] FIG. 4 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a fourth exemplary embodiment of the present invention. [44] Referring to FTG. 4, the flat plate-type heat pipe in accordance with the fourth embodiment of the present invention is formed of a body 400 having a flat pipe shape, similar to that of the first embodiment of the present invention. [45] The body 400 has a predetermined through-hole 405 through which a working fluid introduced from the exterior flows, and a plurality of grooves 410 having a "
U
"-shaped cross-section and extending in a longitudinal direction of the through-hole
405 are formed in an inner surface of the through-hole 405. [46] Sharp corners 415 are formed at lower sides of the "
U
"-shaped grooves 410 to produce a capillary force such that the liquid working fluid flows. [47] Additionally, a plurality of separation layers 420 may be formed in the through-hole
405 to form a plurality of flow paths. [48] Meanwhile, since the flat plate-type heat pipe in accordance with the fourth embodiment of the present invention has the same function and effect as the first embodiment of the present invention, the description of the fourth embodiment will not be repeated. [49] FIG. 5 is an enlarged perspective view of a flat plate-type heat pipe in accordance with a fifth exemplary embodiment of the present invention. [50] Referring to FIG. 5, the flat plate-type heat pipe in accordance with the fifth embodiment of the present invention is formed of a body 500 having a flat pipe shape, similar to that of the first embodiment of the present invention. [51] The body 500 has a predetermined through-hole 505 through which a working fluid introduced from the exterior flows, and a plurality of grooves 510 having a " "-shaped cross-section and extending in a longitudinal direction of the through-hole 505 are formed in an inner surface of the through-hole 505. [52] Sharp corners 515 are formed at lower sides of the " v
"-shaped grooves 510 to produce a capillary force such that the liquid working fluid flows. [53] Additionally, a plurality of separation layers 520 may be formed in the through-hole
505 to form a plurality of flow paths. [54] Meanwhile, since the flat plate-type heat pipe in accordance with the fifth embodiment of the present invention has the same function and effect as the first embodiment of the present invention, the description of the fifth embodiment will not be repeated. [55] As described above, since the flat plate-type heat pipe in accordance with the first to fifth embodiments of the present invention having a diameter smaller than 3mm has excellent heat dissipation and heat transfer performance, it can be effectively used as a cooling means for the small and thin electronic device. [56] While the grooves 110 to 510 adapted to the first to fifth embodiments of the present invention have the rectangular, V-shaped, trapezoid (
IS
), "
U
" and "
Y
" cross-sections, but not limited thereto, the grooves may be variously modified to have at least one corner.

Claims

Claims
[1] A flat plate-type heat pipe including: a flat pipe having a predetermined through- hole formed therein; and a plurality of grooves extending from an inner surface of the through-hole in a longitudinal direction, wherein, while the interior of the heat pipe is in a vacuum state, heat in the heat pipe is discharged to the exterior due to a phase change of between liquid and gaseous states of working fluid, and the working fluid flows by a capillary force produced from the plurality of grooves.
[2] The flat plate-type heat pipe according to claim 1, further comprising a separation layer for forming a plurality of flow paths in the through-hole.
[3] The flat plate-type heat pipe according to claim 1, wherein each of the plurality of grooves has at least one corner from which the capillary force is produced.
PCT/KR2006/000087 2005-04-19 2006-01-10 Flat plate-type heat pipe WO2006112586A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007556965A JP2008531966A (en) 2005-04-19 2006-01-10 Flat plate heat pipe
US11/815,364 US20080185128A1 (en) 2005-04-19 2006-01-10 Flat Plate-Type Heat Pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050032212A KR100631050B1 (en) 2005-04-19 2005-04-19 Flat plate type heat pipe
KR10-2005-0032212 2005-04-19

Publications (1)

Publication Number Publication Date
WO2006112586A1 true WO2006112586A1 (en) 2006-10-26

Family

ID=37115274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2006/000087 WO2006112586A1 (en) 2005-04-19 2006-01-10 Flat plate-type heat pipe

Country Status (5)

Country Link
US (1) US20080185128A1 (en)
JP (1) JP2008531966A (en)
KR (1) KR100631050B1 (en)
TW (1) TWI297766B (en)
WO (1) WO2006112586A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185283A (en) * 2007-01-31 2008-08-14 Toshiba Home Technology Corp Heat pipe
CN101377392B (en) * 2007-08-27 2012-02-22 Abb研究有限公司 Heat exchanger
CN102661670A (en) * 2012-05-17 2012-09-12 程宝华 Superconducting nano heat transfer plate type heat exchanger and manufacturing method thereof
FR2976739A3 (en) * 2011-06-16 2012-12-21 Renault Sa Thermal regulation device for battery of electric storage cells to provide electrical supply to vehicle i.e. car, has enclosure provided with walls with part that is in contact with circuit, where coolant is circulated in circuit
TWI413887B (en) * 2008-01-07 2013-11-01 Compal Electronics Inc Heat pipe structure
FR2998657A1 (en) * 2012-11-28 2014-05-30 Renault Sa Reversible flat heat pipe for use in cooling or reheating plate of traction battery of e.g. electric vehicle, has wall whose surface comprises tear drop-shaped grooves, where axes of tear drop-shaped grooves are horizontal

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080076423A (en) * 2007-02-16 2008-08-20 엘에스엠트론 주식회사 Flat plate heat pipe and method for manufacturing the same
KR100942063B1 (en) 2008-03-03 2010-02-11 한국생산기술연구원 A Rectangular Channel Heat Pipe
TW201100736A (en) * 2009-06-17 2011-01-01 Yeh Chiang Technology Corp Superthin heat pipe
JP5455503B2 (en) * 2009-08-11 2014-03-26 モレックス インコーポレイテド Heat transport unit, electronic equipment
WO2011142841A2 (en) 2010-01-14 2011-11-17 University Of Virginia Patent Foundation Multifunctional thermal management system and related method
US8311708B2 (en) * 2010-02-16 2012-11-13 Ford Global Technologies, Llc Adjustable grill shutter system
US20110214841A1 (en) * 2010-03-04 2011-09-08 Kunshan Jue-Chung Electronics Co. Flat heat pipe structure
CN102012181A (en) * 2010-06-21 2011-04-13 邹飞龙 Thermal superconducting pipe of plate multi-channel special-shape cavity
US20120080170A1 (en) * 2010-10-04 2012-04-05 Hsiu-Wei Yang Plate-type heat pipe sealing structure and manufacturing method thereof
KR20120065569A (en) * 2010-12-13 2012-06-21 한국전자통신연구원 Thin plate heat pipe
KR20120065575A (en) * 2010-12-13 2012-06-21 한국전자통신연구원 Thinned flat plate heat pipe fabricated by extrusion
KR101158682B1 (en) 2010-12-30 2012-06-25 주식회사 케이에스비 Evacuated tube solar collector with multi channel plate type heat pipe
KR20130050790A (en) 2011-11-08 2013-05-16 한국전자통신연구원 Flat heat pipe and fabrication method thereof
KR20140029633A (en) * 2012-08-29 2014-03-11 한국전자통신연구원 Flat heat pipe and fabrication method thereof
KR101465628B1 (en) 2012-09-28 2014-11-28 전자부품연구원 Solar cell module
TW201437591A (en) * 2013-03-26 2014-10-01 Asustek Comp Inc Heat pipe structure
US20140352926A1 (en) * 2013-05-31 2014-12-04 Cooler Master Co., Ltd. Shell structure for handheld device
US9421648B2 (en) * 2013-10-31 2016-08-23 Asia Vital Components Co., Ltd. Manufacturing method of heat pipe structure
KR101600667B1 (en) * 2013-12-05 2016-03-07 티티엠주식회사 Thin Type Heat Pipe Provided with a Wick Fixed Obliquely
US10698458B2 (en) * 2014-06-02 2020-06-30 Microsoft Technology Licensing, Llc Integrated vapor chamber for thermal management of computing devices
US10156400B2 (en) * 2015-01-30 2018-12-18 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
KR102219482B1 (en) 2015-03-03 2021-02-25 한국전자통신연구원 Semiconductor device
CN107835926A (en) * 2015-06-19 2018-03-23 株式会社Innotm Thin type heat pipe and its manufacture method
CN105352351B (en) * 2015-11-03 2018-07-06 刘树宇 A kind of temperature-uniforming plate improved structure
US10694641B2 (en) * 2016-04-29 2020-06-23 Intel Corporation Wickless capillary driven constrained vapor bubble heat pipes for application in electronic devices with various system platforms
CN108253827B (en) * 2016-12-28 2020-06-23 神讯电脑(昆山)有限公司 Aluminum extrusion type hot plate and manufacturing method thereof
WO2018198354A1 (en) * 2017-04-28 2018-11-01 株式会社村田製作所 Vapor chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101585A (en) * 1997-09-29 1999-04-13 Furukawa Electric Co Ltd:The Plate-type heat pump and its packaging structure
JP2000193385A (en) * 1998-12-24 2000-07-14 Furukawa Electric Co Ltd:The Planar heat pipe
KR200259040Y1 (en) * 2001-09-04 2001-12-31 주식회사 한국에치피티 Flat type heat pipe
KR200297491Y1 (en) * 2002-08-26 2002-12-11 (주) 대홍기업 flat type heat pipe and heat sink

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179043A (en) * 1989-07-14 1993-01-12 The Texas A&M University System Vapor deposited micro heat pipes
US5219021A (en) * 1991-10-17 1993-06-15 Grumman Aerospace Corporation Large capacity re-entrant groove heat pipe
US5309986A (en) * 1992-11-30 1994-05-10 Satomi Itoh Heat pipe
US6216343B1 (en) * 1999-09-02 2001-04-17 The United States Of America As Represented By The Secretary Of The Air Force Method of making micro channel heat pipe having corrugated fin elements
US20040112572A1 (en) * 2002-12-17 2004-06-17 Moon Seok Hwan Micro heat pipe with poligonal cross-section manufactured via extrusion or drawing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101585A (en) * 1997-09-29 1999-04-13 Furukawa Electric Co Ltd:The Plate-type heat pump and its packaging structure
JP2000193385A (en) * 1998-12-24 2000-07-14 Furukawa Electric Co Ltd:The Planar heat pipe
KR200259040Y1 (en) * 2001-09-04 2001-12-31 주식회사 한국에치피티 Flat type heat pipe
KR200297491Y1 (en) * 2002-08-26 2002-12-11 (주) 대홍기업 flat type heat pipe and heat sink

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185283A (en) * 2007-01-31 2008-08-14 Toshiba Home Technology Corp Heat pipe
CN101377392B (en) * 2007-08-27 2012-02-22 Abb研究有限公司 Heat exchanger
TWI413887B (en) * 2008-01-07 2013-11-01 Compal Electronics Inc Heat pipe structure
FR2976739A3 (en) * 2011-06-16 2012-12-21 Renault Sa Thermal regulation device for battery of electric storage cells to provide electrical supply to vehicle i.e. car, has enclosure provided with walls with part that is in contact with circuit, where coolant is circulated in circuit
CN102661670A (en) * 2012-05-17 2012-09-12 程宝华 Superconducting nano heat transfer plate type heat exchanger and manufacturing method thereof
FR2998657A1 (en) * 2012-11-28 2014-05-30 Renault Sa Reversible flat heat pipe for use in cooling or reheating plate of traction battery of e.g. electric vehicle, has wall whose surface comprises tear drop-shaped grooves, where axes of tear drop-shaped grooves are horizontal

Also Published As

Publication number Publication date
KR100631050B1 (en) 2006-10-04
TWI297766B (en) 2008-06-11
JP2008531966A (en) 2008-08-14
TW200638016A (en) 2006-11-01
US20080185128A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
WO2006112586A1 (en) Flat plate-type heat pipe
JP5528419B2 (en) Thin film heat pipe manufactured by extrusion
US8490683B2 (en) Flat plate type micro heat transport device
US7028758B2 (en) Heat dissipating device with heat pipe
KR100495699B1 (en) Flat plate heat transferring apparatus and manufacturing method thereof
US7380585B2 (en) Loop-type heat exchange module
US7277284B2 (en) Microchannel heat sink
US10502496B2 (en) Micro vapor chamber
JP4586772B2 (en) COOLING STRUCTURE AND COOLING STRUCTURE MANUFACTURING METHOD
US20070012429A1 (en) Heat Transfer Device
KR20070088618A (en) Vapor chamber with boiling-enhanced multi-wick structure
KR20040051517A (en) Heat Transfer Device and Electro Device
US9179577B2 (en) Flat heat pipe and fabrication method thereof
US20140060780A1 (en) Flat heat pipe and fabrication method thereof
US20110048682A1 (en) Heat dissipation device
JP5344994B2 (en) Heat sink device
KR101019975B1 (en) Heat transfer device and electronic device
KR100609714B1 (en) Micro heat pipe having a cross section of a polygon structure manufactured by extrusion and drawing process
US20070251670A1 (en) Vapor chamber heat sink
JP2022142665A (en) Cooling device
KR101880533B1 (en) Sintered flat panel heat dissipation structure comprising Aluminum powder
JP2004353902A (en) Cooling system
JP2022151214A (en) Cooler
JP3167981U (en) Structure of flat plate heat pipe
CN110678038A (en) Heat abstractor and air conditioner frequency conversion module structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11815364

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007556965

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06700124

Country of ref document: EP

Kind code of ref document: A1