WO2006111124A2 - Procede et installation pour la production de biogaz a partir de residus bio-organiques - Google Patents

Procede et installation pour la production de biogaz a partir de residus bio-organiques Download PDF

Info

Publication number
WO2006111124A2
WO2006111124A2 PCT/DE2006/000516 DE2006000516W WO2006111124A2 WO 2006111124 A2 WO2006111124 A2 WO 2006111124A2 DE 2006000516 W DE2006000516 W DE 2006000516W WO 2006111124 A2 WO2006111124 A2 WO 2006111124A2
Authority
WO
WIPO (PCT)
Prior art keywords
biogas
gas
mine
production
residues
Prior art date
Application number
PCT/DE2006/000516
Other languages
German (de)
English (en)
Other versions
WO2006111124A3 (fr
Inventor
Günter Schulze
Original Assignee
Schulze Guenter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schulze Guenter filed Critical Schulze Guenter
Priority to EP06722668A priority Critical patent/EP1871891A2/fr
Priority to JP2008506910A priority patent/JP2008536668A/ja
Priority to US11/912,214 priority patent/US20080193993A1/en
Priority to AU2006236970A priority patent/AU2006236970A1/en
Priority to CA002605591A priority patent/CA2605591A1/fr
Publication of WO2006111124A2 publication Critical patent/WO2006111124A2/fr
Publication of WO2006111124A3 publication Critical patent/WO2006111124A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/18Open ponds; Greenhouse type or underground installations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50208Biologic treatment before burning, e.g. biogas generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the invention relates to a plant for the production of biogas from various organic waste materials from households, farms of agriculture and forestry and industrial and commercial enterprises (bioorganic residues) by anaerobic alkaline sludge digestion by various strains of methane bacteria with a digester and a supply line for the bioorganic residues ,
  • the invention also relates to a method for the production of biogas from bioorganic residues in which at least one naturally occurring digester different organic waste introduced and implemented according to the principle of anaerobic alkaline sludge digestion by means of various strains of methane bacteria in methane-containing biogas.
  • Methane-containing gas is also obtained, for example, from the mines of coal mines (mine gas).
  • Mine gas like biogas, also consists of the two main components, methane and carbon dioxide.
  • the mine gas escapes as a result of the loosening and pressure reduction of the seams.
  • German Offenlegungsschrift 1 758 628 the mine gas is extracted directly from the seams during exploitation by means of boreholes in order to obtain usable quantities of mine gas and at the same time to avoid explosive air-gas mixtures. Even if a mixture of methane and air is recovered due to the air contained in the shafts of the coal mine in operation, the proportion of methane at 80% is high enough for technical use.
  • DE-OS 4003487 describes a process for the stabilization of sludge introduced in a digester, in which a precursor contains a aerobic / anaerobic treatment takes place.
  • the disadvantage of this method is that in an aerobic pretreatment no biogas, but only carbon dioxide is formed.
  • German Offenlegungsschrift 1 758 628 a method for recovering mine gas from a previously partially exploited underground hard coal deposit by closing the access shafts and directing the mine gas from the mining sites to the surface is described.
  • the invention is therefore an object of the invention to provide a system and a method for the production of biogas from bio-organic residual materials, which the plant technical and energy costs and beyond the amount of work for the preparation of poorly biodegradable bio-organic residues for the implementation of large amounts of material in as an energy source utilizable methane-containing gas can be significantly reduced.
  • climate protection is to be taken into account and the greenhouse effect of carbon dioxide resulting from conventional combustion of the methane-containing gas or fossil fuels avoided.
  • a particularly positive effect of the invention is that as an energy source, the geothermal heat can be used to create a temperature level without additional heating to ensure optimal living and reaction conditions for the methane bacteria.
  • methane bacteria are very adaptable and have different strains, organic waste between 5 0 C and 70 0 C in the cryophilic range (below 10 0 C), in the mild zone (between 10 0 C and 28 0 C), in mesophilic (between 28 0 C and 42 0 C) and in the thermophilic temperature range (between 42 ° C and 70 0 C) converted into biogas. Only at a temperature above 70 0 C do the bacteria die off. Thus, these cavities are to be used as septic tanks in which, taking into account the self-heating of the bio-organic residual substances, a temperature in this temperature range is to be ensured in the course of the long-term reaction.
  • the plant according to the invention and also the method ensure the following triple use of renewable energies:
  • the biogas obtained can be supplied for energy production to known gas utilization facilities, such as combined heat and power plants and / or high-temperature fuel cells. Furthermore, the plant operating without danger to the environment can be combined with variants of the known mine gas production and can be coupled with known devices for the economic utilization of the recovered gas, in particular for the generation of electrical energy.
  • known gas utilization facilities such as combined heat and power plants and / or high-temperature fuel cells.
  • the invention provides such underground mines, which are intended only for a mine gas utilization to combine from the outset with the biogas production and a joint utilization in order to achieve a maximum energetic effect.
  • the Gas soungsanläge which consists of a disused underground mine with many remaining by previous degradation branched cavities, such as galleries, stretches and strut, uses as a digester at least two horizontally extending stretches and / or strut as well as blind tunnels. These be connected to one or more points by defined and gas-discharging holes together so that these gas-discharging bores all open in a located at the highest point of the mine gas storage tank. This eliminates dead zones in the mine.
  • the diameter of the holes to be prepared depends on the gas attack. Holes at the level of the lower sole are much smaller in diameter than near the surface. On the other hand, they should not be closed by penetrating residues.
  • dummy tunnels Since dummy tunnels have no connection to the earth's surface, they can be used as a gas collection chamber, for which they are provided with a subsequent drilling to the gas recovery station. Blind tunnels that are not intended for this use must also have a hole to connect them to the gas outlet and direct the methane-containing gases entering the gas recovery station.
  • the connecting tunnels shall be closed to allow better control of mine and biogas production. Only after complete filling of all cavities with bio-organic residues then other mines of the composite mine can be included in the inventive solution.
  • the arrangement of a gasometer is provided for the intermediate storage of the gas produced in a higher amount, in which the gas not used immediately after the gas extraction is filled at a slight overpressure of 20-50 millibar via supply lines from the gas collection container in the mine. Furthermore, even inactive, already flooded mines can be used according to the invention, in which the flooding water from the cavities can still be removed without major technical difficulties.
  • the biogas obtained in the biological process and located in the gas collection container or gas intermediate detector can either be mixed with the methane gas obtained in a possible combination with the mine gas production after removal of the carbon dioxide, fed directly into natural gas networks or separately via connecting lines for energy production in known gas utilization facilities, such as combined heat and power plants and / or high-temperature fuel cells are supplied.
  • gas utilization facilities such as combined heat and power plants and / or high-temperature fuel cells are supplied.
  • carbon dioxide can also be separated off from the gas mixture in the pressure or membrane process, liquefied and sent for recycling.
  • carbon dioxide is an effective fire extinguishing agent.
  • an advantageous embodiment of the invention provides for the organic waste to be brought into contact with seed sludge in the run-in stage. It is also beneficial to mix the added bioorganic residual substances with the digested sludge in the mine by injecting natural gas or biogas, so that the methane bacteria can be activated and produce biogas faster. The mixing with vaccine slurry can also be omitted if a longer start-up process is accepted. From the practice of mine gas production is known to suck the resulting methane gas before recycling. In the event of a malfunction in the system, a suddenly increased gas attack must be burned in a gas torch.
  • Fig. 1 shows a vertical section of a system according to the invention in a schematic representation
  • Fig. 2 shows a horizontal section of this system, also shown schematically.
  • a decommissioned, not yet flooded hard coal mine with a depth of about 400 m, a particularly high mine gas attack and a pit volume of about one million cubic meters content is used for the inventive use.
  • the selected mine was classified as very dangerous during the coal mining because of the seams continuously penetrated mine gas into the mining area, which had to be removed by the ventilation.
  • the use of these mine gases, which still escape after decommissioning in a shrinking proportion, is intended for the process according to the invention and is completely integrated into the entire gas production.
  • the connections between the individual tunnels, shafts, stretches 6 and / or strut 7 are made so as to avoid dead zones not included in the gas discharge in the mine.
  • approximately horizontally extending strut 7 and 7 is given by the rising slope of the highest point for the gas discharge.
  • the proposed holes 8 are made to a higher-lying cavity to ensure the gas discharge. In the same way will proceed to all cavities to connect to the gas collection point 9 near the earth's surface.
  • a bore 8 is made to a nearby cavity to discharge any gases there as well.
  • all other openings which are not intended for gas extraction and for the supply of bioorganic residues are hermetically sealed.
  • the selected mine has three weather shafts 11, 12.
  • two weather shafts are closed 13 and in the upper section is ever made a connection to a nearby track or another cavity.
  • the third weather shaft 12 is expanded as a gas discharge to the gas collection point 9 and serves the continuous removal and recovery of the incurred biogas and mine gas.
  • the bio-organic residues to be introduced into the mine with a mass of about 300 tons / day can come from households as well as from agricultural, municipal or forestry industrial and commercial enterprises. For example, it may also be municipal sewage sludge, livestock manure, leaves, grass clippings, hedge and tree trimming, superimposed food and waste from slaughterhouses, dairies and breweries. These bioorganic residues are an ideal mixture for biogas production. A prior crushing of the organic material is not required by the method according to the invention, because the conditions given in the mine under the long-term reactions ensure liquefaction of the bio-organic residues.
  • a mixing and storage tank 1 is installed in the upper 5 to 10 m of a VorHon- nen manhole and arranged an opening 2 in this container, controlled by a pneumatically operated slide for filling the bioorganic residues in the mine and at the end of the day's shaft. Furthermore, the mixing and storage tank 1 is provided with a stirrer 3. The container is intended to serve the same isolation in the cold season and was provided for this purpose with a cover 14 at the approximate height of the earth's surface 15.
  • the seed sludge is added during the run-in operation with a volume of approx. 100 cubic meters.
  • This is treated wastewater sludge from a closed digestion tower of a municipal sewage treatment plant, which serves to stimulate and accelerate biogas production in the digester.
  • the temperature in the mine used for the invention is at the bottom sole 4 constant 20 0 C, whereby this sole 4, taking into account the self-heating of the substances to be reacted for the process for biogas production is available.
  • the bioorganic residues introduced into the cavities are tempered by the indefinite available geothermal heat as well as by the partial warming in the course of the anaerobic biological degradation of the organic substances without additional energy requirement.
  • the methane content of the mixture of biogas and mine gas accumulates to 45%, so that the energy recovery of the recovered gas in a combined heat and power plant 5 is made possible after this time.
  • the mine gas in addition to the mine gas, about 17,000 m3 / day of biogas can be obtained in this mine, which is extracted by suction from the mine together with the mine gas and converted into electrical energy in the already connected combined heat and power plant 5.
  • the connected cogeneration plant 5 is provided with four other modules with a capacity between 400 and 500 kW per engine.
  • both the heat losses avoided and the amounts of carbon dioxide removed from the environment are in closed form compared to known methods heated septic tanks, charged.
  • the heat requirement for sludge digestion is 300 tons of biomass per day including heat losses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

L'invention concerne une installation et un procédé servant à produire du biogaz à partir de différents déchets organiques provenant des ménages, d'entreprises agricoles et forestières, ainsi que d'entreprises industrielles et commerciales (résidus bio-organiques), par digestion alcaline anaérobie des boues. L'invention vise notamment à réduire de manière significative le coût technique et énergétique et donc la quantité de travail nécessaire pour préparer des résidus bio-organiques même difficilement dégradables en vue de la transformation de grandes quantités de matière en gaz contenant du méthane utilisable comme source d'énergie. A cet effet, on utilise comme chambre de digestion des boues au moins deux cavités souterraines à peu près horizontales qui subsistent d'une exploitation antérieure d'une mine de houille abandonnée et on relie toutes les cavités de la mine en un ou plusieurs points par des forages définis évacuant les gaz de manière à faire déboucher tous ces forages dans un contenant collecteur de gaz se trouvant au point le plus haut de la mine. Selon l'invention, des résidus bio-organiques sont introduits, en grande quantité et sans fractionnement préalable, dans la chambre de digestion des boues où s'effectue la digestion des boues par des réactions de longue durée sans chauffage additionnel à un niveau de température donné compris entre 5 °C et 70 °C.
PCT/DE2006/000516 2005-04-22 2006-03-23 Procede et installation pour la production de biogaz a partir de residus bio-organiques WO2006111124A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06722668A EP1871891A2 (fr) 2005-04-22 2006-03-23 Procede et installation pour la production de biogaz a partir de residus bio-organiques
JP2008506910A JP2008536668A (ja) 2005-04-22 2006-03-23 バイオマスからバイオガスを製造する方法及びそのプラント
US11/912,214 US20080193993A1 (en) 2005-04-22 2006-03-23 Method and Plant for Producing Biogas from Bio-Organic Residual Matters
AU2006236970A AU2006236970A1 (en) 2005-04-22 2006-03-23 Method and plant for producing biogas from bio-organic residual matters
CA002605591A CA2605591A1 (fr) 2005-04-22 2006-03-23 Procede et installation pour la production de biogaz a partir de residus bio-organiques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005019445A DE102005019445A1 (de) 2005-04-22 2005-04-22 Verfahren und Anlage zur Gewinnung von Biogas aus Biomasse
DE102005019445.1 2005-04-22

Publications (2)

Publication Number Publication Date
WO2006111124A2 true WO2006111124A2 (fr) 2006-10-26
WO2006111124A3 WO2006111124A3 (fr) 2007-02-08

Family

ID=37068014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000516 WO2006111124A2 (fr) 2005-04-22 2006-03-23 Procede et installation pour la production de biogaz a partir de residus bio-organiques

Country Status (8)

Country Link
US (1) US20080193993A1 (fr)
EP (1) EP1871891A2 (fr)
JP (1) JP2008536668A (fr)
AU (1) AU2006236970A1 (fr)
CA (1) CA2605591A1 (fr)
DE (1) DE102005019445A1 (fr)
WO (1) WO2006111124A2 (fr)
ZA (1) ZA200710043B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980546A2 (fr) 2007-01-26 2008-10-15 Agroittica Acqua e Sole S.p.A. Procédé et système pour la production d'énergie et de matériau composté à partir de déchets agricoles contenant de la cellulose
JP2010022957A (ja) * 2008-07-22 2010-02-04 Mitsui Eng & Shipbuild Co Ltd Co2の処理システム及びメタン回収システム
US8176978B2 (en) 2008-07-02 2012-05-15 Ciris Energy, Inc. Method for optimizing in-situ bioconversion of carbon-bearing formations

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906304B2 (en) 2005-04-05 2011-03-15 Geosynfuels, Llc Method and bioreactor for producing synfuel from carbonaceous material
DE102007029700A1 (de) * 2007-06-27 2009-01-08 Michael Feldmann Biomasse-Kraftwerk
JP2010110711A (ja) * 2008-11-07 2010-05-20 Obihiro Univ Of Agriculture & Veterinary Medicine メタン発酵システム
DE102009000127A1 (de) * 2009-01-09 2010-07-15 Horst-Otto Bertholdt Verfahren und Anlage zum Erzeugen von Energie unter gleichzeitiger Verringerung der Emission von Treibhausgasen in die Atmosphäre
NZ600580A (en) 2009-12-18 2014-01-31 Ciris Energy Inc Biogasification of coal to methane and other useful products
CN106807727B (zh) * 2017-01-19 2019-04-30 孙传智 一种垃圾处理系统及方法
CN107177497B (zh) * 2017-08-01 2023-11-03 河南理工大学 一种矿山采空区充填秸秆生物产气系统及其产气工艺
CN107339154A (zh) * 2017-08-08 2017-11-10 深圳市中兰环保科技股份有限公司 一种垃圾填埋气与餐厨厌氧沼气混合发电系统
CN107619840A (zh) * 2017-11-06 2018-01-23 河南理工大学 废弃矿井注入生物质与遗煤协同代谢产甲烷工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1758628A1 (de) * 1967-07-10 1970-12-23 Thy Marcinelle Monceau Forges Verfahren zur Gewinnung von Grubengas
US6143534A (en) * 1985-01-22 2000-11-07 Reliant Energy Incorporated Microbial process for producing methane from coal
WO2002048381A2 (fr) * 2000-12-13 2002-06-20 Norbert Hampp Procede de production de biomasse
EP1488855A1 (fr) * 2003-06-18 2004-12-22 Elektrotechnik Reiter Procédé et installation pour produire du biogaz a partir de déchets biologiques

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT361015B (de) * 1979-04-12 1981-02-10 Weymelka Walter Verfahren zur herstellung von biogas und anlage zur durchfuehrung des verfahrens
DE3538183A1 (de) * 1985-10-26 1987-04-30 Anna Kursa Abwaesser - klaeranlage
DE4003487A1 (de) * 1990-02-06 1991-08-08 Roediger Anlagenbau Verfahren zum stabilisieren von schlamm
DE10162792B4 (de) * 2001-12-20 2004-08-19 Roger Alker Mülldeponie und Verfahren zur verbesserten Bewirtschaftung von Mülldeponien

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1758628A1 (de) * 1967-07-10 1970-12-23 Thy Marcinelle Monceau Forges Verfahren zur Gewinnung von Grubengas
US6143534A (en) * 1985-01-22 2000-11-07 Reliant Energy Incorporated Microbial process for producing methane from coal
WO2002048381A2 (fr) * 2000-12-13 2002-06-20 Norbert Hampp Procede de production de biomasse
EP1488855A1 (fr) * 2003-06-18 2004-12-22 Elektrotechnik Reiter Procédé et installation pour produire du biogaz a partir de déchets biologiques

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1980546A2 (fr) 2007-01-26 2008-10-15 Agroittica Acqua e Sole S.p.A. Procédé et système pour la production d'énergie et de matériau composté à partir de déchets agricoles contenant de la cellulose
US8176978B2 (en) 2008-07-02 2012-05-15 Ciris Energy, Inc. Method for optimizing in-situ bioconversion of carbon-bearing formations
US8459350B2 (en) 2008-07-02 2013-06-11 Ciris Energy, Inc. Method for optimizing in-situ bioconversion of carbon-bearing formations
US9255472B2 (en) 2008-07-02 2016-02-09 Ciris Energy, Inc. Method for optimizing in-situ bioconversion of carbon-bearing formations
JP2010022957A (ja) * 2008-07-22 2010-02-04 Mitsui Eng & Shipbuild Co Ltd Co2の処理システム及びメタン回収システム

Also Published As

Publication number Publication date
AU2006236970A1 (en) 2006-10-26
EP1871891A2 (fr) 2008-01-02
JP2008536668A (ja) 2008-09-11
WO2006111124A3 (fr) 2007-02-08
ZA200710043B (en) 2008-10-29
US20080193993A1 (en) 2008-08-14
CA2605591A1 (fr) 2006-10-26
DE102005019445A1 (de) 2006-10-26

Similar Documents

Publication Publication Date Title
WO2006111124A2 (fr) Procede et installation pour la production de biogaz a partir de residus bio-organiques
EP2160458B1 (fr) Installation de biogaz et procédé de production de biogaz à partir de paille avec pelletisation des résidus de fermentation
EP2188230B1 (fr) Procédé de production de sols ou de substrats pédologiques riches en humus et en nutriments et retenant l'eau pour des systèmes durables d'aménagement foncier et urbain
DE102007012861B3 (de) Biogaserzeugung durch Trockenfermentation nachwachsender Rohstoffe
DE102014013078B4 (de) Verfahren und Vorrichtung zur Behandlung von phosphorhaltigem Klärschlamm
DE19719323A1 (de) Tunnelfermentationsverfahren zur einstufigen anaeroben und aeroben Behandlung von festen und flüssigen biogenen Abfällen
DE102012112898A1 (de) Verfahren und Anlage zur Herstellung von Biogas aus lignocellulosehaltiger Biomasse
DE19833624A1 (de) Mechanisch-biologisches Aufbereitungsverfahren zur kombinierten Vergärung und Trocknung von organischen Stoffen mit hohem Feststoff- und Störstoffanteil
DE102015015776A1 (de) Verfahren und Vorrichtung zur Verwertung von Feucht- und Trockenhalmgut
WO2012110325A1 (fr) Procédé et réacteur de carbonisation hydrothermale de la biomasse
DE102007012438A1 (de) Verfahren zum ökologischen Anbau und zur Bearbeitung von Biomasse
DE3228895A1 (de) Verfahren zur gewinnung von biogas und vorrichtung zur durchfuehrung dieses verfahrens
DE102007025903A1 (de) Vorrichtung und Verfahren zur Erzeugung von Biogas durch kontinuierliche Trockenfermentierung stapelbarer Biomasse
DE102008047411A1 (de) Verfahren zur Volumen- und Massenreduktion von Hausmüll
DE19547320A1 (de) Verfahren und Vorrichtung zur Erzeugung von ammoniakfreiem und sterilem Vollwertdünger aus biologischen Reststoffen
DE19717669B4 (de) Verfahren zur Schwermetallentfrachtung von biogen-organischen Substraten
DE102010037116B4 (de) Verfahren zum Entfernen von Kohlendioxid aus einem kohlendioxidhaltigen Gas
DE4336836A1 (de) Verfahren zur Wärme- und CO¶2¶-Gewinnung aus einer Kompostieranlage
DE102006045872A1 (de) Unterirdische Biogasanlage und Verfahren zu deren Betrieb
DE10162792B4 (de) Mülldeponie und Verfahren zur verbesserten Bewirtschaftung von Mülldeponien
DE102005005235B4 (de) Verfahren und Einrichtung zur Methanreaktivierung von Deponien
DE3042883A1 (de) Verfahren und vorrichtung zur gewinnung von methangas aus biomasse
DE19724012A1 (de) Verfahren und Anlage zur Nutzung von Biomassen
AT520801B1 (de) Verfahren zur Verwertung von Biomasse
DE102008010993A1 (de) Verfahren zur biologischen Erzeugung von brennbaren Gasen aus epoxydharz-gebundenen, glasfaserverstärkten Kunststoffen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11912214

Country of ref document: US

Ref document number: 2008506910

Country of ref document: JP

Ref document number: 2605591

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006236970

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006236970

Country of ref document: AU

Date of ref document: 20060323

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006722668

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006236970

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006722668

Country of ref document: EP