WO2006111051A1 - Procede de production d’une dispersion de nanometres de carbone et son dispositif de production - Google Patents

Procede de production d’une dispersion de nanometres de carbone et son dispositif de production Download PDF

Info

Publication number
WO2006111051A1
WO2006111051A1 PCT/CN2005/000874 CN2005000874W WO2006111051A1 WO 2006111051 A1 WO2006111051 A1 WO 2006111051A1 CN 2005000874 W CN2005000874 W CN 2005000874W WO 2006111051 A1 WO2006111051 A1 WO 2006111051A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
negative
carbon
positive
connecting rod
Prior art date
Application number
PCT/CN2005/000874
Other languages
English (en)
French (fr)
Inventor
Guanghua Zhu
Fushou Ma
Original Assignee
Beijing Cosmic Tree Science & Technology Development Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Cosmic Tree Science & Technology Development Co., Ltd. filed Critical Beijing Cosmic Tree Science & Technology Development Co., Ltd.
Publication of WO2006111051A1 publication Critical patent/WO2006111051A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • B01J2219/0811Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes employing three electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0839Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal

Definitions

  • the present invention relates to a method and apparatus for preparing a carbon liquid, and more particularly to a method for preparing a nanocarbon liquid and a manufacturing apparatus therefor. Background technique
  • nano-carbon liquid by carbon oxidation there are many methods for preparing nano-carbon liquid by carbon oxidation, such as oxidizing agents such as concentrated nitric acid, concentrated sulfuric acid, nitro-corrosive acid, potassium hypochlorite or potassium permanganate, ozone oxidation, discharge oxidation or plasma discharge oxidation, electron beam irradiation, etc. method. None of the above methods can directly obtain a nanocarbon suspension, and it also needs to go through many extremely cumbersome auxiliary processes, such as neutralizing acidity, removing harmful impurities such as metal particles in the carbon liquid, and inadvertently failing to ensure quality or even appearing. Reunion.
  • the nano carbon solution is prepared by the above method, the equipment is too complicated, and the process is too cumbersome. Summary of the invention
  • the object of the present invention is to overcome the above drawbacks and to provide a method for preparing a nanocarbon liquid and a manufacturing apparatus therefor.
  • a method for preparing a nanocarbon liquid the steps of which include:
  • First step preparation (a) Purify the water to obtain deionized pure water with a pH of 6.5-7.2 and a resistance value of 1 ⁇ ⁇ —50 ⁇ ⁇ ; (b) Prepare the plate: Select graphite carbon, require graphite carbon The purity is 99.99%, the ash content is less than 100PPM, the fineness is above 300 mesh, the strength is above 58mpa, and the forming is performed according to the geometrical requirements of the plate;
  • the second step of trial operation the formed graphite carbon plate is used as the positive plate, and the metal negative plate is respectively disposed on both sides thereof, and a certain gap is maintained between the positive plate and the two negative plates, and then placed in the prepared deionized pure water. Soak the liquid level above the negative plate for at least 24 hours, energize;
  • the third step of oxidation treatment at room temperature, the graphite carbon plate after the second test run is continuously immersed in deionized pure water for low-voltage energization, and the treatment is for 7 days and 10 vectors, the voltage is 3 V_35V, and the current is less than 35A. ;
  • the fourth step of physical treatment The nanocarbon solution prepared in the third step is stored for at least 24 hours. After the large particle carbon particles are precipitated, the carbon solution is transported to another container, and then the nano carbon solution is ultrasonically treated to obtain a uniform particle size. hook.
  • the preparation method according to the present invention wherein the gap should be maintained between 1 mm and 50 mm; the water surface of the deionized pure water is higher than the top surface of the negative electrode plate by 200 mm.
  • the preparation method according to the present invention wherein the gap is from 3 mm to 10 mm.
  • a nano carbon liquid manufacturing apparatus comprising a tank body, wherein the tank body cavity is provided with at least one oxidation unit, each oxidation unit comprises a support frame, a connecting rod is mounted on the support frame, and two pieces of metal are mounted on the connecting rod.
  • the negative electrode plate and the graphite positive electrode plate between the two negative electrode plates and having a gap with the two negative electrode plates respectively are filled with deionized pure water higher than the negative electrode plate.
  • the manufacturing apparatus of the nano carbon liquid of the present invention further includes a circulation pump, wherein a suction port of the circulation pump is connected to a liquid discharge port of a lower portion of the tank, and a liquid outlet of the circulation pump communicates with an upper portion of the tank
  • the bottom plate of the box body has an inclination.
  • the lower side of the bottom plate has a drain outlet at the bottom of the side of the box body, and the bottom side of the box body on the high side of the bottom plate has a water inlet.
  • the manufacturing apparatus of the nano carbon liquid of the present invention wherein the outer surface of the connecting rod has a thread, and the two negative electrode plates are respectively composed of a plate body, a connecting sleeve at the center of the plate body and a reinforcing ring at an outer edge thereof, the plate body There are a plurality of through holes, and the two negative plates and the positive plate are screwed to the connecting rod, and the positive plate has a threaded hole in which a positive connecting rod is mounted.
  • the apparatus for manufacturing a nanocarbon liquid according to the present invention wherein a gap between the two negative electrode plates and the positive electrode plate is 1 mm to 50 mm.
  • the apparatus for manufacturing a nano-carbon liquid according to the present invention wherein the box body is a zirconium-plated stainless steel plate, which is formed by argon arc welding; the connecting rod is polytetrafluoroethylene; and the plate body, the connecting sleeve and the reinforcing ring are plated. Zirconium stainless steel plates are welded together by argon arc welding.
  • the apparatus for manufacturing a nanocarbon liquid according to the present invention wherein the graphite positive electrode plate has a purity of 99.99%, an ash content of less than 100 ppm, a fineness of 300 mesh or more, and a pressure of 58 mpa.
  • the preparation method of the nano carbon liquid of the invention is simple, and after processing the graphite carbon into the nano carbon suspension, it has a great specific surface area, and the chemical activity, the surface adsorption property and the conductivity are obviously improved, so that the carbon molecules which are originally uncharged are obtained.
  • the surface is negatively charged and has a high electromotive force.
  • the carbon particles have uniform particle size, stable product quality, and easy to realize large-scale production.
  • the equipment has low investment, low cost, long service life and no three wastes.
  • Fig. 1 is a schematic view showing the structure of a nanocarbon liquid producing apparatus of the present invention.
  • FIG. 1 is a schematic view showing the structure of a nanocarbon liquid producing apparatus of the present invention.
  • the manufacturing apparatus of the nanocarbon liquid of the present invention is used for an oxidation treatment process which includes a circulation pump (not shown) and a tank 1.
  • the inner cavity of the casing 1 is provided with at least one oxidation unit, each oxidation unit comprises a support frame 7, on which a connecting rod 6 is mounted, two metal negative plates 2, 4 and two negative electrodes are mounted on the connecting rod 6.
  • a graphite positive electrode plate 3 having a gap between the plates and the two negative electrode plates, respectively.
  • the circulation pump is connected to the lower liquid discharge port 9 of the casing 1, and the carbon liquid is taken out from the lower liquid discharge port 9 of the casing 1, and is input from the upper portion of the tank, so that the carbon liquid 8 flows slowly in the tank, thereby making the carbon particles uniform.
  • the bottom plate of the box body 1 has an inclination.
  • the lower side of the bottom plate has a liquid discharge port at the bottom of the side of the box body, and the bottom side of the bottom plate has a water inlet at the bottom of the bottom plate, and the large granular carbon particles for discharging the bottom of the box body 1 .
  • the outer surface of the connecting rod 6 has a thread
  • the two negative plates 2, 4 and the positive plate 3 have a central threaded hole
  • the two negative plates 2, 4 and the positive plate 3 are screwed onto the connecting rod 6, the positive plate 3 and the two negative plates
  • the gap between 2 and 4 is adjusted by rotating the positive and negative plates.
  • the gap between the two negative plates 2, 4 and the positive plate 3 is l mm - 50 mm, preferably 3 mm_ 10 mm, that is, when the gap is increased for a period of time, the two negative plates can be respectively rotated to narrow the gap.
  • the negative plates 2, 4 include a plate body 21, a connecting sleeve 22 at the center of the plate body, and a reinforcing ring 23 at the outer edge.
  • the plate body 21 has a plurality of through holes (not shown) having a hole diameter of 2 mm - 10 mm, which can reduce the flow resistance of the nano carbon liquid.
  • the box body 1 is made of zirconium-plated stainless steel plate and welded by argon arc welding.
  • the parts of the plate body 21, the connecting sleeve 22 and the reinforcing ring 23, which are in contact with the carbon liquid, are made of a zirconium-plated stainless steel plate, and are formed by argon arc welding.
  • the graphite positive plate 3 has a purity of 99.99%, an ash content of 100 ppm, a fineness of 300 mesh or more, and a pressure of 58 mpa.
  • the top of the graphite positive plate 3 has a threaded hole 5 for mounting the positive connecting rod.
  • the two negative plates 2, 4 are respectively connected to the negative wires.
  • the connecting rod 6 is made of a polytetrafluoroethylene material.
  • the preparation method of the nano carbon liquid of the invention comprises:
  • the first step is to prepare the material: (1) Purify the water in the water-making workshop to obtain deionized pure water with a pH of 6.5-7.2 and a resistance value of 1 ⁇ ⁇ - 50 ⁇ ⁇ , and the resistance value is preferably 18 ⁇ ⁇ or more; 2) Prepare the plate: Select graphite carbon: The purity of graphite carbon is required to be 99.99%, the ash content is less than 100PPM, the fineness is above 300 mesh, and the strength is above 58mpa. Processing according to the geometrical requirements of the plate;
  • the second step of trial operation the formed graphite carbon plate is used as the positive plate, and the metal negative plate is respectively disposed on both sides thereof, and a certain gap is maintained between the positive plate and the two negative plates, and then placed in the prepared deionized pure water. Soak for at least 24 hours, energize, test whether the positive and negative poles are energized or short-circuited, the current level and the liquid level, such as whether there is foam on the liquid surface, determine whether the equipment is installed accurately, whether the raw materials used meet the requirements, etc.;
  • the gap between the positive and negative plates should be kept between 1 mm and 50 mm, preferably 3 mm to 10 mm; the graphite carbon plate should be completely submerged in deionized pure water, and the surface of deionized pure water is preferably high.
  • the top surface of the negative plate was 200 inm.
  • the third step of oxidation treatment at room temperature, the graphite carbon plate after the second test run is continuously immersed in deionized pure water for 7 days to 10 days, the voltage is 3 V-35V, and the current is less than 35A.
  • the current and voltage are measured every 2 hours for the first three days, and the recording is made. The current and voltage changes are used to judge whether the production is normal. After three days, the PH value and the electromotive force should be sampled every 8 hours.
  • the fourth step of physical treatment The nanocarbon solution prepared in the third step is stored for at least 24 hours. After the large particle carbon particles are precipitated and detached, the carbon solution is transported to another container, and then the nano carbon solution is ultrasonically treated. 2 hours, the frequency is 1 HZ - 50HZ.
  • the treatment can be carried out using an ultrasonic generator (commercially available). Industrial applicability
  • the preparation method of the nano carbon liquid of the invention and the manufacturing apparatus thereof are used for producing a nano carbon suspension.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Clocks (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

纳米碳液的制备方法及其制造设备 技术领域 .
本发明涉及一种碳液的制备方法和设备, 具体说, 涉及一种纳米碳液的制备方法及其 制造设备。 背景技术
用碳氧化制备纳米碳液的方法很多, 诸如用浓硝酸、 浓硫酸、 硝基腐蚀酸、 次氯酸钾 或过锰酸钾等氧化剂, 还有用臭氧氧化, 放电氧化或等离子放电氧化, 电子射线照射等方 法。上述各种方法都不能直接得到纳米碳悬浮液, 还需经过许多极其烦琐的辅助工艺, 譬 如需要中和酸性, 去除碳液中的金属粒子等有害杂质, 稍有不慎就不能保证质量甚至出现 团聚。 用上述方法制备纳米碳液, 其设备太复杂, 工艺太烦琐。 发明内容
本发明的目的是克服上述缺陷, 提供一种纳米碳液的制备方法及其制造设备。
一种纳米碳液的制备方法, 其步骤包括:
第一步备料: (a)对水进行净化处理, 得到 ph值为 6.5—7.2、 电阻值为 1Μ Ω—50Μ Ω的去离子纯水; (b) 准备极板: 选择石墨碳, 要求石墨碳的纯度为 99.99%, 灰份小于 100PPM, 细度在 300目以上, 强度在 58mpa以上, 按极板几何尺寸要求加工成型;
第二步试运行:将加工成型的石墨碳板作为正极板,在其两侧面分别设置金属负极板, 正极板与两负极板之间保持一定间隙,然后放入制得的去离子纯水中使液面高于负极板浸 泡至少 24小时, 通电;
第三步氧化处理: 在常温下, 将经过第二步试运行后的石墨碳板继续浸泡在去离子纯 水中低压通电, 处理 7天一10矢, 所述电压为 3 V_35V, 电流小于 35A;
第四步物理处理: 将经过第三步制得的纳米碳液存放至少 24小时, 大颗粒碳粒子沉 淀后, 将碳液输送到另一个容器内, 然后对纳米碳液进行超声波处理使粒度均勾。
.本发明所述的制备方法, 其中所述间隙应保持在 l mm— 50 mm之间; 去离子纯水的 水面高于负极板的顶面 200 mm。 本发明所述的制备方法, 其中所述间隙为 3 mm— 10 mm。
本发明所述的制备方法, 其中所述超声波频率为 1HZ— 50HZ。
一种纳米碳液的制造设备, 包括箱体, 所述箱体内腔设置有至少一个氧化单元, 各氧 化单元包括支撑架, 在支撑架上安装有连接棒, 在连接棒上安装有两块金属负极板和位于 两块负极板之间、并与两块负极板分别具有间隙的石墨正极板, 所述箱体内注入有高于所 述负极板的去离子纯水。
本发明纳米碳液的制造设备, 其中还包括循环泵, 所述循环泵的吸入口与所述箱体下 部的排液口相连, 所述循环泵的出液口与所述箱体的上部相通, 所述箱体的底板具有一个 倾斜度, 位于底板低的一边箱体侧面底部设置有排污口, 位于底板高的一边的箱体侧面底 部具有进水口。
本发明纳米碳液的制造设备, 其中所述连接棒的外表面具有螺纹,所述两块负极板分 别由板体, 位于板体中心的连接套和位于其外缘的加强环组成, 板体上具有若干通孔, 两 负极板和正极板通过螺纹安装在所述连接棒上, 所述正极板具有安装正极连接杆的螺纹 孔。
本发明纳米碳液的制造设备, 其中两负极板和正极板之间的间隙为 1 mm— 50 mm。 本发明纳米碳液的制造设备, 其中所述箱体为镀锆不锈钢板, 用氩弧焊焊接而成; 所 述连接棒为聚四氟乙烯; 所述板体、连接套和加强环用鍍锆不锈钢板, 采用氩弧焊焊接在 一起。
本发明纳米碳液的制造设备, 其中所述石墨正极板的纯度为 99.99%, 灰份小于 lOOppm, 细度在 300目以上, 压强大于 58mpa。
本发明纳米碳液的制备方法简单, 将石墨碳加工成纳米碳悬浮液后, 具有极大的比表 面积, 化学活性、 表面吸附性、 导电性均有明显的改善, 使本来不带电的碳分子表面带上 了负电, 且具有较高电动势。 碳粒子颗粒度均匀, 产品质量稳定, 且易实现规模化生产; 其设备投资少, 成本低, 使用寿命长, 无三废产生。 附图说明
图 1是本发明纳米碳液制造设备的结构示意图。 发明的最佳实施方式
参见图 1。 图 1是本发明纳米碳液制造设备的结构示意图。 本发明纳米碳液的制造 设备是用于氧化处理过程, 它包括循环泵 (图中未示出) 和箱体 1。 箱体 1内腔设置有 至少一个氧化单元, 各氧化单元包括支撑架 7, 在支撑架 7上安装有连接棒 6, 在连接棒 6上安装有两块金属负极板 2、 4和位于两负极板之间、 与两负极板分别具有间隙的石墨 正极板 3。
循环泵与箱体 1下部排液口 9连接, 将碳液从箱体 1的下部排液口 9抽出, 从箱体 的上部输入, 使碳液 8在箱体内缓慢流动, 进而使碳粒子均匀分布在去离子纯水中。 箱 体 1的底板具有一个倾斜度, 位于底板低的一边箱体侧面底部设置有排液口, 位于底板 高的一边箱体侧面底部具有进水口, 用于排出箱体 1底部的大颗粒碳粒子。
连接棒 6的外表面具有螺纹, 两负极板 2、 4和正极板 3具有中心螺纹孔, 两负极板 2、 4和正极板 3通过螺紋安装在连接棒 6上, 正极板 3和两负极板 2、 4之间的间隙通 过转动正、 负极板调节。
两负极板 2、 4和正极板 3之间的间隙为 l mm— 50 mm, 以 3 mm_ 10 mm为宜, 即 当工作一段时间间隙增大后, 可分别转动两负极板使间隙缩小。
负极板 2、 4包括板体 21, 位于板体中心的连接套 22和位于外缘的加强环 23。 板体 21上具有若干通孔(图中未示出), 其孔径为 2mm— 10mm, 该通孔可以减少纳米碳液的 流动阻力。
箱体 1釆用镀锆不锈钢板, 用氩弧焊焊接而成。
板体 21、 连接套 22和加强环 23等凡与碳液接触的零件均由镀锆不锈钢板制成, 釆 用氩弧焊焊接成形。
石墨正极板 3的纯度为 99.99%,灰份 100ppm,细度在 300目以上,压强大于 58mpa。 石墨正极板 3的顶部具有螺纹孔 5, 以便安装正极连接杆。 所述两负极板 2、 4分别 连接负极导线。 连接棒 6由聚四氟乙烯材料制成。
本发明纳米碳液的制备方法, 包括:
第一步备料: (1 ) 在制水车间对水进行净化处理, 得到 ph值为 6.5—7.2、 电阻值为 1Μ Ω— 50Μ Ω的去离子纯水, 电阻值为 18Μ Ω以上为宜; (2) 准备极板: 选择石墨碳: 要求石墨碳的纯度为 99.99%,灰份小于 100PPM,细度在 300目以上,强度在 58mpa以上, 按极板几何尺寸要求加工成型;
第二步试运行: 将加工成型的石墨碳板作为正极板, 在其两侧面分别设置金属负极 板, 正极板与两负极板之间保持一定间隙, 然后放入制得的去离子纯水中浸泡至少 24小 时,通电,测试正负极之间是否通电或短路, 电流大小及液面情况,如液面上是否有泡沬, 判断设备安装是否准确, 所使用的原材料是否符合要求等;
正、 负极板之间的间隙应保持在 l mm— 50 mm之间, 以 3 mm— 10 mm为宜; 石墨 碳板需全部淹没在去离子纯水中, 去离子纯水的水面最好高出负极板的顶面 200inm。
第三步氧化处理: 在常温下, 将经过第二步试运行后的石墨碳板继续浸泡在去离子 纯水中低压通电处理 7天一 10天, 电压为 3 V—35V, 电流小于 35A。 处理过程中, 前三 天要求每隔 2小时测量一次电流和电压, 并作好记录, 通过电流, 电压的变化情况判断生 产是否正常, 三天后, 还需每隔 8小时取样检测 PH值、 电动势及电导率, 绘制曲线图, 直到 PH值、电动势及电导率曲线走向完全符合碳液质量参数要求,即 PH值在 1.00— 5.00 之间, 电动势在 180mv—450mv之间, 电导率在 0.5ms/cm— 5.0ms/cm之间, 断电结束氧 化。
氧化处理的时间越长, 其 PH值越低, 电动势和电导率就越高。
第四步物理处理: 将经过第三步制得的纳米碳液存放至少 24小时, 大颗粒碳粒子沉 淀脱落后, 将碳液输送到另一个容器内, 然后对纳米碳液进行超声波处理 1一 2小时,其 频率为 1 HZ— 50HZ。 处理时可采用超声波发生器(可市购)进行。 工业实用性
本发明纳米碳液的制备方法及其制造设备用于生产纳米碳悬浮液。

Claims

1、 一种纳米碳液的制备方法, 其步骤包括:
第一步备嵙: (a)对水进行净化处理,得到 ph值为 6.5—7.2、 电阻值为 1Μ Ω— 50M Ω的去离子纯水; (b) 准备极板: 选择石墨碳, 要求石墨碳的纯度为 99.99%, 灰份小于 100PPM, 细度在 300目以上, 强度在 58mpa以上, 按极板几何尺寸要求加工成型; 第二步试运行: ,将加工成型权的石墨碳板作为正极板, 在其两侧面分别设置金属负极 板, 正极板与两负极板之间保持一定间隙, 然后放入制得的去离子纯水中使液面高于负极 板浸泡至少 24小时, 通电;
第三步氧化处理: 在常温下, 将经过第二步试运行后的石墨碳板继续浸泡在去离子 纯水中低压通电, 处理 7天一 10天, 所述电压为 3 V— 35V, 电流小于 35A;
第四步物理处理: 将经过第三步制得的纳米碳液存放至少 24小时, 大颗粒碳粒子沉 淀后, 将碳液输送到另一个容器内, 然后对纳米碳液进行超求声波处理使粒度均匀。
2、根据权利要求 1所述的制备方法,其特征是其中所述间隙应保持在 1 mm— 50 mm 之间; 去离子纯水的水面高于负极板的顶面 200 mm。
3、 根据权利要求 2所述的制备方法, 其特征是所述间隙为 3 ηηη_ 10 ηιηι。
4、 根据权利要求 1或 2或 3所述的制备方法, 其特征是所述超声波频率为 1HZ— 50ΗΖ。
5、 一种纳米碳液的制造设备, 其特征是包括箱体 (1 ), 所述箱体(1 ) 内腔设置有 至少一个氧化单元, 各氧化单元包括支撑架 (7), 在支撑架 (7) 上安装有连接棒(6), 在连接棒(6)上安装有两块金属负极板(2、 4)和位于两块负极板之间、 并与两块负极 板分别具有间隙的石墨正极板(3), 所述箱体(1 ) 内注入有高于所述负极板(2、 4) 的 去离子纯水。
6、根据权利要求 5所述的制造设备, 其特征是还包括循环泵, 所述循环泵的吸入口 与所述箱体(1 )下部的排液口 (9)相连, 所述循环泵的出液口与所述箱体(1 ) 的上部 相通, 所述箱体(1 )的底板具有一个倾斜度, 位于底板低的一边箱体侧面底部设置有排 污口, 位于底板高的一边的箱体侧面底部具有进水口。
7、 根据权利要求 5或 6所述的制造设备, 其特征是所述连接棒(6) 的外表面具有 螺紋, 所述两块负极板 (2、 4)分别由板体 (21), 位于板体 (21) 中心的连接套 (22) 和位于其外缘的加强环 (23) 组成, 板体(21)上具有若干通孔, 两负极板 (2、 4)和 正极板(3)通过螺紋安装在所述连接棒(6)上, 所述正极板(3)具有安装正极连接杆 的螺纹孔 (5)。
8、 根据权利要求 7所述的制造设备, 其特征是两负极板(2、 4)和正极板(3)之间 的间隙为 1 mm—50mm。
9、 根据权利要求 8所述的制造设备, 其特征是所述箱体(1)为镀锆不锈钢板, 用氩 弧焊焊接而成; 所述连接棒(6)为聚四氟乙烯; 所述板体(21)、 连接套(22)和加强环
(23)用镀锆不锈钢板, 采用氩弧焊焊接在一起。
10、根据权利要求 9所述的制造设备,其特征是所述石墨正极板(3)的纯度为 99.99%, 灰份小于 lOOppm, 细度在 300目以上, 压强大于 58mpa。
PCT/CN2005/000874 2005-04-20 2005-06-17 Procede de production d’une dispersion de nanometres de carbone et son dispositif de production WO2006111051A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005100646999A CN1855915A (zh) 2005-04-20 2005-04-20 在全球互动微波接入设备中获得当前系统时间的方法
CN200510064699.4 2005-04-20

Publications (1)

Publication Number Publication Date
WO2006111051A1 true WO2006111051A1 (fr) 2006-10-26

Family

ID=37114698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000874 WO2006111051A1 (fr) 2005-04-20 2005-06-17 Procede de production d’une dispersion de nanometres de carbone et son dispositif de production

Country Status (2)

Country Link
CN (1) CN1855915A (zh)
WO (1) WO2006111051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109092218A (zh) * 2018-09-03 2018-12-28 曹明辉 一种纳米石墨溶胶制备装置及制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227224B (zh) * 2007-01-17 2011-06-22 中兴通讯股份有限公司 一种实现wimax系统全网帧同步的方法
WO2010000110A1 (zh) * 2008-07-03 2010-01-07 中兴通讯股份有限公司 分层无线接入系统的同步、调度、网络管理和频率分配方法
CN102905274B (zh) * 2008-07-03 2015-04-29 中兴通讯股份有限公司 分层无线接入系统的频率分配方法
CN102684808A (zh) * 2012-06-06 2012-09-19 哈尔滨工业大学 一种自适应时钟同步系统
CN103023596A (zh) * 2012-12-04 2013-04-03 上海斐讯数据通信技术有限公司 一种实现网络设备与时间服务器同步的方法
CN104349450A (zh) * 2013-07-30 2015-02-11 上海贝尔股份有限公司 一种时钟同步的方法及装置
CN103986791A (zh) * 2014-06-06 2014-08-13 浪潮电子信息产业股份有限公司 一种集群内部节点快速时间同步方法
CN105207768B (zh) * 2015-10-23 2018-06-19 上海斐讯数据通信技术有限公司 路由器端访问设备与互联网时间不一致的提醒方法和系统
CN107071586B (zh) * 2017-04-06 2020-04-24 深圳Tcl新技术有限公司 电视终端的系统时间设定方法及装置
CN107153987A (zh) * 2017-05-12 2017-09-12 上海斐讯数据通信技术有限公司 一种避免时间差的竞价方法及系统
CN108322281A (zh) * 2018-05-14 2018-07-24 上海市计量测试技术研究院 基于ntp的网络授时服务与评估系统及方法
CN111286747A (zh) * 2018-12-10 2020-06-16 彭志军 一种内置超声波的电解制氢氧装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078790A (ja) * 1993-06-24 1995-01-13 Kenichi Fujita 炭素のコロイド溶液の作成方法
JPH10226504A (ja) * 1997-02-07 1998-08-25 Kenichi Fujita 炭素粉末分散液の製造方法
JP2000086220A (ja) * 1998-09-14 2000-03-28 Kenichi Fujita 超微細カーボン粒子
CN1579932A (zh) * 2003-08-12 2005-02-16 刘键 脉冲式电极法制备纳米石墨碳溶胶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078790A (ja) * 1993-06-24 1995-01-13 Kenichi Fujita 炭素のコロイド溶液の作成方法
JPH10226504A (ja) * 1997-02-07 1998-08-25 Kenichi Fujita 炭素粉末分散液の製造方法
JP2000086220A (ja) * 1998-09-14 2000-03-28 Kenichi Fujita 超微細カーボン粒子
CN1579932A (zh) * 2003-08-12 2005-02-16 刘键 脉冲式电极法制备纳米石墨碳溶胶

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109092218A (zh) * 2018-09-03 2018-12-28 曹明辉 一种纳米石墨溶胶制备装置及制备方法
CN109092218B (zh) * 2018-09-03 2023-11-21 曹明辉 一种纳米石墨溶胶制备装置及制备方法

Also Published As

Publication number Publication date
CN1855915A (zh) 2006-11-01

Similar Documents

Publication Publication Date Title
WO2006111051A1 (fr) Procede de production d’une dispersion de nanometres de carbone et son dispositif de production
JP2830733B2 (ja) 電解水生成方法および電解水生成機構
WO2017088534A1 (zh) 一种废水处理装置及通过该装置处理废水的方法
CN101351403B (zh) 用于制造均匀分散于水溶液中的胶体碳纳米颗粒的方法和设备
Ma et al. Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency
CN100408152C (zh) 纳米碳液的制备方法及其制造设备
RU2437741C1 (ru) Способ получения нанодисперсных металлов в жидкой фазе
JP5354592B2 (ja) カーボンナノ粒子の製造方法
JP2021171751A (ja) 廃銅廃液を処理するための3次元電解装置
JP6649988B2 (ja) 飲用水処理におけるハロゲン含有副生成物の発生の制御方法
CN101367571A (zh) 电混凝反应器与废水处理方法
WO2012057242A1 (ja) めっき排水からの貴金属イオン回収方法
TWI328566B (en) Electro-coagulation water treatment reactor and process for treating waste water
KR20070003470A (ko) 미립자 분포액 제조 장치 및 그 제조 방법
US20110214999A1 (en) Method and process for element and/or compound extraction, separation, and purification
JPH07290043A (ja) 水処理方法及び装置
KR100943987B1 (ko) 일체형 하수 재이용 장치
JP2009263689A (ja) 過硫酸製造装置および洗浄システム
CN2808874Y (zh) 纳米碳液的制造设备
CN220579105U (zh) 一种有色金属萃取液电解除油的加工设备
RU2572665C2 (ru) Установка для выделения серебра из серебросодержащего сплава
CN115784382B (zh) 循环水电化学水处理方法
JP5984063B2 (ja) オゾン水生成装置
CN111592078B (zh) 一种超声辅助活性膜电极处理氯酚废水的装置及处理方法
CN212669432U (zh) 一种处理油气田含硫废水的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05755039

Country of ref document: EP

Kind code of ref document: A1