WO2006111044A1 - Alimentation a decoupage integree et son procede de fonctionnement - Google Patents

Alimentation a decoupage integree et son procede de fonctionnement Download PDF

Info

Publication number
WO2006111044A1
WO2006111044A1 PCT/CN2005/000547 CN2005000547W WO2006111044A1 WO 2006111044 A1 WO2006111044 A1 WO 2006111044A1 CN 2005000547 W CN2005000547 W CN 2005000547W WO 2006111044 A1 WO2006111044 A1 WO 2006111044A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
direct current
power supply
unidirectional electronic
electronic device
Prior art date
Application number
PCT/CN2005/000547
Other languages
English (en)
French (fr)
Inventor
Weilun Chen
Jun Chen
Original Assignee
Weilun Chen
Jun Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weilun Chen, Jun Chen filed Critical Weilun Chen
Priority to CNB2005800003653A priority Critical patent/CN100409555C/zh
Priority to PCT/CN2005/000547 priority patent/WO2006111044A1/zh
Publication of WO2006111044A1 publication Critical patent/WO2006111044A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a switching power supply and a working method thereof, in particular to a switching power supply with an AC rectifying unit, a power factor correcting unit, a power switch converting unit and a magnetic circuit integrated, and in particular to an integrated switching power supply and Its working methods. Background technique. ...:
  • FIG. 1 shows the working principle block diagram of the existing AC rectification unit, power factor correction unit, power switch conversion unit and DC rectification unit.
  • FIG. 2 is a circuit diagram of an existing AC rectifying unit, power factor correcting unit, power switching unit, and DC rectifying unit.
  • the existing switching power supply with power factor correction is at least three stages:
  • the first stage is an AC rectification input unit: converting AC to unipolar DC;
  • the second stage is the power factor correction unit: converts the unipolar direct current into a stable high voltage direct current; the stage uses the power magnetic element as the energy storage inductor;
  • the other stage is the power switching unit:
  • the high-voltage DC isolation is transmitted to the DC output stage, which again uses the power magnetic element as the transducing transformer.
  • the above-mentioned power supply factor correction switching power supply has the following disadvantages: The control principle and the circuit are complicated, the total number of components is large, and there are many independent control factors, and it is difficult to further improve the efficiency of power conversion.
  • the present invention proposes a simple, high efficiency, integrated switching power supply and its working method.
  • the invention provides an integrated switching power supply, comprising: an AC rectification input unit 301 for converting alternating current into unipolar direct current; a direct current output rectifying unit 303 for rectifying and outputting direct current; wherein the power supply further comprises a transfer switch
  • the unit 302 is configured to convert the unipolar direct current into a stable high voltage direct current, and transmit the high voltage direct current isolation to the direct current output stage.
  • the transfer switch unit includes: an energy storage inductor, a power conversion transformer, a capacitor, a first one-way electronic device, a second one-way electronic device, a first controllable switch device, a second controllable switch device, and a resistor; among them,
  • the first controllable switching device, the first unidirectional electronic device, the capacitor and the resistor are connected in series, and the energy storage inductor is connected to a connection point of the first controllable switching device and the first unidirectional electronic device to form a first Boost switching circuit to obtain high voltage direct current;
  • the transducing transformer, the first controllable switching device, the second controllable switch device, the first unidirectional electronic device, and the second unidirectional electronic device form a forward switching circuit to realize isolated transmission of high voltage direct current.
  • the energy storage inductance is combined with the transducer transformer on the same magnet to form a quadrature magnetic integration.
  • the unidirectional electronic device is a diode.
  • the controllable switching device is a switch tube.
  • the switching transistor is a field effect transistor or a bipolar transistor or an insulated gate bipolar transistor.
  • the invention provides an integrated switching power supply, comprising a DC output rectifying unit 402 for rectifying and outputting DC power, and a conversion switch unit 401 for converting alternating current into unipolar straight Current, converts unipolar direct current into stable high-voltage direct current, and transmits high-voltage direct current isolation to the DC output stage.
  • the switch unit 401 includes: an energy storage inductor, a first power conversion transformer, a second power conversion transformer, a capacitor (a first controllable switch device, a second controllable switch device, a third controllable switch device, a fourth controllable switching device, a first unidirectional electronic device, a second unidirectional electronic device, a third unidirectional electronic device, and a fourth unidirectional electronic device, and a resistor; wherein
  • a full-bridge circuit is formed by a pair of controllable switching devices and a pair of unidirectional electronic devices, and the power supply is converted from alternating current to unipolar direct current, wherein the pair of controllable switching devices are the first controllable switching device and the second a controllable switching device, wherein the pair of unidirectional electronic devices are a first unidirectional electronic device and a second unidirectional electronic device;
  • the unidirectional electronic device, the first and the second unidirectional electronic device form a forward switching bridge circuit to realize high voltage direct current isolation transmission.
  • the energy storage inductance is combined with the transducer transformer on the same magnet to form a quadrature magnetic integration.
  • the unidirectional electronic device is a diode.
  • the controllable switching device is a switch tube.
  • the switching transistor is a field effect transistor, a bipolar transistor, and an insulated gate bipolar transistor.
  • the present invention provides an integrated switching power supply, wherein the integrated switching power supply includes: an AC rectification input unit 301, a DC output rectification unit 303, a transfer switch unit 302;
  • the AC rectification input unit 301 converts an alternating current into a unipolar direct current; in the transfer switch unit 302, the first controllable switch device and the first one-way electronic device The capacitors and the resistors are connected in series, and the energy storage inductor is connected to the connection point of the first controllable switch device and the first unidirectional electronic device to form a step-up switching circuit to change the unipolar direct current into High voltage direct current;
  • the transformer, the first controllable switching device, the second controllable switching device, the first unidirectional electronic device, and the second unidirectional electronic device form a forward switching circuit, and the high voltage direct current is isolated to the DC output stage;
  • the DC output rectification unit 303 rectifies the DC power and outputs it.
  • the invention also provides a working method of an integrated switching power supply, wherein the integrated switching power supply comprises a transfer switch unit 401 and a DC output rectification unit 402;
  • a full-bridge circuit is formed by a pair of controllable switching devices and a pair of unidirectional electronic devices, and the power supply is converted from alternating current to unipolar direct current, wherein the pair of controllable switching devices are the first controllable switching device and the second a controllable switching device, wherein the pair of unidirectional electronic devices are a first unidirectional electronic device and a second unidirectional electronic device;
  • the DC output DC unit 402 rectifies the DC power and outputs it.
  • the energy storage inductor and the transducing transformer are combined on the same magnet so that the magnetic flux of the two is perpendicular at every point of the magnet at any moment, realizing orthogonal magnetic integration.
  • the unidirectional electronic device is a diode.
  • the controllable switching device is a switch tube.
  • the beneficial effects of the invention are: Although the power factor correction unit and the on/off power conversion unit are two conventional stages, but effectively combine the parts shared between them, the original two-stage reduction is reduced to a single-stage dual-function circuit, so that the total number of components is small. The independent control factors are reduced, the conversion efficiency is improved, and the working principle and effect of the original unit circuits are all time-sharing, all retained;
  • the AC rectification unit, the power factor correction unit, and the switching power conversion unit are conventional three-stage, but effectively combine the parts shared between them, the original three-stage single-function circuit is reduced to a single-stage three-function circuit. Therefore, the total number of components is small, the independent control factors are reduced, and the conversion efficiency is further improved.
  • the working principle and effect of the original units are alternately and time-sharing, all remaining;
  • the polarity change of the alternating current drives different circuit parts to work to adapt to its changes
  • the complementary work between the three levels effectively utilizes the topology arrangement of the shared components, realizing the time-sharing and complementary completion of the respective functions, not only without redundant supplementary components, but reduces the overall working components of the original three, and realizes The integration purpose of the present invention.
  • FIG. 1 is a schematic block diagram of a conventional AC rectification unit, a power factor correction unit, a power switch conversion unit, and a DC rectification unit;
  • FIG. 2 is a circuit diagram of a conventional AC rectifying unit, a power factor correcting unit, a power switch converting unit, and a DC rectifying unit;
  • FIG. 3 is a block diagram showing the working principle of a half bridge of the integrated switching power supply according to Embodiment 1 of the present invention
  • 4 is a block diagram showing an operation principle of an integrated switching power supply according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of an integrated switching power supply half-bridge topology according to Embodiment 1 of the present invention
  • FIG. 6 is an integrated switching power supply according to Embodiment 1 of the present invention
  • Figure 2 is a schematic diagram of a half bridge topology
  • Figure 7 is a circuit diagram of a half bridge of the embodiment 1 of the present invention
  • FIG. 8 is a schematic diagram of a full-bridge topology of an integrated switching power supply according to Embodiment 2 of the present invention
  • FIG. 9 is a second schematic diagram of a full-bridge topology of an integrated switching power supply according to Embodiment 2 of the present invention
  • FIG. The integrated switching power supply full bridge topology schematic diagram
  • Figure 1 is a schematic diagram of the orthogonal magnetic integration implementation of the present invention
  • Figure 12 is a schematic illustration of the implementation of the orthogonal magnetic circuit of the present invention.
  • Figure 13 is a circuit diagram showing the operation of the full bridge of the embodiment 2 of the present invention. detailed description
  • an integrated switching power supply in this embodiment includes: an AC rectification input unit 301 for converting alternating current into unipolar direct current; a direct current output rectifying unit 303 for rectifying and outputting direct current;
  • a transfer switch unit 302 for converting unipolar direct current into a stable high voltage direct current and transmitting the high voltage direct current isolation to the direct current output stage.
  • the transfer switch unit 302 includes: a storage inductor Lpfc, a transducing transformer T1, a capacitor C, a resistor Rsns, a first diode CD1, a second diode D1, a first switch PFC1, and a second switch SW1. ;
  • the transfer switch unit is driven by direct current
  • the first switch PFC1, the first diode CD1, the capacitor C, and the resistor Rsns In series, the inductor Lpfc is connected to form a boost switch type (BOOST) circuit to convert unipolar direct current into stable high voltage direct current.
  • the power source for this circuit is a DC power supply.
  • the control of the switching circuit is completed by a power factor correction controller, which relies on the current loop provided by Rsns to assist in power factor correction;
  • the circuit composed of the first diode CD1, the second diode D1, the first switching transistor PFC1, the second switching transistor SW1, and the transducing transformer T1 is a double-switch forward switching type (F 0 RWA RD ) circuit, which transmits high-voltage direct current isolation.
  • the power source of the circuit is the energy storage on the capacitor C.
  • the forward switch 3 ⁇ 4 control can be derived from the output of the power factor correction controller.
  • the transfer switch unit of this embodiment has two alternate operating states: a drive state and a non-drive state.
  • the first switch PFC1 and the second switch SW1 are turned on, the energy storage inductor L pfc stores the electric energy from the DC power source, and the transducing transformer T 1 releases the capacitor C.
  • the electric energy is connected to the load of the transducing transformer T1, and the current flowing forward through the resistor Rsns is equal to the discharge current of the capacitor, and this current indirectly reflects the current flowing through the load, and the current is used as the current.
  • the first switch PFC1 and the first switch SW1 are turned off, and the stored energy stored on the storage inductor L pfc is released into the capacitor C, and the converter transformer T 1 is turned on.
  • the energy that has not been drained to its load is recovered by the circuit into capacitor C.
  • the current flowing in the reverse resistor Rsns is equal to the capacitor storage current. This current indirectly reflects the current of the power supply load, and this current is used to recover the current as the current loop for power factor correction. This kind of electricity
  • the method of resistance measures the current in the current loop, significantly eliminating the resulting energy loss.
  • the above two operating states can be controlled by an existing common power factor correction power supply controller or / and power factor correction integrated circuit.
  • the embodiment provides an integrated switching power supply, including a DC output rectifying unit. 402, for rectifying the output after DC power, further comprising a transfer switch unit 401, configured to convert the alternating current into unipolar direct current, convert the unipolar direct current into a stable high-voltage direct current, and transmit the high-voltage direct current isolation to the direct current output stage.
  • a DC output rectifying unit. 402 for rectifying the output after DC power, further comprising a transfer switch unit 401, configured to convert the alternating current into unipolar direct current, convert the unipolar direct current into a stable high-voltage direct current, and transmit the high-voltage direct current isolation to the direct current output stage.
  • FIG. 13 is a working circuit diagram of the full bridge topology of the embodiment.
  • the switch unit 401 includes: a storage inductor Lpfc, a first transducer transformer T1, a second transducer transformer ⁇ 2, a capacitor (:, a first controllable switch device PFC1, a second controllable switch device PFC2)
  • a pair of switching tubes PFC1, PFC2 and a pair of diodes CD1, CD2 realize the rectification full bridge function in the existing AC rectification circuit, and convert the power supply from AC to DC;
  • the first switch PFC1, the second switch PFC2, the first diode CD1, and the second diode CD2 form a full bridge, and the two diagonals of the full bridge are respectively paralleled to the storage inductor Lpfc, the capacitor C, and the resistor Rsns.
  • the series configuration of the boost switch type (BOOST) circuit converts the unipolar direct current into high voltage direct current; and the control of the switching circuit is completed by a power factor correction controller, which relies on the current loop provided by Rsns to achieve power factor correction.
  • a double-tube forward-excited (F 0 RWA RD) switching bridge circuit is formed to realize high-voltage direct current isolation transmission.
  • the control of the forward switch can be synchronized or asynchronous to the output of the power factor correction controller.
  • the full-bridge topology of this embodiment is a full-symmetric super-collection of the half-bridge topology of Embodiment 1, and the analysis of the half-bridge topology circuit and the magnetic circuit is also completely suitable for the analysis of the working state of the full-bridge topology circuit and the magnetic circuit. .
  • the energy storage inductance that fully utilizes the power factor correction function, the independence of the power transformer with the power switch conversion function on the magnetic circuit, and the two-way in the magnetic flux direction Sexuality, temporal alternation, combining the two on the same magnet as shown in Figure 11, so that the magnetic flux of the two is perpendicular at every moment and direction at each point of the magnet.
  • the integrated bridge circuit of the full bridge topology of this embodiment can be directly driven by alternating current or by direct current.
  • the full-bridge topology has higher operating efficiency and more switching modes than the half-bridge topology, which is beneficial to the use of complex loads and high-power switching power supplies.
  • FIG. 11 and FIG. 2 are schematic diagrams showing the implementation of a quadrature magnetic circuit according to an embodiment of the present invention.
  • the magnetic circuit of the full bridge topology has higher magnetic circuit utilization rate than the circuit of the half bridge topology, and fully utilizes all Eight elephants P1 ⁇ 2 body; and with the working mode of the full-bridge topology switch, the road has more usage modes, which is further beneficial to the use of high-power switching power supplies.
  • the integrated switching power supply includes: an AC rectification input unit 301, a DC output rectification unit 303, and a changeover switch unit 302;
  • the AC rectification input unit 301 converts alternating current into unipolar direct current
  • the first controllable switching device, the first unidirectional electronic device, the capacitor and the resistor are connected in series, and the energy storage inductor is connected to a connection point of the first controllable switching device and the first unidirectional electronic device to form a step-up switching circuit that converts unipolar direct current into high voltage direct current;
  • the transformer, the first controllable switching device, the second controllable switching device, the first unidirectional electronic device, and the second unidirectional electronic device form a forward switching circuit, and the isolation of the high voltage direct current is transmitted to the DC output stage;
  • the DC output rectification unit 303 rectifies the DC power and outputs it.
  • controllable switching device uses a switching tube
  • unidirectional electronic device uses a diode
  • the embodiment provides a working method of an integrated switching power supply.
  • the integrated switching power supply includes a transfer switch unit 401 and a DC output rectification unit 402;
  • a pair of controllable switch devices and a pair of unidirectional electronic devices form a full bridge circuit, and the power supply is converted from alternating current to unipolar direct current, wherein the pair of controllable switch devices is a controllable switching device and a second controllable switching device, wherein the pair of unidirectional electronic devices are a first unidirectional electronic device and a second unidirectional electronic device;
  • the DC output DC unit 402 rectifies the DC power and outputs it.
  • the controllable switching device uses a switching tube, and the unidirectional electronic device uses a diode.
  • the energy storage inductor and the transducing transformer are combined on the same magnet, as shown in Figures 11 and 12, so that the magnetic flux of both is at each point of the magnet, at any time. , the direction is vertical, 'implemented orthogonal magnetic integration. '

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Description

一种集成开关电源及其工作方法
技术领域
本发明涉及一种开关电源及工作方法,特别涉及一种同时带有交流整流 单元、 功率因素校正单元、 功率开关转换单元和磁路集成的开关电源, 具体 的讲, 涉及一种集成开关电源及其工作方法。 背景技术. …:
如图 1所示为现有包括交流整流单元、功率因素校正单元、功率开关转 换单元和直流整流单元工作原理框图。如图 2所示为现有的包括交流整流单 元、 功率因素校正单元、 功率开关转换单元和直流整流单元的电路图。
如图所示, 现有的带功率因素校正的开关电源为至少为三级: 第一级为交流整流输入单元: 将交流转变为单极性直流;
第二级为功率因素校正单元: 将单极性直流转变为稳定的高压直流; 该 级使用了功率磁性元件作为储能电感;
另一级为功率开关转换单元: 将高压直流隔离传递给直流输出级, 该级 再次使用了功率磁性元件作为换能变压器。
采用上述的带功率因素校正开关电源,存在以下缺点: 控制原理和电路 复杂、 总的元件数量较多、 独立的控制因素较多、难以进一步提高电源转换 的效率。
目前,极少有实用的将功率因素校正单元和开关功率转换单元两级合一 的产品或将上述三级合一的产品,也极少有上述两个磁性元件合一的产品出 品, 原因为: 第一, 两级或三级的实现指标难以综合实现; 第二, 整合后的 辅助控制复杂。 · 发明内容
为达到单级集成上述两级或三级的目的以及合并磁性元件的目的,并在 完全保证并优于各级独自工作指标的情况下,显著地缩减元件数量, 并简化 控制原理和电路,进一步提高开关电源功率转换的有效性、可靠性和实用性, 本发明提出了一种简洁、 高效率、 集成开关电源及其工作方法。
本发明提供一种集成开关电源, 包括: 交流整流输入单元 301, 用于将 交流电转变为单极性直流电; 直流输出整流单元 303 , 用于将直流电整流后 输出; 其中, 该电源还包括转换开关单元 302, 用于将单极性直流电转变为 稳定的高压直流电, 并将高压直流电隔离传递给直流输出级。 所述转换开关单元包括: 一储能电感、 一换能变压器、 一电容、 第 1 单向电子装置、 第 2单向电子装置、 第 1可控开关装置、 第 2可控开关装置 和电阻; 其中,
所述第 1可控开关装置、 第 1单向电子装置、 电容和电阻串联, 在所述 第 1可控开关装置和第 1单向电子装置的连接点接入所述储能电感,组成一 升压开关型电路, 从而获得高压直流电;
所述换能变压器,第 1可控开关装置、 第 2可控开关隼置、 第 1单向电 子装置、第 2单向电子装置组成正激型开关电路, .以实现高压直流电的隔离 传递。
所述的储能电感与所述换能变压器合并在同一个磁体上,从而形成正交 磁集成。
所述的单向电子装置为二极管。
所迷的可控开关装置为开关管。
所述的开关管为场效应晶体管或双极晶体管或绝缘栅双极晶体管。 本发明提供一种集成开关电源, 包括直流输出整流单元 402 , 用于将直 流电整流后输出, 还包括转换开关单元 401, 用于将交流电转换为单极性直 流电,将单极性直流电转变为稳定的高压直.流电,将高压直流电隔离传递给 直流输出级。
所述的开关单元 401包括: 一储能电感、 第 1换能变压器、 第 2换能变压 器、 一电容 (、 第 1可控开关装置、 第 2可控开关装置、 第 3可控开关装置、 第 4可控开关装置、 第 1单向电子装置、 第 2单向电子装置、 第 3单向电子装置和 第 4单向电子装置、 电阻; 其中,
由一对可控开关装置和一对单向电子装置组成全桥电路,将供电电源由 交流向单极性直流转换, 其中所述一对可控开关装置为第 1可控开关装置和 第 2可控开关装置, 所述的一对单向电子装置为第 1单向电子装置和第 2单向 电子装置;
由所述第 1和第 2可控开关装置、 第 1和第 2单向电子装置组成一个全桥, 该全桥的两个对角分别并联所述储能电感、并联所述电容和电阻的串联,构 成升压开关型电路, 从而获得高压直流电; 由所述第 1和第 2换能变压器、 第 3和第 4可控开关装置、 第 1和第 2 可控开关装置、第 3和第 4单向电子装置、第 1和第 2单向电子装置组成正 激型开关桥电路, 以实现高压直流电隔离传递。
所述的储能电感与所述换能变压器合并在同一个磁体上,从而形成正交 磁集成。
所述的单向电子装置为二极管。
所述的可控开关装置为开关管。
所述的开关管为场效应晶体管、 双极晶体管、 绝缘栅双极晶体管。 本发明提供一种集成开关电源的工作方法,其中, 所述集成开关电源包 括: 交流整流输入单元 301、 直流输出整流单元 303、 转换开关单元 302;
所述交流整流输入单元 301 , 将交流电转变为单极性直流电; 所述转换开关单元 302中, 由所述第 1可控开关装置、 第 1单向电子装 置、 电容和电阻串联,在所述第 1可控:开关装置和第 1单向电子装置的连接 点接入所述储能电感,组成一升压开关型电路, 将单极性直流电变为高压直 流电;
由所述变压器,第 1可控开关装置、 第 2可控开关装置、 第 1单向电子 装置、第 2单向电子装置组成正激型开关电路,将高压直流电的隔离传递给 直流输出级;
直流输出整流单元 303 , 将直流电整流后输出。
本发明还提供一种集成开关电源的工作方法 , ·其中,该集成开关电源包 括转换开关单元 401和直流输出整流单元 402 ;
由一对可控开关装置和一对单向电子装置组成全桥电路,将供电电源由 交流向单极性直流转换, 其中所述一对可控开关装置为第 1可控开关装置和 第 2可控开关装置, 所述的一对单向电子装置为第 1单向电子装置和第 2单向 电子装置;
由所述第 1和第 2可控开关装置、 第 1和第 2单向电子装置组成一个全桥, 该全桥的两个对角分别并联所述储能电感、并联所述电容和电阻的串联,构 成升压开关型电路, 从而将单极性直流转换为高压直流电; 由所述第 1和第 2换能变压器、 第 3和第 4可控开关装置、 第 1和第 2 可控开关装置、 第 3和第 4单向电子装置、第 1和第 2单向电子装置组成正 激型开关桥电路, 将高压直流电隔离传递给直流输出级;
所述直流输出直流单元 402将直流电整流后输出。 将所述储能电感和换能变压器合并在了同一个磁体上,使得两者的磁通 在磁体的每一点上, 在任何时刻, 方向上都是垂直的, 实现了正交磁集成。
所述的单向电子装置为二极管。
所述的可控开关装置为开关管。
本发明的有益效果在于: 功率因素校正单元和开.关电源转换单元虽然为传统的两级,但有效地合 并它们之间共享的部分, 则原有的两级化减为单级双功能电路,使得总的元 件数量少了, 独立的控制因素减少了 , 转换效率提高了,而原各单元电路的 工作原理和效果分时地, 全部保留下来;
另外, 交流整流单元、功率因素校正单元和开关功率转换单元虽然为传 统的三级,但有效地合并它们之间共享的部分, 则原有的三级单功能电路化 减为单级三功能电路,从而,总的元件数量少了,独立的控制因素减少了, 转 换效率进一步提高.了,而原各单元的工作原理和效果分时交替地, 全部保留 下来;
交流电的极性变化驱动不同的电路部分工作来适应其变化;
三级之间的互补工作有效地利用了其共享元件的拓朴安排,实现了各自 功能的分时, 互补地完成, 不但无多余的补充元件, 反而减少了原有三者总 体的工作元件, 实现了本发明的集成目的。
在电路集成的同时,本发明充分利用了功率因素校正功能的储能电感, 与功率开关转换功能的换能变压器在磁路上的无关性, 磁通方向上的双向 性, 时间上的交替性, 将两者按如图 11所示的结构合并在了同一个磁体上, 使得两者的磁通在磁体的每一点上, 在任何时刻, 任何方向上都是垂直的, 实现了本发明正交磁集成的目的。 附图说明 图 1是现有包括交流整流单元、功率因素校正单元、功率开关转换单元 和直流整流单元原理框图;
图 2是现有包括交流整流单元、功率因素校正单元、功率开关转换单元 和直流整流单元的电路图;
图 3是本发明实施例 1的集成开关电源的半桥工作原理框图; 图 4是本发明实施例 2的集成开关电源的工作原理框图; 图 5是本发明实施例 1的集成开关电源半桥拓朴原理图之一; 图 6是本发明实施例 1的集成开关电源半桥拓朴原理图之二; 图 7是本发明实施例 1半桥工作电路图;
图 8是本发明实施例 2的集成开关电源全桥拓朴原理图之一; 图 9是本发明实施例 2的集成开关电源全桥拓朴原理图之二; 图 10是本发明实施例 2的集成开关电源全桥拓朴原理图之三; 图 1 是本发明的正交磁集成实现的示意图; '
图 12是本发明的正交磁路实现的示意图;
图 13是本发明实施例 2全桥工作电路图。 具体实施方式
参照附图说明本发明的优选实施例。
实施例 1
如图 3所示, 本实施例中的一种集成开关电源, 包括: 交流整流输入单 元 301, 用于将交流电转变为单极性直流电; 直流输出整流单元 303 , 用于将 直流电整流后输出;
还包括转换开关单元 302 , 用于将单极性直流电转变为稳定的高压直流 电, 并将高压直流电隔离传递给直流输出级。
如图 5和图 6为转换开关单元半桥拓朴原理图,图 7为本实施例的电路 图。 其中所述转换开关单元 302包括: 一储能电感 Lpfc、 一换能变压器 Tl、 一电容 C、一电阻 Rsns、 第 1二极管 CD1、 第 2二极管 Dl、 第 1开关管 PFC1 和第 2开关管 SW1;
所述的转换开关单元由直流电驱动;
如图所示, 由第 1开关管 PFC1、 第 1二极管 CD1、 电容 C、 电阻 Rsns 串联, 再接人电感 Lpfc,组成升压开关型 ( B O O S T ) 电路, 将单极性直 流电转变为稳定的高压直流电。该电路的功率来源为直流电源。 而开关电路 的控制由一功率因素校正控制器来完成, 该控制器依靠 Rsns提供的电流环 协助实现功率因素校正;
由第 1二极管 CD1、 第 2二极管 Dl、 第 1开关管 PFC1、 第 2开关管 SW1 和换能变压器 T1组成的电路为一双管正激开关型( F 0 RWA R D )电路, 将高压直流电隔离传递,该电路的功率来源为所述电容 C上的贮能。正激型 开关 ¾控制可来自于功率因素校正控制器的输出。
本实施例的转换开关单元有两个交替的工作态: 驱动态和非驱动态。 所述转换开关单元在驱动态下, 第 1开关管 PFC1、 第 2开关管 SW1处 于开通, 储能电感 L pfc贮集来自直流电源的电能, 而换能变压器 T 1则释 放电容 C上贮存的电能给连上所述换能变压器 T 1的负载, 此时正向流过电 阻 Rsns中的电流,等于电容放能电流,这一电流间接地反应了流过负载的电 流,利用这一电流作为功率开关反馈用的电流环的电流;
集成转换开关单元在非驱动态时, 第 1开关管 PFC1 , 第 1开关管 SW1 处于关断, 储能电感 L pfc上贮集的电能转而释放到电容 C中, 而换能变压 器 T 1上尚未幹放完给其负载的能量, 由电路回收到电容 C中。 此时反向流 过电阻 Rsns中的电流,等于电容储能电流,这一电流间接地反应了电源负载 的电流,利用这一电流恢复出作为功率因素校正用的电流环的电流。 这种电
电阻的方法测量电流环的电流, 显著地消除了由此而带来的能量损耗。
为实现功率因素的校正功能,上述两个工作态可受控于一个现有常见的 一款功率因素校正电源控制器或 /和功率因素校正集成电路。
实施例 2
如图 4所示, 本实施例提供一种集成开关电源, 包括直流输出整流单元 402, 用于将直流电整流后输出, 还包括转换开关单元 401, 用于将交流电转 换为单极性直流电, 将单极性直流电转变为稳定的高压直流电,将高压直流 电隔离传递给直流输出级。
如图 8、 图 9、 图 10所示, 为本实施例的全桥拓朴原理图。 如图 13所示为 本实施例全桥拓朴的工作电路图。
其中, 所述的开关单元 401包括: 一储能电感 Lpfc、 第 1换能变压器 Tl、 第 2换能变压器 Τ2、一电容 (:、第 1可控开关装置 PFC1、第 2可控开关装置 PFC2、 第 3可控开关装置 SW1、 第 4可控开关装置 SW2、 第 1单向电子装置 CD1、 第 2单 向电子装置 CD2、 第 3单向电子装置 D1和第 4单向电子装置 D2、 电阻 Rsns ; 由一对开关管 PFC1,PFC2和一对二极管 CD1, CD2实现现有交流整流电路 中的整流全桥功能, 将供电电源由交流转变为直流;
由所述第 1开关管 PFC1、 第 2开关管 PFC2、 第 1二极管 CD1、 第 2二极管 CD2 組成了一个全桥,全桥的两个对角分别并联储能电感 Lpfc和电容 C、电阻 Rsns 的串联组成升压开关型( B O O S T )电路, 将单极性直流电转变为高压直 流电; 而开关电路的控制由一功率因素校正控制器来完成, 该控制器依靠 Rsns提供的电流环得以实现功率因素校正; 由换能变压器 T1,第 3开关管 SW1、第 4开关管 SW2、第 1开关管 PFC1、 第 2开关管 PFC2、 第 3二极管 Dl、 第 4二极管 D2、 第 1二极管 CD1、 第 1 二极管 CD2组成一双管正激型( F 0 RWA R D )开关桥电路, 实现将高压 直流电隔离传递。正激开关的控制可同步于或异步于功率因素校正控制器的 输出。
本实施例的全桥拓朴是实施例 1的半桥拓朴的全对称超集合,对半桥拓 朴电路和磁路的分析亦完全适合对全桥拓朴电路和磁路的工作状态分析。
在本发明的两个实施例中 , 充分利用了功率因素校正功能的储能电感, 与功率开关转换功能的换能变压器在磁路上的无关性, 磁通方向上的双向 性, 时间上的交替性,将两者按如图 11所 的结构合并在了同一个磁体上, 使得两者的磁通在磁体的每一点上, 在任何时刻, 方向上都是垂直的, 如图
11 , 实现了本发明正交磁集成的目的。
本实施例的全桥拓朴的集成开关电路可直接由交流电来驱动 ,或由直流 电来驱动。
全桥拓朴的电路相对于半桥拓朴的电路具有更高的工作效率和更多的 开关工作模式, 有利于复杂负载、 大功率开关电源的使用。
如图 11, 图 Ί2所示为本发明实施例正交磁路实现的示意图, 全桥拓朴 的磁路相对于半桥拓朴的电路具有更高的磁路利用率,既充分利用了全部八 象 P½体; 而随同全桥拓朴开关的工作模式, ^兹路亦有更多的使用模式, 进 一步有利于大功率开关电源的使用场合。
实施例 3
本实施例提供一种集成开关电源的工作方法,如图 3所示, 所述集成开 关电源包括: 交流整流输入单元 301、 直流输出整流单元 303、 转换开关单 元 302;
所述交流整流输入单元 301 , 将交流电转变为单极性直流电;
由所述第 1可控开关装置、 第 1单向电子装置、 电容和电阻串联, 在所 述第 1可控开关装置和第 1单向电子装置的连接点接入所述储能电感,组成 一升压型开关电路, 将单极性直流电变为高压直流电;
由所述变压器,第 1可控开关装置、 第 2可控开关装置、 第 1单向电子 装置、第 2单向电子装置組成正激开关电路,将高压直流电的隔离传递给直 流输出级;
直流输出整流单元 303 , 将直流电整流后输出。
在本实施例中, 可控开关装置采用开关管, 单向电子装置采用二极管。 实施例 4
本实施例提供一种集成开关电源的工作方法, 如图 4所示, 该集成开关 电源包括转换开关单元 401和直流输出整流单元 402 ;
所述转换开关单元 401中, 由一对可控开关装置和一对单向电子装置组 成全桥电路,将供电电源由交流向单极性直流转换, 其中所述一对可控开关 装置为第 1可控开关装置和第 2可控开关装置,所述的一对单向电子装置为第 1单向电子装置和第 2单向电子装置;
由所述第 1和第 2可控开关装置、 笫 1和第 2单向电子装置组成一个全桥, 该全桥的两个对角分别并联所述储能电感、并联所述电容和电阻的串联,构 成升压开关型电路, 从而获得将单极性直流转换为高压直流电; 由所述第 1和第 1换能变压器、 第 3和第 4可控开关装置、 第 1和第 2 可控开关装置、第 3和第 4单向电子装置、第 1和第 2单向电子装置组成正 激型开关桥电路, 将高压直流电隔离传递给直流输出级;
所述直流输出直流单元 402将直流电整流后输出。 在本实施例中, 可控开关装置采用开关管, 单向电子装置采用二极管。 在实施例 3和 4中,将所述储能电感和换能变压器合并在了同一个磁体 上, 如图 11、 12所示, 使得两者的磁通在磁体的每一点上, 在任何时刻, 方向上都是垂直的, '实现了正交磁集成。 '
以上具体实施方式仅用于说明本发明,而非用于限定本发明。

Claims

权 利 要 求 书
1. 一种集成开关电源, 包括: 交流整流输入单元( 301 ), 用于将交流 电转变为单极性直流电; 直流输出整流单元( 303 ) , 用于将直流电整流后 输出; 其特征在于, 还包括转换开关单元( 302 ) , 用于将单极性直流电转 变为稳定的高压直流电, 并将高压直流电隔离传递给直流输出级。
2. 根据权利要求 1所述的集成开关电源, 其特征在于,
'所述转换开关单元包括: 一储能电感、 一换能变压器、 一电容、 第 1 单向电子装置、 第 2单向电子装置、 第 1可控开关装置、 第 2可控开关装置 和电阻; 其中,
所述第 1可控开关装置、 第 1单向电子装置、 电容和电阻串联, 在所述 第 1可控开关装置和第 1单向电子装置的连接点接入所述储能电感,组成一 升压型开关型电路, 从而获得高压直流电;
所述换能变压器,第 1可控开关装置、 第 2可控开关装置、 第 1单向电 子装置、第 2单向电子装置组成正激型开关电路,以实现高压直流电的隔离传递。
3.根据权利要求 2所述的集成开关电源, 其特征在于, 所述的储能电感 与所述换能变压器合并在同一个磁体上, 从而形成正交磁集成。
4.根据权利要求 2所述的集成开关电源, 其特征在于, 所述的单向电子 装置为二极管。
5.根据权利要求 2所述的集成开关电源, 其特征在于, 所述的可控开关 装置为开关管。
6.根据权利要求 5所述的集成开关电源, 其特征在于, 所述的开关管为 场效应晶体管或双极晶体管或绝缘栅双极晶体管。
7. 一种集成开关电源, 包括直流输出整流单元( 402 ) , 用于将直流电 整流后输出, 其特征在于, 还包括转换开关单元(401 ) , 用于将交流电转 换为单极性直流电, 将单极性直流电转变为稳定的高压直流电,将高压直流 电隔离传递给直流输出级。
8.根据权利要求 7所述的集成开关电源, 其特征在于, 所述的开关单元 ( 401 ) 包括: 一储能电感、 第 1换能变压器、 第 2换能变压器、 一电容 (:、 第 1可控开关装置、 第 2可控开关装置、 第 3可控开关装置、 第 4可控开关装置、 第 1单向电子装置、第 2单向电子装置、第 3单向电子装置和第 4单向电子装置、 电阻; 其中,
由一对可控开关装置和一对单向电子装置组成电路,.将供电电源由交流 向单极性直流转换, 其中所述一对可控开关装置为第 1可控开关装置和第 2 . 可控开关装置,所述的一对单向电子装置为第 1单向电子装置和第 2单向电子装置; 由所述第 1和第 2可控开关装置、 第 1和第 2单向电子装置组成一个全桥, 该全桥的两个对角分别并联所述储能电感、并联所述电容和电阻的串联,构 成升压型开关型电路, 从而获得高压直流电;
由所述第 1和第 1换能变压器、 第 3和第 4可控开关装置、 第 1和第 2 可控开关装置、第 3和第 4单向电子装置、第 1和第 2单向电子装置组成正 激型开关桥电路, 以实现高压直流电隔离传递。
9.根据权利要求 8所述的集成开关电源,其特征在于, 所述的储能电感 与所述换能变压器合并在同一个磁体上, 从而形 '成正交磁集成。
10.根据权利要求 8所述的集成开关电源,其特征在于, 所述的单向电子 装置为二极管。
11. 根据权利要求 8所述的集成开关电源, 其特征在于, 所述的可控开 关装置为开关管。
12.根据权利要求 11所述的集成开关电源, 其特征在于, 所述的开关管 为场效应晶体管、 汉极晶体管或绝缘栅汉极晶体管。
13. —种集成开关电源的工作方法, 其特征在于, 所述集成开关电源包 括:交流整流输入单元( 301 )、直流输出整流单元( 303 )、转换开关单元( 302 ); 所述交流整流输入单元(301 ), 将交流电转变为单极性直流电; 由所述第 1可控开关装置、 第 1单向电子装置、 电容和电阻串联, 在所 述第 1可控开关装置和第 1单向电子装置的连接点接入所述储能电感,组成 一升压型开关型电路, 将单极性直流电变为高压直流电;
.由所述变压器,第 1可控开关装置、 第 2可控开关装置、 第 1单向电子 装置、 第 2单向电子装置组成正激型开关电路, 将高压直流电的隔离传递给 直流输出级;
直流输出整流单元 ( 303 ), 将直流电整流后输出。
14. 一种集成开关电源的工作方法, 其特征在于, 该集成开关电源包 括转换开关单元 (401 ) 和直流输出整流单元( 402 ) ;
由一对可控开关装置和一对单向电子装置组成全桥电路,将供电电源由 交流向单极性直流转换, 其中所述一对可控开关装置为第 1可控开关装置和 第 2可控开关装置, 所述的一对单向电子装置为第 1单向电子装置和第 2单向 电子装置;
由所述第 1和第 2可控开关装置、 第 1和第 2单向电子装置组成一个全桥, 该全桥的两个对角分别并联所述储能电感、并联所述电容和电阻的串联,构 成升压开关型电路, 从而获得将单极性直流转换为高压直流电; 由所述第 1和第 1换能变压器、 第 3和第 4可控开关装置、 第 1和第 2 可控开关装置、第 3和第 4单向电子装置、第 1和第 2单向电子装置组成正 激型开关桥电路, 将高压直流电隔离传递给直流输出级;
所述直流输出直流单元( 402 )将直流电整流后输出。
15.根据权利要求 1 3或 14所述的集成开关电源的工作方法,其特征在于, 将所述储能电感和换能变压器合并在了同一个磁体上,使得两者的磁通在磁 体的每一点上, 在任何时刻, 方向上都是垂直的, 实现了正交磁集成。
PCT/CN2005/000547 2005-04-20 2005-04-20 Alimentation a decoupage integree et son procede de fonctionnement WO2006111044A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2005800003653A CN100409555C (zh) 2005-04-20 2005-04-20 一种集成开关电源及其工作方法
PCT/CN2005/000547 WO2006111044A1 (fr) 2005-04-20 2005-04-20 Alimentation a decoupage integree et son procede de fonctionnement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2005/000547 WO2006111044A1 (fr) 2005-04-20 2005-04-20 Alimentation a decoupage integree et son procede de fonctionnement

Publications (1)

Publication Number Publication Date
WO2006111044A1 true WO2006111044A1 (fr) 2006-10-26

Family

ID=37114692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000547 WO2006111044A1 (fr) 2005-04-20 2005-04-20 Alimentation a decoupage integree et son procede de fonctionnement

Country Status (2)

Country Link
CN (1) CN100409555C (zh)
WO (1) WO2006111044A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101152113B (zh) * 2006-09-26 2010-12-29 稳健实业(深圳)有限公司 一种安全式医用手术纱布
CN106655801A (zh) * 2016-12-15 2017-05-10 广东百事泰电子商务股份有限公司 一种基于pfc正激全桥的智能型正弦波电压转换电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
JPH09163746A (ja) * 1995-12-06 1997-06-20 Ricoh Co Ltd 電源回路
JPH10248255A (ja) * 1997-02-28 1998-09-14 Toshiba Lighting & Technol Corp 電源装置
CN1411130A (zh) * 2001-09-28 2003-04-16 三垦电气株式会社 开关电源装置
CN2554861Y (zh) * 2001-12-05 2003-06-04 周仕祥 高效率低空载损耗交流/直流开关变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533986A (en) * 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
JPH09163746A (ja) * 1995-12-06 1997-06-20 Ricoh Co Ltd 電源回路
JPH10248255A (ja) * 1997-02-28 1998-09-14 Toshiba Lighting & Technol Corp 電源装置
CN1411130A (zh) * 2001-09-28 2003-04-16 三垦电气株式会社 开关电源装置
CN2554861Y (zh) * 2001-12-05 2003-06-04 周仕祥 高效率低空载损耗交流/直流开关变换器

Also Published As

Publication number Publication date
CN100409555C (zh) 2008-08-06
CN1788409A (zh) 2006-06-14

Similar Documents

Publication Publication Date Title
US7626834B2 (en) Double ended converter with output synchronous rectifier and auxiliary input regulator
CN108683332B (zh) 一种高增益、宽占空比控制Boost变换器
KR101632243B1 (ko) 양방향 직류/직류 컨버터
WO2011135415A1 (ja) 双方向dc/dcコンバータ
US20080304292A1 (en) Isolated high power bi-directional dc-dc converter
JP2011259560A (ja) 負荷駆動装置及びその周波数制御方法
TW201444263A (zh) 雙向直流變換器
JP2016178780A (ja) 直列補償型電力伝送システム
CN103457506B (zh) 一种宽输入单级双向升降压逆变器
CN103904896A (zh) 基于混合整流桥臂的双倍压高频整流隔离变换器
CN104092382A (zh) 三输入隔离dc/dc变换器
CN103904904A (zh) 双倍压高增益高频整流隔离变换器
CN105207477B (zh) 双向三端口非隔离直流变换器及其控制方法
JP2016131446A (ja) フルブリッジ方式双方向絶縁dc/dcコンバータ
WO2013083033A1 (zh) 无需额外电源的自举驱动电路
JP2003164151A (ja) Dc−dcコンバータ
CN201134759Y (zh) 大功率双向直流变换器
CN110537320B (zh) 一个相断开或短路时操作基于矩阵转换器的整流器的装置和方法
TW200925843A (en) Converting device with multiple power inputs and UPS system having the same
GB2451910A (en) Bidirectional DC AC converter with multiple buck boost converters and magnetic energy storage device.
WO2006111044A1 (fr) Alimentation a decoupage integree et son procede de fonctionnement
JP2004096812A (ja) スイッチング電源装置
TWI441431B (zh) 具有功因校正功能之單級升壓式交流-高壓直流轉換裝置
Jang et al. Isolated boost converters
CN103840691A (zh) 单级双向降压直流变换器型高频环节逆变器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20058003653

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05741849

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5741849

Country of ref document: EP