WO2006109724A1 - 光変調装置および光変調システム - Google Patents

光変調装置および光変調システム Download PDF

Info

Publication number
WO2006109724A1
WO2006109724A1 PCT/JP2006/307452 JP2006307452W WO2006109724A1 WO 2006109724 A1 WO2006109724 A1 WO 2006109724A1 JP 2006307452 W JP2006307452 W JP 2006307452W WO 2006109724 A1 WO2006109724 A1 WO 2006109724A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light modulation
modulation device
film
electric field
Prior art date
Application number
PCT/JP2006/307452
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Fujimori
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to EP06731399A priority Critical patent/EP1852730A1/en
Priority to US11/911,312 priority patent/US20090073547A1/en
Publication of WO2006109724A1 publication Critical patent/WO2006109724A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0311Structural association of optical elements, e.g. lenses, polarizers, phase plates, with the crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • Light modulation device and light modulation system are Light modulation devices and light modulation system
  • the present invention relates to a light modulation device and a light modulation system using an electro-optic effect.
  • Patent Document 1 a digital information recording system using the principle of a hologram is known as a large-capacity recording method (for example, Patent Document 1).
  • PLZT lanthanum titanate titanate
  • a scientific effect is a phenomenon in which when an electric field is applied to a substance, the substance is polarized and its refractive index changes.
  • the phase of light can be switched by turning on and off the applied voltage. Therefore, a light modulation material having an electro-optic effect can be applied to an optical shutter such as a spatial light modulator.
  • Balta's PLZT has been widely used (Patent Document 2).
  • Patent Document 2 it is difficult for optical shutters using Balta PLZT to meet demands for miniaturization and integration, as well as reductions in operating voltage and cost.
  • the Balta method includes a process in which the raw material metal oxide is mixed and then processed at a high temperature of 1000 ° C or higher. Will be added.
  • Patent Document 3 describes a display device in which a PL ZT film is formed on a transparent substrate such as glass and a comb electrode is provided thereon.
  • This display device has a configuration in which polarizing plates are provided on both surfaces of a display substrate on which a PLZT film is formed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-297008
  • Patent Document 2 JP-A-5-257103
  • Patent Document 3 JP-A-7_146657
  • the incident direction of light to the light control element using the thin film PLZT will be considered.
  • incident light is incident from the normal direction of the light incident surface of the light control element.
  • the optical path length in the PLZT becomes longer, and the operating voltage of the light control element can be lowered.
  • a light control element using PLZT requires a high operating voltage in order to obtain a sufficient electro-optic effect.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an optical modulation device and an optical modulation system with improved light utilization efficiency.
  • a light modulation device includes a light emitting unit, a light modulation film whose refractive index changes according to an applied electric field, and an electric field applied to the light modulation film. And a pair of electrodes, wherein the light emitted from the light emitting portion is substantially perpendicular to the direction of the electric field applied to the light modulation film and tilted from the normal direction of the light incident surface. Is incident on the light incident surface.
  • the light emitted from the light emitting unit is incident on the light incident surface due to the normal force gradient of the light incident surface, so that the optical path length in the light modulation film is increased, and the light The operating voltage of the modulator can be reduced.
  • the electrode pair may generate an electric field parallel to the light incident surface in the light modulation film.
  • the electrode pair may be composed of two comb electrodes each having a plurality of comb electrodes extending alternately. When the electrode pair is a comb-shaped electrode, it is possible to suitably apply an electric field to the light modulation film.
  • the light emitting unit may emit light having an incident direction substantially perpendicular to a perpendicular line from the comb electrode in one comb electrode to the comb electrode in the other comb electrode.
  • the light modulation film may be formed of an electro-optic material whose refractive index changes in proportion to the square of the applied electric field.
  • the electro-optic material may be lead zirconate titanate or lead lanthanum zirconate titanate.
  • a light reflection layer may be provided under the light modulation film. In this case, it becomes a reflection type light modulation device.
  • optical path length in the light modulation film can be increased, it is possible to reduce the operating voltage of the light modulation device.
  • a control unit that modulates and emits the light emitted from the light emitting unit by applying a control voltage to the electrode pair may be further provided.
  • a bias unit for applying a bias voltage for adjusting the resonance wavelength of the light modulation device to the electrode pair may be further provided.
  • the resonance wavelength of the light modulation device can be shifted, the resonance wavelength can be suitably adjusted.
  • Another embodiment of the present invention is also a light modulation device.
  • This apparatus modulates incident light by applying a light modulation film whose refractive index changes according to an applied electric field, an electrode pair for applying an electric field to the light modulation film, and a control voltage to the electrode pair.
  • a light modulation device that is made into one chip using a control unit that emits light, a bias unit that applies a bias voltage for adjusting the resonance wavelength of the light modulation device to the electrode pair, and a semiconductor integrated circuit device, Incident light on the modulation film is incident perpendicular to the direction of the electric field applied to the light modulation film and tilted in the normal direction of the light incident surface.
  • a small light modulation device can be realized.
  • the light modulation device may further include a light emitting unit. At this time, the light modulation device is configured to include a semiconductor integrated circuit device and a light emitting unit.
  • a terminal for inputting a signal instructing to adjust the bias voltage may be provided.
  • the light modulation system includes a light modulation device and a light receiving unit that receives light emitted from the light modulation device.
  • a hologram recording device and a display device can be realized.
  • the power S can be improved.
  • FIG. L (a) is a plan view of a resonator.
  • (B) is a cross-sectional view of the resonator along the line XX ′ in FIG. 1 (a).
  • FIG. 2 is a diagram for explaining the incident direction of light.
  • FIG. 3 is a sectional view of the resonator taken along line YY ′ of FIG.
  • FIG. 4 is a cross-sectional view of the resonator taken along line XX ′ in FIG.
  • FIG. 5 is a diagram schematically showing an operation state of the light modulation device.
  • FIG. 6 is a diagram showing the relationship between the wavelength ⁇ of light incident on the resonator and the reflectance R.
  • FIG. 7 is a diagram showing a configuration of an optical modulation device capable of adjusting a resonance wavelength ⁇ .
  • FIG. 8 is a diagram showing a configuration of an optical modulation device that sets a bias voltage Vb by automatic control.
  • FIG. 9 (a) is a plan view of the spatial light modulation device.
  • (B) is a cross-sectional view taken along the line AA ′ of the spatial light modulation device shown in (a).
  • FIG. 10 is a diagram showing a hologram recording device using a spatial light modulation device.
  • This light modulator is an electric field indicator. It is a light modulation device provided with a light modulation film whose refractive index changes in response to the addition. By applying a control voltage to the light modulation film and controlling the electric field applied to the light modulation film, the intensity of the light emitted from the light modulation device can be changed.
  • the light emitted from the light emitting portion is inclined substantially perpendicular to the direction of the electric field applied to the light modulation film and the normal direction force of the light incident surface. Is incident on.
  • the light absorbed by the electrodes is incident by entering light from a direction substantially perpendicular to the electric field. Reduced and light utilization efficiency improved.
  • the optical path length in the light modulation film is increased, and the operating voltage is reduced.
  • the light emitted from the light modulation device can be used for various applications by recording and detecting the light with a recording medium or a light detection element.
  • the light modulation device according to the present embodiment includes a transmission type modulation device that transmits and emits light and a reflection type modulation device that reflects and emits light.
  • a reflection type light modulation device will be described below.
  • FIG. 1 (a) and FIG. 1 (b) are diagrams showing the configuration of the light modulation device 10 according to the present embodiment.
  • the light modulation device 10 includes a control unit 12, a resonator 16, and a light emitting unit (not shown).
  • FIG. 1 (a) is a plan view of the resonator 16.
  • FIG. 1 (b) is a cross-sectional view of the resonator 16 along the line XX ′ in FIG. 1 (a).
  • the resonator 16 includes a substrate 30, a first reflective layer 32, a light modulation film 34, an electrode pair 33, and a second reflective layer 40.
  • the substrate 30, the first reflective layer 32, the light modulation film 34, the electrode pair 33, and the second reflective layer 40 are formed as a laminated structure.
  • the electrode pair 33 is formed of two comb-shaped electrodes 35 and 36 each having a plurality of comb-tooth electrodes formed on the same plane and extending alternately.
  • the comb electrodes 35 and 36 are provided so as to be opposed to each other, and a structure in which one comb electrode in the other comb electrode is arranged between two comb electrodes in one comb electrode, .
  • 1A is a perspective view of the layer including the comb-shaped electrodes 35 and 36 in the light modulation device 10.
  • the resonator 16 is formed integrally with the substrate 30.
  • a material for the substrate 30 glass, silicon, or the like having a flat surface can be suitably used.
  • a switching element is provided on the substrate, and a resonator 16 is formed thereon. May be.
  • a first reflective layer 32 is formed on the substrate 30.
  • a metal material such as Pt can be suitably used.
  • the thickness of the first reflective layer 32 is about 200 nm.
  • the reflectance of the first reflective layer 32 is about 50% to 80%.
  • a light modulation film 34 is provided on the upper surface of the first reflective layer 32.
  • a solid electro-optic material whose refractive index changes according to the applied electric field is selected.
  • electro-optic materials include PLZT, PZT (lead zirconate titanate), LiNbO, G
  • the film thickness t of the light modulation film 34 is determined according to the incident angle and wavelength of the incident light. For example, when the incident light is red light near 650 nm, it is preferably 500 nm or more. A sufficient change in the optical film thickness can be obtained by setting the film thickness to 500 nm or more.
  • comb-shaped electrodes 35 and 36 force S are provided on the upper surface of the light modulation film 34.
  • the comb electrodes 35 and 36 are provided such that the respective comb electrodes are alternately arranged and the long sides of the comb electrodes face each other.
  • the comb-shaped electrodes 35 and 36 are formed such that the width of the short side of the comb-shaped electrode is about 1 / im and the distance between the long sides of the opposing comb-shaped electrodes is about 1 / im.
  • the ratio of the long side to the short side may be 5: 1 or more.
  • the comb-shaped electrodes 35 and 36 are made of, for example, IrO, SrRuO, La Sr CoO, or the like.
  • This comb electrode 3 When formed with IrO, the film thickness is about 200 nm. This comb electrode 3
  • the resistance value and transmittance have a trade-off relationship, so the thickness may be determined experimentally.
  • the comb electrodes 35 and 36 are formed by photolithography after IrO is deposited by sputtering.
  • the forming force S can be formed by baking and etching the comb-shaped electrodes 35 and 36 according to GRAPHI.
  • a second reflective layer 40 is formed on the upper surface of the light modulation film 34 provided with the comb-shaped electrodes 35 and 36.
  • the second reflective layer 40 is formed of a dielectric multilayer film, and first dielectric films 42 and second dielectric films 44 having different refractive indexes n are alternately stacked.
  • the dielectric multilayer film is formed of a silicon oxide film and a silicon nitride film
  • a manufacturing process and a manufacturing apparatus for a silicon semiconductor integrated circuit can be used.
  • the dielectric multilayer film can be formed by a plasma CVD (Chemical Vapor Deposition) method.
  • the Si O film is grown in a TE O, O atmosphere at a temperature of 200 ° C.
  • the Si N film can be preferably grown in a SiH, NH atmosphere at a temperature of 200 ° C.
  • the dielectric multilayer film may be formed by ion beam sputtering.
  • the film thicknesses tl and t2 of the dielectric films constituting the reflective layer 40 do not necessarily have to be strictly designed to be / (n X 4).
  • the reflectance R2 of the light incident on the second reflective layer 40 from the light modulation film 34 is designed to be equal to the reflectance R1 of the light incident on the first reflective layer 32 from the light modulation film 34.
  • the reflectance R1 is determined by the metal material used for the first reflective layer 32, and is 50 to 80% when Pt is selected.
  • the reflectance R2 is designed to be 50 to 80%.
  • the reflectance R2 of the second reflective layer 40 can be adjusted by the material and film thickness of the first dielectric film 42 and the second dielectric film 44.
  • the second reflective layer 40 is formed by alternately laminating three layers of the first dielectric film 42 and the second dielectric film 44, respectively.
  • the in the second reflective layer 40 the order of stacking the first dielectric film 42 and the second dielectric film 44 may be reversed. Les.
  • a third dielectric film may be further laminated.
  • the second reflective layer 40 may be a half mirror formed of a metal thin film. In this case, the manufacturing process can be simplified as compared with the case of forming the dielectric multilayer film.
  • the comb electrode 35 and the comb electrode 36 form an electrode pair 33.
  • the potential of the comb electrode 35 is fixed to, for example, the ground potential, and the potential of the comb electrode 36 is controlled by the control unit 12.
  • the control unit 12 has a function of generating and outputting a control voltage Vent for modulating and emitting the light incident on the light modulation device 10.
  • the control voltage Vent is a signal that takes two values: high level VH or low level VL.
  • a light emitting unit (not shown) irradiates the resonator 16 with light.
  • the light emitting part may be a laser light source.
  • the light emitted from the light emitting part is incident on the light incident surface substantially perpendicular to the direction of the electric field applied to the light modulation film 34 and tilted from the normal direction of the light incident surface.
  • FIG. 2 is a diagram for explaining the incident direction of light.
  • the same components as those in FIG. 1 are denoted by the same reference numerals.
  • components such as the second reflective layer 40 are omitted.
  • the light emitting section 22 extends from the long side of the comb electrode in one comb electrode to the long side of the comb electrode in the other comb electrode. It emits light with an incident direction that is substantially perpendicular to the normal.
  • the control voltage Vent to be applied to the resonator 16 varies depending on the optical path length of the light passing through the light modulation film 34. Incident light from the normal direction of the light incident surface of the resonator 16 increases the optical path length of the light passing through the light modulation film 34 of the resonator 16, so that the control voltage Vent can be lowered. it can.
  • FIG. 3 is a cross-sectional view of the resonator 16 taken along line YY ′ of FIG.
  • components such as the substrate 30 are omitted.
  • the light is incident parallel to the YZ plane and inclined with respect to the normal direction force of the light incident surface of the resonator 16.
  • a part of the light incident between the comb electrodes 35c, 36c of the comb electrodes 35, 36 is reflected by the first reflective layer 32 and then applied to the comb electrodes 36c. Because it is absorbed, the reflected light will decrease.
  • the aperture ratio of the resonator 16 is given by assuming that the width of the comb-shaped electrodes 35 and 36 is a, the distance between the comb-shaped electrodes is b, the thickness of the light modulation film 34 is t, and the incident angle of light is ⁇ .
  • Equation 1 As can be seen from Equation 1, as the incident angle ⁇ is increased to increase the optical path length, the aperture ratio AR decreases and the light utilization efficiency decreases.
  • the thickness of the comb-shaped electrodes 35 and 36 is not taken into consideration, but when the thickness is taken into account, the aperture ratio is further reduced.
  • FIG. 4 is a cross-sectional view of the resonator 16 along the line XX ′ in FIG. It is assumed that light is incident parallel to the XZ plane and tilted from the normal direction of the light incident surface of the resonator 16. At this time, the incident light is substantially perpendicular to the direction of the electric field. In this case, light incident between the comb electrodes 35 and 36 is reflected by the first reflective layer 32 and is not absorbed by the comb electrodes 35 and 36. It emits from between. In this case, the aperture ratio AR of the resonator 16 is
  • Equation 2 Since the aperture ratio AR does not depend on the incident angle ⁇ , the aperture ratio AR is constant even if light is incident with the normal direction force of the light incident surface tilted. That is, the control voltage Vent can be lowered while maintaining the light use efficiency.
  • FIG. 5 schematically shows the operating state of the light modulation device 10.
  • the same components as those in FIG. 1 are denoted by the same reference numerals. Further, for simplification, components such as the electrode pair 33 are omitted.
  • a laser beam having an intensity of Iin is incident on the resonator 16 from the light emitting unit 22.
  • First anti-resonance of resonator 16 The emitting layer 32, the light modulating film 34, and the second reflecting layer 40 constitute a Fabry-low resonator, and a part of the incident light is confined and a part thereof is reflected.
  • the intensity of the incident laser beam is Iin and the intensity of the laser beam reflected by the resonator 16 is lout
  • FIG. 6 is a diagram showing the relationship between the wavelength ⁇ of light incident on the resonator 16 and the reflectance R.
  • the resonant wavelength ⁇ of a Fabry-Perot resonator composed of the first reflective layer 32, the light modulation film 34, and the second reflective layer 40 is
  • n is the refractive index of the light modulation film 34
  • t is the film thickness of the light modulation film 34
  • is the incident angle of the laser light in the light modulation film 34.
  • the reflectance R of the resonator 16 takes the minimum value at the resonance wavelength ⁇ .
  • the refractive index n of the light modulation film 34 depends on the electric field E applied to the electrode pair.
  • (I) shown in FIG. 6 is a reflection characteristic when no voltage is applied to the resonator 16. At this time, the resonance wavelength of the resonator 16 is I 1.
  • light modulation film 34 m When voltage is applied to resonator 16, light modulation film 34 m
  • the refractive index of s changes and the resonance wavelength shifts from 1 to 2. ; I 2 is greater than I 1 m m m m m
  • the ratio Ron / Roff between the reflectance Roff when no voltage is applied and the reflectance Ron when a voltage is applied is defined as an on / off ratio.
  • the intensity Iin of the incident light is constant, the intensity lout of the reflected light is proportional to the reflectance. Therefore, the larger the on / off ratio, This means that the intensity lout of the reflected light can be accurately controlled and the light utilization efficiency is high.
  • the reflectivity R of the resonator 16 at the resonance wavelength I is the reflectivity R1 and m at the first reflective layer 32.
  • a switch element can be realized.
  • the comb-shaped electrodes 35 and 36 are formed on the light modulation film 34 .
  • the comb-shaped electrodes 35 and 36 are partially or entirely embedded in the light modulation film 34. It may be formed to be embedded. In this case, since the region where the electric field applied to the light modulation film 34 is strong increases, the change in the optical film thickness can be increased.
  • the bias voltage Vb may be applied by superimposing the bias voltage Vb on the force control voltage Vent configured to apply the control voltage Vent from the control unit 12 to the comb electrode 36.
  • the film thickness t of the light modulation film 34 is expressed as m.
  • the resonance wavelength ⁇ may also vary m.
  • the resonance wavelength; I is changed by applying a voltage to the resonator 16 m
  • FIG. 7 is a diagram showing a configuration of the light modulation device 10 capable of adjusting the resonance wavelength ⁇ . M in the figure
  • the optical modulation device 10 in FIG. 7 includes a resonator 16, a control unit 12, and a bias unit that generates a bias voltage Vb for adjusting the resonance wavelength ⁇ . 14 and.
  • the bias unit 14 shown in FIG. 7 is a constant voltage circuit that generates the bias voltage Vb.
  • the bias unit 14 includes a variable resistor 45, a resistor 46, a constant voltage diode 48, an operational amplifier 49, and a transistor 50.
  • the bias voltage Vb Vz (l + RlZR2) is output to the output terminal 52 of the bias unit 14.
  • R1 is the resistance value of the variable resistor 45
  • R2 is the resistance value of the resistor 46
  • Vz is the tuner voltage of the constant voltage diode 48.
  • the bias voltage Vb is a constant voltage that does not depend on the value of the power supply voltage, and can be adjusted by changing the resistance value of the variable resistor 45.
  • a suitable bias voltage Vb to be superimposed on the control voltage Vent can be obtained by measuring the film thickness t of the light modulation film 34.
  • the resonant wavelength of a Fabry-Perot resonator is m
  • Equation 4 Since the relationship of Equation 4 holds between the amount of change in refractive index n ⁇ in Fig. 4 and the applied electric field ⁇ , the electric field ⁇ required to shift the resonance wavelength to the target value must be obtained. Can do. Electricity m
  • the bias voltage Vb suitable for the control voltage Vent can be superimposed by adjusting the variable resistor 45 of the bias unit 14.
  • the resonance wavelength ⁇ can be calibrated.
  • the bias unit 14 shown in FIG. 7 is an example of a constant voltage circuit, and the bias voltage Vb may be generated using another constant voltage circuit or a regulator.
  • the bias voltage Vb may be set by adjusting the variable resistor 45 while the laser beam is incident on the resonator 16 and the intensity of the reflected light is monitored while the control voltage Vent is at the low level VL. . At this time, the variable resistor 45 is adjusted so that the intensity of the reflected light is minimized. In this case, it is possible to calibrate the resonant wavelength; I with high accuracy.
  • the resonance wavelength of the resonator 16 is Shift in the direction of increasing.
  • the resonance wavelength; I is given by Equation 3. Therefore, the resonance wavelength ⁇ increases as the film thickness t increases, and the film thickness t decreases to mm.
  • the resonance wavelength I becomes smaller. Therefore, in order to adjust the resonance wavelength I,
  • the light modulation film 34 is formed so that the thickness of the film with the target resonance wavelength ⁇ is reduced.
  • the bias voltage Vb may be set by automatic control.
  • the bias voltage Vb is automatically controlled, even when the characteristics of the light modulation film 34 change over time or the wavelength of the incident laser light changes, the resonance wavelength ⁇ should be controlled to a suitable resonance wavelength ⁇ . Can do. Even m
  • a ferroelectric such as PLZT has an imprint phenomenon in which a polarization amount force generated in a ferroelectric is stored by continuously applying a voltage in the same direction.
  • FIG. 8 is a diagram showing a configuration of the light modulation device 10 that sets the bias voltage Vb by automatic control.
  • the bias unit 14 illustrated in FIG. 8 includes an A / D conversion unit 54, a CPU memory 56, and a D / A conversion unit 58.
  • the light modulation device 10 in FIG. 8 monitors the intensity of light reflected from the resonator 16 and adjusts the bias voltage Vb by performing feedback control.
  • the light irradiated and reflected from the laser light source 62, which is a light emitting unit, to the resonator 16 is converted into an electric signal by a photo-detecting element 64 such as a photodiode or CCD.
  • the light detection element 64 which is a light receiving unit is provided at a position where the laser light reflected from the resonator 16 can be detected.
  • the reflected light may be branched by a beam splitter (not shown) and incident on the light detection element 64.
  • the electrical signal generated by the light detection element 64 is input from the input terminal 51 to the bias unit 14.
  • the electric signal is converted into a digital value by the A / D converter 54 and is taken into the CPU memory 56.
  • the CPU memory 56 controls the bias voltage Vb so that the intensity of light detected by the light detection element 64 is minimized.
  • the signal output from the CPU memory 56 is converted to an analog value by the D ZA converter 58 and the bias voltage Vb is output to the output terminal 52.
  • the resonance wavelength ⁇ of the resonator 16 is always recorded.
  • the value can be controlled to be equal to the wavelength of the one light source 62.
  • the bias unit 14 shown in FIG. 8 may be formed by being integrated on the substrate 30 shown in FIG. Since the light modulation device 10 according to the present embodiment constitutes a reflective modulator, an opaque material can be used as the substrate 30. For example, if silicon is used as the substrate 30, the control unit 12 and the bias unit 14 are formed on the substrate 30, and the light modulation device 10 including the control unit 12, the noise unit 14, and the resonator 16 is used as a semiconductor integrated circuit device. One chip can be played.
  • the light modulation device may include a plurality of resonators and control units.
  • a spatial light modulation device can be configured by arranging the resonators 16 shown in FIG. 1 in a matrix.
  • FIG. 9 (a) and FIG. 9 (b) are diagrams showing a spatial light modulation device in which the resonators 16 are arranged in a matrix.
  • FIG. 9 (a) is a plan view of the spatial light modulator 8.
  • the spatial light modulation device 8 includes a plurality of pixels 20 arranged in a two-dimensional array of 8 rows and 8 columns on a substrate 30.
  • the pixel 20 has a size of about 20 ⁇ m ⁇ 20 ⁇ m.
  • FIG. 9 (b) is a cross-sectional view taken along the line AA ′ of the spatial light modulation device shown in FIG. 9 (a).
  • the components such as the light modulation film 3 4 are different in that force comb electrodes 35 and 36 that are substantially the same as the resonator 16 shown in FIG. 1 are formed so as to be carried by the light modulation film 34. Yes. In this way, the resonator 16 may be formed.
  • the comb-shaped electrode 36 is drawn out via the via and the wiring 38.
  • A1 or the like is preferably used.
  • a protective film may be further formed on the upper surface of the wiring 38.
  • the spatial light modulator 8 is supplied with the control voltage Vent from the control unit 12 for each pixel 20, and can control the reflectance for each pixel 20.
  • the spatial light modulator 8 may include a bias unit 14.
  • the configuration of the bias unit 14 and the method of setting the bias voltage Vb are the same as those described with reference to FIGS.
  • the bias unit 14 includes one spatial light modulator 8 You need at least one for
  • a noisy section 14 may be provided for each pixel 20.
  • the resonance wave is more accurately Long; l can be calibrated.
  • FIG. 10 is a diagram showing a hologram recording device 70 using the spatial light modulator 8.
  • the hologram recording device 70 includes a light emitting unit 80, a light receiving unit 82, and a spatial light modulation device 8.
  • the light emitting unit 80 includes a laser light source 72 and a beam expander 74.
  • the light receiving unit 82 includes a Fourier transform lens 76 and a recording medium 78.
  • the laser light emitted from laser light source 72 is split into two lights by a beam splitter (not shown). One of these lights is used as reference light and guided into the recording medium 78. The other light is expanded in beam diameter by the beam expander 74 and irradiated to the spatial light modulator 8 as parallel light.
  • the light applied to the spatial light modulator 8 is reflected from the spatial light modulator 8 as signal light having different intensity for each pixel.
  • This signal light passes through the Fourier transform lens 76, is Fourier transformed, and is collected in the recording medium 78.
  • the signal light including the hologram pattern intersects the optical path of the reference light to form an optical interference pattern.
  • the entire optical interference pattern is recorded on the recording medium 78 as a change in refractive index (refractive index grating).
  • the spatial light modulator 8 is used for the hologram recording device 70 .
  • the present invention is not limited to this. It can also be used for encryption circuits and the like.
  • the reflection type light modulation device has been described as an embodiment.
  • the light modulation device according to the present embodiment may be a transmission type light modulation device.
  • a transmission type light modulation device for example, in a light modulation device including a light modulation film whose refractive index changes according to an applied electric field and a polarizing plate, light incident on the light modulation film is substantially different from the direction of the electric field applied to the light modulation film.
  • the optical path length can be increased and the aperture ratio can be increased by making the light incident perpendicularly to the surface and inclined with respect to the normal direction of the light incident surface. Therefore, it is possible to provide a transmission type light modulation device that reduces the operating voltage and improves the light use efficiency.
  • the light modulation device and the light modulation system according to the present invention improve the light use efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光の利用効率を改善した光変調装置を提供する。  光変調装置10は、発光部22と、ファブリーペロー型の共振器16と、共振器16に制御電圧を印加する制御部12とを備える。共振器16は、印加する電界に応じて屈折率が変化する光変調膜34と、光変調膜34に電界を印加する櫛形電極35、36とを備える。発光部22から発光された光は、光変調膜34に印加される電界の方向と実質的に垂直に、かつ光入射面の法線方向から傾いて、光入射面に入射される。

Description

明 細 書
光変調装置および光変調システム
技術分野
[0001] 本発明は、電気光学効果を利用した光変調装置および光変調システムに関する。
背景技術
[0002] 近年、大容量の記録方式として、ホログラムの原理を利用したデジタル情報記録シ ステムが知られている(たとえば特許文献 1)。
[0003] ホログラム記録装置の空間光変調器の材料としては、たとえばチタン酸ジノレコン酸 ランタン 以下、 PLZTという)等の電気光学効果を有するものを用いることができる 。 PLZTは、(Pb La ) (Zr Ti ) 0の組成を有する透明セラミックスである。電気光
1 1
学効果とは、物質に電界を印加するとその物質に分極が生じ屈折率が変化する現象 をいう。電気光学効果を利用すると、印加電圧をオン、オフすることにより光の位相を 切り替えることができる。そのため、電気光学効果を有する光変調材料を空間光変調 器等の光シャッターに適用することができる。
[0004] こうした光シャッター等の素子への適用においては、従来、バルタの PLZTが広く利 用されてきた(特許文献 2)。しかし、バルタ PLZTを用いた光シャッターは、微細化、 集積化の要請や、動作電圧の低減や低コスト化の要請に応えることは困難である。ま た、バルタ法は、原料となる金属酸化物を混合した後、 1000°C以上の高温で処理す る工程を含むため、素子形成プロセスに適用した場合、材料の選択や素子構造等に 多くの制約が加わることとなる。
[0005] こうしたことから、バルタ PLZTに代え、基材上に形成した薄膜の PLZTを光制御素 子へ応用する試みが検討されている。特許文献 3には、ガラス等の透明基板上に PL ZT膜を形成し、その上に櫛形電極を設けた表示装置が記載されている。この表示装 置は、 PLZT膜が形成された表示基板の両面に偏光板が設けられた構成を有する。 ここで、各画素の電極端子部が外部の駆動回路と接続されることにより、所望の画素 が駆動され、表示基板の一面側に設けられた光源からの透過光により所望の表示を すること力 Sできるようになってレ、る。 特許文献 1 :特開 2002— 297008号公報
特許文献 2 :特開平 5— 257103号公報
特許文献 3:特開平 7 _ 146657号公報
発明の開示
発明が解決しょうとする課題
[0006] ここで、薄膜の PLZTを利用した光制御素子への光の入射方向について考察する 。特許文献 3に記載されるような光制御素子においては、入射光を、光制御素子の 光入射面の法線方向から入射させていた。光入射面の法線方向力 傾けて光を入 射させた場合、 PLZT内の光路長が長くなり、光制御素子の動作電圧を低くすること ができる。 PLZTを用いた光制御素子は、十分な電気光学効果を得るためには高い 動作電圧を必要とするが、実用上の観点からは、できるだけ低い動作電圧で利用で きることが望ましい。
[0007] しかし、光入射面の法線方向から傾けて光を入射させた場合、入射光の一部は、 電極に遮られて出射できないため、開口率が小さくなり、光の利用効率が低下してし まうという問題があった。
[0008] 本発明はこうした状況に鑑みなされたものであり、その目的は、光の利用効率を改 善した光変調装置および光変調システムを提供することにある。
課題を解決するための手段
[0009] 上記課題を解決するために、本発明のある態様の光変調装置は、発光部と、印加 する電界に応じて屈折率が変化する光変調膜と、光変調膜に電界を印加する電極 対と、を備えた光変調装置であって、発光部から発光された光は、光変調膜に印加さ れる電界の方向と実質的に垂直に、かつ光入射面の法線方向から傾いて、光入射 面に入射される。
[0010] この態様によると、発光部から発光された光は、光入射面の法線方向力 傾レ、て光 入射面に入射されるので、光変調膜内の光路長が長くなり、光変調装置の動作電圧 を低下することができる。また、電極対を構成する電極間に電界を発生させ、その電 界に実質的に垂直な方向から光を入射することで、電極によって吸収される光が減 少する。そのため、開口率が大きくなり、光の利用効率を改善することができる。 [0011] 電極対は、光変調膜において、光入射面と平行となる電界を発生させてもよい。電 極対は、それぞれ互い違いに延びる複数の櫛歯電極を備えた 2つの櫛形電極から 構成されてもよい。電極対を櫛形電極とした場合、好適に光変調膜に電界を印加す ること力 Sできる。
[0012] 発光部は、一方の櫛形電極における櫛歯電極から、他方の櫛形電極における櫛歯 電極への垂線に実質的に垂直となる入射方向をもつ光を発光してもよい。
[0013] 光変調膜は、印加した電界の 2乗に比例して屈折率が変化する電気光学材料で形 成されてもよい。電気光学材料は、チタン酸ジルコン酸鉛またはチタン酸ジルコン酸 ランタン鉛であってもよい。
[0014] 光変調膜の下に光反射層を有してもよい。この場合は、反射型の光変調装置となり
、光変調膜内の光路長を長くすることができるので、光変調装置の動作電圧を低下 すること力 Sできる。
[0015] 電極対に制御電圧を印加することにより、発光部から発光された光を変調して出射 せしめる制御部をさらに備えてもよい。
[0016] 光変調装置の共振波長を調整するためのバイアス電圧を、電極対に印加するバイ ァス部をさらに備えてもよい。この場合、光変調装置の共振波長をシフトさせることが できるので、共振波長を好適に調整することができる。
[0017] 本発明の別の態様もまた、光変調装置である。この装置は、印加する電界に応じて 屈折率が変化する光変調膜と、光変調膜に電界を印加する電極対と、電極対に制 御電圧を印加することにより、入射光を変調して出射せしめる制御部と、当該光変調 装置の共振波長を調整するためのバイアス電圧を、電極対に印加するバイアス部と、 を半導体集積回路装置として 1チップ化された光変調装置であって、光変調膜への 入射光が、光変調膜に印加される電界の方向と垂直に、かつ光入射面の法線方向 力 傾いて、入射される。この態様によると、小型の光変調装置を実現することができ る。なお、光変調装置は、発光部をさらに備えてもよい。このとき光変調装置は、半導 体集積回路装置と発光部とを備えて構成される。
[0018] バイアス電圧を調整するよう指示する信号を入力するための端子を備えてもよい。
この場合、光検出素子を用いてバイアス電圧のフィードバック制御を行うことができる [0019] 本発明の別の態様は、光変調システムである。この光変調システムは、光変調装置 と、光変調装置から出射される光を受ける受光部と、を備える。この態様によると、たと えばホログラム記録装置や、表示装置を実現することができる。
発明の効果
[0020] 本発明に係る光変調装置および光変調システムによれば、光の利用効率を改善す ること力 Sできる。
図面の簡単な説明
[0021] [図 l] (a)は、共振器の平面図である。 (b)は、図 1 (a)の X—X'線に沿った共振器の 断面図である。
[図 2]光の入射方向を説明するための図である。
[図 3]図 2の Y—Y'線に沿った共振器の断面図である。
[図 4]図 2の X—X'線に沿った共振器の断面図である。
[図 5]光変調装置の動作状態を模式的に示す図である。
[図 6]共振器に入射する光の波長 λと反射率 Rの関係を示す図である。
[図 7]共振波長 λ を調整可能な光変調装置の構成を示す図である。
m
[図 8]バイアス電圧 Vbを自動制御により設定する光変調装置の構成を示す図である
[図 9] (a)は、空間光変調装置の平面図である。 (b)は、(a)に示す空間光変調装置 の A— A'線断面図である。
[図 10]空間光変調装置を用いたホログラム記録装置を示す図である。
符号の説明
[0022] 10 光変調装置、 12 制御部、 16 共振器、 22 発光部、 30 基板、 32 第 1反射層、 33 電極対、 34 光変調膜、 35 櫛形電極、 36 櫛形電極、 4 0 第 2反射層、 42 第 1誘電体膜、 44 第 2誘電体膜。
発明を実施するための最良の形態
[0023] 本実施の形態に係る光変調装置の概要を説明する。この光変調装置は、電界の印 加に応じて屈折率の変化する光変調膜を備えた光変調装置である。光変調膜に制 御電圧を与え、光変調膜に印加される電界を制御することによって、光変調装置から 出射される光の強度を変化させることができる。本実施の形態においては、発光部か ら発光された光が、光変調膜に印加される電界の方向と実質的に垂直に、かつ光入 射面の法線方向力 傾いて、光入射面に入射される。たとえば、平行な 2つの電極が 光変調膜上ないしは光変調膜中に形成された光変調装置の場合、電界に実質的に 垂直な方向から光を入射することで、電極に吸収される光が減少し、光の利用効率 が改善する。また、光入射面の法線方向力 傾いて光を入射することによって光変調 膜内の光路長が長くなり、動作電圧が低下する。
[0024] 光変調装置から出射される光を記録媒体あるいは光検出素子等により記録、検出 することによりさまざまなアプリケーションに利用することができる。本実施の形態に係 る光変調装置は、光が透過して出射される透過型の変調装置と、反射して出射され る反射型の変調装置とがある。本発明の実施の形態として、以下においては、反射 型の光変調装置について説明する。
[0025] 図 1 (a)、図 1 (b)は、本実施の形態に係る光変調装置 10の構成を示す図である。
光変調装置 10は、制御部 12と、共振器 16と、図示しない発光部とを備える。
[0026] 図 1 (a)は、共振器 16の平面図である。図 1 (b)は、図 1 (a)の X— X'線に沿った共 振器 16の断面図である。共振器 16は、基板 30、第 1反射層 32、光変調膜 34、電極 対 33、第 2反射層 40を含む。基板 30、第 1反射層 32、光変調膜 34、電極対 33、第 2反射層 40は積層構造として形成される。電極対 33は、同一面上に形成され、それ ぞれ互い違いに延びる複数の櫛歯電極を備えた 2つの櫛形電極 35、 36から構成さ れる。櫛形電極 35、 36は互いに対向して設けられ、一方の櫛形電極における 2つの 櫛歯電極の間に、他方の櫛形電極における 1つの櫛歯電極が配置された構造をとつ てもよレ、。なお、図 1 (a)は、光変調装置 10における櫛形電極 35、 36を含む層を透 視して示している。
[0027] 共振器 16は、基板 30と一体化されて形成される。この基板 30の材料としては、表 面が平坦なガラス、シリコンなどを好適に用いることができる。たとえばシリコンからな る基板 30であれば、基板上にスイッチング素子を設け、その上に共振器 16を形成し てもよい。
[0028] 基板 30上には、第 1反射層 32が形成される。第 1反射層 32の材料としては、たとえ ば Ptなどの金属材料を好適に用いることができる。第 1反射層 32の厚みは、 200nm 程度とする。第 1反射層 32を Ptで形成した場合、第 1反射層 32の反射率は 50%か ら 80%程度となる。
[0029] 第 1反射層 32の上面には光変調膜 34が設けられる。この光変調膜 34の材料とし ては、印加した電界に応じて屈折率が変化する固体の電気光学材料を選択する。こ のような電気光学材料としては、 PLZT、 PZT (チタン酸ジルコン酸鉛)、 LiNbO 、 G
3 aA—MQW、 SBN ( (Sr, Ba) Nb O )等を用いることができる力 特に PLZTが好適
2 6
に用いられる。
[0030] 光変調膜 34の膜厚 tは、入射光の入射角および波長に応じて決定され、たとえば 入射光を 650nm付近の赤色光とした場合、 500nm以上とすることが望ましい。膜厚 を 500nm以上とすることで、十分な光学膜厚変化を得ることができる。
[0031] 光変調膜 34の上面には、櫛形電極 35、 36力 S設けられる。櫛形電極 35、 36は、 それぞれの櫛歯電極が交互に配置され、櫛歯電極の長手辺が互いに対向するよう に設けられる。櫛形電極 35、 36は、櫛歯電極の短手辺の幅が 1 /i m程度、対向する 櫛歯電極の長手辺の間隔が 1 /i m程度に形成される。なお、長手辺と短手辺の比は 5対 1以上であってよい。
[0032] 櫛形電極 35、 36は、たとえば Ir〇、 SrRuO 、 La Sr CoOなどにより形成する
2 3 0. 5 0. 5 3
ことができる。 IrOで形成する場合には、膜厚を 200nm程度とする。この櫛形電極 3
2
5、 36は、抵抗値と透過率がトレードオフの関係となるため、その厚みは実験的に定 めてもよレ、。櫛形電極 35、 36は、スパッタ法により、 IrOを堆積させた後に、フォトリソ
2
グラフィ一によつて櫛形電極 35、 36を焼き付け、エッチングを行うことによって形成す ること力 Sできる。
[0033] 櫛形電極 35、 36を設けた光変調膜 34の上面には、第 2反射層 40が形成される。
この第 2反射層 40は、誘電体多層膜によって形成され、屈折率 nの異なる第 1誘電 体膜 42、第 2誘電体膜 44が交互に積層される。第 1誘電体膜 42、第 2誘電体膜 44 の材料の組み合わせとしては、 Si〇 (n= l . 48)、 Si N (n= 2. 0)を用いることがで きる。
[0034] 誘電体多層膜をシリコン酸化膜およびシリコン窒化膜で形成する場合、シリコン半 導体集積回路の製造プロセスおよび製造装置を使用することができる。
[0035] 誘電体多層膜は、プラズマ CVD (Chemical Vapor Deposition)法により形成 することができる。 Si〇膜は、 TE〇S、 O雰囲気中で温度 200°Cの条件で成長させ
2 2
、 Si N膜は、 SiH、 NH雰囲気中で温度 200°Cの条件で好適に成長させることが
3 4 4 3
できる。また、誘電体多層膜は、イオンビームスパッタ法により形成してもよい。
[0036] 第 1誘電体膜 42、第 2誘電体膜 44のそれぞれの膜厚 tl、 t2は、共振器 16に入射 する光の波長の 1/4となるように設計する。すなわち、共振器 16に入射する光の波 長をえ、誘電体膜の屈折率を nとすると、各誘電体膜 1層分の膜厚 tは、 t=え/ (n X
4)となるように調節する。
[0037] たとえば、光変調装置 10に波長え =633nmの赤色のレーザ光が用いられる場合 には、第 1誘電体膜 42の膜厚 tlは、その材料として Si〇 (n= l . 48)とした場合、 tl
2
= 633/ (4 X 1. 48) = 106nm程度とする。また、第 2誘電体膜 44の膜厚 t2は、材 料として Si N (n= 2. 0)を用いた場合、 t2 = 633/ (4 X 2) = 79nm程度とする。第
3 4
2反射層 40を構成する誘電体膜の膜厚 tl、 t2は、必ずしも厳密にえ/ (n X 4)に設 計されている必要はない。
[0038] 誘電体膜の材料としてはシリコン窒化膜に替えて、 TiO (n = 2. 2)を用いてもよい
3
。この場合、第 2誘電体膜 44の膜厚 t2は、 t2 = 633/ (4 X 2. 2) = 72nm程度とす る。
[0039] 光変調膜 34から第 2反射層 40に入射する光の反射率 R2は、光変調膜 34から第 1 反射層 32に入射する光の反射率 R1と等しくなるように設計する。反射率 R1は、第 1 反射層 32に用いる金属材料によって定まり、 Ptを選択する場合、 50〜80%となる。
[0040] 従ってこのとき、反射率 R2も 50〜80%となるように設計する。第 2反射層 40の反射 率 R2は、第 1誘電体膜 42、第 2誘電体膜 44の材料および膜厚によって調節すること ができる。本実施の形態においては、図 1 (b)に示すように、第 2反射層 40は、第 1誘 電体膜 42および第 2誘電体膜 44をそれぞれ 3層づっ交互に積層してレ、る。第 2反射 層 40において、第 1誘電体膜 42、第 2誘電体膜 44を積層する順番は逆であってもよ レ、。また、反射率 R2を微調節するために、第 3の誘電体膜をさらに積層してもよい。
[0041] 第 2反射層 40は、金属薄膜で形成されるハーフミラーとしてもよレ、。この場合、誘電 体多層膜を形成する場合に比べて製造工程を簡易化することができる。
[0042] 本実施の形態においては、櫛形電極 35と櫛形電極 36とが電極対 33を形成する。
櫛形電極 35の電位はたとえば接地電位に固定され、櫛形電極 36の電位は制御部 1 2によって制御される。
[0043] 制御部 12は、光変調装置 10に入射した光を変調して出射せしめる制御電圧 Vent を生成し、出力する機能を有する。制御電圧 Ventは、ハイレベル VHまたはローレべ ル VLの 2値をとる信号である。
[0044] 発光部(図示せず)は、共振器 16に光を照射する。発光部はレーザ光源であってよ レ、。発光部から発光された光は、光変調膜 34に印加される電界の方向と実質的に垂 直に、かつ光入射面の法線方向から傾いて、光入射面に入射される。
[0045] 図 2は、光の入射方向を説明するための図である。同図において、図 1と同一の構 成要素には同一の符号を付している。また、簡略化のため、第 2反射層 40などの構 成要素は省略している。
[0046] 制御部 12から櫛形電極 36に制御電圧 Ventを印加した場合、櫛形電極 36の櫛歯 電極の長手辺から、櫛形電極 35の櫛歯電極の長手辺に向力う方向に電界が発生す る。したがって、図 2において、電界の実質的な方向は Y軸と平行である。このとき電 界の方向と光入射面は平行となる。
[0047] 本実施の形態においては、図 2に示すように、発光部 22は、一方の櫛形電極にお ける櫛歯電極の長手辺から、他方の櫛形電極における櫛歯電極の長手辺への垂線 に実質的に垂直となる入射方向をもつ光を発光する。
[0048] 共振器 16に印加すべき制御電圧 Ventは、光変調膜 34内を通過する光の光路長 によって変わる。共振器 16の光入射面の法線方向から傾いて光を入射することによ つて、共振器 16の光変調膜 34を通る光の光路長が長くなるので、制御電圧 Ventを 低くすることができる。
[0049] 入射光を、電界の方向と垂直に入射する効果について説明する。そのため、以下 では図 3と図 4を参照して、入射光を電界の方向に垂直に入射しない場合の光路と、 垂直に入射する場合の光路を比較して、それぞれの開口率を示す。
[0050] 図 3は、図 2の Y—Y'線に沿った共振器 16の断面図である。簡略化のため、基板 3 0などの構成要素は省略している。ここで、光は、 YZ平面と平行に、かつ共振器 16 の光入射面の法線方向力 傾いて入射されるとする。この場合、図 3に示すように、 櫛形電極 35、 36のそれぞれの櫛歯電極 35c、 36cの間に入射した光の一部は、第 1 反射層 32で反射された後に櫛歯電極 36cに吸収されるため、反射光が減少してしま う。櫛形電極 35、 36の櫛歯電極の幅を a、櫛歯電極の間隔を b、光変調膜 34の膜厚 を t、光の入射角を Θとすると、この場合の共振器 16の開口率 ARは、
AR= (b- 2ttan 0 ) / (a + b) …(式:!)
で表される。式 1から分かるように、光路長を長くするために入射角 Θを大きくするほ ど、開口率 ARは小さくなり、光の利用効率は低下する。なお、ここでは櫛形電極 35、 36の厚みは考慮していなレ、が、厚みを考慮した場合はさらに開口率は小さくなる。
[0051] 次に、本実施の形態に係る、電界の方向と実質的に垂直に光を入射した場合の光 路について説明する。図 4は、図 2の X—X'線に沿った共振器 16の断面図である。 光は、 XZ平面と平行に、かつ共振器 16の光入射面の法線方向から傾いて入射され るとする。このとき、入射光は、電界の方向と実質的に垂直である。この場合、櫛形電 極 35、 36のそれぞれの櫛歯電極の間に入射した光は、第 1反射層 32で反射して櫛 形電極 35、 36に吸収されることなくそれぞれの櫛歯電極の間から出射する。この場 合の共振器 16の開口率 ARは、
AR=b/ (a + b) …(式 2)
で表される。式 2から分かるように、開口率 ARは入射角 Θに依存しないので、光入射 面の法線方向力 傾けて光を入射しても、開口率 ARは一定となる。すなわち、光の 利用効率を保ったまま、制御電圧 Ventを低下することができる。
[0052] 以上のように構成された光変調装置 10の動作について説明する。図 5は、光変調 装置 10の動作状態を模式的に示す。同図において、図 1と同一の構成要素には同 一の符号を付している。また、簡略化のため、電極対 33などの構成要素は省略して いる。
[0053] 発光部 22から、共振器 16に強度 Iinのレーザ光が入射される。共振器 16の第 1反 射層 32、光変調膜 34、第 2反射層 40は、フアブリ一^ ^ロー型の共振器を構成し、入 射された光の一部が閉じこめられ、その一部が反射される。入射するレーザ光の強 度を Iinとし、共振器 16によって反射されるレーザ光の強度を loutとするとき、共振器 16の反射率 Rは、 R=IoutZlinで定義される。
[0054] 図 6は、共振器 16に入射する光の波長 λと反射率 Rの関係を示す図である。第 1 反射層 32、光変調膜 34、第 2反射層 40により構成されるフアブリーペロー型の共振 器の共振波長 λ は、
m
λ = (2ntcos Θ ) /m …(式 3)
m
で与えられる。ここで、 mは次数、 nは光変調膜 34の屈折率、 tは光変調膜 34の膜厚 、 Θは、光変調膜 34におけるレーザ光の入射角である。図 6に示すように、共振器 1 6の反射率 Rは、共振波長 λ におレ、て最小値をとる。
m
[0055] 上述のように、光変調膜 34の屈折率 nは、電極対に印加される電界 Eに依存する。
いま、第 1反射層 32を接地電位とし、櫛形電極 36に制御電圧 Ventを印加すると、光 変調膜 34には、櫛形電極 36から櫛形電極 35に向力う方向に電界 E=Vcnt/tが印 カロされる。光変調膜 34として PLZTを用いた場合、光変調膜 34の屈折率 nの変化量 Δ ηと、印加される電界 Εとの間には、
Δ η= 1/2 Χ (n) 3 X R X E2 …(式 4)
の関係が成り立つ。ここで Rは電気光学定数 (カー定数)である。
[0056] 図 6に示す (I)は、共振器 16に電圧を印加しない場合の反射特性である。このとき 、共振器 16の共振波長は; I 1である。共振器 16に電圧を印加すると、光変調膜 34 m
の屈折率が変化し、共振波長がえ 1からえ 2にシフトする。 ; I 2は; I 1より大きい m m m m
値である。このときの反射特性を図 6に (II)で示す。
[0057] 共振器 16に入射するレーザ光の波長を; I 1とした場合、制御電圧 Ventを接地電 m
位からある電圧値 vlに変化させると、共振波長がシフトすることにより、共振器 16の 反射率 Rは Rmlから Rm2に変化する。
[0058] ここで、電圧を印加しない場合の反射率 Roffと、電圧を印加した場合の反射率 Ro nの比 Ron/Roffをオンオフ比と定義する。入射光の強度 Iinが一定のとき、反射光 の強度 loutは、反射率に比例することになる。したがって、オンオフ比が大きい方が 反射光の強度 loutを精度よく制御でき、光の利用効率も高いことを意味する。
[0059] 共振波長; I における共振器 16の反射率 Rは、第 1反射層 32での反射率 R1およ m
び第 2反射層 40での反射率 R2が近い程低くなる。したがって、上述のように、第 2反 射層 40の誘電体多層膜の層数、材料を調節し、第 1反射層 32での反射率 R1と第 2 反射層 40での反射率 R2を等しく設計することにより、オフ時の反射率 Rを低く設定し 、オンオフ比を高くとることができる。
[0060] このように、本実施の形態に係る光変調装置 10においては、光変調膜 34に印加す る電界を変化させることにより、反射率を変化させ、反射光 loutの強度を制御する光 スィッチ素子を実現することができる。
[0061] 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それ らの各構成要素や各処理プロセスの組み合わせにレ、ろレ、ろな変形例が可能なこと、 またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
[0062] 本実施の形態においては、櫛形電極 35、 36を光変調膜 34上に形成する場合に ついて説明したが、櫛形電極 35、 36は、その一部または全部が光変調膜 34に埋め 込まれるように形成されてもよい。この場合は、光変調膜 34に印加される電界が強い 領域が増えるので、光学膜厚変化を高めることができる。
[0063] 実施の形態では、制御部 12から櫛形電極 36に制御電圧 Ventを印加する構成とし た力 制御電圧 Ventにバイアス電圧 Vbを重畳して印加してもょレ、。
[0064] 共振器 16の共振波長 λ は、式 3によって与えられるため、光変調膜 34の膜厚 tに m
比例する。よって、光変調膜 34の膜厚 tがばらついてしまうと、共振波長 λ もばらつ m いてしまう可能性がある。
[0065] 上述したように、共振波長; I は、共振器 16に電圧を印加することによって変化さ m
せることができる。よって、制御電圧 Ventにバイアス電圧 Vbを重畳し、共振波長 λ m を調整可能としておくことで、膜厚 tのばらつきを校正することができる。
[0066] 図 7は、共振波長 λ を調整可能な光変調装置 10の構成を示す図である。同図に m
おいて、図 1と同一の構成要素には同一の符号を付している。また、簡略化のため、 電極対 33などの構成要素は省略している。図 7の光変調装置 10は、共振器 16と、 制御部 12と、共振波長 λ を調整するためのバイアス電圧 Vbを生成するバイアス部 14とを備える。
[0067] 図 7に示すバイアス部 14は、バイアス電圧 Vbを生成する定電圧回路である。バイァ ス部 14は、可変抵抗 45と、抵抗 46と、定電圧ダイオード 48と、オペアンプ 49と、トラ ンジスタ 50とを備える。
[0068] バイアス部 14に電源電圧を供給すると、バイアス部 14の出力端子 52には、バイァ ス電圧 Vb=Vz (l +RlZR2)が出力される。 R1は可変抵抗 45の抵抗値、 R2は抵 抗 46の抵抗値、 Vzは定電圧ダイオード 48のッヱナ一電圧である。バイアス電圧 Vb は、電源電圧の値によらない定電圧であり、可変抵抗 45の抵抗値を変化させること によって調整可能である。
[0069] 制御電圧 Ventに重畳する好適なバイアス電圧 Vbの値は、光変調膜 34の膜厚 tを 測定することにより求めることができる。フアブリ一ペロー型共振器の共振波長え は m
、式 3で与えられる。よって、光変調膜 34の膜厚 tが分かれば共振器の共振波長え m は求めることができる。共振波長え と共振波長の目標値との差 Δ
m λから、共振波長 λ を目標値にシフトするのに必要な光変調膜 34の変化量 Δ ηが求まる。光変調膜 3 m
4の屈折率 nの変化量 Δ ηと、印加される電界 Εとの間には、式 4の関係が成り立つの で、共振波長え を目標値にシフトさせるのに必要な電界 Εを求めることができる。電 m
界と電圧は、 E=V/tの関係があるので、共振器 16に印加する好適なバイアス電圧 Vbの値を求めることができる。
[0070] このように、光変調膜 34の膜厚 tがばらついていた場合でも、バイアス部 14の可変 抵抗 45を調整することにより、制御電圧 Ventに好適なバイアス電圧 Vbを重畳するこ とができ、共振波長 λ を校正することができる。
m
[0071] 図 7に示すバイアス部 14は、定電圧回路の一例であり、バイアス電圧 Vbは、他の 定電圧回路や、レギユレータを用いて生成してもよレ、。また、バイアス電圧 Vbの設定 は、制御電圧 Ventがローレベル VLの状態で、共振器 16にレーザ光を入射し、反射 光の強度をモニタしながら可変抵抗 45を調節することによって行ってもよい。このとき 、反射光の強度が最小値となるべく可変抵抗 45を調節する。この場合、高精度に共 振波長; I の校正を行うことが可能である。
m
[0072] 上述したように、共振器 16に電圧を印加した場合、共振器 16の共振波長え は、 大きくなる方向にシフトする。また、フアブリ一^ ^ロー型共振器において、共振波長; I は、式 3で与えられるので、膜厚 tが厚くなると共振波長 λ は大きくなり、膜厚 tが薄 m m
くなると共振波長 I は小さくなる。したがって、共振波長 I の調整を行うために、 目 m m
標とする共振波長 λ になる膜厚はりも、膜厚が薄くなるように光変調膜 34を形成す m
るとよレ、。
[0073] バイアス電圧 Vbは、 自動制御により設定してもよレ、。バイアス電圧 Vbの自動制御を 行った場合、光変調膜 34の特性が経時的に変化した場合や、入射するレーザ光の 波長が変化した場合であっても、好適な共振波長 λ に制御することができる。たとえ m
ば、 PLZTなどの強誘電体は、同一方向の電圧を印加し続けることにより、強誘電体 に発生する分極量力メモリされるインプリント現象を有することが知られている。
[0074] 図 8は、バイアス電圧 Vbを自動制御により設定する光変調装置 10の構成を示す図 である。図 8に示すバイアス部 14は、 A/D変換部 54と、 CPUメモリ 56と、 D/A変 換部 58とを備える。
[0075] 図 8に示す光変調装置 10の動作について説明する。図 8の光変調装置 10は、共 振器 16から反射する光の強度をモニタし、フィードバック制御を行うことによってバイ ァス電圧 Vbを調整する。
[0076] 発光部であるレーザ光源 62から共振器 16に照射され、反射された光は、ホトダイ オードや、 CCDなどの光検出素子 64によって電気信号に変換される。受光部である 光検出素子 64は、共振器 16から反射されたレーザ光を検出可能な位置に設けられ る。たとえば、図示しないビームスプリッタにより、反射光を分岐させて、光検出素子 6 4に入射させてもよい。
[0077] 光検出素子 64によって生成された電気信号は、入力端子 51からバイアス部 14に 入力される。電気信号は、 A/D変換部 54によってデジタル値に変換され、 CPUメ モリ 56に取り込まれる。 CPUメモリ 56は、光検出素子 64で検出される光の強度が最 小になるベく、バイアス電圧 Vbを制御する。 CPUメモリ 56から出力された信号は、 D ZA変換部 58によってアナログ値に変換され、出力端子 52にバイアス電圧 Vbを出 力する。
[0078] バイアス電圧 Vbの自動制御を行うことによって、共振器 16の共振波長 λ を常にレ 一ザ光源 62の波長と等しい値に制御することができる。
[0079] 図 8に示すバイアス部 14は、図 1に示す基板 30に集積化して形成してもよい。本実 施の形態に係る光変調装置 10は、反射型の変調器を構成するため、基板 30として 不透明な材料を用いることができる。たとえば、基板 30としてシリコンを用いれば、制 御部 12とバイアス部 14を基板 30に形成し、制御部 12、 ノ ィァス部 14、共振器 16を 備えた光変調装置 10を半導体集積回路装置として 1チップィ匕することができる。
[0080] 本実施の形態に係る光変調装置は、共振器と制御部を複数組備えていてもよい。
たとえば、図 1に示す共振器 16をマトリクス状に配置することによって、空間光変調装 置を構成することができる。
[0081] 図 9 (a)、図 9 (b)は、共振器 16がマトリクス状に配置された空間光変調装置を示す 図である。図 9 (a)は、空間光変調装置 8の平面図である。空間光変調装置 8は、基 板 30上に 8行 8列の 2次元状に配列された複数の画素 20を備える。画素 20は、 20 μ m X 20 μ m程度のサイズにて構成される。
[0082] 図 9 (b)は、図 9 (a)に示す空間光変調装置の A— A'線断面図である。光変調膜 3 4などの構成要素については、図 1に示す共振器 16とほぼ同様である力 櫛形電極 35、 36が光変調膜 34に坦め込まれるように形成されている点が異なっている。この ようにして共振器 16を形成してもよい。
[0083] 図 9 (b)に示すように、ビアおよび配線 38を介して櫛形電極 36が外部に引き出され ている。配線 38の材料としては A1などが好適に用いられる。配線 38の上面には、さ らに保護膜を形成してもよい。
[0084] 空間光変調装置 8には、画素 20ごとに制御部 12から制御電圧 Ventが与えられ、 画素 20ごとに反射率を制御することができる。
[0085] 空間光変調装置 8は、バイアス部 14を備えていてもよレ、。バイアス部 14の構成およ びバイアス電圧 Vbの設定方法に関しては、図 7、図 8を用いて説明した構成および 方法と同様である。空間光変調装置 8において、各画素 20間の膜厚ばらつきが小さ い場合には、各画素 20に共通のバイアス電圧 Vbを重畳すればよいため、バイアス 部 14は、 1つの空間光変調装置 8に対して少なくとも 1つ備えていればよい。
[0086] ノくィァス部 14は画素 20ごとに備えていてもよい。この場合は、より高精度に共振波 長; l の校正を行うことができる。
m
[0087] 空間光変調装置 8を用いてさまざまな光変調システムを構成することができる。図 1 0は、空間光変調装置 8を用いたホログラム記録装置 70を示す図である。ホログラム 記録装置 70は、発光部 80と、受光部 82と、空間光変調装置 8とを備える。発光部 80 は、レーザ光源 72と、ビームェクスパンダ 74とを備える。受光部 82は、フーリエ変換 レンズ 76と、記録媒体 78とを備える。
[0088] ホログラム記録装置 70において、レーザ光源 72から発せられたレーザ光は、図示 しないビームスプリッタで 2つの光に分割される。このうち一方の光は、参照光として 用いられ、記録媒体 78内に導かれる。もう一方の光は、ビームェクスパンダ 74でビー ム径が拡大され、平行光として空間光変調装置 8に照射される。
[0089] 空間光変調装置 8に照射された光は、画素毎に異なる強度を有する信号光として 空間光変調装置 8から反射される。この信号光は、フーリエ変換レンズ 76を通過して フーリエ変換され、記録媒体 78内に集光される。記録媒体 78内において、ホロダラ ムパターンを含む信号光と参照光の光路とが交差して光干渉パターンを形成する。 光干渉パターン全体が屈折率の変化(屈折率格子)として記録媒体 78に記録される
[0090] 上記においては、空間光変調装置 8をホログラム記録装置 70に用いる場合につい て説明したがこれには限定されず、表示装置、光通信用スィッチ、光通信用変調器、 光演算装置、および暗号化回路等にも使用することができる。
[0091] 上記においては、実施の形態として反射型の光変調装置について説明したが、本 実施の形態に係る光変調装置は、透過型の光変調装置であってもよい。たとえば、 印加する電界に応じて屈折率が変化する光変調膜と偏光板とを備えた光変調装置 において、光変調膜に入射する光を、光変調膜に印加される電界の方向と実質的に 垂直に、かつ光入射面の法線方向力 傾いて、入射させることによって、光路長を長 くし、開口率を大きくすることができる。そのため、動作電圧を下げるとともに光の利用 効率を改善した透過型の光変調装置を提供することができる。
産業上の利用可能性
[0092] 本発明に係る光変調装置および光変調システムによれば、光の利用効率を改善す ること力 Sできる。

Claims

請求の範囲
[1] 発光部と、
印加する電界に応じて屈折率が変化する光変調膜と、
前記光変調膜に電界を印加する電極対と、
を備えた光変調装置であって、
前記発光部から発光された光は、前記光変調膜に印加される電界の方向と実質的 に垂直に、かつ光入射面の法線方向力 傾いて、光入射面に入射されることを特徴 とする光変調装置。
[2] 前記電極対は、前記光変調膜において、光入射面と平行となる電界を発生させる ことを特徴とする請求項 1に記載の光変調装置。
[3] 前記電極対は、それぞれ互レ、違いに延びる複数の櫛歯電極を備えた 2つの櫛形 電極力も構成されることを特徴とする請求項 1または 2に記載の光変調装置。
[4] 前記発光部は、一方の櫛形電極における櫛歯電極から、他方の櫛形電極における 櫛歯電極への垂線に実質的に垂直となる入射方向をもつ光を発光することを特徴と する請求項 3に記載の光変調装置。
[5] 前記光変調膜は、印加した電界の 2乗に比例して屈折率が変化する電気光学材料 で形成されることを特徴とする請求項 1から 4のいずれかに記載の光変調装置。
[6] 前記電気光学材料は、チタン酸ジノレコン酸鉛またはチタン酸ジノレコン酸ランタン鉛 であることを特徴とする請求項 5に記載の光変調装置。
[7] 前記光変調膜の下に光反射層を有することを特徴とする請求項 1から 6のいずれか に記載の光変調装置。
[8] 前記電極対に制御電圧を印加することにより、前記発光部から発光された光を変 調して出射せしめる制御部をさらに備えることを特徴とする請求項 1から 7のいずれか に記載の光変調装置。
[9] 当該光変調装置の共振波長を調整するためのバイアス電圧を、前記電極対に印 加するバイアス部をさらに備えることを特徴とする請求項 8に記載の光変調装置。
[10] 印加する電界に応じて屈折率が変化する光変調膜と、
前記光変調膜に電界を印加する電極対と、 前記電極対に制御電圧を印加することにより、入射光を変調して出射せしめる制御 部と、 当該光変調装置の共振波長を調整するためのバイアス電圧を、前記電極対 に印加するバイアス部と、
を半導体集積回路装置として 1チップ化された光変調装置であって、
前記光変調膜への入射光が、前記光変調膜に印加される電界の方向と垂直に、か つ光入射面の法線方向力 傾いて、入射されることを特徴とする光変調装置。
[11] 前記バイアス電圧を調整するよう指示する信号を入力するための端子を備えること を特徴とする請求項 10に記載の光変調装置。
[12] 請求項 1から 9のレ、ずれかに記載の光変調装置と、
当該光変調装置力 出射される光を受ける受光部と、
を備えることを特徴とする光変調システム。
PCT/JP2006/307452 2005-04-11 2006-04-07 光変調装置および光変調システム WO2006109724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06731399A EP1852730A1 (en) 2005-04-11 2006-04-07 Optical modulator and optical modulation system
US11/911,312 US20090073547A1 (en) 2005-04-11 2006-04-07 Optical modulator and optical modulation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-113629 2005-04-11
JP2005113629A JP2006293018A (ja) 2005-04-11 2005-04-11 光変調装置および光変調システム

Publications (1)

Publication Number Publication Date
WO2006109724A1 true WO2006109724A1 (ja) 2006-10-19

Family

ID=37086997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307452 WO2006109724A1 (ja) 2005-04-11 2006-04-07 光変調装置および光変調システム

Country Status (7)

Country Link
US (1) US20090073547A1 (ja)
EP (1) EP1852730A1 (ja)
JP (1) JP2006293018A (ja)
KR (1) KR20070119003A (ja)
CN (1) CN101061418A (ja)
TW (1) TW200643506A (ja)
WO (1) WO2006109724A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400703B2 (en) 2007-06-19 2013-03-19 Nec Corporation Optical switch
WO2009119276A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 電極位置調整方法およびシステム
WO2009122969A1 (ja) * 2008-04-04 2009-10-08 日本電気株式会社 光スイッチ
US20140063585A1 (en) * 2012-08-31 2014-03-06 John G. Hagoplan Phase-controlled magnetic mirror, mirror system, and methods of using the mirror
JP6117639B2 (ja) * 2013-07-03 2017-04-19 浜松ホトニクス株式会社 音圧分布測定装置
CN104134860B (zh) * 2014-07-02 2016-10-19 上海大学 毫米波段共面波导馈电的单层介质板Fabry-Perot天线
KR20170034609A (ko) 2015-09-21 2017-03-29 삼성전자주식회사 투과형 광 셔터 및 투과형 광 셔터의 제조 방법
CN105759464B (zh) * 2016-03-15 2018-08-21 华中科技大学 一种电调光反射率薄膜
KR102372090B1 (ko) 2017-07-13 2022-03-08 삼성전자주식회사 광변조 소자와 그 동작방법 및 광변조 소자를 포함하는 장치
JP7176927B2 (ja) * 2018-10-30 2022-11-22 浜松ホトニクス株式会社 Cemアセンブリおよび電子増倍デバイス
EP3907536A1 (en) * 2020-05-04 2021-11-10 Ams Ag Manipulating electromagnetic radiation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565523A (en) * 1979-06-21 1981-01-21 Xerox Corp Acoustoooptical modulator
JPS606918A (ja) * 1983-06-24 1985-01-14 Matsushita Electric Ind Co Ltd 反射型薄膜光変調器
JP2002311401A (ja) * 2001-04-12 2002-10-23 Tdk Corp 光制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3858001A (en) * 1973-05-11 1974-12-31 Honeywell Inc Stereoscopic display system
US6317251B1 (en) * 1996-02-05 2001-11-13 Corning Applied Technologies Corporation Thin film electro-optic beam steering device
US6211993B1 (en) * 1996-05-20 2001-04-03 Nz Applied Technologies Corporation Thin film ferroelectric light modulators
JP2001337303A (ja) * 2000-05-25 2001-12-07 Matsushita Electric Ind Co Ltd 光シャッタとそれを用いた表示装置
WO2005015292A1 (ja) * 2003-08-07 2005-02-17 Rohm Co., Ltd 光変調膜を備える構造体およびそれを用いた光制御素子
JPWO2005015293A1 (ja) * 2003-08-07 2007-09-27 ローム株式会社 光制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565523A (en) * 1979-06-21 1981-01-21 Xerox Corp Acoustoooptical modulator
JPS606918A (ja) * 1983-06-24 1985-01-14 Matsushita Electric Ind Co Ltd 反射型薄膜光変調器
JP2002311401A (ja) * 2001-04-12 2002-10-23 Tdk Corp 光制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMES R.J. ET AL.: "Electrically tunable Fabry-Perot mirror using multiple quantum well index modulation", APPLIED PHYSICS LETTERS, vol. 53, no. 8, August 1988 (1988-08-01), pages 637 - 639, XP000068545 *

Also Published As

Publication number Publication date
KR20070119003A (ko) 2007-12-18
TW200643506A (en) 2006-12-16
EP1852730A1 (en) 2007-11-07
CN101061418A (zh) 2007-10-24
JP2006293018A (ja) 2006-10-26
US20090073547A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
WO2006109724A1 (ja) 光変調装置および光変調システム
US7372608B2 (en) Light control device and light control system using the same
WO2006109725A1 (ja) 光変調装置の製造方法、光変調装置および光変調システム
JP2006201472A (ja) 光制御装置
US7564610B2 (en) Light control device and light control system using same
US7009680B2 (en) Narrow band tunable filter with integrated detector
US7894115B2 (en) Light control apparatus having light modulating film
US20060228089A1 (en) Variable wavelength optical filter
US6317251B1 (en) Thin film electro-optic beam steering device
US6888661B1 (en) Square filter function tunable optical devices
JP5155562B2 (ja) 電圧制御回路、電圧制御方法およびそれを用いた光制御装置
US20090195715A1 (en) Flat top tunable filter with integrated detector
JP2006220746A (ja) 光制御装置およびそれに用いる構造体
US10788728B2 (en) Light beam steering using electro-optical and conductive materials
JP2006258939A (ja) 光変調装置、光変調システム、および光変調装置の校正方法
JP4768289B2 (ja) 面型光変調素子および面型光変調素子ユニットおよび面型光変調素子ユニットアレイ
JP2006235493A (ja) 光制御システムおよびファブリーペロー型共振器の校正方法
JP2009152040A (ja) 発光デバイス
JP2006113475A (ja) 光スイッチ、およびそれを用いたプリンター
Wang et al. Optical phase modulators and SLMs based on thin ferroelectric interferometers (TFIs)
JPS6248814B2 (ja)
thru ADP011864 This paper is part of the following report: TITLE: Optical Storage and Optical Information Held in Taipei, Taiwan on
JP2007025072A (ja) 光スイッチ
JP2007033674A (ja) 光スイッチ及びその製造方法及び光スイッチシステム
Li et al. Fabrication and characterization of thin ferroelectric interferometers for light modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077008681

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001231.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006731399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11911312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006731399

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU