WO2006108298A1 - Rotary foam distributor - Google Patents

Rotary foam distributor Download PDF

Info

Publication number
WO2006108298A1
WO2006108298A1 PCT/CA2006/000590 CA2006000590W WO2006108298A1 WO 2006108298 A1 WO2006108298 A1 WO 2006108298A1 CA 2006000590 W CA2006000590 W CA 2006000590W WO 2006108298 A1 WO2006108298 A1 WO 2006108298A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributor
foam
rotary
output shaft
outlet
Prior art date
Application number
PCT/CA2006/000590
Other languages
English (en)
French (fr)
Inventor
George Patrick Crampton
Original Assignee
National Research Council Of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/106,503 external-priority patent/US8056831B2/en
Priority claimed from CA2505911A external-priority patent/CA2505911C/en
Application filed by National Research Council Of Canada filed Critical National Research Council Of Canada
Priority to AT06741384T priority Critical patent/ATE458537T1/de
Priority to EP06741384A priority patent/EP1874412B1/de
Priority to DE602006012470T priority patent/DE602006012470D1/de
Publication of WO2006108298A1 publication Critical patent/WO2006108298A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • A62C31/12Nozzles specially adapted for fire-extinguishing for delivering foam or atomised foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0409Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
    • B05B3/0418Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
    • B05B3/0422Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0409Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
    • B05B3/0418Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
    • B05B3/0422Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
    • B05B3/0431Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements the rotative movement of the outlet elements being reversible

Definitions

  • the present invention relates generally to fixed piping fire suppression systems and, more particularly, to a rotary-type foam distributor.
  • a foam distributor is part of a fixed piping fire suppression system capable of projecting a stream of fire- extinguishing compressed-air foam or other compressed-gas foam.
  • foam produced from a solution of a foam concentrate in water. The volume of the solution is expanded by the addition of air and mechanical energy to form a bubble structure resembling shaving cream. The bubble suffocates and cools the fire and protects adjacent structures from exposure to radiant heat.
  • Foam is known to be very effective on liquid fires, e.g. fuel, oil or other flammable chemicals.
  • Foam can be generated using an air-aspirating nozzle, which entrains air into the solution and agitates the mixture producing bubbles of non-uniform size.
  • an aspirating system the foam is formed at the nozzle using the energy of the solution stream.
  • This foaming typically removes substantially all of the mechanical energy of the solution stream and consequently a second flow is typically required to supply mechanical energy needed to distribute the foam.
  • the duplication of supply, and the coordination of the two systems increases an expense of the system and makes the system inherently less reliable.
  • Foam can also be generated by injecting air under pressure into the solution stream.
  • the solution and air mixture are scrubbed by the hose (or pipe) to form a foam of uniform bubble size.
  • the energy used in this system comes from the solution stream and the air injection system.
  • This system produces a "compressed-air foam” (CAF) which is capable of delivering the foam with a greater force than a comparable aspirated system described above.
  • CAF compressed-air foam
  • compressed-air foam distributors are installed on ceilings and walls for fire- protection in a variety of applications, such as in warehouses and aircraft hangars.
  • ceiling-mounted or wall-mounted foam distributors are poised to extinguish fires that might erupt if highly flammable jet fuel is accidentally ignited.
  • the effectiveness of a distributor or a group of distributors to fight a fire depends on a number of factors, such as range or "reach", i.e. the distributor's ability to project the foam an adequate distance, area coverage, i.e. the floor space it can cover, reliability, compactness, power efficiency, etc. Improving the effectiveness of a distributor provides superior fire-suppression, thus requiring fewer distributors to cover a given facility, which accordingly reduces building costs and saves space.
  • Applicant's United States Patent 6,764,024 discloses an impeller-driven delivery system that uses pressure of a CAF flow to drive an impeller, which is coupled by an internally mounted gear box reducer within a closed housing to revolve an output shaft that, in turn, drives a diffuser.
  • the diffuser is made to revolve to distribute the CAF in a radial pattern.
  • Applicant has found that greatly improved transfer of energy to a rotor, and a significantly more compact assembly, can be achieved with a different configuration. This configuration further provides a more robust, simpler, impeller and transmission system that is better suited to surviving extreme thermal and shock testing required of such devices.
  • the foam distributor in accordance with the present invention has an inlet for receiving foam from a supply of compressed foam, such as compressed-air foam or other types of fire-retardant foams.
  • compressed gas foams can be made of concentrates and water mixed with inert gasses, other than air.
  • the foam Upon entering the distributor, the foam impinges on one or more vanes (or other impingement surfaces) of an offset radial impeller, wheel or rotor mechanism mounted on an input shaft, thereby causing the radial impeller, wheel or rotor mechanism and the input shaft to rotate.
  • An offset radial impeller denotes an impeller that revolves along an axis that is transverse to the direction of flow, and so is moved by the flow itself, and transverse movement of the flow as it deflects radially away from a centre of rotation of the impeller, which center of rotation being offset from the direction of flow so that significantly less pressure is applied to the impellers when not positioned within the flow.
  • the input shaft is geared to an output shaft upon which is mounted a rotary outlet, which can be a diffuser or a rotating vent of constant cross-sectional area.
  • the rotary outlet is thus rotated by the foam impinging on the vanes of the radial impeller, wheel or rotor mechanism. In operation, foam is projected in a circular sweeping pattern as the rotary outlet rotates relative to the distributor body.
  • the distributor can be configured with a 90-degree elbow or bend that diverts foam exiting a top surface of the distributor body.
  • the foam is diverted 90 degrees so that foam is projected by the rotary outlet in a direction of a horizontal plane that is parallel to the inlet.
  • the rotary outlet can rotate over a full 360 degrees, providing superior coverage for a large floor space, such as in hangars or warehouses, using a quarter to a tenth of the solution volume of conventional systems that do not foam the solution.
  • this versatile distributor can be installed in a floor trench of a hangar or on a wall or ceiling. Since all rotational energy is harnessed from the pressure of the foam itself, no external energy source is required to power the distributor.
  • the rotary outlet can also be made to oscillate rotationally over a limited arc by virtue of a reciprocating mechanism in the gear train which constrains the motion of the output shaft relative to the distributor body.
  • the angular velocity of the rotary outlet whether freely rotating or oscillating may preferably be between 60 and 180 RPM. It has been found that slower angular velocities, while providing for a longer reach of the foam or delivering a greater volume of foam per unit area in each pass, provides too much time between passes to optimally extinguish some fires, and conversely faster angular velocities tend to reduce the reach of the foam and to cause discontinuities within the foam (depending on foam characteristics) .
  • the gear train may have a reduction ratio of between 6:1 and 30:1, which may best be produced with or without the intermediary idler gear. It will be appreciated that these figures may vary with flow properties of the foam, properties of the impeller, and properties of the rotary outlet, etc.
  • a distributor for distributing foam for extinguishing a fire includes a distributor body having an inlet for receiving foam from a compressed foam supply; a rotor mechanism mounted for rotation within the body and offset from the inlet, the rotor mechanism having impingement surfaces against which foam impinges to cause the rotor mechanism to rotate; and a rotary outlet connected to the rotor mechanism for rotation of the outlet relative to the body when foam impinges on the impingement surfaces of the rotor mechanism.
  • the rotary outlet is rotationally connected to the rotor mechanism for unconstrained 360-degree rotation of the outlet relative to the body when foam impinges on the impingement surfaces of the rotor mechanism.
  • the rotary outlet is an oscillating rotary outlet connected to the rotor mechanism for oscillation of the rotary outlet relative to the body through a limited arc when foam impinges on the impingement surfaces of the rotor mechanism.
  • the rotor mechanism includes a radial impeller having a plurality of vanes defining the impingement surfaces, the radial impeller being mounted for rotation on an input shaft; and an output shaft being operatively connected to the input shaft whereby rotation of the input shaft causes rotation of the output shaft, the output shaft being rotationally connected to the rotary output.
  • the rotor mechanism includes a radial impeller having a plurality of vanes defining the impingement surfaces, the radial impeller being mounted for rotation on an input shaft; and an output shaft being operatively connected to the input shaft whereby rotation of the input shaft causes rotation of the output shaft, the output shaft being operatively connected to the rotary output via a crank gear and push rod capable of reciprocating an arm connected to the output shaft to cause oscillation of the rotary output over a limited angular range of motion.
  • a gear chamber isolation member is connected to the distributor body for dividing an interior volume of the distributor body into an enclosed gear chamber and a single, non-annular flow path for the foam to traverse the distributor body without interfering with the gear train.
  • a distributor for distributing fire-suppressing compressed foam includes a distributor body having an inlet for receiving foam from a compressed foam supply; an impeller rotatably mounted within the body and offset from the inlet, the impeller having a plurality of vanes against which foam impinges to cause the impeller to rotate; and a rotary outlet connected to the impeller for rotation of the outlet relative to the body, when foam impinges on the vanes of the impeller.
  • the impeller is mounted to an input shaft geared to an output shaft to which the rotary outlet is mounted.
  • the input shaft is geared to the output shaft to enable unconstrained 360-degree rotation of the output shaft and rotary outlet relative to the distributor body.
  • the input shaft is operatively connected to the output shaft via a reciprocating mechanism to enable rotational oscillation of the rotary outlet relative to the distributor body over a limited arc of motion.
  • the rotary outlet is mounted to an outlet shaft for rotation relative to the body, the rotary outlet defining a rotating outlet chamber external from the body, the rotating outlet chamber and the body being in fluid communication via a plurality of exit holes disposed around the output shaft at an interface of the rotary outlet and the body.
  • a gear chamber isolation member is connected to the distributor body for dividing an interior volume of the distributor body into an enclosed gear chamber and a single, non-annular flow path for the foam to traverse the distributor body without interfering with the gear train.
  • FIG. 1 is a bottom view of a rotary-type foam distributor in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a side cross-sectional view of the distributor shown in FIG. 1 but further including a gear chamber isolation plate;
  • FIG. 3 is a bottom view of a rotary-type foam distributor having an oscillating rotary outlet in accordance with another embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view of the distributor shown in FIG. 3 but further including a gear chamber isolation plate;
  • FIG. 5 is a side cross-sectional view of the distributor having a diffuser in accordance with yet another embodiment of the present invention.
  • FIG. 1 is a bottom view of a rotary-type foam distributor in accordance with a preferred embodiment of the present invention.
  • the distributor which is generally designated by reference numeral 10, has a distributor body 12 (or housing) having a foam inlet 14 for receiving foam, such as compressed-air foam (CAF) or other compressed-gas foam.
  • foam such as compressed-air foam (CAF) or other compressed-gas foam.
  • CAF compressed-air foam
  • the incoming foam travels along a foam entry axis 15 from a foam supply which is not shown, but which is known in the art of fixed piping fire-suppression.
  • the distributor 10 includes a radial impeller 16 (although other equivalent devices include an impingement wheel or a rotor mechanism) which, in turn, has a plurality of vanes 18 or impingement surfaces against which the foam impinges.
  • the radial impeller 16 is offset from the foam entry axis 15 so that impingement of the foam on the vanes of the impeller causes the impeller to rotate.
  • the centre of the radial impeller 16 (as opposed to an axial impeller taught in the aforementioned United States Patent) is spaced apart or offset from the foam entry axis 15, which is aligned to impinge upon the vanes 18.
  • This configuration effectively taps the energy of the CAF flow, harnessing a small fraction of the available energy but does not significantly reduce the range the CAF is projected.
  • the radial impeller 16 is mounted to an input shaft 20 that is rotationally secured within the distributor.
  • the input shaft 20 is rotationally secured within bearings set in the upper and lower surfaces of the distributor body to provide smooth and efficient rotation of the input shaft 20 relative to the distributor body 12.
  • the input shaft 20 is operatively connected to an output shaft 28 via a gear train.
  • a spur gear 21 is mounted to the input shaft 20 beneath the radial impeller 16.
  • the spur gear 21 meshes with a first intermediary gear 22 mounted on an idler shaft 24.
  • a second intermediary gear 23 mounted on the idler shaft provides a gear reduction and meshing with an output gear 26 mounted on the output shaft 28.
  • the reduction gear ratio should be between 6:1 and 30:1. This will generally ensure that the angular velocity of the rotary outlet remains within a desired band of about 60 to 180 RPM, although it will be appreciated that CAF flow properties, dimensions and configurations of the impingement surfaces, flow properties in the area of the impeller, and other factors may change the optimal gear ratio and/or angular velocities.
  • Loose meshing of the gears permits operation in a wide range of temperatures, accommodating different thermal expansions of the respective components.
  • the output shaft 28 is securely connected to a rotary outlet 30 which is rotatable relative to the distributor body.
  • the rotary outlet 30 has a vent or exit through which foam is projected as indicated by a foam projection vector 32 in FIG. 2.
  • the rotary outlet 30 is referred to as a "nozzle" even if the outlet does not have a converging cross-section in the downstream direction.
  • the rotary outlet can be mounted on a bearing to provide more efficient rotation relative to the distributor body.
  • the foam injected into the inlet is forced under pressure through the enclosure defined by the distributor body 12, and is forced upwardly through a plurality of exits 34 into the rotary outlet 30 where it is projected radially outwardly in a circular sweeping pattern as the rotary outlet rotates.
  • the rotary outlet 30 can rotate 360 degrees in an unconstrained manner relative to the distributor body to cover a circular target area fully surrounding the distributor.
  • exit holes 34 there are preferably five equidistantly spaced exit holes 34 disposed circumferentially around the output shaft 28.
  • the number and shape of the exit holes 34 can be varied, and other mechanisms for securing a rotating nozzle to a distributor body that permit driving of the nozzle can be used, subject to the strenuous demands of fire suppression applications.
  • a chain drive can be used.
  • the foam is first diverted ninety degrees from the horizontal to the vertical by the distributor body and then ninety degrees back to the horizontal by the rotary outlet.
  • Persons of ordinary skill will thus readily appreciate that various refinements can be made to reduce pressure losses as the foam is forced through the two successive ninety-degree turns. For example, it is known in fluid mechanics to introduce smooth bends or elbows to minimize the pressure drop.
  • the rotary outlet 30 causes the foam to divert ninety degrees so that the foam is projected in a direction initially parallel to the foam inlet.
  • the projection vector 32 revolves in a horizontal plane that is parallel to a horizontal plane of the foam entry axis 15.
  • the low-profile design of this distributor is compact enough to be used in a variety of tight spaces such as, for example, in a trench of an aircraft hangar where foam can be projected under wings and vehicle bodies to smother a ground-based fuel fire.
  • the distributor is compact enough to be used in a variety of other applications as well, not only on the ground but also on walls or ceilings.
  • FIGS. 3 and 4 illustrate a distributor 10 having an oscillating rotary outlet in accordance with another embodiment of the present invention.
  • the radial impeller 16 is operatively connected to the output shaft 28 (and hence to the rotary outlet 30) by an oscillating mechanism 40 having a crank gear 42 meshed to the spur gear 21 of the input shaft 20.
  • the crank gear 42 is pivotally connected (at a first pivot 43) to a reciprocating linkage such as a push rod 44.
  • the push rod 44 connects at a second pivot 46 to an arm 48 fixed to the output shaft.
  • the output shaft 28 (and hence the rotary outlet 30) rotationally oscillates over a limited arc.
  • the rotary outlet 30 oscillates back and forth through an angle of about 170 degrees. This design is particularly useful when the distributor is positioned near a wall and the foam is delivered only to the target area away from the wall.
  • the distributor 10 includes a gear chamber isolation member, such as a gear chamber isolation plate 25, for isolating the gear train from the flow of CAF.
  • a gear chamber isolation member such as a gear chamber isolation plate 25, for isolating the gear train from the flow of CAF.
  • the gear chamber isolation plate 25 is nevertheless helpful to preclude foam from impeding the smooth movement of the gear train.
  • the gear chamber isolation plate 25 is also useful in situations where rust, or other bodies may be present in the CAF. If a large enough body were to become lodged in the gear train, it will be appreciated that the gear train may seize. By providing a gear chamber isolation plate 25 or the like, interference with the gear train is precluded.
  • the input and output shafts may be supported by bearings flush mounted to the upper and lower walls of the distributor housing, bearings may be provided in a recess of either the upper or lower walls of the distributor housing, and/or the shafts may extend through one of the upper and lower walls.
  • a shaft cover plate 27, as shown in FIGS. 2 and 4 is provided to prevent corrosion, or mechanical friction with anything below the distributor housing.
  • a plurality of shaft cover plates covering individual shafts could also be utilized in lieu of a single shaft cover plate, and numerous other supportive and protecting configurations can be used as a matter of design elective.
  • the gear chamber isolation plate 25 and the shaft cover plate 27 can be affixed to the distributor body 12 by anchor rivets 29 or, alternatively, by screws, welding, or other fastening means .
  • FIG. 5 illustrates another embodiment of the distributor where the rotary outlet is a diffuser having a diverging cross-section in the downstream direction.
  • the diffuser reduces the exit velocity of the foam but projects the foam in an expanding cone rather than a cylindrical "rope" of foam.
  • the rotary outlet can be a diffuser, a constant-cross-section chamber, or a nozzle depending on the desired projection characteristics. Typically a constant cross-sectional area vent or diffuser is preferable (and not a nozzle which restricts or converges the foam as it exits) .
  • a diffuser its design should not cause undue backpressure in the distributor which would stifle the effective throughput of foam through the device.
  • the distributor 10 must be constructed to withstand high temperatures so as to be robust enough to remain operable during a fire.
  • a distributor of this design may be able to withstand at least 600 degrees Celsius (1100 degrees Fahrenheit) for extended periods of time, while in operation.
  • the distributor 10 harnesses the pressure of the foam to drive the rotary outlet. Therefore, the distributor is self-powered, which reduces installation and operating costs and which also enhances the robustness of the device. Furthermore, the distributor is highly efficient in that it requires very little volume of water and concentrate to cover a fixed area, relative to comparably performing fire-suppression apparatuses. This distributor requires only approximately one quarter to one tenth of the solution of comparable wide-area prior-art systems. Also, as noted above, the distributor is both low-profile and capable of covering 360 degrees, which makes it ideal for trench mounting.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Mechanical Pencils And Projecting And Retracting Systems Therefor, And Multi-System Writing Instruments (AREA)
  • Recrystallisation Techniques (AREA)
  • Nozzles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
PCT/CA2006/000590 2005-04-15 2006-04-13 Rotary foam distributor WO2006108298A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT06741384T ATE458537T1 (de) 2005-04-15 2006-04-13 Rotationsverteiler für schaum
EP06741384A EP1874412B1 (de) 2005-04-15 2006-04-13 Rotationsverteiler für schaum
DE602006012470T DE602006012470D1 (de) 2005-04-15 2006-04-13 Rotationsverteiler für schaum

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA2,505,911 2005-04-15
US11/106,503 2005-04-15
US11/106,503 US8056831B2 (en) 2005-04-15 2005-04-15 Rotary foam distributor
CA2505911A CA2505911C (en) 2005-04-15 2005-04-15 Rotary foam distributor

Publications (1)

Publication Number Publication Date
WO2006108298A1 true WO2006108298A1 (en) 2006-10-19

Family

ID=37086586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2006/000590 WO2006108298A1 (en) 2005-04-15 2006-04-13 Rotary foam distributor

Country Status (4)

Country Link
EP (1) EP1874412B1 (de)
AT (1) ATE458537T1 (de)
DE (1) DE602006012470D1 (de)
WO (1) WO2006108298A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8651400B2 (en) 2007-01-12 2014-02-18 Rain Bird Corporation Variable arc nozzle
US8672242B2 (en) 2009-05-29 2014-03-18 Rain Bird Corporation Sprinkler with variable arc and flow rate and method
US8695900B2 (en) 2009-05-29 2014-04-15 Rain Bird Corporation Sprinkler with variable arc and flow rate and method
US8789768B2 (en) 2008-10-09 2014-07-29 Rain Bird Corporation Sprinkler with variable arc and flow rate
US8925837B2 (en) 2009-05-29 2015-01-06 Rain Bird Corporation Sprinkler with variable arc and flow rate and method
US9079202B2 (en) 2012-06-13 2015-07-14 Rain Bird Corporation Rotary variable arc nozzle
US9174227B2 (en) 2012-06-14 2015-11-03 Rain Bird Corporation Irrigation sprinkler nozzle
US9295998B2 (en) 2012-07-27 2016-03-29 Rain Bird Corporation Rotary nozzle
US9314952B2 (en) 2013-03-14 2016-04-19 Rain Bird Corporation Irrigation spray nozzle and mold assembly and method of forming nozzle
US9327297B2 (en) 2012-07-27 2016-05-03 Rain Bird Corporation Rotary nozzle
US9427751B2 (en) 2010-04-09 2016-08-30 Rain Bird Corporation Irrigation sprinkler nozzle having deflector with micro-ramps
US9504209B2 (en) 2010-04-09 2016-11-29 Rain Bird Corporation Irrigation sprinkler nozzle
EP3315208A4 (de) * 2015-06-29 2018-06-13 Sinyu Technology (Fujian) Co., Ltd. Umlaufend drehende wasserauslaufvorrichtung
US10322423B2 (en) 2016-11-22 2019-06-18 Rain Bird Corporation Rotary nozzle
US11059056B2 (en) 2019-02-28 2021-07-13 Rain Bird Corporation Rotary strip nozzles and deflectors
US11154877B2 (en) 2017-03-29 2021-10-26 Rain Bird Corporation Rotary strip nozzles
US11247219B2 (en) 2019-11-22 2022-02-15 Rain Bird Corporation Reduced precipitation rate nozzle
US11406999B2 (en) 2019-05-10 2022-08-09 Rain Bird Corporation Irrigation nozzle with one or more grit vents

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE437937B (sv) * 1981-09-04 1985-03-25 Ernst Lennart Wallman Med Firm Dimmunstycke for brandbekempning medelst vatten
US4923013A (en) * 1989-08-14 1990-05-08 Gennaro Sergio K De Fire sprinkler system and automatic shut-off valve therefor
JPH1057517A (ja) * 1996-08-27 1998-03-03 Hochiki Corp 固定式消火設備の散水方法及び消火用散水ノズル
US5772117A (en) 1996-12-10 1998-06-30 Su; Yeong Chwan Water sprinkler
JPH1170184A (ja) * 1997-06-30 1999-03-16 Hochiki Corp 固定式消火設備の消火用散水ノズル
WO2000012177A1 (en) * 1998-08-12 2000-03-09 Edvardsen Odd J Method for production of a fire fighting foam, nozzle head and an arrangement in a fire extinguishing installation
WO2003041805A2 (en) * 2001-11-15 2003-05-22 National Research Council Of Canada Rotary foam nozzle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523609A (en) * 1922-01-03 1925-01-20 Finis E Roach Sprinkler apparatus
AT362867B (de) * 1979-02-07 1981-06-25 Huber Markus Koerperbrause
US4501391A (en) * 1982-02-04 1985-02-26 The Toro Company Hose end pattern sprinkler
US5003646A (en) * 1987-04-14 1991-04-02 Hydro Air Industries, Inc. Hydrotherapy apparatus
US4944457A (en) * 1989-05-01 1990-07-31 Mark Brewer Oscillating device for fluid nozzles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE437937B (sv) * 1981-09-04 1985-03-25 Ernst Lennart Wallman Med Firm Dimmunstycke for brandbekempning medelst vatten
US4923013A (en) * 1989-08-14 1990-05-08 Gennaro Sergio K De Fire sprinkler system and automatic shut-off valve therefor
JPH1057517A (ja) * 1996-08-27 1998-03-03 Hochiki Corp 固定式消火設備の散水方法及び消火用散水ノズル
US5772117A (en) 1996-12-10 1998-06-30 Su; Yeong Chwan Water sprinkler
JPH1170184A (ja) * 1997-06-30 1999-03-16 Hochiki Corp 固定式消火設備の消火用散水ノズル
WO2000012177A1 (en) * 1998-08-12 2000-03-09 Edvardsen Odd J Method for production of a fire fighting foam, nozzle head and an arrangement in a fire extinguishing installation
US6764024B2 (en) 2000-02-29 2004-07-20 National Research Council Of Canada Rotary foam nozzle
WO2003041805A2 (en) * 2001-11-15 2003-05-22 National Research Council Of Canada Rotary foam nozzle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8651400B2 (en) 2007-01-12 2014-02-18 Rain Bird Corporation Variable arc nozzle
US8789768B2 (en) 2008-10-09 2014-07-29 Rain Bird Corporation Sprinkler with variable arc and flow rate
US8672242B2 (en) 2009-05-29 2014-03-18 Rain Bird Corporation Sprinkler with variable arc and flow rate and method
US8695900B2 (en) 2009-05-29 2014-04-15 Rain Bird Corporation Sprinkler with variable arc and flow rate and method
US8925837B2 (en) 2009-05-29 2015-01-06 Rain Bird Corporation Sprinkler with variable arc and flow rate and method
US9427751B2 (en) 2010-04-09 2016-08-30 Rain Bird Corporation Irrigation sprinkler nozzle having deflector with micro-ramps
US9504209B2 (en) 2010-04-09 2016-11-29 Rain Bird Corporation Irrigation sprinkler nozzle
US9079202B2 (en) 2012-06-13 2015-07-14 Rain Bird Corporation Rotary variable arc nozzle
US9174227B2 (en) 2012-06-14 2015-11-03 Rain Bird Corporation Irrigation sprinkler nozzle
US9327297B2 (en) 2012-07-27 2016-05-03 Rain Bird Corporation Rotary nozzle
US9295998B2 (en) 2012-07-27 2016-03-29 Rain Bird Corporation Rotary nozzle
US9314952B2 (en) 2013-03-14 2016-04-19 Rain Bird Corporation Irrigation spray nozzle and mold assembly and method of forming nozzle
EP3315208A4 (de) * 2015-06-29 2018-06-13 Sinyu Technology (Fujian) Co., Ltd. Umlaufend drehende wasserauslaufvorrichtung
US10322423B2 (en) 2016-11-22 2019-06-18 Rain Bird Corporation Rotary nozzle
US11154881B2 (en) 2016-11-22 2021-10-26 Rain Bird Corporation Rotary nozzle
US11154877B2 (en) 2017-03-29 2021-10-26 Rain Bird Corporation Rotary strip nozzles
US11059056B2 (en) 2019-02-28 2021-07-13 Rain Bird Corporation Rotary strip nozzles and deflectors
US11406999B2 (en) 2019-05-10 2022-08-09 Rain Bird Corporation Irrigation nozzle with one or more grit vents
US11247219B2 (en) 2019-11-22 2022-02-15 Rain Bird Corporation Reduced precipitation rate nozzle
US11660621B2 (en) 2019-11-22 2023-05-30 Rain Bird Corporation Reduced precipitation rate nozzle

Also Published As

Publication number Publication date
EP1874412A1 (de) 2008-01-09
ATE458537T1 (de) 2010-03-15
EP1874412B1 (de) 2010-02-24
EP1874412A4 (de) 2008-05-14
DE602006012470D1 (de) 2010-04-08

Similar Documents

Publication Publication Date Title
US8056831B2 (en) Rotary foam distributor
EP1874412B1 (de) Rotationsverteiler für schaum
JP7161480B2 (ja) 流体流制御装置
US3780812A (en) Method and apparatus for generating fire-fighting foam
US11975230B2 (en) User configurable long-range fire-fighting apparatus
WO2005084816A1 (en) Fire extinguishing apparatus and atomizer using a swirler
EP0961639B1 (de) Luftansaugende schaumdüse
CA2505911C (en) Rotary foam distributor
RU2422215C1 (ru) Распылительная форсунка огнетушителя
US20100122823A1 (en) Foam-generating device of a fire nozzle
EP0710139B1 (de) Schaumlöschungssystem
US6189622B1 (en) Nozzle for fighting fires in buildings
CA2719920A1 (en) Firefighting unit
US5337830A (en) Fire fighting foam generation system
JP3672726B2 (ja) 固定式消火設備の消火用散水ノズル
KR102030540B1 (ko) 다용도 이동식 물안개 분무장치
CN115920289B (zh) 一种具有灭火预警功能的灭火剂喷洒系统
JP4040952B2 (ja) スプリンクラー消火設備の消火用散水ノズル
US20050023005A1 (en) Arrangement at a fire control pipe
RU2192546C1 (ru) Пеногенератор
JPH0420356A (ja) 噴霧式放水ノズル
AU654274B2 (en) Fire fighting foam generation system
JP2006000672A (ja) 固定式消火設備の散水方法及び消火用散水ノズル
JP2005152669A (ja) 消火用散水ノズル
JP2001145705A (ja) 消火用散水ノズル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006741384

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006741384

Country of ref document: EP