WO2006106885A1 - 液体輸送装置及び液体輸送システム - Google Patents

液体輸送装置及び液体輸送システム Download PDF

Info

Publication number
WO2006106885A1
WO2006106885A1 PCT/JP2006/306758 JP2006306758W WO2006106885A1 WO 2006106885 A1 WO2006106885 A1 WO 2006106885A1 JP 2006306758 W JP2006306758 W JP 2006306758W WO 2006106885 A1 WO2006106885 A1 WO 2006106885A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
transport
electroosmotic
driving
pump
Prior art date
Application number
PCT/JP2006/306758
Other languages
English (en)
French (fr)
Inventor
Ichiro Yanagisawa
Masana Nishikawa
Original Assignee
Nano Fusion Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Fusion Technologies, Inc. filed Critical Nano Fusion Technologies, Inc.
Priority to EP20060730706 priority Critical patent/EP1865199A1/en
Priority to US11/887,446 priority patent/US20090126813A1/en
Publication of WO2006106885A1 publication Critical patent/WO2006106885A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2191By non-fluid energy field affecting input [e.g., transducer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2202By movable element
    • Y10T137/2213Electrically-actuated element [e.g., electro-mechanical transducer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2202By movable element
    • Y10T137/2218Means [e.g., valve] in control input

Definitions

  • Liquid transport device and liquid transport system Liquid transport device and liquid transport system
  • the present invention relates to a microfluidic chip, a drug 'delivery' system, a liquid transport apparatus and a liquid transport system for driving and controlling a liquid flowing through an electronic device using an electroosmotic pump.
  • the present applicant has so far conducted electroosmotic flow on the order of several tens [ mm ] to several [ mm ] for the purpose of driving a liquid in a microfluidic chip, a drug delivery system, or a micro-elect mouth-tus. Devise a pump.
  • electroosmotic pumps use a material having pores such as a porous body and a fiber as an electroosmotic material, so that even at a low driving voltage (about 3 [V] to 30 [V]). Practical flow rate-pressure characteristics (hundreds [LZmin] and hundreds [kPa]) can be obtained.
  • Electroosmotic pumps generally have the following advantages over other small mechanical pumps (micro pumps).
  • the electroosmotic flow pump can generate a non-pulsating flow. This is a significant advantage over other diaphragm pumps. Non-pulsating flow is especially useful when dealing with very small flow rates or when a small amount of backflow at the connection becomes a problem. Also, the defoaming phenomenon caused by the cavity occurs inside the mechanical pump. In principle, the defoaming phenomenon does not occur in the electroosmotic pump.
  • [0008] (3) Basically, it is composed of an electroosmotic material and an electrode, and since there is no mechanical movable part, it has a simpler structure with higher reliability and can reduce manufacturing costs. .
  • the electroosmotic pump is used as a pump incorporated in a capillary or a microfluidic chip in limited fields such as analytical chemistry and biochemistry. It has been. This is because the electroosmotic flow pump is considered to be a device that can be used only for capillary and microfluidic chips. ] ⁇ Several [mm] in size and low! ⁇ Driving voltage, high flow rate, high pressure, electroosmotic pumps that can be used in fields that have been fully studied at present! /.
  • Patent Document 1 US Patent Application Publication No. 2003Z0068229
  • Patent Document 2 US Patent Application Publication No. 2004Z0234378
  • Patent Document 3 US Pat. No. 3,923,426
  • the fluid that can be directly driven is limited.
  • This is a pump in which the electroosmotic flow pump drives the liquid based on the electroosmotic flow phenomenon, and the electroosmotic phenomenon functions by an electrochemical phenomenon at the interface between the electroosmotic material and the liquid. It is difficult to drive a liquid that does not generate the electrochemical phenomenon.
  • a liquid containing a counter ion that binds to a dissociated silanol group or adsorbs to the surface of the pipe line is also suitable for driving by an electroosmotic pump.
  • the electroosmotic material is composed of a porous body, a fiber, a fine particle, or the like that forms a flow path of about several tens [/ z m] to several tens [nm]. Therefore, it is difficult to directly drive a substance that cannot pass through the flow path (for example, a cell, a white blood cell, or a red blood cell) or a substance that is easily adsorbed to the electroosmotic material (for example, a protein).
  • the present invention aims to provide a liquid supply apparatus and a liquid transport system that can further transport any kind of liquid by further improving the electroosmotic flow pump described above. .
  • the first electrode is disposed on the upstream side of the electroosmotic material provided in the flow path, and the second electrode is disposed on the downstream side.
  • the first electrode and the first electrode In the liquid transport apparatus that causes the driving liquid to flow through the electroosmotic material when the voltage is applied to the two electrodes, at least a part of the upstream side of the electroosmotic material is the driving liquid. At least one downstream of the electroosmotic material.
  • the transport liquid reservoir is filled with transport liquid that can be supplied to the outside by movement of the drive liquid, and the drive liquid and the transport liquid are isolated between the drive liquid and the transport liquid.
  • a liquid isolating means is inserted, and when the voltage is applied, the driving liquid supplies or sucks the transport liquid via the liquid isolating means.
  • the drive liquid that exhibits an electroosmosis phenomenon can be moved in a non-contact manner through the liquid isolation means as the drive liquid moves.
  • the transport liquid is filled.
  • the transport liquid does not exhibit the electroosmosis phenomenon! Even if it is a liquid, the transport liquid can be transported using the liquid transport device. Therefore, in the liquid transport apparatus, as long as the driving liquid is a liquid that exhibits an electroosmosis phenomenon, it is possible to transport the liquid stably regardless of the liquid. Further, since the driving liquid and the transport liquid are separated by the liquid isolating means, the transport liquid can be transported reliably without mutual contact and mixing.
  • the liquid separation is performed.
  • the means is preferably a gas that stays downstream of the electroosmotic material. This makes it possible to separate the drive liquid and the transport liquid with a simple configuration.
  • the liquid isolating means can pass through the gas, and also has a hydrophobic material force that prevents the driving liquid and the transport liquid from passing therethrough.
  • the driving liquid and the transport liquid can be reliably separated by the gas and the liquid isolating means having the hydrophobic material force.
  • At least one of the driving liquid reservoir and the transport liquid reservoir has a structure that is detachable from the liquid transport device. As a result, it is possible to unitize each part constituting the liquid transport device.
  • the transport liquid reservoir is preferably a microfluidic chip. This makes it possible to drive and control a relatively large volume of liquid feed liquid using the liquid transport device.
  • a liquid transport system according to the present invention uses the liquid transport device described above, and a plurality of liquid filling lines for filling the transport liquid into the transport liquid reservoir of each liquid transport device. And a plurality of liquid supply lines for supplying the transport liquid from the transport liquid reservoirs to the outside, and a plurality of valves disposed on the liquid filling lines and the liquid supply lines.
  • FIG. 1 is a cross-sectional view of an electroosmotic pump according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing a modification of the electroosmotic flow pump of FIG.
  • FIG. 3 is a cross-sectional view of an electroosmotic pump according to a second embodiment.
  • FIG. 4 is a cross-sectional view of an electroosmotic pump according to a third embodiment.
  • FIG. 5 is a cross-sectional view of an electroosmotic pump according to a fourth embodiment.
  • FIG. 6 is a sectional view of an electroosmotic flow pump according to a fifth embodiment.
  • FIG. 7 is a perspective view of an electroosmotic pump according to a sixth embodiment.
  • FIG. 8 is a perspective view showing another configuration of the electroosmotic flow pump of FIG.
  • FIG. 9 is a perspective view of an electroosmotic pump according to a seventh embodiment.
  • FIG. 10 is an exploded perspective view of the transport liquid reservoir of FIG.
  • FIG. 11 is a block diagram of a liquid transport system constituted by the electroosmotic flow pumps of FIGS.
  • FIG. 12 is a time chart for explaining the operation of the liquid transport system of FIG. 11.
  • FIG. 13 is a time chart for explaining the operation of the liquid transport system of FIG. 11.
  • BEST MODE FOR CARRYING OUT THE INVENTION [0030]
  • the electroosmotic pump (liquid transport device) 10A according to the first embodiment can be mounted on a microfluidic chip or a small electronic device used in biotechnology or analytical chemistry [mm] to several As shown in FIG. 1, the pump is basically a pump container 12 and an electroosmotic material 16 disposed in a flow path 14 formed in the pump container 12. And an inlet side electrode (first electrode) 18 and an outlet side electrode (second electrode) 20.
  • the pump container 12 is made of a plastic material or a ceramic, glass, or surface that is liquid resistant to a driving liquid 15 made of a conductive fluid such as an electrolyte solution that passes through the flow path 14 and is electrically insulated.
  • a driving liquid 15 made of a conductive fluid such as an electrolyte solution that passes through the flow path 14 and is electrically insulated.
  • a large-diameter portion 22 made of a metal material, on which the electroosmotic material 16, the inlet-side electrode 18 and the outlet-side electrode 20 are disposed, and the small-diameter portions 24 and 25 on the upstream side and the downstream side with respect to the large-diameter portion 22 Composed.
  • the driving liquid 15 is a liquid that exhibits an electroosmosis phenomenon, and passes through the flow path 14 from the right side (small diameter portion 25 side) to the left side (small diameter portion 24) in FIG.
  • the electroosmotic material 16 is disposed so as to partition the flow path 14.
  • the upstream side (right side in FIG. 1) of the electroosmotic material 16 in the flow path 14 is formed as an inlet side chamber 26.
  • the downstream side is formed as an outlet side chamber 28.
  • the electroosmotic material 16 also has porous ceramics, glass fiber and the like, and when the driving liquid 15 is supplied to the inlet side chamber 26, it absorbs the driving liquid 15 and penetrates into the inside, and further penetrates. This is a hydrophilic member that can discharge the driving liquid 15 to the outlet side member 28.
  • the inlet-side electrode 18 is disposed in contact with the surface of the electroosmotic material 16 in the inlet-side chamber 26, and a plurality of holes 30 are formed along the axial direction of the flow path 14.
  • the outlet-side electrode 20 is disposed in contact with the surface of the electroosmotic material 16 in the outlet-side chamber 28, and a plurality of holes 32 are formed along the axial direction of the flow path 14.
  • the inlet side electrode 18 and the outlet side electrode 20 are electrically connected to a DC power source 34.
  • the force with the inlet side electrode 18 as the positive electrode and the outlet side electrode 20 as the negative electrode may be replaced with the inlet side electrode 18 as the negative electrode and the outlet side electrode 20 as the positive electrode.
  • FIG. 1 the force with the inlet side electrode 18 as the positive electrode and the outlet side electrode 20 as the negative electrode may be replaced with the inlet side electrode 18 as the negative electrode and the outlet side electrode 20 as the positive electrode.
  • FIG. 1 the force with the inlet side electrode 18 as the positive electrode and the outlet
  • the electrodes 18 and 20 are arranged on the surface of the electroosmotic material 16.
  • the arrangement is not limited to such an arrangement.
  • the electrodes 18 and 20 are arranged near the electroosmotic material 16. It ’s okay to be placed in a non-contact state!
  • the upstream side of the small-diameter portion 25 is a large-diameter portion (driving liquid reservoir) 27 pre-filled with the driving liquid 15, and is supplied to the inlet-side chamber 26 from the large-diameter portion 27.
  • driving liquid reservoir driving liquid reservoir
  • the small-diameter portion 24 on the downstream side of the flow path 14 is connected to the flow path of the fluid device such as the microphone port fluid chip on the downstream side, and the central portion of the small-diameter portion 24 is the transport liquid.
  • the body 31 is a large-diameter portion (transportation liquid reservoir) 29 pre-filled, and a bubble 33 as a liquid isolating means is interposed between the transport liquid 31 and the driving liquid 15 discharged to the outlet side chamber 28. Yes.
  • the widths of the flow paths 14, 24, 29, and 33 are not more than one length (usually 2 to 3 mm), and as a result, the force acting on the driving liquid 15 and the transport liquid 31 is reduced by gravity. Rather than surface tension. Therefore, when the driving liquid 15 is discharged to the outlet side chamber 28, the transport liquid 31 is pressed downstream via the bubbles 33 and can move to the flow path of the fluid device.
  • the transport liquid 31 is a liquid that can be indirectly transported from the electroosmotic flow pump 10A to the fluid device by the movement of the driving liquid 15 based on the electroosmosis phenomenon, and can be adapted to the material of the pump container 12. Any type of liquid can be used.
  • the inner wall of the pump container 12 is preferably hydrophobic.
  • the width of the flow path 14 is equal to or greater than the length of the above-mentioned column, or when the driving liquid 15 is highly permeable, the driving liquid 15 and the transport liquid 31 are reliably separated by the bubbles 33. It must be a hydrophobic surface.
  • the force inlet chamber 26 as a whole may be used as the driving liquid reservoir, with the large diameter portion 27 that is a part of the inlet chamber 26 serving as the driving liquid reservoir for the driving liquid 15.
  • an unillustrated V of the driving liquid 15 connected to the inlet chamber 26, a supply tank or the like may be used as the driving liquid reservoir! /.
  • the force in which the large-diameter portion 29, which is a part of the outlet chamber 28, is used as a transport liquid reservoir for the transport liquid 31.
  • the entire outlet side chamber 28 may be used as a transport liquid reservoir, or the outlet side chamber. 28 may be a straight shape and the downstream side may be the transport liquid reservoir.
  • FIG. 1 illustrates the case where the transport liquid 31 is transported to the fluid device on the downstream side.
  • the drive liquid 15 moves to the upstream side.
  • the transport liquid 31 can move from the fluid device to the larger diameter portion 29 via the bubble 33, and the electroosmotic pump 10A supplies and recovers the transport liquid 31. It is possible.
  • the drive liquid 15 that exhibits the electroosmosis phenomenon and the bubble 33 accompanying the movement of the drive liquid 15 are contained therein.
  • a transport liquid 31 that is movable in a non-contact manner since the liquid that can pass through the electroosmotic material 16 is only the driving liquid 15, the transport liquid 31 does not exhibit the electroosmosis phenomenon! Even if it is a liquid, the electroosmotic flow pump 10A is used to Transport liquid 31 can be transported. Therefore, in the electroosmotic flow pump 10A, as long as the driving liquid 15 exhibits the electroosmosis phenomenon, it is possible to stably transport the transport liquid 31 regardless of the liquid. In addition, since the driving liquid 15 and the transport liquid 31 are separated by the bubbles 33, the transport liquid 31 can be transported reliably without mutual contact and mixing.
  • the drive liquid 15 is sent to the inside of the transport liquid reservoir (the position where air remains on the downstream side of the small diameter portion 24, for example, the tip portion on the downstream side of the large diameter portion 29), and the small diameter portion With the DC side voltage applied to the electrodes 18 and 20 with the downstream side of 24 immersed in the transport liquid 31, the transport liquid 31 is sucked into the transport liquid reservoir.
  • the liquid surface position of the driving liquid 15 moves to the boundary between the large diameter portion 22 and the small diameter portion 24 by suction of the transport liquid 31, the application of the DC voltage to the electrodes 18 and 20 is stopped.
  • the transport liquid 31 is filled in the transport liquid reservoir with the bubble 33 interposed.
  • the DC voltage is applied with the electrode 18 as a negative electrode and the electrode 20 as a positive electrode.
  • a hole 23 (see FIG. 1) that also serves to vent the air and inject the transport liquid 31 is formed in advance in the side portion of the pump container 12 (upstream portion of the small-diameter portion 24). After filling 31, this hole 23 is sealed.
  • the surface of the hole 23 is a hydrophobic surface, and the hole 23 is sealed by adhering an adhesive seal member to the hole 23.
  • the driving liquid 15 in the outlet side chamber 28 is sucked to the driving liquid reservoir side so that the degassing member 39 is not wetted by the driving liquid 15. However, this step is not necessary if the electroosmotic material 16 is not wet with the driving liquid 15.
  • the transport liquid 31 is filled with the transport liquid 31 by a syringe or the like.
  • the small diameter portion 24 and the large diameter portion 22 are separated.
  • the transport liquid 31 is filled into the large diameter portion 29 as a transport liquid reservoir, and the upstream side of the small diameter portion 24 is not filled with the transport liquid 31.
  • the small diameter portion 24 and the large diameter portion 22 are fitted in a state (a state where air is filled). As a result, the air becomes the bubble 33, and the transport liquid 31 can be driven from the drive liquid 15 through the bubble 33.
  • the electrodes 18 and 20 have electrodes 30 and 32 formed therein, but a metal is deposited on the surface of a wire-shaped electrode or a porous body.
  • a configured electrode may be used.
  • the electrodes 18 and 20 described above are preferably composed of a conductive material such as platinum, carbon, or silver.
  • the force that the electrode 18 is a positive electrode and the electrode 20 is a negative electrode as described above, the above-described effects can be obtained even when the electrode 18 is a negative electrode and the electrode 20 is a positive electrode. Of course.
  • the force in which the pump container 12 is formed in the order of the large diameter portion 22 and the small diameter portion 24 from the upstream side is as described above.
  • the shape of the pump container 12 is as described above.
  • the shape is not limited thereto.
  • the pump container 12 may be entirely straight, or may be configured in the order of a small diameter portion and a large diameter portion from the upstream side.
  • an electroosmotic pump 10B according to a second embodiment will be described with reference to FIG.
  • the same components as those of the electroosmotic pump 10A according to the first embodiment shown in FIGS. 1 and 2 are described with the same reference numerals, and the same applies hereinafter.
  • the electroosmotic flow pump 10B includes a driving liquid 15 and a transport liquid 31 in the outlet side chamber 28 via a hydrophobic gas permeable membrane 35 and a bubble 33.
  • the electroosmotic flow pump 10A according to the first embodiment see FIGS. 1 and 2).
  • the entire inlet side chamber 26 is a drive liquid reservoir.
  • the driving liquid 15 is pushed out, and the portion up to the gas permeable membrane 35 in the outlet side chamber 28 is filled with the driving liquid 15.
  • the driving liquid 15 moves upstream and the transport liquid 31 Can be aspirated into the transport liquid reservoir.
  • the transport liquid 31 corresponding to the volume of the space from the gas permeable membrane 35 of the outlet chamber 28 to the electroosmotic material 16 can be sucked or sent.
  • the electroosmotic pump 10C according to the third embodiment is integrally connected to the microfluidic chip 40 on the downstream side thereof as shown in FIG. This is different from the electroosmotic pumps 10A and 10B (see FIGS. 1 to 3) according to the second embodiment.
  • the flow path 42 of the microfluidic chip 40 connected to the downstream side of the flow path 14 of the electroosmotic flow pump 10C is used as the transport liquid reservoir of the transport liquid 31, and the first embodiment Similarly to the electroosmotic pump 10A according to the above (see FIGS. 1 and 2), when the driving liquid 15 moves in the flow paths 14 and 42, the transport liquid 31 moves through the bubbles 33. This makes it possible to easily drive and control the transport liquid 31 in the microfluidic chip 40 using the electroosmotic pump 10C.
  • the electroosmotic pump 10D according to the fourth embodiment is capable of separating the large-diameter portion 29 serving as the transport liquid reservoir from the partial force upstream of the large-diameter portion 29. Therefore, the electroosmotic flow pump 10A according to the first to third embodiments is different from the LOC (see FIGS. 1 to 3).
  • the electroosmotic flow pump 10E according to the fifth embodiment has an electroosmotic flow according to the fourth embodiment in that a gas permeable membrane 35 is disposed on the outlet side chamber 28 as shown in FIG. Different from pump 1 OD (see Figure 5).
  • the driving liquid 15 and the transport liquid 31 can be reliably separated by the bubbles 33 and the gas permeable membrane 35.
  • the driving pressure of the electroosmotic flow pump 10F is equal to or lower than the minimum water breakthrough point of the gas permeable membrane 35, the contact between the driving liquid 15 and the transport liquid 31 can be more reliably prevented.
  • the electroosmotic pump 10F has a unity structure in which the transport liquid reservoir 50 and the driving liquid reservoir 52 are detachable from the electroosmotic pump 10F.
  • the structure is different from the electroosmotic flow pumps 10A to 10E (see FIGS. 1 to 6) according to the first to fifth embodiments.
  • the electroosmotic flow pumps 10A to 10A according to the first to fifth embodiments described above:
  • the LOE has a structure in which the transport liquid reservoir and the drive liquid reservoir are built in the pump, and the transport liquid 31 and This is suitable when the total amount of the driving liquid 15 is about several tens of liters.
  • the size of the transport liquid reservoir is larger than the size of the pump itself. Less.
  • the electroosmotic pump 10A to: LOE uses a feature that is inexpensive and small in size, and is suitable as a portable or disposable liquid supply device. In some cases, the pump itself is reused. There is also a need.
  • the transport liquid reservoir 50 and the driving liquid reservoir By making 52 a detachable unitized structure, the pump body 54 of the electroosmotic pump 10G can be reused, and the other transport liquid reservoir 50 and drive liquid reservoir 52 can be disposable or transported. Fill the liquid 31 and the driving liquid 15 and reuse the transport liquid reservoir 50 and the driving liquid reservoir 52.
  • the transport liquid reservoir 50 for example, a general liquid container, tube or microfluidic chip is suitable.
  • Fig. 7 shows a substrate 56 on which a transport liquid reservoir 50, a drive liquid reservoir 52, a pump main body 54, and a battery 58 for driving the pump main body 54 are fixed. Is suitable.
  • the transport liquid reservoir 50 is provided with a liquid feed port 60.
  • FIG. 8 shows a configuration suitable for a reservoir unit having a smaller capacity than that in FIG. 7, in which a cylindrical transport liquid reservoir 50, a pump body 54, and a drive liquid reservoir 52 are connected in order. Yes. These units are each about 5 [mm] to 10 [mm] in diameter and about 10 to 20 [mm] in length.
  • the electroosmotic pump 10G according to the seventh embodiment is related to the sixth embodiment in that the transport liquid reservoir 50 is realized by a laminated structure of microfluidic chips. Different from electroosmotic pump 10F (see Fig. 7 and Fig. 8).
  • each groove 64 and the board 62 are provided with connection holes 66.
  • the flow path 6 having a depth of 200 [m] and a width of 500 [ ⁇ m] with respect to the substrate 62 having a thickness of 0.5 [mm] 6
  • the filling rate of the transport liquid 31 with respect to the volume of the microfluidic chip is approximately 20 [%].
  • the volume of transport liquid reservoir 50 Is about 33 [mL]. This can be realized by laminating 6 to 7 substrates 62 having a size of 3 [cm] X 4 [cm] X 0.5 [mm].
  • the driving liquid reservoir 52 can be handled by a general cartridge structure.
  • the capacity of the transport liquid reservoir 50 is 5 [mL]
  • the capacity of the drive liquid reservoir 52 is 5 [mL]
  • the drive voltage of the pump body is 12 [V]
  • the supply speed is l / z. LZmin]
  • the continuous operation time is 80 hours
  • the total volume of the device is about 60 [mL]
  • the weight of the device is about 100 [g].
  • This is a system for connecting a plurality of electroosmotic pumps 10 (1 l to n) in parallel to continuously drive a large-capacity transport liquid 31.
  • a liquid transport system 70 that can be operated continuously by connecting electroosmotic pumps 10 and 10 in parallel.
  • the electroosmotic pump 10 is connected via a valve 72 to the transport liquid filling line (there is
  • electroosmotic pump 10 is or connected to a transport liquid supply line (or transport liquid suction line) 78 via a valve 76. Also, electroosmotic pump 10
  • each electroosmotic pump 10 is connected with a driving liquid reservoir 52 and a transport liquid reservoir 50 on the upstream side and the downstream side, respectively.
  • liquid transport system 70 the driving direction of the electroosmotic flow pump 10 is alternately switched, and the valves 72, 76, 80, 84 are operated in synchronization with the switching of the electroosmotic flow pump 10.
  • Liquid 15 and transport liquid 31 are in non-contact state and transport liquid 31 is continuous To the transport liquid supply line 78.
  • the transport liquid 31 filled in the server 50 can be sent to the transport liquid supply line 78.
  • Transport liquid 31 can be filled into transport liquid reservoir 50 from transport liquid filling line 82.
  • the transportation liquid reservoir 50 can be filled with the transportation liquid 31 from the transportation liquid filling line 74.
  • the transport liquid 3 filled in the transport liquid reservoir 50 is moved to the body reservoir 50 side.
  • the liquid transport system 70 repeatedly performs the same operation as at time tO.
  • the driving directions of the electroosmotic pump 10 are alternately switched, and the valves 72, 76, 80, 84 are operated in synchronization with the switching of the electroosmotic pump 10.
  • the driving liquid 15 and the transport liquid 31 can be in a non-contact state, and the transport liquid 31 can be continuously sucked in via the transport liquid suction line 78 and recovered by the transport liquid recovery lines 74 and 82. is there.
  • Transport liquid 31 can be sucked into transport liquid reservoir 50 from liquid feed suction line 78
  • the transport liquid 31 can be sucked into the transport liquid reservoir 50 from the transport liquid suction line 78.
  • the transport liquid 3 sucked into the transport liquid reservoir 50 is moved to the body reservoir 50 side.
  • the liquid transport system 70 repeatedly performs the same operation as at time tO.
  • valves 72, 76, 80, and 84 are switched at predetermined intervals. Further, the electroosmotic flow pump 10 and the electroosmotic flow pump 10
  • the collecting operation is alternately performed in synchronism with the opening / closing switching of the valves 72, 76, 80, 84.
  • the transport liquid 31 can be continuously supplied to or sucked into the transport liquid supply line 78 from the transport liquid supply line 78.
  • liquid transport apparatus and the liquid transport system according to the present invention are not limited to the above-described embodiments, and can of course have various configurations without departing from the gist of the present invention.
  • a driving liquid that exhibits an electroosmosis phenomenon is contacted via a liquid isolating means as the driving liquid moves. It is filled with a movable transport liquid.
  • the transport liquid does not exhibit the electroosmosis phenomenon! Even if it is a liquid, the transport liquid can be transported using the liquid transport device. Therefore, in the liquid transport apparatus, as long as the driving liquid is a liquid that exhibits the electroosmosis phenomenon, the liquid can be stably transported regardless of the transport liquid.
  • the driving liquid and the transport liquid are separated by the liquid separating means, the transport liquid can be transported reliably without mutual contact and mixing.
  • liquid transport system according to the present invention, a plurality of liquid transport devices described above are connected in parallel to supply or suck the transport liquid, so that a large amount of transport liquid is continuously supplied or continuously sucked. It becomes possible to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

 電気浸透流ポンプ(10A)の内部には、電気浸透現象を発揮する駆動液体(15)と、該駆動液体(15)の移動に伴ってバブル(33)を介して非接触で移動可能な輸送液体(31)とが充填されている。この場合、電気浸透材16を通過可能な液体は駆動液体(15)のみであるので、輸送液体(31)が電気浸透現象を発揮しない液体であっても、電気浸透流ポンプ(10A)を利用して該輸送液体(31)を輸送することが可能となる。従って、電気浸透流ポンプ(10A)では、駆動液体(15)が前記電気浸透現象を発揮する液体であれば、輸送液体(31)がどのような液体であっても安定して輸送することが可能となる。

Description

明 細 書
液体輸送装置及び液体輸送システム
技術分野
[0001] 本発明は、マイクロ流体チップやドラッグ 'デリバリ'システムやエレクトロニクス装置 の内部を流通する液体を電気浸透流ポンプを用いて駆動制御する液体輸送装置及 び液体輸送システムに関する。
背景技術
[0002] 本出願人は、これまでマイクロ流体チップやドラッグ ·デリバリ'システムやマイクロエ レクト口-タス等における液体の駆動を目的とした数十 [mm]〜数 [mm]のオーダの 電気浸透流ポンプを案出して 、る。
[0003] これらの電気浸透流ポンプは、電気浸透材として多孔質体、ファイバ一等の細孔を 有する材料を用いることにより、低 、駆動電圧 (3 [V]〜30 [V]程度)でも実用的な流 量一圧力特性 (数百 [ LZmin]及び数百 [kPa])を得ることができる。
[0004] このようなサイズの電気浸透流ポンプは、小型ポンプであるにも関わらず、大きな駆 動圧力が得られることから、様々な応用範囲が検討されている (特許文献 1〜3参照)
[0005] 電気浸透流ポンプは、一般に、他の機械式の小型ポンプ(マイクロポンプ)と比較し て下記のメリットがある。
[0006] (1)電気浸透流ポンプは、無脈動な流れを作ることが可能である。これは他のダイ ァフラム式のポンプ等と比較して大きなメリットである。脈動の無い流れは、特に微小 流量を扱う場合や、接続部分での微量の逆流が問題となるような場合に有益である。 また、機械式のポンプの内部では、キヤビテーシヨンに起因する脱泡現象が発生する 力 電気浸透流ポンプでは原理的には前記脱泡現象は発生しな 、。
[0007] (2)小さなポンプでありながら高圧力駆動に適して 、る。例えば、遠心式のポンプ では [mm]オーダの構造で、数百 [kPa]の圧力を得ることは困難である。一方、電気 浸透流ポンプであれば、 30 [V]の駆動電圧であっても、数百 [kPa]程度の圧力を容 易に得ることができる。また、前記駆動電圧を上昇すれば、前記圧力を数十気圧〜 数百気圧程度まで増大させることも可能となる。
[0008] (3)基本的には、電気浸透材と電極とから構成され、機械的な可動部分がないの で信頼性が高ぐさらに簡単な構成であるので製造コストを低減することができる。
[0009] (4)電極に印加する電圧の大きさや極性切換によって、ポンプ流量や流れの向き を簡単に調整することが可能である。
[0010] 上記したメリットを持つにも関わらず、電気浸透流ポンプは、分析化学や生物化学 等の限られた分野にぉ 、て、キヤビラリ一やマイクロ流体チップの内部に組み込まれ たポンプとして用いられている。これは、電気浸透流ポンプがキヤピラリーやマイクロ 流体チップのみに利用可能な装置であると考えられているためであり、数十 [mn!]〜 数 [mm]程度のサイズで且つ低!ヽ駆動電圧で高流量 高圧力を実現する電気浸透 流ポンプの利用可能な分野につ 、ては、現状では十分に検討されて!、な!/、。
[0011] 特許文献 1 :米国特許出願公開第 2003Z0068229号明細書
特許文献 2:米国特許出願公開第 2004Z0234378号明細書
特許文献 3:米国特許第 3923426号公報
発明の開示
[0012] ところで、電気浸透流ポンプでは、直接駆動可能な流体が限定されて 、る。これは 、前記電気浸透流ポンプが電気浸透流現象に基づ 、て液体を駆動するポンプであ り、電気浸透現象は、電気浸透材と液体との界面における電気化学的現象により機 能するものであり、前記電気化学的現象が発生しない液体を駆動することは困難で ある。
[0013] ここでは、ガラス管表面での電気浸透現象を利用して水溶液を駆動する場合につ いて説明する。
[0014] 前記ガラス管に水溶液が充填されている場合、水とガラス表面との化学反応によつ て、前記ガラス表面に存在するシラノール基が解離して、前記ガラス管表面は負に帯 電する。この場合、前記ガラス表面に帯電した負電荷をキャンセルする目的で水中の 対イオン (この場合は正イオンである。)が前記ガラス表面近傍に集まるが、前記ガラ ス表面の負電荷は動くことができない一方で、前記正イオンは移動可能である。この 結果、前記ガラス管の管路方向に電界を印加すると前記正イオンが前記電界の方向 に移動し、前記正イオン周辺の水は、該水の粘性によって前記正イオンに引きずら れながら移動する。この水の流れが電気浸透流となる。
[0015] このように、ある液体が電気浸透現象を発揮するためには、前記液体が通過する管 路を構成する材料の帯電が必須である。すなわち、前記材料の表面における電位( ゼータ電位)が十分大きいことが必要である。また、前記帯電の程度は、液体の種類 のみならず pH等にも依存する。従って、電気浸透流ポンプで液体を駆動する際には 、駆動に適した液体と適さな!/、液体とが存在する。
[0016] 例えば、電気浸透材料がガラス力もなる場合に、前記ガラス力もなる管路に強酸を 流そうとしても、ゼータ電位が低いので電気浸透流を得ることが難しい。また、表面活 性剤のように、解離したシラノール基と結合し、あるいは前記管路表面に吸着する対 イオンを含む液体も、電気浸透流ポンプによる駆動には適さな 、。
[0017] さらに、電気伝導性の良好な液体の場合には、電極間を流れる電流が過大となる ので、ポンプ効率の劣化やガス発生等により、電気浸透流ポンプによる駆動に適さな い。
[0018] 一方、電気浸透材は、数十 [ /z m]〜数十 [nm]程度の流路を構成する多孔質体や ファイバーや微粒子等から構成される。そのため、前記流路を通過できないサイズの 物質 (例えば、細胞、白血球、赤血球)や、前記電気浸透材に吸着しやすい物質 (例 えば、タンパク質)については、直接駆動することは困難である。
[0019] このように、電気浸透流ポンプでは、駆動すべき流体にっ 、て様々な制約を受ける ので、その適用範囲を拡張する際の大きな障害となって 、る。
[0020] 本発明は、上記した電気浸透流ポンプをさらに改良して、どのような種類の液体で も輸送することが可能となる液体供給装置及び液体輸送システムを提供することを目 的とする。
[0021] 本発明に係る液体輸送装置は、流路内に設けられた電気浸透材の上流側に第 1 電極を配置し且つ下流側に第 2電極を配置し、前記第 1電極及び前記第 2電極に電 圧を印カロした際に、前記電気浸透材を介して前記流路内に駆動液体を流通させる 液体輸送装置において、前記電気浸透材の上流側の少なくとも一部が前記駆動液 体が充填される駆動液体リザーバとされ、前記電気浸透材の下流側の少なくとも一 部が前記駆動液体の移動によって外部に供給可能な輸送液体が充填される輸送液 体リザーバとされ、前記駆動液体と前記輸送液体との間には、前記駆動液体と前記 輸送液体とを隔離する液体隔離手段が介挿され、前記電圧を印加した際に、前記駆 動液体が前記液体隔離手段を介して前記輸送液体を供給又は吸引することを特徴 とする。
[0022] 上記した構成によれば、前記液体輸送装置の内部には、電気浸透現象を発揮する 前記駆動液体と、該駆動液体の移動に伴って前記液体隔離手段を介して非接触で 移動可能な前記輸送液体とが充填されている。この場合、前記輸送液体が電気浸透 現象を発揮しな!、液体であっても、前記液体輸送装置を利用して該輸送液体を輸送 することが可能となる。従って、前記液体輸送装置では、前記駆動液体が電気浸透 現象を発揮する液体であれば、前記輸送液体がどのような液体であっても安定して 輸送することが可能となる。また、前記駆動液体と前記輸送液体とが前記液体隔離 手段によって分離されているので、両者が接解、混合したりすることがなく前記輸送 液体を確実に輸送することができる。
[0023] ここで、前記流路内における前記駆動液体及び前記輸送液体に作用する力が重 力よりも表面張力が支配的となる流路径が 2〜3mm以下の場合には、前記液体隔 離手段は、前記電気浸透材の下流側に滞留するガスとすることが好ましい。これによ り、簡単な構成で前記駆動液体と前記輸送液体とを分離することが可能となる。
[0024] また、前記液体隔離手段は、前記ガスを通過することが可能であり、一方で、前記 駆動液体及び前記輸送液体の通過を阻止する疎水性材料力もなることが好ましい。 これにより、前記ガスと前記疎水性材料力 なる液体隔離手段とによって前記駆動液 体と前記輸送液体とを確実に分離することができる。
[0025] また、前記駆動液体リザーバ及び前記輸送液体リザーバのうち少なくとも 1つは、前 記液体輸送装置より着脱可能な構造とすることが好ましい。これにより、前記液体輸 送装置を構成する各部分をユニット化することが可能となる。
[0026] さらに、前記輸送液体リザーバは、マイクロ流体チップであることが好ま 、。これに より、前記液体輸送装置を利用して比較的大容量の液送液体を駆動制御することが 可能となる。 [0027] そして、本発明に係る液体輸送システムは、上述した液体輸送装置を用いたもので あり、前記各液体輸送装置の前記輸送液体リザーバに対して前記輸送液体を充填 する複数の液体充填ラインと、前記各輸送液体リザーバより前記輸送液体を外部に 供給する複数の液体供給ラインと、前記各液体充填ライン及び前記各液体供給ライ ンに配設された複数のバルブとを備え、前記各バルブの開閉状態を順次切り換える ことにより、前記各液体充填ラインより前記各輸送液体リザーバに対する前記輸送液 体の充填と、前記各輸送液体リザーバから前記液体供給ラインに対する前記輸送液 体の供給とを交互に行って、前記輸送液体を外部に常時供給又は常時吸引すること を特徴とする。
[0028] 上記した構成によれば、前記液体輸送装置を複数個並列接続して輸送液体の供 給又は吸引を行っているので、大量の輸送液体を連続供給又は連続吸引することが 可能となる。
図面の簡単な説明
[0029] [図 1]図 1は、第 1実施形態に係る電気浸透流ポンプの断面図である。
[図 2]図 2は、図 1の電気浸透流ポンプの変形例を示す断面図である。
[図 3]図 3は、第 2実施形態に係る電気浸透流ポンプの断面図である。
[図 4]図 4は、第 3実施形態に係る電気浸透流ポンプの断面図である。
[図 5]図 5は、第 4実施形態に係る電気浸透流ポンプの断面図である。
[図 6]図 6は、第 5実施形態に係る電気浸透流ポンプの断面図である。
[図 7]図 7は、第 6実施形態に係る電気浸透流ポンプの斜視図である。
[図 8]図 8は、図 7の電気浸透流ポンプの他の構成を示す斜視図である。
[図 9]図 9は、第 7実施形態に係る電気浸透流ポンプの斜視図である。
[図 10]図 10は、図 9の輸送液体リザーバの分解斜視図である。
[図 11]図 11は、図 1〜図 10の電気浸透流ポンプによって構成された液体輸送システ ムのブロック図である。
[図 12]図 12は、図 11の液体輸送システムの動作を説明するタイムチャートである。
[図 13]図 13は、図 11の液体輸送システムの動作を説明するタイムチャートである。 発明を実施するための最良の形態 [0030] 第 1実施形態に係る電気浸透流ポンプ (液体輸送装置) 10Aは、バイオテクノロジ 一や分析化学にお 、て用いられるマイクロ流体チップや小型エレクトロニクス機器に 搭載可能な数 [mm]〜数 [cm]程度のサイズの小型ポンプであり、図 1に示すように 、基本的には、ポンプ容器 12と、該ポンプ容器 12内に形成された流路 14に配置さ れた電気浸透材 16、入口側電極 (第 1電極) 18及び出口側電極 (第 2電極) 20とを 有する。
[0031] ポンプ容器 12は、流路 14を通過する電解質溶液等の導電性流体からなる駆動液 体 15に対して耐液性を有するプラスチック材料あるいは、セラミックス、ガラス、表面 が電気絶縁処理された金属材料からなり、電気浸透材 16、入口側電極 18及び出口 側電極 20が配置される大径部分 22と、該大径部分 22に対して上流側及び下流側 の小径部分 24、 25とで構成される。なお、駆動液体 15は、電気浸透現象を発揮す る液体であり、図 1の右側(小径部分 25側)から左側(小径部分 24)の方向に向かつ て流路 14内を通過する。
[0032] 電気浸透材 16は、流路 14を仕切るように配設され、この結果、該流路 14における 電気浸透材 16の上流側(図 1の右側)は、入口側チェンバー 26として形成され、一 方で、その下流側は、出口側チェンバー 28として形成される。また、電気浸透材 16 は、多孔質セラミックスやガラス繊維等力もなり、入口側チェンバー 26に駆動液体 15 が供給された際に、該駆動液体 15を吸収して内部に浸透し、さらに、浸透した前記 駆動液体 15を出口側チ ンバー 28に排出可能な親水性を有する部材である。
[0033] 入口側電極 18は、入口側チ ンバー 26内において電気浸透材 16の表面と接触し て配置され、複数の孔 30が流路 14の軸線方向に沿って形成されている。一方、出 口側電極 20は、出口側チェンバー 28内において電気浸透材 16の表面と接触して 配置され、複数の孔 32が流路 14の軸線方向に沿って形成されている。そして、入口 側電極 18と出口側電極 20とは直流電源 34と電気的に接続されている。図 1では、 入口側電極 18を正極とし、一方で、出口側電極 20を負極としている力 これに代え て、該入口側電極 18を負極とし、一方で、出口側電極 20を正極としてもよいことは勿 論である。また、図 1では、電気浸透材 16の表面に電極 18、 20が配置されているが 、このような配置に限定されることはなぐ例えば、電極 18、 20は、電気浸透材 16近 傍にぉ 、て非接触の状態で配置されて!、ても構わな!/、。
[0034] ここで、小径部分 25の上流側は、駆動液体 15が予め充填された大径部分 (駆動液 体リザーバ) 27とされており、該大径部分 27より入口側チェンバー 26に供給された 駆動液体 15が孔 30を介して電気浸透材 16に浸透した状態で、直流電源 34より各 電極 18、 20に直流電圧を印加すると、電気浸透材 16内の駆動液体 15が入口側電 極 18より出口側電極 20の方向に移動し、孔 32を介して出口側チ ンバー 28に排出 される。
[0035] この場合、流路 14の下流側である小径部分 24は、その下流側において前記マイク 口流体チップ等の流体機器の流路と接続され、該小径部分 24の中央部は、輸送液 体 31が予め充填された大径部分 (輸送液体リザーバ) 29とされ、輸送液体 31と出口 側チェンバー 28に排出された駆動液体 15との間には液体隔離手段としてのバブル 33が介在している。
[0036] ここで、流路 14、 24、 29、 33の幅は、キヤビラリ一長(通常 2〜3mm)程度以下で あり、この結果、駆動液体 15や輸送液体 31に作用する力は、重力よりも表面張力が 支配的になる。そのため、駆動液体 15が出口側チェンバー 28に排出された際に、輸 送液体 31は、バブル 33を介して下流側に押圧され、前記流体機器の流路に移動可 能となる。
[0037] 輸送液体 31は、電気浸透現象に基づく駆動液体 15の移動によって間接的に電気 浸透流ポンプ 10Aより前記流体機器に輸送可能な液体であり、ポンプ容器 12の材 質に適合可能なものであれば、どのような種類の液体であっても構わな 、。
[0038] また、ポンプ容器 12の内壁は、疎水性を有することが好ましい。特に、流路 14の幅 が前記キヤビラリ一長と同程度以上になる場合や駆動液体 15の浸透性が強い場合 には、バブル 33によって駆動液体 15と輸送液体 31とを確実に隔離するために疎水 性の表面であることが必須である。
[0039] なお、図 1では、入口側チェンバー 26の一部である大径部分 27を駆動液体 15の 駆動液体リザーバとしている力 入口側チェンバー 26の全体を駆動液体リザーバと してもよいし、あるいは、入口側チェンバー 26に接続される駆動液体 15の図示しな V、供給用タンク等を前記駆動液体リザーバとしてもよ!/、。 [0040] また、出口側チェンバー 28の一部である大径部分 29を輸送液体 31の輸送液体リ ザーバとしている力 出口側チェンバー 28の全体を輸送液体リザーバとしてもよいし 、あるいは、出口側チェンバー 28をストレート形状とし、その下流側を前記輸送液体リ ザーバとしてもよい。
[0041] さらに、図 1では、輸送液体 31を下流側の前記流体機器に輸送する場合について 説明しているが、直流電源 34の極性を切り換えれば、駆動液体 15が上流側に移動 し、この結果、バブル 33を介して輸送液体 31が前記流体機器より大径部分 29に移 動可能であることは勿論であり、この電気浸透流ポンプ 10Aでは、輸送液体 31の供 給及び回収を行うことが可能である。
[0042] このように、第 1実施形態に係る電気浸透流ポンプ 10Aによれば、その内部には、 電気浸透現象を発揮する駆動液体 15と、駆動液体 15の移動に伴ってバブル 33を 介して非接触で移動可能な輸送液体 31とが充填されている。この場合、電気浸透材 16を通過可能な液体は駆動液体 15のみであるので、輸送液体 31が電気浸透現象 を発揮しな!、液体であっても、電気浸透流ポンプ 10Aを利用して該輸送液体 31を輸 送することが可能となる。従って、電気浸透流ポンプ 10Aでは、駆動液体 15が前記 電気浸透現象を発揮する液体であれば、輸送液体 31がどのような液体であっても安 定して輸送することが可能となる。また、駆動液体 15と輸送液体 31とがバブル 33に よって分離されているので、両者が接解、混合したりすることがなく輸送液体 31を確 実に輸送することができる。
[0043] 第 1実施形態に係る電気浸透流ポンプ 10Aでは、前記輸送液体リザーバに対する 輸送液体 31の充填方法として、下記の 5通りの方法がある。
[0044] (1)駆動液体 15を輸送液体リザーバの内部(小径部分 24の下流側にエアが残る 位置であり、例えば、大径部分 29の下流側の先端部分)にまで送り込み、且つ小径 部分 24の下流側を輸送液体 31中に浸漬した状態で、電極 18、 20に直流電圧を印 加することにより、輸送液体 31が前記輸送液体リザーバ内に吸引される。次いで、輸 送液体 31の吸引によって駆動液体 15の液面位置が大径部分 22と小径部分 24との 境界まで移動したときに、電極 18、 20に対する直流電圧の印加を停止する。これに より、バブル 33を介在させた状態で輸送液体 31を前記輸送液体リザーバに充填す ることができる。なお、(1)では、電極 18を負極とし、電極 20を正極として前記直流電 圧を印加する。
[0045] (2)エア抜き及び輸送液体 31の注入を兼ねる孔 23 (図 1参照)を予めポンプ容器 1 2の側部(小径部分 24の上流部分)に形成し、該孔 23より輸送液体 31を充填した後 に、この孔 23をシールする。この場合、孔 23の表面は、疎水性を有する表面とし、こ の孔 23に粘着性のシール部材を接着することにより該孔 23をシールする。
[0046] (3)電気浸透材 16が駆動液体 15によって濡れて 、な 、状態であれば、エアを電 気浸透材 16を介して上流側に逃がすことができるため、エア抜き用の孔が形成され ていない場合でも、流路 14内のエアを電気浸透材 16よりポンプ上流側に排出しなが ら、輸送液体 31を充填することが可能である。
[0047] (4)ポンプ容器 12の出口側チェンバー 28における側部にガス抜き部材 39を形成 し、出口側チェンバー 28内のエアをガス抜き部材 39を介して外部に排出することに より、以下のように、輸送液体 31を充填することが可能である。
[0048] 先ず、出口側チャンバ一 28における駆動液体 15を前記駆動液体リザーバ側に吸 引しておき、ガス抜き部材 39が駆動液体 15で濡れていない状態とする。但し、電気 浸透材 16が駆動液体 15で濡れていない状態であれば、この工程は不要である。次 V、で、前記輸送液体リザーバに輸送液体 31をシリンジ等によって充填する。
[0049] (5)図 2に示すように、小径部分 24と大径部分 22とを別体とする。この場合、小径 部分 24を大径部分 22から離間した状態で、輸送液体 31を輸送液体リザーバとして の大径部分 29に充填し、小径部分 24の上流側を該輸送液体 31で充填しな 、状態( エアが充填された状態)で該小径部分 24と大径部分 22とを嵌合する。これにより、前 記エアがバブル 33となり、駆動液体 15からバブル 33を介して輸送液体 31を駆動可 能な状態とすることができる。(5)の充填方法では、電気浸透流ポンプ 10Aを予め起 動させる必要はない。
[0050] また、上述した電気浸透流ポンプ 10Aでは、電極 18、 20の形状として孔 30、 32が 形成された電極としているが、ワイヤ形状の電極や多孔質体の表面に金属を蒸着し て構成された電極を用いてもよいことは勿論である。なお、上記した電極 18、 20は、 白金やカーボンや銀等の導電性材料から構成すると好適である。 [0051] さらに、電極 18、 20では、電極 18を正極とし、電極 20を負極としている力 前述し たように、電極 18を負極とし、電極 20を正極としても上述した作用効果が得られるこ とは勿論である。
[0052] さらにまた、電極 18、 20に対して直流電圧を印加している力 パルス電圧を印加し てちよいことは勿!^である。
[0053] さらにまた、電気浸透流ポンプ 10Aでは、ポンプ容器 12が上流側より大径部分 22 及び小径部分 24の順で形成されている力 前述したように、該ポンプ容器 12の形状 は、上述した形状に限定されるものではないことは勿論である。例えば、ポンプ容器 1 2を全体的にストレート形状としたり、あるいは、上流側より小径部分及び大径部分の 順で構成することも可能である。
[0054] 次に、第 2実施形態に係る電気浸透流ポンプ 10Bについて、図 3を参照しながら説 明する。なお、図 1及び図 2に示した第 1実施形態に係る電気浸透流ポンプ 10Aの 各構成要素と同じ構成要素については、同一の符号を付けて説明し、以下同様とす る。
[0055] 第 2実施形態に係る電気浸透流ポンプ 10Bは、図 3に示すように、出口側チェンバ 一 28において、疎水性のガス透過膜 35及びバブル 33を介して駆動液体 15と輸送 液体 31との分離を行っている点で、第 1実施形態に係る電気浸透流ポンプ 10A (図 1及び図 2参照)とは異なる。
[0056] この場合、駆動液体 15が電気浸透流ポンプ 10Bの駆動作用下に流路 14内の下 流側に移動すると、出口側チェンバー 28内部のバブル 33がガス透過膜 35を通過し て輸送液体 31を押圧し、輸送液体 31を下流側に押し出すので、バブル 33とガス透 過膜 35とで駆動液体 15と輸送液体 31とを確実に分離することができる。なお、電気 浸透流ポンプ 10Bの駆動圧力がガス透過膜 35の最低ウォーターブレークスルーポィ ント (駆動液体 15又は輸送液体 31がガス透過膜 35を通り抜けるために必要な最低 の圧力値)以下であれば、駆動液体 15と輸送液体 31との接触をより確実に防止する ことが可能である。また、図 3では、入口側チェンバー 26全体が駆動液体リザーバと なっている。
[0057] 第 2実施形態に係る電気浸透流ポンプ 10Bにおける輸送液体 31の充填方法として は、先ず、駆動液体 15を押し出して、出口側チェンバー 28におけるガス透過膜 35ま での部分を駆動液体 15で充填する。次いで、小径部分 24の下流側を輸送液体 31 に浸漬した状態で、電極 18を負極とし且つ電極 20を正極として直流電圧を印加する ことにより、駆動液体 15が上流側に移動して輸送液体 31を輸送液体リザーバに吸引 することができる。この場合、出口側チェンバー 28のガス透過膜 35より電気浸透材 1 6までの空間の容積に相当する輸送液体 31を吸引し、あるいは送液することが可能 である。
[0058] なお、電気浸透流ポンプ 10Bでは、上述した第 1実施形態に係る電気浸透流ボン プ 10Aの(2)〜(5)の充填方法を利用可能であることは勿論である。
[0059] 次に、第 3実施形態に係る電気浸透流ポンプ 10Cについて、図 4を参照しながら説 明する。
[0060] 第 3実施形態に係る電気浸透流ポンプ 10Cは、図 4に示すように、その下流側にお V、てマイクロ流体チップ 40に一体的に接続されて 、る点で、第 1及び第 2実施形態 に係る電気浸透流ポンプ 10A、 10B (図 1〜図 3参照)とは異なる。
[0061] この場合、電気浸透流ポンプ 10Cの流路 14の下流側に接続されたマイクロ流体チ ップ 40の流路 42が、輸送液体 31の輸送液体リザーバとされており、第 1実施形態に 係る電気浸透流ポンプ 10A (図 1及び図 2参照)と同様に、駆動液体 15が流路 14、 4 2内を移動すると、バブル 33を介して輸送液体 31が移動する。これにより、電気浸透 流ポンプ 10Cを用いてマイクロ流体チップ 40内の輸送液体 31を容易に駆動制御す ることが可能となる。
[0062] 次に、第 4実施形態に係る電気浸透流ポンプ 10Dについて、図 5を参照しながら説 明する。
[0063] 第 4実施形態に係る電気浸透流ポンプ 10Dは、図 5に示すように、輸送液体リザー バとなる大径部分 29を該大径部分 29よりも上流側の部分力も分離可能とされている 点で、第 1〜第 3実施形態に係る電気浸透流ポンプ 10A〜: LOC (図 1〜図 3参照)と は異なる。
[0064] この場合、大径部分 29に輸送液体 31を予め充填することにより、従来は、マイクロ 流体チップ 40に直接導入することのできな力つた液体を、電気浸透流ポンプ 10Dを 介して直接に送液することが可能となる。また、電気浸透流ポンプ 10Dは、輸送液体 31の総量が数 [ L]程度以下の場合に好適である。
[0065] 次に、第 5実施形態に係る電気浸透流ポンプ 10Eについて、図 6を参照しながら説 明する。
[0066] 第 5実施形態に係る電気浸透流ポンプ 10Eは、図 6に示すように、出口側チェンバ 一 28にガス透過膜 35が配置されている点で、第 4実施形態に係る電気浸透流ボン プ 1 OD (図 5参照)とは異なる。
[0067] この場合、第 2実施形態に係る電気浸透流ポンプ 10B (図 3参照)と同様に、バブル 33及びガス透過膜 35によって駆動液体 15と輸送液体 31とを確実に分離することが できると共に、電気浸透流ポンプ 10Fの駆動圧力がガス透過膜 35の最低ウォーター ブレークスルーポイント以下であれば、駆動液体 15と輸送液体 31との接触をより確 実に防止することが可能となる。
[0068] 次に、第 6実施形態に係る電気浸透流ポンプ 10Fについて、図 7及び図 8を参照し ながら説明する。
[0069] 第 6実施形態に係る電気浸透流ポンプ 10Fは、図 7及び図 8に示すように、電気浸 透流ポンプ 10Fより輸送液体リザーバ 50及び駆動液体リザーバ 52を着脱可能なュ ニットィ匕した構造となっている点で、第 1〜第 5実施形態に係る電気浸透流ポンプ 10 A〜10E (図 1〜図 6参照)とは異なる。
[0070] 上述した第 1〜第 5実施形態に係る電気浸透流ポンプ 10A〜: LOEでは、輸送液体 リザーバゃ駆動液体リザーバをポンプに内蔵して一体ィヒした構造であり、輸送液体 3 1及び駆動液体 15の総量が数十 L]程度までの場合に好適である。大容量 (例え ば、 100[ L]程度以上)の輸送液体 31及び駆動液体 15を取り扱う場合には、ボン プ自体の大きさと比較して輸送液体リザーバのサイズが大きくなるので、一体化する メリットが少なくなる。
[0071] また、電気浸透流ポンプ 10A〜: LOEでは、安価且つ小型である特徴を利用して携 帯用又は使い捨て用の液体供給装置として好適である力 場合によっては、ポンプ 自体を再利用する必要もある。
[0072] そこで、電気浸透流ポンプ 10Fでは、輸送液体リザーバ 50及び駆動液体リザーバ 52を着脱可能なユニットィ匕された構造とすることにより、電気浸透流ポンプ 10Gのポ ンプ本体 54は再利用し、それ以外の輸送液体リザーバ 50及び駆動液体リザーバ 52 は使い捨て可能とし、あるいは、輸送液体 31及び駆動液体 15を充填して輸送液体リ ザーバ 50及び駆動液体リザーバ 52を再利用する。この場合、輸送液体リザーバ 50 としては、例えば、一般的な液体容器、チューブ又はマイクロ流体チップが好適であ る。
[0073] 図 7は、基板 56上に、輸送液体リザーバ 50、駆動液体リザーバ 52、ポンプ本体 54 及び該ポンプ本体 54を駆動するバッテリ 58を固定したものであり、比較的大容量の リザーバユニットに適している。なお、輸送液体リザーバ 50には、送液口 60が設けら れている。
[0074] また、図 8は、図 7よりも小容量のリザーバユニットの場合に好適な構成であり、円筒 状の輸送液体リザーバ 50、ポンプ本体 54及び駆動液体リザーバ 52が順番に接続さ れている。なお、これらは、各々直径 5 [mm]〜 10 [mm]程度、長さ 10〜20[mm] 程度のユニットである。
[0075] 次に、第 7実施形態に係る電気浸透流ポンプ 10Gについて、図 9及び図 10を参照 しながら説明する。
[0076] 第 7実施形態に係る電気浸透流ポンプ 10Gは、図 9及び図 10に示すように、輸送 液体リザーバ 50をマイクロ流体チップの積層構造によって実現した点で、第 6実施形 態に係る電気浸透流ポンプ 10F (図 7及び図 8参照)とは異なる。
[0077] この場合、輸送液体リザーバ 50は、図 10に示すように、基板 62 (i= l〜6)が上下 方向に積層され、上方より 5枚の基板 62〜62には、その底部に蛇行形状の溝 (以
1 5
下、流路ともいう。)64が形成され、各溝 64の両端部及び基板 62には、接続孔 66が
6
形成されている。そのため、これらの基板 62を積層した際に、各溝 64が連結されて 輸送液体 31が流通可能となると共に、液体充填率を向上することができる。
[0078] ここで、厚さ 0. 5 [mm]の基板 62に対して深さ 200 [ m]、幅 500 [ μ m]の流路 6
4を 500[ m]間隔で形成すれば、マイクロ流体チップの容積に対する輸送液体 31 の充填率は、略 20[%]になる。
[0079] 輸送液体 31の必要なインベントリを 5 [mL]とすると、輸送液体リザーバ 50の容積 は、 33 [mL]程度となる。これは、 3 [cm] X 4[cm] X 0. 5 [mm]のサイズの基板 62 を 6〜7枚積層することにより実現可能である。
[0080] 一方、駆動液体リザーバ 52は、一般的なカートリッジ構造により対応可能である。
[0081] 上記した電気浸透流ポンプ 10Gの仕様の一例について以下に示す。輸送液体リ ザーバ 50の容量は 5 [mL]であり、駆動液体リザーバ 52の容量は 5 [mL]であり、ポ ンプ本体の駆動電圧は 12 [V]であり、その供給速度は l /z LZmin]であり、連続運 転時間は 80時間であり、装置全体の容積は、約 60 [mL]であり、装置重量は約 100 [g]である。
[0082] なお、上述した第 7実施形態に係る電気浸透流ポンプ 10Gでは、第 1〜第 6実施形 態に係る電気浸透流ポンプ 10A〜: L0F (図 1〜図 8参照)と同様に、駆動液体 15から バブル 33を介して輸送液体 31を供給又は吸引する方式が望ましい。
[0083] 次に、上記した第 1〜第 7実施形態に係る電気浸透流ポンプ 10A〜10G (図 1〜図 10参照)を利用した液体輸送システム 70について、図 11〜図 13を参照しながら説 明する。
[0084] これは、複数の電気浸透流ポンプ 10 (1= l〜n)を並列接続して大容量の輸送液 体 31を連続して駆動するためのシステムであり、図 11では、 2つの電気浸透流ボン プ 10、 10を並列接続して構成される連続運転可能な液体輸送システム 70を示して
1 2
いる。
[0085] この場合、電気浸透流ポンプ 10は、バルブ 72を介して輸送液体充填ライン (ある
1
いは輸送液体回収ライン) 74に接続され、一方で、バルブ 76を介して輸送液体供給 ライン (あるいは輸送液体吸入ライン) 78に接続される。また、電気浸透流ポンプ 10
2 は、バルブ 80を介して輸送液体充填ライン (あるいは輸送液体回収ライン) 82に接続 され、一方で、バルブ 84を介して輸送液体供給ライン 78に接続される。さらに、各電 気浸透流ポンプ 10には、その上流側及び下流側に駆動液体リザーバ 52及び輸送 液体リザーバ 50が各々接続されて!、る。
[0086] この液体輸送システム 70では、電気浸透流ポンプ 10の駆動方向を交互に切換え 、且つ電気浸透流ポンプ 10の切換えに同期してバルブ 72、 76、 80、 84を操作する ことにより、駆動液体 15と輸送液体 31を非接触状態で且つ該輸送液体 31を連続的 に輸送液体供給ライン 78に送り出すことが可能である。
[0087] すなわち、図 11及び図 12に示すように、時刻 tOにおいて、バルブ 72を閉じ且つバ ルブ 76を開放した状態で、電気浸透流ポンプ 10を駆動して駆動液体リザーバ 52
1 1 に充填された駆動液体 15を輸送液体リザーバ 50側に移動させれば、該輸送液体リ
1
ザーバ 50に充填された輸送液体 31を輸送液体供給ライン 78に送液することができ
1
る。
[0088] 一方、時刻 tOにお 、て、バルブ 84を閉じ且つバルブ 80を開放した状態で、電気浸 透流ポンプ 10を駆動して駆動液体 15を駆動液体リザーバ 52側に移動させれば、
2 2 輸送液体充填ライン 82より輸送液体 31を輸送液体リザーバ 50に充填することが可
2
能となる。
[0089] 次!、で、時刻 tlにお!/、て、バルブ 72を開放し且つバルブ 76を閉じた状態で、電気 浸透流ポンプ 10を駆動して駆動液体 15を駆動液体リザーバ 52側に移動させれば
1 1
、輸送液体充填ライン 74より輸送液体 31を輸送液体リザーバ 50に充填することが
1
可能となる。
[0090] 一方、時刻 tlにお 、て、バルブ 84を開放し且つバルブ 80を閉じた状態で、電気浸 透流ポンプ 10を駆動して駆動液体リザーバ 52に充填された駆動液体 15を輸送液
2 2
体リザーバ 50側に移動させれば、該輸送液体リザーバ 50に充填された輸送液体 3
2 2
1を輸送液体供給ライン 78に送液することができる。
[0091] さらに、時刻 t2において、液体輸送システム 70は、時刻 tOと同様の動作を繰り返し 行う。
[0092] また、液体輸送システム 70では、電気浸透流ポンプ 10の駆動方向を交互に切換 え、且つ電気浸透流ポンプ 10の切換えに同期してバルブ 72、 76、 80、 84を操作す ることにより、駆動液体 15と輸送液体 31を非接触状態で且つ該輸送液体 31を連続 的に外部力も輸送液体吸入ライン 78を介して吸入し、輸送液体回収ライン 74、 82で 回収することが可能である。
[0093] すなわち、図 11及び図 13に示すように、時刻 tOにおいて、バルブ 72を開き且つバ ルブ 76を閉じた状態で、電気浸透流ポンプ 10を駆動して駆動液体リザーバ 52に
1 1 充填された駆動液体 15を輸送液体リザーバ 50側に移動させれば、該輸送液体リザ ーバ 50に吸入された輸送液体 31を輸送液体回収ライン 74で回収することができる
1
[0094] 一方、時刻 tOにお 、て、バルブ 84を開き且つバルブ 80を閉じた状態で、電気浸透 流ポンプ 10を駆動して駆動液体 15を駆動液体リザーバ 52側に移動させれば、輸
2 2 送液体吸入ライン 78より輸送液体 31を輸送液体リザーバ 50に吸入することが可能
2
となる。
[0095] 次!、で、時刻 tlにお!/、て、バルブ 72を閉じ且つバルブ 76を開放した状態で、電気 浸透流ポンプ 10を駆動して駆動液体 15を駆動液体リザーバ 52側に移動させれば
1 1
、輸送液体吸入ライン 78より輸送液体 31を輸送液体リザーバ 50に吸入することが
1
可能となる。
[0096] 一方、時刻 tlにお 、て、バルブ 84を閉じ且つバルブ 80を開放した状態で、電気浸 透流ポンプ 10を駆動して駆動液体リザーバ 52に充填された駆動液体 15を輸送液
2 2
体リザーバ 50側に移動させれば、該輸送液体リザーバ 50に吸入された輸送液体 3
2 2
1を輸送液体回収ライン 82で回収することができる。
[0097] さらに、時刻 t2において、液体輸送システム 70は、時刻 tOと同様の動作を繰り返し 行う。
[0098] このように、液体輸送システム 70では、所定時間毎にバルブ 72、 76、 80、 84の開 閉切換を行い、さらに、電気浸透流ポンプ 10と電気浸透流ポンプ 10とは、輸送液
1 2
体供給ライン 78に対する輸送液体 31の供給動作又は吸入動作と、輸送液体充填ラ イン 74、 82より輸送液体リザーバ 50、 50に対する輸送液体 31の充填動作又は回
1 2
収動作とを該バルブ 72、 76、 80、 84の開閉切換に同期して交互に行うようにしてい る。この結果、輸送液体供給ライン 78に対して連続的に輸送液体 31を輸送液体供 給ライン 78に供給又は吸入することが可能となる。
[0099] なお、上述した各実施形態では、主として、電気浸透流ポンプ 1 OA〜: LOG及び液 体輸送システム 70より外部に対して輸送液体 31を供給する場合について説明した 力 前述したように、直流電源 34の極性を切り換えて駆動液体 15を駆動液体リザー ノ 52あるいは流路 14の上流側に引き込むことにより、外部力も輸送液体 31を回収 あるいは充填することも可能である。このような機能は、例えば、小動物から血液を採 取するための自動血液採取装置に適用可能である。
[0100] なお、本発明に係る液体輸送装置及び液体輸送システムは、上述の実施の形態に 限らず、本発明の要旨を逸脱することなぐ種々の構成を採り得ることは勿論である。 産業上の利用可能性
[0101] 本発明に係る液体輸送装置によれば、液体輸送装置の内部には、電気浸透現象 を発揮する駆動液体と、前記駆動液体の移動に伴って液体隔離手段を介して非接 触で移動可能な輸送液体とが充填されている。この場合、前記輸送液体が電気浸透 現象を発揮しな!、液体であっても、前記液体輸送装置を利用して該輸送液体を輸送 することが可能となる。従って、前記液体輸送装置では、前記駆動液体が前記電気 浸透現象を発揮する液体であれば、前記輸送液体がどのような液体であっても安定 して輸送することが可能となる。また、前記駆動液体と前記輸送液体とが前記液体隔 離手段によって分離されているので、両者が接解、混合したりすることがなく前記輸 送液体を確実に輸送することができる。
[0102] また、本発明に係る液体輸送システムによれば、上記した液体輸送装置を複数個 並列接続して輸送液体の供給又は吸引を行っているので、大量の輸送液体を連続 供給又は連続吸引することが可能となる。

Claims

請求の範囲
[1] 流路(14)内に設けられた電気浸透材(16)の上流側に第 1電極(18)を配置し且 つ下流側に第 2電極(20)を配置し、前記第 1電極(18)及び前記第 2電極(20)に電 圧を印力!]した際に、前記電気浸透材(16)を介して前記流路(14)内に駆動液体(15 )を流通させる液体輸送装置(10A〜10G、 10、 10 )において、
1 2
前記電気浸透材(16)の上流側の少なくとも一部が前記駆動液体(15)が充填され る,駆動液体リザーノ (26、 27、 52、 52、 52 )とされ、
1 2
前記電気浸透材(16)の下流側の少なくとも一部が前記駆動液体(15)の移動によ つて外部に供給可能な輸送液体(31)が充填される輸送液体リザーバ(24、 28、 29 、 50、 50、 50 )とされ、
1 2
前記駆動液体(15)と前記輸送液体 (31)との間には、前記駆動液体(15)と前記 輸送液体 (31)とを隔離する液体隔離手段 (33、 35)が介挿され、
前記電圧を印加した際に、前記駆動液体(15)が前記液体隔離手段 (33、 35)を 介して前記輸送液体 (31)を供給又は吸引する
ことを特徴とする液体輸送装置。
[2] 請求項 1記載の液体輸送装置(10A〜10E)において、
前記流路(14)内における前記駆動液体(15)及び前記輸送液体 (31)に作用する 力が重力よりも表面張力が支配的となる流路径が 2〜3mm以下の場合には、前記液 体隔離手段 (33)は、前記電気浸透材(16)の下流側に滞留するガスとする
ことを特徴とする液体輸送装置。
[3] 請求項 2記載の液体輸送装置(10B、 10E)にお 、て、
前記液体隔離手段(35)は、前記ガス(33)を通過させることが可能であり、一方で 、前記駆動液体(15)及び前記輸送液体 (31)の通過を阻止する疎水性材料からな る
ことを特徴とする液体輸送装置。
[4] 請求項 1〜3のいずれ力 1項に記載の液体輸送装置(10A、 10C、 10D、 10E、 10
F、 10G、 10、 10 )【こお!/ヽて、
1 2
前記駆動液体リザーバ(26、 27、 52、 52、 52 )及び前記輸送液体リザーバ(24、 28、 29、 50、 50、 50 )のうち少なくとも 1つは、前記液体輸送装置(10A、 10C、 10
1 2
D、 10E、 10F、 10G、 10、 10 )より着脱可能な構造とされている
1 2
ことを特徴とする液体輸送装置。
[5] 請求項 1〜4のいずれか 1項に記載の液体輸送装置(10G)において、
前記輸送液体リザーバ(50)は、マイクロ流体チップである
ことを特徴とする液体輸送装置。
[6] 請求項 1〜5のいずれか 1項に記載の液体輸送装置(10、 10 )を複数有し、
1 2
前記各液体輸送装置(10、 10 )の前記輸送液体リザーバ(50、 50 )に対して前
1 2 1 2
記輸送液体(31)を充填する複数の液体充填ライン(74、 82)と、
前記各輸送液体リザーバ(50、 50 )より前記輸送液体 (31)を外部に供給する複
1 2
数の液体供給ライン (78)と、
前記各液体充填ライン (74、 82)及び前記各液体供給ライン (78)に配設された複 数のノ ノレブ(72、 76、 80、 84)と、
を備え、
前記各バルブ(72、 76、 80、 84)の開閉状態を順次切り換えることにより、前記各 液体充填ライン(74、 82)より前記各輸送液体リザーバ(50、 50 )に対する前記輸
1 2
送液体(31)の充填と、前記各輸送液体リザーバ(50、 50 )から前記液体供給ライン
1 2
(78)に対する前記輸送液体(31)の供給とを交互に行って、前記輸送液体(31)を 外部に常時供給又は常時吸引する
ことを特徴とする液体輸送システム。
PCT/JP2006/306758 2005-03-30 2006-03-30 液体輸送装置及び液体輸送システム WO2006106885A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20060730706 EP1865199A1 (en) 2005-03-30 2006-03-30 Liquid-transport device and system
US11/887,446 US20090126813A1 (en) 2005-03-30 2006-03-30 Liquid-Transport Device and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-099234 2005-03-30
JP2005099234A JP2006275016A (ja) 2005-03-30 2005-03-30 液体輸送装置及び液体輸送システム

Publications (1)

Publication Number Publication Date
WO2006106885A1 true WO2006106885A1 (ja) 2006-10-12

Family

ID=37073440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306758 WO2006106885A1 (ja) 2005-03-30 2006-03-30 液体輸送装置及び液体輸送システム

Country Status (4)

Country Link
US (1) US20090126813A1 (ja)
EP (1) EP1865199A1 (ja)
JP (1) JP2006275016A (ja)
WO (1) WO2006106885A1 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8577469B2 (en) * 2006-07-12 2013-11-05 Rainbow Medical Ltd. Iontophoretic and electroosmotic disc treatment
JP5360519B2 (ja) * 2006-09-22 2013-12-04 西川 正名 電気浸透材及びその製造方法と電気浸透流ポンプ
JP5103614B2 (ja) * 2006-11-27 2012-12-19 国立大学法人九州工業大学 微量液体分取デバイス
US20100024908A1 (en) * 2006-11-27 2010-02-04 Takashi Yasuda Microvolume liquid dispensing device
JP5150328B2 (ja) * 2008-03-26 2013-02-20 積水化学工業株式会社 マイクロ流体デバイス用液体供給カートリッジ
JP5082979B2 (ja) * 2008-03-27 2012-11-28 カシオ計算機株式会社 電気浸透流ポンプの制御方法及び制御装置並びに燃料電池システム
WO2011057654A1 (en) * 2009-11-13 2011-05-19 Ab Skf Bearing assembly with active oil lubrication
EP2848271B1 (en) * 2010-03-09 2016-04-27 Board of Regents of the University of Texas System Electro-osmotic pumps
GB2494586A (en) * 2010-06-18 2013-03-13 Gbc Scient Equip Pty Ltd Nanoporous vacuum pump
WO2014112726A1 (ko) * 2013-01-15 2014-07-24 서강대학교산학협력단 가역적 전극반응을 이용한 전기삼투펌프 및 이를 이용한 유체 펌핑 시스템
US9731122B2 (en) 2013-04-29 2017-08-15 Rainbow Medical Ltd. Electroosmotic tissue treatment
US10376841B2 (en) * 2013-08-26 2019-08-13 Sogang University Research & Business Development Foundation Electroosmotic pump and fluid pumping system including the same
CN105612350B (zh) * 2013-08-26 2017-10-17 西江大学校产学协力团 电渗泵和具有该电渗泵的流体泵送系统
US9616221B2 (en) 2015-07-08 2017-04-11 Rainbow Medical Ltd. Electrical treatment of Alzheimer's disease
US10898716B2 (en) 2015-10-29 2021-01-26 Rainbow Medical Ltd. Electrical substance clearance from the brain
US9724515B2 (en) 2015-10-29 2017-08-08 Rainbow Medical Ltd. Electrical substance clearance from the brain for treatment of Alzheimer's disease
US10518085B2 (en) 2015-12-29 2019-12-31 Rainbow Medical Ltd. Disc therapy
US11484706B2 (en) 2015-12-29 2022-11-01 Discure Technologies Ltd Disc therapy
US9950156B2 (en) 2016-09-13 2018-04-24 Rainbow Medical Ltd. Disc therapy
US9770591B2 (en) 2015-12-29 2017-09-26 Rainbow Medical Ltd. Disc therapy
KR102006908B1 (ko) * 2016-06-28 2019-08-02 이오플로우(주) 전기 삼투 펌프 및 이를 포함하는 유체 펌핑 시스템
US10569086B2 (en) 2017-01-11 2020-02-25 Rainbow Medical Ltd. Electrical microglial cell activation
US10758722B2 (en) 2017-05-03 2020-09-01 Rainbow Medical Ltd. Electrical treatment of Parkinson's disease
CN107834979A (zh) * 2017-11-23 2018-03-23 苏州艺力鼎丰智能技术有限公司 一种精准出液的注液器
US11202905B2 (en) 2018-03-14 2021-12-21 Rainbow Medical Ltd. Electrical substance clearance from the brain
WO2019183391A1 (en) * 2018-03-21 2019-09-26 Lintec Of America, Inc. Carbon nanotube yarn electroosmotic pump
US11123197B2 (en) 2019-09-03 2021-09-21 Rainbow Medical Ltd. Hydropneumatic artificial intervertebral disc
US10881858B1 (en) 2019-09-18 2021-01-05 Rainbow Medical Ltd. Electrical substance clearance from the brain
WO2021242061A1 (ko) * 2020-05-29 2021-12-02 주식회사 케어메디 전기삼투펌프, 전극의 제조방법, 이를 이용한 유체 펌핑 시스템 및 그 시스템의 동작 방법
SE2030191A1 (en) * 2020-06-09 2021-09-14 Svein Kleiven A medical device for treatment of the central nervous system by electro-osmosis
US11298530B1 (en) 2021-05-03 2022-04-12 Discure Technologies Ltd. Synergistic therapies for intervertebral disc degeneration
US11344721B1 (en) 2021-08-16 2022-05-31 Rainbow Medical Ltd. Cartilage treatment
KR102688925B1 (ko) * 2021-11-26 2024-07-29 주식회사 케어메디 전기삼투펌프, 전극의 제조방법, 이를 이용한 유체 펌핑 시스템 및 그 시스템의 동작 방법
US11413455B1 (en) 2022-02-08 2022-08-16 Rainbow Medical Ltd. Electrical treatment of Alzheimer's disease

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147104A (ja) * 1992-10-30 1994-05-27 Hitachi Ltd 圧電多チャンネルポンプ及び駆動制御方法
JP2002371967A (ja) * 2001-06-15 2002-12-26 Hitachi Ltd 低振動ピエゾポンプ
JP2002371954A (ja) * 2001-06-12 2002-12-26 Kawamura Inst Of Chem Res 流体移送方法、及びマイクロ流体素子の流体移送装置
JP2004276224A (ja) * 2003-03-17 2004-10-07 Toyo Technol Inc 繊維を充填した電気浸透ポンプ
JP2006022807A (ja) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc 電気浸透流ポンプシステム及び電気浸透流ポンプ

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893904A (en) * 1973-07-02 1975-07-08 Albert F Hadermann Electroosmotic pressure cell
US3923426A (en) * 1974-08-15 1975-12-02 Alza Corp Electroosmotic pump and fluid dispenser including same
JP3161635B2 (ja) * 1991-10-17 2001-04-25 ソニー株式会社 インクジェットプリントヘッド及びインクジェットプリンタ
US5560811A (en) * 1995-03-21 1996-10-01 Seurat Analytical Systems Incorporated Capillary electrophoresis apparatus and method
US5872010A (en) * 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US6090251A (en) * 1997-06-06 2000-07-18 Caliper Technologies, Inc. Microfabricated structures for facilitating fluid introduction into microfluidic devices
US6013164A (en) * 1997-06-25 2000-01-11 Sandia Corporation Electokinetic high pressure hydraulic system
US5989402A (en) * 1997-08-29 1999-11-23 Caliper Technologies Corp. Controller/detector interfaces for microfluidic systems
US6167910B1 (en) * 1998-01-20 2001-01-02 Caliper Technologies Corp. Multi-layer microfluidic devices
US6103199A (en) * 1998-09-15 2000-08-15 Aclara Biosciences, Inc. Capillary electroflow apparatus and method
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
US6406605B1 (en) * 1999-06-01 2002-06-18 Ysi Incorporated Electroosmotic flow controlled microfluidic devices
US6729383B1 (en) * 1999-12-16 2004-05-04 The United States Of America As Represented By The Secretary Of The Navy Fluid-cooled heat sink with turbulence-enhancing support pins
US6698798B2 (en) * 2000-04-13 2004-03-02 California Institute Of Technology Micromachined rubber O-ring microfluidic couplers
US6537437B1 (en) * 2000-11-13 2003-03-25 Sandia Corporation Surface-micromachined microfluidic devices
US7147441B2 (en) * 2000-12-20 2006-12-12 Board Of Trustees Of The University Of Arkansas, N.A. Microfluidics and small volume mixing based on redox magnetohydrodynamics methods
JP2002191905A (ja) * 2000-12-28 2002-07-10 Nipro Corp 液循環回路用エアートラップ
DE10106996C2 (de) * 2001-02-15 2003-04-24 Merck Patent Gmbh Einrichtung zur Verbindung von Mikrokomponenten
JP2002300877A (ja) * 2001-04-04 2002-10-15 Shimadzu Corp Dnaマイクロアレイ
US6491684B1 (en) * 2001-05-22 2002-12-10 Durect Corporation Fluid delivery device having a water generating electrochemical/chemical pump and associated method
US6770183B1 (en) * 2001-07-26 2004-08-03 Sandia National Laboratories Electrokinetic pump
WO2003028861A1 (en) * 2001-10-02 2003-04-10 Sophion Bioscience A/S Corbino disc electroosmotic flow pump
US20040247450A1 (en) * 2001-10-02 2004-12-09 Jonatan Kutchinsky Sieve electrooosmotic flow pump
US6619925B2 (en) * 2001-10-05 2003-09-16 Toyo Technologies, Inc. Fiber filled electro-osmotic pump
US7470267B2 (en) * 2002-05-01 2008-12-30 Microlin, Llc Fluid delivery device having an electrochemical pump with an anionic exchange membrane and associated method
US7235164B2 (en) * 2002-10-18 2007-06-26 Eksigent Technologies, Llc Electrokinetic pump having capacitive electrodes
US7086839B2 (en) * 2002-09-23 2006-08-08 Cooligy, Inc. Micro-fabricated electrokinetic pump with on-frit electrode
US7044196B2 (en) * 2003-01-31 2006-05-16 Cooligy,Inc Decoupled spring-loaded mounting apparatus and method of manufacturing thereof
US7231839B2 (en) * 2003-08-11 2007-06-19 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic micropumps with applications to fluid dispensing and field sampling
US7204914B2 (en) * 2003-08-13 2007-04-17 Metso Automation Usa Inc. System and method for controlling a processor including a digester utilizing time-based assessments
KR100777172B1 (ko) * 2004-06-07 2007-11-28 나노 퓨전 가부시키가이샤 전기 침투류 펌프 시스템 및 전기 침투류 펌프

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147104A (ja) * 1992-10-30 1994-05-27 Hitachi Ltd 圧電多チャンネルポンプ及び駆動制御方法
JP2002371954A (ja) * 2001-06-12 2002-12-26 Kawamura Inst Of Chem Res 流体移送方法、及びマイクロ流体素子の流体移送装置
JP2002371967A (ja) * 2001-06-15 2002-12-26 Hitachi Ltd 低振動ピエゾポンプ
JP2004276224A (ja) * 2003-03-17 2004-10-07 Toyo Technol Inc 繊維を充填した電気浸透ポンプ
JP2006022807A (ja) * 2004-06-07 2006-01-26 Science Solutions International Laboratory Inc 電気浸透流ポンプシステム及び電気浸透流ポンプ

Also Published As

Publication number Publication date
JP2006275016A (ja) 2006-10-12
US20090126813A1 (en) 2009-05-21
EP1865199A1 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006106885A1 (ja) 液体輸送装置及び液体輸送システム
JP4593507B2 (ja) 電気浸透流ポンプ及び液体供給装置
US8524174B2 (en) Fluid cartridge, pump and fluid valve arrangement
US8187441B2 (en) Electrochemical pump
US7870964B2 (en) Implementation of microfluidic components in a microfluidic system
JP4593373B2 (ja) 電気浸透流ポンプシステム及び電気浸透流ポンプ
JP2005501234A (ja) 電気泳動デバイスおよび電気浸透デバイスのためのバブルフリー電極および圧力発生電極
WO2005120696A1 (ja) 電気浸透流ポンプシステム及び電気浸透流ポンプ
WO2002070118A2 (en) Apparatus and method for small-volume fluid manipulation and transportation
CN100592084C (zh) 微型化学芯片
EP1432500B1 (en) Sieve electroosmotic flow pump
CN111043005B (zh) 一种基于毛细现象以及电浸润现象的微泵
KR102129681B1 (ko) 연속공정식 액적 전기천공 장치 및 이를 이용한 연속공정식 액적 전기천공 방법
US7037082B2 (en) Corbino disc electroosmotic flow pump
CN1249899C (zh) 微型电渗泵
US6474180B2 (en) Pipette device
JP4564481B2 (ja) バルブ及びそのバルブの具備された微細流体ポンプ(valveandmicrofluidpumphavingthesame)
WO2014108218A1 (en) Microfluidics systems with waste hollow
JP4065916B2 (ja) 微少流量発生装置及びポンプ及びポンプシステム
KR20060103390A (ko) 전기전도성 관을 이용한 전기삼투압류 구동 극미세 피펫장치
JP4910436B2 (ja) 電気浸透流ポンプシステム
WO2005031163A1 (en) Implementation of microfluidic components in a microfluidic system
EP2768613A1 (en) Microfluidics systems with waste hollow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006730706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006730706

Country of ref document: EP