WO2006106608A1 - 液体均一化装置およびそれを用いた分析装置 - Google Patents

液体均一化装置およびそれを用いた分析装置 Download PDF

Info

Publication number
WO2006106608A1
WO2006106608A1 PCT/JP2006/305956 JP2006305956W WO2006106608A1 WO 2006106608 A1 WO2006106608 A1 WO 2006106608A1 JP 2006305956 W JP2006305956 W JP 2006305956W WO 2006106608 A1 WO2006106608 A1 WO 2006106608A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid mixing
mixing chamber
chamber
rotation axis
Prior art date
Application number
PCT/JP2006/305956
Other languages
English (en)
French (fr)
Inventor
Fumihisa Kitawaki
Hirotaka Tanaka
Kenji Watanabe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US11/910,513 priority Critical patent/US7754151B2/en
Priority to JP2007512490A priority patent/JP4689665B2/ja
Publication of WO2006106608A1 publication Critical patent/WO2006106608A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71725Feed mechanisms characterised by the means for feeding the components to the mixer using centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/23Mixing of laboratory samples e.g. in preparation of analysing or testing properties of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00524Mixing by agitating sample carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/111666Utilizing a centrifuge or compartmented rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the present invention relates to a liquid homogenizing device that mixes liquids using centrifugal force by rotation, and an analyzer using the same.
  • FIG. 1 An example of such an analyzer is shown in FIG.
  • this apparatus 200 has a disk shape substantially similar in appearance to a conventional optical disk and having a hole 203 at the center, and four sample injection holes 201 are provided around the center hole 203. They are arranged circumferentially and are in communication with the four channels 202 provided in the disc. These four flow paths 202 extend radially with the central force of the disc also directed outward, and the tip is closed. In the middle of the flow channels 202, reagents for analysis are arranged.
  • the upper portion of the flow path 202 is light transmissive so that the reaction between the liquid sample and the reagent in the flow path can be measured by external force light.
  • Analysis using this analyzer is performed, for example, as follows. That is, first, a liquid sample such as blood and urine is introduced into the apparatus 200 from the sample injection hole 201. And this device 200 is rotated by a rotating device. When it is turned, the introduced centrifugal force causes the introduced liquid sample to move from the center of the channel 202 toward the outer periphery of the channel 202, thereby reacting with the liquid reagent. Then, detection of the liquid sample and the reaction are measured using the force and tracking techniques described above, and component analysis in the sample is performed. Although the sample is moved by the centrifugal force in the above example, there are also cases in which the sample is moved using capillary action, siphon effect or the like.
  • a step of diluting the liquid sample for example, a step of diluting the liquid sample, a step of introducing a reagent into the liquid sample, a step of reacting the liquid sample and the reagent, and a step of removing the liquid sample and unreacted reagent A process is required.
  • a method of generating this turbulent flow for example, a method using an apparatus such as a stirrer or Vortex (registered trademark) is known.
  • a rod-like magnetic bar is inserted into a container into which the liquid to be mixed is contained, and the external force magnet of the container is used to rotate the stirrer bar.
  • Vortex registered trademark
  • substances to be mixed are placed in a container such as a test tube, and the bottom is pressed against Vortex (registered trademark) to cause turbulence in the liquid by vibrating.
  • Patent Document 1 International Publication No. 00Z02667 pamphlet
  • Patent Document 2 US Patent No. 6, 582, 662
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a liquid homogenizing device capable of uniformly mixing liquids in a space-saving manner.
  • the liquid homogenizing device of the present invention has a rotating body that rotates around a predetermined rotation axis, and a distance between the rotating body and the rotating body that is different from the rotation axis.
  • the introduced liquids collide with each other by introducing the liquid into the liquid mixing chamber via two or more flow paths. Turbulence occurs, resulting in uniform mixing of the liquid.
  • This step into a liquid mixing chamber In order to repeat only one number, the liquid homogenization device of the present invention does not have to meander the flow path in order to mix the liquid uniformly in the flow path. For this reason, the liquid equalizing device of the present invention does not have to take a large space for meandering the flow path, so it is possible to efficiently mix the liquid uniformly while saving space.
  • a flow path communicating the liquid mixing chambers with each other is close to the rotation axis!
  • the liquid formed in the liquid mixing chamber on the weir side is drawn out from the outlet port to the inlet where the liquid formed in the liquid mixing chamber on the far side is introduced to the rotary shaft, and it communicates with itself.
  • a bent portion may be formed on the side closer to the rotating shaft than the outlet of the liquid mixing chamber on the side near the rotating shaft.
  • the liquid equalizing device can temporarily hold the liquid near the liquid mixing chamber and the bending portion, so that the liquid can flow around the liquid on the outer peripheral side through the flow path.
  • turbulent flow can be reliably generated.
  • the bent portion is farther from the rotation axis than the surface closest to the rotation axis of the liquid mixing chamber on the side closer to the rotation axis with which it communicates. May be formed and have a configuration.
  • the liquid homogenizing device of the present invention can enable continuous liquid transfer between a plurality of liquid mixing chambers in one rotation operation.
  • the liquid mixing chambers are in communication with the air holes, and the bent portions are formed apart by a predetermined distance of the rotational axial force.
  • the predetermined distance is equal to the surface closest to the rotation axis in the liquid mixing chamber near the rotation axis with which the bending portion is in communication, and the same distance as the bending portion with respect to the rotation axis
  • the volume of the space defined by the face may be calculated so as to substantially exceed the volume of air that can be mixed in via the air hole when the rotating body rotates.
  • the liquid homogenizing device of the present invention can prevent the liquid flow from being interrupted by a part of air remaining in the liquid mixing chamber when the liquid moves. As a result, the liquid can be transferred continuously.
  • the configuration of the present embodiment is combined with the other embodiments described above, and the liquid equalizing device of the present invention is obtained. Can be realized.
  • the bent portions respectively formed in two or more flow paths which are drawn by the same liquid mixing chamber under one force have the same configuration of the same rotational axial force distance. You may.
  • the liquid distributed by the two or more flow channels passes through the bends of the flow channels at the same timing and to the liquid mixing chamber at the same timing. Can be sent.
  • the inlets of two or more flow paths formed in the liquid mixing chamber far from the rotation axis respectively have different distances from the rotation axis. It may have the following configuration.
  • the liquid homogenizing device of the present invention can be used to, for example, move the flow of two or more flow paths through the fluid from the outer peripheral side of the liquid mixing chamber on the one hand and inside the liquid mixing chamber on the other hand.
  • circumferential force it is possible to make the collision of the liquid more effective and to create turbulence easily.
  • it is effective when it is difficult to mix, and it targets liquids with low solubility, low reactivity, and high viscosity.
  • the liquid mixing chamber on the side near the rotation axis is larger in volume than the liquid mixing chamber on the side near the rotation shaft, and has a configuration. It is good.
  • the bending portion is closer to the rotation shaft than the surface closest to the rotation shaft of the liquid mixing chamber on the side close to the rotation shaft with which the bending portion communicates. May be formed and have a configuration.
  • the liquid in the flow path can be transported not only by centrifugal force but also by capillary phenomenon. Is transferred to one side of the liquid mixing chamber and the other side of the communication channel in communication with the other.
  • the rotation is stopped, the liquid further flows in the channel due to capillary action, and stops in front of the next liquid mixing chamber, and then it is rotated again by centrifugal force.
  • the design freedom of the liquid homogenization device of the present invention can be expanded.
  • the bent portions respectively formed in two or more flow paths extending in one and the same liquid mixing chamber have different configurations in the distance of the rotational axial force. You may.
  • the liquid homogenizing device of the present invention can create a time lag in the flow of liquid introduced into the liquid mixing chamber, effectively causing the fluid to collide and causing turbulent flow. This makes it easier to make the liquid uniform.
  • the rotating body may have a configuration in which a rotation operation and a rotation stop operation are repeated.
  • the liquid homogenization device of the present invention can extend the degree of freedom in design.
  • the inlet may be formed above the outlet in the thickness direction in the liquid mixing chamber.
  • the liquid homogenizing device of the present invention can effectively use a limited space by utilizing the thickness direction. For example, by forming the flow passage extending on one side of the liquid mixing chamber on the inner circumferential side on the upper side with respect to the thickness direction and forming the flow passage on the lower side on the outer side of the liquid mixing chamber, 2 Even if one or more flow paths or two or more liquid mixing chambers are required, or even if the liquid homogenization apparatus of the present invention is accompanied by another function, they may interfere with each other without being aware of the space. It becomes possible to lay out without it.
  • the analyzer according to the present invention has a rotating body, a flow path formed in the rotating body, and a chamber, and the liquid sample is passed through the flow path by the centrifugal force generated by the rotation of the rotating body.
  • An analyzer which is introduced into the chamber 1 for analysis and further includes any one of the above-described A part or all of the rotating body, the flow path, and the liquid mixing chamber, the rotating body, the flow path, and the liquid mixing chamber of the liquid homogenizing device. By combining this, the liquid sample is mixed.
  • the analyzer of the present invention introduces the liquid into the liquid mixing chamber via two or more flow paths, thereby colliding the introduced liquids with each other, etc.
  • the analyzer of the present invention does not have to take a large space for meandering the flow path, so that the liquid can be efficiently mixed uniformly with a small space, and further, the reaction or reaction by the subsequent reaction is possible. It is possible to reproducibly detect physical and chemical changes by electrochemical or optical means.
  • the analyzer according to the present invention may have a configuration in which the chamber is a reaction chamber for reacting the liquid sample and the analysis reagent.
  • the analysis device of the present invention may have a configuration in which the chamber is a pretreatment chamber for pretreatment of the liquid sample.
  • the liquid homogenizing device of the present invention introduces the liquid into one of the two or more liquid mixing chambers through the two or more flow paths.
  • the introduced liquids cause turbulence such as colliding with each other, and as a result, the liquids are uniformly mixed. Therefore, in this device, since the liquid is not uniformly mixed in the flow path, it is not necessary to make the flow path serpentine to have a large space for the serpentine movement. As a result, the liquid can be efficiently mixed in a space-saving manner, and the subsequent reaction or the amount of physical change due to the reaction can be reproducibly detected by electrochemical / optical means etc. It is possible to construct an analytical device that can be performed. Brief description of the drawings
  • FIG. 1 is a plan view showing a configuration of a liquid equalizing device according to a first embodiment of the present invention.
  • FIG. 2 is an exploded plan view of the liquid homogenizing apparatus shown in FIG. 1, where (a) is a first substrate, (b) is a second substrate, (c) is a second substrate. 3 shows a substrate of 3;
  • FIG. 3 is an exploded perspective view of the liquid homogenizing device shown in FIG.
  • FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the liquid homogenizing device shown in FIG.
  • (A) is a cross-sectional view of the second base material before cutting
  • (b) is a cross-sectional view of the second base material after cutting.
  • FIG. 5 is a cross-sectional view of the liquid equalizing device shown in FIG.
  • FIG. 6 is a plan view showing the configuration of a liquid equalizing device according to a second embodiment of the present invention.
  • FIG. 7 is an exploded plan view of the liquid homogenizing device shown in FIG. 6, where (a) is a first substrate, (b) is a second substrate, and (c) is a second substrate. 3 shows a substrate of 3;
  • FIG. 8 is a diagram for explaining the position of the folded portion, where (a) shows the relationship between the folded portion and the liquid mixing chamber 1 constituting the liquid homogenizing device shown in FIG. (b) is a figure which shows the relationship between the folding
  • FIG. 9 is a plan view showing the configuration of a liquid homogenizing device of a comparative example.
  • FIG. 10 is a view showing the evaluation results of liquid mixing using the liquid homogenizing device of the first embodiment shown in FIG. 1, (a) is an overall view of the device, b) is a partially enlarged view of (a).
  • Fig. 11 is a view showing the evaluation results of the liquid mixing using the liquid homogenizing device of the comparative example shown in Fig. 9 as V; (a) is an overall view of the device; ) Is a partially enlarged view of (a).
  • FIG. 12 is a block diagram of a conventional rotating device, in which (a) is a cross-sectional view thereof and (b) a perspective view thereof.
  • the liquid homogenizing device rotates around a predetermined rotation axis.
  • Each of the liquid mixing chambers is in communication with each other by two or more flow paths.
  • the liquid equalizing device of the present embodiment is a device in which basic parts in which liquid mixing chambers are connected to each other by two or more flow paths are combined to form a rotating body, and, for example, a substrate is It is possible to form by laminating a plurality of layers or three layers.
  • a substrate is laminated and molded, another non-molded substrate is bonded to a substrate obtained by embedding and molding the above-mentioned basic parts, or a liquid mixing chamber is molded on one substrate.
  • molded are preferable.
  • a substrate in which a liquid mixing chamber and a basic part in which the flow path has become hollow is used as an intermediate layer, and the other two substrates are bonded But it is good.
  • only one liquid mixing chamber may be formed as one of the two layers sandwiching the intermediate layer.
  • the space defining the flow path and the liquid mixing chamber is formed inside the disc-shaped rotating body, and that the fluid must be communicated in communication with the air hole so that the fluid can flow smoothly. is there.
  • the basic part of the present invention has a configuration in which two or more liquid mixing chambers are communicated with each other by two or more flow paths.
  • the fluid introduced into this part flows in a direction (hereinafter referred to as the outer peripheral direction or the outer peripheral side) directed to the rotational axial force by centrifugal force generated by rotating the rotating body, but at this time the liquid mixing Due to the existence of two or more flow paths communicating with each other between the chambers, the fluid drawn out from one liquid mixing chamber 1 on the inner peripheral side is divided into two or more along each flow path,
  • the liquid mixing chamber on the outer peripheral side is configured to be integrated again into one.
  • the purpose of the liquid homogenization function targeted by the basic parts of the present invention is, as shown here, to divide the target liquid into two or more parts and then to bring them together to create turbulent flow! /, Will be performed while the process is rotating!
  • the number of the two or more flow paths connecting the two or more liquid mixing chambers of the present invention with each other is considered to be good in that the larger the number, the more turbulent flow occurs.
  • the number of flow channels may be determined optimally depending on the physical properties of the liquid to be homogenized, since the structure becomes more complicated if the number of flow channels is large. Yes.
  • the number of flow paths may be determined in consideration of the mixability, solubility, reactivity, viscosity, etc. of the target liquid. Specifically, in the case where the liquid has high solubility, high reactivity, high reactivity, low viscosity, etc., the number of channels may be small, so that the effect can be obtained with a simple configuration.
  • the number of channels be as large as possible, as far as the space and the like allow.
  • the number of the two or more liquid mixing chambers connected by the two or more flow paths of the present invention is equal to the number of the liquid mixing chambers, the more the number is, the more uniform the fluid is, the more It is considered good.
  • the number of liquid mixing chambers is large, the configuration will be complicated, so that the number of liquid mixing chambers is as large as the space allows. It is good to decide by the best. For example, it may be determined in consideration of the properties such as miscibility, solubility, reactivity, and viscosity of the target liquid.
  • the number of liquid mixing chambers may be small, so two are the best considering the molding space. It can be said. On the other hand, if the liquid is difficult to mix, low solubility, low reactivity, high viscosity, etc., the number of liquid mixing chambers is as large as space allows, S preferred,.
  • the flow path connecting the two liquid mixing chambers to each other is located on the inner peripheral side from the outlet for discharging the liquid on the inner peripheral side liquid mixing chamber. It is extended to the stereotactic position, and then descends to a position on the outer peripheral side from the outlet of the liquid mixing chamber 1 on the inner peripheral side, and is connected to the inlet for introducing the liquid on the outer peripheral liquid mixing chamber. is there. That is, it is important for the flow path to have a turnaround portion in the inner circumferential direction. When a centrifugal force is applied to the liquid when the liquid is rotated, the liquid does not stay in the liquid mixing chamber unless the return part is formed in the flow path toward the inner circumferential direction. As a result, there is no turbulence and the liquid can not be homogenized sufficiently.
  • the liquid mixing chamber on the inner circumferential side is filled with the liquid before it is filled with the liquid. Because the body can be prevented from moving to the next chamber, the fluid can be temporarily held in the liquid mixing chamber.
  • the liquid is transferred between a plurality of liquid mixing chambers by a single centrifugal force by rotating the rotating body once. It is designed to perform liquid homogenization. That is, while the liquid is being transferred between the plurality of liquid mixing chambers by one centrifugal force generated by the rotation operation, the liquid is continuously distributed and the process of colliding can be repeated. There is. For this purpose, it is necessary to make the liquid flow continuously between the plurality of liquid mixing chambers in one rotation operation.
  • the folded portion of the flow path is connected to the inner circumferential side where the flow path communicates. It is set on the outer peripheral side of the surface on the innermost peripheral side of the first liquid mixing chamber.
  • the folded portion may be formed at a predetermined distance from the rotation axis. With this predetermined distance, the folded back portion defines the surface closest to the inner peripheral side in the liquid mixing chamber on the inner peripheral side with which it itself communicates, and the surface equidistant to the folded back portion with respect to the rotation axis. It is desirable that the volume of the space be calculated so as to substantially exceed the amount of air that can be mixed in via the air holes when the rotating body rotates.
  • the liquid homogenizing device of the present invention can prevent the liquid flow from being interrupted by a part of air remaining in the liquid mixing chamber when the liquid moves. As a result, the liquid can be transferred continuously.
  • the configuration of the present embodiment can be combined with the other embodiments described above to realize the liquid homogenizing device of the present invention.
  • the amount of air that can be mixed in via the air hole when the rotating body rotates can be calculated according to the conditions such as the shape and size of the air hole.
  • the volume of the space in which the surface closest to the inner circumferential side and the surface equidistant to the turnback portion with respect to the rotation axis are defined in the liquid mixing chamber 1 is mixed in the liquid mixing chamber 1 when the rotating body rotates.
  • the liquid equalizing device of the present embodiment in order to realize continuous transfer of the liquid between the plurality of liquid mixing chambers in one rotation operation, the liquid is discharged from the liquid mixing chamber on the inner peripheral side.
  • the folds of each of the two or more flow paths are disposed on the same plane at the same distance to the rotation axis. Thereby, the liquid distributed by two or more flow paths can be fed to the liquid mixing chamber 1 at the same timing over the turnarounds of the flow paths at the same timing.
  • connection position of the liquid mixing chamber 1 and the flow path is not particularly limited !, but in the same liquid mixing chamber 1, the inlet for introducing the liquid and the lead for discharging the liquid Regarding the positional relationship of the outlet, the inlet may be formed on the inner peripheral side of the outlet.
  • one inlet is the other inlet. It may be set on the outer side of the mouth. This is achieved by introducing liquid from two or more flow paths from the outer peripheral side of the liquid mixing chamber on the one hand, and the inner peripheral side of the liquid mixing chamber on the other hand, so as to make the liquid collision more Make it effective and create turbulence easily. In particular, it is effective when it is difficult to mix, and it targets liquids with low solubility, low reactivity, high viscosity and the like.
  • the number of inlets formed in the liquid mixing chamber and the number of outlets are the same as the number of flow paths introduced into the liquid mixing chamber and the number of flowed outlets.
  • the present invention is not limited to this, and if the molding space permits, a plurality of flow paths may be merged or branched along the way. You may increase or decrease the number of Therefore, the flow path at that time may also be formed, for example, by joining or branching a plurality of flow paths.
  • the liquid mixing chamber 1 on the inner circumferential side may be arranged to have a larger volume as compared with the liquid mixing chamber 1 on the outer circumferential side. That is, when the size of the volume of the liquid mixing chamber is designed to be smaller as that of the liquid mixing chamber formed on the outer circumferential side, the flow of the liquid is caused by the mixing of air when the liquid moves. Can prevent the air from partially remaining in the chamber. As a result, the liquid can be transferred continuously.
  • the configuration of the present embodiment can be combined with the other embodiments described above to realize the liquid homogenizing device of the present invention.
  • transfer of the liquid between the plurality of liquid mixing chambers is performed by repeatedly performing the rotation operation and the rotation stop operation on the rotating body. Control to carry out the homogenization of the liquid.
  • it is important to hold the fluid temporarily and completely in the liquid mixing chamber. Therefore, it is necessary for the turnup portion of the flow path extending from the liquid mixing chamber 1 on the inner peripheral side to be on the inner peripheral side with respect to the innermost peripheral surface of the liquid mixing chamber 1 to which the flow path extends.
  • the liquid is transported not only by centrifugal force but also by capillary action.
  • the liquid is transferred by the effect of centrifugal force and temporarily held completely in front of the liquid mixing chamber and the folds of the communication channel, but when rotation is stopped, the liquid is transferred by capillary action.
  • the fluid further flows in the flow path and stops in front of the next liquid mixing chamber. Thereafter, the liquid is introduced into the next liquid mixing chamber by the effect of centrifugal force by rotating again.
  • the design freedom of the homogenizing device of the present invention is expanded. That is, since it is possible to temporarily hold the liquid completely in the area of the liquid mixing chamber and in front of the folded portion of the communication channel, two or more of the flow force of the liquid flow
  • the timing of introduction into the chamber need not necessarily be synchronized, and If you do not synchronize, it is more effective in terms of fluid collision, it is more likely to cause turbulence, and it becomes easier to equalize. Therefore, it is not necessary to set the folded portions of two or more flow path shapes on the same plane with respect to the rotation axis, but rather actively set on the same plane with the same rotation distance. Do not let In this way, it is possible to create a time lag in the flow of liquid intentionally introduced into the liquid mixing chamber.
  • the limited space can be effectively used by utilizing the thickness direction. That is, a flow passage extending to one side of the liquid mixing chamber on the inner peripheral side is formed on the upper side with respect to the thickness direction, and a flow passage extending to the liquid mixing chamber on the outer peripheral side is formed on the lower side.
  • the flow passage extending to the upper side of the liquid mixing chamber on the inner peripheral side is extended to the area corresponding to the upper side, and the flow path extending to the liquid mixing chamber on the outer peripheral side to the area corresponding to the lower layer If it forms, ⁇ .
  • the contact between the upper channel and the lower channel can be communicated by penetrating the intermediate layer.
  • the liquid homogenizing device of the present invention preferably further comprises an air hole connecting the liquid mixing chamber and the outside air. With this configuration, the movement of the liquid in the liquid equalizing device becomes smooth.
  • the liquid homogenization device of the present invention further includes an overflow chamber.
  • the overflow chamber receives the liquid flowing out after being mixed in the liquid mixing chamber, and the liquid equalizing device is prevented from overflowing.
  • the overflow chamber can also be used to quantify the amount of liquid that is mixed and flowed out of the liquid mixing chamber.
  • the liquid to be mixed is not particularly limited, and examples thereof include liquid samples, reaction reagents, dilution solvents and the like.
  • the liquid sample is not particularly limited, and examples thereof include biological samples such as blood and urine.
  • Examples of the dilution solvent include water, an organic solvent, a buffer solution and the like.
  • the buffer is, for example, phosphoric acid Buffer, Tris buffer, carbonate buffer and the like can be mentioned.
  • the reaction reagent is selected according to the type of reaction such as, for example, an enzyme reaction, an antigen-antibody reaction, a reaction with a receptor, a nucleic acid detection reaction, a cell destruction reaction, and the like.
  • the reaction reagent may be a solution containing a substance that reacts with the substance in the sample.
  • the solvent of the solution include water, an organic solvent, a buffer solution and the like.
  • the buffer include phosphate buffer, Tris buffer, carbonate buffer and the like.
  • the substance that reacts with the substance in the sample include enzymes, antigens, antibodies, receptors, nucleic acids, inorganic salts, surfactants and the like.
  • the substance that reacts with the substance in the sample is an enzyme such as glucose oxidase.
  • the substance that reacts with the substance in the sample is an antigen, such as an antigen that specifically reacts with an antibody (eg, an HCV antibody, an HIV antibody, etc.) present in the sample.
  • an antibody for example, an antibody that specifically reacts with the antigen present in the sample (polyclonal antibody, monoclonal antibody, chimeric antibody, Fab antibody, F antibody, (ab) 2 antibodies, Fv antibodies etc.).
  • the substance that reacts with the substance in the sample may be a receptor, for example, a steroid in the sample, a hormone (such as peptide hormone) in the sample, a vitamin, a growth factor, a physiological function such as cytokinin It is a substance that specifically reacts with the active substance.
  • a steroid in the sample a hormone (such as peptide hormone) in the sample, a vitamin, a growth factor, a physiological function such as cytokinin
  • a hormone such as peptide hormone
  • a vitamin such as a growth factor
  • a physiological function such as cytokinin
  • substances that react with the substance in the sample are DNA, RNA and the like.
  • substances that react with substances in the sample are inorganic salts, surfactants and the like.
  • the inorganic salt has a role of promoting cell destruction by changing the osmotic pressure inside and outside the cell and contracting or expanding the cell.
  • Surfactants play a role of promoting cell destruction by breaking the balance between hydrophilicity and hydrophobicity of proteins and phospholipids which are cellular components.
  • the inorganic salt include sodium chloride, potassium chloride, sodium fluoride, sodium thiocyanide, potassium sodium thiocyanate and the like, and examples of the surfactant include sucrose monolaurate and oleic acid. Examples include sodium and sodium dodecyl sulfate (SDS).
  • the biological sample when a biological sample is applied, the biological sample may be initially in a dry state.
  • the liquid sample may be applied and dried and supported before the substrates are bonded.
  • No particular limitation is imposed on the form of the liquid homogenization device of the present invention, but a disc-like shape is preferable like the shape of the liquid homogenization device of this example.
  • Other shapes include, for example, a cartridge shape and a chip shape, but any shape may be used as long as it is finally adapted to the rotating body.
  • FIGS. 1 to 3 are diagrams showing the configuration of a liquid homogenizing apparatus according to a first embodiment of the present invention.
  • the liquid equalizing device of the present embodiment is a disk-shaped rotating body 1 having a hole formed at its center, which rotates about a predetermined rotation axis (not shown). It is composed of The central hole is formed concentrically with the rotation axis of the rotating body 1.
  • the rotator 1 constitutes the bottom of the rotator 1, the first substrate 31 constituting the cover of the rotator 1, the second substrate 32 having the air gap formed therein, and the like.
  • the third substrate 33 is used as a main component, and they are formed by being stacked in the order described above.
  • a sample inlet 16 and air holes 5, 9, 13 are formed in the first substrate 31.
  • the air gap formed in the second substrate 32 has a predetermined shape, and when the first substrate 31, the second substrate 32, and the third substrate 33 described above are stacked, the chamber 1 and the flow path are formed. Is to be formed.
  • first liquid mixing chamber # 1 from the central hole side, two sample chambers # 2 and # 3, first liquid mixing chamber # 1, second liquid mixing chamber # 10, and third liquid mixing chamber # 14.
  • the overflow chamber 15 is formed in the rotating body 1 in this order in a direction (hereinafter, referred to as outer circumferential direction or outer circumferential side) farther from the rotation axis of the rotating body 1.
  • the first liquid mixing chamber 6, the second liquid mixing chamber 10 and the third liquid mixing chamber 14 have a central hole, ie, a distance from the rotation axis of the rotating body 1 It is different.
  • the liquid mixing chamber is located in the outer circumferential direction
  • the volume is assumed to be smaller. That is, the third liquid mixing chamber 14 has a smaller volume than the second liquid mixing chamber 10, and the second liquid mixing chamber 10 has a smaller volume than the first liquid mixing chamber 16.
  • an independent set of linear flow channels 4 is formed, which respectively connects the two sample chambers 2 and 3 and the first liquid mixing chamber 16.
  • a pair of flow paths 8 communicating the first liquid mixing chamber 16 and the second liquid mixing chamber 1 are formed.
  • a reverse U-shaped flow path can be employed as a flow path communicating between the liquid mixing chambers.
  • the apex of the inverted U-shape is the direction of the rotational axis of the rotary body 1 (hereinafter referred to as the inner circumferential direction or the inner circumferential side) from the connecting portion with the liquid mixing chamber ) To be located.
  • the flow paths 8 respectively extend from the connecting portion formed on the outer peripheral direction side of the first liquid mixing chamber 16 first in the inner peripheral direction, and then make a U-turn at the folded back portion 7 in the outer peripheral direction.
  • the rotor 1 is formed with a set of channels 12 communicating the second liquid mixing chamber 10 and the third liquid mixing chamber 14. These channels 12 first extend from the connecting portion formed on the outer peripheral direction side of the second liquid mixing chamber 1 to the inner peripheral direction first, then make a U-turn at the folded portion 11 and extend to the outer peripheral direction. It extends to the connecting portion formed in the three liquid mixing chambers 14. Furthermore, the third liquid mixing chamber 14 and the overflow chamber 15 are in communication with one flow path. A single liquid mixing unit is configured by combining the chamber 1 and the flow path. In the liquid homogenizing device of the present invention, it is preferable that a plurality of liquid mixing units be formed.
  • FIG. 8 (a) illustrates the relationship between the first liquid mixing chamber 16 and the turnback 7.
  • the liquid equalizing device of the present embodiment is configured such that the first device can Since the liquid can be temporarily held in the vicinity of the liquid mixing chamber 16 and the folding part 7, it is ensured that the liquid is introduced into the second liquid mixing chamber 1 on the outer peripheral side through the flow path. Turbulence can be generated.
  • the turnback portion 7 is an equidistantly spaced surface P1 of the rotation axis including the point 6a on the innermost side of the first liquid mixing chamber 16 (hereinafter referred to as “most inner circumference It is constructed on the outer side than the side surface or “the surface closest to the rotation axis”.
  • the folded back portion 7 needs to be formed apart from the rotation axis by a predetermined distance.
  • the predetermined distance means that the turning shaft 7 including the apexes 7a and 7b of the first liquid mixing chamber 16 including the apexes 7a and 7b of the first liquid mixing chamber 16 is also equidistant.
  • the volume Q of the space defined by the spaced apart surfaces P2 is calculated so as to substantially exceed the volume of air that can be mixed in via the air holes 5 when the rotating body rotates.
  • the amount of air that can be mixed in via the air hole when the rotating body rotates can be calculated according to the conditions such as the shape and size of the air hole.
  • the volume of the space defined in the liquid mixing chamber 16 by the surface P 1 closest to the inner circumferential side and the surface P 2 equidistantly spaced by the rotational axial force including the folded back portion 7 is the first during rotation of the rotor.
  • the liquid equalizing device allows the liquid distributed by two or more flow channels to pass at the same timing across the turn-around portions 7a and 7b of the flow channel at the same timing as the second. It can be fed into the liquid mixing chamber 10.
  • the relationship between the second liquid mixing chamber 10 and the folding portion 11 The relationship is the same as the relationship between the first liquid mixing chamber 16 and the turnback portion 7 and thus the description thereof is omitted.
  • connection position of the liquid mixing chamber 1 and the flow path is not particularly limited, but in the same liquid mixing chamber 1, the positional relationship between the inlet for introducing the liquid and the outlet for discharging the liquid is It is preferable that the mouth be formed on the inner peripheral side of the outlet.
  • a laminate of release paper 21, adhesive layer 22, second substrate 32, adhesive layer 24 and release paper 25 is prepared (see FIG. 4 (a)).
  • the layer 24 is cut to form an air gap of a predetermined shape (see FIG. 4 (b)). This void will later form the chamber, the flow path, etc.
  • the release paper 21 is removed from the laminate in which the voids are formed, and the first base material (cover) 31 is laminated thereon.
  • the air hole 5 and the sample inlet 16 may be formed in advance on the first base material 31, or after the first base 31 is laminated, the air hole 5 and the sample inlet 16 etc. are formed. It is good.
  • the release paper 25 is removed from the laminate, and the third substrate (the bottom of the rotating body) 33 is laminated to obtain a liquid homogenizing device as shown in FIG.
  • the substrate 32 is a double-sided adhesive sheet (the core (second substrate) 32 has a thickness of 50 ⁇ m, and the adhesive layers 22 and 24 each have a thickness of 25 ⁇ m, manufactured by FLEXCON).
  • the adhesive layer 24 is treated with an ethanol solution of 10% triton-100 in order to improve the hydrophilicity of the chamber part and the channel part.
  • the second substrate 32 was cut out using a cutting plotter (manufactured by GRAPHTEC, CE 3000-40).
  • the liquid sample and the liquid reagent are separately introduced from the two sample injection holes 16 and injected into the two sample chambers 1 and 2.
  • a centrifugal force is generated.
  • the liquid sample and the liquid reagent are introduced into the first liquid mixing chamber 16 through the respective flow paths 4, and turbulent flows occur due to collision and the like at the time of introduction, and they are mixed.
  • the liquid sample and liquid reagent thus mixed are further introduced into the first liquid mixing chamber 16 to the second liquid mixing chamber 10 through the two channels 8, again here Turbulence occurs due to collision and the like at the time of introduction, and they are further mixed.
  • the liquid sample and liquid reagent thus mixed are introduced into the second liquid mixing chamber 1 10 to the third liquid mixing chamber 1 14 through the two flow paths 12, and again at the time of introduction. Turbulence occurs due to collision, etc. and mixing occurs further. Thus, in this device, mixing is carried out in three stages, which allows more uniform mixing.
  • the liquid sample or the like overflowing from the third liquid mixing chamber 14 moves to the overflow chamber 15 through the flow path.
  • the liquid equalizing device of this example is configured such that the volumes of the respective chambers become smaller as they are positioned in the outer circumferential direction, so that each of the chambers can be
  • the connection by means of two or more inverted U-shaped flow channels allows uniform mixing of the liquid with only one rotation of the rotating body.
  • a liquid equalizing device similar to that of the first embodiment is used except for the flow channel design as shown in FIG. 9 instead of the chamber 1 and the flow channel design shown in FIG. It was prepared in the same manner as in the case.
  • the rotating body 101 includes, from the inner circumferential side, two sample chambers 102 and 103, a first liquid mixing chamber 106, a second liquid mixing chamber 110 and a third
  • the liquid mixing chamber 114 and the overflow chamber 115 are formed in this order in the circumferential direction, and one flow path for flowing the liquid sample is formed between the chambers.
  • two independent sample channels 102 and 103 and a first liquid mixing chamber 106 are connected, respectively, and independent linear flow paths 104 and a first liquid mixing chamber
  • Air holes 105, 109, 112 are formed in the first liquid mixing chamber 106, the second liquid mixing chamber 106, and the third liquid mixing chamber 114, respectively.
  • the channels 107 and 112 communicating with each other in the respective liquid mixing chambers are each formed in an inverted U shape, and the apex of the inverted U is a rotating body from the connecting portion with the liquid mixing chamber 1 for introducing the liquid communicated with the channels. It is located in the direction of the rotation axis 101 (hereinafter referred to as the inner circumferential direction or the inner circumferential side).
  • the two sample chamber pairs 102 and 103 are in communication with the first liquid mixing chamber pair 106 by an independent pair of linear flow paths 104.
  • the flow path 108 first extends from the connecting portion formed on the outer peripheral side of the first liquid mixing chamber 106 to the inner peripheral side first, makes a U-turn at the turn-back portion 107, and extends to the outer peripheral direction. It extends to a connecting portion formed in the mixing chamber 110.
  • the channel 104 first extends from the connecting portion formed on the outer peripheral side of the second liquid mixing chamber 110 to the inner peripheral side, makes a U-turn at the turnback portion 111, and extends to the outer peripheral direction. It extends up to the connection formed in the liquid mixing chamber 114 of FIG.
  • the third liquid mixing chamber 114 and the overflow chamber 115 are similarly connected by one flow passage.
  • the mixing degree was evaluated using red latex particle suspension (particles of 0.313 m diameter made by SEKISUI). Did. That is, the red latex particle suspension and water were injected from two sample supply holes, and rotated for 1 minute at a rotation speed of 1600 rpm to mix the red latex particle solution and water.
  • the results of using the liquid equalizing device of the first embodiment are shown in the whole view of the device in FIG. 10 (a) and in the enlarged view of a portion of FIG. 10 (a) in FIG. 10 (b).
  • the results using the liquid homogenization device are shown in the general view of the device in Fig. 11 (a) and in the partially enlarged view of Fig.
  • the liquid homogenization device of the first example has the above-mentioned red latex particle suspension and water which do not take a large flow path space as compared with the liquid equalization device of the comparative example, It was possible to mix more uniformly.
  • this is quantified by measuring the absorbance at the maximum absorption wavelength using an optical fiber singlet spectrometer, it is possible to measure at any spot in the case of using the liquid homogenizing apparatus of the first embodiment. While the same absorbance is shown, in the case of using the liquid homogenizing device of the comparative example, the spots have uneven absorbance.
  • the liquid mixing chamber has two or more liquid mixing chambers for mixing two or more liquids, 6, 10, 14 and two or more flow paths 8, 12 for communicating the liquid mixing chambers with each other.
  • Each of 6, 10 and 14 is mutually connected by two or more flow paths.
  • the liquid mixing chamber formed on the side close to the rotation axis is generated by the centrifugal force generated when the rotating body 1 rotates.
  • the liquid drawn out is transferred to the rotation axis via the two or more flow paths.
  • the folded portion of the reverse U-shaped flow path is provided on the outer peripheral side than the innermost peripheral surface of the liquid mixing chamber 1 on the inner peripheral side with which it is in communication.
  • the same effect can be obtained even if the folded portion is provided on the inner peripheral side of the inner peripheral surface of the inner peripheral liquid mixing chamber with which it is in communication. This will be described in the second embodiment.
  • FIG. 6 and FIG. 7 are views showing an analyzer using the liquid equalizing device of the second embodiment of the present invention.
  • the analyzer using the liquid homogenizing apparatus of the present embodiment is, as with the liquid homogenizing apparatus of the first embodiment, centered on a predetermined rotation axis (not shown) shown in FIG. It is composed of a disk-shaped rotating body 50 which is rotated and has a hole formed at its center. The central hole is formed concentrically with the rotation axis of the rotating body 50. As shown in FIG. 7, the rotating body 50 forms the bottom of the rotating body 50, the first substrate 81 constituting the cover of the rotating body 50, the second substrate 82 in which the air gap is formed, and the like.
  • the third substrate 83 is used as a main component, and these are formed by being stacked in the above-mentioned order.
  • a sample inlet 60 and air holes 61 to 66 and a recess having a predetermined shape are formed between the sample inlet 60 and air holes 61 to 66.
  • the air gap formed in the second substrate 82 has a predetermined shape corresponding to the first substrate 81, and the first substrate 81, the second substrate 82, and the third substrate 83 described above are stacked. As a result, one chamber and a channel are formed.
  • the first chamber 51, the second chamber 52, the third chamber 53, the fourth chamber 54, and the fifth chamber are arranged in order from the central hole side to the outer peripheral direction.
  • One 55, sixth chamber 56 is formed in the rotating body 50.
  • the first chamber 51, the second chamber 52, the third chamber 53, the fourth chamber 54, the fifth chamber 55, the sixth chamber 56 The distance from the central hole, that is, the rotation axis of the rotating body 50 is made different.
  • a pair of inverted U-shaped flow paths 71 are formed, which communicate the first chamber 51 and the second chamber 52 respectively.
  • a pair of inverted U-shaped channels 75 are formed, which respectively connect the inverted U-shaped channels 74, the fifth chamber 55 and the sixth chamber 56.
  • Air holes 62, 63, 64, 65, 66 are formed in each of the second to sixth chambers, respectively.
  • the turn-back portion of the reverse U-shaped flow path is provided on the inner peripheral side of the inner peripheral surface of the liquid mixing chamber on the inner peripheral side with which it is in communication.
  • the channel design is configured to perform fluid transfer and the accompanying mixing.
  • FIG. 8 (b) illustrates the relationship between the second liquid mixing chamber 52 and the turnback portion 72. As shown in FIG.
  • the two flow paths communicating with the second liquid mixing chamber 52 are formed from the outlet 52b formed in the second liquid mixing chamber 52, as shown in FIG. ) Extends to the third liquid mixing chamber 53 (not shown), but further to the inner circumference from the outlet 52b formed in the second liquid mixing chamber 52 on the inner circumference side with which it is in communication. It has the folding parts 72a and 72b on the side. With this configuration, since the liquid equalizing device of the present embodiment can temporarily hold the liquid in the vicinity of the second liquid mixing chamber 52 and the folded portion 72 when the rotating body rotates, the liquid flows. When introduced into the third liquid mixing chamber 53 on the outer circumferential side through the passage, turbulent flow can be reliably generated.
  • the turnback portion 72 is a plane P4 spaced equidistantly from the rotation axis including the point 52a on the innermost circumference side of the second liquid mixing chamber 52 (hereinafter referred to as “most inner circumference It is configured on the inner circumferential side of the side face or the face closest to the rotation axis).
  • the folded portions 72a and 72b respectively formed in the flow paths extending from the second liquid mixing chamber 52 are disposed on the same plane P3 where the distance of the rotational axial force is equal.
  • the present invention is not limited thereto.
  • the synchronization is not limited to the point of view of fluid collision. It is more effective, more prone to turbulence, and more likely to be uniform.
  • the folded portions 72a and 72b need not be provided on the same plane P3 having the same distance from the rotation axis, but are not positively set on the same plane P3 having the same distance from the rotation axis. It is preferable to do so.
  • This configuration produces an effect that time lag is generated in the flow of liquid intentionally introduced into the liquid mixing chamber, and turbulence can easily occur.
  • the relation with the flow path 75 is also the same as the relation between the second liquid mixing chamber 52 and the turn-back portion 72, so the description will be omitted.
  • a latex-labeled anti-human albumin polyclonal antibody was freeze-dried and carried on the second chamber 52, and then the first substrate 81 was attached. Labeling to latex was carried out by physically adsorbing to Japanese latex-derived anti-human albumin polyclonal antibody reactive with albumin according to a known method, to latex (160 ⁇ ) particles.
  • the liquid homogenizing device based on an antigen-antibody reaction and albumin
  • mixing and antigen-antibody reaction were carried out with a liquid homogenization apparatus, and then the absorbance was measured with an optical fiber.
  • the first chamber chamber 51 supports the sampling step
  • the second chamber chamber 52 carries the antibody against albumin in a dry state, which is a space for dissolution when a sample is introduced.
  • the third chamber 53, the fourth chamber 54, and the fifth chamber 55 are used as fields for mixing and reaction.
  • the sixth chamber 56 is used as a place to measure the mixed reaction solution with an optical fiber.
  • a sample PBS buffer solution containing albumin
  • the liquid is transferred to the front of the second chamber 52 by capillary action through the reverse U-shaped channel 71.
  • the rotation device is rotated to introduce the sample into the second chamber 52, and at the same time, the dry supported antibody is dissolved to start the reaction. Thereafter, the rotation of the rotation device is stopped, and the reaction mixture is transferred to the front of the third chamber 53 by capillary action.
  • reaction mixture is mixed by sequentially transferring the reaction mixture to the third chamber 53, the fourth chamber 54, the fifth chamber 55 by repeating the rotation stop, and finally, The sample solution is transferred optically to chamber 6 where it is detected by an optical fiber.
  • absorbance was measured over time, the absorbance increased and it was confirmed that the reaction was progressing.
  • the distance between the rotating body 50 rotating about a predetermined rotation axis and the distance from the rotation axis formed on the rotating body 50 is
  • the two or more liquid mixing chambers 51, 52, 53, 54, 55, 56, which mix two or more liquids different from each other, and two or more flow paths connecting the liquid mixing chamber with each other 71 , 72, 73, 74, and 75, and the liquid mixing channels 51, 52, 53, 54, 55, and 56 are in communication with each other in two or more flow paths, and the rotating body rotates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

【課題】 省スペースで液体を均一に混合することが可能な液体均一化装置を提供する。 【解決手段】 所定の回転軸を中心として回転する回転体(1)と、回転体に形成された、回転軸からの距離を異にする2つ以上の液体混合チャンバー(6、10)と、2つ以上の液体混合チャンバー(6、10)を相互に連通する2つ以上の流路(8)とを有し、液体混合チャンバー(6、10)はそれぞれ、2つ以上の流路(8)で相互に連通されており、回転体(1)が回転する際に生じる遠心力により、回転軸に近い側に形成された液体混合チャンバー(6)から導出された液体を2つ以上の流路(8)を介して回転軸に遠い側に形成された液体混合チャンバー(10)に導入することにより乱流を生じさせて液体を均一に混合する液体均一化装置。  

Description

液体均一化装置およびそれを用いた分析装置
技術分野
[0001] 本発明は、回転による遠心力を利用して液体を混合する液体均一化装置およびそ れを用いた分析装置に関する。
背景技術
[0002] 従来から、臨床検査、生化学検査、一般の試験研究などにおいて、血液や尿等の 液体試料を、予め配置した試薬と反応させて、その成分を分析する装置が汎用され ている。最近、このような装置は自動化され、液体試料 (サンプル)をセットするだけで 、液体試料の吸引、移動、反応試薬との混合、測定'分析、結果の表示と記憶の一 連の工程が自動的に行われる装置も開発されている。このような装置では、液体試料 の移動等は、ポンプによる陽圧や陰圧などの圧力を利用することが一般的である。と ころが、最近、 CD— ROM装置等の光ディスク装置で使用されているフォーカス、トラ ッキング技術を応用し、ディスクの回転により生じる遠心力を利用して試料や試薬を 移動させて分析する分析装置が開発されている (例えば、特許文献 1参照)。このよう なディスク型の分析装置は、「液体試料分析用ディスク」と称されることがある。
[0003] このような分析装置の一例を、図 12に示す。同図において、(a)は断面図であり、 ( b)は斜視図であり、同一部分には同一符号を付している。図示のように、この装置 20 0は、外観形状は、従来の光ディスクと略同様であり、中心に孔 203があるディスク状 であり、その中心孔 203の周囲に、 4つの試料注入孔 201が円周状に配置されてお り、これらは、前記ディスク内に設けられたそれぞれ 4つの流路 202と連通している。 これらの 4つの流路 202は、ディスクの中心力も外部に向力つて、放射状に延びてお り、その先端は閉塞されている。これら流路 202の途中には、分析用の試薬が配置さ れている。また、前記流路内における液体試料と試薬との反応が外部力 光測定可 能なように、前記流路 202の上部は光透過性となっている。この分析装置を用いた分 析は、例えば、次のようにして行われる。すなわち、まず、血液、尿等の液体試料を、 試料注入孔 201から装置 200内に導入する。そして、この装置 200を回転装置で回 転させると、それにより生じた遠心力で、導入された液体試料が流路 202を円中心か ら円外周に向力つて移動し、その際に液体試薬と反応する。そして、上記のフォー力 ス、トラッキング技術を利用して液体試料の検出や前記反応を測定し、前記試料中の 成分分析が行われる。なお、上記の例では、遠心力により試料を移動させたが、その 他に、毛細管現象やサイホン効果などを利用して試料を移動させる場合もある。
[0004] 液体試料の分析には、例えば、液体試料を希釈する工程、液体試料に試薬を導入 する工程、液体試料と試薬を反応させる工程、液体試料と未反応の試薬を除去する 工程等の工程が必要となる。このような工程を行うため、例えば、前記回転装置に、 工程毎にチャンバ一を設け、そのチャンバ一間を流路で接続することが行われてい る。
[0005] 前記工程にぉ 、ては、装置内で、液体試料を均一に混合する必要がある。例えば 、液体試料の希釈工程では、液体試料と溶媒とを均一に混合する必要があり、また、 反応工程では、液体試料と試薬とを、均一に混合し反応させる必要がある。
[0006] 液状物質の均一混合では、乱流を生じさせることが必要である。この乱流を生じさ せる方法としては、例えば、スターラーやボルテックス (登録商標)等の装置を用いる 方法が知られている。スターラーを用いる方法では、例えば、混合対象の液体が入つ た容器の中に、磁気を帯びた棒状のスターラーバーを投入し、その容器の外力 磁 石を使ってスターラーバーを回転させて、液体に乱流を生じさせる。ボルテックス (登 録商標)を用いる方法では、混合対象の物質を試験管等の容器に入れ、この底部を ボルテックス (登録商標)に押し当てて振動させることにより液体に乱流を生じさせる。
[0007] し力しながら、ディスクを回転させる機能を必須とする分析装置では、上記のような スターラーやボルテックス (登録商標)を使用しょうとすると、分析装置にスターラーや ボルテックス (登録商標)に類似する機能を盛り込まなければならなくなり、大掛かりで 複雑な装置となる恐れがある。
[0008] 従って、スターラーやボルテックス (登録商標)などの機能に頼らず、ディスクの流路 形態により、液体を混合させる方法について検討されている。例えば、特許文献 2に 示されるように、流路を蛇行させることにより液体を混合させる装置が知られている。こ こに示されるような流路構成は流体の移送距離を長くすることができ、それにより、混 合液体もしくは混合物を十分に拡散させることができるほど、移送時間を長くとること ができる。
特許文献 1:国際公開第 00Z026677号パンフレット
特許文献 2 :米国特許第 6, 582, 662号明細書
発明の開示
発明が解決しょうとする課題
[0009] 2つ以上の物質を混合し均一化する目的は、それに引き続く反応、もしくは反応に よる物理的 'ィ匕学的な変化量を電気化学的,光学的な手段等による検出を再現性よ く行うことにある。従って、回転装置および混合流路に加えて、さらに、反応'検出手 段等の機能を盛りこむことのできるスペースが必要となる。し力しながら、このような回 転装置における混合流路は、スペースを必要とするため、大きさが限られた分析装置 において、そのような混合流路を設けることは困難であるという、問題があり、省スぺ ースで効率よく液体を混合する機能を有する構成を構築することが課題であった。
[0010] 本発明は、このような事情に鑑みなされたもので、従来より省スペースで液体を均 一に混合することが可能な液体均一化装置を提供することを目的とする。
課題を解決するための手段
[0011] 上記目的を達成するために、本発明の液体均一化装置は、所定の回転軸を中心と して回転する回転体と、回転体に形成された、前記回転軸からの距離を異にする 2 つ以上の液体を混合する液体混合チャンバ一と前記液体混合チャンバ一を相互に 連通する 2つ以上の流路とを有し、前記液体混合チャンバ一はそれぞれ、 2つ以上 の流路で相互に連通されており、前記回転体が回転する際に生じる遠心力により、 前記回転軸に近い側に形成された前記液体混合チャンバ一力 導出された液体を 前記 2つ以上の流路を介して前記回転軸に遠い側に形成された前記液体混合チヤ ンバーに導入することにより乱流を生じさせて前記液体を均一に混合する構成を有し ている。
[0012] この構成により、本発明の液体均一化装置では、液体を 2つ以上の流路を介して液 体混合チャンバ一に導入することにより、導入された液体は、互いにぶつカゝり合うなど して乱流が生じ、この結果、液体が均一に混合される。この工程を液体混合チャンバ 一の数だけ繰り返すため、本発明の液体均一化装置は、液体を流路内で均一に混 合するために流路を蛇行させる必要がない。このため、本発明の液体均一化装置は 、流路を蛇行させるためのスペースを大きくとる必要もないため、省スペースで効率よ く液体を均一に混合することができる。
[0013] また、本発明の液体均一化装置は、前記液体混合チャンバ一を相互に連通する流 路は、前記回転軸に近!ヽ側の液体混合チャンバ一に形成された液体が導出される 導出口から前記回転軸に遠 ヽ側の液体混合チャンバ一に形成された液体が導入さ れる導入口まで延伸し、自身が連通する前記回転軸に近 、側の前記液体混合チヤ ンバーの前記導出口よりもさらに前記回転軸に近 、側に屈曲部が形成されて 、る構 成を有しても良い。
[0014] この構成により、本発明の液体均一化装置は、液体混合チャンバ一と屈曲部の近 傍に液体を一時的に保持することができるため、液体が流路を介して外周側の液体 混合チャンバ一に導入される際に、確実に乱流を発生させることができる。
[0015] また、本発明の液体均一化装置は、前記屈曲部は、自身が連通する前記回転軸 に近い側の液体混合チャンバ一の前記回転軸に最も近い面よりも前記回転軸から遠 くに形成されて 、る構成を有しても良 、。
[0016] この構成により、本発明の液体均一化装置は、 1回の回転操作による複数の液体 混合チャンバ一間の連続的な液体の移送を可能にすることができる。
[0017] また、本発明の液体均一化装置は、前記液体混合チャンバ一はそれぞれ空気孔と 連通しており、前記屈曲部は前記回転軸力 所定の距離だけ離間して形成されてお り、前記所定の距離は、前記屈曲部が、自身が連通する前記回転軸に近い側の液 体混合チャンバ一内の、前記回転軸に最も近い面と前記回転軸に対して前記屈曲 部と等距離の面とが画定する空間の容積が、前記回転体が回転する際に前記空気 孔を介して混入可能な空気の容積を略上回るように算出される構成を有しても良い。
[0018] この構成により、本発明の液体均一化装置は、液体が移動する際に、空気の一部 が液体混合チャンバ一内に残留することにより、液体の流れが途切れることを防止で きる。これにより、結果的に連続的に液体を移送させることができる。本実施の形態の 構成は、上記に示した他の実施の形態と組み合わせて、本発明の液体均一化装置 を実現することができる。
[0019] また、本発明の液体均一化装置は、同一の液体混合チャンバ一力 延伸する 2つ 以上の流路にそれぞれ形成された前記屈曲部は、前記回転軸力もの距離が等しい 構成を有しても良い。
[0020] この構成により、本発明の液体均一化装置は、 2つ以上の流路により分配させられ た液体は、同じタイミングで流路の屈曲部を越えて、同じタイミングで液体混合チャン バーへ送り込むことができる。
[0021] また、本発明の液体均一化装置は、前記回転軸に遠い側の液体混合チャンバ一 に形成された 2つ以上の流路の導入口はそれぞれ、前記回転軸からの距離を異に する構成を有しても良い。
[0022] この構成により、本発明の液体均一化装置は、 2つ以上の流路力 流れてくる液体 を、例えば、一方では液体混合チャンバ一の外周側から、他方では液体混合チャン バーの内周側力 導入することにより、液体の衝突をより効果的に行わせて、乱流を 生じやすくする。とくに、難混合性であり、低溶解性、低反応性、高粘性等の液体が 対象となる場合は有効である。
[0023] また、本発明の液体均一化装置は、前記回転軸に近!、側の液体混合チャンバ一 は、前記回転軸に遠 、側の液体混合チャンバ一よりも容積が大き 、構成を有しても 良い。
[0024] この構成により、本発明の液体均一化装置は、液体が移動する際に、空気が混入 することによって、液体の流れが切れて、その空気の一部がチャンバ一内に残留する ことを防止できる。これにより、結果的に連続的に液体を移送させることが可能となる
[0025] また、本発明の液体均一化装置は、前記屈曲部は、自身が連通する前記回転軸 に近い側の液体混合チャンバ一の前記回転軸に最も近い面よりも前記回転軸の近く に形成されて 、る構成を有しても良 、。
[0026] この構成により、本発明の液体均一化装置では流路内の液体を、遠心力に限らず 、毛細管現象によっても移送できるようになるため、回転中は、遠心力の効果により液 体が移送されて、液体混合チャンバ一および連通する流路の折り返し部の手前で一 時完全に保持されるが、回転が停止すると、毛細管現象により液体は流路内をさらに 流れていき、次の液体混合チャンバ一の手前で停止し、その後、再度、回転させるこ とで遠心力の効果で、次の液体混合チャンバ一へ液体を導入するなど、回転体に対 して回転操作と停止操作を繰り返して液体の均一化を実施することが可能になる。さ らに、本発明の液体均一化装置の設計上の自由度を広げることができる。
[0027] また、本発明の液体均一化装置は、同一の液体混合チャンバ一力 延伸する 2つ 以上の流路にそれぞれ形成された前記屈曲部は、前記回転軸力 の距離が異なる 構成を有しても良い。
[0028] この構成により、本発明の液体均一化装置は、液体混合チャンバ一に導入される 液体の流れに時間差を生じさせることができ、効果的に流体を衝突させて乱流を起こ しゃすくなり、液体を均一化させやすくなる。
[0029] また、本発明の液体均一化装置は、前記回転体は、回転動作と回転停止動作を繰 り返す構成を有しても良い。
[0030] この構成により、本発明の液体均一化装置は、設計上の自由度を広げることができ る。
[0031] また、本発明の液体均一化装置は、前記液体混合チャンバ一において、前記導入 口は前記導出口よりも厚み方向に対して上側に形成されている構成を有しても良い
[0032] この構成により、本発明の液体均一化装置は、厚み方向を利用することにより、限り あるスペースを有効に使用することができる。例えば、内周側の液体混合チャンバ一 力 延出する流路を厚み方向に対して上側に形成し、外周側の液体混合チャンバ一 に延入する流路を下側に形成することより、 2つ以上の流路ゃ 2つ以上の液体混合 チャンバ一が必要な場合も、もしくは、本発明の液体均一化装置に別の機能を付随 指せる場合も、スペースを意識せず相互に干渉することもなくレイアウトすることが可 會 になる。
[0033] 本発明の分析装置は、回転体と、この回転体に形成された流路とチャンバ一とを有 し、前記回転体の回転により生じる遠心力によって前記流路を通じて液状試料を前 記チャンバ一内に導入して分析する分析装置であって、さらに上述のいずれか〖こ記 載の液体均一化装置を含み、前記回転体、前記流路および前記液体混合チャンバ 一の一部若しくは全部が、前記液体均一化装置の前記回転体、前記流路および前 記液体混合チャンバ一を兼ねることにより、前記液状試料を混合する構成を有して ヽ る。
[0034] この構成により、本発明の分析装置は、液体を 2つ以上の流路を介して液体混合チ ヤンバーに導入することにより、導入された液体を、互いにぶつ力り合わせるなどして 乱流を生じさせ、この結果、液体が均一を混合する工程を液体混合チャンバ一の数 だけ繰り返す液体均一化装置を含むため、液体を流路内で均一に混合するために 流路を蛇行させる必要がない。このため、本発明の分析装置は、流路を蛇行させる ためのスペースを大きくとる必要もないため、省スペースで効率よく液体を均一に混 合することができ、さらに、引き続く反応、もしくは反応による物理的、化学的な変化 量の電気化学的、光学的な手段等による検出を再現性よく行うことができる。また、本 発明の分析装置は、前記チャンバ一が、前記液状試料と分析試薬とを反応させるた めの反応チャンバ一である構成を有しても良い。また、本発明の分析装置は、前記チ ヤンバーが、前記液状試料を前処理するための前処理チャンバ一である構成を有し ても良い。
発明の効果
[0035] 上記のように、本発明の液体均一化装置は、前記 2つ以上の流路を通じて液体を 前記 2つ以上の液体混合チャンバ一に導入する。導入された液体は、互いにぶつか り合うなどして乱流が生じ、この結果、前記液体が均一に混合される。したがって、こ の装置では、流路で液体を均一に混合しないので、流路を蛇行させる必要もなぐ蛇 行のためのスペースを大きくとる必要もない。これにより、省スペースで効率よく液体 を混合することができ、それに引き続く反応、もしくは反応による物理的'ィ匕学的な変 化量を電気化学的 ·光学的な手段等による検出を再現性よく行うことができる分析装 置を構築することができる。 図面の簡単な説明
[0036] [図 1]図 1は、本発明の第 1の実施例の液体均一化装置の構成を示す平面図である [図 2]図 2は、図 1に示された液体均一化装置の分解平面図であり、(a)は、第 1の基 板、(b)は第 2の基板、(c)は第 3の基板を示す。
[図 3]図 3は、図 1に示された液体均一化装置の分解斜視図である。
[図 4]図 4は、図 1に示された液体均一化装置の製造工程の一例を示す断面図であり
、(a)は切り取り前の第 2の基材の断面図であり、(b)は切り取り後の第 2の基材の断 面図である。
[図 5]図 5は、図 1に示された液体均一化装置の断面図である。
[図 6]図 6は、本発明の第 2の実施例の液体均一化装置の構成を示す平面図である
[図 7]図 7は、図 6に示された液体均一化装置の分解平面図であり、(a)は、第 1の基 板、(b)は第 2の基板、(c)は第 3の基板を示す。
[図 8]図 8は、折り返し部の位置を説明するための図であり、(a)は図 1に示された液 体均一化装置を構成する折り返し部と液体混合チャンバ一の関係を、 (b)は図 6に示 された液体均一化装置を構成する折り返し部と液体混合チャンバ一の関係を示す図 である。
[図 9]図 9は、比較例の液体均一化装置の構成を示す平面図である。
[図 10]図 10は、図 1に示された第 1の実施例の液体均一化装置を用いた液体混合の 評価結果を示す図であり、 (a)は装置の全体図であり、 (b)は(a)の一部拡大図であ る。
[図 11]図 11は、図 9に示された比較例の液体均一化装置を用 Vヽた液体混合の評価 結果を示す図であり、 (a)は装置の全体図であり、 (b)は(a)の一部拡大図である。
[図 12]図 12は、従来技術の回転装置の構成図であり、(a)は、その断面図、(b)その 斜視図である。
符号の説明
1 回転体
2 試料チャンバ一
3 試料チャンバ一
4 直線状流路 空気孔
第 1の液体混合チャンバ 折り返し部 (屈曲部) 流路
空気孔
第 2の液体混合チャンバ 折り返し部 (屈曲部) 流路
空気孔
第 3の液体混合チャンバ ォーノ一フローチャンノ 試料注入口
剥離紙
接着剤層
第 2の基板
接着剤層
剥離紙
第 1の基板 (カバー) 第 3の基板 (回転体基板) 回転体
第 1のチャンバ一 第 2のチャンバ一 第 3のチャンバ一 第 4のチャンバ一 第 5のチャンバ一 第 6チャンバ一
試料注入口
- -66 空気孔 71〜 75 逆 U字形流路
81 第 1の基板 (カバー)
82 第 2の基板
83 第 3の基板 (回転体基板)
101 回転体
102 試料チャンバ一
103 試料チャンバ一
104 直線状流路
105 空気孔
106 第 1の液体混合チャンバ一
107 折り返し部 (屈曲部)
108 流路
109 空気孔
110 第 2の液体混合チャンバ一
111 折り返し部 (屈曲部)
112 流路
113 空気孔
114 第 3の液体混合チャンバ一
115 オーバーフローチャンノ ー
116 試料注入口
200 装置
201 試料注入孔
202 流路
203 中心孔
発明を実施するための最良の形態
以下本発明の実施の形態について、例を挙げて説明する。
(実施の形態)
本発明の実施の形態の液体均一化装置は、所定の回転軸を中心として回転する 回転体と、回転体に形成された、回転軸からの距離を異にする 2つ以上の液体混合 チャンバ一と、液体混合チャンバ一を相互に連通する 2つ以上の流路とを有しており 、液体混合チャンバ一はそれぞれ、 2つ以上の流路で相互に連通されている。
[0039] 本実施の形態の液体均一化装置は、液体混合チャンバ一を相互に 2つ以上の流 路で連結させた基本パーツを組み合わせて回転体に造り込んだものであり、例えば 基板を 2層または 3層になど複数積層して成形することが可能である。基板を 2層積 層して成形する場合は、上述の基本パーツを盛り込み成形した基板に、別の成形さ れていない基板を貼り合せる構成、あるいは、液体混合チャンバ一のみを成形した 基板に上述の基本パーツが成形された基板を貼り合せる構成などが良い。基板を 3 層積層して成形する場合は、例えば、液体混合チャンバ一と流路がー体となった基 本パーツをくり貫いた基板を中間層として用い、他の 2つの基板を貼り合わせる構成 でも良い。また、中間層を挟みこむ 2層のうち一層は液体混合チャンバ一のみが成形 されていても良い。いずれの場合も、流路と液体混合チャンバ一を画定する空間が 円盤状の回転体内部に形成されており、さらに、流体がスムーズに流れるように空気 孔と連通して ヽることが必須である。
[0040] 本発明の基本パーツは、 2つ以上の液体混合チャンバ一を相互に 2つ以上の流路 で連通させた構成を有している。このパーツに導入される流体は、回転体を回転する ことにより生じる遠心力で回転軸力 遠くに向力う方向(以下、外周方向または外周 側という)に流れていくが、この際、液体混合チャンバ一間を相互に連通する 2っ以 上の流路が存在することにより内周側の 1つの液体混合チャンバ一から導出された 流体はそれぞれの流路に沿って 2つ以上に分けられ、外周側の液体混合チャンバ一 で、再び一つに合わせられる構成となっている。本発明の基本パーツが目的としてい る液体均一化機能は、ここで示すように、対象となる液体を 2つ以上に分けた後に再 び 1つに合わせて乱流を起こさせると!/、う工程を回転中に行わせるようになって!/、る。
[0041] 従って、本発明の 2つ以上の液体混合チャンバ一をそれぞれ相互に連通させる 2 つ以上の流路の数としては、多ければ多いほど乱流を起こさせるという点では良いと 考えられる。し力しながら、流路の数が多いと逆に構成が複雑になるという点もあるた め、流路の数は、均一化の対象となる液体の物性によって最適に決定することが良 い。例えば、流路の数を対象となる液体の混合性、溶解性、反応性、粘度等を考慮し て決定しても良い。具体的には、液体が、混合性が良ぐ溶解性および反応性が高く 、粘度が低い等の場合は、流路の数は少なくても良いため、シンプルな構成で効果 を挙げるというために考えれば 2つが最適であると考えられる。一方、流体が、難混合 性であり、低溶解性、低反応性、高粘性等の場合は、構成されるスペース等が許す 範囲で、流路の数は多いほうが好ましいと考える。
[0042] 別の視点から、本発明の 2つ以上の流路で連結させられる 2つ以上の液体混合チ ヤンバーの数にぉ 、ても、多ければ多 、ほど流体を均一化すると 、う点では良 、と考 えられる。し力しながら、液体混合チャンバ一の数が多いと逆に構成が複雑になると いう点もあるため、液体混合チャンバ一の数についても、スペースが許す範囲で均一 化の対象となる液体の物性によって最適に決定することが良い。例えば、対象の液 体の混合性、溶解性、反応性、粘度等の性質を考慮して決定しても良い。具体的に は、液体が、混合性が良ぐ溶解性および反応性が高い等の場合は、液体混合チヤ ンバーの数は少なくても良いため、成形スペースを考えた場合、 2つが最良であると いえる。一方、液体が、難混合性であり、低溶解性、低反応性、高粘性等の場合は、 液体混合チャンバ一の数はスペースが許す範囲で多 、ほう力 S好ま 、。
[0043] 本発明の流路形状の例としては、 2つの液体混合チャンバ一を相互に連通する流 路は、内周側の液体混合チャンバ一の液体を導出する導出口から内周側の所定位 置まで延伸し、その後、内周側の液体混合チャンバ一の導出口より外周側の位置ま で下り、外周側の液体混合チャンバ一の液体を導入する導入口に接続するような形 状である。即ち、流路に内周方向に向力 折り返し部が形成されていることが重要で ある。流路に内周方向に向力う折り返し部が形成されていない場合、液体に回転時 に遠心力が加わった際、液体は液体混合チャンバ一に滞留することなぐ素通りで、 液体混合チャンバ一間を通過していくこととなり、結果として乱流が生じないため、液 体を十分に均一化することができなくなる。
[0044] よって、一時的にでも液体混合チャンバ一内に流体を保持することにより、確実に 乱流を起こさせる必要がある。本発明の流路は内周方向に向力う折り返し部が形成 されていること〖こより、内周側の液体混合チャンバ一が液体で満たされる以前に、液 体が次のチャンバ一に移動することを防止することができるため、流体を一時的に液 体混合チャンバ一に保持することができる。
[0045] 本発明の液体均一化装置の一つの実施の形態では、回転体を 1回回転操作する ことにより、ただ 1回の遠心力により液体を複数の液体混合チャンバ一間を移送させ て、液体均一化を行うようになっている。即ち、回転操作により生じる 1回の遠心力に より液体が複数の液体混合チャンバ一間を移送されている間、液体が連続的に分配 されて衝突する工程を繰り返すことができるような構成にしている。このためには 1回 の回転操作で液体が複数の液体混合チャンバ一間を連続的に流れるようにする必 要がある。
[0046] 本実施の形態では、 1回の回転操作で複数の液体混合チャンバ一間の連続的な 液体の移送を実現するため、流路の折り返し部を、その流路が連通する内周側の液 体混合チャンバ一の最も内周側の面よりも外周側に設定する。
[0047] さらに、回転操作により生じるただ 1回の遠心力により複数の液体混合チャンバ一 間を液体が移送される際に連続的に液体の分配と衝突を繰り返すことをより確実に するために、折り返し部を回転軸から所定の距離をもって形成するようにしてもょ ヽ。 この所定の距離とは、折り返し部が、自身が連通する内周側の液体混合チャンバ一 内の、内周側に最も近い面と、回転軸に対して折り返し部と等距離の面とが画定する 空間の容積が、回転体が回転する際に空気孔を介して混入可能な空気の量を略上 回るように算出することが望ま 、。
[0048] この構成により、本発明の液体均一化装置は、液体が移動する際に、空気の一部 が液体混合チャンバ一内に残留することにより、液体の流れが途切れることを防止で きる。これにより、結果的に連続的に液体を移送させることができる。本実施の形態の 構成は、上記に示した他の実施の形態と組み合わせて、本発明の液体均一化装置 を実現することができる。また、回転体が回転する際に空気孔を介して混入可能な空 気の量は、空気孔の形状、寸法等の条件に応じて算出可能である。内周側に最も近 い面と、回転軸に対して折り返し部と等距離の面とが液体混合チャンバ一内に画定 する空間の容積については、回転体の回転時に、液体混合チャンバ一に混入する 空気が液体の流れを途切れさせな 、程度に液体を保持可能であればよぐ厳密な意 味では、液体の粘性や空気との親和性が高い場合は、混入可能な空気の量を若干 下回ることも許容するなど、液体の性質も考慮して決定することが好まし 、。
[0049] ここで、連続して複数の液体混合チャンバ一間で液体を移送する過程において、 流体を混合する場合に重要なのは、各液体混合チャンバ一に液体が導入されるタイ ミングである。各液体混合チャンバ一には 2つ以上の複数の流路を介して液体が導 入されるが、複数の流路を介して各液体混合チャンバ一に液体が導入されるタイミン グを同期させる必要がある。なぜなら、液体が各液体混合チャンバ一に導入されるタ イミングに時間差があると、液体同士の衝突が少なくなり、均一化に必要な乱流を生 じさせることが出来なくなる力らである。従って、本実施の形態の液体均一化装置で は、 1回の回転操作で液体の複数の液体混合チャンバ一間の連続的な移送を実現 するために、内周側の液体混合チャンバ一から出ている 2つ以上の流路それぞれの 折り返し部は、回転軸に対して距離の等しい同一面上に設置されている。これにより 、 2つ以上の流路により分配させられた液体を、同じタイミングで流路の折り返し部を 越えて、同じタイミングで液体混合チャンバ一へ送り込むことができる。
[0050] 本発明にお ヽて、液体混合チャンバ一と流路の接続位置は、特に制限されな!、が 、同一の液体混合チャンバ一において、液体を導入する導入口と液体を導出する導 出口の位置関係については、導入口が導出口よりも内周側に形成されるのが良い。
[0051] 本発明の別の実施の形態において、外周側の同一の液体混合チャンバ一に導入 される 2つ以上の流路の導入口の位置にっ 、て、一方の導入口が他方の導入口に 対して、外周側に設定される場合がある。これは、 2つ以上の流路カも流れてくる液 体を、一方では液体混合チャンバ一の外周側から、他方では液体混合チャンバ一の 内周側から導入することにより、液体の衝突をより効果的に行わせて、乱流を生じや すくする。とくに、難混合性であり、低溶解性、低反応性、高粘性等の液体が対象と なる場合は有効である。
[0052] さらに、本実施の形態において、液体混合チャンバ一に形成される導入口の数お よび導出口の数は、この液体混合チャンバ一に導入される流路の数、および導出さ れる流路の数と同一であるとしている力 本発明はこれに限定されず、成形スペース が許すのであれば、複数の流路を途中で合流させる、または分岐するなどして流路 の数を増減させても良い。従って、その際の流路も、例えば、複数の流路を合流させ る、あるいは分岐させるなどして形成しても良い。
[0053] さらに、回転操作により生じるただ 1回の遠心力により複数の液体混合チャンバ一 間を液体が移送される際に連続的に液体の分配と衝突を繰り返すことができる別の 実施の形態として、内周側の液体混合チャンバ一を外周側の液体混合チャンバ一と 比較して容積がより大きくなるように配設してもよい。即ち、液体混合チャンバ一の容 積の大きさを、外周側に形成された液体混合チャンバ一ほど、小さくなるように設計 すると、液体が移動する際に、空気が混入することによって、液体の流れが切れて、 その空気の一部がチャンバ一内に残留することを防止できる。これにより、結果的に 連続的に液体を移送させることができる。本実施の形態の構成は、上記に示した他 の実施の形態と組み合わせて、本発明の液体均一化装置を実現することができる。
[0054] さらに、本発明の液体均一化装置の別の実施の形態では、回転体に対して回転操 作と回転停止操作を繰り返して実行することにより液体の複数の液体混合チャンバ 一間の移送を制御して、液体の均一化を実施するようになっている。この場合、液体 混合チャンバ一に一時的に、且つ、完全に流体を保持することが重要である。従って 、内周側の液体混合チャンバ一から延伸する流路の折り返し部が、流路が延伸する 液体混合チャンバ一の最も内周側の面よりも内周側にある必要がある。この流路内 で液体は、遠心力に限らず、毛細管現象によっても移送される。回転中は、遠心力 の効果により液体が移送されて、液体混合チャンバ一および連通する流路の折り返 し部の手前で一時完全に保持されるが、回転が停止すると、毛細管現象により液体 は流路内をさらに流れていき、次の液体混合チャンバ一の手前で停止する。その後 、再度、回転させることで遠心力の効果で、次の液体混合チャンバ一へ液体を導入 する。
[0055] 液体混合チャンバ一連通する流路の折り返し部の手前で一時的に、且つ、完全に 流体を保持することにより、本発明の均一化装置の設計上の自由度が広がる。即ち、 一時的に、液体を液体混合チャンバ一および連通する流路の折り返し部の手前まで の領域内に完全に保持することができるため、 2つ以上の流路力 流れてくる液体が 液体混合チャンバ一に導入されるタイミングは必ずしも同期させる必要はなくなり、む しろ同期させないほうが流体の衝突という観点力もより効果的で、乱流も起こしやすく なり、均一化しやすくなる。従って、 2つ以上の流路形状の折り返し部は、相互に回転 軸に対して距離の等しい同一面上に設定する必要はなぐむしろ積極的に回転軸に 対して距離の等しい同一面上に設定させないようにする。こうして、意識的に液体混 合チャンバ一に導入される液体の流れに時間差を生じさせることができる。
[0056] 本実施の形態の液体均一化装置では、厚み方向を利用することにより、限りあるス ペースを有効に使用することができる。即ち、内周側の液体混合チャンバ一力も延出 する流路を厚み方向に対して上側に形成し、外周側の液体混合チャンバ一に延入 する流路を下側に形成する。これにより、 2つ以上の流路ゃ 2つ以上の液体混合チヤ ンバーが必要な場合も、もしくは、本発明の液体均一化装置に別の機能を付随指せ る場合も、スペースを意識せず相互に干渉することもなくレイアウトすることができる。
[0057] 例えば、 3層構造のもので実現する場合について説明する。 3層のうち上層側に相 当する領域に内周側の液体混合チャンバ一力 延出する流路を、下層側に相当す る領域に外周側の液体混合チャンバ一へ延入する流路を形成すれば ヽ。そして、 上層側の流路と下層側の流路の接点は中間の層を貫通させることで連通させること ができる。
[0058] 本発明の液体均一化装置は、液体混合チャンバ一と外気をつなぐ空気孔をさらに 有することが好ましい。この構成により、液体均一化装置内での液体の移動がスムー ズになる。
[0059] 本発明の液体均一化装置は、さらにオーバーフローチャンバ一をさらに含むことが 好ましい。このオーバーフローチャンバ一は、液体混合チャンバ一で混合された後に 流出する液体を受け止め、液体均一化装置力 溢れ出ることのないようになつている 。また、オーバーフローチャンバ一は、液体混合チャンバ一から混合されて流出する 液体の量を定量するために用いることもできる。
[0060] 本発明の液体均一化装置にお!ヽて、混合対象となる液体は、特に制限されな ヽが 、例えば、液体試料、反応試薬、希釈溶媒等である。前記液体試料としては、特に限 定されないが、例えば、血液、尿等の生体試料が挙げられる。前記希釈溶媒としては 、例えば、水、有機溶媒、緩衝液等が挙げられる。前記緩衝液とは、例えば、リン酸 緩衝液、トリス緩衝液、炭酸緩衝液等が挙げられる。前記反応試薬は、例えば、酵素 反応、抗原抗体反応、受容体との反応、核酸検出反応、細胞破壊反応等の反応の 種類に応じて選択される。前記反応試薬とは、試料中の物質と反応する物質が含ま れている溶液であれば良い。前記溶液の溶媒としては、例えば、水、有機溶媒、緩衝 液等である。前記緩衝液としては、例えば、リン酸緩衝液、トリス緩衝液、炭酸緩衝液 等が挙げられる。前記試料中の物質と反応する物質としては、例えば、酵素、抗原、 抗体、レセプター、核酸、無機塩、界面活性剤等が挙げられる。例えば、酵素反応の 場合、前記試料中の物質と反応する物質は、酵素、例えば、グルコースォキシダー ゼ等である。例えば、抗原抗体反応の場合、前記試料中の物質と反応する物質は、 抗原、例えば試料中に存在する抗体 (例えば、 HCV抗体、 HIV抗体等)と特異的に 反応する抗原である。または、抗原抗体反応の場合、前記試料中の物質と反応する 物質は、抗体、例えば試料中に存在する抗原と特異的に反応する抗体 (ポリクローナ ル抗体、モノクローナル抗体、キメラ抗体、 Fab抗体、 F (ab) 2抗体、 Fv抗体等)であ る。また、受容体との反応の場合、前記試料中の物質と反応する物質は、レセプター 、例えば、試料中のステロイド、ホルモン (ペプチドホルモン等)、ビタミン、増殖因子、 サイト力イン、カテコールアミン等の生理活性物質と特異的に反応する物質である。ま た、核酸検出反応の場合、前記試料中の物質と反応する物質は、 DNA、 RNA等で ある。また、細胞破壊反応の場合、前記試料中の物質と反応する物質は、無機塩、 界面活性剤等である。なお、無機塩は、細胞内外の浸透圧を変化させ、細胞を収縮 、もしくは、膨張させることで細胞破壊を促す役割を有する。界面活性剤は、細胞成 分である蛋白質やリン脂質などの親水性と疎水性のバランスを崩すことにより細胞破 壊を促す役割を有する。前記無機塩としては、例えば、塩ィ匕ナトリウム、塩ィ匕カリウム 、フッ化ナトリウム、チォシアンィ匕ナトリウム、チォシアンィ匕カリウム等が挙げられ、前記 界面活性剤としては、例えば、スクロースモノラウレート、ォレイン酸ナトリウム、ドデシ ル硫酸ナトリウム(SDS)等が挙げられる。
なお、本発明の液体均一化装置において、生体試料を適用する場合、生体試料は 、当初、乾燥状態であっても良い。例えば、この例の液体均一化装置においては、基 板を貼り合せる前に、液状試料を塗布し、乾燥担持させて作製しても良い。 [0062] 本発明の液体均一化装置にお!、て、その形態は特に制限されな 、が、この例の液 体均一化装置の形状のように、円盤状が好ましい。なお、その他の形状としては、例 えば、カートリッジ状、チップ状等があるが、いずれも、最終的には回転体に適合され るものであれば良い。
[0063] 以下に、本発明の液体均一化装置、および本発明の液体均一化装置を用いた分 析装置の実施例について、比較例とあわせて詳細に説明する。なお、ここでの実施 例に力かる具体的な限定は、本発明の要旨を限定するものでないことはいうまでもな い。
(第 1の実施例)
図 1乃至図 3は、本発明の第 1の実施例の液体均一化装置の構成を示す図である
[0064] 本実施例の液体均一化装置は、図 1に示すように所定の回転軸(図示されていな い)を中心として回転する、その中心に孔が形成された円盤状の回転体 1から構成さ れている。中心孔は回転体 1の回転軸と同心円状に形成されているものとする。
[0065] 回転体 1は、図 2に示すように、回転体 1のカバーを構成する第 1の基板 31と、空隙 が形成された第 2の基板 32と、回転体 1の底部を構成する第 3の基板 33とを主要構 成部材とし、これらが前記の順番に積層されて形成されている。
[0066] 第 1の基板 31には、試料注入口 16および空気孔 5、 9、 13が形成されている。第 2 の基板 32に形成された空隙は所定の形状を有しており、上述の第 1の基板 31、第 2 の基板 32、第 3の基板 33が積層されると、チャンバ一および流路が形成されるように なっている。
[0067] 本実施例では、中心孔側から、 2つの試料チャンバ一 2および 3と、第 1の液体混合 チャンバ一 6、第 2の液体混合チャンバ一 10および第 3の液体混合チャンバ一 14と、 オーバーフローチャンバ一 15とが、回転体 1の回転軸から遠くに向かう方向(以下、 外周方向または外周側という)に向かって、回転体 1にこの順序で形成されているも のとする。図 1に示されるように、第 1の液体混合チャンバ一 6、第 2の液体混合チャン バー 10および第 3の液体混合チャンバ一 14は中心孔、すなわち、回転体 1の回転 軸からの距離を異にしている。さらに、液体混合チャンバ一は、外周方向に位置する ほど、容積が小さくなるものとする。すなわち、第 3の液体混合チャンバ一 14は第 2の 液体混合チャンバ一 10より容積が小さぐ第 2の液体混合チャンバ一 10は第 1の液 体混合チャンバ一 6より容積が小さ ヽ。
[0068] さらに、回転体 1には、 2つの試料チャンバ一 2および 3と第 1の液体混合チャンバ 一 6とをそれぞれ連通する独立した 1組の直線状の流路 4が形成されている。
[0069] また、回転体 1には、第 1の液体混合チャンバ一 6と第 2の液体混合チャンバ一 10 を連通する 1組の流路 8が形成されている。液体混合チャンバ一間を連通する流路と して逆 U字形のような流路が採用できる。この場合に重要なのは、逆 U字形の頂点が 、流路が連通する液体を導入する液体混合チャンバ一との連結部より回転体 1の回 転軸の方向(以下、内周方向または内周側という)に位置することである。具体的に は、流路 8はそれぞれ、第 1の液体混合チャンバ一 6の外周方向側に形成された連 結部からまず、内周方向に延び、折り返し部 7で Uターンして外周方向に延びて第 2 の液体混合チャンバ一 10に形成された連結部まで延伸している。同様に、回転体 1 には、第 2の液体混合チャンバ一 10と第 3の液体混合チャンバ一 14を連通する 1組 の流路 12が形成されている。これらの流路 12はまず、第 2の液体混合チャンバ一 10 の外周方向側に形成された連結部から、まず、内周方向に延び、折り返し部 11で U ターンして外周方向に延びて第 3の液体混合チャンバ一 14に形成された連結部まで 延伸している。さらに、第 3の液体混合チャンバ一 14とオーバーフローチャンバ一 15 とは、一本の流路で連通されている。これらのチャンバ一および流路を組み合わせて 、一つの液体混合ユニットが構成される。なお、本発明の液体均一化装置において、 液体混合ユニットは、複数形成されて ヽることが好ま 、。
[0070] 折り返し部と液体混合チャンバ一との関係について図 8を参照して説明する。図 8 ( a)は、第 1の液体混合チャンバ一 6と折り返し部 7との関係を説明している。
[0071] 図 8 (a)に示すように、第 1の液体混合チャンバ一 6と連通する 2本の流路は第 1の 液体混合チャンバ一 6に形成された導出口 6bから図 8 (a)に図示されていない第 2の 液体混合チャンバ一 10へ延伸している力 自身が連通している内周側の第 1の液体 混合チャンバ一 6に形成された導出口 6bよりさらに内周側に折り返し部 7a、 7bを有し ている。この構成により、本実施例の液体均一化装置は、回転体の回転時に第 1の 液体混合チャンバ一 6と折り返し部 7の近傍に液体を一時的に保持することができる ため、液体が流路を介して外周側の第 2の液体混合チャンバ一 10に導入される際に 、確実に乱流を発生させることができる。また、本実施例では、折り返し部 7は、第 1の 液体混合チャンバ一 6の最も内周側の点 6aを含む、回転軸カゝら等距離に離間した面 P1 (以後、「最も内周側の面」、または「回転軸に最も近い面」とよぶ)よりも外周側に 構成されている。この構成により、本実施例の液体均一化装置は、 1回の回転操作に より、第 1の液体混合チャンバ一 6と第 2の液体混合チャンバ一 10との間の連続的な 液体の移送を可能にして 、る。
[0072] また、第 1の液体混合チャンバ一 6は空気孔 5と連通しているため、液体が移動する 際に、空気孔 5を介して混入された空気の一部が第 1の液体混合チャンバ一 6内に 残留して、液体の流れが途切れる可能性がある。このため、折り返し部 7は回転軸か ら所定の距離だけ離間して形成されている必要がある。この所定の距離とは、折り返 し部 7が、第 1の液体混合チャンバ一 6内の、最も内周側の面 P1と、折り返し部 7の頂 点 7a、 7bを含む回転軸力も等距離に離間した面 P2とが画定する空間の容積 Qが、 回転体が回転する際に空気孔 5を介して混入可能な空気の容積を略上回るように算 出することが好ましい。回転体が回転する際に空気孔を介して混入可能な空気の量 は、空気孔の形状、寸法等の条件に応じて算出可能である。内周側に最も近い面 P 1と、折り返し部 7を含む回転軸力 等距離に離間した面 P2とが液体混合チャンバ一 6内に画定する空間の容積については、回転体の回転時に、第 1の液体混合チャン バー 6に混入する空気が液体の流れを途切れさせない程度に液体を保持可能であ ればよぐ厳密な意味では、例えば、液体の粘性や空気との親和性が高い場合は、 混入可能な空気の量を若干下回ることも許容するなど、液体の性質も考慮して決定 することが好ましい。
[0073] さらに、第 1の液体混合チャンバ一 6から延伸する流路にそれぞれ形成された折り 返し部 7a、 7bは、回転軸力 の距離が等しい。この構成により、本実施例の液体均 一化装置は、 2つ以上の流路により分配させられた液体を、同じタイミングで流路の 折り返し部 7a、 7bを越えて、同じタイミングで第 2の液体混合チャンバ一 10へ送り込 むことができるようになつている。第 2の液体混合チャンバ一 10と折り返し部 11との関 係についても、第 1の液体混合チャンバ一 6と折り返し部 7との関係と同様であるので 説明を省略する。また、液体混合チャンバ一と流路の接続位置は、特に制限されな いが、同一の液体混合チャンバ一において、液体を導入する導入口と液体を導出す る導出口の位置関係については、導入口が導出口よりも内周側に形成されるのが好 ましい。
[0074] 次に、液体均一化装置の製造方法について、図 4および図 5の断面図に基づき説 明する。なお、前記両図において、図 1〜3と同一部分には同一符号を付している。
[0075] まず、図 4に示すように、剥離紙 21、接着剤層 22、第 2の基板 32、接着剤層 24お よび剥離紙 25の積層体を用意し (図 4 (a)参照)、上述した所望のチャンバ一、流路 等の形態に基づいて、切断機、例えばカッティングプロッターを用いて、剥離紙 25を 除ぐ剥離紙 21、接着剤層 22、第 2の基板 32および接着剤層 24を切断し、所定の 形状の空隙を形成する(図 4 (b)参照)。この空隙が、後にチャンバ一や流路等を形 成すること〖こなる。
[0076] 次に、空隙が形成された積層体から、剥離紙 21を除去し、その上に、第 1の基材( カバー) 31を積層させる。第 1の基材 31には、予め空気孔 5および試料注入口 16等 を形成しても良いし、第 1の基材 31を積層後、空気孔 5および試料注入口 16等を形 成しても良い。
[0077] その後、積層体から、剥離紙 25を除去し、第 3の基板(回転体底部) 33を積層させ 、図 5に示すように、液体均一化装置を得ることができる。
[0078] ここで、基板 32は、両面粘着性シート(芯 (第 2の基板) 32の厚みは 50 μ m、接着 剤層 22および 24の厚みは、それぞれ 25 μ mとして、 FLEXCON社製)を用いて、 接着剤層 24を、チャンバ一部分と流路部分の親水性を向上させるために、 10%トラ ィトン— 100のエタノール溶液で処理している。また、第 2の基板 32の切り取り加工は 、カッティングプロッター(GRAPHTEC製、 CE3000— 40)を用いて実施した。
[0079] この液体均一化装置を使用した液体均一化方法について説明する。
[0080] まず、二つの試料注入孔 16から、液体試料および液体試薬 (もしくは希釈溶媒)を 別々に導入し、 2つの試料チャンバ一 2および 3に注入する。この状態で、この液体 均一化装置を専用の回転装置にセットし、回転させると、これにより遠心力が生じる。 この遠心力により、液体試料および液体試薬は、それぞれの流路 4を通って第 1の液 体混合チャンバ一 6に導入され、導入の際のぶっかり合い等で乱流が生じ、混合さ れる。続いて、このようにして混合された液体試料および液体試薬はさらに、 2つの流 路 8を通って第 1の液体混合チャンバ一 6から第 2の液体混合チャンバ一 10に導入さ れ、ここでも導入の際のぶつ力り合い等で乱流が生じてさらに混合される。そして、こ うして混合された液体試料および液体試薬は、 2つの流路 12を通って第 2の液体混 合チャンバ一 10から第 3の液体混合チャンバ一 14に導入され、ここでも導入の際の ぶつ力り合い等で乱流が生じてさらに混合される。このように、この装置では、混合が 3段階で実施されるため、より均一な混合が可能となる。第 3の液体混合チャンバ一 1 4からあふれた液体試料等は、流路を通ってオーバーフローチャンバ一 15に移動す る。
[0081] 以上説明したように、本実施例の液体均一化装置は、各チャンバ一の容積を、外 周方向に位置するほど、小さくなるような構成としたことにより、それぞれのチャンバ一 を 2つ以上の逆 U字形の流路によって連結したことによりただ 1回のみの回転体の回 転で液体の均一混合ができる。
[0082] (比較例)
比較例として、チャンバ一および流路デザインを図 1に代えて、図 9に示すような流 路デザインにした以外は、第 1の実施例と同様の液体均一化装置を第 1の実施例の 場合と同様の方法で作製した。
[0083] 図 9において、回転体 101には、内周側から、 2つの試料チャンバ一 102および 10 3と、第 1の液体混合チャンバ一 106、第 2の液体混合チャンバ一 110および第 3の 液体混合チャンバ一 114と、オーバーフローチャンバ一 115と力 外周方向に向かつ て、この順序で形成され、さらに、チャンバ一間には液体試料の流れる流路が 1本ず つ形成されている。
[0084] 回転体 101には、 2つの試料チャンバ一 102、 103と第 1の液体混合チャンバ一 10 6とを連通する、それぞれが独立した直線状の流路 104と、第 1の液体混合チャンバ 一 106と第 2の液体混合チャンバ一 110とを連通する 1本の流路 108と、第 2の液体 混合チャンバ一 110と第 3の液体混合チャンバ一 114とを連通する 1本の流路 112と が形成されている。第 1の液体混合チャンバ一 106、第 2の液体混合チャンバ一 106 、第 3の液体混合チャンバ一 114には、それぞれ空気孔 105、 109、 112が形成され ている。各液体混合チャンバ一間を連通する流路 107、 112はそれぞれ逆 U字形の 形状で、逆 U字形の頂点が、流路が連通する液体を導入する液体混合チャンバ一と の連結部より回転体 101の回転軸の方向(以下、内周方向または内周側という)に位 置している。
[0085] 具体的には、まず、 2つの試料チャンバ一 102、 103は、それぞれ独立した 1組の 直線状の流路 104により、第 1の液体混合チャンバ一 106と連通している。流路 108 はまず、第 1の液体混合チャンバ一 106の外周側に形成された連結部から、まず、内 周側に延び、折り返し部 107で Uターンして外周方向に延びて第 2の液体混合チヤ ンバー 110に形成された連結部まで延伸している。同様に、流路 104は、第 2の液体 混合チャンバ一 110の外周側に形成された連結部から、まず、内周側に延び、折り 返し部 111で Uターンして外周方向に延びて第 3の液体混合チャンバ一 114に形成 された連結部まで延伸している。第 3の液体混合チャンバ一 114とオーバーフローチ ヤンバー 115も同様に 1本の流路で連結されている。
[0086] このようにして構成された第 1の実施例および比較例の各液体均一化装置につい て、赤色ラテックス粒子懸濁液 (SEKISUI製、 0.313 m径の粒子)を用いて混合度の 評価を行った。すなわち、 2つの試料供給孔から、前記赤色ラテックス粒子懸濁液と 水とを注入し、 1600rpmの回転速度で 1分間回転させ、赤色ラテックス粒子溶液と水 を混合させた。第 1の実施例の液体均一化装置を用いた結果を図 10 (a)の装置の全 体図、および図 10 (b)の図 10 (a)の一部を拡大図に、比較例の液体均一化装置を 用いた結果を図 11 (a)の装置の全体図、および図 11 (b)の図 11 (a)の一部拡大図 に、それぞれ示す。図 10 (a)から第 1の液体混合チャンバ一 6に導入された液体が第 2の液体混合チャンバ一 10を介して第 3の液体混合チャンバ一 14に移送されている ことがわかる。図 10 (b)から、第 1の実施例の液体均一化装置では、赤色ラテックス 粒子懸濁液と水が、均一に混合されていることがわかる。一方、図 11 (b)から、比較 例の液体均一化装置では、赤色ラテックス粒子懸濁液と水が、均一に混合されてお らず、赤色ラテックス粒子懸濁液が下方に沈殿してしまって 、ることがわ力る。 [0087] このことから、第 1の実施例の液体均一化装置は、比較例の液体均一化装置に比 ベ、流路スペースを大きくとることなぐ前記赤色ラテックス粒子懸濁液と水とを、より 均一に混合することができた。これを、光ファイバ一分光器を用いて、極大吸収波長 における吸光度を測定することによって定量ィ匕すると、第 1の実施例の液体均一化装 置を用いた場合では、どのスポットで測定しても同じ吸光度を示すのに対し、比較例 の液体均一化装置を用いた場合では、スポットによって吸光度ムラがあった。
[0088] 以上、説明したように本実施例の液体均一化装置は、所定の回転軸を中心として 回転する回転体 1と、回転体 1に形成された、回転軸からの距離を異にする 2つ以上 の液体を混合する 2つ以上の液体混合チャンバ一 6、 10、 14と前記液体混合チャン バーを相互に連通する 2つ以上の流路 8、 12とを有し、液体混合チャンバ一 6、 10、 14はそれぞれ、 2つ以上の流路で相互に連通されている。このため、回転体 1が回 転する際に生じる遠心力により、回転軸に近い側に形成された液体混合チャンバ一 力 導出された液体を前記 2つ以上の流路を介して前記回転軸に遠い側に形成され た前記液体混合チャンバ一に導入することにより、導入された液体は互 、にぶつかり 合うなどして乱流が生させて、液体を均一に混合することができるため、従来より省ス ペースで液体を均一に混合することできた。
[0089] なお、本実施例において、逆 U字形流路の折り返し部を自身が連通する内周側の 液体混合チャンバ一の最も内周側の面より外周側に設けたが、本発明はこれに限定 されるものではなぐ例えば、折り返し部を自身が連通する内周側の液体混合チャン バーの最も内周側の面より内周側に設けても同様の効果を得ることができる。これに ついて第 2の実施例で説明する。
(第 2の実施例)
図 6および図 7は、本発明の第 2の実施例の液体均一化装置を用いた分析装置を 示す図である。
[0090] 本実施例の液体均一化装置を用いた分析装置は、第 1の実施例の液体均一化装 置と同様に、図 6に示す、所定の回転軸(図示されていない)を中心として回転する、 その中心に孔が形成された円盤状の回転体 50から構成されている。中心孔は回転 体 50の回転軸と同心円状に形成されているものとする。 [0091] 回転体 50は、図 7に示すように、回転体 50のカバーを構成する第 1の基板 81と、 空隙が形成された第 2の基板 82と、回転体 50の底部を構成する第 3の基板 83を主 要構成部材とし、これらが前記の順番に積層されて形成されて 、る。
[0092] 第 1の基板 81には、試料注入口 60および空気孔 61〜66と、所定の形状を有した 凹部が試料注入口 60および空気孔 61〜66の間に形成されている。第 2の基板 82 に形成された空隙は第 1の基板 81に対応した所定の形状を有しており、上述の第 1 の基板 81、第 2の基板 82、第 3の基板 83が積層されると、チャンバ一および流路が 形成されるようになって 、る。
[0093] 本実施例では、中心孔側から外周方向側へ順に、第 1のチャンバ一 51、第 2のチヤ ンバー 52、第 3のチャンバ一 53、第 4のチャンバ一 54、第 5のチャンバ一 55、第 6の チャンバ一 56が回転体 50に形成されている。図 6に示されるように、第 1のチャンバ 一 51、第 2のチャンバ一 52、第 3のチャンバ一 53、第 4のチャンバ一 54、第 5のチヤ ンバー 55、第 6のチャンバ一 56は中心孔、すなわち、回転体 50の回転軸からの距 離を異にしている。
[0094] さらに、回転体 50には、第 1のチャンバ一 51と第 2のチャンバ一 52とをそれぞれ連 通する、 2つで 1組の逆 U字形の流路 71が形成されている。同様に、回転体 50には 、第 2のチャンバ一 52と第 3のチャンバ一 53とをそれぞれ連通する、 2つで 1組の逆 U字形の流路 72、第 3のチャンバ一 53と第 4のチャンバ一 54とを連通する、 2つで 1 組の逆 U字形の流路 73、第 4のチャンバ一 54と第 5のチャンバ一 55とをそれぞれ連 通する、 2つで一組の逆 U字形の流路 74、第 5のチャンバ一 55と第 6のチャンバ一 5 6とをそれぞれ連通する、 2つで一組の逆 U字形の流路 75が形成されている。前記 第 2〜第 6の各チャンバ一には、それぞれ空気孔 62、 63、 64、 65、 66が形成されて いる。
[0095] なお、本実施例では、逆 U字形流路の折り返し部を自身が連通する内周側の液体 混合チャンバ一の最も内周側の面より内周側に設けて、回転、停止を繰り返すことに より、流体移送とそれに伴う混合を実施するように流路デザインを構成している。
[0096] これらの点以外は、本実施例の液体均一化装置は、前述の第 1の実施例と同様で ある。また、回転体の組立て方法も第 1の実施例と同様である。 [0097] まず、折り返し部と液体混合チャンバ一との関係について図 8を参照して説明する。 図 8 (b)は、第 2の液体混合チャンバ一 52と折り返し部 72との関係を説明している。
[0098] 図 8 (b)に示すように、第 2の液体混合チャンバ一 52と連通する 2本の流路は第 2の 液体混合チャンバ一 52に形成された導出口 52bから図 8 (b)に図示されていない第 3の液体混合チャンバ一 53へ延伸しているが、自身が連通している内周側の第 2の 液体混合チャンバ一 52に形成された導出口 52bよりさらに内周側に折り返し部 72a、 72bを有している。この構成により、本実施例の液体均一化装置は、回転体の回転 時に第 2の液体混合チャンバ一 52と折り返し部 72の近傍に液体を一時的に保持す ることができるため、液体が流路を介して外周側の第 3の液体混合チャンバ一 53に 導入される際に、確実に乱流を発生させることができる。また、本実施例では、折り返 し部 72は、第 2の液体混合チャンバ一 52の最も内周側の点 52aを含む、回転軸から 等距離に離間した面 P4 (以後、「最も内周側の面」、または「回転軸に最も近い面」と よぶ)よりも内周側に構成されている。この構成により、本実施例の液体均一化装置 は、回転と停止を繰り返すことにより、流体移送とそれに伴う混合を可能にしている。
[0099] また、本実施例では、第 2の液体混合チャンバ一 52から延伸する流路にそれぞれ 形成された折り返し部 72a、 72bは、回転軸力 の距離が等しい同一面 P3上に配置 される構成になっているが、本発明はこれに限定されない。本実施例では、回転、停 止を繰り返すため、複数の流路力 流れてくる液体が液体混合チャンバ一に導入さ れるタイミングは必ずしも同期させる必要はなくなり、むしろ同期させないほうが流体 の衝突という観点力もより効果的で、乱流も起こしやすくなり、均一化しやすくなる。従 つて、折り返し部 72a、 72bは相互に回転軸からの距離が等しい同一の面 P3上に設 ける必要はなぐむしろ積極的に回転軸からの距離が等しい同一の面 P3上に設定さ せないようにすることが好ましい。この構成により、意識的に液体混合チャンバ一に導 入される液体の流れに時間差を生じさせ、乱流を起こしやすくできるという効果がある 。さらに、第 1の液体混合チャンバ一 51と流路 71、第 3の液体混合チャンバ一 53と流 路 73、第 4の液体混合チャンバ一 54と流路 74、第 5の液体混合チャンバ一 55と流 路 75との関係についても、第 2の液体混合チャンバ一 52と折り返し部 72との関係と 同様であるので説明を省略する。 [0100] ここで、第 2のチャンバ一 52には、ラテックス標識抗ヒトアルブミンポリクローナル抗 体を凍結乾燥担持させてから、第 1の基板 81を貼り合せた。ラテックスへの標識は、 アルブミンと反応するゥサギ由来抗ヒトアルブミンポリクローナル抗体を公知の方法に 従い、ラテックス(160應)粒子に物理吸着させることにより行った。
[0101] 次に、液体均一化装置による液体混合を、アルブミンを抗原抗体反応に基づ 、て 測定する方法を説明する。この測定例では、液体均一化装置で、混合と抗原抗体反 応を実施し、その後、光ファイバ一で吸光度を測定するようにした。この装置におい て、第 1のチャンバ一 51はサンプリング工程の場として、第 2のチャンバ一 52はアル ブミンに対する抗体を乾燥状態で担持させており、サンプルが導入された際に溶解さ せる場として、第 3のチャンバ一 53、第 4のチャンバ一 54、第 5のチャンバ一 55は混 合 ·反応のために使用される場として使用される。第 6チャンバ一 56は混合された反 応液を、光ファイバ一で測定する場としている。
[0102] 操作手順を示す。試料注入孔 60から第 1のチャンバ一 51にサンプル (アルブミンを 含む PBS緩衝液)を導入し、逆 U字形流路 71を通じて、毛細管現象により第 2のチヤ ンバー 52の手前まで液体を移送させる。その後、回転装置を回転させてサンプルを 第 2のチャンバ一 52に導入すると同時に、乾燥担持されている抗体を溶解させて反 応を開始させる。その後、回転装置の回転を停止させて、毛細管現象により、第 3の チャンバ一 53の手前まで反応混合液を移送させる。引き続き回転停止を繰り返して 、前記反応混合物を第 3のチャンバ一 53、第 4のチャンバ一 54、第 5のチャンバ一 5 5と順次移送させることにより、反応混合物の混合を行い、最終的に第 6チャンバ一 5 6へ移送させて、そこでサンプル液を光ファイバ一により光学的に検出する。吸光度 を経時的に測定すると、吸光度が高くなつていき、反応が進んでいることを確認した。
[0103] 以上説明したように本実施例の液体均一化装置を用いた分析装置は、所定の回転 軸を中心として回転する回転体 50と、回転体 50に形成された、回転軸からの距離を 異にする 2つ以上の液体を混合する 2つ以上の液体混合チャンバ一 51、 52、 53、 5 4、 55、 56と前記液体混合チャンバ一を相互に連通する 2つ以上の流路 71、 72、 73 、 74、 75とを有し、液体混合チャンノ ー 51、 52、 53、 54、 55、 56はそれぞれ、 2つ 以上の流路で相互に連通されており、回転体が回転する際に生じる遠心力により、 回転軸に近い側に形成された液体混合チャンバ一力ゝら導出された液体を前記 2っ以 上の流路を介して前記回転軸に遠い側に形成された前記液体混合チャンバ一に導 入するようになっており、このため、導入された液体が互いにぶつ力り合うなどして乱 流が生じ、この結果、前記液体が均一に混合されている。したがって、この装置では 、流路で液体を均一に混合しないので、流路を蛇行させる必要もなぐ蛇行のための スペースを大きくとる必要もない。これにより、省スペースで効率よく液体を混合するこ とができ、それに引き続く反応、もしくは反応による物理的'化学的な変化量を電気化 学的'光学的な手段等による検出を再現性よく行うことができる分析装置を構築する ことができる。

Claims

請求の範囲
[1] 所定の回転軸を中心として回転する回転体と、回転体に形成された、前記回転軸か らの距離を異にする 2つ以上の液体を混合する 2つ以上の液体混合チャンバ一と前 記液体混合チャンバ一を相互に連通する 2つ以上の流路とを有し、
前記液体混合チャンバ一はそれぞれ、 2つ以上の流路で相互に連通されており、前 記回転体が回転する際に生じる遠心力により、前記回転軸に近い側に形成された前 記液体混合チャンバ一から導出された液体を前記 2つ以上の流路を介して前記回転 軸に遠い側に形成された前記液体混合チャンバ一に導入することにより乱流を生じ させて前記液体を均一に混合することを特徴とする液体均一化装置。
[2] 前記液体混合チャンバ一を相互に連通する流路は、前記回転軸に近い側の液体混 合チャンバ一に形成された液体が導出される導出ロカ 前記回転軸に遠い側の液 体混合チャンバ一に形成された液体が導入される導入口まで延伸し、自身が連通す る前記回転軸に近い側の前記液体混合チャンバ一の前記導出口よりもさらに前記回 転軸に近 、側に屈曲部が形成されて!、ることを特徴とする請求項 1に記載の液体均 一化装置。
[3] 前記屈曲部は、自身が連通する前記回転軸に近い側の液体混合チャンバ一の前記 回転軸に最も近 ヽ面よりも前記回転軸から遠くに形成されて ヽることを特徴とする請 求項 2に記載の液体均一化装置。
[4] 前記液体混合チャンバ一はそれぞれ空気孔と連通しており、前記屈曲部は前記回 転軸から所定の距離をもって形成されており、前記所定の距離は、前記屈曲部が連 通する前記回転軸に近い側の液体混合チャンバ一内の、前記回転軸に最も近い面 と前記回転軸に対して前記屈曲部と等距離の面とが画定する空間の容積が、前記 回転体が回転する際に前記空気孔を介して混入可能な空気の容積を略上回るよう に算出されていることを特徴とする請求項 3に記載の液体均一化装置。
[5] 同一の液体混合チャンバ一力 延伸する 2つ以上の流路にそれぞれ形成された前 記屈曲部は、前記回転軸からの距離が等しいことを特徴とする請求項 3に記載の液 体均一化装置
[6] 前記回転軸に遠!、側の液体混合チャンバ一に形成された 2つ以上の流路の導入口 はそれぞれ、前記回転軸力 の距離を異にすることを特徴とする請求項 5に記載の 液体均一化装置。
[7] 前記回転軸に近!、側の液体混合チャンバ一は、前記回転軸に遠!、側の液体混合チ ヤンバーよりも容積が大きいことを特徴とする請求項 3に記載の液体均一化装置。
[8] 前記屈曲部は、自身が連通する前記回転軸に近い側の液体混合チャンバ一の前記 回転軸に最も近 ヽ面よりも前記回転軸の近くに形成されて ヽることを特徴とする請求 項 2記載の液体均一化装置。
[9] 同一の液体混合チャンバ一力 延伸する 2つ以上の流路にそれぞれ形成された前 記屈曲部は、前記回転軸からの距離が異なることを特徴とする請求項 8に記載の液 体均一化装置
[10] 前記回転体は、回転動作と回転停止動作を繰り返すことを特徴とする請求項 8に記 載の液体均一化装置。
[11] 前記液体混合チャンバ一において、前記導入口は前記導出口よりも厚み方向に対し て上側に形成されていることを特徴とする請求項 2に記載の液体均一化装置。
[12] 回転体と、この回転体に形成された流路とチャンバ一とを有し、前記回転体の回転に より生じる遠心力によって前記流路を通じて液状試料を前記チャンバ一内に導入し て分析する分析装置であって、さらに請求項 1から請求項 11までのいずれかに記載 の液体均一化装置を含み、前記回転体、前記流路および前記液体混合チャンバ一 の一部若しくは全部が、前記液体均一化装置の前記回転体、前記流路および前記 液体混合チャンバ一を兼ねることにより、前記液状試料を混合することを特徴とする 分析装置。
[13] 前記液体混合チャンバ一の 1つが、前記液状試料と分析試薬とを反応させるための 反応チャンバ一であることを特徴とする請求項 12に記載の分析装置。
[14] 前記液体混合チャンバ一の 1つが、前記液状試料を前処理するための前処理チャン バーであることを特徴とする請求項 13に記載の分析装置。
PCT/JP2006/305956 2005-04-04 2006-03-24 液体均一化装置およびそれを用いた分析装置 WO2006106608A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/910,513 US7754151B2 (en) 2005-04-04 2006-03-24 Liquid homogenizer and analyzer employing the same
JP2007512490A JP4689665B2 (ja) 2005-04-04 2006-03-24 液体均一化装置およびそれを用いた分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005107658 2005-04-04
JP2005-107658 2005-04-04

Publications (1)

Publication Number Publication Date
WO2006106608A1 true WO2006106608A1 (ja) 2006-10-12

Family

ID=37073174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305956 WO2006106608A1 (ja) 2005-04-04 2006-03-24 液体均一化装置およびそれを用いた分析装置

Country Status (3)

Country Link
US (1) US7754151B2 (ja)
JP (1) JP4689665B2 (ja)
WO (1) WO2006106608A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164360A (ja) * 2006-12-27 2008-07-17 Rohm Co Ltd 液体試薬内蔵型マイクロチップにおける液体試薬の液量および/または品質が正常であるかを判定する方法、および液体試薬内蔵型マイクロチップ
WO2009066737A1 (ja) * 2007-11-20 2009-05-28 Toray Industries, Inc. 送液チップおよび分析方法
WO2009130976A1 (ja) * 2008-04-25 2009-10-29 アークレイ株式会社 微細流路および分析用具
JP2011196846A (ja) * 2010-03-19 2011-10-06 Soka Univ 検出容器およびそれを使用する微粒子状試料を検出する方法
JP2013088211A (ja) * 2011-10-16 2013-05-13 Japan Advanced Institute Of Science & Technology Hokuriku 微細流路のバルブ構造、これを備えるマイクロデバイス、マイクロセンサ及びマイクロリアクター及び微細流路の送液制御方法
JP7526678B2 (ja) 2018-07-03 2024-08-01 イルミナ インコーポレイテッド 第1接着層及び第2接着層を有するインターポーザ

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632243B2 (en) * 2008-03-10 2014-01-21 The Hong Kong Polytechnic University Microfluidic mixing using continuous acceleration/deceleration methodology
EP2329877A1 (de) * 2009-12-04 2011-06-08 Roche Diagnostics GmbH Mikrofluidisches Element zur Analyse einer Flüssigkeitsprobe
US9261494B2 (en) * 2011-01-06 2016-02-16 Samsung Electronics Co., Ltd. Biosensor cartridge
AU2012278872A1 (en) * 2011-07-04 2014-02-06 National Research Council Of Canada Centrifugal microfluidic platform
EP2957890A1 (en) * 2014-06-16 2015-12-23 Roche Diagnostics GmbH Cartridge with a rotatable lid
CN110865181A (zh) * 2019-12-17 2020-03-06 石家庄禾柏生物技术股份有限公司 一种液体延时结构

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185166A (en) * 1960-04-08 1965-05-25 Billy M Horton Fluid oscillator
US3474805A (en) * 1967-05-17 1969-10-28 Us Army Pressure and temperature insensitive flueric oscillator
JPH07191032A (ja) * 1992-12-08 1995-07-28 Westinghouse Electric Corp <We> 未知物質のサンプル分析用アッセイ装置及び同定方法
JPH10505672A (ja) * 1994-09-02 1998-06-02 バイオメトリック イメージング インコーポレイテッド 生物学的サンプルの検定のための使い捨てカートリッジおよび検定方法
US5876187A (en) * 1995-03-09 1999-03-02 University Of Washington Micropumps with fixed valves
JP2003028883A (ja) * 1997-05-23 2003-01-29 Gamera Bioscience Corp ミクロ流体工学システムでの流動運動を駆動するために向心的加速を使用するための装置および方法
US6537501B1 (en) * 1998-05-18 2003-03-25 University Of Washington Disposable hematology cartridge
JP2003533681A (ja) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト ミクロ流体装置および細胞ベースの分析を実行する方法
JP2004529312A (ja) * 1999-06-18 2004-09-24 ガメラ バイオサイエンス コーポレイション 小型化均一アッセイ用のデバイスおよび方法
JP2004294417A (ja) * 2003-03-26 2004-10-21 Yasuhiro Horiike マイクロミキサ、試料分析キット及びその製造方法
JP2005077397A (ja) * 2003-08-29 2005-03-24 National Institute For Materials Science 流れ変動構造及びマイクロミキサ
JP2005114438A (ja) * 2003-10-03 2005-04-28 National Institute For Materials Science チップの使用方法及び検査チップ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876167A (en) * 1997-10-29 1999-03-02 Keeper Corporation Load restraint with longitudinal and transverse stringers
JP2002530786A (ja) 1998-10-30 2002-09-17 バースタイン・ラボラトリーズ・インコーポレイテッド 同時読み取り可能な解析分析材料を備えたトラッキング可能な光ディスク
WO2001087485A2 (en) * 2000-05-15 2001-11-22 Tecan Trading Ag Microfluidics devices and methods for high throughput screening

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185166A (en) * 1960-04-08 1965-05-25 Billy M Horton Fluid oscillator
US3474805A (en) * 1967-05-17 1969-10-28 Us Army Pressure and temperature insensitive flueric oscillator
JPH07191032A (ja) * 1992-12-08 1995-07-28 Westinghouse Electric Corp <We> 未知物質のサンプル分析用アッセイ装置及び同定方法
JPH10505672A (ja) * 1994-09-02 1998-06-02 バイオメトリック イメージング インコーポレイテッド 生物学的サンプルの検定のための使い捨てカートリッジおよび検定方法
US5876187A (en) * 1995-03-09 1999-03-02 University Of Washington Micropumps with fixed valves
JP2003028883A (ja) * 1997-05-23 2003-01-29 Gamera Bioscience Corp ミクロ流体工学システムでの流動運動を駆動するために向心的加速を使用するための装置および方法
US6537501B1 (en) * 1998-05-18 2003-03-25 University Of Washington Disposable hematology cartridge
JP2004529312A (ja) * 1999-06-18 2004-09-24 ガメラ バイオサイエンス コーポレイション 小型化均一アッセイ用のデバイスおよび方法
JP2003533681A (ja) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト ミクロ流体装置および細胞ベースの分析を実行する方法
JP2003533682A (ja) * 2000-05-15 2003-11-11 テカン・トレーディング・アクチェンゲゼルシャフト 双方向流動遠心ミクロ流体装置
JP2004294417A (ja) * 2003-03-26 2004-10-21 Yasuhiro Horiike マイクロミキサ、試料分析キット及びその製造方法
JP2005077397A (ja) * 2003-08-29 2005-03-24 National Institute For Materials Science 流れ変動構造及びマイクロミキサ
JP2005114438A (ja) * 2003-10-03 2005-04-28 National Institute For Materials Science チップの使用方法及び検査チップ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164360A (ja) * 2006-12-27 2008-07-17 Rohm Co Ltd 液体試薬内蔵型マイクロチップにおける液体試薬の液量および/または品質が正常であるかを判定する方法、および液体試薬内蔵型マイクロチップ
CN101918849B (zh) * 2007-11-20 2014-02-12 东丽株式会社 送液片和分析方法
WO2009066737A1 (ja) * 2007-11-20 2009-05-28 Toray Industries, Inc. 送液チップおよび分析方法
EP2214027A1 (en) * 2007-11-20 2010-08-04 Toray Industries, Inc. Liquid-feeding chip, and analyzing method
EP2214027A4 (en) * 2007-11-20 2015-06-03 Toray Industries LIQUID FEED CHIP AND ANALYSIS PROCEDURE
JP5636629B2 (ja) * 2007-11-20 2014-12-10 東レ株式会社 送液チップおよび分析方法
US8821813B2 (en) 2007-11-20 2014-09-02 Toray Industries, Inc. Liquid-feeding chip and analysis method
US8398937B2 (en) 2008-04-25 2013-03-19 Arkray, Inc. Microchannel and analyzing device
CN102016598B (zh) * 2008-04-25 2013-10-30 爱科来株式会社 微细流路及分析用具
JP5255628B2 (ja) * 2008-04-25 2013-08-07 アークレイ株式会社 微細流路および分析用具
WO2009130976A1 (ja) * 2008-04-25 2009-10-29 アークレイ株式会社 微細流路および分析用具
JP2011196846A (ja) * 2010-03-19 2011-10-06 Soka Univ 検出容器およびそれを使用する微粒子状試料を検出する方法
JP2013088211A (ja) * 2011-10-16 2013-05-13 Japan Advanced Institute Of Science & Technology Hokuriku 微細流路のバルブ構造、これを備えるマイクロデバイス、マイクロセンサ及びマイクロリアクター及び微細流路の送液制御方法
JP7526678B2 (ja) 2018-07-03 2024-08-01 イルミナ インコーポレイテッド 第1接着層及び第2接着層を有するインターポーザ
US12083514B2 (en) 2018-07-03 2024-09-10 Illumina, Inc. Interposer with first and second adhesive layers

Also Published As

Publication number Publication date
JP4689665B2 (ja) 2011-05-25
US20080292502A1 (en) 2008-11-27
JPWO2006106608A1 (ja) 2008-09-11
US7754151B2 (en) 2010-07-13

Similar Documents

Publication Publication Date Title
WO2006106608A1 (ja) 液体均一化装置およびそれを用いた分析装置
EP2133150B1 (en) Lab-on-disc device
US10620194B2 (en) Characterization of reaction variables
TWI475226B (zh) 利用分流結構進行生化檢測之裝置及其運作方法
US10073091B2 (en) Lateral flow assay device
CN109499633B (zh) 床旁诊断微流控芯片及其制备方法和检测方法
US20070189927A1 (en) Device and process for testing a sample liquid
TWI385383B (zh) 分析系統及其分析方法、流路結構
JP2003114229A (ja) マイクロチャネルチップ,マイクロチャネルチップを使用した測定装置及び測定方法
JP7387430B2 (ja) 改変された導管を有する装置
CN101194155A (zh) 用于测试样品液的装置和方法
CN111013677B (zh) 微流控芯片、检测装置以及检测方法
CN210121485U (zh) 一种基于均相化学发光的微流控芯片
JP2007315832A (ja) 生化学分析装置及びそれに用いる検査カートリッジ
JP2002538481A (ja) 液体位置決め装置と方法
JP2003098175A (ja) 測定対象物の測定用チップ,測定対象物の測定装置及び測定対象物の測定方法
CN116930486A (zh) 一种用于免疫项目联检的微流控芯片及方法
Gärtner et al. SmartHEALTH: a microfluidic multisensor platform for POC cancer diagnostics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512490

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11910513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729904

Country of ref document: EP

Kind code of ref document: A1