WO2006106570A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2006106570A1
WO2006106570A1 PCT/JP2005/006265 JP2005006265W WO2006106570A1 WO 2006106570 A1 WO2006106570 A1 WO 2006106570A1 JP 2005006265 W JP2005006265 W JP 2005006265W WO 2006106570 A1 WO2006106570 A1 WO 2006106570A1
Authority
WO
WIPO (PCT)
Prior art keywords
word line
source
line
transistor
bit line
Prior art date
Application number
PCT/JP2005/006265
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Nansei
Original Assignee
Spansion Llc
Spansion Japan Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion Llc, Spansion Japan Limited filed Critical Spansion Llc
Priority to PCT/JP2005/006265 priority Critical patent/WO2006106570A1/en
Priority to JP2007512374A priority patent/JP5099691B2/en
Publication of WO2006106570A1 publication Critical patent/WO2006106570A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Definitions

  • the present invention relates to a nonvolatile memory, and more particularly to a nonvolatile memory using a transistor having a plurality of charge storage regions.
  • nonvolatile memories which are semiconductor devices capable of rewriting data
  • technical development for the purpose of miniaturization of the memory cell is being advanced because of the high storage capacity.
  • a floating gate type flash memory that accumulates electric charges in a floating gate has been widely used.
  • memory cells become more miniaturized to achieve higher storage densities, it becomes difficult to design floating gate flash memories.
  • a thin film of a tunnel oxide film is required.
  • the leakage current flowing through the tunnel oxide film increases due to the thin film of the tunnel oxide film, and the charge accumulated in the floating gate is lost due to the introduction of defects in the tunnel oxide film. This will cause a failure in reliability.
  • Flash memory with an ONO (Oxide / Nitride / Oxide) film, such as the Oxide Nitride Oxide Silicon) type.
  • ONO Oxide / Nitride / Oxide
  • This is a flash memory in which electric charges are accumulated in a silicon nitride film layer called a trap layer sandwiched between oxide silicon film layers.
  • charges are accumulated in the silicon nitride film layer, which is an insulating film. Therefore, even if there is a defect in the tunnel oxide film, loss of charges is unlikely to occur as in the floating gate type.
  • Patent Document 1 discloses a (planar accumulation type) transistor having two charge accumulation regions between a gate electrode and a semiconductor substrate.
  • Patent Document 2 discloses a (side wall storage type) transistor having a charge storage region on both side walls of a gate electrode.
  • the source and the drain are interchanged to operate symmetrically.
  • the memory array structure of the flash memory employs a virtual ground method that does not distinguish between a source and a drain.
  • the bit line serves as both a source region and a drain region which are a source region and a drain region, and the bit line extends in the width direction of the word line. For this reason, the current between the source and drain regions of the transistor flows in the extending direction of the word line.
  • Patent Document 1 US Patent No. 6011725
  • Patent Document 2 JP 2004-56095 A
  • the bit line is formed of an ion implantation diffusion region such as arsenic. Therefore, the ion-implanted impurities are diffused in the width direction in the subsequent thermal process, and the bit line width is increased. In addition, the bit line needs to have a low resistance in order to improve the write / erase characteristics. Since the ion implantation is performed at a high energy and high dose, the bit line width is further increased. This hinders miniaturization of the memory cell.
  • An object of the present invention is to provide a semiconductor device capable of miniaturizing a memory cell, excluding the above-described adverse effects caused by the fact that source / drain region force also serves as a line.
  • the present invention provides a transistor comprising a gate electrode formed on a semiconductor substrate, two source / drain regions formed in the semiconductor substrate on both sides of the gate electrode, and a plurality of charge storage regions. And a bit line connected to the source / drain region and a word line connected to the gate electrode, and a direction of a current flowing between the two source / drain regions is
  • the semiconductor device is in the width direction.
  • the bit line can be formed without serving as the source and drain regions. For this reason, it is possible to prevent the bit line from diffusing in the lateral direction by the heat treatment process when forming the word line after forming the bit line or forming the wiring layer. As a result, the memory cell can be miniaturized.
  • the present invention can be a semiconductor device in which the charge storage region is formed between the semiconductor substrate and the gate electrode or on the side wall of the gate electrode. According to the present invention, it is possible to miniaturize a memory cell even in a semiconductor device having a planar storage type or sidewall storage type transistor. Furthermore, in a semiconductor device having a sidewall storage transistor, the direction of the current flowing between the source and drain regions is set to the width direction of the word line, so that the word line and the gate electrode are formed in different layers. There is no need. As a result, the manufacturing process can be simplified.
  • the present invention can be a semiconductor device in which the charge storage region is formed between the semiconductor substrate and the gate electrode or on the side wall of the gate electrode.
  • the present invention may be a semiconductor device in which the word line is formed also as the gate electrode. According to the present invention, the manufacturing process can be simplified.
  • the word line extends in a straight line
  • the bit line extends in the width direction of the word line, and has a zigzag shape having apexes between adjacent word lines
  • Transistors adjacent in the extending direction of the bit line share one of the source and drain regions
  • the bit line is connected to the source and drain region at the apex
  • the bit line connected to one of the source and drain regions of the first transistor is on the opposite side of the word line.
  • the semiconductor device can be connected to one of the source and drain regions of the second transistor adjacent in the direction.
  • the memory cell can be miniaturized by making the bit line zigzag.
  • the present invention may be a semiconductor device in which the first transistor and the second transistor are each connected to a bit line adjacent in the extending direction of the word line.
  • the present invention can be a semiconductor device in which elements adjacent to each other in the word line extending direction are separated using an oxide silicon film. According to the present invention, it is possible to miniaturize a memory cell in which a junction current does not flow between the contact hole and the semiconductor substrate even if the contact hole connecting the bit line and the source / drain region is formed shifted. I'll do it.
  • the word line extends in a zigzag shape
  • the bit line extends in the width direction of the word line, and is a straight line passing through the zigzag apex portion of the word line
  • the transistor may be disposed between adjacent apexes of the word line, and the transistor adjacent in the extending direction of the first line may be a semiconductor device having one source / drain region.
  • the memory cells can be miniaturized by making the word lines zigzag.
  • a semiconductor device in which two adjacent bit lines are respectively connected to two source and drain regions formed on both sides of the word line of one transistor. it can.
  • the present invention may be a semiconductor device in which elements adjacent to each other in the extending direction of the bit line are separated using an oxide silicon film. According to the present invention, it is possible to miniaturize a memory cell in which a junction current does not flow between the contact hole and the semiconductor substrate even if the contact hole connecting the bit line and the source / drain region is formed shifted. I'll do it.
  • the bit line can be formed without serving as the source / drain regions. For this reason, it is possible to prevent the bit lines from being diffused in the lateral direction by the heat treatment process at the time of forming the word lines and forming the wiring layers after forming the bit lines. As a result, the memory cell can be miniaturized.
  • FIG. 1 is a cross-sectional view of a transistor used in a memory cell according to Example 1.
  • FIG. 2 is a top view of the memory cell according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the memory cell according to Example 1, and shows a cross section taken along the line AA in FIG.
  • FIG. 4 is a cross-sectional view of the memory cell according to Example 1, showing a cross section taken along line BB in FIG.
  • FIG. 5 is a cross-sectional view of the memory cell according to Example 1, showing a CC cross section of FIG.
  • FIG. 6 is a cross-sectional view of the memory cell according to Example 1, and is a view showing a DD cross section of FIG.
  • FIG. 7 is a diagram for calculating the memory cell area of the memory cell according to the first embodiment.
  • FIG. 8 is a cross-sectional view of a memory cell according to a modification of Example 1, and is a cross-sectional view corresponding to the AA cross section of FIG.
  • FIG. 9 is a top view of a memory cell according to the second embodiment.
  • FIG. 10 is a cross-sectional view of the memory cell according to the second embodiment, showing a cross section taken along the line AA in FIG.
  • FIG. 11 is a cross-sectional view of the memory cell according to Example 2, showing a cross section taken along line BB in FIG. 2.
  • FIG. 12 is a cross-sectional view of the memory cell according to Example 2, showing the CC cross section of FIG. 2.
  • FIG. 13 is a cross-sectional view of the memory cell according to the second embodiment, and shows a DD cross section of FIG. 2.
  • FIG. 14 is a diagram (No. 1) for calculating the memory cell area of the memory cell according to the second embodiment.
  • FIG. 15 is a diagram (part 2) for calculating the memory cell area of the memory cell according to the second embodiment.
  • FIG. 16 is a cross-sectional view of a transistor used in the memory cell according to Example 3.
  • FIG. 1 shows a cross-sectional structure of a planar storage transistor used in the first embodiment.
  • a LOCOS Local Oxidation of Silicon
  • a field oxide film 30 (acid silicon film: not shown) is applied.
  • An oxide silicon film (tunnel oxide film) 22, a silicon nitride film (trap layer) 24, and an acid silicon film (top oxide film) 26 are formed as an ONO film 28 on the semiconductor substrate 20 by, for example, the CVD method.
  • LOCOS Local Oxidation of Silicon
  • a word line 12 including a gate electrode is formed on the ONO film 28 by, for example, forming a polycrystalline silicon film and etching a predetermined region. For example, arsenic is implanted into a predetermined region, and source / drain regions 14 are formed on both sides of the gate electrode.
  • the ONO film 28 other than the word line 12 is etched. Etching of the ONO film is not indispensable, but for example, when the so-called salicide process, in which the upper part of the word line 12 is silicided and the source and drain regions 14 can also be silicided, is adopted as the word line 12. This is effective because both the source and drain regions 14 can be low resistance.
  • the interlayer insulating film 32 is formed of, for example, an oxide silicon film.
  • Contact holes 16 are formed at predetermined positions of the interlayer insulating film 30.
  • the contact hole 16 is filled with TiZWN or TiZTiN and W, for example, and an A1 wiring layer is formed as the bit line 10.
  • Bit line 10 is connected to source / drain region 14 through contact hole 16.
  • a protective film 34 is formed.
  • planar storage layer type transistor two charge storage regions are formed in the ONO film 28 between the gate electrode (word line) 12 and the semiconductor substrate 20 as in Patent Document 1.
  • FIG. 2 is a top view of the memory cell according to the first embodiment.
  • the protective film 34 and the interlayer insulating film 32 are not shown.
  • the contact hole 16 under the bit line 10a is indicated by a broken line.
  • a plurality of word lines 12a extending in a straight line, and extending in the width direction of the word lines 12a,
  • a plurality of zigzag bit lines 10a having apexes between the lines 12a are formed.
  • a plurality of transistors 11a are formed in the extending direction of the word line 12a and the extending direction of the bit line 10a.
  • two source / drain regions 14a are formed on both sides of the word line 10a which also serves as a gate electrode. At this time, the direction of current flowing between the two source drain regions 14a is the width direction of the word line 12a.
  • the source'drain region 14a is shared with one source'drain region 14a of a transistor adjacent in the extending direction of the bit line 10a.
  • a transistor having the word line (WLn) as the gate electrode is a transistor having the word line (WLn-1) as the gate electrode and a source / drain electrode in a region between the word line (WLn) and the word line (WLn-1). Share 14a.
  • the bit line 10a is connected to the source / drain region 14a at the zigzag approximate vertex, and the bit line connected to the source / drain region 14a on one side of the word line 12a is separated from the word line 12a. On the other hand, it is connected to the source / drain region 14a of the adjacent transistor in the extending direction of the word line 12a.
  • the bit line (BLn) connected to the source 'drain region 14a on the WLn + 1 side of the word line (WLn) is the source' drain 'of the transistor adjacent to the extending direction of the single line 12a on the WLn-1 side. Connected to area.
  • the zigzag bit line 10a is arranged.
  • the word line 12a extends linearly
  • the bit line 10a extends in the width direction of the word line 12a, has a zigzag shape having apexes between adjacent word lines 12a, and bit Transistors adjacent in the extending direction of the line 10a share one source / drain region 14a
  • the bit line 10a is connected to the source / drain region 14a at the apex
  • the first transistor For example, on one side (for example, WLn-1 side) of the first drain (for example, WLn-1) connected to the gate electrode of 11a), 1 of the source / drain region of the first transistor (for example, 11a)
  • the bit line connected to the second line (for example, BLn-2) is connected to the second line adjacent to the word line (for example, WLn-2) on the opposite side (for example, WLn-3 side) in the extending direction of the word line 12a.
  • the transistor Of the scan 'drain region 1 Connected to one.
  • Two adjacent bit lines 10a are connected to source / drain regions 14a of two transistors adjacent to each other in the extending direction of the word line 12a. That is, the first transistor (for example, 11a) and the second transistor are connected to the bit lines (for example, BLn-3 and BLn-2) adjacent to each other in the extending direction of the word line 12a.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, and is a cross-sectional view in the word line 12a in the extending direction of the word line 12a.
  • the ONO film 28 and the first drain line 12a are formed on the semiconductor substrate 20 and the field oxide film 30a, and the bit line 10a crosses the first drain line 12a on the field oxide film 30a. No bit line is embedded in the semiconductor substrate 20 below the word line 10a.
  • FIG. 4 is a cross-sectional view taken along the line BB in FIG. 2, and is a cross-sectional view between the word lines 12a in the extending direction of the word lines 12a.
  • the bit line 10a is located on the source / drain region 14a between the field oxide films 30a because of the zigzag shape.
  • Source / drain regions 14a that is, transistors
  • Source / drain regions 14a adjacent in the extending direction of the word line 12a are separated by a field oxide film 30a (acid silicon film).
  • FIG. 5 is a cross-sectional view taken along the line CC in FIG. 2, and is a cross-sectional view inside the transistor in the extending direction of the bit line 10a.
  • Source / drain regions 14a are formed on both sides of the word line (gate electrode) 12a.
  • the bit line 10a is located on the source / drain region 14a and connected through the contact hole 16. Since the bit line 10a is zigzag, the bit line (BLn-1) and the bit line (BLn) appear alternately.
  • FIG. 6 is a cross-sectional view taken along the line DD of FIG. 2, and is a cross-sectional view between transistors in the extending direction of the bit line 10a. Since the transistor adjacent to the extending direction of the word line 12a is isolated, a field oxide film 30a is formed. Bit line 10a is located on word line 12a and the same bit line (BLn) appears. The ONO film 28 other than the word line 12a has been removed.
  • FIG. 7 is a diagram for calculating the memory cell area of the first embodiment.
  • Bit line 10a The minimum size of-line 12a and source 'drain regions 14a and F, when a 2F pitch, one side is 2 2F next memory cell area, the memory cell area can be 8F 2.
  • the direction in which current flows between the source and drain regions 14a is the width direction of the word line 12a.
  • the source / drain region connection that is, the bit line
  • the source and drain regions are exposed outside the first drain line in the first embodiment, it can be connected by wiring through the contact hole.
  • the bit line does not spread laterally due to the heat treatment process at the time of forming the side line 12a after forming the bit line and forming the wiring layer, which is necessary in the buried bit line method.
  • the memory cell can be miniaturized.
  • the ion implantation for forming the source / drain region 14a can be performed with low energy and low dose, and the short channel effect of the transistor can be prevented.
  • the bit line 10a is formed in a zigzag shape and is connected to the source / drain region at the approximate vertex. As a result, the memory cell can be further miniaturized.
  • the source / drain regions 14a are separated from each other by a field oxide film 30a (an acid silicon film).
  • a field oxide film 30a an acid silicon film
  • element isolation can be performed using an STI (Shallow Trench Isolation) method.
  • the configuration and the manufacturing method can be the same as those in Example 1 except that the element is isolated using the buried oxide film 30b (acid silicon film) using the STI method.
  • FIG. 8 is a cross-sectional view corresponding to the AA cross section of FIG. This is the same as in Fig. 3 except that the element is isolated using a buried oxide film 30b using the STI method.
  • Example 2 Example 2 is an example in which a planar storage transistor is used and elements are separated using the STI method.
  • FIG. 9 is a top view of the memory cell according to the second embodiment.
  • the protective film 34 and the interlayer insulating film 32 are not shown.
  • the contact hole 16 below the bit line 10b is indicated by a broken line.
  • a plurality of linear bit lines passing through the portion are formed.
  • the bending direction of the word line 12b is the same for a plurality of word lines.
  • a plurality of transistors l ib are arranged in the extending direction of the word line 12b and the extending direction of the bit line 10b.
  • each transistor l ib two source / drain regions 14b are formed on both sides of the word line 12b which also serves as a gate electrode.
  • the direction of the current flowing between the two source / drain regions 14b is the width direction of the word line 12b.
  • each transistor l ib is arranged approximately in the middle between adjacent apexes of the word line 12b, and shares the source / drain region 14b with the transistor adjacent in the extending direction of the word line 12b! / RU
  • the bit line 10b is connected to the source / drain region 14b! /.
  • the word line 12b extends in a zigzag shape
  • the bit line 10b extends in the width direction of the word line 12b, and is a straight line passing through the zigzag apex portion of the word line 12b.
  • l ib is disposed between adjacent apexes of the word line 12b, and transistors adjacent to each other in the extending direction of the first line 12b share one source / drain region.
  • two adjacent bit lines (for example, BLn-2 and BLn-3) are connected to two source drains formed on both sides of a word line (for example, WLn) of one transistor (for example, ib). Each is connected to a region.
  • FIG. 10 is a cross-sectional view taken along the line AA in FIG.
  • a word line 12b that also serves as a gate gate electrode is formed on the ONO film 28 on the semiconductor substrate 20 .
  • Source and drain regions 14b are formed on both sides of the word line 12b.
  • Interlayer insulating film 32 having contact hole 16 is formed on semiconductor substrate 20 and word line 12b.
  • a bit line 10b connected to the source / drain region 14b through the contact hole 16 is formed on the interlayer insulating film 32.
  • a protective film 34 is formed on the interlayer insulating film 32 and the bit line 10b. Adjacent acid between adjacent transistors The element is isolated by the oxide film 30b (silicon oxide film).
  • FIG. 11 is a cross-sectional view taken along the line BB of FIG. 9, and is a cross-sectional view in the extending direction of the word line 12b across the apex of the word line 12b.
  • the word line 12b is formed on the buried oxide film 30b, and the source / drain region 14b between the word lines 12b is connected to the bit line 10b through the contact hole 16. Every other bit line 10b is connected to a source / drain region 14b. When connected to the source / drain region 14b, the bit line 10b is connected to the source / drain region 14b at the apex of the other word line 12b. Since the word line 12b is zigzag shaped, the same word line (WLn) appears.
  • FIG. 12 is a cross-sectional view taken along the line CC of FIG. 9, and is a cross-sectional view in the bit line 10b extending in the bit line 10b extending direction.
  • the word line 12b is formed on the buried oxide film 30b, and the source / drain region 14b between the word lines 12b is connected to the bit line 10b through the contact hole 16.
  • the bit line 10b crosses over the word line 12b, and the bit line is embedded in the semiconductor substrate 20 below the bit line 10b.
  • FIG. 13 is a cross-sectional view taken along the line DD of FIG. 9, and is a cross-sectional view between the bit lines 10b extending in the bit line 10b extending direction.
  • the semiconductor substrate 20 between the word lines 12b is separated by a buried oxide film 30b.
  • the transistors adjacent to the extending direction of the bit line 10b are separated by the buried oxide film 30b.
  • FIG. 14 is a diagram for calculating the memory cell area of the second embodiment.
  • the minimum dimension of the bit line 10b, the single drain line 12b, and the source / drain region 14b is F, and one side of the zigzag is 3F.
  • the length of the side of the bit line extending direction of the memory cell is 52 / 2F
  • the length of the side of the extending direction of the memory line is 32Z2F
  • the memory cell area can be 7.5 F 2. .
  • the minimum dimension of the bit line 10b, the word line 12b, and the source / drain region 14b is F, and one side of the zigzag is 22 F.
  • the length of the side of the bit line extending direction of the memory cell is (2 + 2) F
  • the length of the side of the extending direction of the word line is 2 2F
  • the area of the memory cell is (4 + 2 2) F 2 (approximately 6.83F 2 ).
  • the memory cell area can be made smaller than in the first embodiment.
  • Example 2 as in Example 1, the flow direction between the source and drain regions is changed.
  • the width direction of the first drain line 12b is used.
  • the bit line 10b can be formed without (including) the source / drain region 14b.
  • miniaturization of the memory cell and the short channel effect can be prevented as in the first embodiment.
  • the bit line 10b passes through the approximate apex of the zigzag word line 12b and is connected to the source / drain region 14b. Thereby, the memory cell can be further miniaturized.
  • the transistors are separated from each other by a buried oxide film 30b.
  • the contact hole 16 is formed on the buried oxide film 30b. No junction current will flow through. Therefore, the alignment margin of the contact hole 16 can be reduced, and the memory cell can be miniaturized. Note that the same effect can be obtained even if the device is isolated using the LOCOS method as in the first embodiment.
  • Example 3 is an example using a sidewall storage type transistor.
  • Figure 16 shows the cross-sectional structure of the sidewall storage transistor.
  • the element isolation region 30 (not shown) is formed by using the STI method or the LOCOS method in the same manner as the planar storage type transistor.
  • a silicon oxide film 21 is formed on the semiconductor substrate 20 by, for example, a thermal oxidation method.
  • a word line 12 that also serves as a gate electrode is formed by, for example, forming a polycrystalline silicon film and etching a predetermined region.
  • An oxide silicon film 23 and a silicon nitride film (charge storage region) 29 are formed as side walls on the side portion of the gate electrode (word line) 12 by the sidewall method, for example, using the CVD method.
  • An oxide silicon film 25 is formed on the entire surface.
  • arsenic is implanted into a predetermined region, and source / drain regions 14 are formed on both sides of the gate electrode 12 (word line).
  • the interlayer insulating film 32 is formed of an oxide silicon film.
  • Contact holes 16 are formed at predetermined locations in the interlayer insulating film 30.
  • the contact hole 16 is filled with, for example, TiZWN or TiZTiN and W, and a wiring layer of, for example, A1 is formed as the bit line 10.
  • the bit line 10 is connected to the source / drain region 14 through the contact hole 16.
  • a protective film 34 is formed.
  • the silicon nitride film 29 formed on both sides of the word line 12 also serving as the gate electrode can be used as a charge storage region.
  • the memory cell formed as described above is, for example, a memory cell arranged as in the first embodiment or the second embodiment. It can be.
  • a memory cell arranged as in the first embodiment or the second embodiment. It can be.
  • a word line is further formed on a gate electrode. This is because the charge storage region is formed on the side wall of the gate electrode, so that it is difficult to extend the word line so as to include the gate electrode in the direction of current flow between the source and drain regions. .
  • the direction of the current flowing between the source and drain regions 14 can be the width direction of the word line. This eliminates the need to form the word line and the gate electrode as separate layers. That is, the word line can be formed so as to also serve as the gate electrode. As described above, the manufacturing process can be simplified. Further, the same effects as those of the first embodiment and the second embodiment can be obtained.
  • the power described in detail for the preferred embodiment of the present invention is not limited to the specific embodiment, and various modifications can be made within the scope of the gist of the present invention described in the claims. Deformation can be changed.
  • a SONOS type memory was used, but a memory using nanocrystals as a trap layer or a high dielectric constant material known as a so-called high-k film was used for the trap layer, tunnel insulating layer, or top layer.
  • the present invention can also be applied to a memory.

Abstract

A semiconductor device is provided with a gate electrode (12) formed on a semiconductor substrate (20); two source and drain regions (14) formed in the semiconductor substrate on the both sides of the gate electrode; a transistor having two or more charge accumulating regions; a bit line (10) connected to the source and drain regions; and a word line (12) connected to the gate electrode. The direction of a current flowing between the two source and drain regions is in the direction of the width of the word line. Since the direction of the current flowing between the source and drain regions is in the direction of the width of the word line, the bit line can be formed separately from the source and drain regions. Thus, the semiconductor device wherein a memory cell is microminiaturized is provided.

Description

半導体装置  Semiconductor device
技術分野  Technical field
[0001] 本発明は不揮発性メモリに関し、特に電荷蓄積領域を複数有するトランジスタを用い た不揮発性メモリに関する。  The present invention relates to a nonvolatile memory, and more particularly to a nonvolatile memory using a transistor having a plurality of charge storage regions.
背景技術  Background art
[0002] 近年、データの書換えが可能な半導体装置である不揮発性メモリが広く利用されて いる。このような不揮発性メモリの技術分野においては、高記憶容量ィ匕のため、メモリ セルの微細化を目的とした技術開発が進められている。  In recent years, nonvolatile memories, which are semiconductor devices capable of rewriting data, have been widely used. In the technical field of such a nonvolatile memory, technical development for the purpose of miniaturization of the memory cell is being advanced because of the high storage capacity.
[0003] 不揮発性メモリとしては、フローティングゲートに電荷を蓄積するフローティングゲー ト型フラッシュメモリが広く用いられてきた。しかし、高記憶密度化実現のためメモリセ ルの微細化が進行すると、フローティングゲート型フラッシュメモリを設計することが困 難となってくる。フローティング型フラッシュメモリのメモリセルの微細化に伴い、トンネ ル酸ィ匕膜の薄膜ィ匕が必要である。しかし、トンネル酸ィ匕膜の薄膜ィ匕により、トンネル 酸ィ匕膜を流れるリーク電流が増大し、またトンネル酸ィ匕膜への欠陥の導入により、フ ローテイングゲートに蓄積された電荷が損失するといつた信頼性上の障害が発生す るためである。  As a nonvolatile memory, a floating gate type flash memory that accumulates electric charges in a floating gate has been widely used. However, as memory cells become more miniaturized to achieve higher storage densities, it becomes difficult to design floating gate flash memories. Along with the miniaturization of memory cells in floating flash memory, a thin film of a tunnel oxide film is required. However, the leakage current flowing through the tunnel oxide film increases due to the thin film of the tunnel oxide film, and the charge accumulated in the floating gate is lost due to the introduction of defects in the tunnel oxide film. This will cause a failure in reliability.
[0004] これを解決するために、 MONOS (Metal  [0004] To solve this, MONOS (Metal
Oxide Nitride Oxide Silicon)型や SONOS (Silicon  Oxide Nitride Oxide Silicon) and SONOS (Silicon
Oxide Nitride Oxide Silicon)型といった ONO (Oxide/Nitride/Oxide)膜を有するフラ ッシュメモリがある。これは、酸ィ匕シリコン膜層に挟まれたトラップ層と呼ばれる窒化シ リコン膜層に電荷を蓄積するフラッシュメモリである。このフラッシュメモリは絶縁膜で ある窒化シリコン膜層に電荷を蓄積するため、トンネル酸ィ匕膜に欠陥があっても、フロ 一ティングゲート型のように電荷の損失が発生し難 、。  There is a flash memory with an ONO (Oxide / Nitride / Oxide) film, such as the Oxide Nitride Oxide Silicon) type. This is a flash memory in which electric charges are accumulated in a silicon nitride film layer called a trap layer sandwiched between oxide silicon film layers. In this flash memory, charges are accumulated in the silicon nitride film layer, which is an insulating film. Therefore, even if there is a defect in the tunnel oxide film, loss of charges is unlikely to occur as in the floating gate type.
[0005] また、高記憶容量化を目的に、 1つのトランジスタに 2以上の電荷蓄積領域を有す る不揮発性メモリが開発されている。例えば、特許文献 1には、ゲート電極と半導体 基板の間に 2つの電荷蓄積領域を有する (平面蓄積型)トランジスタが開示されてい る。また、特許文献 2にはゲート電極の両側側壁に電荷蓄積領域とする (側壁蓄積型 )トランジスタが開示されている。 [0005] Further, for the purpose of increasing the storage capacity, a nonvolatile memory having two or more charge storage regions in one transistor has been developed. For example, Patent Document 1 discloses a (planar accumulation type) transistor having two charge accumulation regions between a gate electrode and a semiconductor substrate. The Patent Document 2 discloses a (side wall storage type) transistor having a charge storage region on both side walls of a gate electrode.
[0006] 前述の複数の電荷蓄積領域を有するトランジスタを用いたフラッシュメモリにおいて は、ソースとドレインを入れ替えて対称的に動作させる。これより、上記フラッシュメモ リのメモリアレイ構造は、ソースとドレインを区別しないバーチャル ·グランド方式が採 用されている。このアレイ構造においては、ビットラインがソース領域とドレイン領域で あるソース'ドレイン領域を兼ねており、ビットラインはワードラインの幅方向に延在し ている。このため、トランジスタのソース'ドレイン領域間の電流はワードラインの延在 方向に流れている。  [0006] In the above-described flash memory using a transistor having a plurality of charge storage regions, the source and the drain are interchanged to operate symmetrically. Thus, the memory array structure of the flash memory employs a virtual ground method that does not distinguish between a source and a drain. In this array structure, the bit line serves as both a source region and a drain region which are a source region and a drain region, and the bit line extends in the width direction of the word line. For this reason, the current between the source and drain regions of the transistor flows in the extending direction of the word line.
[0007] 特許文献 1 :米国特許第 6011725号明細書  [0007] Patent Document 1: US Patent No. 6011725
特許文献 2:特開 2004 - 56095公報  Patent Document 2: JP 2004-56095 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、複数の電荷蓄積領域を有するトランジスタを用いたフラッシュメモリに おいては、ビットラインは砒素等のイオン注入拡散領域で形成されている。そのため、 イオン注入した不純物はその後の熱工程により幅方向に拡散し、ビットライン幅が広 くなつてしまう。また、ビットラインは書き込み消去特¾の向上のため低抵抗である必 要があり、高エネノレギ、高ドーズでイオン注入を行うため、さらにビットライン幅は広く なる。これでは、メモリセルの微細化の妨げとなる。  However, in a flash memory using a transistor having a plurality of charge storage regions, the bit line is formed of an ion implantation diffusion region such as arsenic. Therefore, the ion-implanted impurities are diffused in the width direction in the subsequent thermal process, and the bit line width is increased. In addition, the bit line needs to have a low resistance in order to improve the write / erase characteristics. Since the ion implantation is performed at a high energy and high dose, the bit line width is further increased. This hinders miniaturization of the memory cell.
[0009] さら〖こ、高エネノレギ、高ドーズのイオン注入で形成したとしても、ビットラインの抵抗 は十分低くはないため、配線層を用い、複数のワードラインをまたぐ毎にビットライン を配線層に接続し、ビットライン全体の低抵抗化を図る必要がある。この場合、接続 のためのコンタクトホールがビットライン力 外れてコンタクトすると、接合電流が流れ る。そこで、ビットラインとコンタクトホールの合わせ余裕を持たせる必要がある場合が ある。これでは、メモリセルの微細化の妨げとなる。  [0009] Even if it is formed by means of ion implantation with Sarakuko, high energy, and high dose, the resistance of the bit line is not sufficiently low. Therefore, the wiring layer is used and the bit line is connected to the wiring layer every time multiple word lines are crossed It is necessary to reduce the resistance of the entire bit line. In this case, if the contact hole for connection is out of contact with the bit line force, a junction current flows. Therefore, it may be necessary to provide a margin for alignment between the bit line and the contact hole. This hinders miniaturization of the memory cell.
[0010] 本発明は、ソース'ドレイン領域力 、ットラインを兼ねることによる上記弊害を除き、メ モリセルの微細化が可能な半導体装置を提供することを目的とする。  An object of the present invention is to provide a semiconductor device capable of miniaturizing a memory cell, excluding the above-described adverse effects caused by the fact that source / drain region force also serves as a line.
課題を解決するための手段 [0011] 本発明は、半導体基板上に形成されたゲート電極と、該ゲート電極の両側の前記 半導体基板内に形成された 2つのソース ·ドレイン領域と、複数の電荷蓄積領域とを 具備するトランジスタと、前記ソース'ドレイン領域に接続されたビットラインと、前記ゲ ート電極に接続されたワードラインと、を具備し、前記 2つのソース'ドレイン領域間に 流れる電流方向は、前記ワードラインの幅方向である半導体装置である。本発明によ れば、ソース'ドレイン領域間に電流の流れる方向をワードラインの幅方向としている ため、ビットラインをソース'ドレイン領域を兼ねず形成することができる。このため、ビ ットライン形成後のワードライン形成や配線層形成時の熱処理工程によって、ビットラ インが横方向に拡散することを防止できる。これにより、メモリセルの微細化が可能と なる。 Means for solving the problem [0011] The present invention provides a transistor comprising a gate electrode formed on a semiconductor substrate, two source / drain regions formed in the semiconductor substrate on both sides of the gate electrode, and a plurality of charge storage regions. And a bit line connected to the source / drain region and a word line connected to the gate electrode, and a direction of a current flowing between the two source / drain regions is The semiconductor device is in the width direction. According to the present invention, since the direction of current flow between the source and drain regions is the width direction of the word line, the bit line can be formed without serving as the source and drain regions. For this reason, it is possible to prevent the bit line from diffusing in the lateral direction by the heat treatment process when forming the word line after forming the bit line or forming the wiring layer. As a result, the memory cell can be miniaturized.
[0012] 本発明は、前記電荷蓄積領域を、前記半導体基板とゲート電極の間とゲート電極 の側壁のいずれか一方に形成される半導体装置とすることができる。本発明によれ ば、平面蓄積型または側壁蓄積型トランジスタを有する半導体装置においても、メモ リセルの微細化が可能となる。さら〖こ、側壁蓄積型トランジスタを有する半導体装置に おいては、ソース'ドレイン領域間を流れる電流の方向をワードラインの幅方向とする ことで、ワードラインとゲート電極と別の層で形成する必要がなくなる。これにより、製 造工程を簡略ィ匕することができる。  The present invention can be a semiconductor device in which the charge storage region is formed between the semiconductor substrate and the gate electrode or on the side wall of the gate electrode. According to the present invention, it is possible to miniaturize a memory cell even in a semiconductor device having a planar storage type or sidewall storage type transistor. Furthermore, in a semiconductor device having a sidewall storage transistor, the direction of the current flowing between the source and drain regions is set to the width direction of the word line, so that the word line and the gate electrode are formed in different layers. There is no need. As a result, the manufacturing process can be simplified.
[0013] 本発明は、前記電荷蓄積領域は、前記半導体基板とゲート電極の間とゲート電極 の側壁のいずれか一方に形成される半導体装置とすることができる。本発明は、前 記ワードラインは前記ゲート電極を兼ねて形成された半導体装置とすることができる。 本発明によれば、製造工程を簡略ィ匕することができる。  The present invention can be a semiconductor device in which the charge storage region is formed between the semiconductor substrate and the gate electrode or on the side wall of the gate electrode. The present invention may be a semiconductor device in which the word line is formed also as the gate electrode. According to the present invention, the manufacturing process can be simplified.
[0014] 本発明は、前記ワードラインは直線状に延在し、前記ビットラインは、前記ワードライ ンの幅方向に延在し、隣接するワードラインの間に頂点部を有するジグザク状あり、 前記ビットラインの延在方向に隣接するトランジスタは、 1つの前記ソース'ドレイン領 域を共有し、前記ビットラインは、前記頂点部で前記ソース'ドレイン領域に接続され 、前記頂点部であって第 1のトランジスタが有するゲート電極に接続されたワードライ ンの片側において、前記第 1のトランジスタの前記ソース'ドレイン領域の 1つと接続さ れたビットラインは、前記ワードラインの反対側において、前記ワードラインの延在方 向に隣接する第 2のトランジスタの前記ソース'ドレイン領域の 1つに接続された半導 体装置とすることができる。本発明によれば、ビットラインをジグザグ状とすることにより 、メモリセルの微細化が可能となる。 In the present invention, the word line extends in a straight line, the bit line extends in the width direction of the word line, and has a zigzag shape having apexes between adjacent word lines, Transistors adjacent in the extending direction of the bit line share one of the source and drain regions, and the bit line is connected to the source and drain region at the apex, and On one side of the word line connected to the gate electrode of the first transistor, the bit line connected to one of the source and drain regions of the first transistor is on the opposite side of the word line. Extension The semiconductor device can be connected to one of the source and drain regions of the second transistor adjacent in the direction. According to the present invention, the memory cell can be miniaturized by making the bit line zigzag.
[0015] 本発明は、前記第 1のトランジスタおよび前記第 2のトランジスタは、前記ワードライ ンの延在方向に隣接するビットラインと、それぞれ接続された半導体装置とすることが できる。 The present invention may be a semiconductor device in which the first transistor and the second transistor are each connected to a bit line adjacent in the extending direction of the word line.
[0016] 本発明は、前記ワードラインの延在方向に隣接するトランジスタ間が酸ィ匕シリコン膜 を用い素子分離された半導体装置とすることができる。本発明によれば、ビットライン とソース'ドレイン領域を接続するコンタクトホールがずれて形成されたとしても、コンタ タトホールと半導体基板間に接合電流が流れることがなぐメモリセルを微細化するこ とがでさる。  [0016] The present invention can be a semiconductor device in which elements adjacent to each other in the word line extending direction are separated using an oxide silicon film. According to the present invention, it is possible to miniaturize a memory cell in which a junction current does not flow between the contact hole and the semiconductor substrate even if the contact hole connecting the bit line and the source / drain region is formed shifted. I'll do it.
[0017] 本発明は、前記ワードラインは、ジグザグ状に延在し、前記ビットラインは、ワードラ インの幅方向に延在し、前記ワードラインのジグザグ状の頂点部を通る直線状であり 、前記トランジスタは、前記ワードラインの隣り合う前記頂点部間に配置され、前記ヮ 一ドラインの延在方向に隣接するトランジスタは 1つの前記ソース'ドレイン領域を共 有する半導体装置とすることができる。本発明によれば、ワードラインをジグザグ状と することにより、メモリセルの微細化が可能となる。  In the present invention, the word line extends in a zigzag shape, the bit line extends in the width direction of the word line, and is a straight line passing through the zigzag apex portion of the word line, The transistor may be disposed between adjacent apexes of the word line, and the transistor adjacent in the extending direction of the first line may be a semiconductor device having one source / drain region. According to the present invention, the memory cells can be miniaturized by making the word lines zigzag.
[0018] 本発明は、隣接する 2つの前記ビットラインは、 1つのトランジスタの前記ワードライ ンの両側に形成された 2つの前記ソース'ドレイン領域に、それぞれ接続された半導 体装置とすることができる。  According to the present invention, a semiconductor device in which two adjacent bit lines are respectively connected to two source and drain regions formed on both sides of the word line of one transistor. it can.
[0019] 本発明は、前記ビットラインの延在方向に隣接するトランジスタ間が酸ィ匕シリコン膜 を用い素子分離された半導体装置とすることができる。本発明によれば、ビットライン とソース'ドレイン領域を接続するコンタクトホールがずれて形成されたとしても、コンタ タトホールと半導体基板間に接合電流が流れることがなぐメモリセルを微細化するこ とがでさる。  The present invention may be a semiconductor device in which elements adjacent to each other in the extending direction of the bit line are separated using an oxide silicon film. According to the present invention, it is possible to miniaturize a memory cell in which a junction current does not flow between the contact hole and the semiconductor substrate even if the contact hole connecting the bit line and the source / drain region is formed shifted. I'll do it.
発明の効果  The invention's effect
[0020] 本発明によれば、ソース'ドレイン領域間に電流の流れる方向をワードラインの幅方 向として!/、るため、ビットラインをソース ·ドレイン領域を兼ねず形成することができる。 このため、ビットライン形成後のワードライン形成や配線層形成時の熱処理工程によ つて、ビットラインが横方向に拡散することを防止できる。これにより、メモリセルの微 細化が可能となる。 [0020] According to the present invention, since the direction of current flow between the source and drain regions is the width direction of the word line, the bit line can be formed without serving as the source / drain regions. For this reason, it is possible to prevent the bit lines from being diffused in the lateral direction by the heat treatment process at the time of forming the word lines and forming the wiring layers after forming the bit lines. As a result, the memory cell can be miniaturized.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は実施例 1に係るメモリセルに用 ヽるトランジスタの断面図である。 FIG. 1 is a cross-sectional view of a transistor used in a memory cell according to Example 1.
[図 2]図 2は実施例 1に係るメモリセルの上視図である。 FIG. 2 is a top view of the memory cell according to the first embodiment.
[図 3]図 3は実施例 1に係るメモリセルの断面図であり、図 2の A— A断面を示す図で ある。  FIG. 3 is a cross-sectional view of the memory cell according to Example 1, and shows a cross section taken along the line AA in FIG.
[図 4]図 4は実施例 1に係るメモリセルの断面図であり、図 2の B— B断面を示す図で ある。  FIG. 4 is a cross-sectional view of the memory cell according to Example 1, showing a cross section taken along line BB in FIG.
[図 5]図 5は実施例 1に係るメモリセルの断面図であり、図 2の C C断面を示す図で ある。  FIG. 5 is a cross-sectional view of the memory cell according to Example 1, showing a CC cross section of FIG.
[図 6]図 6は実施例 1に係るメモリセルの断面図であり、図 2の D— D断面を示す図で ある。  FIG. 6 is a cross-sectional view of the memory cell according to Example 1, and is a view showing a DD cross section of FIG.
[図 7]図 7は実施例 1に係るメモリセルのメモリセル面積を計算するための図である。  FIG. 7 is a diagram for calculating the memory cell area of the memory cell according to the first embodiment.
[図 8]図 8は実施例 1の変形例に係るメモリセルの断面図であり、図 2の A— A断面に 相当する断面図である。 FIG. 8 is a cross-sectional view of a memory cell according to a modification of Example 1, and is a cross-sectional view corresponding to the AA cross section of FIG.
[図 9]図 9は実施例 2に係るメモリセルの上視図である。  FIG. 9 is a top view of a memory cell according to the second embodiment.
[図 10]図 10は実施例 2に係るメモリセルの断面図であり、図 2の A— A断面を示す図 である。  FIG. 10 is a cross-sectional view of the memory cell according to the second embodiment, showing a cross section taken along the line AA in FIG.
[図 11]図 11は実施例 2に係るメモリセルの断面図であり、図 2の B—B断面を示す図 である。  FIG. 11 is a cross-sectional view of the memory cell according to Example 2, showing a cross section taken along line BB in FIG. 2.
[図 12]図 12は実施例 2に係るメモリセルの断面図であり、図 2の C C断面を示す図 である。  FIG. 12 is a cross-sectional view of the memory cell according to Example 2, showing the CC cross section of FIG. 2.
[図 13]図 13は実施例 2に係るメモリセルの断面図であり、図 2の D— D断面を示す図 である。  FIG. 13 is a cross-sectional view of the memory cell according to the second embodiment, and shows a DD cross section of FIG. 2.
[図 14]図 14は実施例 2に係るメモリセルのメモリセル面積を計算するための図(その 1 )である。 [図 15]図 15は実施例 2に係るメモリセルのメモリセル面積を計算するための図(その 2 )である。 FIG. 14 is a diagram (No. 1) for calculating the memory cell area of the memory cell according to the second embodiment. FIG. 15 is a diagram (part 2) for calculating the memory cell area of the memory cell according to the second embodiment.
[図 16]図 16は実施例 3に係るメモリセルに用いるトランジスタの断面図である。  FIG. 16 is a cross-sectional view of a transistor used in the memory cell according to Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、図面を参照に実施例について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
実施例 1  Example 1
[0023] 図 1は実施例 1で用いる平面蓄積型トランジスタの断面構造である。 P型半導体基 板(または半導体基板内の P型領域) 20の所定の領域に LOCOS(Local Oxidation of Silicon)法を用い、フィールド酸ィ匕膜 30 (酸ィ匕シリコン膜:図示せず)を形成し、素子 分離を行う。半導体基板 20上に ONO膜 28として酸ィ匕シリコン膜 (トンネル酸ィ匕膜) 2 2、窒化シリコン膜 (トラップ層) 24、酸ィ匕シリコン膜 (トップ酸ィ匕膜) 26を例えば CVD 法により形成する。  FIG. 1 shows a cross-sectional structure of a planar storage transistor used in the first embodiment. Using a LOCOS (Local Oxidation of Silicon) method in a predetermined region of a P-type semiconductor substrate (or P-type region in a semiconductor substrate) 20, a field oxide film 30 (acid silicon film: not shown) is applied. Form and perform element isolation. An oxide silicon film (tunnel oxide film) 22, a silicon nitride film (trap layer) 24, and an acid silicon film (top oxide film) 26 are formed as an ONO film 28 on the semiconductor substrate 20 by, for example, the CVD method. To form.
[0024] ONO膜 28上にゲート電極を含むワードライン 12を、例えば多結晶シリコンの成膜 、所定領域のエッチングにより形成する。所定の領域に例えば砒素を注入し、ゲート 電極の両側にソース'ドレイン領域 14を形成する。ワードライン 12以外の ONO膜 28 をエッチングする。 ONO膜のエッチングは必須ではないが、例えばワードライン 12上 部をシリサイド化し、同時にソース'ドレイン領域 14もシリサイドィ匕することができる、い わゆるサリサイド'プロセスを採用する場合にはワードライン 12とソース'ドレイン領域 1 4の両方を低抵抗ィ匕できるので有効である。層間絶縁膜 32を例えば酸ィ匕シリコン膜 で形成する。層間絶縁膜 30の所定箇所にコンタクトホール 16を形成する。コンタクト ホール 16内を例えば TiZWNあるいは TiZTiNおよび Wで埋込み、ビットライン 10 として A1の配線層を形成する。ビットライン 10はコンタクトホール 16を介しソース'ドレ イン領域 14に接続される。保護膜 34を形成する。  A word line 12 including a gate electrode is formed on the ONO film 28 by, for example, forming a polycrystalline silicon film and etching a predetermined region. For example, arsenic is implanted into a predetermined region, and source / drain regions 14 are formed on both sides of the gate electrode. The ONO film 28 other than the word line 12 is etched. Etching of the ONO film is not indispensable, but for example, when the so-called salicide process, in which the upper part of the word line 12 is silicided and the source and drain regions 14 can also be silicided, is adopted as the word line 12. This is effective because both the source and drain regions 14 can be low resistance. The interlayer insulating film 32 is formed of, for example, an oxide silicon film. Contact holes 16 are formed at predetermined positions of the interlayer insulating film 30. The contact hole 16 is filled with TiZWN or TiZTiN and W, for example, and an A1 wiring layer is formed as the bit line 10. Bit line 10 is connected to source / drain region 14 through contact hole 16. A protective film 34 is formed.
[0025] 平面蓄積層型トランジスタにおいては、特許文献 1のようにゲート電極 (ワードライン ) 12と半導体基板 20間の ONO膜 28に 2箇所の電荷蓄積領域が形成される。  In the planar storage layer type transistor, two charge storage regions are formed in the ONO film 28 between the gate electrode (word line) 12 and the semiconductor substrate 20 as in Patent Document 1.
[0026] 図 2は実施例 1に係るメモリセルの上視図である。保護膜 34、層間絶縁膜 32は図 示していない。また、ビットライン 10a下のコンタクトホール 16は破線で示した。直線状 に延在する複数のワードライン 12aと、ワードライン 12aの幅方向に延在し、各ワード ライン 12aの間毎に頂点部を有するジグザク状の複数のビットライン 10aとが形成され ている。トランジスタ 11aはワードライン 12aの延在方向およびビットライン 10aの延在 方向に複数形成されている。さらに、各トランジスタは、ゲート電極を兼ねるワードライ ン 10aの両側に 2つのソース'ドレイン領域 14aが形成されている。このとき、 2つのソ ース 'ドレイン領域 14a間に流れる電流方向は、ワードライン 12aの幅方向である。 FIG. 2 is a top view of the memory cell according to the first embodiment. The protective film 34 and the interlayer insulating film 32 are not shown. The contact hole 16 under the bit line 10a is indicated by a broken line. A plurality of word lines 12a extending in a straight line, and extending in the width direction of the word lines 12a, A plurality of zigzag bit lines 10a having apexes between the lines 12a are formed. A plurality of transistors 11a are formed in the extending direction of the word line 12a and the extending direction of the bit line 10a. Further, in each transistor, two source / drain regions 14a are formed on both sides of the word line 10a which also serves as a gate electrode. At this time, the direction of current flowing between the two source drain regions 14a is the width direction of the word line 12a.
[0027] ソース'ドレイン領域 14aは、ビットライン 10aの延在方向に隣接するトランジスタの 1 つのソース'ドレイン領域 14aと共有している。例えば、ワードライン (WLn)をゲート電 極とするトランジスタはワードライン (WLn— 1)をゲート電極とするトランジスタとワード ライン (WLn)とワードライン (WLn— 1)間の領域でソース'ドレイン電極 14aを共有し ている。 [0027] The source'drain region 14a is shared with one source'drain region 14a of a transistor adjacent in the extending direction of the bit line 10a. For example, a transistor having the word line (WLn) as the gate electrode is a transistor having the word line (WLn-1) as the gate electrode and a source / drain electrode in a region between the word line (WLn) and the word line (WLn-1). Share 14a.
[0028] ビットライン 10aは、ジグザグ状の概頂点部においてソース'ドレイン領域 14aと接続 しており、ワードライン 12aの片側のソース'ドレイン領域 14aに接続されたビットライン は、ワードライン 12aの別の側で、ワードライン 12aの延在方向の隣接するトランジスタ のソース'ドレイン領域 14aに接続されている。例えば,ワードライン (WLn)の WLn+ 1側でソース'ドレイン領域 14aに接続されたビットライン (BLn)は、 WLn— 1側で、ヮ 一ドライン 12aの延在方向に隣接するトランジスタのソース'ドレイン領域に接続して いる。さらに、ワードライン (WLn— 1)の WLn— 2側では、ワードライン 12aの延在方 向で、逆方向の隣接するトランジスタのソース'ドレイン領域 14aと接続している。この ように、ジグザグ状のビットライン 10aが配置されて 、る。  [0028] The bit line 10a is connected to the source / drain region 14a at the zigzag approximate vertex, and the bit line connected to the source / drain region 14a on one side of the word line 12a is separated from the word line 12a. On the other hand, it is connected to the source / drain region 14a of the adjacent transistor in the extending direction of the word line 12a. For example, the bit line (BLn) connected to the source 'drain region 14a on the WLn + 1 side of the word line (WLn) is the source' drain 'of the transistor adjacent to the extending direction of the single line 12a on the WLn-1 side. Connected to area. Further, on the WLn-2 side of the word line (WLn-1), it is connected to the source / drain region 14a of the adjacent transistor in the opposite direction in the extending direction of the word line 12a. Thus, the zigzag bit line 10a is arranged.
[0029] 言い換えれば、ワードライン 12aは直線状に延在し、ビットライン 10aは、ワードライ ン 12aの幅方向に延在し、隣接するワードライン 12aの間に頂点部を有するジグザク 状あり、ビットライン 10aの延在方向に隣接するトランジスタは、 1つのソース'ドレイン 領域 14aを共有し、ビットライン 10aは、頂点部でソース'ドレイン領域 14aに接続され 、頂点部であって第 1のトランジスタ (例えば 11a)が有するゲート電極に接続されたヮ 一ドライン (例えば WLn— 2)の片側(例えば WLn— 1側)にお 、て、第 1のトランジス タ(例えば 11a)のソース'ドレイン領域の 1つと接続されたビットライン (例えば BLn— 2)は、ワードライン (例えば WLn— 2)の反対側(例えば WLn— 3側)にお 、て、ヮー ドライン 12aの延在方向に隣接する第 2のトランジスタの前記ソース'ドレイン領域の 1 つに接続されている。 [0029] In other words, the word line 12a extends linearly, the bit line 10a extends in the width direction of the word line 12a, has a zigzag shape having apexes between adjacent word lines 12a, and bit Transistors adjacent in the extending direction of the line 10a share one source / drain region 14a, and the bit line 10a is connected to the source / drain region 14a at the apex, and the first transistor ( For example, on one side (for example, WLn-1 side) of the first drain (for example, WLn-1) connected to the gate electrode of 11a), 1 of the source / drain region of the first transistor (for example, 11a) The bit line connected to the second line (for example, BLn-2) is connected to the second line adjacent to the word line (for example, WLn-2) on the opposite side (for example, WLn-3 side) in the extending direction of the word line 12a. The transistor Of the scan 'drain region 1 Connected to one.
[0030] また、隣接する 2つのビットライン 10aは、それぞれワードライン 12aの延在方向に隣 接する 2つのトランジスタのソース'ドレイン領域 14aに接続されている。すなわち、前 述の第 1のトランジスタ(例えば 11a)および第 2のトランジスタは、ワードライン 12aの 延在方向に隣接するビットライン (例えば BLn— 3と BLn— 2)と、それぞれ接続され ている。  [0030] Two adjacent bit lines 10a are connected to source / drain regions 14a of two transistors adjacent to each other in the extending direction of the word line 12a. That is, the first transistor (for example, 11a) and the second transistor are connected to the bit lines (for example, BLn-3 and BLn-2) adjacent to each other in the extending direction of the word line 12a.
[0031] 図 3は図 2の A— A断面図であり、ワードライン 12a延在方向のワードライン 12a内の 断面図である。半導体基板 20およびフィールド酸ィ匕膜 30a上に ONO膜 28およびヮ 一ドライン 12aが形成され、ビットライン 10aは、フィールド酸ィ匕膜 30a上において、ヮ 一ドライン 12a上を横切っている。ワードライン 10a下の半導体基板 20にはビットライ ンは埋め込まれていない。  FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, and is a cross-sectional view in the word line 12a in the extending direction of the word line 12a. The ONO film 28 and the first drain line 12a are formed on the semiconductor substrate 20 and the field oxide film 30a, and the bit line 10a crosses the first drain line 12a on the field oxide film 30a. No bit line is embedded in the semiconductor substrate 20 below the word line 10a.
[0032] 図 4は図 2の B—B断面図であり、ワードライン 12a延在方向のワードライン 12a間の 断面図である。ビットライン 10aは、ジグザグ状のため、図 3と異なり、フィールド酸ィ匕 膜 30aの間のソース'ドレイン領域 14a上に位置する。ここで、コンタクトホール 16を介 しソース ·ドレイン領域 14aと接続されて 、る。ワードライン 12aの延在方向に隣接する ソース'ドレイン領域 14a (すなわちトランジスタ)はフィールド酸ィ匕膜 30a (酸ィ匕シリコン 膜)により素子分離している。  FIG. 4 is a cross-sectional view taken along the line BB in FIG. 2, and is a cross-sectional view between the word lines 12a in the extending direction of the word lines 12a. Unlike the case of FIG. 3, the bit line 10a is located on the source / drain region 14a between the field oxide films 30a because of the zigzag shape. Here, it is connected to the source / drain region 14a through the contact hole 16. Source / drain regions 14a (that is, transistors) adjacent in the extending direction of the word line 12a are separated by a field oxide film 30a (acid silicon film).
[0033] 図 5は図 2の C C断面図であり、ビットライン 10a延在方向のトランジスタ内の断面 図である。ワードライン (ゲート電極) 12aの両側にソース'ドレイン領域 14aが形成さ ている。ビットライン 10aはソース'ドレイン領域 14a上に位置し、コンタクトホール 16を 介し接続している。また、ビットライン 10aはジグザグ状のため、ビットライン (BLn— 1) とビットライン (BLn)が交互に現れる。  FIG. 5 is a cross-sectional view taken along the line CC in FIG. 2, and is a cross-sectional view inside the transistor in the extending direction of the bit line 10a. Source / drain regions 14a are formed on both sides of the word line (gate electrode) 12a. The bit line 10a is located on the source / drain region 14a and connected through the contact hole 16. Since the bit line 10a is zigzag, the bit line (BLn-1) and the bit line (BLn) appear alternately.
[0034] 図 6は図 2の D— D断面図であり、ビットライン 10a延在方向のトランジスタ間の断面 図である。ワードライン 12aの延在方向に隣接するトランジスタは素子分離されている ため、フィールド酸化膜 30aが形成されている。ビットライン 10aは、ワードライン 12a 上に位置し、同じビットライン (BLn)が現れる。ワードライン 12a以外の ONO膜 28は 除去されている。  FIG. 6 is a cross-sectional view taken along the line DD of FIG. 2, and is a cross-sectional view between transistors in the extending direction of the bit line 10a. Since the transistor adjacent to the extending direction of the word line 12a is isolated, a field oxide film 30a is formed. Bit line 10a is located on word line 12a and the same bit line (BLn) appears. The ONO film 28 other than the word line 12a has been removed.
[0035] 図 7は実施例 1のメモリセル面積を計算するための図である。ビットライン 10a、ヮー ドライン 12aおよびソース'ドレイン領域 14aの最小寸法を Fとし、ピッチを 2Fとすると、 メモリセル面積の一辺は 2 2Fとなり、メモリセル面積は 8F2とすることができる。 FIG. 7 is a diagram for calculating the memory cell area of the first embodiment. Bit line 10a The minimum size of-line 12a and source 'drain regions 14a and F, when a 2F pitch, one side is 2 2F next memory cell area, the memory cell area can be 8F 2.
[0036] 実施例 1においては、ソース'ドレイン領域 14a間に電流の流れる方向をワードライ ン 12aの幅方向としている。特許文献 1の形式の半導体装置に多く用いられるワード ラインの延在方向に電流を流す構造では、微細化を行う上でワードライン間のソース •ドレイン領域の接続 (つまりビットライン)を基板中に埋め込む!/、わゆる埋め込みビッ トライン方式をとらざるを得ない。これに対して、実施例 1ではソース'ドレイン領域がヮ 一ドライン外に露出しているからこれをコンタクトホールで配線で結線することが可能 になる。このため、埋め込みビットライン方式では必要となるビットライン形成後のヮー ドライン 12a形成や配線層形成時の熱処理工程によって、ビットラインが横方向に拡 散することがない。これにより、メモリセルの微細化が可能となる。さらに、ソース'ドレ イン領域 14aを形成する際のイオン注入は低エネルギ、低ドーズで行うことができ、ト ランジスタのショートチャネル効果を防止することができる。さらに、ビットライン 10aを ジグザグ状とし概頂点部でソース'ドレイン領域と接続している。これにより、メモリセ ルの微細化がさらに可能となる。  In the first embodiment, the direction in which current flows between the source and drain regions 14a is the width direction of the word line 12a. In the structure in which current flows in the extending direction of the word line often used in the semiconductor device of the type of Patent Document 1, the source / drain region connection (that is, the bit line) between the word lines is made in the substrate for miniaturization. Embed! /, I have to take the so-called embedding bit line method. On the other hand, since the source and drain regions are exposed outside the first drain line in the first embodiment, it can be connected by wiring through the contact hole. For this reason, the bit line does not spread laterally due to the heat treatment process at the time of forming the side line 12a after forming the bit line and forming the wiring layer, which is necessary in the buried bit line method. Thereby, the memory cell can be miniaturized. Further, the ion implantation for forming the source / drain region 14a can be performed with low energy and low dose, and the short channel effect of the transistor can be prevented. Further, the bit line 10a is formed in a zigzag shape and is connected to the source / drain region at the approximate vertex. As a result, the memory cell can be further miniaturized.
[0037] さらに、図 4のように、ソース'ドレイン領域 14a間がフィールド酸ィ匕膜 30a (酸ィ匕シリ コン膜)により素子分離されている。これにより、例えば、コンタクトホール 16の形成が ワードライン 12aの延在方向にずれたとしても、コンタクトホール 16はフィールド酸化 膜 30a上に形成されるため、ビットラインと半導体基板 20間に接合電流が流れること はない。よって、コンタクトホール 16の合わせ余裕を小さくでき、メモリセルの微細化 が可能となる。  Further, as shown in FIG. 4, the source / drain regions 14a are separated from each other by a field oxide film 30a (an acid silicon film). Thereby, for example, even if the formation of the contact hole 16 is shifted in the extending direction of the word line 12a, the contact hole 16 is formed on the field oxide film 30a, so that a junction current is generated between the bit line and the semiconductor substrate 20. There is no flow. Therefore, the alignment margin of the contact hole 16 can be reduced, and the memory cell can be miniaturized.
[0038] 実施例 1の変形例として、素子分離を STI(Shallow Trench Isolation)法を用い行うこ とができる。 STI法を用いた埋込酸ィ匕膜 30b (酸ィ匕シリコン膜)を用い素子分離されて いる以外の構成、製造方法は実施例 1と同じとすることができる。図 8は図 2の A— A 断面に相当する断面図である。 STI法を用いた埋込酸ィ匕膜 30bを用い素子分離され ている以外は図 3と同様である。変形例の場合も、実施例 1と同様の効果が得られる 実施例 2 [0039] 実施例 2は平面蓄積型トランジスタを用い、 STI法を用い素子分離した例である。 As a modification of the first embodiment, element isolation can be performed using an STI (Shallow Trench Isolation) method. The configuration and the manufacturing method can be the same as those in Example 1 except that the element is isolated using the buried oxide film 30b (acid silicon film) using the STI method. FIG. 8 is a cross-sectional view corresponding to the AA cross section of FIG. This is the same as in Fig. 3 except that the element is isolated using a buried oxide film 30b using the STI method. In the case of the modified example, the same effect as in Example 1 can be obtained. Example 2 Example 2 is an example in which a planar storage transistor is used and elements are separated using the STI method.
[0040] 図 9は実施例 2に係るメモリセルの上視図である。保護膜 34、層間絶縁膜 32は図 示していない。ビットライン 10b下のコンタクトホール 16は破線で示している。ジグザ グ状に延在する複数のワードライン 12bと、ワードライン 12bの幅方向(ワードライン 1 2bの延在する方向の概垂直方向)に延在し、ワードライン 12bのジグザグ状の概頂 点部を通る直線状の複数のビットラインが形成されている。ワードライン 12bの屈曲方 向は複数のワードラインで同じ方向となっている。  FIG. 9 is a top view of the memory cell according to the second embodiment. The protective film 34 and the interlayer insulating film 32 are not shown. The contact hole 16 below the bit line 10b is indicated by a broken line. A plurality of word lines 12b extending in a zigzag shape, and a zigzag outline apex point of the word line 12b extending in the width direction of the word line 12b (generally perpendicular to the extending direction of the word lines 12b) A plurality of linear bit lines passing through the portion are formed. The bending direction of the word line 12b is the same for a plurality of word lines.
[0041] トランジスタ l ibはワードライン 12bの延在方向およびビットライン 10bの延在方向に 複数配置されている。また、各トランジスタ l ibは、ゲート電極を兼ねるワードライン 12 bの両側に 2つのソース'ドレイン領域 14bが形成されている。このとき、 2つのソース' ドレイン領域 14b間に流れる電流方向は、ワードライン 12bの幅方向である。さらに、 各トランジスタ l ibはワードライン 12bの隣り合う頂点部間のおおよそ中央部分に配 置さており、ワードライン 12bの延在方向に隣接するトランジスタとソース'ドレイン領 域 14bを共有して!/、る。ビットライン 10bはソース ·ドレイン領域 14bと接続して!/、る。  A plurality of transistors l ib are arranged in the extending direction of the word line 12b and the extending direction of the bit line 10b. In each transistor l ib, two source / drain regions 14b are formed on both sides of the word line 12b which also serves as a gate electrode. At this time, the direction of the current flowing between the two source / drain regions 14b is the width direction of the word line 12b. In addition, each transistor l ib is arranged approximately in the middle between adjacent apexes of the word line 12b, and shares the source / drain region 14b with the transistor adjacent in the extending direction of the word line 12b! / RU The bit line 10b is connected to the source / drain region 14b! /.
[0042] 言い換えれば、ワードライン 12bは、ジグザグ状に延在し、ビットライン 10bはワード ライン 12bの幅方向に延在し、ワードライン 12bのジグザグ状の頂点部を通る直線状 であり、トランジスタ l ibが、ワードライン 12bの隣り合う前記頂点部間に配置され、ヮ 一ドライン 12bの延在方向に隣接するトランジスタは 1つのソース'ドレイン領域を共有 している。さらに、隣接する 2つのビットライン(例えば BLn— 2と BLn— 3)は、 1つのト ランジスタ (例えば l ib)のワードライン (例えば WLn)の両側に形成された 2つの前記ソ ース'ドレイン領域に、それぞれ接続されている。  [0042] In other words, the word line 12b extends in a zigzag shape, the bit line 10b extends in the width direction of the word line 12b, and is a straight line passing through the zigzag apex portion of the word line 12b. l ib is disposed between adjacent apexes of the word line 12b, and transistors adjacent to each other in the extending direction of the first line 12b share one source / drain region. In addition, two adjacent bit lines (for example, BLn-2 and BLn-3) are connected to two source drains formed on both sides of a word line (for example, WLn) of one transistor (for example, ib). Each is connected to a region.
[0043] 図 10は図 9の A— A断面であり、トランジスタの電流の流れる方向の断面図である。  FIG. 10 is a cross-sectional view taken along the line AA in FIG.
半導体基板 20上の ONO膜 28上にゲートゲート電極を兼ねるワードライン 12bが形 成されている。ワードライン 12bの両側にソース'ドレイン領域 14bが形成されている。 半導体基板 20およびワードライン 12b上にコンタクトホール 16を有する層間絶縁膜 3 2が形成されている。さらに、層間絶縁膜 32上にコンタクトホール 16を介しソース'ド レイン領域 14bと接続されるビットライン 10bが形成されている。層間絶縁膜 32および ビットライン 10b上に保護膜 34が形成されている。隣接するトランジスタ間は埋込酸 化膜 30b (酸ィ匕シリコン膜)により素子分離されている。 On the ONO film 28 on the semiconductor substrate 20, a word line 12b that also serves as a gate gate electrode is formed. Source and drain regions 14b are formed on both sides of the word line 12b. Interlayer insulating film 32 having contact hole 16 is formed on semiconductor substrate 20 and word line 12b. Further, a bit line 10b connected to the source / drain region 14b through the contact hole 16 is formed on the interlayer insulating film 32. A protective film 34 is formed on the interlayer insulating film 32 and the bit line 10b. Adjacent acid between adjacent transistors The element is isolated by the oxide film 30b (silicon oxide film).
[0044] 図 11は図 9の B—B断面図であり、ワードライン 12bの頂点部を横切り、ワードライン 12bの延在方向の断面図である。ワードライン 12bは埋込酸ィ匕膜 30b上に形成され、 ワードライン 12b間のソース'ドレイン領域 14bはコンタクトホール 16を介しビットライン 10bに接続されている。ビットライン 10bは 1つおきにソース'ドレイン領域 14bに接続 されて 、る。ソース ·ドレイン領域 14bに接続されて 、な 、ビットライン 10bはもう一方 のワードライン 12bの頂点部において、ソース'ドレイン領域 14bと接続している。ヮー ドライン 12bはジグザグ状のため同じワードライン (WLn)が現れている。  FIG. 11 is a cross-sectional view taken along the line BB of FIG. 9, and is a cross-sectional view in the extending direction of the word line 12b across the apex of the word line 12b. The word line 12b is formed on the buried oxide film 30b, and the source / drain region 14b between the word lines 12b is connected to the bit line 10b through the contact hole 16. Every other bit line 10b is connected to a source / drain region 14b. When connected to the source / drain region 14b, the bit line 10b is connected to the source / drain region 14b at the apex of the other word line 12b. Since the word line 12b is zigzag shaped, the same word line (WLn) appears.
[0045] 図 12は図 9の C— C断面図であり、ビットライン 10b延在方向のビットライン 10b内の 断面図である。ワードライン 12bは埋込酸ィ匕膜 30b上に形成され、ワードライン 12b間 のソース'ドレイン領域 14bはコンタクトホール 16を介しビットライン 10bに接続されて いる。ビットライン 10bはワードライン 12b上を横切っており、ビットライン 10b下の半導 体基板 20にはビットラインは埋め込まれて ヽな 、。  FIG. 12 is a cross-sectional view taken along the line CC of FIG. 9, and is a cross-sectional view in the bit line 10b extending in the bit line 10b extending direction. The word line 12b is formed on the buried oxide film 30b, and the source / drain region 14b between the word lines 12b is connected to the bit line 10b through the contact hole 16. The bit line 10b crosses over the word line 12b, and the bit line is embedded in the semiconductor substrate 20 below the bit line 10b.
[0046] 図 13は図 9の D—D断面であり、ビットライン 10b延在方向のビットライン 10b間の断 面図である。ワードライン 12b間の半導体基板 20は埋め込み酸ィ匕膜 30bにより素子 分離されている。図 12、図 13のようにビットライン 10b延在方向に隣接するトランジス タは埋込酸化膜 30bにより素子分離されて ヽる。  FIG. 13 is a cross-sectional view taken along the line DD of FIG. 9, and is a cross-sectional view between the bit lines 10b extending in the bit line 10b extending direction. The semiconductor substrate 20 between the word lines 12b is separated by a buried oxide film 30b. As shown in FIGS. 12 and 13, the transistors adjacent to the extending direction of the bit line 10b are separated by the buried oxide film 30b.
[0047] 図 14は実施例 2のメモリセル面積を計算するための図である。ビットライン 10b、ヮ 一ドライン 12bおよびソース'ドレイン領域 14bの最小寸法を Fとし,ジグザグの一辺を 3Fとする。このとき、メモリセルのビットライン延在方向の辺の長さは 5 2/2F、ヮー ドライン延在方向の辺の長さは 3 2Z2Fとなり、メモリセル面積は 7. 5F2とすること ができる。 FIG. 14 is a diagram for calculating the memory cell area of the second embodiment. The minimum dimension of the bit line 10b, the single drain line 12b, and the source / drain region 14b is F, and one side of the zigzag is 3F. At this time, the length of the side of the bit line extending direction of the memory cell is 52 / 2F, the length of the side of the extending direction of the memory line is 32Z2F, and the memory cell area can be 7.5 F 2. .
[0048] さらに、図 15においては、ビットライン 10b、ワードライン 12bおよびソース'ドレイン 領域 14bの最小寸法を Fとし,ジグザグの一辺を 2 2Fとする。このとき、メモリセルの ビットライン延在方向の辺の長さは(2 + 2) F、ワードライン延在方向の辺の長さは 2 2Fとなり、メモリセル面積は(4 + 2 2) F2 (約 6. 83F2)とすることができる。このよ うに、実施例 1よりメモリセル面積を小さくできる。 Further, in FIG. 15, the minimum dimension of the bit line 10b, the word line 12b, and the source / drain region 14b is F, and one side of the zigzag is 22 F. At this time, the length of the side of the bit line extending direction of the memory cell is (2 + 2) F, the length of the side of the extending direction of the word line is 2 2F, and the area of the memory cell is (4 + 2 2) F 2 (approximately 6.83F 2 ). Thus, the memory cell area can be made smaller than in the first embodiment.
[0049] 実施例 2においても、実施例 1と同様に、ソース'ドレイン領域間に流れる方向をヮ 一ドライン 12bの幅方向としている。これにより、ビットライン 10bをソース'ドレイン領域 14bを兼ねず (含まず)に形成することができる。これにより実施例 1同様、メモリセルの 微細化、ショートチャネル効果を防止することができる。さらに、ビットライン 10bは、ジ グザグ状のワードライン 12bの概頂点部を通り、ソース'ドレイン領域 14bと接続してい る。これにより、さらにメモリセルの微細化ができる。 [0049] In Example 2, as in Example 1, the flow direction between the source and drain regions is changed. The width direction of the first drain line 12b is used. As a result, the bit line 10b can be formed without (including) the source / drain region 14b. As a result, miniaturization of the memory cell and the short channel effect can be prevented as in the first embodiment. Further, the bit line 10b passes through the approximate apex of the zigzag word line 12b and is connected to the source / drain region 14b. Thereby, the memory cell can be further miniaturized.
[0050] さらに、図 12、図 13のように、トランジスタ間が埋込酸ィ匕膜 30bにより素子分離され ている。これにより、例えば、コンタクトホール 16の形成がビットライン 10bの延在方向 にずれたとしても、コンタクトホール 16は埋込酸ィ匕膜 30b上に形成されるため、ビット ライン 10bと半導体基板 20間に接合電流が流れることはない。よって、コンタクトホー ル 16の合わせ余裕を小さくでき、メモリセルの微細化が可能となる。なお、実施例 1 同様 LOCOS法を用い素子分離しても同様の効果が得られる。 Furthermore, as shown in FIGS. 12 and 13, the transistors are separated from each other by a buried oxide film 30b. Thereby, for example, even if the formation of the contact hole 16 is shifted in the extending direction of the bit line 10b, the contact hole 16 is formed on the buried oxide film 30b. No junction current will flow through. Therefore, the alignment margin of the contact hole 16 can be reduced, and the memory cell can be miniaturized. Note that the same effect can be obtained even if the device is isolated using the LOCOS method as in the first embodiment.
実施例 3  Example 3
[0051] 実施例 3は側壁蓄積型トランジスタを用いた例である。図 16は側壁蓄積型トランジ スタの断面構造である。平面蓄積型トランジスタと同様に STI法または LOCOS法を 用い、素子分離領域 30(図示せず)を形成する。半導体基板 20上に酸化シリコン膜 2 1を例えば熱酸化法で形成する。酸ィ匕シリコン膜 21上に、ゲート電極を兼ねるワード ライン 12として、例えば多結晶シリコンの成膜、所定領域のエッチングにより形成する 。ゲート電極 (ワードライン) 12の側部にサイドウォール法により側壁として酸ィ匕シリコ ン膜 23および窒化シリコン膜 (電荷蓄積領域) 29を例えば CVD法を用い形成する。 全面に酸ィ匕シリコン膜 25を形成する。所定の領域に例えば砒素を注入し、ゲート電 極 12 (ワードライン)の両側にソース'ドレイン領域 14を形成する。層間絶縁膜 32を例 えば酸ィ匕シリコン膜で形成する。層間絶縁膜 30の所定箇所にコンタクトホール 16を 形成する。コンタクトホール 16内を例えば TiZWNあるいは TiZTiNおよび Wで埋 込み、ビットライン 10として例えば A1の配線層を形成する。ビットライン 10はコンタクト ホール 16を介しソース'ドレイン領域 14に接続される。保護膜 34を形成する。  Example 3 is an example using a sidewall storage type transistor. Figure 16 shows the cross-sectional structure of the sidewall storage transistor. The element isolation region 30 (not shown) is formed by using the STI method or the LOCOS method in the same manner as the planar storage type transistor. A silicon oxide film 21 is formed on the semiconductor substrate 20 by, for example, a thermal oxidation method. On the silicon oxide film 21, a word line 12 that also serves as a gate electrode is formed by, for example, forming a polycrystalline silicon film and etching a predetermined region. An oxide silicon film 23 and a silicon nitride film (charge storage region) 29 are formed as side walls on the side portion of the gate electrode (word line) 12 by the sidewall method, for example, using the CVD method. An oxide silicon film 25 is formed on the entire surface. For example, arsenic is implanted into a predetermined region, and source / drain regions 14 are formed on both sides of the gate electrode 12 (word line). For example, the interlayer insulating film 32 is formed of an oxide silicon film. Contact holes 16 are formed at predetermined locations in the interlayer insulating film 30. The contact hole 16 is filled with, for example, TiZWN or TiZTiN and W, and a wiring layer of, for example, A1 is formed as the bit line 10. The bit line 10 is connected to the source / drain region 14 through the contact hole 16. A protective film 34 is formed.
[0052] 側壁蓄積型トランジスタにおいては、ゲート電極を兼ねるワードライン 12の両側に 形成された窒化シリコン膜 29を電荷蓄積領域とすることができる。  In the sidewall storage type transistor, the silicon nitride film 29 formed on both sides of the word line 12 also serving as the gate electrode can be used as a charge storage region.
[0053] 上記で形成されたメモリセルは例えば実施例 1や実施例 2のような配置のメモリセル とすることができる。従来、側壁蓄積型トランジスタを用いたフラッシュメモリにおいて は、ワードラインはゲート電極上にさらに形成するという複雑な製造方法とする必要が あった。これは、ゲート電極の側壁に電荷蓄積領域を形成しているため、ソース'ドレ イン領域間の電流の流れる方向に、ゲート電極を含むようにワードラインを延在させ ることが難しいためである。 The memory cell formed as described above is, for example, a memory cell arranged as in the first embodiment or the second embodiment. It can be. Conventionally, in a flash memory using a sidewall storage type transistor, it is necessary to use a complicated manufacturing method in which a word line is further formed on a gate electrode. This is because the charge storage region is formed on the side wall of the gate electrode, so that it is difficult to extend the word line so as to include the gate electrode in the direction of current flow between the source and drain regions. .
[0054] 実施例 1や実施例 2のメモリセルの配置とすることでソース'ドレイン領域 14間を流 れる電流の方向をワードラインの幅方向とすることができる。これにより、ワードラインと ゲート電極と別の層で形成する必要がなくなる。すなわち、ワードラインはゲート電極 を兼ねるように形成することができる。以上より、製造工程を簡略ィ匕することができる。 また、実施例 1および実施例 2の同じ効果も奏することができる。  With the arrangement of the memory cells in the first and second embodiments, the direction of the current flowing between the source and drain regions 14 can be the width direction of the word line. This eliminates the need to form the word line and the gate electrode as separate layers. That is, the word line can be formed so as to also serve as the gate electrode. As described above, the manufacturing process can be simplified. Further, the same effects as those of the first embodiment and the second embodiment can be obtained.
[0055] 以上、本発明の好ましい実施形態について詳述した力 本発明は係る特定の実施 形態に限定されるものではなぐ特許請求の範囲に記載された本発明の要旨の範囲 内において、種々の変形'変更が可能である。例えば、実施例では SONOS型メモリ の例であつたが、トラップ層としてナノクリスタルを用いたメモリやいわゆる High— k膜 として知られる高誘電率材料をトラップ層やトンネル絶縁層やトップ層に用いたメモリ においても、本発明が適用できる。  [0055] As described above, the power described in detail for the preferred embodiment of the present invention The present invention is not limited to the specific embodiment, and various modifications can be made within the scope of the gist of the present invention described in the claims. Deformation can be changed. For example, in the examples, a SONOS type memory was used, but a memory using nanocrystals as a trap layer or a high dielectric constant material known as a so-called high-k film was used for the trap layer, tunnel insulating layer, or top layer. The present invention can also be applied to a memory.

Claims

請求の範囲 The scope of the claims
[1] 半導体基板上に形成されたゲート電極と、該ゲート電極の両側の前記半導体基板内 に形成された 2つのソース'ドレイン領域と、複数の電荷蓄積領域とを具備するトラン ジスタと、  [1] A transistor comprising a gate electrode formed on a semiconductor substrate, two source and drain regions formed in the semiconductor substrate on both sides of the gate electrode, and a plurality of charge storage regions;
前記ソース'ドレイン領域に接続されたビットラインと、  A bit line connected to the source and drain regions;
前記ゲート電極に接続されたワードラインと、を具備し、  A word line connected to the gate electrode,
前記 2つのソース ·ドレイン領域間に流れる電流方向は、前記ワードラインの幅方向 である半導体装置。  A semiconductor device in which a direction of a current flowing between the two source / drain regions is a width direction of the word line.
[2] 前記電荷蓄積領域は、前記半導体基板とゲート電極の間とゲート電極の側壁のいず れか一方に形成される請求項 2記載の半導体装置。  2. The semiconductor device according to claim 2, wherein the charge storage region is formed either between the semiconductor substrate and the gate electrode or on a side wall of the gate electrode.
[3] 前記ワードラインは前記ゲート電極を兼ねて形成された請求項 1または 2記載の半導 体装置。 3. The semiconductor device according to claim 1, wherein the word line is also formed as the gate electrode.
[4] 前記ワードラインは直線状に延在し、  [4] The word line extends in a straight line,
前記ビットラインは、前記ワードラインの幅方向に延在し、隣接するワードラインの間 に頂点部を有するジグザク状あり、  The bit line extends in the width direction of the word line and has a zigzag shape having apexes between adjacent word lines,
前記ビットラインの延在方向に隣接するトランジスタは、 1つの前記ソース 'ドレイン 領域を共有し、  Transistors adjacent in the extending direction of the bit line share one of the source and drain regions,
前記ビットラインは、前記頂点部で前記ソース ·ドレイン領域に接続され、 前記頂点部であって第 1のトランジスタが有するゲート電極に接続されたワードライ ンの片側において、前記第 1のトランジスタの前記ソース'ドレイン領域の 1つと接続さ れたビットラインは、前記ワードラインの反対側において、前記ワードラインの延在方 向に隣接する第 2のトランジスタの前記ソース'ドレイン領域の 1つに接続された請求 項 1から 3の 、ずれか一項記載の半導体装置。  The bit line is connected to the source / drain region at the apex portion, and the source of the first transistor is connected to a gate line of the apex portion and the gate electrode of the first transistor. 'A bit line connected to one of the drain regions is connected to one of the source' drain regions of the second transistor adjacent to the extending direction of the word line on the opposite side of the word line. The semiconductor device according to any one of claims 1 to 3.
[5] 前記第 1のトランジスタおよび前記第 2のトランジスタは、前記ワードラインの延在方向 に隣接するビットラインと、それぞれ接続された請求項 4記載の半導体装置。  5. The semiconductor device according to claim 4, wherein the first transistor and the second transistor are respectively connected to a bit line adjacent in the extending direction of the word line.
[6] 前記ワードラインの延在方向に隣接するトランジスタ間が酸ィ匕シリコン膜を用い素子 分離された請求項 4または 5記載の半導体装置。  6. The semiconductor device according to claim 4 or 5, wherein elements adjacent to each other in the word line extending direction are separated using an oxide silicon film.
[7] 前記ワードラインは、ジグザグ状に延在し、 前記ビットラインは、ワードラインの幅方向に延在し、前記ワードラインのジグザグ状 の頂点部を通る直線状であり、 [7] The word lines extend zigzag, The bit line is a straight line extending in the width direction of the word line and passing through the zigzag apex of the word line;
前記トランジスタは、前記ワードラインの隣り合う前記頂点部間に配置され、 前記ワードラインの延在方向に隣接するトランジスタは 1つの前記ソース ·ドレイン領 域を共有する請求項 1から 3のいずれか一項記載の半導体装置。  4. The transistor according to claim 1, wherein the transistor is disposed between the adjacent vertex portions of the word line, and the transistors adjacent in the extending direction of the word line share one source / drain region. A semiconductor device according to item.
[8] 隣接する 2つの前記ビットラインは、 1つのトランジスタの前記ワードラインの両側に形 成された 2つの前記ソース ·ドレイン領域に、それぞれ接続された請求項 7記載の半 導体装置。 8. The semiconductor device according to claim 7, wherein the two adjacent bit lines are respectively connected to the two source / drain regions formed on both sides of the word line of one transistor.
[9] 前記ビットラインの延在方向に隣接するトランジスタ間が酸ィ匕シリコン膜を用い素子分 離された請求項 7または 8記載の半導体装置。  [9] The semiconductor device according to [7] or [8], wherein the transistors adjacent to each other in the extending direction of the bit line are separated from each other using an oxide silicon film.
PCT/JP2005/006265 2005-03-31 2005-03-31 Semiconductor device WO2006106570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/006265 WO2006106570A1 (en) 2005-03-31 2005-03-31 Semiconductor device
JP2007512374A JP5099691B2 (en) 2005-03-31 2005-03-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/006265 WO2006106570A1 (en) 2005-03-31 2005-03-31 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2006106570A1 true WO2006106570A1 (en) 2006-10-12

Family

ID=37073138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006265 WO2006106570A1 (en) 2005-03-31 2005-03-31 Semiconductor device

Country Status (2)

Country Link
JP (1) JP5099691B2 (en)
WO (1) WO2006106570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462276B (en) * 2009-07-30 2014-11-21 Hynix Semiconductor Inc Flash memory device and mask for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318292A (en) * 2002-04-12 2003-11-07 Samsung Electronics Co Ltd 2 bit writable nonvolatile memory element, its driving method and fabricating method
JP2004342721A (en) * 2003-05-14 2004-12-02 Seiko Epson Corp Semiconductor device including nonvolatile memory
JP2004349353A (en) * 2003-05-20 2004-12-09 Sharp Corp Semiconductor storage device, its operating method, and portable electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318292A (en) * 2002-04-12 2003-11-07 Samsung Electronics Co Ltd 2 bit writable nonvolatile memory element, its driving method and fabricating method
JP2004342721A (en) * 2003-05-14 2004-12-02 Seiko Epson Corp Semiconductor device including nonvolatile memory
JP2004349353A (en) * 2003-05-20 2004-12-09 Sharp Corp Semiconductor storage device, its operating method, and portable electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462276B (en) * 2009-07-30 2014-11-21 Hynix Semiconductor Inc Flash memory device and mask for fabricating the same

Also Published As

Publication number Publication date
JPWO2006106570A1 (en) 2008-09-11
JP5099691B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5148829B2 (en) Nonvolatile memory device and manufacturing method thereof
US7808032B2 (en) Integrated circuits with substrate protrusions, including (but not limited to) floating gate memories
US7948021B2 (en) Semiconductor memory device and method of fabricating the same
JP3917063B2 (en) Semiconductor device and manufacturing method thereof
JP4818061B2 (en) Nonvolatile semiconductor memory
JP2012114269A (en) Semiconductor device and method of manufacturing semiconductor device
US20070045673A1 (en) Nonvolatile memory devices and methods of fabricating the same
TW201611247A (en) Split-gate flash memory cell with improved scaling using enhanced lateral control gate to floating gate coupling
JP2006005354A (en) Split-gate type flash memory element and method of manufacturing the same
US8283717B2 (en) Semiconductor storage device
US7071511B2 (en) Nonvolatile semiconductor memory device having adjacent selection transistors connected together
US20100012999A1 (en) Semiconductor memory device and method of manufacturing the same
US8207560B2 (en) Nonvolatile semiconductor memory device and method of fabricating the same
JP2004228571A (en) Sonos type nonvolatile memory and method for manufacturing the same
KR100673226B1 (en) Method for manufacturing nonvolatile memory device
JP4944766B2 (en) Semiconductor device and manufacturing method thereof
JP2004235399A (en) Nonvolatile semiconductor memory device
JP5099691B2 (en) Semiconductor device
US6414346B1 (en) Semiconductor memory and manufacturing method thereof
JP2009164349A (en) Nonvolatile semiconductor storage device and method of manufacturing the same
US8093645B2 (en) Non-volatile semiconductor memory device
JP2015026870A (en) Semiconductor device and method of manufacturing semiconductor device
JP2011210777A (en) Semiconductor device and manufacturing method of the same
KR100940644B1 (en) Semiconductor device and method for fabricating the same
JP4927716B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512374

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05727304

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5727304

Country of ref document: EP