WO2006103978A1 - 基板処理装置および半導体装置の製造方法 - Google Patents

基板処理装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2006103978A1
WO2006103978A1 PCT/JP2006/305606 JP2006305606W WO2006103978A1 WO 2006103978 A1 WO2006103978 A1 WO 2006103978A1 JP 2006305606 W JP2006305606 W JP 2006305606W WO 2006103978 A1 WO2006103978 A1 WO 2006103978A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
chamber
cooling
boat
wafer
Prior art date
Application number
PCT/JP2006/305606
Other languages
English (en)
French (fr)
Inventor
Naoyuki Nakagawa
Takahiro Daikoku
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to JP2007510414A priority Critical patent/JPWO2006103978A1/ja
Publication of WO2006103978A1 publication Critical patent/WO2006103978A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a substrate processing apparatus and a method for manufacturing a semiconductor device, and more particularly to substrate cooling after heat treatment.
  • a wafer cooling method after heat treatment in a conventional vertical heat treatment apparatus will be described with reference to FIG.
  • the vertical heat treatment apparatus for carrying out the wafer cooling method was carried out of the processing furnace (not shown) by the boat elevator 34 into the transfer chamber 6 for transferring the wafer 39.
  • a boat 35 supporting the heat-treated wafer 39 and a wafer transfer device 4 for transporting the wafer 39 to the boat 35 are provided.
  • Cooling units 5 and 5 for blowing out air or nitrogen gas (N gas) are installed on both sides of the boat 35 and the wafer transfer machine 4 in the transfer chamber 6.
  • the wafer 39 is cooled by air or N gas from one cooling unit 5 installed mainly on the side of the boat 35 with respect to the high temperature wafer 39 after the heat treatment supported by the boat 35.
  • the convection is generated by spraying 2 and the heat is transferred by the convection.
  • the load lock chamber 7 Gas supply port 10 for introducing inert gas such as N gas into the load lock chamber
  • N gas is sprayed from the gas supply port 10 to the wafer 39.
  • the high-temperature wafer 39 after the heat treatment supported by the boat 35 is cooled.
  • a boat elevator 34 for transferring the boat 35 to the processing furnace is provided, and a transfer chamber 6 for transferring the wafer 39 is provided adjacent to the load lock chamber 7. It is.
  • the transfer chamber 6 is provided with a wafer transfer device 4 for transferring the wafer 39 to the boat 35, and the load lock chamber 7 is a gate valve that opens and closes between the transfer chamber 6 and the load lock chamber 7. 25 is provided.
  • a wafer cooling apparatus that cools a high-temperature wafer after heat treatment at high speed has been considered (for example, see Patent Document 1).
  • This apparatus will be described with reference to FIG.
  • a cooling chamber 21 is directly connected to the lower part of the processing chamber 100.
  • the cooling chamber 21 is constituted by the cooling chamber 20 and is set to a minimum size that can accommodate the boat 35.
  • Cooling chamber piping 22 is attached to the outer wall of the cooling chamber 20 to prevent the temperature of the surface of the cooling chamber 20 from rising due to heat radiation from the wafer 39.
  • a gas supply pipe 23 for introducing an inert gas is installed in the cooling chamber 21.
  • the boat 35 holding the wafer 39 after the heat treatment is carried out from the processing chamber 100 to the cooling chamber 21 by the boat elevator 34.
  • the boat 35 S is carried out to the cooling chamber 21
  • the wafer 39 is cooled by thermal radiation from the wafer 39 to the cooling chamber 20.
  • the cooling chamber piping 22 is attached to the cooling chamber 20, the temperature rise of the cooling chamber 20 is suppressed.
  • the gas supply pipe 23 for introducing the inert gas is connected to the cooling chamber 21, the wafer 39 is forcibly cooled by the gas flow from the gas supply pipe 23.
  • the height of the apparatus is increased by the height of the cooling chamber 21.
  • the boat 35 transfers wafers 39 from the processing chamber 100 where heat treatment is performed. It is necessary to move between transfer chambers 6.
  • the boat elevator 34 that moves the boat 35 up and down needs to be increased accordingly.
  • the boat elevator 34 becomes larger by the increase in the operating range of the boat 35, that is, by the size of the cooling chamber 21. If the boat elevator 34 becomes larger, the transfer chamber 6 in which the boat elevator 34 is placed will also become larger, and the final height of the device will be approximately twice that of the cooling chamber 21.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-68425
  • An object of the present invention is to provide a substrate processing apparatus and a semiconductor device manufacturing method capable of solving the above-described problems of the prior art and cooling the substrate at high speed while reducing the contamination of the substrate. It is to provide.
  • the processing chamber that heat-treats while holding the substrate with the substrate holder, the spare chamber provided adjacent to the processing chamber, and the atmosphere in the spare chamber on the inner side of the wall surface of the spare chamber And a cooling mechanism that cools the substrate after the heat treatment is carried out from the processing chamber to the preliminary chamber and held by the substrate holder.
  • the substrate can be cooled at high speed while reducing contamination of the substrate.
  • FIG. 1 is a side view showing the internal configuration of the vertical heat treatment apparatus
  • FIG. 2 is a plan view thereof.
  • a transfer chamber 6 that can be sealed as a spare chamber is constituted by a housing 40.
  • the wafer 39 is transferred under atmospheric pressure.
  • the material constituting the housing 40 is, for example, aluminum or stainless steel.
  • a processing furnace 32 that heat-processes a number of wafers 39 is provided in the vertical direction adjacent to the transfer chamber 6 on the upper side of the housing 40 on one side of the transfer chamber 6.
  • the processing furnace 32 includes a stone tube 120 that forms the processing chamber 100 and a heater unit 107 that covers the outer periphery of the quartz tube 120.
  • the furnace part of the processing furnace 32 can be freely opened and closed by a furnace logo 33 provided in the casing 40.
  • a boat 35 as a substrate holder for holding a large number of wafers 39 in multiple stages, and a boat elevator 34 as a lifting means for the boat 35.
  • the boat elevator 34 is provided with an elevator arm 67.
  • the elevator arm 67 is provided with a furnace port lid 71 capable of airtightly closing the furnace port part of the processing furnace 32.
  • the furnace mouth cover 71 has a function of supporting the boat 35, and the boat 35 is detachably supported on the furnace mouth cover 71.
  • the boat elevator 34 raises and lowers the boat 35 and carries it into the processing furnace 32 (the entrance It is possible to carry out (unloading) / unloading.
  • the boat 35 described above has, for example, a substantially cylindrical shape as a whole, and includes a plurality of pillars 36 extending vertically, and each pillar 36 includes a plurality of wafers 39 in a horizontal posture in multiple stages. A number of grooves are provided for holding. A large number of wafers 39 are loaded into the processing furnace 32 while being held in the boat 35 and subjected to the required heat treatment.
  • a wafer transfer machine 4 for transferring the wafer 39 and a transfer machine elevator 31 for raising and lowering the wafer transfer machine 4 are provided on the other side in the transfer chamber 6, a wafer transfer machine 4 for transferring the wafer 39 and a transfer machine elevator 31 for raising and lowering the wafer transfer machine 4 are provided.
  • the wafer transfer machine 4 takes out the wafer 39 from a cassette (not shown) provided outside the transfer chamber 6 and transfers it to the boat 35, or takes out the boat 35-power wafer 39 and transfers it to the cassette.
  • Exhaust ports 41 and 42 are provided on both sides of the transfer chamber 6, and clean air or nitrogen (in the transfer chamber 6 is provided by the cooling unit 5 provided on the wafer transfer machine 4 side in the transfer chamber 6. N) flow can be formed
  • a cooling mechanism 50 is provided below the processing chamber 100 in the transfer chamber 6.
  • the cooling mechanism 50 cools the heat-treated wafer 39 carried out of the processing furnace 32 while being held in the boat 35.
  • the cooling mechanism 50 is disposed inside the wall surface 26 of the transfer chamber 6. Further, the cooling mechanism 50 has a cooling wall 51 that forms a space isolated from the atmosphere in the transfer chamber 6 inside, and is configured to circulate the refrigerant in the space formed inside the cooling wall 51.
  • the cooling wall 51 is not in contact with the boat 35 and the wafer 39 and has a substantially cylindrical shape along the outer shape of the boat 35.
  • the cooling wall 51 is provided in a region corresponding to the entrance / exit side surface 38 of the wafer 39 by the wafer transfer device 4 and the mounting side surface of the elevator arm 67 of the boat elevator 34. It is not done.
  • the substantially cylindrical cooling mechanism 50 has openings in the upper and lower sides, and the processing chamber 100 above the transfer chamber 6 is substantially aligned with the axis.
  • the volume of the cooling mechanism 50 is set to a size that can accommodate the boat 35.
  • the material constituting the cooling mechanism 50 is aluminum, stainless steel, and has a higher emissivity than the wall surface 26 of the transfer chamber 6 and should be made of a material.
  • a furnace bottom flange 101 is provided at the upper opening of the casing 40 of the transfer chamber 6, and a cylindrical outer pipe 102 is erected at the upper end of the furnace bottom flange 101, and the processing chamber 100 is concentric with the outer pipe 102.
  • An inner pipe 103 is defined, and the inner pipe 103 has an upper end opened and a lower end supported by the furnace bottom flange 101.
  • the outer tube 102 and the inner tube 103 constitute a quartz tube 120.
  • a processing gas introduction nozzle 104 communicates with the lower portion of the inner pipe 103.
  • the processing gas introduction nozzle 104 is connected to a processing gas supply source (not shown) or a nitrogen gas or the like via a gas supply line 105. It is connected to an active gas supply source (not shown).
  • An exhaust pipe 106 communicates with the furnace lower flange 101 above the lower end of the inner pipe 103.
  • the exhaust pipe 106 is connected to an exhaust device (not shown) via an exhaust line 122, and the exhaust line 122 is provided with a pressure control valve 123.
  • a cylindrical heater unit 107 is disposed concentrically with the outer tube 102, and the heater unit 107 is erected on the heater base 108.
  • the elevator arm 67 is provided with the furnace port lid 71, and the furnace port lid 71 hermetically closes the lower end opening (furnace bottom) of the furnace roof flange 101.
  • a boat rotating device 109 is provided on the lower surface of the furnace port lid 71, and a rotating shaft 111 of the boat rotating device 109 penetrates the furnace port lid 71 in an airtight manner.
  • a boat 35 is placed on a boat support 112 provided at the upper end of the rotating shaft 111 so that the boat 35 can be rotated in the inner pipe 103.
  • the processing state of the wafer 39 that is heat-treated in the processing furnace 32 is controlled by the main control unit 113.
  • the main control unit 113 includes a temperature control unit 114 for controlling the temperature in the furnace, a gas flow rate control unit 115 for controlling the flow rate of the processing gas, the pressure control unit 116 for controlling the pressure in the outer pipe 102, and the rotation of the boat.
  • a drive control unit 117 that controls the device 109 and the like is provided.
  • a temperature detector 118 is provided between the inner tube 103 and the outer tube 102.
  • a temperature signal detected by the temperature detector 118 is input to the temperature control unit 114, and the temperature control unit 114 is connected to the heater unit.
  • the temperature in the inner pipe 103 is controlled by controlling the socket 107.
  • a gas flow rate controller 119 is provided in the gas supply line 105, and a required gas flow rate controlled by the gas flow rate control unit 115 is supplied into the inner pipe 103.
  • the exhaust pipe 106 is provided with a pressure detector 121, and a pressure detection signal of the exhaust pressure detected by the pressure detector 121 is input to the pressure control unit 116.
  • the pressure control unit 116 controls the pressure control valve 123.
  • the pressure in the outer tube 102 is controlled.
  • the transfer chamber 6 is maintained at atmospheric pressure and is cleaned by air flow or N flow.
  • the An empty boat 35 that is unloaded from the processing furnace 32 is placed on the boat elevator 34.
  • the wafer transfer machine 4 takes out a plurality of wafers 39, for example, five wafers from a cassette (not shown) outside the transfer chamber 6 and transfers them to a boat 35 at a standby position in the transfer chamber 6. Repeat this transfer (charge).
  • the temperature control unit 114 controls the heater unit 107 based on the detection result from the temperature detector 118 shown in FIG. The temperature in the quartz tube 120 is preheated.
  • the furnace logo 33 is opened, and the boat elevator 34 loads the boat 35 into the processing furnace 32 (loading).
  • the furnace port portion 71 of the processing furnace 32 is hermetically closed by the furnace port lid 71.
  • the quartz tube 120 is evacuated by the exhaust device via the exhaust line 122.
  • the boat rotating device 109 rotates the boat 35 via the rotating shaft 111.
  • the temperature control unit 114 controls the heater unit 107 to set the wafer temperature in the quartz tube 120 to the target processing temperature.
  • the wafer 39 is introduced from the gas supply line 105 into the inner pipe 103 through the processing gas force processing gas introduction nozzle 104 whose supply amount is controlled by the gas flow rate controller 119.
  • the processing gas ascends in the inner tube 103 and is uniformly supplied to the wafer 39, and the required heat treatment is performed on the wafer 39.
  • the inside of the inner tube 103 during the heat treatment is maintained at a predetermined processing pressure by controlling the pressure control valve 123 by the pressure control unit 116.
  • an inert gas is supplied into the quartz tube 120 via the gas supply line 105, and the inside of the quartz tube 120 is set to the same atmospheric pressure as that in the transfer chamber 6.
  • the boat 35 is unloaded from the processing furnace 32 to the transfer chamber 6 by the boat elevator 34 (unloading).
  • the furnace heater 33 is slid to close the furnace part of the processing furnace 32.
  • the cooling mechanism 50 When the boat 35 is unloaded from the processing furnace 32 to the transfer chamber 6, the cooling mechanism 50 is disposed around the unloaded boat 35.
  • the cooling wall 51 constituting the cooling mechanism 50 is cooled to a predetermined temperature before or during the heat treatment. That is, the cooling wall is set near 30 ° C. by flowing the coolant through the space formed by the cooling wall 51. Kept in the unloaded boat 35
  • the quantity of heat held by the held wafers 39 is transferred to the cooling wall 51 by thermal radiation (indicated by arrows), and is taken out to the outside by the flow of the refrigerant in the cooling wall 51. Thereby, the heat-treated wafer 39 is cooled to a predetermined temperature.
  • the furnace logo 33 that closes the furnace part of the processing furnace 32 blocks the heat of the processing chamber 100, so that the heat from the processing chamber 100 prevents the cooling of the wafer 39.
  • Ganare the moving distance required for cooling is shorter than in the case where the wafer 39 is cooled in another chamber not in contact with P, such as a cooling chamber. Cooling time is shortened and throughput is improved. Further, since the heat-treated wafer 39 is cooled while being held by the boat 35, the cooling becomes easy.
  • the wafer transfer machine 4 transfers five wafers 39 after heat treatment to an empty cassette all at once with a boat 35 force, and the wafers 39 are transferred. The loading is repeated, and all of the many wafers 39 held in the boat 35 are transferred to the cassette (discharge).
  • the wafer 39 is charged from the cassette to the boat 35, the boat 35 is loaded into the processing furnace 32, the heat treatment in the processing furnace 32, the boat 35 is unloaded from the processing furnace 32, and the boat 35 is loaded.
  • the charging of the wafer 39 from the cassette to the cassette is repeated, and the processing of the wafer 39 is repeated.
  • the cooling wall 51 through which the coolant flows is arranged around the boat 35 holding the high-temperature wafer 39 after the heat treatment.
  • the high-temperature wafer 39 after the heat treatment is cooled by heat radiation to. Therefore, resin products such as boat elevator 34, wafer transfer machine 4, and sensors and cables are no longer heated to high temperatures, and are generated from the lubricant in the transport mechanism and other resin parts. Organic contamination can be greatly reduced. Further, since the boat 35 is surrounded by the cooling wall 51, wafer contamination can be reduced from this point that heat hardly propagates from the boat 35 or the wafer 39 into the transfer chamber 6. In the case of a vertical heat treatment apparatus that batch-processes a large number of wafers 39, the problem of contamination is likely to occur because the transfer mechanism part is particularly large, but this embodiment can solve such a problem. .
  • the cooling wall 51 of the embodiment is provided in the wall surface 26 of the transfer chamber 6 or in the wall. Since it is provided inside the transfer chamber 6 independently of the transfer chamber 6, the cooling energy taken from the cooling wall 51 by heat conduction to the transfer chamber 6 is greatly reduced, and the cooling wall 51 is moved to the cooling wall 51. Wafer 39 can be cooled at high speed because the efficiency of wafer cooling by heat radiation increases. In the case of a vertical heat treatment apparatus, in particular, since the transfer chamber 6 is large, the heat energy taken away by the transfer chamber 6 is large, and the problem that the efficiency of wafer cooling is greatly reduced may occur. According to the embodiment, such a problem can be solved.
  • the cooling wall 51 of the embodiment is not composed of the wall surface 26 itself of the transfer chamber 6, but is disposed independently inside the transfer chamber 6, so that its shape and The material can be freely selected as long as it does not damage the wafer 39 such as contamination. Therefore, the cooling wall 51 can be made of a material having a higher emissivity than the wall surface 26 of the transfer chamber 6 made of aluminum or stainless steel.
  • cooling mechanism 50 since the cooling mechanism 50 is not in contact with the boat 35 and the wafer 39, the generation of particles due to contact can be reduced, and particle contamination of the wafer 39 can be reduced.
  • This cooling wall 51 is shown in FIG. It is also possible to arrange it along the inner surface 26 of the transfer chamber 6 around the boat 35. That is, when the transfer chamber 6 is viewed in plan, the cooling wall 51 may be disposed so as to be substantially L-shaped along the inner surface of the transfer chamber 6 on the boat side so as to surround a half circumference of the boat 35. it can.
  • the present invention is applied to a vertical heat treatment apparatus provided with a load lock chamber 7.
  • a spare chamber is used.
  • the cooling wall 51 is arranged in the door lock chamber 7 as described above.
  • the housing 40 is provided with a transfer chamber 6 and a load lock chamber 7 adjacent to each other.
  • the transfer chamber 6 communicates with the load lock chamber 7 through a goat valve 25 so as to be freely opened and closed.
  • the load lock chamber 7 includes a load lock chamber 8 that can maintain a reduced pressure and vacuum state.
  • a processing furnace 32 is erected on the upper surface of the load lock chamber 7, and the processing furnace 32 communicates with the load lock chamber 7 via a furnace logo 33.
  • the load lock chamber 7 has a supply source of inert gas such as N gas (Fig.
  • a gas supply port 10 is provided in communication with (not shown).
  • the load lock chamber 7 has exhaust An exhaust port 43 leading to a pump (not shown) is provided.
  • a boat elevator 34 is provided below the processing furnace 32, and the boat elevator 34 can lift and lower the boat 35 to load / unload the processing furnace 32. Yes.
  • the inside of the quartz tube 120 is evacuated to the same pressure as the inside of the load lock chamber 7.
  • the pressure is equalized, the heat-treated wafer 39 is unloaded by the boat elevator 34 from the processing furnace 32 to the load lock chamber 7 kept in a vacuum atmosphere. Since the load lock chamber 7 is in a vacuum state at the time of unloading, it is greatly reduced that the wafer 39 after the heat treatment, which has become a high temperature immediately after the heat treatment, is oxidized or contaminated with particulates.
  • the wafer 39 is cooled by thermal radiation from the wafer 39 to the cooling wall 51 arranged around the boat 35, as in the first embodiment.
  • the wafer 39 is cooled by thermal radiation (arrow) that is not caused by thermal convection, even if the load lock chamber 7 is in a vacuum atmosphere, the wafer 39 can be cooled without being affected by it.
  • the cooling wall 51 is arranged independently in the load lock chamber 7, the cooling efficiency can be improved compared to the structure in which the load lock chamber 7 itself is cooled, and the wafer 39 can be cooled at high speed.
  • the cooling wall 51 is arranged independently in the load lock chamber 7, so that the cooling efficiency is higher than that for cooling the load lock chamber 7 itself.
  • the wafer 39 can be cooled at high speed. Moreover, since the high-temperature wafer 39 after the heat treatment is cooled while staying in a highly clean vacuum atmosphere, the contamination of the wafer 39 can be further reduced.
  • the third embodiment is a vertical heat treatment apparatus in which the cooling wall 51 is arranged in a plurality of boat systems provided in the transfer chamber 6.
  • the 2-boat system performs wafer cooling and wafer transfer processing in parallel with the heat treatment of the next batch.
  • FIG. 5 shows a simplified diagram of a two-boat system equipped with two boats 35 (first boat 35A and second boat 35B).
  • the boat 35 holding the heat-treated wafer 39 (referred to as the first boat 35A) is unloaded from the processing chamber 100 to the transfer chamber 6 by the boat elevator 34, and then used as a moving means.
  • the boat is moved from the load position 19 as the first position to the wafer cooling position 17 as the second position.
  • the cooling wall 51 described above is installed.
  • the second batch 35B at the wafer transfer position 18 is charged with the next batch of wafers 39 by the operation of the wafer transfer device 4 during the heat treatment of the first boat 35A.
  • the second boat 35B rotates the second boat exchange arm 16 of the boat exchange mechanism 14. As a result, it is carried to the load position 19 directly under the processing chamber 100. Thereafter, the boat elevator 34 is loaded into the processing chamber 100 by the ascending operation, and a predetermined heat treatment is performed.
  • the heat-treated wafer 39 on the first boat 35A moved to the wafer cooling position 17 is It is cooled by the heat radiation from the wafer 39 to the cooling wall 51 arranged around the substrate.
  • the first boat 35A is moved to the wafer transfer position 18 by the operation of the first boat exchange arm 15 of the boat exchange mechanism 14.
  • the wafer 39 is discharged from the first boat 35A by the operation of the wafer transfer machine 4 and carried out of the apparatus.
  • a new process-waiting wafer 39 is charged to the first boat 35A, and the process waits until the heat treatment of the second boat 35B is completed.
  • the cooling wall 51 is disposed at the wafer cooling position 17, which is a position different from the load position 19 immediately below the processing chamber 100, so The wafer 39 held in the wafer 35 is cooled after moving to the wafer cooling position 17. In the meantime, another wafer 35 holding another wafer 39 is transferred from the load position 19 of the transfer chamber 6 to the processing chamber 100, so that another wafer 39 can be heat-treated in the processing chamber 100. Throughput is further improved.
  • the vertical heat treatment apparatus for the transfer chamber type 2 boat system has been described.
  • the fourth embodiment is a vertical heat treatment apparatus using quartz glass having a high emissivity as the material of the cooling wall 51 of the first to third embodiments.
  • quartz glass having a high emissivity as the material of the cooling wall 51 of the first to third embodiments.
  • is the emissivity of the cooling wall
  • is the surface area of the cooling wall
  • hrad is the radiant heat transfer coefficient.
  • the cooling wall 51 is independent from the structure such as the transfer chamber 6 and the spare chamber (chamber) which is the load lock chamber 7. Since it is a functional element, any material can be selected as long as damage to the wafer 39 is not given. Therefore, quartz glass having a high emissivity is used as the material of the cooling wall 51.
  • the emissivity of quartz glass is more than 10 times that of polished surfaces such as stainless steel. Quartz glass is also suitable for the cooling wall material of the present invention from the viewpoint of high temperature characteristics and contamination and damage to the wafer 39.
  • the radiant heat transfer thermal resistance Rrad is small, that is, the heat from the wafer 39 is easily transferred.
  • the wafer 39 can be cooled more rapidly. Further, if the cooling wall 51 is made of quartz glass, the wafer 39 is not damaged.
  • the cooling wall 51 of the first to fourth embodiments is used as a plurality of pipes, and is mainly composed of a plurality of thin tubes 55 to increase the cooling wall surface area. It is a position. From formula (1), it can be seen that the surface area A of the cooling wall 51 may be increased in order to reduce the radiant heat transfer thermal resistance Rrad.
  • the cooling wall 51 of the present invention it is necessary to carry out the amount of heat transferred from the wafer 39 to the outside of the apparatus. A route as a space to be used is required. Therefore, in the fifth embodiment, the cooling wall 51 itself is constituted by a plurality of hollow thin tubes through which the refrigerant flows. Figure 6 shows a schematic diagram of this structure.
  • the cooling wall 51 is configured by constructing a refrigerant pipe 52 through which a refrigerant, for example, water flows, on the outer periphery of the boat 35.
  • the refrigerant pipe 52 includes a supply pipe 53 serving as a refrigerant inlet, a discharge pipe 54 serving as a refrigerant outlet, and a large number of narrow pipes 55 communicating the supply pipe 53 and the discharge pipe 54.
  • the supply pipe 53 and the discharge pipe 54 are arranged in a substantially semicircular and concentric manner so as to surround a substantially half circumference of the boat bottom plate 37 below the boat 35.
  • the supply pipe 53 may be arranged outside and the discharge pipe 54 arranged inside, or the supply pipe 53 may be arranged inside and the discharge pipe 54 arranged outside.
  • the shape of the supply pipe 53 and the discharge pipe 54 is substantially semicircular. The shape along the outer shape of the boat 35 as in the first to second embodiments may be adopted.
  • the thin tube 55 is bent into a U-shape.
  • the U-shaped thin tube 55 is erected on the supply pipe 53 and the discharge pipe 54 with the folded portion facing upward.
  • a large number of narrow pipes 55 are erected with substantially no gap along the lengths of the supply pipe 53 and the discharge pipe 54 in order to form the cooling wall 51 around the boat 35.
  • These thin tubes 55 are connected to the supply pipe 53 and the discharge pipe 54 by welding, for example.
  • the height of the folded portion of the U-shaped narrow tube 55 (hereinafter referred to as an inverted U shape) with the folded portion facing upward is set higher than the height of the boat 35 so as to surround the top of the boat 35.
  • a large number of thin tubes 55 surround a substantially half circumference of the boat 35 in a semicylindrical shape.
  • the upstream side of the supply pipe 53 constituting the refrigerant pipe 52 is connected to a factory water tank (not shown), and the water temperature is controlled to a room temperature or higher, for example, 25 ° C to 30 ° C by heating means provided in the middle.
  • the cooling wall 51 is configured by standing a large number of thin tubes 55 so that the surface area A of the cooling wall 51 is increased.
  • the wafer 39 can be cooled more rapidly.
  • the sixth embodiment is a vertical heat treatment apparatus configured to divide the cooling wall 51 of the fifth embodiment into a plurality of sections.
  • Figure 7 shows a schematic diagram of this structure.
  • the cooling wall 51 is not formed as an integral structure but is divided into a plurality of parts.
  • the cooling mechanism 50 is divided into a plurality of sections along the substantially half circumferential direction of the boat 35, in the illustrated example, into six sections, and each section serves as a cooling wall 51A.
  • the cooling wall 51 A in each section is composed of an introduction pipe part 56A, a supply pipe part 53A connected to the introduction pipe part 56A, a discharge pipe part 54A, a lead-out pipe part 57A connected to the discharge pipe part 54A, and the supply A narrow tube portion 55A that connects the piping portion 53A and the discharge piping portion 54A is provided independently, and each section is configured to be controlled to be cooled independently.
  • the introduction piping section 56A and the outlet piping section 57A are horizontal such as the supply piping section 53A and the discharge piping section 54A in order to avoid interference between the introduction piping section 56A and the outlet piping section 57A in the adjacent section. Up and down in the direction It is placed in the opposite direction.
  • the cooling wall 51 is configured such that the cooling wall portions 51A divided into a plurality of sections are arranged side by side. Can be optimized. In addition, the productivity and workability of the cooling wall 51 can be improved. Even if the cooling wall 51 is damaged, the cooling wall 51 can be restored only by replacing a part of the damaged cooling wall 51A.
  • the cooling wall portions 51A in which the refrigerant introduction directions are opposite to each other are alternately arranged, so that the cooling medium 51 They are arranged so that the flow directions are staggered.
  • FIG. 8 A simplified diagram of the cooling wall 51 of this structure is shown in FIG.
  • the supply piping 53A is arranged near the boat 35, and the discharge piping 54A is arranged on the opposite side of the boat 35 across the supply piping 53A.
  • the supply piping part 53A and the discharge piping part 54A are connected by a thin pipe part 55A.
  • the refrigerant is introduced from the supply piping portion 53A arranged on the boat 35 side into the thin tube portion 55A and discharged from the discharge piping portion 54A.
  • the discharge pipe part 54B is arranged near the boat 35, and the supply pipe part 53B is arranged on the opposite side of the boat 35 across the discharge pipe part 54B.
  • These supply piping part 53B and discharge piping part 54B are connected by a thin pipe part 55B.
  • the refrigerant is introduced into the thin tube portion 55B from the supply piping portion 53B opposite to the boat 35 and discharged from the discharge piping portion 54B.
  • the cooling wall portion 51A in which the refrigerant introduction directions are all the same direction is arranged.
  • the cooling wall portions 51A and the cooling wall portions 51B, which are opposite in the refrigerant introduction direction shown in FIGS. 8 (a) and (b), are alternately arranged.
  • the wafers 39 arranged on the lower side of the boat 35 are easily cooled in order.
  • the cooling wall portion 51B of FIG. 8B is disposed, the cooling becomes easier in order from the wafer 39 disposed on the upper side of the boat 35.
  • the cooling wall portion 51 in which the refrigerant introduction direction is reversed since A and 51B are arranged alternately, the cooling speed between the upper and lower sides of the wafer 39 held in multiple stages on the boat 35 can be made uniform and held in multiple stages on the boat 35.
  • the entire wafer cooling time can be shortened, and the wafers 39 can be cooled at a higher speed.
  • the wafer 39 is cooled by the cooling wall 51 of the first to seventh embodiments while the boat 35 is rotated.
  • a cooling wall is provided around the entire circumference of the boat 35 at the standby position of the boat 35. It is difficult to surround with 51. That is, in the case of the vertical heat treatment apparatus having the structure shown in FIGS. 2 to 4, the cooling wall is provided on the entrance / exit side surface 38 of the wafer 39 and the mounting side surface of the elevator arm 67 in the entire circumference of the boat 35 as described above. 51 cannot be permanently installed. Further, in the case of the vertical heat treatment apparatus of the two-boat system shown in FIG. 5, the cooling wall 51 cannot be permanently installed on the turning side surface 44 on which the boat 35 turns.
  • the cooling of the wafer 39 by heat radiation is performed while rotating the boat 35.
  • a boat rotating device is provided at the wafer cooling position 17, and as already described in FIG. A boat rotating device 109 provided on the lower surface of the boat is rotatably supported via a rotating shaft 111. Therefore, when the wafer is cooled by the cooling wall 51, the boat 35 is rotated as shown by the arrows in FIGS. Further, in the vertical heat treatment apparatus having the structure shown in FIG. 5, a boat rotating device is provided at the wafer cooling position 17, and similarly, when the wafer is cooled by the cooling wall 51, the boat 35A is rotated using the boat rotating device. I will let you.
  • the entire circumference of the boat 35 cannot be completely surrounded by the cooling wall 51, and radiation emitted radially from the outer circumference of the boat 35 is cooled by the cooling wall. If the water cannot be absorbed evenly by 51, particularly according to the eighth embodiment, the wafer cooling by the heat radiation to the cooling wall 51 is performed while the boat 35 is rotated. The rotation of the wafer covers the non-uniformity of ray absorption, and the boat surface deviation of the cooling rate can be eliminated. Accordingly, it is possible to make the cooling rate uniform in the boat surface or in the wafer 39 surface, and thus the wafer 39 can be cooled at high speed.
  • the ninth embodiment is a vertical heat treatment apparatus configured to circulate and reuse the refrigerant circulating inside the cooling wall 51 of the first to eighth embodiments through a heat exchanger.
  • An air compressor may be used instead of the heat exchanger.
  • the coolant flowing inside the cooling wall 51 uses a liquid such as water or an inert gas such as N gas.
  • the coolant When used, the coolant must always flow while the wafer 39 is being cooled, and the amount of use becomes enormous.
  • the coolant that has flowed into the cooling wall 51 for cooling the wafer is circulated and reused.
  • the cooling cycle comprising a heat exchanger is circulated outside the apparatus to a predetermined temperature, and again.
  • the structure is to be introduced into the cooling wall 51 installed in the equipment.
  • the supply pipe 53 and the discharge pipe 54 are connected in a loop, and the circulation path is configured so that the refrigerant discharged after passing through the cooling wall 51 can be returned to the cooling wall 51 again.
  • the amount of refrigerant such as N gas used can be reduced. Significantly lower
  • the supply pipe part 53A and the lead-out pipe part 57A communicating with the U-shaped narrow pipe part 55A are arranged in parallel at the top, and the lead-in pipe part 56A and the lead-out pipe part 57A are respectively connected to the supply pipe part 53A and the lead-out pipe part 57A
  • the lead-out piping section 57A is connected in the vertical direction, and the structure is such that the refrigerant flows in the upward direction and returns downward. Furthermore, as shown in Fig. 9 (b), it is also possible to use a straight tubular, i. Is possible.
  • the lower part of the I-shaped narrow tube part 55C is provided with a supply pipe part 53A communicating with the lower end of the I-shaped narrow pipe part 55C, and the introduction pipe part 56A connected to the supply pipe part 53A, and the upper end of the I-shaped narrow pipe part 55C And a discharge piping portion 57A connected to the discharge piping portion 54A, and a structure in which the refrigerant flows in the downward direction also upward.
  • the vertical heat treatment apparatus that processes a plurality of substrates at the same time has been described.
  • the present invention can also be applied to a single wafer heat treatment apparatus that processes a single substrate. is there.
  • a processing chamber that heat-treats a substrate while being held by a substrate holder, a spare chamber that is provided adjacent to the processing chamber, and an atmosphere in the spare chamber that is separated from a wall surface of the spare chamber.
  • a cooling mechanism that cools the substrate after the heat treatment that is carried out of the processing chamber and carried out of the processing chamber to the preliminary chamber while being held by the substrate holder.
  • the substrate heat-treated in the processing chamber is carried out from the processing chamber to a preliminary chamber adjacent to the processing chamber while being held by the substrate holder.
  • the substrate carried out to the preliminary chamber is cooled by a cooling mechanism provided inside the wall surface of the preliminary chamber while being held by the substrate holder. Since the substrate is cooled in a spare chamber adjacent to the processing chamber, the moving distance required for cooling is shorter than in the case where the substrate is cooled adjacent to the substrate and other chambers. Further, since the substrate after the heat treatment is cooled while being held by the substrate holder, the cooling becomes easy. Further, since the cooling mechanism is provided on the inner side of the wall surface of the spare chamber, there is no restriction on the shape or material of the wall surface of the spare chamber.
  • the cooling mechanism is provided separately from the atmosphere in the spare chamber, and the cooling mechanism is provided on the inner side of the wall surface of the spare chamber.
  • the cooling energy is reduced and the efficiency of substrate cooling by heat radiation to the cooling mechanism is increased, so that the substrate can be cooled at high speed.
  • a processing chamber for performing heat treatment while holding a plurality of substrates in multiple stages by a substrate holder, a spare chamber provided adjacent to the processing chamber, and a front side inside the wall surface of the spare chamber.
  • the substrate holder and the substrate are arranged so as to surround the substrate in a non-contact manner.
  • a substrate processing apparatus comprising: a cooling mechanism that circulates a refrigerant and cools a substrate after heat treatment carried out from the processing chamber to the preliminary chamber while being held in multiple stages by the substrate holder.
  • the plurality of substrates heat-treated in the processing chamber are carried out from the processing chamber to a preliminary chamber adjacent to the processing chamber while being held in multiple stages by the substrate holder.
  • the plurality of substrates carried out to the spare chamber are cooled by a cooling mechanism provided inside the wall surface of the spare chamber while being held by the substrate holder. Since the plurality of substrates are cooled in the spare chamber adjacent to the processing chamber, the moving distance required for cooling is shorter than in the case of cooling in the adjacent chamber. In addition, since the plurality of substrates after the heat treatment are cooled while being held in multiple stages by the substrate holder, cooling becomes easy.
  • the cooling mechanism is provided on the inner side of the wall surface of the spare chamber, there is no restriction on the shape or material of the spare chamber wall surface.
  • the plurality of substrates are cooled while being held in multiple stages by the substrate holder, the plurality of substrates are cooled together as compared with the case where a single substrate is held, thereby improving the throughput.
  • the cooling mechanism is provided on the inner side of the wall surface of the preliminary chamber, and the cooling medium is circulated inside the cooling mechanism. And the efficiency of substrate cooling by heat radiation to the cooling mechanism is increased, so that the substrate can be cooled at high speed.
  • the cooling mechanism is disposed so as to surround the substrate, the efficiency of substrate cooling by heat radiation to the cooling mechanism is further improved, and a plurality of substrates can be cooled at a higher speed.
  • the cooling mechanism since the cooling mechanism is not in contact with the substrate holder and the substrate, the substrate is not contaminated by the contact.
  • the preliminary chamber is configured to have an airtight structure capable of depressurization, and the substrate after the heat treatment is cooled with the preparatory chamber being depressurized.
  • a substrate processing apparatus is characterized.
  • the preliminary chamber Since the preliminary chamber has an airtight structure that can be depressurized, the preliminary chamber can be in a highly clean vacuum atmosphere.
  • the heat of the substrate is propagated through the gas into the preparatory chamber, unlike when air or an inert gas is blown into the preparatory chamber. Therefore, the substrate after the heat treatment can be cooled in a high-clean vacuum atmosphere, and the contamination of the substrate can be further reduced.
  • the air atmosphere is set to 1330 Pa (10 Torr or less), the contamination of the substrate during cooling can be further reduced.
  • a fourth invention is the first to third inventions, wherein the spare chamber is different from the first position from the first position of the spare chamber in which the substrate holder is unloaded from the processing chamber.
  • the substrate processing is characterized in that a moving means for moving the substrate holder is provided at the second position, and the cooling mechanism is arranged so as to surround the substrate holder at the second position. It is a device.
  • the substrate after the heat treatment held by the substrate holder moved from the first position to the second position by the moving means is fast at a second position by a cooling mechanism arranged so as to surround the substrate holder. To be cooled.
  • the substrate held by the substrate holder is cooled at the second position, another substrate holder holding another substrate is carried into the processing chamber from the first position of the spare chamber. Since the heat treatment can be performed, the throughput is further improved.
  • a fifth invention is the substrate processing apparatus according to any one of the first to fourth inventions, wherein the cooling mechanism is made of a material having a higher emissivity than a wall surface of the preliminary chamber. .
  • the cooling mechanism is made of a material having a higher emissivity than the wall surface of the spare chamber, so that the substrate can be cooled more rapidly. it can.
  • a sixth invention is a substrate processing apparatus according to any one of the first to fifth inventions, wherein the cooling mechanism is made of a quartz material.
  • the cooling mechanism is made of a quartz material having a high emissivity, the substrate can be cooled more rapidly.
  • a seventh invention is the substrate processing apparatus according to any one of the first to sixth inventions, wherein the cooling mechanism is constituted by a plurality of pipes.
  • the surface area of the cooling mechanism can be increased, so that the substrate can be cooled at a higher speed.
  • An eighth invention is the first to seventh inventions, wherein the cooling mechanism is divided into a plurality of compartments, and each of the compartments can be independently controlled to be cooled.
  • a substrate processing apparatus is the first to seventh inventions, wherein the cooling mechanism is divided into a plurality of compartments, and each of the compartments can be independently controlled to be cooled.
  • a ninth invention is the substrate processing apparatus according to any one of the first to eighth inventions, wherein the cooling mechanism is configured such that the flow direction of the refrigerant alternates between adjacent sections. .
  • the cooling rate within the substrate surface or between the substrate surfaces of the substrate held by the substrate holder can be made uniform. Therefore, the substrate cooling time can be shortened, and the substrate can be cooled more rapidly.
  • a tenth invention is characterized in that, in the first to ninth inventions, the substrate after the heat treatment is rotated, and the substrate after the rotating heat treatment is cooled by the cooling mechanism. It is a processing device.
  • Cooling while rotating the substrate eliminates in-plane deviation due to non-uniformity of heat radiation from the substrate to the cooling mechanism, and makes it possible to equalize the cooling rate within the substrate surface, further cooling the substrate faster. it can.
  • the cooling mechanism is provided with a circulation path so that the refrigerant discharged after flowing into the cooling mechanism is circulated again into the cooling mechanism.
  • a substrate processing apparatus comprising heat exchange means in the circulation path.
  • a twelfth invention includes a step of performing heat treatment while holding a substrate with a substrate holder in a processing chamber, and a substrate after the heat treatment while being held by the substrate holder in a preparatory chamber adjacent to the processing chamber.
  • a step of unloading a step of flowing a coolant in a space separated from the atmosphere in the preliminary chamber inside the wall of the preliminary chamber, and heat radiation from the substrate after the heat treatment to the isolated space
  • a step of cooling the semiconductor device includes a step of performing heat treatment while holding a substrate with a substrate holder in a processing chamber, and a substrate after the heat treatment while being held by the substrate holder in a preparatory chamber adjacent to the processing chamber.
  • the refrigerant flows into a space provided separately from the atmosphere in the spare room.
  • the cooling energy taken away from the isolated space by heat conduction to the spare room is reduced, and the efficiency of cooling the substrate by heat radiation to the space is increased, so that the substrate can be cooled at high speed.
  • the thirteenth invention includes a step of heat-treating the substrate while being held by the substrate holder in the processing chamber, and a pre-reduced pressure state adjacent to the processing chamber while holding the substrate after the heat treatment while being held by the substrate holder A step of carrying out the refrigerant into a space, a step of flowing a refrigerant in a space separated from the atmosphere in the auxiliary chamber inside the wall of the auxiliary chamber, and heat radiation from the substrate after the heat treatment to the separated space And a step of cooling the substrate.
  • the heat of the substrate differs from that in which air or an inert gas is blown into the spare room. Contamination caused by being propagated through the gas into the spare chamber can be reduced.
  • the cooling energy taken away from the isolated space by heat conduction to the spare room is reduced, and the efficiency of substrate cooling by heat radiation to the space is increased, so that the substrate can be cooled at high speed.
  • the substrate since the substrate is cooled in the decompression preparatory chamber, the substrate can be cooled in a highly clean vacuum atmosphere, and the contamination of the substrate can be further reduced.
  • FIG. 1 is a side view showing an internal configuration of a vertical heat treatment apparatus according to a first embodiment.
  • FIG. 2 is a plan view showing the internal configuration of the vertical heat treatment apparatus according to the first embodiment.
  • FIG. 3 is a plan view of the internal configuration of a vertical heat treatment apparatus showing a modification of FIG.
  • FIG. 4 is a plan view showing an internal configuration of a vertical heat treatment apparatus in a second embodiment.
  • FIG. 5 is a plan view showing an internal configuration of a vertical heat treatment apparatus in a third embodiment.
  • FIG. 6 is a perspective view of a cooling mechanism common to the fifth, eighth, and ninth embodiments.
  • FIG. 7 is a perspective view of a cooling mechanism common to the sixth, eighth, and ninth embodiments.
  • FIG. 8 is an explanatory diagram showing a method for introducing a refrigerant into a cooling wall according to a seventh embodiment.
  • FIG. 9 is a perspective view of a cooling wall portion showing a modification of the embodiment of FIGS. 6 and 7.
  • FIG. 10 is a side sectional view of a processing furnace common to each embodiment.
  • FIG. 11 is a plan view showing an internal configuration of a vertical heat treatment apparatus in a conventional example.
  • FIG. 12 is a plan view showing an internal configuration of a vertical heat treatment apparatus in a conventional example.
  • FIG. 13 is a side view showing the internal configuration of a vertical heat treatment apparatus in a conventional example. Explanation of symbols

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

 基板を基板保持具により保持しつつ熱処理する処理室と、前記処理室に隣接して設けられる予備室と、前記予備室の壁面より内側に前記予備室内の雰囲気と隔離した空間を有し、該空間に冷媒を流通して前記処理室から前記予備室に搬出される熱処理後の基板を前記基板保持具により保持しつつ冷却する冷却機構とを備える。

Description

明 細 書
基板処理装置および半導体装置の製造方法
技術分野
[0001] 本発明は、基板処理装置および半導体装置の製造方法に係り、特に熱処理後の 基板冷却に関するものである。
背景技術
[0002] 従来の縦型熱処理装置における熱処理後のウェハ冷却方法について図 11を用い て説明する。図 11に示すように、ウェハ冷却方法を実施するための縦型熱処理装置 は、ウェハ 39を移載するための移載室 6内に、ボートエレベータ 34により処理炉(図 示略)より搬出した熱処理後のウェハ 39を支持したボート 35と、ウェハ 39をボート 35 に搬送するためのウェハ移載機 4とを備える。移載室 6内のボート 35とウェハ移載機 4 との両側方に、空気もしくは窒素ガス(Nガス)を吹き出すクーリングユニット 5、 5が設
2
置されている。ウェハ 39の冷却は、ボート 35に支持された熱処理後の高温のウェハ 3 9に対し、主にボート 35側方に設置した一方のクーリングユニット 5から空気や Nガス
2 を吹きかけることで対流を発生させ、その対流による熱伝達により実施している。
[0003] また図 12に示すように、処理炉(図示せず)の下部にロードロックチャンバ 8により構 成される減圧可能なロードロック室 7を有する縦型熱処理装置の場合、ロードロック室 7内に Nガスなどの不活性ガスを導入するためのガス供給ポート 10がロードロック室
2
7に数ケ所設けられており、そのガス供給ポート 10から Nガスをウェハ 39に吹きかけ
2
ることにより、ボート 35に支持された熱処理後の高温のウェハ 39を冷却している。こ のロードロック室 7内には、処理炉に対してボート 35を搬送するボートエレベータ 34 が設けられ、ロードロック室 7に隣接してウェハ 39を移載するための移載室 6が設けら れている。移載室 6にはウェハ 39をボート 35に搬送するためのウェハ移載機 4が設け られ、また、ロードロック室 7には移載室 6とロードロック室 7との間を開閉するゲートバ ルブ 25が設けられている。
[0004] 図 11、図 12に示す従来のウェハ冷却方法を用いた場合、ウェハ冷却のために吹き かけられた空気や Nガスは高温となり、その高温となったガスが伝播して、移載室 6 やロードロック室 7内にある搬送機構部、例えばボートエレベータ 34やウェハ移載機 4、またセンサ類やケーブル類などの樹脂製品と接触し、それらの部品も高温に加熱 されてしまう。この高温に加熱されることにより、搬送機構部の潤滑剤や、その他の榭 脂部材から有機物が発生し、この有機物がウェハ 39を汚染する力 このウェハ 39へ の有機汚染が、今後の半導体技術の微細化に伴う問題点として挙げられている。ま た装置内に空気や Nガスを吹出すことは、装置内の塵埃を舞い上げてしまレ、、この
2
塵埃がウェハ 39にダメージを与えるという問題もある。さらに、熱処理後の高温のゥェ ハ 39に空気や Nガスを吹きかけて冷却するウェハ冷却方法では、冷却速度が遅い
2
という問題もある。
[0005] そこで、熱処理後の高温のウェハを高速に冷却するウェハ冷却装置が考えられて いる(例えば、特許文献 1参照)。この装置について図 13を用いて説明する。この装 置では、処理室 100の下部に冷却室 21が直結して配置されている。この冷却室 21 は、冷却室チャンバ 20により構成されており、ボート 35を収容できる程度の最小の大 きさに設定されている。冷却室チャンバ 20の外壁には、冷却室配管 22が卷きつけて あり、ウェハ 39からの熱輻射により冷却室チャンバ 20の表面が温度上昇するのを防 止している。また冷却室 21内に不活性ガスを導入するガス供給配管 23が設置され ている場合もある。
[0006] この装置にて、ウェハ 39を冷却する場合、熱処理の終了したウェハ 39を保持したボ ート 35は、ボートエレベータ 34により、処理室 100から冷却室 21に搬出される。冷却 室 21にボート 35力 S搬出されると、ウェハ 39から冷却室チャンバ 20への熱輻射により ウェハ 39は冷却される。この時、冷却室チャンバ 20には、冷却室配管 22が卷きつけ られているので、冷却室チャンバ 20の温度上昇が抑制される。また冷却室 21内に不 活性ガスを導入するガス供給配管 23が接続されている場合は、ガス供給配管 23か らのガスの流れによるウェハ 39の強制冷却も実施される。
[0007] しかし、上述した特許文献 1記載の技術では、次に述べるような問題がある。
(1)構造的な面では、処理室 100の下部にウェハ冷却のための冷却室 21を設けて いるため、冷却室 21の高さ分、装置の高さが高くなる。ボート 35の動作範囲を考える と、ボート 35は熱処理が実施される処理室 100から、ウェハ 39の搬送が実施される 移載室 6の間を移動する必要がある。ここで処理室 100と移載室 6の間に冷却室 21 が設置されることで、ボート 35の動作範囲も大きくなり、ボート 35を上下動させるボー トエレベータ 34もその分大きくする必要がある。ボート 35の動作範囲の増加分、すな わち冷却室 21の大きさ分だけボートエレベータ 34は大きくなる。ボートエレベータ 34 が大きくなれば、それを配置している移載室 6も大きくなることになり、最終的な装置 高さは冷却室 21のおよそ 2倍分高くなる。
[0008] (2)方法的な面では、冷却室チャンバ 20への熱輻射によるウェハ冷却の場合、本 来冷却すべきなのは、ウェハ 39であるのに、冷却室チャンバ 20全体を冷却しなけれ ばならないため、その冷却効率が悪い。また、冷却室 21内に不活性ガスを導入する 場合、塵埃を舞い上げるため、この塵埃がウェハにダメージを与える。また、後述する 壁面での輻射熱伝達熱抵抗の式(1)より、冷却速度を高めるためには、壁面材質の 輻射率が大きぐ壁面の表面積が大きい方が良い。しかし、冷却室チャンバ 20は、上 部にヒータユニット 107を載せる構造のため、アルミニウムやステンレス等の金属部材 で製作する必要があるが、それらの金属材料は輻射率が小さぐ熱輻射による冷却 には適していない。一方、冷却室チャンバ壁面に処理を施すことにより輻射率を大き くする方法もあるが、この方法では、冷却室チャンバ壁面の有機汚染や水分吸着な どをもたらし、結果的にはウェハへのダメージにつながることになる。また、壁面の表 面粗さを粗くすることにより冷却室チャンバ壁面の表面積を大きくする方法もあるが、 これも同様に有機汚染や水分吸着などがウェハにダメージを与えることとなり、単に 冷却効率をあげることのみを考慮して実用することは困難である。
特許文献 1:特開 2001— 68425号公報
発明の開示
発明が解決しょうとする課題
[0009] 上述した特許文献 1の技術では、容器自体の壁面を冷却するようになっているため 、基板が汚染される等の問題があった。また、容器全体を冷却しなければならないの で、冷却が非効率的であり、基板の高速冷却が困難であった。
[0010] 本発明の目的は、上述した従来技術の問題点を解消して、基板の汚染を低減しつ つ基板を高速冷却することが可能な基板処理装置および半導体装置の製造方法を 提供することにある。
課題を解決するための手段
[0011] 本発明によれば、基板を基板保持具により保持しつつ熱処理する処理室と、前記 処理室に隣接して設けられる予備室と、前記予備室の壁面より内側に前記予備室内 の雰囲気と隔離した空間を有し、該空間に冷媒を流通して前記処理室から前記予備 室に搬出される熱処理後の基板を前記基板保持具により保持しつつ冷却する冷却 機構とを備えた基板処理装置が提供される。
発明の効果
[0012] 本発明によれば、基板の汚染を低減しつつ基板を高速冷却することができる。
発明を実施するための最良の形態
[0013] 以下に本発明の実施の形態を説明する。本実施の形態では基板処理装置を、複 数のゥヱハを一括して処理する縦型熱処理装置に適用した場合について述べる。
[0014] [第 1の実施の形態]
図 1は縦型熱処理装置の内部構成を示す側面図、図 2は同平面図である。図 1、図 2において、予備室として密閉可能な移載室 6が筐体 40により構成されている。移載 室 6では大気圧下でウェハ 39を移載されるようになっている。筐体 40を構成する材 質は、例えばアルミニウムやステンレスである。
[0015] 移載室 6の一側の筐体 40の上部に、移載室 6と隣接して、多数のウェハ 39を熱処 理する処理炉 32が垂直方向に設けられる。処理炉 32は、処理室 100を形成する石 英チューブ 120と、石英チューブ 120の外周を覆うヒータユニット 107とで構成される 。処理炉 32の炉ロ部は、筐体 40に設けた炉ロシャツタ 33により開閉自在となってい る。
[0016] 移載室 6内の処理炉 32の下方には、多数のウェハ 39を多段に保持する基板保持 具としてのボート 35と、ボート 35の昇降手段であるボートエレベータ 34とが設けられ る。ボートエレベータ 34にはエレベータアーム 67が設けられる。エレベータアーム 67 には、処理炉 32の炉口部を気密に閉塞することが可能な炉口蓋 71が設けられる。 炉口蓋 71はボート 35を支持する機能を有し、炉口蓋 71上にボート 35が着脱可能に 支持される。ボートエレベータ 34はボート 35を昇降して処理炉 32内に対して搬入(口 ーデイング) /搬出(アンローデイング)することが可能となってレ、る。
[0017] 上述したボート 35は、例えば全体形状が略円柱状をなし、上下に伸びる複数本の 柱 36を構成要素として有し、各柱 36には多数枚のウェハ 39を水平姿勢で多段に保 持するための溝が多数個設けられている。多数枚のウェハ 39はボート 35に保持され た状態で処理炉 32内にローデイングされ、所要の熱処理がなされる。
[0018] 移載室 6内の他側には、ウェハ 39を移載するウェハ移載機 4と、ウェハ移載機 4を昇 降する移載機エレベータ 31とが設けられる。ウェハ移載機 4は、移載室 6の外部に設 けたカセット(図示せず)からウェハ 39を取り出してボート 35に移載したり、ボート 35 力 ウェハ 39を取り出してカセットに移載したりする。移載室 6の両側に排気口 41、 排気口 42が設けられ、移載室 6内のウェハ移載機 4側に設けられたクーリングュニッ ト 5により、移載室 6内に清浄空気又は窒素(N )の流れが形成できるようになつてい
2
る。
[0019] 移載室 6内の処理室 100の下方に冷却機構 50が設けられる。冷却機構 50は、処 理炉 32から搬出した熱処理後のウェハ 39をボート 35に保持したまま冷却する。冷却 機構 50は、移載室 6の壁面 26より内側に配設される。また、冷却機構 50は、移載室 6内の雰囲気と隔離した空間を内部に形成する冷却壁 51を有し、その冷却壁 51の 内部に形成された空間に冷媒を流通するように構成される。冷却壁 51は、ボート 35 及びウェハ 39とは非接触で、ボート 35の外形に沿った略円筒形をしている。
[0020] 略円筒形の冷却壁 51のうち、ウェハ移載機 4によるウェハ 39の出入側面 38と、ボ ートエレベータ 34のエレベータアーム 67の取付側面とに対応する領域には冷却壁 5 1は設けられていない。略円筒形の冷却機構 50は、上下に開口を有し、移載室 6の 上部の処理室 100と軸心を略一致させてある。冷却機構 50の容積は、ボート 35を収 納することができる程度の大きさに設定する。冷却機構 50を構成する材質は、アルミ 二ゥムゃステンレスとした移載室 6の壁面 26よりも輻射率の高レ、材質とするのがよレ、。
[0021] 図 10により上述した処理炉 32を具体的に説明する。前記移載室 6の筐体 40上部 の開口部に炉ロフランジ 101が設けられ、炉ロフランジ 101の上端に有天筒状の外 管 102が立設され、外管 102と同心に処理室 100を画成する内管 103が配設され、 内管 103は上端が開放され、下端が炉ロフランジ 101に支持されている。上記した 外管 102と内管 103とから石英チューブ 120を構成する。
[0022] 内管 103の下方には、処理ガス導入ノズル 104が連通され、処理ガス導入ノズル 1 04はガス供給ライン 105を介して処理ガス供給源(図示せず)、或は窒素ガス等不活 性ガス供給源(図示せず)に接続されている。又、炉ロフランジ 101の内管 103の下 端より上方に排気管 106が連通されている。排気管 106は排気ライン 122を介して図 示しない排気装置に接続され、排気ライン 122には圧力制御弁 123が設けられてい る。
[0023] 外管 102と同心に筒状のヒータユニット 107が配設され、ヒータユニット 107はヒータ ベース 108に立設されている。
[0024] 前述したようにエレベータアーム 67には炉口蓋 71が設けられ、炉口蓋 71は炉ロフ ランジ 101の下端開口部(炉ロ部)を気密に閉塞する。炉口蓋 71の下面にはボート 回転装置 109が設けられ、ボート回転装置 109の回転軸 111が炉口蓋 71を気密に 貫通している。回転軸 111の上端に設けられたボート受台 112にボート 35が載置さ れ、ボート 35を内管 103内で回転できるようになつている。
[0025] 処理炉 32で熱処理されるウェハ 39の処理状態は、主制御部 113によって制御され る。主制御部 113は、炉内の温度を制御する温度制御部 114、処理ガス等の流量を 制御するガス流量制御部 115、外管 102内の圧力を制御する圧力制御部 116、ボ ート回転装置 109等を制御する駆動制御部 117を備えている。
[0026] 内管 103と外管 102との間には温度検出器 118が設けられ、温度検出器 118によ り検出された温度信号は温度制御部 114に入力され、温度制御部 114はヒータュニ ット 107を制御して内管 103内の温度の制御を行う。ガス供給ライン 105にガス流量 制御器 119が設けられ、ガス流量制御部 115により制御された所要のガス流量が内 管 103内に供給される。排気管 106には圧力検出器 121が設けられ、圧力検出器 1 21により検出された排気圧力の圧力検出信号は圧力制御部 116に入力され、圧力 制御部 116は圧力制御弁 123を制御して外管 102内の圧力の制御を行う。
[0027] 以下、上述した処理炉 32を備えた第 1の実施の形態の縦型熱処理装置の作用に ついて説明する。
移載室 6内は、大気圧に維持され、エアフロー又は Nフローにより清浄化されてい る。ボートエレベータ 34には、処理炉 32からアンローデイングされた状態の空のボー ト 35が載置されている。ウェハ移載機 4により、移載室 6外の図示しないカセットから 複数枚のウェハ 39、例えば 5枚のウェハを一括して取り出し、移載室 6内の待機位置 にあるボート 35に移載し、この移載を繰り返す(チャージ)。
[0028] 炉ロシャツタ 33により炉ロ部を閉じられている処理炉 32では、図 10に示す温度検 出器 118からの検出結果に基づき温度制御部 114がヒータユニット 107を制御するこ とで、石英チューブ 120内の温度が予備加熱される。
[0029] 予定したバッチ枚数のウェハ 39がボート 35に移載されたら、炉ロシャツタ 33が開放 され、ボートエレベータ 34によりボート 35が処理炉 32内に搬入され(ローデイング)、 炉口シャツタ 33に代わって炉口蓋 71によって処理炉 32の炉口部が気密に閉塞され る。
[0030] 処理炉 32を閉塞後、排気装置により排気ライン 122を介して石英チューブ 120内 を真空引きする。ボート回転装置 109により回転軸 111を介してボート 35が回転する 。また、温度制御部 114によりヒータユニット 107を制御して石英チューブ 120内のゥ ェハ温度を目標の処理温度にする。ウェハ 39の温度が安定した状態で、ガス供給ラ イン 105からガス流量制御器 119により供給量を制御された処理ガス力 処理ガス導 入ノズル 104を介して内管 103内に導入される。処理ガスは、内管 103内を上昇し、 ウェハ 39に対して均一に供給され、ウェハ 39に所要の熱処理がなされる。熱処理中 の内管 103内は、圧力制御部 116により圧力制御弁 123を制御することにより、所定 処理圧に維持される。
[0031] ウェハ 39の熱処理が完了すると、石英チューブ 120内にガス供給ライン 105を介し て不活性ガスを供給して、石英チューブ 120内を移載室 6内と同じ大気圧とする。そ の後、ボートエレベータ 34によりボート 35を処理炉 32から移載室 6に搬出する(アン ローデイング)。搬出後、炉ロシャツタ 33をスライドして処理炉 32の炉ロ部を閉じる。
[0032] ボート 35を処理炉 32から移載室 6へ搬出すると、搬出されたボート 35の周囲には、 冷却機構 50が配置されている。この冷却機構 50を構成する冷却壁 51は、熱処理前 ないし熱処理中に、所定温度に冷却しておく。すなわち、冷却壁 51により構成される 空間に冷媒を流して冷却壁面を 30°C近くに設定しておく。搬出されたボート 35に保 持された多数のウェハ 39が持つ熱量は、熱輻射 (矢印で示す)により冷却壁 51に移 動し、冷却壁 51内の冷媒の流れにより、外部へ持ち出される。これにより、熱処理後 のウェハ 39が所定温度まで冷却される。このとき、処理炉 32の炉ロ部を閉じた炉ロ シャツタ 33は、処理室 100内力もの熱の遮断を行っているので、処理室 100内から の熱によって、ウェハ 39の冷却が妨げられることがなレ、。また、ウェハ 39は処理室 10 0に隣接した移載室 6で冷却されるので、 P 接していない他の室、例えばクーリング 室等で冷却される場合と比べて、冷却に要する移動距離が短くなり冷却時間が短縮 し、スループットが向上する。また、熱処理後のウェハ 39はボート 35により保持された まま冷却されるので冷却が容易となる。
[0033] 熱処理後のウェハ 39が所定温度まで冷却されると、ウェハ移載機 4によりボート 35 力、ら空のカセットに熱処理後のウェハ 39が 5枚一括で移載され、ウェハ 39の移載が 繰返され、ボート 35に保持された多数のウェハ 39の全てをカセットに移載する(ディ スチャージ)。
[0034] このようにして、カセットからボート 35へのウェハ 39のチャージ、処理炉 32へのボー ト 35のローデイング、処理炉 32での熱処理、処理炉 32からのボート 35のアンローデ イング、ボート 35からカセットへのウェハ 39のデイスチャージが繰り返され、ウェハ 39 の処理が繰返される。
[0035] 上述したように第 1の実施の形態は、熱処理後の高温のウェハ 39を保持したボート 35の周囲に、内部に冷媒が流通する冷却壁 51を配置し、ウェハ 39から冷却壁 51へ の熱輻射により熱処理後の高温のウェハ 39を冷却するようにしたものである。したが つて、ボートエレベータ 34やウェハ移載機 4、またセンサ類やケーブル類などの樹脂 製品が高温に加熱されることがなくなり、搬送機構部の潤滑剤や、その他の樹脂部 材から発生する有機物の汚染を大幅に低減できる。また、冷却壁 51でボート 35が囲 まれているので、ボート 35ないしウェハ 39から熱が移載室 6内に伝播しにくぐこの点 からもウェハ汚染を低減できる。多数のウェハ 39を一括処理する縦型熱処理装置の 場合に、特に搬送機構部等が大掛かりとなるので汚染の問題が生じやすいが、本実 施の形態によれば、このような問題を解決できる。
[0036] また、実施の形態の冷却壁 51は、移載室 6の壁面 26や壁中に設けられているので はなぐ移載室 6の内側に移載室 6とは独立して設けられているため、冷却壁 51から 熱伝導により移載室 6に奪われる冷熱エネルギーが大幅に低減し、冷却壁 51への熱 輻射によるウェハ冷却の効率が上がるため、ウェハ 39を高速冷却できる。縦型熱処 理装置の場合に、特に移載室 6が大きくなるので移載室 6に奪われる熱エネルギー が大きく、ウェハ冷却の効率が大幅に低下するという問題が生じやすレ、が、本実施の 形態によれば、このような問題も解決できる。
[0037] また実施の形態の冷却壁 51は、移載室 6の壁面 26自体から構成されるのではなく 、移載室 6の内側に独立して配置されたものであるため、その形状や材質はウェハ 3 9への汚染などのダメージを与えない限り、自由に選定することができる。したがって 、冷却壁 51は、アルミニウムやステンレスからなる移載室 6の壁面 26よりも輻射率の 高い材質で構成することができる。
[0038] また、冷却機構 50がボート 35及びウェハ 39とは非接触であるため、接触によるパー ティクルの発生を低減することができ、ウェハ 39のパーティクル汚染を低減できる。
[0039] なお、図 2に示すように、第 1の実施の形態では、ボート 35の外形に沿った形で冷 却壁 51が配置されている力 この冷却壁 51は図 3に示すようにボート 35の周囲の移 載室 6の壁面 26の内側に沿って配置することも可能である。すなわち、移載室 6を平 面視したとき、ボート 35の半周を取り囲むように、冷却壁 51が移載室 6のボート側の 内側面に沿って略 L字形となるように配置することができる。
[0040] [第 2の実施の形態]
第 2の実施の形態は、図 4に示すように、本発明をロードロック室 7を備えた縦型熱 処理装置に適用したものであり、第 1の実施の形態と異なる点は、予備室としての口 ードロック室 7に冷却壁 51を配置するようにした点である。
[0041] 筐体 40には、移載室 6とロードロック室 7とが隣接して設けられる。移載室 6は、グー トバルブ 25を介してロードロック室 7と開閉自在に連通される。ロードロック室 7は、減 圧および真空状態を維持可能なロードロックチャンバ 8により構成される。ロードロック 室 7の上面には、処理炉 32が立設され、処理炉 32は炉ロシャツタ 33を介してロード ロック室 7と連通している。ロードロック室 7には、 Nガス等の不活性ガスの供給源(図
2
示せず)と連通するガス供給ポート 10が設けられる。また、ロードロック室 7には、排気 ポンプ(図示せず)に通じる排気口 43が設けられる。ロードロック室 7の内部には、処 理炉 32の下方にボートエレベータ 34が設けられ、ボートエレベータ 34はボート 35を 昇降して処理炉 32に対してローデイング/アンローデイングすることが可能となって いる。
[0042] 炉ロシャツタ 33を閉めて処理炉 32との連通を断った状態で、ロードロック室 7内に ガス供給ポート 10から Nガスを導入し、ロードロック室 7内をパージして大気圧と同圧
2
化する。ゲートバルブ 25を開けて、ウェハ移載機 4によりボート 35にウェハ 39をチヤ ージする。ボート 35に所要枚数のウェハ 39がチャージされると、ゲートバルブ 25が閉 じられ、ロードロック室 7内が排気口 43を介して排気され真空状態にされる。一方、処 理炉 32内を排気装置により真空引きして、処理炉 32内の圧力がロードロック室 7内と 同じ真空状態になったら、炉ロシャツタ 33が開放され、ボートエレベータ 34により多 数枚のウェハ 39が多段に保持されたボート 35が石英チューブ 120内にローデイング される。そして、所定温度、所定圧力の処理炉 32内で多数枚のウェハ 39を一括して 熱処理する。ウェハ 39の熱処理中、ロードロック室 7内は真空排気された状態を維持 する。
[0043] 処理炉 32でウェハ 39の熱処理が完了すると、石英チューブ 120内が真空排気さ れ、ロードロック室 7内と同圧化される。同圧化されると、熱処理後のウェハ 39はボー トエレベータ 34により、処理炉 32から真空雰囲気に保たれたロードロック室 7にアン ローデイングされる。アンローデイング時にはロードロック室 7は真空状態にあるので、 熱処理直後の高温となった熱処理後のウェハ 39が酸化されたり、或はパーテイクノレ に汚染されたりするのが大幅に低減される。
[0044] アンローデイング後、第 1の実施の形態と同様に、ボート 35の周囲に配置された冷 却壁 51に対するウェハ 39からの熱輻射によりウェハ 39が冷却される。ここで、ウェハ 39の冷却は、熱対流ではなぐ熱輻射(矢印)により行われるため、ロードロック室 7内 が真空雰囲気であっても、その影響を受けることなぐウェハ 39を冷却することができ る。また冷却壁 51をロードロック室 7の内部に独立して配置してあるため、ロードロック 室 7自体を冷却する構造に比べて、冷却効率をあげることができ、ウェハ 39を高速冷 却できる。 [0045] ウェハ 39の冷却後、ロードロック室 7内にガス供給ポート 10力ら Nガスを導入して、
2
ロードロック室 7を大気圧に復帰させる。ロードロック室 7の大気圧復帰が完了すると、 ゲートバルブ 25が開放され、ウェハ移載機 4によりボート 35からウェハ 39がディスチ ヤージされ、カセットに搬送される。
[0046] このように第 2の実施の形態によれば、冷却壁 51をロードロック室 7の内部に独立し て配置しているので、ロードロック室 7自体を冷却するものと比べて冷却効率をあげる ことができ、ウェハ 39を高速冷却することができる。また、熱処理後の高温のウェハ 3 9は高清浄な真空雰囲気に滞在させたまま冷却されることになるので、ウェハ 39の汚 染を一層低減できる。
[0047] [第 3の実施の形態]
第 3の実施の形態は図 5に示すように、移載室 6内に設けた複数ボートシステムに 前記冷却壁 51を配置した縦型熱処理装置である。ここで、 2ボートシステムとは、ゥェ ハ冷却及びウェハ搬送処理を次バッチの熱処理と並列に実施するものである。
[0048] 図 5では、 2つのボート 35 (第 1ボート 35A、第 2ボート 35B)を搭載した 2ボートシス テムの簡略図を示している。本構造の場合、熱処理後のウェハ 39を保持したボート 3 5 (これを第 1ボート 35Aという)は、ボートエレベータ 34により処理室 100から移載室 6にアンロードされた後、移動手段としてのボート交換機構 14の第 1ボート交換ァー ム 15の旋回動作により、第 1の位置としてのロードポジション 19から第 2の位置として のウェハ冷却ポジション 17に運ばれる。ウェハ冷却ポジション 17には、前述した冷却 壁 51が設置されている。また、ウェハ搬送ポジション 18にある第 2ボート 35Bには、第 1ボート 35Aの熱処理中に、ウェハ移載機 4の動作により、次バッチのウェハ 39がチ ヤージされている。
[0049] 第 1ボート 35Aがウェハ冷却ポジション 17に運ばれ、所望の枚数のウェハ 39をチヤ ージし終えた後、第 2ボート 35Bはボート交換機構 14の第 2ボート交換アーム 16の 旋回動作により、処理室 100直下にあるロードポジション 19に運ばれる。その後、ボ ートエレベータ 34の上昇動作により処理室 100にロードされ、所定の熱処理が実施 される。
[0050] ウェハ冷却ポジション 17に移動した第 1ボート 35A上の熱処理後のウェハ 39は、そ の周囲に配置された冷却壁 51へのウェハ 39からの熱輻射により冷却される。ウェハ 39が所定の温度まで冷却がされたら、ボート交換機構 14の第 1ボート交換アーム 15 の動作により、第 1ボート 35Aはウェハ搬送ポジション 18に運ばれる。ウェハ 39は、ゥ ヱハ移載機 4の動作により第 1ボート 35Aからディスチャージされ、装置外に搬出され る。また、熱処理後のウェハ 39が第 1ボート 35Aからディスチャージされたら、新しい 処理待ちウェハ 39が第 1ボート 35Aにチャージされ、第 2ボート 35Bの熱処理が終了 するまで待機することになる。
[0051] このように第 3の実施の形態によれば、冷却壁 51が処理室 100直下のロードポジシ ヨン 19とは別の位置であるウェハ冷却ポジション 17に配置されており、熱処理後のボ ート 35に保持したウェハ 39は、ウェハ冷却ポジション 17に移動した後に冷却される。 その間に、別のウェハ 39を保持した別のボート 35を移載室 6のロードポジション 19か ら処理室 100に搬入することにより、処理室 100で別のウェハ 39を熱処理することが できるので、スループットが一層向上する。
[0052] なお、第 3の実施の形態は、移載室型 2ボートシステムの縦型熱処理装置について 説明したが、ロードロック室 7の内部にボート交換機構 14を有するロードロック室型 2 ボートシステムの縦型熱処理装置にも適用可能である。
[0053] [第 4の実施の形態]
第 4の実施の形態は、第 1〜第 3の実施の形態の冷却壁 51の材質を輻射率の高い 石英ガラスを用いた縦型熱処理装置である。熱処理装置の生産性確保のためには、 熱処理の終了後、次バッチの処理をできるだけ早く開始した方が良い。そのためゥェ ハ 39の冷却速度は早ぐ冷却時間はできるだけ短い方が良い。
[0054] 前述した冷却壁 51を用いて熱輻射によりウェハ 39を冷却する場合に、ウェハ冷却 速度を早くするためには、熱の移動がしゃすい構造、すなわち熱抵抗を小さくする必 要がある。そこで冷却壁表面における輻射熱伝達熱抵抗 Rradを検討すると、 Rrad は下記の式で表される。
Rrad= l/ ( ε X A X hrad) (1)
ただし、 ε :冷却壁の輻射率、 Α:冷却壁表面積、 hrad:輻射熱伝達率 式(1)からわかるように、輻射熱伝達熱抵抗 Rradを小さくするためには、冷却壁 51 の輻射率 εを大きくすれば良いことがわかる。第 1の実施の形態や第 2の実施の形 態で述べたように、冷却壁 51は移載室 6やロードロック室 7である予備室(チャンバ) などの構造体とは別に、単独の機能を有する要素であるため、ウェハ 39へのダメー ジを与えない限り自由な材質を選定できる。そこで冷却壁 51の材質には、輻射率が 大きい石英ガラスを用いる。石英ガラスの放射率は、ステンレスなどの研磨面に比べ 、 10倍以上の値となっている。また石英ガラスは高温に対する特性や、ウェハ 39へ の汚染とレ、う観点からも、本発明の冷却壁材質に適してレ、る。
[0055] このように第 4の実施の形態によれば、冷却壁 51の材質に石英ガラスを用いること で、輻射熱伝達熱抵抗 Rradの小さい、すなわちウェハ 39からの熱が移動しやすい 冷却壁 51を構成することができ、それによりウェハ 39を一層高速冷却できる。また、 冷却壁 51を石英ガラスで構成すれば、ウェハ 39にダメージを与えることもない。
[0056] [第 5の実施の形態]
第 5の実施の形態は、第 1〜第 4の実施の形態の冷却壁 51を複数の配管として、 複数の細管 55により主に構成し、冷却壁表面積を増加するようにした縦型熱処理装 置である。式(1)から、輻射熱伝達熱抵抗 Rradを小さくするためには、冷却壁 51の 表面積 Aを大きくしても良いことがわかる。
一般に板状体の表面積 Aを増加させる方法として種々の方法があるが、本発明の 冷却壁 51では、ウェハ 39から移動した熱量を装置外部に持ち出す必要上、冷却壁 51の内部に冷媒を流通させる空間としての経路が必要となってくる。そこで第 5の実 施の形態では、冷却壁 51自体を、冷媒が流れる複数の中空細管により構成している 。図 6に本構造の概略図を示す。
[0057] 冷却壁 51は、冷媒例えば水が流通する冷媒管 52を、ボート 35の外周に構築する ことにより構成される。冷媒管 52は、冷媒の導入口となる供給配管 53と、冷媒の導出 口となる排出配管 54と、供給配管 53と排出配管 54とを連通する多数の細管 55とか ら構成される。供給配管 53と排出配管 54とは、ボート 35下部のボート底板 37の略半 周を囲むように、略半円状で同心円状に配設される。この場合、供給配管 53を外側 に排出配管 54を内側に配置するようにしても、供給配管 53を内側に排出配管 54を 外側に配置してもよい。また、供給配管 53と排出配管 54の形状を略半円状としたが 、第 1〜第 2の実施の形態のようなボート 35の外形に沿った形状としても良い。
[0058] 細管 55は、 U字形に曲げ加工されている。 U字形の細管 55は、折返し部を上向き にして、供給配管 53及び排出配管 54上に立設される。多数の細管 55は、ボート 35 の周りに冷却壁 51を構成するために、供給配管 53及び排出配管 54の配管長に沿 つて略隙間なく立設される。これらの細管 55は、例えば溶接等で供給配管 53及び排 出配管 54に接続される。折返し部を上向きにした U字形 (以下、逆 U字形という)の 細管 55の折返し部の高さは、ボート 35の頂部まで囲むように、ボート 35の高さよりも 高くする。そして、多数の細管 55でボート 35の略半周を半円筒状に取り囲むように する。なお、図示例において、ボート底板 37より下部に冷媒管 52を存在させないよう 配置することが好ましい(後述する図 7および図 8においても同じ)。
[0059] 冷媒管 52を構成する供給配管 53の上流側は工場用水槽(図示せず)に接続され 、途中に設けた加熱手段によって水温を室温以上、例えば 25°C〜30°Cに制御する
[0060] このように第 5の実施の形態によれば、冷却壁 51を、多数の細管 55を立設すること により構成して、冷却壁 51の表面積 Aの増加を図るようにしたので、ウェハ 39を一層 高速冷却できる。
[0061] [第 6の実施の形態]
第 6の実施の形態は、第 5の実施の形態の冷却壁 51を複数の区画に分割する構 成とした縦型熱処理装置である。図 7に本構造の概略図を示す。第 6の実施の形態 では、冷却壁 51は一体構造とせずに、複数に分割するようにした構成としている。
[0062] 図 7に示すように、冷却機構 50は、ボート 35の略半周方向に沿って複数の区画、 図示例では 6区画に分割し、各区画を冷却壁部 51Aとする。各区画の冷却壁部 51 Aは、導入配管部 56A、この導入配管部 56Aに接続される供給配管部 53A、排出 配管部 54A、この排出配管部 54Aに接続される導出配管部 57A、前記供給配管部 53Aと前記排出配管部 54Aとを連結する細管部 55Aを独立に備え、区画された各 々が独立して冷却制御されるように構成される。なお、導入配管部 56Aと導出配管 部 57Aとは、隣の区画の導入配管部 56Aと導出配管部 57Aとの干渉をを回避する ために、供給配管部 53A及び排出配管部 54Aのように水平方向ではなぐ上下方 向に酉己置してある。
[0063] このように第 6の本実施の形態によれば、冷却壁 51は、複数の区画に分割した冷 却壁部 51Aを並べて配置する構成としたので、冷却壁 51内に流れる冷媒流量の適 正化が図れる。また、冷却壁 51の製作性や作業性の向上を図ることができる。また、 仮に冷却壁 51が破損した場合でも、冷却壁 51全部でなぐ破損した一部の冷却壁 部 51Aの交換のみで復旧させることができる。
[0064] [第 7の実施の形態]
第 7の実施の形態は、冷却壁 51を複数の冷却壁部 51Aに分割した第 6の実施の 形態において、冷媒の導入方向を反対にした冷却壁部 51Aを交互にならべて、冷 媒の流れる方向が互い違いになるよう配置するようにしたものである。
本構造の冷却壁 51の簡略図を図 8に示す。図 8 (a)に示す冷却壁部 51Aでは、ボ ート 35寄りに供給配管部 53Aを配置し、供給配管部 53Aを挟んでボート 35と反対 側に排出配管部 54 Aを配置し、これらの供給配管部 53 Aと排出配管部 54 Aとを細 管部 55Aで連結している。これによりボート 35側に配置した供給配管部 53Aから細 管部 55Aに冷媒を導入して排出配管部 54Aから排出するようになっている。また、図 8 (b)に示す冷却壁部 51Bでは、ボート 35寄りに排出配管部 54Bを配置し、この排 出配管部 54Bを挟んでボート 35と反対側に供給配管部 53Bを配置し、これらの供給 配管部 53Bと排出配管部 54Bとを細管部 55Bで連結している。これによりボート 35と 反対側の供給配管部 53Bから細管部 55Bに冷媒を導入して排出配管部 54Bから排 出するようになっている。
[0065] 本実施の形態では、ボート 35の周りに冷却壁 51を配置する場合に、図 7に示すよう に、冷媒の導入方向が全て同じ方向になっている冷却壁部 51Aを配置する構成に 代えて、図 8 (a)、 (b)に示す冷媒の導入方向を反対にした冷却壁部 51Aと冷却壁 部 51Bとを交互に配置する構成とする。この場合、図 8 (a)の冷却壁部 51Aが配置さ れた区画では、ボート 35の下側に配置されたウェハ 39から順に冷却されやすくなる 。また、図 8 (b)の冷却壁部 51Bが配置された区画ではボート 35の上側に配置された ウェハ 39から順に冷却されやすくなる。
[0066] このように第 7の実施の形態によれば、冷媒の導入方向を反対にした冷却壁部 51 A、 51Bを交互に並べて配置するようにしたので、ボート 35上に多段に保持されたゥ ェハ 39の上下間での冷却速度の均一化を図ることができ、ボート 35上に多段に保持 された全てのウェハ 39を所定の温度まで冷却する場合、全体のウェハ冷却時間の短 縮が図れ、ウェハ 39を一層高速冷却できる。
[0067] [第 8の実施の形態]
第 8の実施の形態は、第 1〜第 7の実施の形態の冷却壁 51によるウェハ 39の冷却 を、ボート 35を回転させながら行うようにしたものである。
ボート 35に対してウェハ 39をチャージ/ディスチャージし、処理炉 32に対してボー ト 35をロード/アンロードするタイプの縦型熱処理装置では、ボート 35の待機位置で ボート 35の全周を冷却壁 51で囲むことは困難である。すなわち図 2〜図 4に示す構 造の縦型熱処理装置の場合は、前述したようにボート 35の全周のうち、ウェハ 39の 出入側面 38、及びエレベータアーム 67の取付側面には、冷却壁 51を常設すること はできない。また図 5に示す 2ボートシステムの縦型熱処理装置の場合は、ボート 35 が旋回してくる旋回側面 44に冷却壁 51を常設することはできない。
[0068] そこで、第 8の実施の形態では、熱輻射によるウェハ 39の冷却は、ボート 35を回転 させながら行うようにしている。
[0069] 具体的には、図 2〜図 4に示す構造の縦型熱処理装置では、ウェハ冷却ポジション 17にボート回転装置を設け、既に図 10で説明したように、ボート 35は、炉口蓋 71の 下面に設けたボート回転装置 109により、回転軸 111を介して回転可能に支持され ている。従って、冷却壁 51でウェハ冷却するときも、このボート回転装置 109を用い て、図 6及び図 7の矢印に示すように、ボート 35を回転させるようにする。また、図 5に 示す構造の縦型熱処理装置では、ウェハ冷却ポジション 17にボート回転装置を設け 、同様に、冷却壁 51でウェハ冷却するときに、このボート回転装置を用いてボート 35 Aを回転させるようにする。
[0070] 既述したように縦型熱処理装置においては、その構造上、ボート 35の全周を冷却 壁 51で完全に囲むことができず、ボート 35の外周から放射状に出る輻射線を冷却壁 51で均等に吸収できない場合、特に第 8の実施の形態によれば、冷却壁 51への熱 輻射によるウェハ冷却を、ボート 35を回転させながら実施するようにしているので、輻 射線吸収の不均一をウェハ回転がカバーすることとなり、冷却速度のボート面内偏差 を解消できる。したがって、ボート面内ないしウェハ 39面内での冷却速度の均一化を 図ることができ、ひいてはウェハ 39を高速冷却できる。
[0071] [第 9の実施の形態]
第 9の実施の形態は、第 1〜第 8の実施の形態の冷却壁 51の内部に流通する冷媒 を、熱交換器を介して循環させて再利用する構成とした縦型熱処理装置である。な お、熱交換器に代えて空気圧縮機としてもよい。
冷却壁 51の内部に流す冷媒に、水などの液体や Nガス等の不活性ガスなどを使
2
用した場合、冷媒はウェハ 39を冷却している間は常に流す必要があり、その使用量 は膨大になる。
そこでウェハ冷却のために冷却壁 51の内部に流した冷媒は、循環させて再利用す る構造とする。一度、冷却壁 51に流れた冷謀は、ウェハ 39からの熱を吸収して高温 になっているため、装置の外部に熱交換器からなる冷却サイクルを流通させることで 所定の温度とし、再度装置内に設置された冷却壁 51に導入する構造とする。例えば 、図 6において、供給配管 53と排出配管 54とをループ状に接続して、冷却壁 51内を 通過後排出された冷媒を再び冷却壁 51内に戻せるように、循環経路を構成し、循環 経路内に熱交換器(図示せず)を設けるようにする。
[0072] このように第 9の実施の形態によれば、冷却壁内部に流通する冷媒は、熱交換器を 介して循環させて再利用する構成としたので、 Nガスなどの冷媒使用量を大幅に低
2
減でき、省資源化を図ることができる。
[0073] なお、上述した冷却壁 51の構造については、図 6及び図 7に示すように細管 55、 細管部 55Aを逆 U字形の向きになるように使用した場合について説明してきたが、 図 9 (a)のように、細管部 55Aを、その折返し部が下向きになるようにして U字形とし て使用することも可能である。この場合、上部にこの U字形の細管部 55Aとそれぞれ 連通する供給配管部 53A及び導出配管部 57Aを平行に配置し、これらの供給配管 部 53A及び導出配管部 57Aに、それぞれ導入配管部 56A及び導出配管部 57Aを 上下方向に接続して、上方力 下方にむかって冷媒を流して上方に戻す構造とする 。さらに図 9 (b)に示すように、直管状すなわち I字形の細管部 55Cを使用することも 可能である。この場合、下部にこの I字形の細管部 55Cの下端と連通する供給配管 部 53A、及びこの供給配管部 53Aに接続される導入配管部 56Aを設け、上部に I字 形の細管部 55Cの上端と接続される排出配管部 54A及びこの排出配管部 54Aに接 続される導出配管部 57Aを設けて、下方力も上方に向けて冷媒を流す構造とするこ とあできる。
[0074] なお、上述した実施の形態では、複数の基板を一括して処理する縦型熱処理装置 について述べたが、本発明は、単数の基板を処理する枚葉式熱処理装置にも適用 可能である。
[0075] 本発明の好ましい形態を付記すると下記の通りである。
第 1の発明は、基板を基板保持具により保持しつつ熱処理する処理室と、前記処 理室に隣接して設けられる予備室と、前記予備室の壁面より内側に前記予備室内の 雰囲気と隔離した空間を有し、該空間に冷媒を流通して前記処理室から前記予備室 に搬出される熱処理後の基板を前記基板保持具により保持しつつ冷却する冷却機 構とを備えた基板処理装置である。
[0076] 処理室で熱処理された基板は基板保持具により保持されたまま、処理室から処理 室に隣接した予備室に搬出される。予備室に搬出された基板は、基板保持具に保持 されたまま、予備室の壁面より内側に設けた冷却機構によって冷却される。基板は処 理室に隣接した予備室で冷却されるので、隣接してレ、なレ、他の室で冷却される場合 と比べて、冷却に要する移動距離が短くなる。また、熱処理後の基板は基板保持具 により保持されたまま冷却されるので冷却が容易となる。また、冷却機構は、予備室 の壁面より内側に設けられるので、予備室壁面の形状や材質の制約を受けない。
[0077] 本発明によれば、冷却機構を予備室内の雰囲気と隔離して設け、冷却機構を予備 室の壁面より内側に設けているので、冷却機構から熱伝導により予備室壁面等に奪 われる冷熱エネルギーが低減し、冷却機構への熱輻射による基板冷却の効率が上 がるため、基板を高速冷却できる。
[0078] 第 2の発明は、複数の基板を多段に基板保持具により保持しつつ熱処理する処理 室と、前記処理室に隣接して設けられる予備室と、前記予備室の壁面より内側に前 記基板保持具及び前記基板とは非接触で前記基板を囲むように配置され、内部に 冷媒を流通して前記処理室から前記予備室に搬出される熱処理後の基板を前記基 板保持具により多段に保持しつつ冷却する冷却機構とを備えた基板処理装置である
[0079] 処理室で熱処理された複数の基板は基板保持具により多段に保持されたまま、処 理室から処理室に隣接した予備室に搬出される。予備室に搬出された複数の基板 は、基板保持具に保持されたまま、予備室の壁面より内側に設けた冷却機構によつ て冷却される。複数の基板は処理室に隣接した予備室で冷却されるので、隣接して レ、ない他の室で冷却される場合と比べて、冷却に要する移動距離が短くなる。また、 熱処理後の複数の基板は基板保持具により多段に保持されたまま冷却されるので冷 却が容易となる。また、冷却機構は、予備室の壁面より内側に設けられるので、予備 室壁面の形状や材質の制約を受けない。また、基板保持具に複数の基板を多段に 保持したまま冷却するので、単数の基板を保持するものと比べて、複数の基板が一 括して冷却されるので、スループットが向上する。
[0080] 本発明によれば、冷却機構を予備室の壁面より内側に設け、冷却機構の内部に冷 媒を流通するので、冷却機構から熱伝導により予備室壁面等に奪われる冷熱ェネル ギ一が低減し、冷却機構への熱輻射による基板冷却の効率が上がるため、基板を高 速冷却できる。特に、冷却機構が基板を囲むように配置されているので、冷却機構へ の熱輻射による基板冷却の効率がより上がり、複数の基板を一層高速冷却できる。ま た、冷却機構が基板保持具及び基板とは非接触なので、接触による基板の汚染が 生じない。
[0081] 第 3の発明は、第 1、第 2の発明において、前記予備室は減圧可能な気密構造に 構成され、前記熱処理後の基板は前記予備室内を減圧状態にして冷却されることを 特徴とする基板処理装置である。
予備室は減圧可能な気密構造になっているので、予備室を高清浄な真空雰囲気 にすることができる。また、熱処理後の基板を、減圧状態にした予備室内で冷却する と、予備室内に空気や不活性ガスを吹出すものと異なり、基板の熱がガスを介して予 備室内に伝播されることに起因する汚染を低減できるので、熱処理後の基板を高清 浄な真空雰囲気内で冷却を行うことができ、基板の汚染を一層低減できる。特に、真 空雰囲気(1330Pa (10Torr)以下)にすると、より一層冷却の際の基板の汚染を低 減できる。
[0082] 第 4の発明は、第 1ないし第 3発明において、前記予備室内には、前記処理室から 基板保持具を搬出した前記予備室の第 1の位置から、第 1の位置とは異なる第 2の位 置に基板保持具を移動させる移動手段が備えられ、前記冷却機構は、第 2の位置に ある前記基板保持具を囲むように配置されてレ、ることを特徴とする基板処理装置であ る。移動手段により、第 1の位置から第 2の位置に移動した基板保持具に保持された 熱処理後の基板は、第 2の位置で、基板保持具を囲むように配置された冷却機構に より高速冷却される。
本発明によれば、基板保持具に保持した基板を第 2の位置で冷却している間に、 別の基板を保持した別の基板保持具を予備室の第 1の位置から処理室に搬入して 熱処理することができるので、スループットが一層向上する。
[0083] 第 5の発明は、第 1ないし第 4の発明において、前記冷却機構は、前記予備室の壁 面より輻射率の高い材質で構成されていることを特徴とする基板処理装置である。 冷却機構を用いる場合に、特に冷却機構の輻射率が問題となるが、本発明によれ ば、冷却機構は予備室の壁面より輻射率の高い材質で構成されているので、基板を 一層高速冷却できる。
[0084] 第 6の発明は、第 1ないし第 5の発明において、前記冷却機構は石英材からなるこ とを特徴とする基板処理装置である。
冷却機構が輻射率の高い石英材からなるので、基板を一層高速冷却できる。
[0085] 第 7の発明は、第 1ないし第 6の発明において、前記冷却機構は、複数の配管で構 成されてレ、ることを特徴とする基板処理装置である。
冷却機構を複数の配管で構成することで、冷却機構の表面積を増加できるので、 基板を一層高速冷却できる。
[0086] 第 8の発明は、第 1ないし第 7の発明において、前記冷却機構は、複数の区画に分 割し、区画された各々が独立して冷却制御することができるように構成されていること を特徴とする基板処理装置である。
冷却機構を複数の区画に分割して、各区画を独立に冷却制御できるように構成す ると、各区画内に流れる冷媒流量の適正化が図れるとともに、冷却機構の製作性や 作業性の向上を図ることができる。また冷却機構が破損した場合でも、破損した一部 の区画の交換のみで冷却機構を復旧させることができる。
[0087] 第 9の発明は、第 1ないし第 8の発明において、前記冷却機構は、隣り合う区画では 、冷媒の流れる方向が互い違いになるようにすることを特徴とする基板処理装置であ る。
冷却機構の隣り合う区画で冷媒の流れる方向を互い違いにすると、基板保持具に 保持された基板の基板面内または基板面間での冷却速度を均一化できる。したがつ て、基板冷却時間の短縮が可能となり、基板を一層高速冷却できる。
[0088] 第 10の発明は、第 1ないし第 9の発明において、前記熱処理後の基板を回転させ 、回転する熱処理後の基板を前記冷却機構により冷却するようにしたことを特徴とす る基板処理装置である。
基板を回転させながら冷却すると、基板から冷却機構への熱輻射の不均一に起因 する基板面内偏差を解消し、基板面内の冷却速度の均一化を図ることができ、基板 を一層高速冷却できる。
[0089] 第 11の発明は、第 1ないし第 10の発明において、前記冷却機構は、該冷却機構 内に流通後排出された冷媒を、再び前記冷却機構内に流通させるよう循環経路を設 け、該循環経路内に熱交換手段を備えることを特徴とする基板処理装置である。 冷媒を用いて冷却する場合に、特に資源の有効利用が問題となるが、本発明によ れば、熱交手段を介して冷媒を循環させて再利用するので、資源の有効利用が図れ る。
[0090] 第 12の発明は、処理室で基板保持具により基板を保持しつつ熱処理する工程と、 前記基板保持具により保持しつつ前記熱処理後の基板を前記処理室に隣接した予 備室に搬出する工程と、前記予備室の壁面より内側で前記予備室内の雰囲気と隔 離した空間に冷媒を流す工程と、前記搬出した熱処理後の基板から前記隔離した空 間への熱輻射により前記基板を冷却する工程とを備えた半導体装置の製造方法で ある。
[0091] 本発明によれば、冷媒は、予備室内の雰囲気と隔離して設けられた空間に流れる ようになっているので、隔離した空間から熱伝導により予備室に奪われる冷熱ェネル ギ一が低減し、空間への熱輻射による基板冷却の効率が上がるため、基板を高速冷 却できる。
[0092] 第 13の発明は、処理室で基板保持具により保持しつつ基板を熱処理する工程と、 前記基板保持具により保持しつつ前記熱処理後の基板を前記処理室に隣接し減圧 状態の予備室に搬出する工程と、前記予備室の壁面より内側で前記予備室内の雰 囲気と隔離した空間に冷媒を流す工程と、前記搬出した熱処理後の基板から前記隔 離した空間への熱輻射により前記基板を冷却する工程とを備えた半導体装置の製 造方法である。
[0093] 本発明によれば、冷媒は、予備室内の雰囲気と隔離して設けられた空間に流れる ようになっているので、予備室内に空気や不活性ガスを吹き出すものと異なり、基板 の熱がガスを介して予備室内に伝播されることに起因する汚染を低減できる。また、 隔離した空間から熱伝導により予備室に奪われる冷熱エネルギーが低減し、空間へ の熱輻射による基板冷却の効率が上がるため、基板を高速冷却できる。また、減圧 状態の予備室で基板を冷却するので、高清浄な真空雰囲気内で基板を冷却するこ とができ、基板の汚染を一層低減できる。
図面の簡単な説明
[0094] [図 1]第 1の実施の形態の縦型熱処理装置の内部構成を示す側面図。
[図 2]第 1の実施の形態の縦型熱処理装置の内部構成を示す平面図。
[図 3]図 2の変形例を示す縦型熱処理装置の内部構成の平面図。
[図 4]第 2の実施の形態における縦型熱処理装置の内部構成を示す平面図。
[図 5]第 3の実施の形態における縦型熱処理装置の内部構成を示す平面図。
[図 6]第 5、第 8、第 9の実施の形態に共通する冷却機構の斜視図。
[図 7]第 6、第 8、第 9の実施の形態に共通する冷却機構の斜視図。
[図 8]第 7の実施の形態におる冷却壁への冷媒導入方法を示す説明図。
[図 9]図 6、図 7の実施の形態の変形例を示す冷却壁部の斜視図。
[図 10]各実施の形態に共通する処理炉の側断面図。
[図 11]従来例における縦型熱処理装置の内部構成を示す平面図。 [図 12]従来例における縦型熱処理装置の内部構成を示す平面図。
[図 13]従来例における縦型熱処理装置の内部構成を示す側面図。 符号の説明
6 移載室 (予備室)
26 移載室の壁面(予備室の壁面)
39 ウェハ(基板)
35 ボート (基板保持具)
50 冷却機構
51 冷却壁
55 細管 (空間)
100 処理室

Claims

請求の範囲
[1] 基板を基板保持具により保持しつつ熱処理する処理室と、
前記処理室に隣接して設けられる予備室と、
前記予備室の壁面より内側に前記予備室内の雰囲気と隔離した空間を有し、該空 間に冷媒を流通して前記処理室から前記予備室に搬出される熱処理後の基板を前 記基板保持具により保持しつつ冷却する冷却機構と
を備えた基板処理装置。
[2] 複数の基板を多段に基板保持具により保持しつつ熱処理する処理室と、
前記処理室に隣接して設けられる予備室と、
前記予備室の壁面より内側に前記基板保持具及び前記基板とは非接触で前記基 板を囲むように配置され、内部に冷媒を流通して前記処理室から前記予備室に搬出 される熱処理後の基板を前記基板保持具により多段に保持しつつ冷却する冷却機 構と
を備えた基板処理装置。
[3] 前記予備室は減圧可能な気密構造に構成され、前記熱処理後の基板は前記予備 室内を減圧状態にして冷却されることを特徴とする請求項 1又は 2に記載の基板処理 装置。
[4] 前記予備室内には、前記処理室から基板保持具を搬出した前記予備室の第 1の 位置から、第 1の位置とは異なる第 2の位置に基板保持具を移動させる移動手段が 備えられ、前記冷却機構は、第 2の位置にある前記基板保持具を囲むように配置さ れていることを特徴とする請求項 1又は 2に記載の基板処理装置。
[5] 前記冷却機構は、前記予備室の壁面より輻射率の高い材質で構成されていること を特徴とする請求項 1又は 2に記載の基板処理装置。
[6] 前記冷却機構は石英材からなることを特徴とする請求項 1又は 2に記載の基板処理 装置。
[7] 前記冷却機構は、複数の配管で構成されていることを特徴とする請求項 1又は 2に 記載の基板処理装置。
[8] 前記冷却機構は、複数の区画に分割し、区画された各々が独立して冷却制御する ことができるように構成されていることを特徴とする請求項 1又は 2に記載の基板処理 装置。
[9] 前記冷却機構は、隣り合う区画では、冷媒の流れる方向が互い違いになるようにす ることを特徴とする請求項 8に記載の基板処理装置。
[10] 前記熱処理後の基板を回転させ、回転する熱処理後の基板を前記冷却機構により 冷却するようにしたことを特徴とする請求項 1又は 2に記載の基板処理装置。
[11] 前記冷却機構は、該冷却機構内に流通後排出された冷媒を、再び前記冷却機構 内に流通させるよう循環経路を設け、該循環経路内に熱交換手段を備えることを特 徴とする請求項 1又は 2に記載の基板処理装置。
[12] 処理室で基板保持具により基板を保持しつつ熱処理する工程と、
前記基板保持具により保持しつつ前記熱処理後の基板を前記処理室に隣接した 予備室に搬出する工程と、
前記予備室の壁面より内側で前記予備室内の雰囲気と隔離した空間に冷媒を流 す工程と、
前記搬出した熱処理後の基板から前記隔離した空間への熱輻射により前記基板を 冷却する工程と
を備えた半導体装置の製造方法。
PCT/JP2006/305606 2005-03-28 2006-03-20 基板処理装置および半導体装置の製造方法 WO2006103978A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510414A JPWO2006103978A1 (ja) 2005-03-28 2006-03-20 基板処理装置および半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-092597 2005-03-28
JP2005092597 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006103978A1 true WO2006103978A1 (ja) 2006-10-05

Family

ID=37053239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305606 WO2006103978A1 (ja) 2005-03-28 2006-03-20 基板処理装置および半導体装置の製造方法

Country Status (2)

Country Link
JP (1) JPWO2006103978A1 (ja)
WO (1) WO2006103978A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110294A (ja) * 2012-11-30 2014-06-12 Panasonic Corp 真空加熱炉及び有機半導体素子の製造方法
KR20180016294A (ko) 2016-08-04 2018-02-14 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 프로그램, 유체 순환 기구 및 반도체 장치의 제조 방법
US11694907B2 (en) 2016-08-04 2023-07-04 Kokusai Electric Corporation Substrate processing apparatus, recording medium, and fluid circulation mechanism
US11996309B2 (en) 2020-05-14 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300517A (ja) * 1988-05-27 1989-12-05 Tel Sagami Ltd 加熱装置
JP2001002490A (ja) * 1999-06-17 2001-01-09 Mitsubishi Materials Corp 単結晶引上装置
JP2001004282A (ja) * 1999-06-23 2001-01-12 Ayumi Kogyo Kk 真空加熱装置
JP2002009000A (ja) * 2000-06-23 2002-01-11 Hitachi Kokusai Electric Inc 半導体製造装置
JP2004311550A (ja) * 2003-04-03 2004-11-04 Hitachi Kokusai Electric Inc 基板処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300517A (ja) * 1988-05-27 1989-12-05 Tel Sagami Ltd 加熱装置
JP2001002490A (ja) * 1999-06-17 2001-01-09 Mitsubishi Materials Corp 単結晶引上装置
JP2001004282A (ja) * 1999-06-23 2001-01-12 Ayumi Kogyo Kk 真空加熱装置
JP2002009000A (ja) * 2000-06-23 2002-01-11 Hitachi Kokusai Electric Inc 半導体製造装置
JP2004311550A (ja) * 2003-04-03 2004-11-04 Hitachi Kokusai Electric Inc 基板処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110294A (ja) * 2012-11-30 2014-06-12 Panasonic Corp 真空加熱炉及び有機半導体素子の製造方法
KR20180016294A (ko) 2016-08-04 2018-02-14 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치, 프로그램, 유체 순환 기구 및 반도체 장치의 제조 방법
US11694907B2 (en) 2016-08-04 2023-07-04 Kokusai Electric Corporation Substrate processing apparatus, recording medium, and fluid circulation mechanism
US11996309B2 (en) 2020-05-14 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method

Also Published As

Publication number Publication date
JPWO2006103978A1 (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
US7833351B2 (en) Batch processing platform for ALD and CVD
JPH05218176A (ja) 熱処理方法及び被処理体の移載方法
KR101528138B1 (ko) 기판 처리 장치, 기판 지지구 및 반도체 장치의 제조 방법
US20120083120A1 (en) Substrate processing apparatus and method of manufacturing a semiconductor device
KR20020019414A (ko) 기판 처리 장치 및 기판 처리 장치를 이용한 반도체디바이스 제조 방법
US20190093219A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
US20110239937A1 (en) Apparatus and method for treating substrate
JP2008103707A (ja) 基板処理装置および半導体装置の製造方法
WO2006103978A1 (ja) 基板処理装置および半導体装置の製造方法
CN109478500B (zh) 基板处理方法及基板处理装置
JP2001148379A (ja) 半導体基板の熱処理装置及び熱処理方法
JP2006093188A (ja) 成膜装置及び成膜方法
US20060156982A1 (en) Apparatus for fabricating semiconductor device
KR20210008549A (ko) 버퍼 유닛, 그리고 이를 가지는 기판 처리 장치 및 방법
JP2004055880A (ja) 基板処理装置
CN111725094A (zh) 基板处理装置、半导体装置的制造方法以及记录介质
JP6680895B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
KR20200108467A (ko) 처리 장치, 배기 시스템, 반도체 장치의 제조 방법
JP4516838B2 (ja) 基板処理装置および半導体装置の製造方法
JP3966884B2 (ja) 基板処理装置及び基板処理方法並びに基板の製造方法
JP2001338890A (ja) 基板処理装置
JP3035436B2 (ja) 基板処理装置
JP2011204735A (ja) 基板処理装置および半導体装置の製造方法
JP2002173775A (ja) 半導体製造装置および半導体装置の製造方法
JP2942388B2 (ja) 半導体製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510414

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729574

Country of ref document: EP

Kind code of ref document: A1