WO2006099219A2 - Absorbable surgical fasteners - Google Patents
Absorbable surgical fasteners Download PDFInfo
- Publication number
- WO2006099219A2 WO2006099219A2 PCT/US2006/008759 US2006008759W WO2006099219A2 WO 2006099219 A2 WO2006099219 A2 WO 2006099219A2 US 2006008759 W US2006008759 W US 2006008759W WO 2006099219 A2 WO2006099219 A2 WO 2006099219A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- surgical fastener
- tissue
- alloy
- wound
- surgical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/064—Surgical staples, i.e. penetrating the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/02—Inorganic materials
- A61L31/022—Metals or alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00893—Material properties pharmaceutically effective
Definitions
- the present disclosure relates to absorbable surgical fasteners (e.g., staples), and more particularly to absorbable metallic surgical fasteners.
- Surgical fastening devices allow a surgeon to connect body tissue by applying surgical fasteners.
- the fasteners may be applied singly in succession or any number may be applied simultaneously.
- Surgical fasteners are known to be made of metallic and non- metallic materials.
- Metallic fasteners are often made of materials such as tantalum or stainless steel, which are inert. However, metallic fasteners are not typically absorbable and therefore are frequently permanently implanted or are used on wound sites that allow the metallic fastener to be removed from the wound site after the wound has sufficiently healed.
- Non-metallic fasteners are usually absorbable and often made from materials such as natural or synthetic polymers or copolymers and resins, including protein based- materials.
- non-metallic fasteners often experience difficulty retaining their tensile strength for a time sufficient to allow the fastened tissue to heal. Also, they often are not stiff enough to penetrate certain tissue without the assistance from metallic pins, drills and the like.
- absorbable metallic surgical fasteners that maintain sufficient stiffness to penetrate tissue, maintain sufficient tensile strength during the healing process and produce no harmful effects to the body when absorbed.
- the present disclosure provides a surgical fastener for closing wounds and a method of using the fastener.
- the surgical fastener comprises a combination of metal materials that dissolve in a human body without any harmful effects.
- the method of using the fastener includes approximating the tissue surrounding the wound and affixing a surgical fastener described herein to the approximated tissue.
- the present disclosure provides a surgical fastener comprising a combination of metal materials which dissolve in the human body without any harmful effects on the person who wears the implant.
- the combination of metal materials is to be designed such that the material of the surgical fastener dissolves at a certain decomposition rate and without the production of bio-incompatible decomposition products.
- a surgical fastener of this type combines the advantageous mechanical properties of metallic surgical fasteners with the bioabsorbability of non-metallic, or polymer-based surgical fasteners.
- the combination of metal materials is a metal alloy, the selection of the alloy constituents—as explained in detail below—serving to attain the prerequisite of biocompatible decomposition. Consequently, the metal alloy has to consist of a combination of material that will dissolve in the body comparatively rapidly— within a period of some months—forming harmless constituents.
- such an alloy comprises a first component which covers itself with a protective oxide coat.
- This first component is selected from one or several metals of the group of magnesium, titanium, zirconium, niobium, tantalum, zinc or silicon.
- a second component is added to the alloy, possessing sufficient solubility in blood or interstitial fluid, such as lithium sodium, potassium, calcium, iron or manganese.
- the mentioned elements are suitable because they are present in the human body anyway—such as magnesium, zinc, sodium, potassium, calcium, iron and manganese— or are known to be nontoxic— such as titanium, zirconium, niobium, tantalum, silicon and lithium.
- the combination of a passivating and a soluble component ensures a timely and uniform decomposition into biocompatible breakdown products.
- the decomposition rate can be regulated through the ratio of the two components.
- the alloy is to be formed so that the decomposition products are soluble salts, such as sodium, potassium, calcium, iron or zinc salts, or that non-soluble decomposition products, such as titanium, tantalum or niobium oxide originate as colloidal particles.
- the decomposition rate is adjusted by way of the composition so that gases, such as hydrogen which evolves during the decomposition of lithium, sodium, potassium, magnesium, calcium or zinc, dissolve physically, not forming any macroscopic gas bubbles.
- gases such as hydrogen which evolves during the decomposition of lithium, sodium, potassium, magnesium, calcium or zinc
- One combination of alloys that is particularly useful is a sodium-magnesium alloy. Since sodium hydroxide as a decomposition product possesses a high solubility, this alloy dissolve without voluminous encrusting. Sodium dissolves and magnesium hydroxide forms a fine precipitate which may deposit without risk in the wound healing tissue.
- Another useful decomposable combination of metal materials is a zinc-titanium alloy, the percentage by weight of which is in the range of 0 ⁇ _% to _1_%.
- This combination precludes the comparatively strong crystalline growth of zinc as a material used, which would cause a comparatively brittle and fragile behavior of the surgical fastener.
- the addition of titanium leads to the formation of a Zn 15 Ti phase on the crystal boundaries which precludes any further crystalline growth.
- This reduction of the grain size generally improves the ductility, in particular the elongation at rupture ⁇ i.e. the percentage elongation of the material under mechanical load as far as to the rupture thereof.
- gold is added to this alloy at a percentage by weight of OJ . % to 2 %, a further reduction of the grain size is attained when the material cures. This further improves the tensile strength of the material.
- the surgical fasteners of the present disclosure can be used to close a wound on skin, fascia or internal organs.
- the closure of a wound involves the approximating, abutting, and/or overlapping of tissue surrounding the wound and placing the fastener in a position relative to the wound to maintain the surrounding tissue in the approximated, abutted and/or overlapped position until the wound has healed.
- Any surgical fastener known to one skilled in the art may be formed from the metallic alloy described in the present disclosure. Additionally, the surgical fasteners can be formed into any shape, size and dimension useful in closing wounds.
- Some examples of surgical fasteners include staples, pins, straps, cables, screws, and clips. In a particularly useful embodiment the fastener is a surgical staple.
- staples a wide variety of surgical staples and surgical staplers are known and used throughout the art.
- the surgical staples described herein can be adapted for use with any surgical staplers of a conventional design. Examples of such devices are described in U.S. Patent Nos. 4,354,628, 5,014,899, 5,040,715, 5,799,857 and 5,915,616.
- the staples can be used in cartridge fed, repeating stapling instruments or in instruments which set a plurality of staples in a straight line or in a circle with a single firing is also included within the scope of this invention. It is understood that some modification of existing stapling instruments may be required to physically accommodate the staples of the present invention, but such modification is well within the present skill of the instrument manufacturers.
- surgical fasteners as described herein would be used in conjunction with other surgically biocompatible wound treatment materials that include, adhesives whose function is to attach or hold organs, tissues or structures; sealants to prevent fluid leakage; hemostats to halt or prevent bleeding; and medicaments.
- adhesives which can be employed include protein derived, aldehyde-based adhesive materials, for example, the commercially available albumin/glutaraldehyde materials sold under the trade designation BioGlueTM by Cryolife, Inc., and cyanoacrylate-based materials sold under the trade designations IndermilTM and Derma BondTM by Tyco Healthcare Group, LP and Ethicon Endosurgery, Inc., respectively.
- sealants examples include fibrin sealants and collagen-based and synthetic polymer-based tissue sealants.
- sealants examples include synthetic polyethylene glycol-based, hydrogel materials sold under the trade designation CoSealTM by Cohesion Technologies and Baxter International, Inc.
- hemostat materials examples include fibrin-based, collagen- based, oxidized regenerated cellulose-based and gelatin-based topical hemostats.
- fibrinogen-thrombin combination materials sold under the trade designations CoStasisTM, and TisseelTM sold by Baxter International, Inc.
- Hemostats herein include astringents, e.g., aluminum sulfate, and coagulants.
- the adhesive, sealant or medicament may be disposed on or impregnated into any of the surgical fasteners described herein.
- the medicament may include one or more medically and/or surgically useful substances such as drugs, enzymes, growth factors, peptides, proteins, dyes, diagnostic agents or hemostasis agents or any other pharmaceutical used in the prevention of stenosis.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Vascular Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Surgical Instruments (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/885,888 US20080249564A1 (en) | 2005-03-11 | 2006-03-10 | Absorbable Surgical Fasteners |
| EP06737891.9A EP1855617A4 (en) | 2005-03-11 | 2006-03-10 | ABSORBABLE SURGICAL STAPLES |
| CA002600114A CA2600114A1 (en) | 2005-03-11 | 2006-03-10 | Absorbable surgical fasteners |
| JP2008500996A JP5036697B2 (ja) | 2005-03-11 | 2006-03-10 | 吸収可能な外科用ファスナー |
| AU2006223283A AU2006223283B2 (en) | 2005-03-11 | 2006-03-10 | Absorbable surgical fasteners |
| US12/848,691 US20100298870A1 (en) | 2005-03-11 | 2010-08-02 | Absorbable surgical fasteners |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US66069405P | 2005-03-11 | 2005-03-11 | |
| US60/660,694 | 2005-03-11 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2006099219A2 true WO2006099219A2 (en) | 2006-09-21 |
| WO2006099219A3 WO2006099219A3 (en) | 2009-04-16 |
Family
ID=36992308
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/008759 Ceased WO2006099219A2 (en) | 2005-03-11 | 2006-03-10 | Absorbable surgical fasteners |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20080249564A1 (enExample) |
| EP (1) | EP1855617A4 (enExample) |
| JP (2) | JP5036697B2 (enExample) |
| AU (1) | AU2006223283B2 (enExample) |
| CA (1) | CA2600114A1 (enExample) |
| WO (1) | WO2006099219A2 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1930032A3 (de) * | 2006-09-06 | 2010-06-02 | BIOTRONIK VI Patent AG | Biokorrodierbares metallisches Implantat mit einer Beschichtung oder Kavitätenfüllung aus Gelatine |
| EP2613710B1 (en) | 2010-09-08 | 2019-12-04 | Synthes GmbH | Fixation device with magnesium core |
| US11344309B2 (en) | 2019-07-05 | 2022-05-31 | Covidien Lp | Circular stapling instruments |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10194904B2 (en) * | 2009-10-08 | 2019-02-05 | Covidien Lp | Surgical staple and method of use |
| CN103932749A (zh) * | 2014-02-26 | 2014-07-23 | 李扬德 | 一种医用可降解镁合金多用吻合片 |
| MX382414B (es) * | 2015-08-26 | 2025-03-13 | Ethicon Llc | Grapas que comprenden una cubierta. |
| WO2017061616A1 (ja) * | 2015-10-09 | 2017-04-13 | 国立大学法人名古屋大学 | 生体吸収性ステープル |
| WO2018230415A1 (ja) * | 2017-06-15 | 2018-12-20 | 三井金属鉱業株式会社 | 医療用線状材料 |
| US20220354999A1 (en) | 2021-05-10 | 2022-11-10 | Cilag Gmbh International | Bioabsorbable staple comprising mechanisms for slowing the absorption of the staple |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2094578A (en) * | 1932-09-13 | 1937-10-05 | Blumenthal Bernhard | Material for surgical ligatures and sutures |
| US4354628A (en) * | 1980-09-29 | 1982-10-19 | United States Surgical Corporation | Surgical stapler apparatus having pivotally related staple holder and anvil |
| US4602632A (en) * | 1983-12-14 | 1986-07-29 | Richard Jorgensen | Bio absorbable metal hemostatic clip |
| US4719917A (en) * | 1987-02-17 | 1988-01-19 | Minnesota Mining And Manufacturing Company | Surgical staple |
| US5040715B1 (en) * | 1989-05-26 | 1994-04-05 | United States Surgical Corp | Apparatus and method for placing staples in laparoscopic or endoscopic procedures |
| US5059213A (en) * | 1990-03-26 | 1991-10-22 | United States Surgical Corporation | Spiroid braided suture |
| US5014899A (en) * | 1990-03-30 | 1991-05-14 | United States Surgical Corporation | Surgical stapling apparatus |
| US5443198A (en) * | 1991-10-18 | 1995-08-22 | United States Surgical Corporation | Surgical fastener applying apparatus |
| CA2132917C (en) * | 1993-10-07 | 2004-12-14 | John Charles Robertson | Circular anastomosis device |
| US5584859A (en) * | 1993-10-12 | 1996-12-17 | Brotz; Gregory R. | Suture assembly |
| DE19731021A1 (de) * | 1997-07-18 | 1999-01-21 | Meyer Joerg | In vivo abbaubares metallisches Implantat |
| EP0966979B1 (de) * | 1998-06-25 | 2006-03-08 | Biotronik AG | Implantierbare, bioresorbierbare Gefässwandstütze, insbesondere Koronarstent |
| US6197042B1 (en) * | 2000-01-05 | 2001-03-06 | Medical Technology Group, Inc. | Vascular sheath with puncture site closure apparatus and methods of use |
| BR0110651A (pt) * | 2000-05-10 | 2003-03-25 | Canica Design Inc | Sistema e método para movimentação e estiramento de tecido plástico |
| US20040093024A1 (en) * | 2000-09-01 | 2004-05-13 | James Lousararian | Advanced wound site management systems and methods |
| US20040220660A1 (en) * | 2001-02-05 | 2004-11-04 | Shanley John F. | Bioresorbable stent with beneficial agent reservoirs |
| DE10163106A1 (de) * | 2001-12-24 | 2003-07-10 | Univ Hannover | Medizinische Implantate, Prothesen, Protheseteile, medizinische Instrumente, Geräte und Hilfsmittel aus einem halogenid-modifizierten Magnesiumwerkstoff |
| EP1503671B1 (en) * | 2002-05-10 | 2006-10-11 | Tyco Healthcare Group Lp | Wound closure material applicator and stapler |
| US7112214B2 (en) * | 2002-06-25 | 2006-09-26 | Incisive Surgical, Inc. | Dynamic bioabsorbable fastener for use in wound closure |
| US20040167572A1 (en) * | 2003-02-20 | 2004-08-26 | Roth Noah M. | Coated medical devices |
| US7905902B2 (en) * | 2003-06-16 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical implant with preferential corrosion zone |
| JP2006087704A (ja) * | 2004-09-24 | 2006-04-06 | Terumo Corp | 医療用インプラント |
| JP2006167078A (ja) * | 2004-12-15 | 2006-06-29 | Terumo Corp | 医療用インプラント |
-
2006
- 2006-03-10 US US11/885,888 patent/US20080249564A1/en not_active Abandoned
- 2006-03-10 WO PCT/US2006/008759 patent/WO2006099219A2/en not_active Ceased
- 2006-03-10 CA CA002600114A patent/CA2600114A1/en not_active Abandoned
- 2006-03-10 EP EP06737891.9A patent/EP1855617A4/en not_active Withdrawn
- 2006-03-10 AU AU2006223283A patent/AU2006223283B2/en not_active Ceased
- 2006-03-10 JP JP2008500996A patent/JP5036697B2/ja not_active Expired - Fee Related
-
2010
- 2010-08-02 US US12/848,691 patent/US20100298870A1/en not_active Abandoned
-
2012
- 2012-02-29 JP JP2012043395A patent/JP2012130746A/ja active Pending
Non-Patent Citations (1)
| Title |
|---|
| See references of EP1855617A4 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1930032A3 (de) * | 2006-09-06 | 2010-06-02 | BIOTRONIK VI Patent AG | Biokorrodierbares metallisches Implantat mit einer Beschichtung oder Kavitätenfüllung aus Gelatine |
| EP2613710B1 (en) | 2010-09-08 | 2019-12-04 | Synthes GmbH | Fixation device with magnesium core |
| US11344309B2 (en) | 2019-07-05 | 2022-05-31 | Covidien Lp | Circular stapling instruments |
| US12070218B2 (en) | 2019-07-05 | 2024-08-27 | Covidien Lp | Circular stapling instruments |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2006223283B2 (en) | 2012-04-12 |
| US20100298870A1 (en) | 2010-11-25 |
| EP1855617A4 (en) | 2013-10-23 |
| AU2006223283A1 (en) | 2006-09-21 |
| JP5036697B2 (ja) | 2012-09-26 |
| EP1855617A2 (en) | 2007-11-21 |
| JP2008536540A (ja) | 2008-09-11 |
| JP2012130746A (ja) | 2012-07-12 |
| US20080249564A1 (en) | 2008-10-09 |
| CA2600114A1 (en) | 2006-09-21 |
| WO2006099219A3 (en) | 2009-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20100298870A1 (en) | Absorbable surgical fasteners | |
| US20070055305A1 (en) | Biodegradable and/or bioabsorbable member for vascular sealing | |
| EP1804684B1 (en) | Surgical fasteners coated with wound treatment materials | |
| AU2007200842B2 (en) | Hub for positioning annular structure on a surgical device | |
| JP3412039B2 (ja) | 外科用接着剤組成物 | |
| EP2308387A2 (en) | Surgical staple | |
| Fortelny et al. | Cyanoacrylate tissue sealant impairs tissue integration of macroporous mesh in experimental hernia repair | |
| JP2009106760A (ja) | 接着性縫合構造体およびこれを用いる方法 | |
| JP2008516680A5 (enExample) | ||
| EP1582225A3 (en) | Drug delivery device | |
| EP1598085B1 (en) | Biodegradable and pressure-sensitive material for medical use | |
| EP4181794B1 (en) | Cartridge assemblies with absorbable metal staples and absorbable implantable adjuncts | |
| US20090234384A1 (en) | Absorbable surgical materials | |
| Fotiadis et al. | The use of isobutylcyanoacrylate as a tissue adhesive in abdominal surgery | |
| US20060147479A1 (en) | Angiogenic medical cyanoacrylate adhesive | |
| EP1667748B1 (en) | Biodegradable and/or bioabsorbable member for vascular sealing | |
| Garcia-Vallejo et al. | Cyanoacrylate surgical glue for mesh fixation in laparoscopic total extraperitoneal hernia repair | |
| US20150250575A1 (en) | Surgical Mesh Joining and Fixation Using Photoactivated Collagen | |
| CN207912721U (zh) | 吻合口加固修补件、吻合口加固修补套件以及管型吻合器套件 | |
| EP2462961A2 (de) | Implantat aus einem biokorrodierbaren Werkstoff und mit einer einen Gewebekleber enthaltenden Beschichtung | |
| France et al. | Innovation for fixation and haemostasis in surgery: cyanoacrylate glue Innovation for fixation and hemostasis in surgery: cyanoacrylate glue | |
| JP2008127376A (ja) | 癒着防止剤 | |
| CN119214711A (zh) | 吻合设备 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| ENP | Entry into the national phase |
Ref document number: 2008500996 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006737891 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006223283 Country of ref document: AU |
|
| ENP | Entry into the national phase |
Ref document number: 2600114 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 11885888 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2006223283 Country of ref document: AU Date of ref document: 20060310 Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: RU |