WO2006094472A1 - Vorrichtung und verfahren zur elektrolytische behandlung von wasser beziehungsweise wässrigen lösungen - Google Patents

Vorrichtung und verfahren zur elektrolytische behandlung von wasser beziehungsweise wässrigen lösungen Download PDF

Info

Publication number
WO2006094472A1
WO2006094472A1 PCT/DE2006/000278 DE2006000278W WO2006094472A1 WO 2006094472 A1 WO2006094472 A1 WO 2006094472A1 DE 2006000278 W DE2006000278 W DE 2006000278W WO 2006094472 A1 WO2006094472 A1 WO 2006094472A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
anode region
anode
electrolysis
electrolytic treatment
Prior art date
Application number
PCT/DE2006/000278
Other languages
English (en)
French (fr)
Inventor
Ralf SÖCKNICK
Klaus Neidhardt
Alexander Haug
Original Assignee
Judo Wasseraufbereitung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Judo Wasseraufbereitung Gmbh filed Critical Judo Wasseraufbereitung Gmbh
Priority to ES06722491T priority Critical patent/ES2422904T3/es
Priority to EP06722491.5A priority patent/EP1858810B1/de
Publication of WO2006094472A1 publication Critical patent/WO2006094472A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46119Cleaning the electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds

Definitions

  • the invention relates to a device for the electrolytic treatment of water or aqueous solutions with an inlet for the liquid to be treated and an outlet for the treated liquid and with an electrolysis device, which has arranged between the inlet and the outlet electrodes, which on mutually different electrical potentials can be placed, wherein the potential difference is chosen to be at least so large that an electrolysis of water and / or contained in the water chloride ions can take place, wherein the electrodes comprise at least one anode and a cathode, and wherein a first anode region is provided which is made of an oxidation-stable material.
  • a device is known from EP 0 175 123 B1.
  • DE 198 59 814 A1 likewise describes an electrolytic treatment of the water in an electrolysis cell.
  • disinfectant species such as chlorine, hypochlorous acid or oxygen are produced anodically from water itself and natural water constituents such as chloride ions.
  • the material used for the electrodes is titanium coated with noble metal mixed oxides.
  • Such electrodes are chemically inert to the electrolytically produced disinfectants.
  • a disadvantage of this is the high price of such electrodes, which therefore naturally have only a small surface area. Although they are therefore effective for disinfection, but not to prevent the formation of stones by electrolytic treatment of aqueous solutions.
  • DE 100 30 340 C2 and EP 1 036 769 B1 describe devices for preventing scale formation by electrolytic treatment of aqueous solutions.
  • both devices comprise a bed of carbon particles, into which a power supply extends.
  • Such anodes have proven excellent in devices for preventing unwanted lime precipitation by electrolytic treatment of water or aqueous solutions. They have a large surface and are easy and inexpensive to produce in any shape.
  • anodes can not be used for the electrolytic production of disinfecting species such as chlorine, hypochlorous acid or oxygen, because the disinfecting substances are adsorbed on the surface of the carbon particles, in particular on activated carbon particles, or chemically abreact with the carbon particles and thereby oxidizing them so that the measurable concentration of free disinfectant in the treated water is negligible.
  • disinfecting species such as chlorine, hypochlorous acid or oxygen
  • EP 0 175 123 B1 discloses a device and a method for sterilizing and simultaneously decalcifying liquids with an electrolytic cell which is supplied with the necessary voltage via control electronics.
  • Both electrodes of the electrolytic cell consist of the same, chlorine-resistant material.
  • the germs contained in the liquid passing through the electrolytic cell are killed by electrolytic dissociation.
  • a reduction in hardness takes place in the catholyte space in the form of a cathode deposition in which calcium carbonate precipitates.
  • a flux and polarity change at the electrolytic cell is necessary. For very hard water, this switching must be done very often.
  • Such reversals are particularly disadvantageous, because on the one hand lime deposits can be removed only incompletely and on the other hand, the service life of the electrodes can be significantly shortened.
  • Object of the present invention is in contrast to avoid the above-mentioned disadvantages and to provide a method and apparatus of the type mentioned, with which water is treated so electrolytically that on the one hand unwanted Kalkaussocilept be prevented in a more efficient manner, on the other hand, the water to be treated disinfected, and at the same time the life of the electrodes is extended over the prior art.
  • This object is achieved in a surprisingly simple, but effective manner in that a further anode region is provided, which is at least partially made of a carbon material.
  • the disinfectants are produced electrolytically.
  • the anode material of the first anode region is exposed not only to an acidic medium, but in particular also to the electrolytically produced disinfectants, which constitute strong oxidizing agents.
  • a chemical reaction of the electrolytically generated disinfectants with the anode material is undesirable. It is therefore important that the material of the first anode region is resistant to oxidation. Since the first anode region consisting of an oxidation-stable material merely serves to disinfect the liquid to be treated, the surface and thus the cost thereof can be kept small.
  • the device according to the invention therefore enables an efficient and cost-effective treatment of water or aqueous solutions against limescale deposits and at the same time a disinfection of the liquid to be treated.
  • This is of great advantage, in particular in the hot water sector, because on the one hand, the tendency to form stones is particularly great due to the shift in the lime-carbonic acid balance and, on the other hand, many bacteria, such as legionella, can multiply particularly well in the hot water area.
  • the carbon material of the further anode region contains activated carbon, graphite, carbon felt, graphite felt and / or a bed of carbon particles.
  • Activated carbon is particularly well suited for this purpose due to its large surface and also adsorbs any impurities present in the water.
  • Graphite is characterized by its good conductivity.
  • carbon and graphite felt have large surfaces, are easy to handle and easy to form.
  • electrodes can be made from a bed of carbon particles adopt almost any shape and be adapted to the given geometry. Due to their enormous surface they are characterized by a low resistance and thus by a high efficiency in the prevention of unwanted lime precipitation.
  • a further embodiment of the invention provides that at least one power supply projects into the carbon material.
  • Electrolysis devices with an anode region made of carbon or graphite felt, in which protrudes a power supply, have achieved in the proof of effect according to DVGW worksheet W 512, methods for assessing the effectiveness of water treatment plants to reduce stone formation, particularly good results.
  • the power supply is preferably made of an electrically conductive material, preferably of graphite, precious metal or coated with precious metal or mixed oxides titanium.
  • Graphite electrodes are available in many variants at low cost.
  • the advantage of noble metal electrodes and electrodes made of titanium coated with noble metal or mixed oxides is their high resistance to oxidation.
  • the oxidation-stable material of the first anode region contains noble metal or titanium coated with noble metal or mixed oxides. These materials are particularly suitable in the anodic area, where a high chemical and electrochemical resistance is required. Titanium as a base metal may be formed in the form of a wire or as an expanded metal. It is easily malleable and can therefore easily be adapted to the given geometry.
  • a specific embodiment provides that the first and the further anode region are parts of the same anode.
  • the first and the further anode region are arranged electrically insulated from one another. That's it on the one hand possible to spatially separate the electrolytic treatment for disinfection and to prevent unwanted lime precipitation.
  • the at least two mutually insulated anodes can be controlled separately. This is particularly advantageous because the disinfection and the prevention of unwanted Kalkaussocilungen usually require different treatment times and intensities.
  • the concentration of electrolytically generated free chlorine in the treated water must not exceed the limit of the drinking water regulation of 0.3 mg / 1
  • the effectiveness of the electrolysis device to prevent stone formation according to DVGW worksheet W 512 must be at least 80%.
  • the anodes isolated from each other can be kept at different potentials, or else a potential can be applied to the mutually insulated anodes at different times with the aid of the electronic control device.
  • an electronic control device For controlling the electrodes, an electronic control device may be provided.
  • a measuring cell for determining the content of free chlorine in the treated liquid is provided. This ensures that the limit value of the drinking water ordinance of 0.3 mg / l is not exceeded. At the same time it can be checked whether a minimum concentration of free chlorine is not exceeded in order to ensure a sufficient disinfection of the water to be treated. In addition, the measured value of the concentration of the free chlorine can be used to control the intensity of the electrolytic treatment.
  • a metering device is provided for controlling the chloride content.
  • the chloride concentration can be increased in liquids with low natural chloride content, so that even in these cases chlorine-containing disinfectants can be produced electrolytically in sufficient concentration.
  • the cathode is brush-shaped, in particular with radially projecting bristles, is particularly preferred. Such a cathode is described in detail in DE 198 52 956 C1.
  • the limescale protection function and disinfection of the liquid to be treated take place by means of an inventive method for the electrolytic treatment of water or aqueous solutions by means of an electrolysis device in which at least two electrodes of the electrolysis device are set to different electrical potentials, wherein the potential difference between the Electrodes are selected at least so large that electrolysis of the water and / or chloride ions contained in the water can take place, wherein the electrodes comprise at least one anode and one cathode.
  • the electrolytic treatment of the water or of the aqueous solutions takes place in two regions of the electrolysis device by means of two different anode regions, wherein a first anode region made of an oxidation-stable material and another anode region is at least partially made of a carbon material.
  • the liquid to be treated first flows through the region of the electrolysis device in which the further anode material made of carbon material flows. and then through the region of the electrolyzer in which the first anode region made of oxidation-stable material is located.
  • electrolytically generated disinfections on the further anode part, which is made at least partially of carbon material, flow past, are adsorbed there or chemically abreact. This would significantly reduce their concentration and significantly weaken the effect of disinfection.
  • the electrolytic treatment of the water or of the aqueous solutions takes place by means of a single anode comprising the first and the further anode region.
  • the electrolytic treatment of the water or of the aqueous solutions takes place by means of at least two electrically isolated anodes, wherein at least one of the electrically isolated anodes comprises the first anode region and at least one other of the electrically isolated anodes the further anode region ,
  • the mutually insulated anodes can be controlled separately by means of an electronic control device and thereby kept at different electrical potentials.
  • the concentration of free chlorine produced electrolytically from chloride ions in the treated liquid is measured.
  • a development of this variant provides that the intensity of the electrolytic treatment is controlled as a function of the measured values of the concentration of free chlorine.
  • chloride preferably sodium chloride (common salt)
  • a metering device in the flow direction.
  • FIG. 1 shows a schematic vertical section of a first embodiment of the device according to the invention.
  • Fig. 2 is a schematic vertical section of a second embodiment of the device according to the invention with two mutually insulated anode regions.
  • Fig. 1 shows a section of a working on an electrolytic basis water treatment plant 1 with a housing 2, which has an inlet 3 for water to be treated and an outlet 4 for treated water.
  • an electrolysis device with a brush-shaped cathode 5 and an anode, which comprises a power supply line 6 and a graphite felt 7.
  • a power supply 6 is for example a coated with noble metal mixed oxides titanium expanded metal or a platinum-plated titanium wire.
  • the power supply 6 protrudes here only partially into the graphite felt 7, so that two different anode regions 8, 9 are formed.
  • a first anode region 9 is not surrounded by the graphite felt 7, while another
  • Anode region 8 in the region of the graphite felt 7 is located.
  • 9 is a voltage source not shown in the figure with electronic control device.
  • the water to be treated first flows through the inlet 3 into the electrolysis device, which is located inside the housing 2.
  • the water first flows through the brush-shaped cathode 5 and flows from there to the graphite felt 7.
  • the graphite felt 7 is fixed with diaphragms 10, which simultaneously serve as spacers between the graphite felt 7 and the cathode 5.
  • the water flows via a channel 11 to the anode region 9.
  • an electrolytic production of chlorine-containing disinfectants from chloride ions present in the water takes place.
  • the water thus treated flows through the diaphragms 10 and flows via a channel 12 into the outlet 4.
  • a water-impermeable partition wall 13 prevents the water from flowing directly from the area around the cathode 5 to the outlet 4 without flowing through the first anode area 9.
  • 2 shows a further embodiment of a water treatment plant 1 'with two anode regions 8', 9 "which are insulated from one another.
  • the first anode region 9 ' comprises only one wound platinum-plated titanium wire 14' and one current feed 15 ' to the embodiment shown in Fig. 1, a power supply line 6 'completely into a graphite felt T inside.
  • the flow direction of the water in this embodiment corresponds to the flow direction described in FIG.
  • the water first flows through the brush-shaped cathode 5 and flows from there to the graphite felt 7 ', wherein the calcium carbonate seed crystals contributing to the hardness stabilization are formed.
  • the chlorine-containing disinfectants are generated electrolytically from chloride ions present in the water.
  • An advantage of this embodiment is that the two anodes are spatially separated and electrically isolated from each other, so that on the one hand formed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Eine Vorrichtung zur elektrolytischen Behandlung von Wasser bzw. wässrigen Lösungen mit einem Zulauf (3) für die zu behandelnde Flüssigkeit und einem Auslass (4) für die behandelte Flüssigkeit sowie mit einer Elektrolyseeinrichtung, die zwischen dem Zulauf (3) und dem Auslass (4) angeordnete Elektroden aufweist, welche auf gegeneinander unterschiedliche elektrische Potentiale gelegt werden können, wobei die Potentialdifferenz mindestens so groß gewählt ist, dass eine Elektrolyse von Wasser und/oder von im Wasser enthaltenen Chlorid-Ionen erfolgen kann, wobei die Elektroden mindestens eine Anode und eine Kathode (5) umfassen, und wobei ein erster Anodenbereich (9, 91) vorgesehen ist, der aus einem oxidationsstabilen Material gefertigt ist, ist dadurch gekennzeichnet, dass ein weiterer Anodenbereich (8, 8') vorgesehen ist, der zumindest teilweise aus einem Kohlenstoffmaterial gefertigt ist. Es ergibt sich eine Vorrichtung, mit der sowohl eine Desinfektion als auch eine Härtestabilisierung einer zu behandelnden Flüssigkeit kostengünstig und effizient erfolgen kann

Description

Vorrichtung und Verfahren zur elektrolytische Behandlung von Wasser beziehungsweise wässrigen Lösungen
Die Erfindung betrifft eine Vorrichtung zur elektrolytischen Behandlung von Wasser beziehungsweise wässrigen Lösungen mit einem Zulauf für die zu behandelnde Flüssigkeit und einem Auslass für die behandelte Flüssigkeit sowie mit einer Elektrolyseeinrichtung, die zwischen dem Zulauf und dem Auslass angeordnete Elektroden aufweist, welche auf gegeneinander unterschiedliche elektrische Potentiale gelegt werden können, wobei die Potentialdifferenz mindestens so groß gewählt ist, dass eine Elektrolyse von Wasser und/oder von im Wasser enthaltenen Chlorid-Ionen erfolgen kann, wobei die Elektroden mindestens eine Anode und eine Kathode umfassen, und wobei ein erster Anodenbereich vorgesehen ist, der aus einem oxidationsstabilen Material gefertigt ist. Eine solche Vorrichtung ist aus der EP 0 175 123 B1 bekannt.
Die DE 198 59 814 A1 beschreibt ebenfalls eine elektrolytische Behandlung des Wassers in einer Elektrolysezelle. Hier werden desinfizierend wirkende Spezies wie Chlor, unterchlorige Säure oder Sauerstoff aus Wasser selbst und natürlichen Wasserinhaltsstoffen wie Chlorid-Ionen anodisch erzeugt. Als Material für die Elektroden wird mit Edelmetall-Mischoxiden beschichtetes Titan verwendet. Derartige Elektroden sind gegenüber den elektrolytisch erzeugten Desinfizienzien chemisch inert. Nachteilig hieran ist der hohe Preis solcher Elektroden, die deshalb naturgemäß nur eine kleine Oberfläche besitzen. Sie sind daher zwar zur Desinfektion, nicht aber zur Verhinderung der Steinbildung durch elektrolytische Behandlung von wässrigen Lösungen effizient einsetzbar.
Die DE 100 30 340 C2 und EP 1 036 769 B1 beschreiben Vorrichtungen zur Verhinderung von Steinbildung durch elektrolytische Behandlung von wässrigen Lösungen. Beide Vorrichtungen umfassen als Anode eine Schüttung aus Kohlen- stoff Partikeln, in die eine Stromzuführung hineinragt. Solche Anoden haben sich hervorragend in Geräten zur Verhinderung von unerwünschten Kalkausfällungen durch elektrolytische Behandlung von Wasser beziehungsweise wässrigen Lösungen bewährt. Sie besitzen eine große Oberfläche und sind in beliebigen Formen einfach und kostengünstig herstellbar. Jedoch können derartige Anoden nicht zur elektrolytischen Erzeugung von desinfizierend wirkenden Spezies wie Chlor, unterchlorige Säure oder Sauerstoff verwendet werden, weil die desinfizierend wirkenden Stoffe an der Oberfläche der Kohlenstoffpartikel, insbesondere an Aktivkohlepartikeln, adsorbiert werden oder aber mit den Kohlenstoffpartikeln chemisch abreagieren und diese dabei oxidieren, so dass die messbare Konzentration an freiem Desinfektionsmittel im behandelten Wasser verschwindend gering ist.
Aus der der EP 0 175 123 B1 ist eine Vorrichtung und ein Verfahren zur Entkeimung und gleichzeitigen Entkalkung von Flüssigkeiten mit einer elektrolytischen Zelle, die über eine Steuerelektronik mit der notwendigen Spannung versorgt wird, bekannt. Beide Elektroden der elektrolytischen Zelle bestehen aus dem gleichen, gegen Chlor beständigen Material. Die Keime, die in der durch die elektrolytische Zelle durchlaufenden Flüssigkeit enthalten sind, werden durch elektrolytische Dissoziation abgetötet. Gleichzeitig läuft im Katholytraum eine Härtereduzierung in Form einer Kathodenabscheidung statt, bei dem Kalzium- karbonat ausfällt. Um die Kalziumkarbonatablagerung an der Kathode in Lösung zu überführen, ist eine Fluss- und Polaritätsänderung an der elektrolytischen Zelle notwendig. Bei sehr hartem Wasser muss dieses Umschalten sehr häufig durchgeführt werden. Derartige Umpolungen sind besonders nachteilig, weil einerseits Kalkablagerungen hierdurch nur unvollständig entfernt werden können und andererseits die Standzeiten der Elektroden erheblich verkürzt werden.
Aufgabe der vorliegenden Erfindung ist demgegenüber, oben genannte Nachteile zu vermeiden und ein Verfahren und eine Vorrichtung der eingangs genannten Art vorzustellen, mit denen Wasser derart elektrolytisch behandelt wird, dass einerseits unerwünschte Kalkausfällungen in einer effizienteren Art und Weise verhindert werden, andererseits das zu behandelnde Wasser desinfiziert, und gleichzeitig die Standzeit der Elektroden gegenüber dem Stand der Technik verlängert wird.
Diese Aufgabe wird erfindungsgemäß auf überraschend einfache, aber wirkungsvolle Weise dadurch gelöst, dass ein weiterer Anodenbereich vorgesehen ist, der zumindest teilweise aus einem Kohlenstoffmaterial gefertigt ist.
Am ersten Anodenbereich, der aus einem oxidationsstabilem Material besteht, werden die Desinfektionsmittel elektrolytisch erzeugt. Das Anodenmaterial des ersten Anodenbereichs ist hierbei nicht nur einem sauren Medium, sondern insbesondere auch den elektrolytisch erzeugten Desinfizienzien ausgesetzt, die starke Oxidationsmittel darstellen. Eine chemische Reaktion der elektrolytisch erzeugten Desinfektionsmittel mit dem Anodenwerkstoff ist unerwünscht. Es ist daher wichtig, dass der Werkstoff des ersten Anodenbereichs oxidationsbeständig ist. Da der aus einem oxidationsstabilem Material bestehende erste Anoden- bereich lediglich zur Desinfektion der zu behandelnden Flüssigkeit dient, kann die Oberfläche und somit die Kosten hierfür klein gehalten werden. Im Gegensatz zum Stand der Technik findet eine Verhinderung einer Kalkausfällung der zu behandelnden Flüssigkeit im Bereich zwischen der Kathode und dem zumindest teilweise aus einem Kohlenstoffmaterial gefertigten weiteren Anodebereich statt. Hier bilden sich Impfkristalle zur Stabilisierung von in Wasser gelöstem Kalk. Da die Kalkschutzfunktion des Wassers hauptsächlich über die Stabilisierung des gelösten Kalks mittels dieser Impfkristalle erfolgt, spielt der in der EP 0 175 123 B 1 beschriebene Entkalkungsmechanismus durch die Kalkablagerung an der Kathode nur eine untergeordnete Rolle, d.h. der größte Teil des in der zu behandelnden Flüssigkeit gelösten Kalks wird durch die Impfkristalle stabilisiert, wodurch eine gegenüber der bekannten Vorrichtung geringere Kalkablagerung an der Kathode stattfindet. Ein Ablösen des Kalks von der Kathode, beispielsweise durch eine Polaritätsänderung an der elektrolytischen Zelle, ist daher weniger oft notwendig als im Stand der Technik, wodurch die Standzeit der Elektroden erhöht wird.
Die erfindungsgemäße Vorrichtung ermöglicht daher eine effiziente und kostengünstige Behandlung von Wasser oder von wässrigen Lösungen gegen Kalkablagerungen und gleichzeitig eine Desinfektion der zu behandelnden Flüssigkeit. Dies ist insbesondere im Warmwasserbereich von großem Vorteil, weil hier einerseits durch Verschiebung des Kalk-Kohlensäure-Gleichgewichts die Neigung zur Steinbildung besonders groß ist und andererseits viele Bakterien, wie zum Beispiel Legionellen, sich besonders gut im Warmwasserbereich vermehren können.
Bei einer vorteilhaften Ausgestaltung der Erfindung enthält das Kohlenstoffmaterial des weiteren Anodenbereichs Aktivkohle, Graphit, Kohlenstofffilz, Graphitfilz und/ oder eine Schüttung aus Kohlenstoffpartikeln. Aktivkohle eignet sich aufgrund seiner großen Oberfläche besonders gut zu diesem Zweck und adsorbiert darüber hinaus im Wasser eventuell vorhandene Verunreinigungen. Graphit zeichnet sich durch seine gute Leitfähigkeit aus. Schließlich verfügen auch Kohlenstoff- und Graphitfilz über große Oberflächen, sind leicht handhabbar und gut formbar. Darüber hinaus können Elektroden aus einer Schüttung aus Kohlenstoffpartikeln nahezu jede beliebige Form annehmen und der jeweils vorgegebenen Geometrie angepasst werden. Durch ihre enorme Oberfläche zeichnen sie sich durch einen geringen Widerstand und damit durch einen hohen Wirkungsgrad bei der Verhinderung von unerwünschten Kalkausfällungen aus.
Eine weitere Ausführungsform der Erfindung sieht vor, dass in das Kohlenstoffmaterial mindestens eine Stromzuführung hineinragt.
Elektrolyseeinrichtungen mit einem Anodenbereich aus Kohlenstoff- oder Graphitfilz, in dem eine Stromzuführung hineinragt, haben beim Wirkungsnachweis nach DVGW-Arbeitsblatt W 512, Verfahren zur Beurteilung der Wirksamkeit von Wasserbehandlungsanlagen zur Verminderung von Steinbildung, besonders gute Ergebnisse erzielt.
Die Stromzuführung ist vorzugsweise aus einem elektrisch leitenden Material, vorzugsweise aus Graphit, Edelmetall oder mit Edelmetall oder Mischoxiden beschichtetem Titan, gefertigt. Graphitelektroden sind in vielen Varianten kosten- günstig erhältlich. Vorteilhaft an Edelmetallelektroden und Elektroden aus mit Edelmetall oder Mischoxiden beschichtetem Titan ist ihre hohe Oxidations- beständigkeit.
Bei einer besonders vorteilhaften Ausführungsform der Erfindung enthält das oxidationsstabile Material des ersten Anodenbereichs Edelmetall oder mit Edel- metall oder Mischoxiden beschichtetes Titan. Diese Werkstoffe sind gerade im anodischen Bereich, wo eine hohe chemische und elektrochemische Beständigkeit verlangt wird, hervorragend geeignet. Titan als Basismetall kann in Form eines Drahtes oder als Streckmetall ausgebildet sein. Es ist leicht formbar und kann daher einfach an die vorliegende Geometrie angepasst werden.
Eine spezielle Ausführungsform sieht vor, dass der erste und der weitere Anodenbereich Teile derselben Anode sind.
Bei einer bevorzugten Ausführungsform der Erfindung sind der erste und der weitere Anodenbereich elektrisch voneinander isoliert angeordnet. Damit ist es einerseits möglich, die elektrolytische Behandlung zur Desinfektion und zur Verhinderung von unerwünschten Kalkausfällungen räumlich zu trennen. Zum anderen können die mindestens zwei voneinander isolierten Anoden getrennt voneinander angesteuert werden. Dies ist besonders vorteilhaft, weil die Desinfektion und die Verhinderung von unerwünschten Kalkausfällungen in der Regel unterschiedliche Behandlungszeiten und Intensitäten verlangen. So darf die Konzentration an elektrolytisch erzeugtem freien Chlor im behandelten Wasser den Grenzwert der Trinkwasserverordnung von 0,3 mg/1 nicht überschreiten, während die Wirksamkeit der Elektrolyseeinrichtung zur Verhinderung von Steinbildung nach dem DVGW-Arbeitsblatt W 512 mindestens 80% betragen muss. Um dies zu realisieren, können die voneinander isolierten Anoden auf unterschiedlichen Potentialen gehalten werden, oder aber es kann mit Hilfe der elektronischen Steuerungseinrichtung zu unterschiedlichen Zeiten ein Potential an die voneinander isolierten Anoden gelegt werden.
Zur Ansteuerung der Elektroden kann eine elektronische Steuereinrichtung vorgesehen sein.
Bei einer weiteren vorteilhaften Ausführungsform der Erfindung ist eine Messzelle zur Ermittlung des Gehalts an freiem Chlor in der behandelten Flüssigkeit vorgesehen. Damit ist sichergestellt, dass der Grenzwert der Trinkwasserverordnung von 0,3 mg/l nicht überschritten wird. Gleichzeitig kann kontrolliert werden, ob eine Mindestkonzentration an freiem Chlor nicht unterschritten wird, um eine ausreichende Desinfektion des zu behandelnden Wassers zu gewährleisten. Der gemessene Wert der Konzentration des freien Chlors kann darüber hinaus zur Steuerung der Intensität der elektrolytischen Behandlung verwendet werden.
Besonders vorteilhaft ist auch eine Ausführungsform der Erfindung, bei der eine Dosiereinrichtung zur Regelung des Chloridgehaltes vorgesehen ist. Dadurch kann beispielsweise die Chloridkonzentration in Flüssigkeiten mit geringem natürlichem Chloridgehalt erhöht werden, so dass auch in diesen Fällen chlorhaltige Desinfizienzien in ausreichender Konzentration elektrolytisch erzeugt werden können. Besonders bevorzugt ist schließlich eine Ausführungsform, bei der die Kathode bürstenförmig, insbesondere mit sternförmig radial abstehenden Borsten, ausgebildet ist. Eine solche Kathode ist ausführlich in DE 198 52 956 C1 beschrieben.
Darüber hinaus ist es von Vorteil, wenn Mittel zur Befreiung der Kathode von KaIk- ablagerungen während des Betriebs der Vorrichtung vorgesehen sind. Kalkablagerungen entstehen durch die Anhebung des pH-Wertes im Kathodenbereich und sollten regelmäßig entfernt werden, um eine Verblockung und Isolierung der Kathodenoberfläche zu verhindern. Hierzu kann beispielsweise ein mechanischer Abstreifer dienen, der über die Spitzen der Borsten einer bürstenförmigen Kathode streift und dabei durch ein entsprechendes Tordieren oder Verbiegen der Kathode die auf der Kathodenoberfläche abgeschiedenen Kalkkristalle zum Abplatzen bringt. Die Kathode wird dadurch auf einfache Weise automatisch während des Betriebs von Kalkablagerungen befreit. Eine zur Abreinigung der Kathode ansonsten notwendige Umpolung der Elektroden ist somit überflüssig.
Besonders vorteilhaft ist es, wenn die Kalkschutzfunktion und Desinfektion der zu behandelnden Flüssigkeit durch ein erfindungsgemäßes Verfahren zur elektrolytischen Behandlung von Wasser beziehungsweise wässrigen Lösungen mittels einer Elektrolyseeinrichtung erfolgt, bei dem mindestens zwei Elektroden der Elektrolyseeinrichtung auf unterschiedliche elektrische Potentiale gelegt werden, wobei die Potentialdifferenz zwischen den Elektroden mindestens so groß gewählt wird, dass eine Elektrolyse des Wassers und/oder von im Wasser enthaltenen Chlorid-Ionen erfolgen kann, wobei die Elektroden mindestens eine Anode und eine Kathode umfassen. Die elektrolytische Behandlung des Wassers beziehungsweise der wässrigen Lösungen erfolgt dabei in zwei Bereichen der Elektrolyse- einrichtung mittels zweier unterschiedlicher Anodenbereiche, wobei ein erster Anodenbereich aus einem oxidationsstabilen Material und ein weiterer Anodenbereich zumindest teilweise aus einem Kohlenstoffmaterial gefertigt ist.
Bei einer besonders bevorzugten Variante des erfindungsgemäßen Verfahrens fließt die zu behandelnde Flüssigkeit zuerst durch den Bereich der Elektrolyse- einrichtung, in dem sich der aus Kohlenstoffmaterial gefertigte weitere Anoden- bereich befindet, und anschließend durch den Bereich der Elektrolyseeinrichtung, in dem sich der aus oxidationsstabilem Material gefertigte erste Anodenbereich befindet. Dadurch wird vermieden, dass elektrolytisch erzeugte Desinfizienzien am weiteren Anodenteil, der zumindest teilweise aus Kohlenstoffmaterial gefertigt ist, vorbeiströmen, dort adsorbiert werden oder chemisch abreagieren. Dies würde deren Konzentration erheblich reduzieren und die Wirkung der Desinfektion deutlich schwächen.
Bei einer weiteren Variante des erfindungsgemäßen Verfahrens fließt nur ein Teilstrom der zu behandelnden Flüssigkeit durch den Bereich der Elektrolyse- einrichtung, in dem sich der aus oxidationsstabilem Material gefertigte erste Anodenbereich befindet, wobei dieser Teilstrom dem Hauptstrom nach der Elektrolyseeinrichtung wieder zugemischt wird. Damit wird vermieden, dass die elektrolytisch erzeugten Desinfizienzien mit dem Kohlenstoffmaterial in Kontakt kommen. Außerdem ist die Verweilzeit des gedrosselten Teilstroms in der elektro- lytischen Desinfektionseinrichtung auch bei hohen Gesamtdurchflüssen genügend lange, um eine ausreichende Menge an Desinfizienzien zu erzeugen.
Bei einer speziellen Variante des erfindungsgemäßen Verfahrens erfolgt die elektrolytische Behandlung des Wasser beziehungsweise der wässrigen Lösungen mittels einer einzigen, den ersten und den weiteren Anodenbereich umfassenden, Anode.
Bevorzugt ist jedoch eine Variante, bei der die elektrolytische Behandlung des Wasser beziehungsweise der wässrigen Lösungen mittels mindestens zweier elektrisch voneinander isolierter Anoden erfolgt, wobei mindestens eine der elektrisch voneinander isolierten Anoden den ersten Anodenbereich und mindestens eine andere der elektrisch voneinander isolierten Anoden den weiteren Anodenbereich umfasst.
Die voneinander isolierten Anoden können mit Hilfe einer elektronischen Steuerungseinrichtung separat angesteuert und hierdurch auf unterschiedlichen elektrischen Potentialen gehalten werden. Darüber hinaus kann es vorteilhaft sein, die elektrisch voneinander isolierten Anoden zu unterschiedlichen Zeiten mit Strom zu beschicken.
Bei einer vorteilhaften Variante des erfindungsgemäßen Verfahrens wird die Konzentration des aus Chlorid-Ionen elektrolytisch erzeugten freien Chlors in der behandelten Flüssigkeit gemessen.
Eine Weiterbildung dieser Variante sieht vor, dass die Intensität der elektrolytischen Behandlung in Abhängigkeit von den gemessenen Werten der Konzentration von freiem Chlor gesteuert wird.
Um eine ausreichende Konzentration an Chlorid-Ionen in der zu behandelnden Lösung zu gewährleisten, kann vor der elektrolytischen Behandlung Chlorid, bevorzugt Natriumchlorid (Kochsalz), mittels einer Dosiereinrichtung in Fließrichtung zudosiert werden.
Darüber hinaus ist es von Vorteil, wenn die Kathode während des Betriebs von Kalkablagerungen befreit wird.
Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der
Zeichnung. Ebenso können die vorstehend genannten und die weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
Es zeigen:
Fig. 1 einen schematischen Vertikalschnitt einer ersten Ausführungsform der erfindungsgemäßen Vorrichtung; und
Fig. 2 einen schematischen Vertikalschnitt einer zweiten Ausführungsform der erfindungsgemäßen Vorrichtung mit zwei voneinander isolierten Anodenbereichen. Fig. 1 zeigt einen Ausschnitt einer auf elektrolytischer Basis arbeitende Wasseraufbereitungsanlage 1 mit einem Gehäuse 2, welches einen Zulauf 3 für zu behandelndes Wasser sowie einen Auslass 4 für behandeltes Wasser aufweist. Im Inneren des Gehäuses befindet sich eine Elektrolyseeinrichtung mit einer bürsten- förmige Kathode 5 und einer Anode, welche eine Stromzuführung 6 und einen Graphitfilz 7 umfasst. Als Stromzuführung 6 dient beispielsweise ein mit Edelmetall-Mischoxiden beschichtetes Titanstreckmetall oder ein platinierter Titandraht. Die Stromzuführung 6 ragt hier nur teilweise in den Graphitfilz 7 hinein, so dass zwei unterschiedliche Anodenbereiche 8, 9 gebildet werden. Ein erster Anodenbereich 9 ist nicht vom Graphitfilz 7 umgeben, während ein weiterer
Anodenbereich 8 im Bereich des Graphitfilzes 7 liegt. Zum Anlegen einer für die Elektrolyse notwendigen Potentialdifferenz zwischen der Kathode 5 und der Anode mit den Anodenbereichen 8, 9 dient eine in der Abbildung nicht dargestellte Spannungsquelle mit elektronischer Steuerungseinrichtung.
Das zu behandelnde Wasser fließt zunächst durch den Zulauf 3 in die Elektrolyseeinrichtung, die sich innerhalb des Gehäuses 2 befindet. Das Wasser durchströmt zuerst die bürstenförmige Kathode 5 und fließt von dort zum Graphitfilz 7. Durch die im Bereich zwischen Kathode 5 und Graphitfilz 7 stattfindende Elektrolyse von - Wasser werden Kalziumkarbonat-Impfkristalle gebildet, die bei der Einstellung des Kalk-Kohlensäure-Gleichgewichtes ausfallenden Kalk an sich binden, so dass ein Verkalken von nachfolgenden Installationseinrichtungen weitgehend verhindert wird. Der Graphitfilz 7 ist mit Diaphragmen 10 fixiert, die gleichzeitig als Abstandshalter zwischen dem Graphitfilz 7 und der Kathode 5 dienen. Das Wasser fließt über einen Kanal 11 zum Anodenbereich 9. Hier findet eine elektrolytische Erzeugung von chlorhaltigen Desinfizienzien aus im Wasser enthaltenen Chlorid- Ionen statt. Das so behandelte Wasser durchströmt die Diaphragmen 10 und fließt über einen Kanal 12 in den Auslass 4. Eine wasserundurchlässige Trennwand 13 verhindert, dass das Wasser direkt aus dem Bereich um die Kathode 5 zum Auslass 4 fließt, ohne den ersten Anodenbereich 9 zu durchströmen. Fig. 2 zeigt eine weitere Ausführungsform einer Wasseraufbereitungsanlage 1' mit zwei voneinander isolierten Anodenbereichen 8', 9". Der erste Anodenbereich 9' umfasst lediglich einen gewickelten platinierten Titandraht 14' und eine Stromzuführung 15'. Im weiteren Anodenbereich 8' ragt, im Gegensatz zu der in Fig. 1 gezeigten Ausführungsform, eine Stromzuleitung 6' vollständig in einen Graphitfilz T hinein.
Die Fließrichtung des Wassers in dieser Ausführungsform entspricht der in Fig. 1 beschriebenen Fließrichtung. So durchströmt auch hier das Wasser zuerst die bürstenförmige Kathode 5 und fließt von dort zum Graphitfilz 7', wobei die zur Härtestabilisierung beitragenden Kalziumkarbonat-Impfkristalle gebildet werden. Am ersten Anodenbereich 9' um den platinierten Titandraht 14', den das Wasser danach passiert, werden die chlorhaltigen Desinfizienzien aus im Wasser enthaltenen Chlorid-Ionen elektrolytisch erzeugt.
Vorteilhaft an dieser Ausführungsform ist, dass die beiden Anoden räumlich getrennt und elektrisch voneinander isoliert sind, so dass einerseits gebildete
Desinfektionsmittel mit dem Graphitfilz T nicht in Kontakt kommen und mit diesem reagieren und andererseits beide Anoden mit einer in der Abbildung nicht dargestellten elektronischen Steuereinrichtung getrennt angesteuert werden können. Dies ist besonders vorteilhaft, weil die Desinfektion und die Verhinderung von unerwünschten Kalkausfällungen in der Regel unterschiedliche Behandlungszeiten und Intensitäten verlangen. Alternativ zum Graphitfilz T ist beispielsweise auch eine Schüttung aus Kohlenstoffpartikeln denkbar.
Insgesamt ergibt sich eine Vorrichtung beziehungsweise ein Verfahren, mit der beziehungsweise mit dem sowohl eine Desinfektion als auch eine Härte- Stabilisierung einer zu behandelnden Flüssigkeit kostengünstig und effizient erfolgen kann. Bezugszeichenliste
1 , 1' Wasseraufbereitungsanlage
2 Gehäuse
3 Zulauf
4 Auslass
5 Kathode
6, 61 Stromzuführung
7, 7' Graphitfilz
8, 8' weiterer Anodenbereich
9, 9' erster Anodenbereich
10 Diaphragma
11 Kanal
12 Kanal
13 Trennwand
14' platzierter Titandraht
15' Stromzuführung

Claims

Patentansprüche
1. Vorrichtung zur elektrolytischen Behandlung von Wasser bzw. wässrigen Lösungen mit einem Zulauf (3) für die zu behandelnde Flüssigkeit und einem Auslass (4) für die behandelte Flüssigkeit sowie mit einer Elektrolyseeinrichtung, die zwischen dem Zulauf (3) und dem Auslass (4) angeordnete Elektroden aufweist, welche auf gegeneinander unterschiedliche elektrische Potentiale gelegt werden können, wobei die Potentialdifferenz mindestens so groß gewählt ist, dass eine Elektrolyse von Wasser und/oder von im Wasser enthaltenen Chlorid-Ionen erfolgen kann, wobei die Elektroden mindestens eine Anode und eine Kathode (5) umfassen, und wobei ein erster Anodenbereich (9, 9') vorgesehen ist, der aus einem oxidationsstabilen Material gefertigt ist, dadurch gekennzeichnet, dass ein weiterer Anodenbereich (8, 8') vorgesehen ist, der zumindest teilweise aus einem Kohlenstoffmaterial gefertigt ist.
2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass das Kohlenstoffmaterial des weiteren Anodenbereichs (8, 8') Aktivkohle, Graphit, Kohlenstofffilz, Graphitfilz (7, 71) und/oder eine Schüttung aus Kohlenstoffpartikeln enthält.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in das Kohlenstoffmaterial mindestens eine Stromzuführung (6, 6') hineinragt.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Strom- Zuführung (6, 6') aus einem elektrisch leitendem Material, vorzugsweise aus
Graphit, Edelmetall oder mit Edelmetall oder Mischoxiden beschichtetem Titan, gefertigt ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das oxidationsstabile Material des ersten Anodenbereichs (9, 9') Edelmetall oder mit Edelmetall oder Mischoxiden beschichtetes Titan enthält.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste (9, 9') und der weitere Anodenbereich (8, 8') Teile derselben Anode sind.
7. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste (9, 9') und der weitere Anodenbereich (8, 8') elektrisch voneinander isoliert angeordnet sind.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine elektronische Steuereinrichtung zur Ansteuerung der Elektroden vorgesehen ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass eine Messzelle zur Ermittlung des Gehalts an freiem Chlor in der behandelten Flüssigkeit vorgesehen ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Dosiereinrichtung zur Regelung des Chloridgehaltes vorgesehen ist.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kathode (5) bürstenförmig, insbesondere mit sternförmig radial abstehenden Borsten, ausgebildet ist.
12. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Mittel zur Befreiung der Kathode (5) von Kalkablagerungen während des Betriebs der Vorrichtung vorgesehen sind.
13. Verfahren zur elektrolytischen Behandlung von Wasser beziehungsweise wässrigen Lösungen mittels einer Elektrolyseeinrichtung, bei dem mindestens zwei Elektroden der Elektrolyseeinrichtung auf unterschiedliche elektrische Potentiale gelegt werden, wobei die Potentialdifferenz zwischen den Elektroden mindestens so groß gewählt wird, dass eine Elektrolyse des
Wassers und/oder von im Wasser enthaltenen Chlorid-Ionen erfolgen kann, wobei die Elektroden mindestens eine Anode und eine Kathode (5) umfassen,
dadurch gekennzeichnet,
dass die elektrolytische Behandlung des Wassers beziehungsweise der wässrigen Lösungen in zwei Bereichen der Elektrolyseeinrichtung mittels zweier unterschiedlicher Anodenbereiche (8, 8', 9, 91) erfolgt, wobei ein erster Anodenbereich (9, 9') aus einem oxidationsstabilen Material und ein weiterer Anodenbereich (8, 81) zumindest teilweise aus einem Kohlenstoffmaterial gefertigt ist.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die zu behandelnde Flüssigkeit zuerst durch den Bereich der Elektrolyseeinrichtung fließt, in welchem sich der aus Kohlenstoffmaterial gefertigte weitere Anodenbereich (8, 81) befindet, und anschließend durch den Bereich der Elektrolyseeinrichtung fließt, in dem sich der aus oxidations- stabilem Material gefertigte erste Anodenbereich (9, 9') befindet.
15. Verfahren nach einem der Ansprüche, 13 oder 14 dadurch gekennzeichnet, dass nur ein Teilstrom der zu behandelnden Flüssigkeit durch den Bereich der Elektrolyseeinrichtung fließt, in dem sich der aus oxidationsstabilem Material gefertigte erste Anodenbereich (9, 91) befindet, wobei dieser Teilstrom dem Hauptstrom nach der Elektrolyseeinrichtung wieder zugemischt wird.
16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die elektrolytische Behandlung des Wasser bzw. der wässrigen Lösungen mittels einer einzigen, den ersten (9, 91) und den weiteren Anodenbereich (8, 8') umfassenden, Anode erfolgt.
17. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die elektrolytische Behandlung des Wasser beziehungsweise der wässrigen Lösungen mittels mindestens zweier elektrisch voneinander isolierter Anoden erfolgt, wobei mindestens eine der elektrisch voneinander isolierten Anoden den ersten Anodenbereich (9, 91) und mindestens eine andere der elektrisch voneinander isolierten Anoden den weiteren Anodenbereich (8, 8') umfasst.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die elektrisch voneinander isolierten Anoden mittels einer elektronischen Steuerungseinrichtung separat angesteuert werden.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die elektrisch voneinander isolierten Anoden auf unterschiedlichen elektrischen Potentialen gehalten werden.
20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass die elektrisch voneinander isolierten Anoden zu unterschiedlichen Zeiten mit Strom beschickt werden.
21. Verfahren nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, dass die Konzentration des aus Chlorid-Ionen elektrolytisch erzeugten freien Chlors in der behandelten Flüssigkeit gemessen wird.
22. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass die Intensität der elektrolytischen Behandlung in Abhängigkeit von den gemessenen
Werten der Konzentration von freiem Chlor gesteuert wird.
23. Verfahren nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass vor der elektrolytischen Behandlung Chlorid, bevorzugt Natriumchlorid (Kochsalz), mittels einer Dosiereinrichtung in Fließrichtung zudosiert wird.
24. Verfahren nach einem der Ansprüche 13 bis 23, dadurch gekennzeichnet, dass die Kathode (5) während des Betriebs von Kalkablagerungen befreit wird.
PCT/DE2006/000278 2005-03-08 2006-02-16 Vorrichtung und verfahren zur elektrolytische behandlung von wasser beziehungsweise wässrigen lösungen WO2006094472A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES06722491T ES2422904T3 (es) 2005-03-08 2006-02-16 Dispositivo y procedimiento para el tratamiento electrolítico de agua o disoluciones acuosas
EP06722491.5A EP1858810B1 (de) 2005-03-08 2006-02-16 Vorrichtung und verfahren zur elektrolytischen behandlung von wasser beziehungsweise wässrigen lösungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202005003691.9 2005-03-08
DE200520003691 DE202005003691U1 (de) 2005-03-08 2005-03-08 Vorrichtung zur elektrolytischen Behandlung von Wasser bzw. wässrigen Lösungen

Publications (1)

Publication Number Publication Date
WO2006094472A1 true WO2006094472A1 (de) 2006-09-14

Family

ID=34626118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2006/000278 WO2006094472A1 (de) 2005-03-08 2006-02-16 Vorrichtung und verfahren zur elektrolytische behandlung von wasser beziehungsweise wässrigen lösungen

Country Status (4)

Country Link
EP (1) EP1858810B1 (de)
DE (1) DE202005003691U1 (de)
ES (1) ES2422904T3 (de)
WO (1) WO2006094472A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010085847A1 (en) * 2009-01-29 2010-08-05 Astral Pool Australia Pty Ltd Electrolytic chlorinator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015008743A1 (de) 2015-07-07 2017-01-12 Norbert Pautz Verfahren und Vorrichtung einer elektrolytischen Kalkabscheidung, mit selektiver Abreicherung von Ionen, aus belasteten Prozess- und Abwässern

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203090A1 (de) * 1982-01-30 1983-08-04 Fichtel & Sachs Ag, 8720 Schweinfurt Elektroden-reinigungsvorrichtung fuer wasseraufchlorungs- und entkeimungsgeraete
RU2082677C1 (ru) * 1992-02-14 1997-06-27 Украинский государственный морской технический университет Электролизер для обработки воды
JP2000087275A (ja) * 1998-09-11 2000-03-28 Toto Ltd 炭酸生成電解装置
EP1002765A2 (de) * 1998-11-17 2000-05-24 Judo Wasseraufbereitung GmbH Vorrichtung und Verfahren zur Behandlung von Wasser gegen Kalkablagerungen
US6235189B1 (en) * 1992-09-24 2001-05-22 Able Corporation Method of supplying dissolved carbon dioxide to plants in an aqueous medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203090A1 (de) * 1982-01-30 1983-08-04 Fichtel & Sachs Ag, 8720 Schweinfurt Elektroden-reinigungsvorrichtung fuer wasseraufchlorungs- und entkeimungsgeraete
RU2082677C1 (ru) * 1992-02-14 1997-06-27 Украинский государственный морской технический университет Электролизер для обработки воды
US6235189B1 (en) * 1992-09-24 2001-05-22 Able Corporation Method of supplying dissolved carbon dioxide to plants in an aqueous medium
JP2000087275A (ja) * 1998-09-11 2000-03-28 Toto Ltd 炭酸生成電解装置
EP1002765A2 (de) * 1998-11-17 2000-05-24 Judo Wasseraufbereitung GmbH Vorrichtung und Verfahren zur Behandlung von Wasser gegen Kalkablagerungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 06 22 September 2000 (2000-09-22) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010085847A1 (en) * 2009-01-29 2010-08-05 Astral Pool Australia Pty Ltd Electrolytic chlorinator

Also Published As

Publication number Publication date
EP1858810B1 (de) 2013-05-01
DE202005003691U1 (de) 2005-05-25
EP1858810A1 (de) 2007-11-28
ES2422904T3 (es) 2013-09-16

Similar Documents

Publication Publication Date Title
EP0932583B1 (de) Verwendung einer elektrolysevorrichtung zur reduzierung bzw. verhinderung der steinbildung
EP2219684B1 (de) Vorrichtung zur reinigung von boden-oberflächen mit elektrolysiertem wasser mittels oxidativer radikale, erzeugt durch diamant-elektroden
EP1986959B1 (de) Verfahren zur herstellung eines desinfektionsmittels durch elektrochemische aktivierung (eca) von wasser
DE2749969C3 (de) Elektrolysezelle
DE102012214942A1 (de) Kontinuierliches Generatorgerät für elektrolysiertes oxidiertes/reduziertes Wasser
WO2002026636A1 (de) Vorrichtung zur elektrolytischen wasserdesinfektion unter vermeidung katodischer wasserstoffentwicklung
DE4318628A1 (de) Verfahren zur Wasseraufbereitung
DE102006007931A1 (de) Verfahren zur Herstellung eines Desinfektionsmittels durch elektrochemische Aktivierung (ECA) von Wasser und Verfahren zur Desinfektion von Wasser mittels eines solchen Desinfektionsmittels
EP0862538B1 (de) Verfahren und vorrichtung zur behandlung von mit mikroorganismen und/oder schadstoffen belastetem wasser
WO2010063433A1 (de) Desinfektionsmittel auf basis hypochloriger säure und deren salze sowie verfahren zu seiner herstellung mittels elektrochemischer aktivierung
DE60104211T2 (de) Elektrochemische zelle und elektrochemische behandlung von kontaminiertem wasser
EP3016912A1 (de) Verfahren zur abwasserbehandlung und einrichtung zur durchführung dieses verfahrens
DE19739493A1 (de) Verfahren und Vorrichtung zum Entfernen von organischen Halogenverbindungen aus Wasser
DE102006043267A1 (de) Verfahren zur Herstellung eines Desinfektionsmittels durch elektrochemische Aktivierung (ECA) von Wasser und Verfahren zur Desinfektion von Wasser mittels eines solchen Desinfektionsmittels
DE19852956C1 (de) Vorrichtung zur Behandlung von Wasser gegen Kalkablagerungen
DE102008004663B4 (de) Verfahren zur elektrochemischen Hygienisierung und Keimminderung von biologisch gereinigtem Abwasser, insbesondere häuslichem Abwasser, und von Abwasserteilströmen und Vorrichtung dazu
DE602004008584T2 (de) Verfahren und vorrichtung zur elektrochemischen wasserdesinfektion
EP1858810B1 (de) Vorrichtung und verfahren zur elektrolytischen behandlung von wasser beziehungsweise wässrigen lösungen
DE102014010901A1 (de) ECA Reaktor zur Erzeugung eines aktivierten hypochlorithaltigen Desinfektionsmittels
EP0332951B1 (de) Verfahren und Vorrichtung zur elektrochemischen Entkeimung von Wässern
DE102005010512A1 (de) Vorrichtung und Verfahren zur elektrolytischen Behandlung von Wasser beziehungsweise wässrigen Lösungen
CH698775B1 (de) Gerät zur Wasserbehandlung.
EP3002254A1 (de) Wasserfilter-anordnung umfassend einen rückspülbaren wasserfilter mit elektrolytischer reinigungsfunktion
DE102013007992A1 (de) Verfahren und Vorrichtung zur Desinfektion und Filtration von Wässern
DE60006847T2 (de) Einrichtung für die elektrolyse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006722491

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006722491

Country of ref document: EP