WO2006093276A1 - 心臓組織由来の多能性幹細胞 - Google Patents

心臓組織由来の多能性幹細胞 Download PDF

Info

Publication number
WO2006093276A1
WO2006093276A1 PCT/JP2006/304111 JP2006304111W WO2006093276A1 WO 2006093276 A1 WO2006093276 A1 WO 2006093276A1 JP 2006304111 W JP2006304111 W JP 2006304111W WO 2006093276 A1 WO2006093276 A1 WO 2006093276A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
derived
cell
pluripotent stem
stem cell
Prior art date
Application number
PCT/JP2006/304111
Other languages
English (en)
French (fr)
Other versions
WO2006093276A8 (ja
Inventor
Hidemasa Oh
Kento Tateishi
Hiroaki Matsubara
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36941306&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006093276(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyoto University filed Critical Kyoto University
Priority to CA2600653A priority Critical patent/CA2600653C/en
Priority to EP06715194A priority patent/EP1857544B1/en
Priority to JP2007506027A priority patent/JP4783909B2/ja
Publication of WO2006093276A1 publication Critical patent/WO2006093276A1/ja
Publication of WO2006093276A8 publication Critical patent/WO2006093276A8/ja
Priority to US14/926,583 priority patent/US9867854B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3873Muscle tissue, e.g. sphincter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0607Non-embryonic pluripotent stem cells, e.g. MASC
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0661Smooth muscle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0668Mesenchymal stem cells from other natural sources
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/03Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from non-embryonic pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1315Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from cardiomyocytes

Definitions

  • the present invention relates to pluripotent stem cells derived from heart tissue, and particularly to pluripotent stem cells that are excellent in differentiation ability into cardiomyocytes. Furthermore, the present invention relates to a method for preparing the stem cells and a method for treating heart diseases using the stem cells.
  • stem cells that differentiate into mature cells of various tissues and organs have been found, and clinical applications for cell transplantation are being studied.
  • cardiac tissue-derived myocardial stem cells include c-kit negative ZCD31 positive ZCD34 negative / Sca-1 positive mouse stem cells (see Non-Patent Document 1) and C-kit positive ZCD31 positive ZCD34 positive rat stem cells (non-patent document 1).
  • Patent Documents 2 and 3 have been reported.
  • the former myocardial stem cells have not been studied in humans and it has not been clarified whether they can be used clinically.
  • the latter myocardial stem cells suffer from the drawback that they are extremely difficult to isolate and have poor growth ability and are not suitable for mass culture for transplantation purposes.
  • both the above-mentioned myocardial stem cells are applied only to cell transplantation into the heart rather than pluripotent stem cells.
  • myocardial stem cells in addition to myocardial stem cells derived from heart tissue, the ability to search for stem cells that differentiate into myocardial cells mainly from bone marrow-derived hematopoietic cells and mesenchymal stem cells has been reported. However, the degree of differentiation into cardiomyocytes is extremely low and is not clinically practical.
  • Patent Document 1 WO2003 / 035838
  • Non-Patent Document 2 Messina E., et. AL, "Isolation and expansion of adult cardiac stem eel Is from human and murine heart", Circ Res., Vol. 95, 911-921, 2004
  • Non-Patent Document 3 Beltrami AP., Et. AL, "Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell, Vol. 114, 763-776, September 19, 2003 Disclosure of the Invention
  • An object of the present invention is to solve the above-described problems of the prior art. Specifically, an object of the present invention is to provide a stem cell that can be used in a regenerative treatment method, and to provide a technique for performing regenerative treatment using the cell.
  • the inventors of the present invention diligently studied to solve the above-mentioned problems, and prepared a cell suspension by enzymatic treatment of the collected heart tissue piece, and using the cell suspension, 1) Separation of cells by density gradient method, (2) Suspension culture in medium containing fibroblast growth factor and epidermal growth factor, (3) Selective separation of cell mass that forms floating spheroids As a result, it was found that pluripotent stem cells having excellent differentiation ability into cardiomyocytes can be obtained. Further, it was confirmed that the stem cells are excellent not only in the differentiation ability described above but also in the self-replication ability, and can be put into practical use for regenerative treatment by cell transplantation. The present invention has been completed by further studies based on these findings.
  • the present invention provides the following method for preparing pluripotent stem cells: Item 1. A method for preparing pluripotent stem cells derived from mammalian heart tissue prepared by the following steps:
  • the obtained heart tissue-derived cell group is suspended and cultured in a medium containing fibroblast growth factor and epidermal growth factor, and then forms a floating spheroid to select and isolate cells Process.
  • Item 2 The preparation method according to Item 1, wherein the pluripotent stem cell force is c-kit negative, CD31 negative and CD34 negative.
  • Item 3 The preparation method according to Item 2, wherein the pluripotent stem cells are further CD105 positive.
  • Item 4 The preparation method according to Item 1, wherein the pluripotent stem cells are derived from a human.
  • the pluripotent stem cell has at least the ability to be divided into cardiomyocytes.
  • Item 6 The ability of pluripotent stem cells to be divided into one or more selected cells consisting of cardiomyocytes, smooth muscle cells, vascular endothelial cells, adipocytes, glial cells, and epithelial cells Item 2.
  • the present invention also provides the following pluripotent stem cells:
  • Item 7 A pluripotent stem cell derived from the heart tissue of a mammal obtained by the preparation method according to any one of Items 1 to 6.
  • Item 8 Pluripotent stem cells derived from mammalian heart tissue that are c-kit negative, CD31 negative and CD34 negative.
  • Item 9 The stem cell according to Item 8, which is positive for CD105.
  • Item 10 The stem cell according to Item 8, wherein the mammal is a human.
  • the stem cell according to Item 8 which is a pluripotent stem cell having the ability to be at least separated into cardiomyocytes.
  • the stem cell according to Item 8 which is a pluripotent stem cell having an ability to be divided into one or more selected cells.
  • the present invention also provides the following treatment methods:
  • Item 13 A method for treating a disease of a tissue or organ, which comprises transplanting the therapeutically effective amount of the stem cell according to any one of Items 8 to 12 into the tissue or organ of a patient.
  • Item 14 The method according to Item 13, which is a method for treating heart disease.
  • Item 15 A method for treating heart disease, comprising the following steps:
  • the obtained heart tissue-derived cell group is suspended in a medium containing fibroblast growth factor and epidermal growth factor, and then a floating spheroid is formed to select and isolate cells.
  • step (V) A step of transplanting a therapeutically effective amount of the cells grown in the above step (iv) into the heart of a patient with heart disease.
  • Item 16 A composition for treating a disease of a tissue or organ, comprising the stem cell according to any one of Items 8 to 12, and a pharmaceutically acceptable carrier.
  • Item 17 A composition for treating heart disease, comprising the stem cell according to any one of Items 8 to 12, and a pharmaceutically acceptable carrier.
  • the present invention provides the use of the stem cells of the embodiments listed below:
  • Item 18 Use of the stem cell according to any one of Items 8 to 12 for preparing a composition for treating heart disease.
  • Item 19 Use of the stem cell according to any one of Items 8 to 12 for preparing a composition for treating a disease of a tissue or organ.
  • the invention's effect [0014]
  • the present invention provides stem cells that are derived from heart tissue and can differentiate into cardiomyocytes, vascular smooth muscle cells, vascular endothelial cells, and the like to regenerate various tissues and organs including the heart. Therefore, according to the pluripotent stem cell of the present invention, it becomes possible to treat diseases of various tissues and organs by a new technique called cell transplantation.
  • the pluripotent stem cell of the present invention can be obtained by a simple method by cultivating a cell group derived from heart tissue under specific conditions and obtaining a suspended state of the swallow. It has advantages and is highly clinically useful. In addition, by obtaining spheroids in a floating state in this way, stem cells that have been proliferated by a single cell can be selectively separated, so that the uniformity of the stem cells themselves can be obtained and the clinical usefulness can be obtained. Is high.
  • the pluripotent stem cells of the present invention are particularly excellent in the ability to differentiate into cardiomyocytes, a new therapeutic method using cell transplantation has been proposed for patients with severe heart failure who must rely on heart transplantation. It can be provided and is useful as a treatment method for heart disease as an alternative to heart transplantation.
  • Fig. 1 is a photograph showing floating spheroids (cell mass) formed after suspension culture of mouse-derived heart tissue-derived cells separated by Percoll density gradient centrifugation.
  • A, C, E and G are photographs taken with a fluorescence microscope
  • B, D, F and H are photographs taken with a phase contrast microscope
  • a and B, C and D, E and F, G, and H are taken from the same field of view.
  • a and B show a state where spheroids derived from wild type mice and spheroids derived from GFP expressing mice are mixed and floating.
  • C and D show spheroids derived from GFP expressing mice.
  • E and F indicate spheres derived from wild type mice.
  • G and H represent a sphere formed by mixing cells derived from wild-type mice and cells derived from GFP-expressing mice.
  • FIG. 2 shows the results of FACS analysis of various cell surface antigens (Sca-1, c-kit, CD34, CD45, CD31, CD38, CD90 and CD105) of mouse-derived spheroid-forming cells.
  • the thick (dark) line is the analysis result of the spheroid-forming cells
  • the thin (thin) line is the analysis result of the control (unlabeled cells).
  • FIG. 4 Suspensions formed after suspension culture of mouse-derived heart tissue cells isolated by Percoll's density gradient centrifugation method.
  • the suspension of bromodeoxyuridine (BrdU) It is a figure which shows the result of having observed expression.
  • A shows an image of a BrdU stained sphere
  • B shows a phase difference image of A.
  • FIG. 5 is a diagram showing the results of analyzing the expression of telomerase using a floating spheroid formed after suspension culture of mouse-derived cardiac tissue-derived cells isolated by Percoll density gradient centrifugation. .
  • FIG. 6 is a view showing the shape of a cell observed in the process of inducing GFP-expressing mouse-derived sphere-forming cells into cardiomyocytes.
  • A shows an image observed by fluorescence
  • B shows a phase contrast image in the same field of view as A.
  • FIG. 7 is a photograph of myocardial cells in which mouse-forming sphere-forming cells are also separated.
  • B is an enlargement of A.
  • FIG. 8 Spore-forming cell strength Various markers of differentiated cardiomyocytes (Nkx 2.5, GATA 4, ANP Atroponin I (TnI), MLC2v, MLC2a ⁇ -MHC (-myosin heavy chain), ⁇ -MHC ( FIG. 6 shows the results of PCR analysis of the expression of ⁇ -myosin heavy chain), GAPDH).
  • FIG. 9 is a view showing photographs of a cell-forming cell and various cells that have been subjected to cell force distribution.
  • A is a spheroid-forming cell
  • B is a smooth muscle cell differentiated from a spheroid-forming cell
  • C is a vascular endothelial cell differentiated from a spheroid-forming cell
  • D is an adipocyte differentiated from a spheroid-forming cell
  • F represents epithelial cells differentiated from sphere-forming cells.
  • FIG. 10 is a diagram showing the state of engraftment of mouse-derived spheroid-forming cells (pluripotent stem cells) obtained in Example 1 into mouse infarcted myocardium and the cells in the myocardium of the mouse.
  • A is a figure showing engraftment of spheroid-forming cells (green) in the host myocardium.
  • B is a view showing the result of cTnT staining (showing red color) in the same visual field as FIG.
  • C is a diagram in which the above A and B are superimposed, and D is a diagram in which C is enlarged.
  • This is a photograph showing floating spheroids (cell clusters) formed after suspension culture of human-derived heart tissue-derived cells separated by density gradient centrifugation of Percoll. Figure
  • A indicates the spheroids observed after 1 day of culture
  • B indicates the spheroids observed after 7 days of culture.
  • FIG. 13 Various cell surface antigens (c-kit, CD34, CD90 and
  • the thick (dark) line is the analysis result of the spheroid-forming cells
  • the thin (thin) line is the analysis result of the control (cells without labeling).
  • FIG. 14 is a photograph of a cardiomyocyte in which human-derived spheroid-forming cell forces are also analyzed.
  • FIG. 16 is a photograph of smooth muscle cells in which human-derived spheroid-forming cell forces are also distributed.
  • FIG. 17 shows the results of PCR analysis of the expression of various markers (SM-22 ⁇ and calponin) in smooth muscle cells that have also been analyzed for human-derived spheroid-forming cell strength.
  • j8 actin was used as a control.
  • FIG. 19 is a diagram showing the results of PCR analysis of the expression of various markers (CD31 and VEGF-R2) in vascular endothelial cells that have also been analyzed for human-derived sphere-forming cells. In this analysis, j8 actin was used as a control.
  • FIG. 20 is a diagram showing the state of engraftment of human-derived spheroid-forming cells (pluripotent stem cells) obtained in Example 3 into mouse infarcted myocardium and the cells in the mouse myocardium.
  • A is a diagram showing cells that have differentiated into cardiomyocytes and engrafted in the host myocardium (shown red by cTnl staining).
  • B is a diagram in which A is superimposed with a diagram in which intracellular nuclei are stained in blue using DAPI in the same visual field as A.
  • C shows myocardial infarction in the center of myocardial infarction. It is a figure which shows that the color is present.
  • D is a diagram showing cells in which human-derived spheroid-forming cells have differentiated into cardiomyocytes and engrafted in thinned infarcts (shown in red by cTnl staining).
  • E is a diagram in which D is overlaid with a diagram in which nuclei in cells are stained in blue using DAPI in the same field of view as D.
  • F is a diagram showing nuclei stained in blue using DAPI and CD31-positive vascular endothelial cells stained in red by CD31 staining, and the CD31-positive vascular endothelium that also divides the human-derived spheroid-forming cell force. Show that cells have engrafted! /
  • a cell suspension is prepared by enzymatic treatment of a heart tissue piece collected from a mammal (step (0)).
  • the heart tissue from which pluripotent stem cells are collected is not particularly limited as long as it is derived from a mammal.
  • examples of mammals include mice, rats, guinea pigs, wild animals, mustards, rabbits, cats, dogs, hidges, pigs, rabbits, goats, monkeys, humans, and the like.
  • the prepared pluripotent stem cell is used for the treatment of human heart disease, it is preferably derived from human. Also, there is no particular limitation on the heart tissue used in this process.
  • the collection of a mammal-powered heart tissue piece is performed by removing the heart tissue piece by a normal surgical technique.
  • tissue for example, blood vessels, nerve tissues, etc.
  • the collected heart tissue piece is cut into small pieces of about 1 mm 3 or less and then subjected to the enzyme treatment.
  • the enzyme treatment is performed using an enzyme that is generally used when preparing a biological tissue single cell suspension.
  • the enzyme used include proteases such as collagenase, trypsin, chymotrypsin, and pepsin.
  • proteases such as collagenase, trypsin, chymotrypsin, and pepsin.
  • good A preferred example is collagenase.
  • Specific examples of such collagenase include coll agenase type 2 (manufactured by Worthington; 205 U / mg).
  • collagenase 1U represents the amount of enzyme that can release 1 ⁇ L of L-leucine from collagen at pH 7.5, 37 ° C, 5 hours.
  • the enzyme treatment conditions are not particularly limited, but the following enzyme treatment conditions are exemplified as an example:
  • Enzyme concentration For example, when using collagenase type 2 (manufactured by Worthington; 205 U / mg), when processing myocardial tissue derived from mice, usually 0.1 to 0.3% by weight, preferably about 0.2% by weight; human When treating the derived myocardial tissue, the concentration is usually 0.2 to 0.6% by weight, preferably about 0.4% by weight. In addition, for example, the enzyme concentration is typically 4100 to 12300 U, preferably 8200 U per 100 mg of myocardial tissue.
  • the temperature is usually around 37 ° C.
  • Treatment time and number of times Usually, there are conditions where the enzyme treatment is repeated for two lines in a treatment time of 20 to 30 minutes, preferably conditions where the enzyme treatment is repeated twice in a treatment time of about 20 minutes.
  • the cell suspension thus obtained is preferably centrifuged after the enzyme treatment to remove the supernatant and supplemented with a medium suitable for cell growth.
  • Suitable media for cell growth include, for example, 10 vol% fetal bovine serum (FBS) and 1 vol% penicillin streptomycin (a mixture of 5000 U / ml penicillin and 5000 ⁇ g / ml streptomycin sulfate).
  • FBS fetal bovine serum
  • penicillin streptomycin a mixture of 5000 U / ml penicillin and 5000 ⁇ g / ml streptomycin sulfate.
  • DMEM Becko modified Eagle medium
  • a heart tissue-derived cell group is separated from the cell suspension by a density gradient method (step (ii)).
  • the heart tissue-derived cell group can be separated by a density gradient method usually employed for cell separation.
  • a density gradient method usually employed for cell separation As an example of a preferred embodiment of separation of heart tissue-derived cell groups, a method of separating heart tissue-derived cell groups by percoll density gradient centrifugation is exemplified.
  • Percoll density gradient centrifugation is a well-known method of centrifugation using Percoll, a type of silica gel. Percoll is used in layers, so it can be separated without disrupting cells by centrifugal force. it can.
  • the cell suspension is separated from a 30% by volume bar alcohol solution. And by centrifugation at 100 OG at room temperature for 20 minutes in a discontinuous density gradient consisting of 70% by volume Percoll solution, this can be done at the interface between the 30% Percoll solution and the 70% by volume Percoll solution.
  • a group of cells derived from heart tissue containing the desired stem cells can be obtained
  • the heart tissue-derived cell group obtained in the above step GO was suspended and cultured in a medium containing epidermal growth factor (EG F) and fibroblast growth factor (FGF). Later, cells that form a floating spheroid (cell mass) are selected and separated (step (iii)).
  • EG F epidermal growth factor
  • FGF fibroblast growth factor
  • the heart tissue-derived cell group obtained in the step (ii) is further subjected to an enzyme treatment to eliminate binding and adhesion between cells.
  • the specific method of the enzyme treatment is not particularly limited, and can be performed by a known method using a protease or the like.
  • the enzyme treatment a method of treating a heart tissue-derived cell group with a solution containing 0.05% by weight trypsin and 0.53 mM EDTA at 37 ° C. for about 10 minutes is exemplified.
  • a protease inhibitor is added to deactivate the protease activity before being subjected to this step (iii).
  • the medium used in this step may be obtained by adding epidermal growth factor and fibroblast growth factor to the medium used for normal cell culture (floating culture). Suitable examples of the medium include a medium in which the epidermal growth factor and fibroblast growth factor are added to a DMEMZF12HAM medium containing human serum or bovine serum albumin.
  • the medium used in this step may contain antibiotics such as streptomycin, kanamycin, penicillin; B27 supplement (manufactured by GIBCO); HEPES (5 mM) and the like, if necessary.
  • the ratio of epidermal growth factor and fibroblast growth factor added to the medium in this step is, for example, about 10 to 20 ng / ml, preferably about 20 ng / ml for epidermal growth factor.
  • the fibroblast growth factor is 10 to 40 ng / ml, preferably about 40 ng / ml.
  • the cell concentration at the start of the culture is 1 ⁇ 10 4 to 2 ⁇ 10 4 cells / ml, preferably 2
  • Suspension culture in this step is usually 37 ° C, 5% CO, and usually 14
  • pluripotent stem cells repeat cell division to form a single cell (cell mass), which floats in the culture medium. Therefore, the target pluripotent stem cells can be obtained by collecting the spheroids.
  • the pluripotent stem cells derived from mammalian heart tissue thus obtained have the ability to be separated into various mature cells including cardiomyocytes as well as self-replicating ability.
  • Examples of cells from which the pluripotent stem cells can be differentiated include cardiomyocytes, smooth muscle cells, vascular endothelial cells, fat cells, glial cells, and epithelial cells.
  • the pluripotent stem cell is characterized by its excellent ability to separate cardiac muscle cells.
  • the characteristics of cell surface antigens of pluripotent stem cells obtained by the above preparation method include c-kit negative, CD31 negative and CD34 negative. Furthermore, as an example of the pluripotent stem cell, a cell surface antigen characteristic that exhibits CD105 positivity can be mentioned. Examples of the pluripotent stem cells include those that show Sca-1 positive, CD45 negative, CD38 positive, and CD90 positive as the characteristics of cell surface antigens. Such characteristics of cell surface antigens can be identified by known methods. Pluripotent stem cells having the characteristics of such cell surface antigens can be obtained from the heart tissue-derived cell group obtained in step (ii) described above, in addition to the method of performing the suspension culture (step (iii) above). It can also be obtained by sorting cells having the characteristics of cell surface antigens by a known method. An example of a method for sorting cells in this way is a method using a flow cytometer having a sorting function.
  • the pluripotent stem cells By culturing the pluripotent stem cells in a medium containing epidermal growth factor and fibroblast growth factor, the pluripotent stem cells can be proliferated (step Gv)).
  • the spheroids obtained in the above step (iii) are treated with protease. It is desirable to break down the spheroids by treatment with pluripotent stem cells.
  • a method for suspending pluripotent stem cells in this way for example, a method of treating with trypsin at a concentration of 0.05% by weight at 37 ° C. for about 20 minutes is exemplified.
  • a protease inhibitor may be added to inhibit the action of the protease.
  • the medium used in this step is the same as the medium used in step (iii).
  • the pluripotency is obtained by culturing usually at 14 ° C for 5 days at 37 ° C and 5% CO at a cell concentration of 20 cells / ⁇ 1 at the start of the culture. Increase stem cells to desired amount
  • Examples of a method for inducing differentiation of the pluripotent stem cells into various cells including cardiomyocytes include a method of culturing the proliferated pluripotent stem cells in a medium containing dexamethasone.
  • the ratio of dexamethasone added to the medium used for induction of differentiation is not particularly limited as long as it can induce differentiation into cardiomyocytes, but dexamethasone is usually contained in the medium at 1 X 10-. It may be contained at a rate of about 8 mol / 1.
  • MEM medium minimum essential medium, manufactured by GIBCO
  • dexamethasone dexamethasone
  • the medium contains antibiotics such as streptomycin, kanamycin, penicillin, etc .; HEPES (5 mM), etc., if necessary, as in the medium used for the proliferation of pluripotent stem cells! Moyo! / ⁇ .
  • pluripotent stem cells By culturing the pluripotent stem cells for about several days, it is possible to induce the pluripotent stem cells into various cells including cardiomyocytes at a certain rate.
  • the above-described method of culturing in a medium containing dexamethasone is suitably employed for inducing differentiation of the pluripotent stem cells into cardiomyocytes.
  • the pluripotent stem cells proliferated as a method for inducing differentiation into smooth muscle cells contain platelet-derived growth factor (PDGF-BB). And a method of culturing in a medium.
  • PDGF-BB platelet-derived growth factor
  • the platelet-derived increase in the medium The growth factor concentration is usually about lOng / ml, and the culture conditions are the same as in the case of the induction of differentiation into cardiomyocytes.
  • the proliferated pluripotent stem cells are added to a medium containing vascular endothelial growth factor (VEGF).
  • VEGF vascular endothelial growth factor
  • a method of culturing can be mentioned.
  • the concentration of vascular endothelial growth factor in the medium is usually about 10 ng / ml, and the culture conditions are the same as in the case of the induction of differentiation into cardiomyocytes.
  • the pluripotent stem cells can be used for regeneration and repair of various tissues or organs. Specifically, the disease can be treated by transplanting a therapeutically effective amount of the pluripotent stem cells to a diseased site of the tissue or organ in a patient having a disease in the tissue or organ.
  • the target disease is preferably a heart disease. Since the pluripotent stem cells are derived from heart tissue and have a particularly excellent ability to differentiate into cardiomyocytes, they are preferably used for the treatment of heart diseases among the above diseases.
  • Target heart diseases include heart diseases that cause damage to the myocardium or coronary arteries and decrease contractile force. Specifically, myocardial infarction, dilated cardiomyopathy, ischemic heart Examples include diseases, congestive heart failure and the like.
  • a method of transplanting pluripotent stem cells for example, a method of injecting the pluripotent stem cells into a diseased site of a tissue or organ for treatment using a catheter, or a tissue for treatment by incision Or the method of inject
  • part of an organ is mentioned.
  • the dose of pluripotent stem cells transplanted into the affected area may be appropriately set according to the type of disease, the degree of symptoms, the age and sex of the patient, etc. 1.0 ⁇ 10 6 to 1.0 ⁇ 10 8 pluripotent stem cells can be administered in a single transplant.
  • pluripotent stem cells collected by a person other than the patient having the disease may be used.
  • the pluripotency derived from the patient's own heart tissue is used. Desirable to use stem cells.
  • the method of treatment of the present invention includes the method of the following embodiment as a method of treating heart disease:
  • a method for treating heart disease comprising the following steps (i) to (v):
  • step (V) A step of transplanting the cells grown in the above step (iv) into the heart of a heart disease patient.
  • the pluripotent stem cells are useful for the treatment of diseases of yarn and tissue or organs. Therefore, the present invention further provides a composition for treating a disease of a tissue or organ containing the pluripotent stem cell and a pharmaceutically acceptable carrier.
  • the composition is used by being administered to a disease site in the treatment of a tissue or organ disease.
  • the pharmaceutically acceptable carrier for example, physiological saline, buffer solution and the like are used.
  • the amount of the pluripotent stem cells in the therapeutic composition is appropriately set based on the amount of pluripotent stem cells transplanted to the affected area.
  • the composition is suitable as a composition for treating heart disease. .
  • mice manufactured by Shimizu Experimental Materials Co., Ltd.
  • wild type mice or mice that have been given the ability to express green fluorescent pigment protein (GFP)
  • GFP green fluorescent pigment protein
  • FBS fetal calf serum
  • GEBCO penicillin streptomycin DMEM
  • cell suspension 2 a cell suspension (hereinafter referred to as cell suspension 2) was similarly prepared.
  • the cell suspensions 1 and 2 thus obtained were mixed and subjected to the steps described below.
  • Add Percoll stock to 1 X PBS (-) GI
  • cell debris was mainly distributed in the upper layer of 30% by volume Percoll.
  • cell debris was removed with a Pasteur pipette, and the target cell population present at the interface was collected with a separate pipette into a 50 ml conical tube.
  • 30 ml of DMEM / F12Ham (GIBCO) medium was added, stirred well, and centrifuged to remove the supernatant.
  • trypsin - EDTA (0.05 by weight 0/0 trypsin, 0.53 mM EDTA'4Na containing) (GIBCO Co., Ltd.) solution lml was ⁇ Ka ⁇ , shaken for 10 minutes at 37 ° C for constant temperature ⁇ , between cells Aggregation and bonding were eliminated.
  • trypsin inhibitor (Roche)
  • add 8.5 ml of DMEM / F12Ham medium (GIBCO) suspend sufficiently, and count the number of cells with a hemocytometer. did.
  • the wild-type mouse heart tissue-derived cell group obtained in (2) above and the above (2) The obtained GFP-expressing mouse heart tissue-derived cell group was mixed at a ratio of 1: 1, and suspension culture was performed under the same conditions as in (3) above.
  • Fig. 1 shows the results of observing spheroids floating in the culture broth after culturing.
  • A, C, E and G show photographs taken with a fluorescence microscope
  • B, D, F and H show photographs taken with a phase contrast microscope. Only the GFP-expressing mouse-derived spheres are observed with the fluorescence microscope, and the wild-type mouse and GFP-expressing mouse spheres are observed with the phase-contrast microscope.
  • a and B, C and D, E and F, and G and H are taken from the same subject. From the photographs of A and B, it was confirmed that spheroids derived from wild-type mice and GFP-expressing mice were mixed in the culture solution.
  • the collected spheroids were placed in 2 ml of DMEM / F12Ham (GIBCO) medium, mixed well, and then centrifuged (4 ° C, 1500 rpm, 5 minutes) to sufficiently remove the supernatant. Then in trypsin - EDTA was added (0.05 weight 0/0 trypsin, 0.53 mM EDTA'4Na containing) (GIBCO, Inc.) solution lml, by shaking at 37 ° C for constant temperature ⁇ 20 minutes, decompose Sufuea Then, cells forming spheroids (hereinafter referred to as spheroid-forming cells) were suspended. Subsequently, trypsin inhibitor (manufactured by Roche) 5001 was added and suspended sufficiently, and the number of cells was counted with a hemocytometer.
  • trypsin inhibitor manufactured by Roche 5001 was added and suspended sufficiently, and the number of cells was counted with a hemocytometer.
  • the Sufuea ⁇ cells suspended in, mouse expansion medium [DMEM / F12 Ham (GIBCO Co.), (manufactured by GIBCO Co.) 2 weight 0/0 B27 supplement, 1 volume% penicillin- strept omycin, Using 40ng / ml recombinant human basic FGF (Promega) and 20ng / ml mouse EGF (SIGMA)], the cell concentration at the start of culture is 20cell S / 1 Cultivate on an ibronectin-coated cell culture dish at 37 ° C, 5% CO for 3 days
  • the spheroid obtained in the above (3) was attached to the slide by cytospin and stained with bromodeoxyuridine (BrdU) to confirm the presence of BrdU in the spheroid-forming cells.
  • the results are shown in Fig. 4. As shown in Fig. 4, about half of the spheroid-forming cells were Br dU positive, confirming that cell division was actively occurring.
  • telomerase was strongly expressed in the spheroid obtained in the above (3).
  • 5 samples were used as samples, heat treated (85 ° C, 15 minutes) (heat (+)), and heat treated (+). Heat (-)) was used, and telomer positive cells (positive control), medium only (negative control), and telomer template (positive template) were also analyzed as control samples.
  • the results obtained are shown in FIG. As a result, it was confirmed that telomerase was strongly expressed in the spheroids obtained in (3) above.
  • the spheroid-forming cells grown in (5) above are collected by centrifugation, and the cells are recovered by 1 X 1
  • the cells were cultured in a MEM medium (GIBCO) containing 0 mol / 1 dexamethasone and 1% by volume penicillin-streptomycin at 37 ° C under 5% CO for 21 days.
  • MEM medium GEM medium
  • FIG. 6 shows a photograph of the morphology of cells in culture. As shown in FIG. 6, it was found that the spheroid-forming cells proliferated and separated concentrically during the separation process into the cardiomyocytes. The distribution to cardiomyocytes was also confirmed from the following analysis results.
  • the sphere-forming cells grown in (5) above were collected by centrifugation, and the cells were collected in MEM medium (GIBCO) containing IX 10 8 M dexamethasone at 37 ° C and 5% CO.
  • the Sufuea forming cells grown in the above (5) was recovered by centrifugation, the cells in MEM medium (GIBCO Co.) containing dexamethasone 1 X 1 0- 8 M, 37 ° C, 5% CO under 14th
  • the spheroid cells grown in (5) above were collected by centrifugation, and the cells were collected in MEM medium (GIBCO) containing 1 ⁇ 10 8 M dexamethasone at 37 ° C. and 5% CO.sub.14. Day
  • the Sufuea forming cells grown in the above (5) was recovered by centrifugation, the cells in MEM medium (GIBCO Co.) containing dexamethasone 1 X 1 0- 8 M, 37 ° C, 5% CO under 14th
  • the Sufuea forming cells grown in the above (5) was recovered by centrifugation, the cells in MEM medium (GIBCO Co.) containing dexamethasone 1 X 1 0- 8 M, 37 ° C, 5% CO under 14th
  • Example 1 From the results of Example 1 described above, it was revealed that the obtained spheroid-forming cells have the ability to differentiate into various cells as well as self-replicating ability, and are pluripotent stem cells.
  • the Sufuea forming cells derived from GFP-expressing mice obtained in Example 1 (pluripotent stem cells), mouse expansion medium [DMEM / F12Ham (GIBCO Co.), 2 parts by weight 0/0 B27 substatement backside KGIBCO Co. ), Sugaya amount% penicillin-streptomycin, 40 ng / ml recombinant human basic FGF (manufactured by Promega), and 20 ng / ml mouse EGF (manufactured by SIGMA)].
  • the proliferated stem cells (about 1 X 10 6 cells) were suspended in 15 ⁇ 1 of PBS (-) (GIBCO), and this was suspended in a BD Ultra Fine II lancet (Becton Dickinson). make use of, They were transplanted into infarcted myocardium prepared in 10-12 week old NOD / SCID mice (purchased from Jackson Laboratory). Stem cell transplantation Twenty-one days after the transplantation, the mouse force was also removed. We confirmed the engraftment of stem cells, which develop green fluorescence (GFP), into the host myocardium in the isolated heart muscle (see Figure A, Fig. 10).
  • GFP green fluorescence
  • cTnT staining was performed in the same field of view as FIG. 10A (see FIG. 10B).
  • FIG. 10A see FIG. 10B.
  • the stem cells green
  • the presence of cTnl expression red
  • the stem cells derived from the transplanted heart tissue It was confirmed that it was distributed to cardiomyocytes and contributed to the repair of the heart.
  • FIG. 11 shows photomicrographs of the spheroids floating in the culture medium after 1 and 7 days of culture. After culturing, spheroids (pluripotent stem cells) derived from human heart tissue were obtained by collecting the spheroids.
  • the collected spheroid-forming cells were cultured and proliferated according to the method of “(5) Proliferation of spheroid-forming cells” described in Example 1 above.
  • the expression of various markers (Rex 1, TERT, Oct 4, Nanog, Brachyury, Sox 2) was analyzed by PCR for the spheroid-forming cells after culture. The obtained results are shown in FIG. From these results, it was confirmed that sphere-forming cells derived from human heart tissue have the same differentiation characteristics as ectodermal stem cells and embryonic stem cells.
  • the proliferated sphere-forming cells were induced to differentiate into cardiomyocytes according to the method of “(7) Confirmation of differentiation into cardiomyocytes” described in Example 1 above. This confirmed that spheroid-forming cells derived from human heart tissue differentiate into beating cardiomyocytes. The distribution to cardiomyocytes was also confirmed from the following analysis results.
  • FIG. 15 shows the results obtained. As can be seen from FIG. 15, by culturing in the presence of dexamethasone, the above-mentioned various markers were expressed, and it was confirmed that the human heart tissue-derived spheroid-forming cells were separated into cardiac muscle cells.
  • the cells after induction were observed by staining with ⁇ -SMA, and the presence of smooth muscle cells was confirmed (see FIG. 16).
  • the expanded spheroid-forming cells were induced to differentiate into endothelial cells. This confirmed that spheroid-forming cells derived from human heart tissue differentiate into vascular endothelial cells. The differentiation into vascular endothelial cells was also confirmed from the following analysis results.
  • the cells after differentiation induction were analyzed for the expression of various markers (CD31 and VEGF-R2) by PCR.
  • the obtained results are shown in FIG.
  • FIG. 19 after differentiation induction, the various markers were expressed, and it was confirmed that the human heart tissue-derived spheroid-forming cells were separated into vascular endothelial cells.
  • Example 3 From the results of Example 3 shown above, it is confirmed that the obtained human-derived spheroid-forming cells have the ability to differentiate into various cells together with self-replicating ability and are pluripotent stem cells. .
  • Human heart tissue-derived spheroid-forming cells obtained in Example 3 above, human expansion medium [DMEM / F12Ham (manufactured by tjIBC ⁇ ), 1 trough% penicillin-streptomycin, 40 ng / ml recombinant Human basic FGF (manufactured by Promega) and 20 ng / ml human EGF (manufactured by SIGMA)] were cultured for growth. Subsequently, the proliferated human heart tissue-derived pluripotent stem cells (about 1 ⁇ 10 6 cells) were transplanted into ischemic myocardial mice in the same manner as in Example 2.
  • human expansion medium [DMEM / F12Ham (manufactured by tjIBC ⁇ ), 1 trough% penicillin-streptomycin, 40 ng / ml recombinant Human basic FGF (manufactured by Promega) and 20 ng / ml human EGF (manufact
  • Myocardial stem cell transplant 21 days after transplantation the heart was removed from the mouse.
  • the isolated cardiac muscle is stained with blue color using DAPI (4'6-diamino-2-phenylindole), and the cardiomyocytes separated by the spheroid-forming cell force are separated from humans. It was stained red with myocardium-specific topolonin-T.
  • DAPI diamino-2-phenylindole
  • human hearts transplanted into thinned infarcts It was confirmed that visceral tissue-derived cells migrated and were engrafted and that new cardiomyocytes were regenerated mainly on the endocardium side (see A-E in Fig. 20).
  • the isolated heart was also stained with CD31, it was confirmed that cells derived from human heart tissue were separated from vascular endothelial cells and engrafted (F in Fig. 20). reference).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Botany (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明の目的は、再生治療方法に実用可能な幹細胞を提供すること、及び該細胞を利用して再生治療を行う技術を提供することである。  採取した心臓組織片を酵素処理することにより細胞懸濁液を調製し、該細胞懸濁液を利用して、(1)密度勾配法による細胞の分離、(2)繊維芽細胞成長因子及び上皮細胞増殖因子を含有する培地での浮遊培養、(3)浮遊状のスフェアーを形成している細胞を選択分離することにより、多能性幹細胞を得、これを利用して再生治療を行う。

Description

明 細 書
心臓組織由来の多能性幹細胞
技術分野
[0001] 本発明は、心臓組織由来の多能性幹細胞、特に心筋細胞への分化能に優れてい る多能性幹細胞に関する。更に、本発明は、該幹細胞の調製方法、及び該幹細胞を 利用した心疾患の治療方法に関する。
背景技術
[0002] 近年、再生医学において、幹細胞を移植することにより、目的とする組織及び臓器 を修復し、再生する医療技術が精力的に研究されている。これまでに、各種組織や 臓器の成熟細胞に分化する幹細胞が見出され、細胞移植への臨床的応用が検討さ れている。
[0003] 例えば、心臓組織由来の心筋幹細胞として、 c-kit陰性 ZCD31陽性 ZCD34陰性 /Sca-1陽性のマウス幹細胞 (非特許文献 1参照)や C- kit陽性 ZCD31陽性 ZCD34 陽性のラット幹細胞 (非特許文献 2及び 3参照)が報告されている。しかしながら、前 者の心筋幹細胞ではヒトでの検討はなされておらず、臨床的に実用できるかが明ら かにされていない。また、後者の心筋幹細胞では、単離が極めて困難であることにカロ え、増殖能が乏しく移植目的の大量培養に適していないという欠点がある。また、上 記の両心筋幹細胞は、多能性幹細胞ではなぐあくまで心臓への細胞移植にのみに 適用されるものである。
[0004] また、心筋幹細胞に関しては、心臓組織由来の心筋幹細胞の他に、骨髄由来の造 血細胞や間葉系幹細胞を中心に心筋細胞に分化する幹細胞の検索が行われてい る力 従来報告されている細胞では、心筋細胞への分化度は極めて低ぐ臨床的に 実用できるものではない。
[0005] このように、幹細胞として機能し得る細胞は見出されていても、実際に臨床的に実 用可能なものは殆ど知られていないのが現状である。このような従来技術を背景とし て、心筋細胞を初めとする各種成熟細胞への分ィ匕能を有し、再生治療方法に実用 可能な多能性幹細胞の開発が望まれて 、る。 [0006] なお、これまでに、筋肉起源の c-kit陰性 Zc-met陰性 ZCD34陰性 ZSca-1陰性 Z Pax(3/7)陰性の心筋細胞前駆細胞は、自発的に拍動する心筋細胞への分ィ匕能を有 していることが報告されている (特許文献 1参照)。し力しながら、この特許文献 1に記 載された幹細胞は、筋肉を起源とすることにより単離できるものであり、心臓組織から は単離できな 、ことが分力つて 、る(特許文献 1の実施例 11参照)。
特許文献 1: WO2003/035838
^^特干文献 1: Oh H., et. AL, 'し ardiac progenitor cells from adult myocardium: Ho ming, differentiation, and fusion after infarction", Proc Natl Acad Sci USA, Vol. 100, 12313-12318, October 14, 2003
非特許文献 2 : Messina E., et. AL, "Isolation and expansion of adult cardiac stem eel Is from human and murine heart", Circ Res., Vol. 95, 911-921, 2004
非特許文献 3 : Beltrami AP., et. AL, "Adult cardiac stem cells aremultipotent and su pport myocardial regeneration , Cell, Vol. 114, 763—776, September 19, 2003 発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、上記従来技術の課題を解決することである。詳細には、本発明 は、再生治療方法に実用可能な幹細胞を提供すること、及び該細胞を利用して再生 治療を行う技術を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者等は、上記課題を解決すべく鋭意検討したところ、採取した心臓組織片 を酵素処理することにより細胞懸濁液を調製し、該細胞懸濁液を利用して、(1)密度 勾配法による細胞の分離、(2)繊維芽細胞成長因子及び上皮細胞増殖因子を含有 する培地での浮遊培養、(3)浮遊状のスフエアーを形成して ヽる細胞塊を選択分離す ることにより、特に心筋細胞への分化能に優れた多能性幹細胞が得られることを見出 した。また、該幹細胞は、上記した分化能のみならず、自己複製能の点でも優れてお り、細胞移植による再生治療に実用化できることを確認した。本発明は、これらの知 見に基づいて、更に検討を重ねることによって完成したものである。
[0009] 即ち、本発明は、下記に掲げる多能性幹細胞の調製方法を提供する: 項 1. 下記工程を経て調製される、ほ乳動物の心臓組織由来の多能性幹細胞を調 製する方法:
(0ほ乳動物から採取した心臓組織片を酵素処理することにより細胞懸濁液を調製す る工程、
(ii)密度勾配法により、上記細胞懸濁液力 心臓組織由来細胞群を分離する工程、 及び
(m)得られた心臓組織由来細胞群を、繊維芽細胞成長因子及び上皮細胞増殖因子 を含有する培地で浮遊培養した後、浮遊状のスフエアーを形成して!/ヽる細胞を選択 し分離する工程。
項 2. 多能性幹細胞力 c-kit陰性、 CD31陰性及び CD34陰性である、項 1に記載の 調製方法。
項 3. 多能性幹細胞が、更に CD105陽性である、項 2に記載の調製方法。
項 4. 多能性幹細胞がヒト由来である、項 1に記載の調製方法。
項 5. 多能性幹細胞が、少なくとも心筋細胞に分ィ匕する能力を有するものである、項
1に記載の調製方法。
項 6. 多能性幹細胞が、心筋細胞、平滑筋細胞、血管内皮細胞、脂肪細胞、グリア 細胞、及び上皮細胞よりなる群力 選択される 1種又は 2種以上の細胞に分ィ匕する能 力を有するものである、項 1に記載の調製方法。
また、本発明は、下記に掲げる多能性幹細胞を提供する:
項 7. 項 1乃至 6のいずれかに記載の調製方法によって得られる、ほ乳動物の心臓 組織由来の多能性幹細胞。
項 8. c-kit陰性、 CD31陰性及び CD34陰性である、ほ乳動物の心臓組織由来の多 能性幹細胞。
項 9. CD 105陽性である、項 8に記載の幹細胞。
項 10. ほ乳動物がヒトである、項 8に記載の幹細胞。
項 11. 少なくとも心筋細胞に分ィ匕する能力を有する多能性幹細胞である、項 8に記 載の幹細胞。
項 12. 心筋細胞、平滑筋細胞、血管内皮細胞、脂肪細胞、グリア細胞、及び上皮 細胞よりなる群力 選択される 1種又は 2種以上の細胞に分ィ匕する能力を有する多能 性幹細胞である、項 8に記載の幹細胞。
[0011] また、本発明は、下記に掲げる治療方法を提供する:
項 13. 項 8乃至 12のいずれかに記載の幹細胞の治療有効量を、患者の組織又は 臓器に移植することを特徴とする、組織又は臓器の疾患の治療方法。
項 14. 心疾患の治療方法である、項 13に記載の治療方法。
項 15. 心疾患の治療方法であって下記工程を含有する、項 13に記載の治療方法
(0ヒトから採取した心臓組織片を酵素処理することにより細胞懸濁液を調製する工程
(ii)密度勾配法により、上記細胞懸濁液力 心臓組織由来細胞群を分離する工程、
(iii)得られた心臓組織由来細胞群を、繊維芽細胞成長因子及び上皮細胞増殖因子 を含有する培地で浮遊培養した後、浮遊状のスフエアーを形成して!/ヽる細胞を選択 し分離する工程、
(iv)上記工程 (iii)で分離した細胞を増殖させる工程、及び
(V)上記工程 (iv)で増殖させた細胞の治療有効量を心疾患の患者の心臓に移植する 工程。
[0012] 更に、本発明は、下記に掲げる組成物を提供する:
項 16. 項 8乃至 12のいずれかに記載の幹細胞、及び薬学的に許容される担体を 含有する、組織又は臓器の疾患の治療用組成物。
項 17. 項 8乃至 12のいずれかに記載の幹細胞、及び薬学的に許容される担体を 含有する、心疾患の治療用組成物。
[0013] そして更に、本発明は、下記に掲げる態様の幹細胞の使用を提供する:
項 18. 項 8乃至 12のいずれかに記載の幹細胞の、心疾患の治療用組成物を調製 するための使用。
項 19 項 8乃至 12のいずれかに記載の幹細胞の、組織又は臓器の疾患の治療用 組成物を調製するための使用。
発明の効果 [0014] 本発明は、心臓組織に由来し、心筋細胞、血管平滑筋細胞、血管内皮細胞等に 分化して、心臓を初めとする各種組織や臓器を再生できる幹細胞を提供する。故に、 本発明の多能性幹細胞によれば、細胞移植という新たな手法により、各種組織や臓 器の疾患の治療が可能になる。
[0015] また、本発明の多能性幹細胞は、心臓組織由来の細胞群を特定条件下で浮遊培 養し、浮遊状態のスフ ア一を取得すると 、う簡便な方法で取得できると 、う利点が あり、臨床上の有用性が高い。また、このように浮遊状態のスフエアーを取得すること により、単一細胞力 増殖した幹細胞が選択分離されるので、幹細胞自体の均一性 が高 、と 、う利点も得られ、臨床上の有用性が高 、。
[0016] 更に、本発明の多能性幹細胞は、特に心筋細胞への分ィ匕能が優れているので、心 臓移植に頼らざるを得ない重症心不全患者に細胞移植による新たな治療方法を提 供でき、心臓移植に替わる心臓疾患の治療方法として有用である。
図面の簡単な説明
[0017] [図 1]パーコールの密度勾配遠心法により分離したマウス由来の心臓組織由来細胞 群を浮遊培養した後に形成された浮遊状のスフエアー (細胞塊)を示す写真である。 図 1中、 A、 C、 E及び Gは蛍光顕微鏡にて撮影した写真を示し、 B、 D、 F及び Hは位 相差顕微鏡により撮影した写真であり、 Aと B、 Cと D、 Eと F、 Gと Hは、それぞれ同一 視野を撮影したものである。 A及び Bは、野生型マウス由来のスフエアーと GFP発現 マウス由来のスフエアーが混在して浮遊している状態を示している。 C及び Dは、 GFP 発現マウス由来のスフエアーを示している。 E及び Fは、野生型マウス由来のスフエア 一を示している。 G及び Hは、野生型マウス由来の細胞と GFP発現マウス由来の細胞 が混合して形成されて 、るスフエアーを示して 、る。
[図 2]マウス由来のスフエアー形成細胞の各種細胞表面抗原(Sca-1、 c-kit、 CD34、 CD45、 CD31、 CD38、 CD90及び CD105)を FACS分析した結果である。図中、太 (濃) 線がスフエアー形成細胞の分析結果であり、細 (薄)線がコントロール (標識無しの細 胞)の分析結果である。
[図 3]マウス由来のスフ ア一形成細胞及び ES細胞における各種マーカー(Bmi 1、 T ERT、 Bcrp 1、 Oct 4、 UTF 1、 Nanogゝ Brachvury, Sox 2、 Nestinゝ Islet 1)の発現を PC Rにより分析した結果を示す図である。なお、本分析では、 GAPDHをコントロールとし た。
[図 4]パーコールの密度勾配遠心法により分離したマウス由来の心臓組織由来細胞 群を浮遊培養した後に形成された浮遊状のスフエアーにつ!、て、ブロモデォキシゥリ ジン (BrdU)の発現を観察した結果を示す図である。図中、 Aは BrdU染色したスフエ ァ一の像を示し、 Bは Aの位相差像を示す。
[図 5]パーコールの密度勾配遠心法により分離したマウス由来の心臓組織由来細胞 群を浮遊培養した後に形成された浮遊状のスフエアーにっ 、て、テロメラーゼの発現 を分析した結果を示す図である。
[図 6]GFP発現マウス由来のスフ ア一形成細胞を心筋細胞に分ィ匕誘導する過程に おいて観察した細胞の形状を示す図である。図 6中、 Aは蛍光観察した像を示し、 B は Aと同一視野の位相差像を示す。
[図 7]マウス由来のスフ ア一形成細胞力も分ィ匕した心筋細胞の写真である。図 7中、 Bは Aを拡大したものである。
[図 8]スフ ア一形成細胞力 分化した心筋細胞の各種マーカー(Nkx 2.5、 GATA 4 、 ANPゝトロポニン一 I(TnI)、 MLC2v、 MLC2aゝ -MHC( -myosin heavy chain), β - MHC( β -myosin heavy chain), GAPDH)の発現を PCRにより分析した結果を示す図 である。
[図 9]スフ ア一形成細胞、及び該細胞力 分ィ匕した各種細胞の写真を示す図であ る。図 9中、 Aはスフエアー形成細胞; Bはスフエアー形成細胞から分化した平滑筋細 胞; Cはスフエアー形成細胞から分化した血管内皮細胞; Dはスフエアー形成細胞か ら分化した脂肪細胞; Eはスフエアー形成細胞から分化したグリア細胞;及び Fはスフ エアー形成細胞から分化した上皮細胞を示す。
[図 10]実施例 1で得られたマウス由来スフエアー形成細胞(多能性幹細胞)をマウス 梗塞心筋に移植し、該細胞のマウスの心筋における生着の状態を示す図である。 A は、ホスト心筋におけるスフエアー形成細胞 (緑色)の生着を示す図である。 Bは、 A 図と同一視野において、 cTnT染色 (赤色を呈する)した結果を示す図である。 Cは上 記 A及び Bを重ね合わせた図であり、 Dは Cを拡大した図である。 圆 11]パーコールの密度勾配遠心法により分離したヒト由来の心臓組織由来細胞群 を浮遊培養した後に形成された浮遊状のスフエアー (細胞塊)を示す写真である。図
11中、 Aは培養 1日後に観察されたスフエアーを示し、 Bは培養 7日後に観察された スフエアーを示す。
[図 12]ヒト由来のスフエアー形成細胞の各種マーカー(Rex 1、 TERT、 Oct 4、 Nanog、
Brachyury, Sox 2)の発現を PCRにより分析した結果を示す図である。
[図 13]ヒト由来のスフ ア一形成細胞の各種細胞表面抗原(c-kit、 CD34、 CD90及び
CD105)を FACS分析した結果である。図中、太 (濃)線がスフエアー形成細胞の分析 結果であり、細 (薄)線がコントロール (標識無しの細胞)の分析結果である。
[図 14]ヒト由来のスフエアー形成細胞力も分ィ匕した心筋細胞の写真である。
[図 15]ヒト由来スフエアー形成細胞力も分ィ匕した心筋細胞の各種マーカー (Nkx-2.5
、 GATA4、 ANPゝ — ca— actinゝ TnTゝ MLC2v、 MLC2aゝ — MHC( -myosin heavy ch ain)、 β -MHC( β -myosin heavy chain))の発現を PCRにより分析した結果を示す図 である。なお、本分析では、 j8 actinをコントロールとした。
[図 16]ヒト由来スフエアー形成細胞力も分ィ匕した平滑筋細胞の写真である。
[図 17]ヒト由来スフエアー形成細胞力も分ィ匕した平滑筋細胞の各種マーカー(SM-22 α及び calponin)の発現を PCRにより分析した結果を示す図である。なお、本分析で は、 j8 actinをコントロールとした。
圆 18]ヒト由来スフエアー形成細胞力も分ィ匕した血管内皮細胞の写真である。
[図 19]ヒト由来スフエアー形成細胞力も分ィ匕した血管内皮細胞の各種マーカー(CD3 1及び VEGF-R2)の発現を PCRにより分析した結果を示す図である。なお、本分析で は、 j8 actinをコントロールとした。
[図 20]実施例 3で得られたヒト由来スフエアー形成細胞(多能性幹細胞)をマウス梗塞 心筋に移植し、該細胞のマウスの心筋における生着の状態を示す図である。 Aは、ホ スト心筋において、ヒト由来スフエアー形成細胞が心筋細胞に分化し、生着した細胞 (cTnl染色により赤色を呈する)を示す図である。 Bは、 Aと同一視野において DAPIを 用いて細胞内の核を青色に染色した図と、 Aを重ね合わせた図である。 Cは、心筋梗 塞中心部にも、ヒト由来スフエアー形成細胞が分ィ匕した心筋細胞 (cTnl染色により赤 色を呈する)が生着していることを示している図である。 Dは、菲薄化した梗塞巣内に 、ヒト由来スフエアー形成細胞が心筋細胞に分化して生着した細胞 (cTnl染色により 赤色を呈する)を示している図である。 Eは、 Dと同一視野において DAPIを用いて細 胞内の核を青色に染色した図と、 Dを重ね合わせた図である。 Fは、 DAPIを用いて青 色に染色された核と、 CD31の染色により赤色に染色された CD31陽性血管内皮細胞 を示す図であり、ヒト由来スフエアー形成細胞力も分ィ匕した CD31陽性血管内皮細胞 が生着して 、ることを示して!/、る。
発明を実施するための最良の形態
[0018] 以下、本発明を詳細に説明する。
[0019] A.本 明の 細胞の調製 法
以下、本発明の多能性幹細胞の調製方法を工程毎に詳述する。
1.細胞懸濁液の調製
まず、ほ乳動物から採取した心臓組織片を酵素処理することにより細胞懸濁液を調 製する (工程 (0)。
[0020] 本発明では、多能性幹細胞の採取源となる心臓組織は、ほ乳動物由来のものであ る限り、特に制限されない。本発明において、ほ乳動物としては、例えばマウス、ラット 、モルモット、ノ、ムスター、ゥサギ、ネコ、ィヌ、ヒッジ、ブタ、ゥシ、ャギ、サル、ヒト等が 挙げられる。調製される多能性幹細胞をヒトの心疾患の治療に使用する場合には、ヒ ト由来であることが好ましい。また、本工程で使用される心臓組織の部位についても 特に制限されるものではな 、。
[0021] ほ乳動物力 の心臓組織片の採取は、通常の外科的手法により心臓組織片を摘 出することにより行われる。また、摘出された心臓組織片は、酵素処理に先立って、 心臓組織以外の組織 (例えば、血管、神経組織等)を極力取り除いておくことが望ま しい。また、酵素処理の効率を高めるために、採取された心臓組織片は、約 lmm3以 下の断片になるまで細切した後に酵素処理に供することが望ましい。
[0022] また、酵素処理は、生体組織片力 細胞懸濁液を調製する際に一般的に使用され る酵素を使用して行われる。使用される酵素として、具体的には、コラーゲナーゼ、ト リプシン、キモトリブシン、ペプシン等のプロテアーゼが例示される。これらの中で、好 ましくはコラーゲナーゼが挙げられる。かかるコラーゲナーゼとして、具体的には、 coll agenase type 2 (Worthington社製; 205U/mg)が例示される。なお、本明細書におい て、コラーゲナーゼ 1Uとは、 pH7.5、 37°C、 5時間で、コラーゲンから 1 μモノレの L ロイシンを遊離できる酵素量を表す。
[0023] また、酵素処理条件についても、特に制限されないが、一例として、下記酵素処理 条件が例示される:
酵素濃度:例えば、 collagenase type 2 (Worthington社製; 205U/mg)を使用する場合 であれば、マウス由来の心筋組織を処理する場合、通常 0.1〜0.3重量%、好ましくは 0.2重量%程度;ヒト由来の心筋組織を処理する場合、通常 0.2〜0.6重量%、好ましく は 0.4重量%程度となる濃度が挙げられる。また、例えば、酵素濃度は、心筋組織 100 mg当たり、通常 4100〜12300U、好ましくは 8200U程度となる濃度が例示される。
Mi :通常 37°C程度となる温度が挙げられる。
処理時間及び回数:诵常 20〜30分の処理時間で酵素処理を 2回線り返す条件、好ま しくは 20分程度の処理時間で酵素処理を 2回繰り返す条件が挙げられる。
[0024] 斯くして得られた細胞懸濁液は、酵素処理後に、遠心分離して上清を除去し、細胞 の生育に適した培地を添カ卩しておくことが望ましい。細胞の生育に適した培地として は、例えば 10容量%び牛胎児血清 (FBS)及び 1容量%のペニシリン ストレプトマ イシン(5000U/ml penicillin及び 5000 μ g/ml streptomycin sulfateの混合物)を含むダ ルべッコ改変イーグル培地(DMEM)培地が例示される。
[0025] 2.心臓糸且織由来細胞群の分離
次いで上記細胞懸濁液から、密度勾配法により心臓組織由来細胞群を分離する( 工程 (ii))。
[0026] 本工程において、心臓組織由来細胞群の分離は、細胞の分離に通常採用されて いる密度勾配法により実施することができる。心臓組織由来細胞群の分離の好ましい 実施態様の一例として、パーコール (percoll)の密度勾配遠心法により心臓組織由来 細胞群を分離する方法が例示される。パーコールの密度勾配遠心法は、シリカゲル の一種であるパーコールを用いて遠心分離する公知の方法であり、パーコールを層 状に用いて 、るため、遠心力により細胞を破壊することなく分離することができる。 [0027] パーコールの密度勾配遠心法により、上記細胞懸濁液から目的の幹細胞を含む心 臓組織由来細胞群を分離するには、例えば、上記細胞懸濁液を、 30容量%バーコ ール溶液及び 70容量%パーコール溶液カゝらなる不連続密度勾配にて、室温で 100 OGで 20分間遠心分画すればよぐこれによつて 30容量%パーコール溶液と 70容量 %パーコール溶液の界面に、目的の幹細胞を含む心臓組織由来細胞群が得られる
[0028] 3.多能性幹細胞の分離
次いで、上記工程 GOで得られた心臓組織由来細胞群を、上皮細胞増殖因子 (EG F ; epidermal growth factor)及び繊維芽細胞成長因子 (FGF; fibroblast growth facto r)を含有する培地で浮遊培養した後に、浮遊状のスフエアー(細胞塊)を形成して!/、 る細胞を選択し分離する(工程 (iii))。
[0029] 当該浮遊培養に先立って、上記工程 (ii)で得られた心臓組織由来細胞群を更に酵 素処理に供して、細胞同士の結合や付着を解消しておくことが望ましい。かかる酵素 処理の具体的方法については、特に制限されず、プロテア一ゼ等を使用した公知の 方法により行うことができる。該酵素処理の一例として、心臓組織由来細胞群を 0. 0 5重量%のトリプシン及び 0. 53mMの EDTAを含有する溶液で、 37°Cで 10分間程 度処理する方法が例示される。また、当該酵素処理後にはプロテアーゼ阻害剤を添 加し、プロテアーゼ活性を失活させた後に本工程 (iii)に供されることが望ましい。
[0030] 本工程で使用される培地は、通常の細胞培養 (浮遊培養)に使用される培地に、上 皮細胞増殖因子及び繊維芽細胞成長因子が添加されて!ヽればよ!ヽ。該培地の好適 なものとして、例えば、ヒト血清又は牛血清アルブミンを含む DMEMZF12HAM培 地に、上記上皮細胞増殖因子及び繊維芽細胞成長因子が添加されてる培地が例示 される。また、本工程で使用される培地は、必要に応じて、ストレプトマイシン、カナマ イシン、ペニシリン等の抗生物質; B27サプリメント(GIBCO社製); HEPES (5mM)等を 含有していてもよい。
[0031] また、本工程で培地に添加される上皮細胞増殖因子及び繊維芽細胞成長因子の 割合については、例えば、上皮細胞増殖因子が 10〜20ng/ml、好ましくは 20ng/ml程 度であり、繊維芽細胞成長因子が 10〜40ng/ml、好ましくは 40ng/ml程度が例示され る。
[0032] 本工程にぉ 、て、培養開始時の細胞濃度が 1 X 104〜2 X 104cells/ml、好ましくは 2
X 104cells/mlとなるように設定して、培養を行うことが望ましい。
[0033] 本工程における浮遊培養は、通常 37°Cで、 5%CO下で、通常 14
2 〜21間、好ましく は 14日間行う。
[0034] 斯くして培養を行うことにより、多能性幹細胞が細胞分裂を繰り返してスフ ア一(細 胞塊)を形成し、これが培養液中に浮遊する。従って、このスフエアーを回収すること により、目的とする多能性幹細胞を取得することができる。
[0035] B.多能性幹細胞の特徴
斯くして得られる、ほ乳動物の心臓組織由来の多能性幹細胞は、自己複製能と共 に、心筋細胞を初めとする各種成熟細胞に分ィ匕する能力を備えている。当該多能性 幹細胞が分化可能な細胞の一例として、心筋細胞、平滑筋細胞、血管内皮細胞、脂 肪細胞、グリア細胞、及び上皮細胞が例示される。特に、当該多能性幹細胞は、心 筋細胞への分ィ匕能に優れていることが 1つの特徴として挙げられる。
[0036] また、上記調製方法により得られる多能性幹細胞の細胞表面抗原の特性として、 c- kit陰性、 CD31陰性及び CD34陰性が挙げられる。更に、当該多能性幹細胞の一例と して、細胞表面抗原の特性として CD105陽性を示すものが挙げられる。また、当該多 能性幹細胞の一例として、細胞表面抗原の特性として Sca-1陽性、 CD45陰性、 CD38 陽性、及び CD90陽性を示すものが挙げられる。このような細胞表面抗原の特性は、 公知の方法で特定することができる。このような細胞表面抗原の特性を有する多能性 幹細胞は、上記浮遊培養 (上記工程 (iii))を行う方法以外に、上記工程 (ii)で得られた 心臓組織由来細胞群から、前述する細胞表面抗原の特徴を有する細胞を公知の方 法で分取することにより取得することもできる。このように細胞を分取する方法の一例 として、ソーティング機能を備えるフローサイトメーターを用いる方法が挙げられる。
[0037] C.多能件榦細胞の焙着 (増殖)
上記多能性幹細胞を、上皮細胞増殖因子及び繊維芽細胞成長因子を含有する培 地で培養することにより、該多能性幹細胞を増殖させることができる(工程 Gv))。
[0038] 本工程では、培養に先立って、上記工程 (iii)で得られたスフエアーをプロテアーゼ で処理してスフエアーを分解して、多能性幹細胞を浮遊させておくことが望ましい。こ のように多能性幹細胞を浮遊させる方法としては、例えば、 0.05重量%の濃度のトリ プシンで、 37°Cで 20分間程度処理する方法が例示される。当該プロテアーゼ処理後 には、プロテアーゼ阻害剤を添加して、プロテアーゼの作用を阻害しておくとよい。
[0039] また、本工程で使用される培地には、前記工程 (iii)で使用される培地と同様である。
[0040] 本工程にぉ 、て、例えば、培養開始時の細胞濃度を 20cells/ μ 1として、 37°C、 5% CO下で、通常 14〜21日間培養を行うことにより、上記多能性幹細胞を所望量に増
2
殖させることができる。
[0041] D.多能件榦細胞の目的細胞への分化誘導
上記多能性幹細胞を、心筋細胞を初めとする各種細胞に分化誘導させる方法とし ては、例えば、増殖させた上記多能性幹細胞を、デキサメサゾンを含有する培地で 培養する方法が挙げられる。
[0042] 分化誘導に使用される培地において、添加されるデキサメサゾンの割合について は、心筋細胞への分ィ匕誘導が可能である限り特に制限されないが、通常、培地中に デキサメサゾンが 1 X 10— 8モル /1程度の割合で含まれていればよい。
[0043] 分ィ匕誘導に使用される培地の種類については特に制限されないが、好適な培地と して MEM培地(minimum essential medium, GIBCO社製)に、デキサメサゾンが添カロ されている培地が例示される。また、該培地は、多能性幹細胞の増殖に使用する培 地と同様に、必要に応じて、ストレプトマイシン、カナマイシン、ペニシリン等の抗生物 質; HEPES (5mM)等を含有して!/ヽてもよ!/ヽ。
[0044] 上記培地を用いて、通常 37°Cで、 5%CO下で、通常 7〜21日間、好ましくは 14
2
日間程度、上記多能性幹細胞を培養することにより、一定の割合で上記多能性幹細 胞を心筋細胞を初めとする各種細胞に分ィ匕誘導することができる。
[0045] 特に、デキサメサゾンを含有する培地で培養する上記方法は、上記多能性幹細胞 を心筋細胞に分化誘導させるのに好適に採用される。
[0046] また、上記培地を使用する分化誘導方法の他に、平滑筋細胞への分化誘導方法と して、増殖させた上記多能性幹細胞を、血小板由来増殖因子 (PDGF-BB)を含有す る培地で培養する方法が挙げられる。当該方法において、培地中の血小板由来増 殖因子濃度は通常 lOng/ml程度であり、培養条件としては、上記心筋細胞への分ィ匕 誘導の場合と同様である。
[0047] 更に、上記培地を使用する分化誘導方法の他に、血管内皮細胞に分化誘導させ る方法として、増殖させた上記多能性幹細胞を、血管内皮成長因子 (VEGF)を含有 する培地で培養する方法が挙げられる。当該方法において、培地中の血管内皮成 長因子濃度は通常 lOng/ml程度であり、培養条件としては、上記心筋細胞への分ィ匕 誘導の場合と同様である。
[0048] E.疾唐、の '治療方法
上記多能性幹細胞は、各種組織又は臓器の再生や修復に使用することができる。 具体的には、組織又は臓器に疾患がある患者に、上記多能性幹細胞の治療有効量 を組織又は臓器の疾患部位に移植することにより、該疾患を治療することができる。
[0049] 上記多能性幹細胞を用いた治療にお!、て、対象となる疾患として、好ましくは、心 疾患が挙げられる。上記多能性幹細胞は心臓組織由来のものであり、心筋細胞への 分ィ匕能は特に優れているので、上記疾患の中でも心疾患に対する治療に好適に使 用される。
[0050] 対象となる心臓疾患としては、心筋若しくは冠動脈に障害を来し、収縮力が低下す るような心臓疾患が挙げられ、具体的には、心筋梗塞、拡張型心筋症、虚血性心疾 患、うつ血性心不全等が例示される。
[0051] 多能性幹細胞を移植する方法として、例えば、治療目的の組織又は臓器の疾患部 位にカテーテルを利用して上記多能性幹細胞を注入する方法、或いは切開して治 療目的の組織又は臓器の疾患部位に上記多能性幹細胞を直接注入する方法等が 挙げられる。
[0052] また、患部に移植される多能性幹細胞の投与量にっ 、ては、疾患の種類、症状の 程度、患者の年齢や性別等に応じて、適宜設定すればよいが、例えば、 1回の移植 において 1.0 X 106〜1.0 X 108個の多能性幹細胞を投与することができる。
[0053] 本発明の治療方法では、疾患を有する患者以外の者力 採取した多能性幹細胞 を使用してもよいが、拒絶反応を抑制する観点から、患者自身の心臓組織由来の多 能性幹細胞を使用することが望ま 、。 [0054] なお、本発明の治療方法には、心疾患の治療方法として、下記の態様の方法が包 含される:
下記工程 (i)〜(v)を含有する心疾患の治療方法:
(0ヒトから採取した心臓組織片を酵素処理することにより細胞懸濁液を調製する工程
(ii)密度勾配法により、上記細胞懸濁液力 心臓組織由来細胞群を分離する工程、 及び
(iii)得られた心臓組織由来細胞群を、繊維芽細胞成長因子及び上皮細胞増殖因子 を含有する培地で浮遊培養した後に、浮遊状のスフエアーを形成して!/ヽる細胞を選 択し分離する工程、
(iv)上記工程 (iii)で分離した細胞を増殖させる工程、及び
(V)上記工程 (iv)で増殖させた細胞を心疾患の患者の心臓に移植する工程。
[0055] F.細 は臟器の 唐、の' 7合 ffl Hfe
前述するように、上記多能性幹細胞は、糸且織又は臓器の疾患の治療に有用である 。故に、本発明は、更に、上記多能性幹細胞、及び薬学的に許容される担体を含有 する組織又は臓器の疾患の治療用組成物を提供する。当該組成物は、組織又は臓 器の疾患の治療において、疾患部位に投与されることにより使用される。
[0056] ここで、薬学的に許容される担体としては、例えば、生理食塩水、緩衝液等が使用 される。また、当該治療用組成物における上記多能性幹細胞の配合量については、 患部に移植される多能性幹細胞の量に基づいて適宜設定される。
[0057] 特に、上記多能性幹細胞は心臓組織由来のものであり、心筋細胞への分ィ匕能が優 れているので、当該組成物は、心疾患の治療用組成物として好適である。
実施例
[0058] 以下に、実施例に基づいて本発明を詳細に説明する力 本発明はこれらによって 限定されるものではない。
[0059] 実施例 1
マウス由来多能性幹細胞の取得及び該幹細胞の分化誘導
Π )糸田 の 6〜8週齢の雌 C57B1/6Jマウス (清水実験材料株式会社製)(以下、野生型マウスと 表記することもある)又は同マウスに緑色蛍光色素タンパク (GFP)発現能を付与したマ ウス(以下、 GFP発現マウスと表記することもある)を、ジェチルエーテル麻酔下に用 手的に頸椎脱臼にて安楽死させ、 70容量 %エチルアルコール水溶液に浸して全身を 消毒した。前もって高圧蒸気滅菌を施した尖鋭のピンセット及びはさみを用い、胸骨 正中切開した後、心臓を摘出した。摘出した心臓を氷上の冷 PBS (Phosphate buffere d saline)入りシャーレ内に置いて、 23ケージ針付き注射器を用い、大動脈弁輪部か ら 2mlの冷 PBSを 3回注入し、心臓内の血液を除去した。次いで、心臓中間部に切開 を入れ、新たな冷 PBS入りシャーレ内で心腔内を洗浄した。更に、この心腔内の洗浄 を二回繰り返し、最後に PBSを除去した。その後、滅菌済みのはさみを用いて破砕し た心臓組織断片を約 lmm3以下になるまで細切した。細切した心臓組織片 (約 lOOmg )を 100ml容三角フラスコに移し、更に 0.2重量% collagenase type2 (Worthington社製) 含有溶液 20mlを添加し、 37°C恒温漕内で 20分間震盪して酵素処理を行った。次い で、更に 10mlの電動ピぺッターを用いて 3ml/secの速度でピペッティングを行い、よく 撹拌した後、更に 0.1重量% DNAse I(Worthington社製)含有溶液 2.2mlを添カ卩し、 37 °C恒温漕内で 3分間震盪した。かかる酵素処理後、 20mlの 10容量 %FBS (牛胎仔血清) (Hyclone社製)及び 1容量%ペニシリン ストレプトマイシンを含有する DMEM(GIBCO 社製)培地 (以下、「培地 1」と表記する)を加えて酵素を中和し、細胞含有液を調製し た後、 70 m cell strainer(FALCON社製)及び 40 μ m cell strainer(FALCON社製)で 濾過した。濾過後の細胞含有液を 1500rpmで 5分間遠心分離して、その上清を除去 した後に、 10mlの培地 1を添加して細胞懸濁液 (以下、細胞懸濁液 1と表記する)を 調製し、これを氷中保存した。また、 100ml容三角フラスコに残存した心臓組織片に 対しても、再度同様の処理を行い、同様に細胞懸濁液 (以下、細胞懸濁液 2と表記す る)を調製した。斯くして得られた細胞懸濁液 1及び 2を混合し、以下記載する工程に 供した。
(2)パーコールの密度勾配遠心法による心臓組織由 細胞群の分離
パーコール(percoii)原液(Amersham Biosciences社製): 10 X PBS(- XGIBCO社製) = 9:1 (容量比)の溶液をパーコールストックとした。パーコールストックを 1 X PBS(- )(GI BCO社製)で希釈し、パーコールストックの濃度が 30容量%、 70容量 %の溶液を作成し た。 30容量 %パーコール溶液にはフエノールレッド (SIGMA社製)を 0.1容量 %力卩えて着 色した。容量 15mlの円錐状チューブに、まず 30容量%パーコール溶液を 3ml注ぎ、 続、て電動ピぺッターを用いて 30容量%パーコール溶液の下層に 70容量%パーコー ル溶液を慎重に加えた。続いて、野生型マウス又は GFP発現マウス由来の上記細胞 縣濁液 3mlを 30容量%パーコール溶液の上層に慎重に重層した。室温、 1000G 20分 で、加速減速を極力遅くして遠心分画した。遠心後、目的の細胞集団は、 30容量 %パ 一コール溶液と 70容量 %パーコール溶液の界面に分布して 、ることが確認された。ま た、一番底には血球成分が分布しており、 30容量 %パーコールの上層には主に細胞 破砕物が分布して ヽることが確認された。パスツールピペットにてまず細胞破砕物を 除去した後、別のピペットで界面に存在する目的の細胞集団を容量 50mlの円錐状チ ユーブに回収した。円錐状チューブに、 DMEM/F12Ham(GIBCO社製)培地を 30mlカロ え、十分に撹拌した後、遠心して上清を除去した。次いで、トリプシン- EDTA(0.05重 量0 /0トリプシン、 0.53mM EDTA'4Na含有)(GIBCO社製)溶液 lmlを添カ卩して、 37°C恒 温漕内で 10分間震盪し、細胞同士の凝集や結合を解消させた。次いで、トリプシン 阻害剤(Roche社製) 500 μ 1を添カ卩し、更に DMEM/F12Ham培地 (GIBCO社製) 8.5ml を添加し、十分に懸濁した後、細胞数を血球計算盤でカウントした。
[0061] (3)スフ ア一の形成 1
上記(2)で得られた、野生型マウス又は GFP発現マウス由来の心臓組織由来細胞 群を、 mouse expansion medium [DMEM/F12Ham (GIBCO社製)、 2重量0 /0B27サプリ メント (GIBCO社製)、 1容量% penicillin-streptomycin^ 40ng/ ml recombinant human ba sic FGF(Promega社製)、及び 20ng/ml mouse EGF (SIGMA社製)含有]を用いて、細 胞培養ディッシュ(noncoat cell culture dish) (Becton Dickinson社製)上で、 37。C、 5 %CO下で 14日間、浮遊培養を行った。なお、培養開始時の細胞濃度は、 2.0 X 104
2
cells/mlになるように設定した。
[0062] 斯くして培養した後、培養液に浮遊して!/ヽるスフエアー(細胞塊)を回収した。
[0063] (4)スフ ア一の形成 2
参考として、上記 (2)で得られた野生型マウス心臓組織由来細胞群と、上記 (2)で得 られた GFP発現マウス心臓組織由来細胞群とを 1: 1の比率で混合して、上記(3)と同 様の条件で浮遊培養を行った。
[0064] 培養後の培養液に浮遊するスフエアーを観察した結果を図 1に示す。図 1中、 A、 C 、 E及び Gは蛍光顕微鏡にて撮影した写真を示し、 B、 D、 F及び Hは位相差顕微鏡 により撮影した写真を示す。なお、蛍光顕微鏡では GFP発現マウス由来のスフエアー のみが観察され、位相差顕微鏡では野生型マウス及び GFP発現マウスの双方のスフ エアーが観察される。 Aと B、 Cと D、 Eと F、 Gと Hは、それぞれ同一の被写体を撮影し たものである。 A及び Bの写真から、培養液中に、野生型マウス由来のスフエアーと G FP発現マウス由来のスフエアーが混在していることが確認された。また、 C及び Dの 写真には、共に同一形状のスフエアーが観察されていることから、 C及び Dの被写体 のスフエアーは GFP発現マウス由来のものであることが確認された。一方、 Eの写真に は、スフエアーは撮影されな力つた力 Fの写真にはスフエアーが観察されたことから 、 E及び Fの被写体のスフエアーは野生型マウス由来のものであることが明らかである 。また、 G及び Hの写真では、相異なる形状のスフエアーが観察されたことから、 G及 び Hの被写体のスフエアーは、野生型マウス由来の細胞と GFP発現マウス由来の細 胞が混合して形成されたことが明らかとなった。
[0065] (5)スフ ア一形成細胞の増殖
回収したスフエアーを 2mlの DMEM/F12Ham(GIBCO社製)培地に入れ、よく混合し た後に、これを遠心分離 (4°C、 1500rpm、 5分間)して、上清を十分に除去した。次い で、トリプシン- EDTA(0.05重量0 /0トリプシン、 0.53mM EDTA'4Na含有)(GIBCO社製 )溶液 lmlを添加し、 37°C恒温漕内で 20分間震盪することにより、スフエアーを分解し て、スフエアーを形成している細胞(以下、スフエアー形成細胞と表記する)を浮遊さ せた。次いで、トリプシン阻害剤(Roche社製) 500 1を添加し十分に懸濁した後、細 胞数を血球計算盤でカウントした。
[0066] 斯くして浮遊させたスフエアー开成細胞を、 mouse expansion medium [DMEM/F12 Ham (GIBCO社製)、 2重量0 /0B27サプリメント (GIBCO社製)、 1容量% penicillin- strept omycin、 40ng/ ml recombinant human basic FGF(Promega社製)、及び 20ng/ml mous e EGF (SIGMA社製)含有]を用いて、培養開始時の細胞濃度を 20cellS/ 1として、フ イブロネクチンコーティング細胞培養ディッシュ上で、 37°C、 5%CO下で 3日間培養
2
を行った。
[0067] (6)スフエアー形成細胞の特徴の確認
上記(5)で増殖させたスフエアー形成細胞につ!、て各種細胞表面抗原 (Sca-1, c- kit、 CD34、 CD45、 CD31、 CD38、 CD90及び CD105)を FACS分析した。得られた結 果を図 2に示す。この結果から、得られたスフエアー形成細胞は c-kit陰性、 CD31陰 性及び CD34陰性であると共に、 CD105陽性であることが確認された。また、該細胞は 、 Sea- 1陽性、 CD45陰性、 CD38陽性、及び CD90陽性であることも確認された。
[0068] 更に、上記(5)で増殖させたスフ ア一形成細胞について、各種マーカー(Bmi 1、 TERT、 Bcrp 1、 Oct 4、 UTF 1、 Nanog、 Brachyury, Sox 2、 Nestin、及び Islet 1)の発 現を、 PCRにより分析した。得られた結果を図 3に示す。この結果、スフエアー形成細 胞は、胚性幹細胞のマーカーである Oct 4及び UTF 1の発現が認められないことが 確認された。一方、該細胞は、中胚葉系幹細胞のマーカーである Brachyuryや、外胚 葉系幹細胞のマーカーである Sox 2及び Nestinの発現が認められた。また、該細胞は 、 Bmi 1や TERTを強く発現していることから、自己複製能が高いことが示唆された。
[0069] また、上記(3)で得られたスフエアーをサイトスピンにてスライドに付着させ、ブロモ デォキシゥリジン(BrdU)染色を行!、、スフ ア一形成細胞内の BrdUの有無を確認し た。この結果を図 4に示す。図 4から分力るように、スフエアー形成細胞の約半数が Br dU陽性であり、細胞分裂が盛んに起きていることが確認された。
[0070] そして更に、上記(3)で得られたスフエアーにおけるテロメラーゼの発現を分析した 。なお、分析には、 5、 10又は 30個のスフエアーをサンプルとして、これを加熱処理(8 5°C、 15分間)をしたもの(heat(+))と加熱処理して 、な 、もの(heat(-))を使用し、更に 対照サンプルとして、テロメァ陽性細胞(positive control)、培地のみ(negative contr ol)、テロメァテンプレート(positive template)についても分析した。得られた結果を図 5に示す。この結果、上記(3)で得られたスフエアーには、テロメラーゼが強く発現し ているこが確認された。
[0071] (7)心筋細胞への分化の確認
上記(5)で増殖させたスフエアー形成細胞を遠心分離により回収し、該細胞を 1 X 1 0 モル /1のデキサメサゾン及び 1容量%のpenicillin-streptomycinを含有する MEM培 地(GIBCO社製)で、 37°C、 5%CO下で 21日間培養した。力かる培養により、上記ス
2
フェアー形成細胞が拍動性の心筋細胞に分ィ匕することが確認された。また、培養中 の細胞の形態を観察した写真を図 6に示す。図 6に示すように、スフエアー形成細胞 は、心筋細胞への分ィ匕過程において同心円状に増殖して分ィ匕することが分力 た。 なお、心筋細胞への分ィ匕は、下記の分析結果からも確認された。
く心筋特異的トロポニン- 1染色による分析 >
培養 21日後の細胞を心筋特異的トロポニン Iで染色して観察したところ、心筋細 胞の存在が確認された(図 7図参照)。
< PCRによる分析 >
PCRにより、分ィ匕誘導開始 21日後において、培養細胞の各種マーカー(Nkx 2.5、 G ATA 4、 ANPゝトロポニン一 I(TnI)、 MLC2v、 MLC2aゝ -MHC( -myosin heavy chain )、 β -MHC( β -myosin heavy chain))の発現を分析した。得られた結果を図 8に示す 。この結果、心筋細胞のマーカーである cTnI、及び α - MHCの発現が強く認められる ことが確認された。
[0072] (8)他の細胞への分化の確認
上記(5)で増殖させたスフ ア一形成細胞(図 9の Α参照)について、平滑筋細胞、 血管内皮細胞、脂肪細胞、グリア細胞、及び上皮細胞への分化能を確認するために 、下記の方法で分ィ匕誘導を行った。
[0073] (8 - 1)平滑筋細胞への分ィ匕
上記(5)で増殖させたスフエアー形成細胞を遠心分離により回収し、該細胞を、 I X 10 8 Mのデキサメサゾンを含む MEM培地(GIBCO社製)で、 37°C、 5%CO下で 14
2 日間培養した。培養後の細胞を a -SMA ( a -smooth muscle actin)を用いて染色して 観察したところ、平滑筋細胞の存在が確認された(図 9の B参照)。
[0074] (8— 2)血管内皮細胞への分ィ匕
上記(5)で増殖させたスフエアー形成細胞を遠心分離により回収し、該細胞を 1 X 1 0— 8Mのデキサメサゾンを含む MEM培地(GIBCO社製)で、 37°C、 5%CO下で 14日
2 間培養した。培養後の細胞を CD31を用いて染色して観察したところ、 CD31陽性の血 管内皮細胞の存在が確認された(図 9の C参照)。
[0075] (8- 3)脂肪細胞への分ィ匕
上記(5)で増殖させたスフエアー形成細胞を遠心分離により回収し、該細胞を 1 X 1 0 8 Mのデキサメサゾンを含む MEM培地(GIBCO社製)で、 37°C、 5%CO下で 14日
2 間培養した。培養後の細胞に対して on-red染色を行って観察したところ、 on-red陽性 の脂肪細胞の存在が確認された(図 9の D参照)。
[0076] (8— 4)グリア細胞への分化
上記(5)で増殖させたスフエアー形成細胞を遠心分離により回収し、該細胞を 1 X 1 0— 8Mのデキサメサゾンを含む MEM培地(GIBCO社製)で、 37°C、 5%CO下で 14日
2 間培養した。培養後の細胞の形態的特徴を観察したところ、グリア細胞の存在が確 認された(図 9の E参照)。
[0077] (8— 5)上皮細胞への分ィ匕
上記(5)で増殖させたスフエアー形成細胞を遠心分離により回収し、該細胞を 1 X 1 0— 8Mのデキサメサゾンを含む MEM培地(GIBCO社製)で、 37°C、 5%CO下で 14日
2 間培養した。培養後の細胞の形態的特徴を観察したところ、上皮細胞の存在が確認 された(図 9の F参照)。
[0078] (9) ¾
以上に示す実施例 1の結果から、得られたスフエアー形成細胞は、自己複製能と共 に、各種細胞に分化する特性を備えており、多能性幹細胞であることが明らかとなつ た。
[0079] 実施例 2
マウス由来心筋幹細胞の移植
上記実施例 1で得られた GFP発現マウス由来のスフエアー形成細胞(多能性幹細 胞)を、 mouse expansion medium [DMEM/F12Ham (GIBCO社製)、 2重量0 /0B27サプ リメン KGIBCO社製)、丄谷量% penicillin— streptomycin、 40ng/ ml recombinant human basic FGF(Promega社製)、及び 20ng/ml mouse EGF (SIGMA社製)含有]で培養して 増殖させた。次 、で、増殖させた幹細胞 (約 1 X 106cells)を、 15 μ 1の PBS(-)(GIBCO 社製)に懸濁し、これを、 BD Ultra Fine IIランセット (Becton Dickinson社製)を用いて、 10〜12週齢の NOD/SCIDマウス(Jackson Laboratoryより購入)に作成した梗塞心筋 に移植した。幹細胞の移植 21日後に、マウス力も心臓を摘出した。摘出した心臓の心 筋につ \ヽて、緑色蛍光 (GFP)発色する幹細胞のホスト心筋への生着を確認した(図 10の A図参照)。また、図 10の A図と同一視野において、 cTnT染色(赤色として認識 される)を行った(図 10の B図参照)。図 10の A及び B図を重ね合わせると、幹細胞の 存在(緑色)と、 cTnl発現の存在(赤色)が重なっており(図 10の C及び D図参照)、移 植した心臓組織由来の幹細胞が心筋細胞に分ィ匕し、心臓の修復に寄与していること が確認された。
[0080] 実施例 3
ヒト由来多能性幹細胞の取得及び該幹細胞の各種細胞への分化誘導
ヒトから採取した心臓組織片を用いて、上記実施例 1に記載の「(1)細胞懸濁液の 調製」及び「(2)パーコールの密度勾配遠心法による心臓組織由来細胞群の分離」 の方法に従って、ヒト心臓組織由来の細胞群を分離した。
[0081] 次いで、得られた細胞群を用いて、上記実施例 1に記載の「(3)スフエアーの形成
1」の方法に従って培養を行 、、スフエアーを形成させた。培養 1日後及び 7日後 に培養液中に浮遊して ヽるスフエアーを撮影した顕微鏡写真を図 11に示す。培養後 、スフエアーを回収することにより、ヒト心臓組織由来のスフエアー形成細胞(多能性 幹細胞)を取得した。
[0082] 回収したスフエアー形成細胞を、上記実施例 1に記載の「(5)スフエアー形成細胞 の増殖」の方法に従って培養を行 、増殖させた。培養後のスフエアー形成細胞につ いて、各種マーカー(Rex 1、 TERT、 Oct 4、 Nanog、 Brachyury, Sox 2)の発現を、 PC Rにより分析した。得られた結果を図 12に示す。この結果から、ヒト心臓組織由来のス フェアー形成細胞は、外胚葉系幹細胞や胚性幹細胞と同様の分化特性を備えて ヽ ることが確認された。
[0083] また、増殖させたスフエアー形成細胞にっ 、て各種細胞表面抗原(c-kit、 CD34、 C D90及び CD105)について分析した。分析結果を図 13に示す。この結果から、ヒト由 来のスフエアー形成細胞は、 C- kit陰性、 CD34陰性、 CD90陽性及び CD 105陽性であ ることが確認された。 [0084] 心筋細胞への分化
増殖させたスフ ア一形成細胞を、上記実施例 1に記載の「(7)心筋細胞への分化 の確認」の方法に従って、心筋細胞への分化誘導を行った。これによつて、ヒト心臓 組織由来のスフエアー形成細胞が、拍動する心筋細胞に分化することが確認された 。なお、心筋細胞への分ィ匕は、下記の分析結果からも確認された。
くヒト心筋特異的トロポニン— T染色による分析〉
分ィ匕誘導後の細胞をヒト心筋特異的トロポニン— Tで染色して観察したところ、心筋 細胞の存在が確認された(図 14図参照)。
< PCRによる分析 >
分化誘導開始 21日後の細胞について、各種マーカー(Nkx-2.5、 GATA4、 ANP、 — ca— actinゝ TnTゝ MLC2v、 MLC2aゝ — MHC( -myosin heavy chain), β— MHC( β -myosin heavy chain), β actin)の発現を、 PCRにより分析した。得られた結果を図 15 に示す。図 15から分かるように、デキサメサゾンの存在下で培養することによって、上 記各種マーカーが発現されており、上記ヒト心臓組織由来スフエアー形成細胞が心 筋細胞に分ィ匕したことが確認された。
[0085] 率滑筋細胞への分化
増殖させたスフ ア一形成細胞を、上記実施例 1に記載の「(8— 2)血管内皮細胞 への分化」の方法に従って、分化誘導を行った。これによつて、ヒト心臓組織由来のス フェアー形成細胞力 平滑筋細胞に分化することが確認された。なお、心筋細胞へ の分ィ匕は、下記の分析結果からも確認された。
く顕微鏡による分析〉
分ィ匕誘導後の細胞について、 α -SMAを染色して観察したところ、平滑筋細胞の存 在が確認された(図 16図参照)。
< PCRによる分析 >
分化誘導開始 21日後の細胞について、各種マーカー(SM- 22 α及び calponin)の 発現を、 PCRにより分析した。得られた結果を図 17に示す。図 17から分力るように、 分ィ匕誘導後には、上記各種マーカーが発現されており、上記ヒト心臓組織由来スフ エアー形成細胞が平滑筋細胞に分化したことが確認された。 [0086] 血管内皮細胞への分化
増殖させたスフエアー形成細胞を、上記実施例 1に記載の「 (4)他の細胞への分化 の確認」の方法に従って、内皮細胞への分化誘導を行った。これによつて、ヒト心臓 組織由来のスフエアー形成細胞が、血管内皮細胞に分化することが確認された。な お、血管内皮細胞への分化は、下記の分析結果からも確認された。
く顕微鏡による分析〉
分ィ匕誘導後の細胞について、 CD31を染色して観察したところ、内皮細胞の存在が 確認された(図 18図参照)。
< PCRによる分析 >
分化誘導後の細胞について、各種マーカー(CD31及び VEGF-R2)の発現を、 PCR により分析した。得られた結果を図 19に示す。図 19から分かるように、分化誘導後に は、上記各種マーカーが発現されており、上記ヒト心臓組織由来スフエアー形成細胞 が血管内皮細胞に分ィ匕したことが確認された。
[0087]
以上に示す実施例 3の結果から、得られたヒト由来スフエアー形成細胞は、自己複 製能と共に、各種細胞に分化する特性を備えており、多能性幹細胞であることが確 f*i¾ れ 。
[0088] 実施例 4
ヒト由来心筋幹細胞の移植
上記実施例 3で得られたヒト心臓組織由来スフエアー形成細胞(多能性幹細胞)を 、 human expansion medium[DMEM/F12Ham(tjIBC〇社製)、 1谷量% penicillin— strept omycin、 40ng/ ml recombinant human basic FGF(Promega社製)、及び 20ng/ml huma n EGF(SIGMA社製)含有]で培養して増殖させた。次いで、増殖させたヒト心臓組織 由来多能性幹細胞 (約 1 X 106cells)を、上記実施例 2と同様の方法で虚血心筋マウス に移植した。心筋幹細胞の移植 21日後に、マウスから心臓を摘出した。摘出した心 臓の心筋にっ 、て、細胞内の核を DAPI (4'6-diamino-2-phenylindole)を用いて青 色に染色し、更にスフエアー形成細胞力 分ィ匕した心筋細胞をヒト心筋特異的トポロ ニン— Tを用いて赤色に染色した。この結果、菲薄化した梗塞巣内に移植したヒト心 臓組織由来細胞が遊走し生着しており、主に心内膜側に新たな心筋細胞が再生さ れていることが確認された(図 20の A—E参照)。また、摘出した心臓について、併せ て、 CD31の染色を行ったところ、ヒト心臓組織由来細胞が血管内皮細胞にも分ィ匕し て生着して ヽることが確認された(図 20の F参照)。

Claims

請求の範囲
[I] 下記工程を経て調製される、ほ乳動物の心臓組織由来の多能性幹細胞を調製す る方法:
(0ほ乳動物から採取した心臓組織片を酵素処理することにより細胞懸濁液を調製す る工程、
(ii)密度勾配法により、上記細胞懸濁液力 心臓組織由来細胞群を分離する工程、 及び
(m)得られた心臓組織由来細胞群を、繊維芽細胞成長因子及び上皮細胞増殖因子 を含有する培地で浮遊培養した後、浮遊状のスフエアーを形成して!/ヽる細胞を選択 し分離する工程。
[2] 多能性幹細胞が、 c-kit陰性、 CD31陰性及び CD34陰性である、請求項 1に記載の 調製方法。
[3] 多能性幹細胞が、更に CD105陽性である、請求項 2に記載の調製方法。
[4] 多能性幹細胞がヒト由来である、請求項 1に記載の調製方法。
[5] 多能性幹細胞が、少なくとも心筋細胞に分ィ匕する能力を有するものである、請求項 1に記載の調製方法。
[6] 多能性幹細胞が、心筋細胞、平滑筋細胞、血管内皮細胞、脂肪細胞、グリア細胞
、及び上皮細胞よりなる群力 選択される 1種又は 2種以上の細胞に分ィ匕する能力を 有するものである、請求項 1に記載の調製方法。
[7] 請求項 1乃至 6のいずれかに記載の調製方法によって得られる、ほ乳動物の心臓 組織由来の多能性幹細胞。
[8] c-kit陰性、 CD31陰性及び CD34陰性である、ほ乳動物の心臓組織由来の多能性 幹細胞。
[9] CD105陽性である、請求項 8に記載の幹細胞。
[10] ほ乳動物がヒトである、請求項 8に記載の幹細胞。
[II] 少なくとも心筋細胞に分ィ匕する能力を有する多能性幹細胞である、請求項 8に記載 の幹細胞。
[12] 心筋細胞、平滑筋細胞、血管内皮細胞、脂肪細胞、グリア細胞、及び上皮細胞より なる群から選択される 1種又は 2種以上の細胞に分化する能力を有する多能性幹細 胞である、請求項 8に記載の幹細胞。
[13] 請求項 8乃至 12のいずれかに記載の幹細胞の治療有効量を、患者の組織又は臓 器に移植することを特徴とする、組織又は臓器の疾患の治療方法。
[14] 心疾患の治療方法である、請求項 13に記載の治療方法。
[15] 心疾患の治療方法であって下記工程を含有する、請求項 13に記載の治療方法: (0ヒトから採取した心臓組織片を酵素処理することにより細胞懸濁液を調製する工程
(ii)密度勾配法により、上記細胞懸濁液力 心臓組織由来細胞群を分離する工程、
(iii)得られた心臓組織由来細胞群を、繊維芽細胞成長因子及び上皮細胞増殖因子 を含有する培地で浮遊培養した後、浮遊状のスフエアーを形成して!/ヽる細胞を選択 し分離する工程、
(iv)上記工程 (iii)で分離した細胞を増殖させる工程、及び
(V)上記工程 (iv)で増殖させた細胞の治療有効量を心疾患の患者の心臓に移植する 工程。
[16] 請求項 8乃至 12のいずれかに記載の幹細胞、及び薬学的に許容される担体を含 有する、組織又は臓器の疾患の治療用組成物。
[17] 請求項 8乃至 12のいずれかに記載の幹細胞、及び薬学的に許容される担体を含 有する、心疾患の治療用組成物。
[18] 請求項 8乃至 12のいずれかに記載の幹細胞の、心疾患の治療用組成物を調製す るための使用。
[19] 請求項 8乃至 12のいずれかに記載の幹細胞の、組織又は臓器の疾患の治療用組 成物を調製するための使用。
PCT/JP2006/304111 2005-03-04 2006-03-03 心臓組織由来の多能性幹細胞 WO2006093276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2600653A CA2600653C (en) 2005-03-04 2006-03-03 Pluripotent stem cell derived from cardiac tissue
EP06715194A EP1857544B1 (en) 2005-03-04 2006-03-03 Pluripotent stem cell derived from cardiac tissue
JP2007506027A JP4783909B2 (ja) 2005-03-04 2006-03-03 心臓組織由来の多能性幹細胞
US14/926,583 US9867854B2 (en) 2005-03-04 2015-10-29 Therapeutic method using cardiac tissue-derived pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005060831 2005-03-04
JP2005-060831 2005-03-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/885,111 A-371-Of-International US20080241111A1 (en) 2005-03-04 2006-03-03 Pluripotent Stem Cell Derived from Cardiac Tissue
US14/926,583 Division US9867854B2 (en) 2005-03-04 2015-10-29 Therapeutic method using cardiac tissue-derived pluripotent stem cells

Publications (2)

Publication Number Publication Date
WO2006093276A1 true WO2006093276A1 (ja) 2006-09-08
WO2006093276A8 WO2006093276A8 (ja) 2007-08-23

Family

ID=36941306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304111 WO2006093276A1 (ja) 2005-03-04 2006-03-03 心臓組織由来の多能性幹細胞

Country Status (5)

Country Link
US (1) US9867854B2 (ja)
EP (2) EP1857544B1 (ja)
JP (1) JP4783909B2 (ja)
CA (1) CA2600653C (ja)
WO (1) WO2006093276A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048166A1 (ja) 2007-10-10 2009-04-16 Kyoto University 細胞移植療法に用いられる心疾患治療薬
KR20160136447A (ko) 2014-05-01 2016-11-29 아이하트 재팬 가부시키가이샤 Cd82 양성 심근 전구세포
JP2018023401A (ja) * 2013-09-04 2018-02-15 株式会社大塚製薬工場 多能性幹細胞の調製方法
WO2019078278A1 (ja) * 2017-10-18 2019-04-25 国立大学法人京都大学 心筋細胞に分化させるための多能性幹細胞の製造方法
JP7373246B1 (ja) * 2023-02-24 2023-11-02 株式会社メトセラ 心臓内幹細胞を含む細胞集団

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
JP2009215191A (ja) * 2008-03-07 2009-09-24 Keio Gijuku 神経損傷治療剤及び神経損傷治療方法
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
WO2013184527A1 (en) 2012-06-05 2013-12-12 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
CA2881394C (en) 2012-08-13 2024-05-14 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
US10526581B2 (en) 2013-01-24 2020-01-07 Bernardo Nadal-Ginard Modulation of cardiac stem-progenitor cell differentiation, assays and uses thereof
AU2015327812B2 (en) 2014-10-03 2021-04-15 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of muscular dystrophy
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
US11351200B2 (en) 2016-06-03 2022-06-07 Cedars-Sinai Medical Center CDC-derived exosomes for treatment of ventricular tachyarrythmias
WO2018057542A1 (en) 2016-09-20 2018-03-29 Cedars-Sinai Medical Center Cardiosphere-derived cells and their extracellular vesicles to retard or reverse aging and age-related disorders
JP7336769B2 (ja) 2017-04-19 2023-09-01 シーダーズ―シナイ メディカル センター 骨格筋ジストロフィーを治療する方法及び組成物
WO2019126068A1 (en) 2017-12-20 2019-06-27 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027281A2 (fr) * 2001-09-20 2003-04-03 Kyowa Hakko Kogyo Kk Cellules souches totipotentes provenant des tissus intestinaux de muscle squelettique
WO2004019767A2 (en) * 2002-08-29 2004-03-11 Baylor College Of Medicine Heart derived cells for cardiac repair
WO2005003334A2 (en) * 2003-06-27 2005-01-13 Ethicon, Incorporated Postpartum cells derived from umbilical cord tissue, and methods of making and using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862810B2 (en) 2000-07-31 2011-01-04 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
US20030082153A1 (en) 2001-10-22 2003-05-01 The Government Of The United States Of America Stem cells that transform to beating cardiomyocytes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027281A2 (fr) * 2001-09-20 2003-04-03 Kyowa Hakko Kogyo Kk Cellules souches totipotentes provenant des tissus intestinaux de muscle squelettique
WO2004019767A2 (en) * 2002-08-29 2004-03-11 Baylor College Of Medicine Heart derived cells for cardiac repair
WO2005003334A2 (en) * 2003-06-27 2005-01-13 Ethicon, Incorporated Postpartum cells derived from umbilical cord tissue, and methods of making and using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HIERLIHY A.M. ET AL.: "The post-natal heart contains a myocardial stem cell population", FEBS LETT., vol. 530, no. 1-3, 2002, pages 239 - 243, XP002366595 *
MESSINA E., ISOLATION AND EXPANSION OF ADULT CARDIAC
OH H. ET AL.: "Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction", PROC. NATL. ACAD. SCI. USA, vol. 100, no. 21, 2003, pages 12313 - 12318, XP002984517 *
OH H.: "Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction", PROC NATL ACAD SCI USA, vol. 100, 14 October 2003 (2003-10-14), pages 12313 - 12318, XP002984517, DOI: doi:10.1073/pnas.2132126100
See also references of EP1857544A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048166A1 (ja) 2007-10-10 2009-04-16 Kyoto University 細胞移植療法に用いられる心疾患治療薬
US8414924B2 (en) 2007-10-10 2013-04-09 Kyoto University Preparation for treating heart disease used in cell therapy
JP5496675B2 (ja) * 2007-10-10 2014-05-21 国立大学法人京都大学 細胞移植療法に用いられる心疾患治療薬
JP2018023401A (ja) * 2013-09-04 2018-02-15 株式会社大塚製薬工場 多能性幹細胞の調製方法
US10370639B2 (en) 2013-09-04 2019-08-06 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
US11155782B2 (en) 2013-09-04 2021-10-26 Otsuka Pharmaceutical Factory, Inc. Method for preparing pluripotent stem cells
KR20160136447A (ko) 2014-05-01 2016-11-29 아이하트 재팬 가부시키가이샤 Cd82 양성 심근 전구세포
US10208287B2 (en) 2014-05-01 2019-02-19 Iheart Japan Corporation CD82-positive cardiac progenitor cells
WO2019078278A1 (ja) * 2017-10-18 2019-04-25 国立大学法人京都大学 心筋細胞に分化させるための多能性幹細胞の製造方法
JPWO2019078278A1 (ja) * 2017-10-18 2020-11-05 国立大学法人京都大学 心筋細胞に分化させるための多能性幹細胞の製造方法
JP7373246B1 (ja) * 2023-02-24 2023-11-02 株式会社メトセラ 心臓内幹細胞を含む細胞集団
WO2024176514A1 (ja) * 2023-02-24 2024-08-29 株式会社メトセラ 心臓内幹細胞を含む細胞集団

Also Published As

Publication number Publication date
CA2600653C (en) 2014-09-09
EP2295541A1 (en) 2011-03-16
EP1857544A4 (en) 2008-08-13
US9867854B2 (en) 2018-01-16
EP1857544B1 (en) 2012-06-20
EP2295541B1 (en) 2016-04-27
CA2600653A1 (en) 2006-09-08
US20160228472A1 (en) 2016-08-11
JP4783909B2 (ja) 2011-09-28
WO2006093276A8 (ja) 2007-08-23
JPWO2006093276A1 (ja) 2008-08-07
EP1857544A1 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4783909B2 (ja) 心臓組織由来の多能性幹細胞
US8268619B2 (en) Method for the isolation and expansion of cardiac stem cells from biopsy
JP4336821B2 (ja) 哺乳動物の骨髄細胞または臍帯血由来細胞と脂肪組織を利用した心筋細胞の誘導
KR100907248B1 (ko) 분화된 어린 지방 세포와 생분해성 중합체의 이식에 의한신체의 부피 대체 방법
US20070202592A1 (en) Pluripotent Cells Distributed Ubiquitously In Animal Tissue, Which Proliferate Selectively In Lower-Serum Culture
AU2009343787A1 (en) Isolation of human umbilical cord blood-derived mesenchymal stem cells
WO2007010858A1 (ja) 骨格筋組織由来の単一細胞よりクローン化した多能性幹細胞
KR100677054B1 (ko) 제대혈로부터 다분화능 전구세포를 분리하여 배양하는 방법 및 이의 분화 유도방법
US20080241111A1 (en) Pluripotent Stem Cell Derived from Cardiac Tissue
Moon et al. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells
KR20120006386A (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
JP2021151269A (ja) 多能性幹細胞スフェロイドの製造方法、多能性幹細胞マーカーを発現させる方法、および多能性幹細胞スフェロイド
KR20110112164A (ko) 인간 줄기세포의 활성을 증가시키는 방법
WO2004074465A1 (ja) ヒト唾液腺由来幹細胞
JP2009153514A (ja) 心筋細胞分化誘導促進剤及びその使用方法
JP2006115771A (ja) 骨格筋由来の心筋幹細胞
KR20080094431A (ko) 말초 혈액 유래 단핵 세포로부터 신경 전구 세포를 분리,배양 및 분화하는 방법
KR101177869B1 (ko) 옥트(Oct)-4 발현능을 가지는 피부 유래 다분화능 성체줄기세포 및 그의 제조방법
Umran et al. Comparative Study of Expansion and Proliferation of Adult Mice Mesenchymal Stem Cells Derived from Bone Marrow and Adipose Tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007506027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2600653

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006715194

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715194

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11885111

Country of ref document: US