WO2006093163A1 - 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法 - Google Patents

表示装置、液晶モニター、液晶テレビジョン受像機および表示方法 Download PDF

Info

Publication number
WO2006093163A1
WO2006093163A1 PCT/JP2006/303783 JP2006303783W WO2006093163A1 WO 2006093163 A1 WO2006093163 A1 WO 2006093163A1 JP 2006303783 W JP2006303783 W JP 2006303783W WO 2006093163 A1 WO2006093163 A1 WO 2006093163A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
frame
sub
luminance
pixel
Prior art date
Application number
PCT/JP2006/303783
Other languages
English (en)
French (fr)
Inventor
Kazunari Tomizawa
Tomohiko Mori
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2007505967A priority Critical patent/JP5031553B2/ja
Priority to US11/884,344 priority patent/US8350796B2/en
Publication of WO2006093163A1 publication Critical patent/WO2006093163A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • Display device liquid crystal monitor, liquid crystal television receiver and display method
  • the present invention relates to a display device that displays an image by dividing one frame into a plurality of subframes.
  • CRTs cathode ray tubes
  • TN Transmission
  • Nematic type liquid crystal display panels (TN mode liquid crystal panels; TN panels) are becoming popular!
  • Patent Document 1 discloses a liquid crystal display device that switches the driving method of a TN panel depending on whether a displayed image is a moving image or a still image.
  • Patent Document 2 and Patent Document 3 there is a method in which one frame is divided and signal writing is performed multiple times on one pixel, and the signal writing voltage level is improved in combination.
  • liquid crystal display panels that require a wide viewing angle, such as a TV (television receiver), such as IPS (In-Plane-Switching) mode and VA (Vertical Alignment) mode, which are not in TN mode, are available.
  • a wide viewing angle is achieved by using liquid crystal.
  • the contrast is 10 or more in the range of 170 ° up, down, left, and right, and there is no gradation inversion.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-23707 (Release Date; January 25, 2002)
  • Patent Document 2 JP-A-5-68221 (Issue Date; March 19, 1993)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2001-296841 (Release Date; October 26, 2001)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-78157 (Release Date; March 11, 2004)
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-295160 (Release Date; October 15, 2003)
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2004-62146 (Publication Date; February 26, 2004)
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2004-258139 (Release Date; September 16, 2004)
  • Non-Patent Document 1 New edition Color Science Handbook; 2nd edition (University of Tokyo Press; Publication date; June 10, 1998)
  • the gradation characteristics change as the viewing angle increases, depending on the size.
  • the present invention has been made in view of the conventional problems as described above. And the objective is to provide the display apparatus which can suppress a white floating phenomenon.
  • the display device (present display device) of the present invention displays an image by dividing one frame into m (m; an integer of 2 or more) subframes.
  • the device is a liquid crystal display device that displays an image with high brightness based on the voltage of the display signal, and the total luminance output from the display unit in one frame is not changed by dividing the frame.
  • a first to m-th display signal that is a display signal of the first to m-th sub-frames, and a control unit that outputs the first to m-th display signal to the display unit.
  • the display device displays an image using a display unit having a display screen made up of a liquid crystal display element.
  • the control unit drives the display unit by subframe display.
  • the sub-frame display is a display method in which one frame is divided into a plurality of sub-frames (1st to m-th sub-frames) (m pieces; m is an integer of 2 or more).
  • control unit outputs the display signal to the display unit m times in one frame period (the first to m-th display signals that are the display signals of the first to m-th subframes in order). Output) .
  • the control unit turns on all the gate lines on the display screen of the display unit once (m is turned on m times in one frame).
  • control unit preferably sets the output frequency (clock) of the display signal to m times (m times clock) during normal hold display.
  • the normal hold display is a normal display that does not divide the frame into subframes (display that turns on all the gate lines on the display screen only once in one frame period).
  • the display unit (display screen) is designed to display an image having a luminance based on the voltage of the display signal input by the control unit (voltage corresponding to the luminance gradation of the display signal). . Then, the control unit generates the 1st to mth display signals so that the total luminance ( ⁇ degrees) output from the screen in one frame is not changed by dividing the frame (the display of these displays). Set the signal voltage).
  • the voltage of the display signal is a voltage (liquid crystal voltage) applied to the liquid crystal of each pixel in the display unit.
  • the brightness is the degree of brightness perceived by humans in accordance with the brightness of the displayed image (see formulas (5) and (6) in the embodiments described later). If the sum of brightness output in one frame is unchanged, the sum of brightness output in one frame is not changed.
  • the planned brightness is the brightness (a value corresponding to the liquid crystal voltage) that should be displayed on the display screen.
  • the actual brightness is the brightness actually displayed on the screen, and is a value that changes according to the viewing angle. At the front of the screen, these actual and planned brightness are equal. There is no lightness deviation. On the other hand, as the viewing angle increases, the brightness shift increases.
  • the control unit when displaying an image, it is preferable that the control unit causes the voltage of at least one of the first to m-th display signals to approach the minimum or the maximum.
  • the brightness deviation in at least one subframe can be made sufficiently small.
  • the brightness deviation can be suppressed smaller than in the case of performing the normal hold display, so that the viewing angle characteristics can be improved. For this reason, the white floating phenomenon can be satisfactorily suppressed.
  • one pixel in the display unit includes two sub-pixels (first sub-pixel and second sub-pixel) connected to the same source line and gate line.
  • the control unit displays halftone luminance (brightness other than white and black)
  • the control unit makes a difference between the luminance of the first subpixel and the luminance of the second subpixel, and sets one subpixel as a bright pixel. It is designed to be a pixel with a relatively high brightness and a dark pixel (a pixel with a lower brightness than one) (pixel division drive).
  • the control unit preferably sets the luminance of each sub-pixel so that the sum of the luminances output from both sub-pixels becomes the luminance corresponding to the display signal.
  • the luminance of both sub-pixels can be made maximum or close to the minimum as compared with the case where display is performed with one entire pixel. Therefore, the viewing angle characteristics of the present display device can be further improved.
  • the present display device uses both the pixel division driving and the sub-frame display. Therefore, the viewing angle characteristic can be made very good by these synergistic effects.
  • the control unit is designed to change the relationship between the brightness of one sub-pixel and the brightness of the other sub-pixel without always being constant when performing pixel division driving. It has been. That is, in the present display device, the relationship between the brightness of one subpixel and the brightness of the other subpixel is exchanged periodically or randomly. Therefore, in the present display device, even when an image of a uniform color is displayed, the brightness and / or dots are not fixed. For this reason, it is possible to reduce the above-mentioned crushing feeling.
  • control unit preferably sets the luminance of each sub-pixel so that the sum of the luminances output from both sub-pixels becomes the luminance corresponding to the display signal.
  • a configuration for performing the pixel division driving as described above may be designed as follows. First, each subpixel is connected to a different auxiliary line. Each subpixel is connected to a pixel element and a switch element that applies a display signal applied to the source line to the pixel capacitor when the gate line is turned on, and the pixel capacitor and the auxiliary line. With a supplementary capacity.
  • the brightness of each sub-pixel can be set by adjusting the state of the auxiliary signal and the polarity of the voltage (liquid crystal voltage) of the display signal. That is, in a normal display device, when the gate line is turned off, a pull-in phenomenon due to parasitic capacitance occurs. At this time, when the auxiliary signal input to each sub-pixel via the auxiliary line falls (high power also becomes low), the liquid crystal voltage drops by a predetermined value. At this time, if the auxiliary signal rises (from low to high), the liquid crystal voltage rises by a predetermined value.
  • the control unit changes the state of the auxiliary signal input to each sub-pixel (the state of the waveform immediately after the pull-in phenomenon (rising or falling)) for each sub-pixel. By adjusting the voltage polarity of the display signal, it is possible to control the level of luminance between the sub-pixels.
  • control unit preferably drives the liquid crystal voltage with alternating current. This is because the charge polarity of the pixel (the direction of the voltage polarity between the pixel electrodes across the liquid crystal) can be changed for each frame.
  • the value (absolute value) of the liquid crystal voltage applied between the pixel electrodes is often different between sub-frames!
  • the applied liquid crystal voltage may be biased due to the difference in the voltage value between the subframes. is there.
  • the liquid crystal panel is driven for a long time, electric charges accumulate on the electrodes, and there is a possibility that the above-mentioned seizure will generate a frit force. Therefore, in this display device, it is preferable to reverse the polarity of the liquid crystal voltage with the frame period.
  • Such a polarity inversion method is also effective in the case where one frame is divided into m subframes (m subfields). It is also effective when one frame is divided into two subframes (two subfields) and the division ratio is divided by a ratio of 1: n or n: 1.
  • the polarity of the liquid crystal voltage is changed between two subframes in one frame, while the first subframe of one frame and the first subframe are changed. Is equal to the second sub-frame of another frame adjacent to.
  • the control unit when the liquid crystal voltage is inverted at the frame period, the control unit preferably changes the state of the auxiliary signal input to each sub-pixel within the frame. This can avoid fixing the brightness of the sub-pixel.
  • the control unit assists input to each subpixel. You may change the state of a signal with a sub-frame period. Thereby, the brightness of the sub-pixel can be changed in the frame period.
  • the total liquid crystal voltage in two frames should be OV even if the voltage polarity is inverted for each subframe. Is possible.
  • the control unit may set the polarity inversion period of the liquid crystal voltage as a frame period or a subframe period.
  • the control unit alternately changes the state of the auxiliary signal input to each sub-pixel between sub-frames within one frame, and the last sub-frame of one frame and subsequent It is preferable to make it equal in the first subframe of the frame. Thereby, the brightness of the sub-pixel can be changed in the frame period.
  • the image signal input unit is for transmitting an image signal input from the outside to the control unit.
  • the control unit of the display device generates a display signal based on the image signal transmitted from the image signal input unit and outputs the display signal to the display unit.
  • a liquid crystal television receiver can be configured by combining the present display device and a tuner unit.
  • the tuner section is for receiving a television broadcast signal.
  • the image display method (present display method) of the present invention is a display method for displaying an image by dividing one frame into m (m; an integer of 2 or more) subframes.
  • the 1st to mth display signals which are display signals of the 1st to mth sub-frames, are generated from the liquid crystal display element so that the total luminance output from the display unit in one frame is not changed by dividing the frame.
  • Each of the pixels of the display unit includes a first sub-pixel and a second sub-pixel connected to the same source line and gate line, and the output step described above. However, it is designed to make a difference in luminance between the first sub-pixel and the second sub-pixel and change the relationship between the luminance of one sub-pixel and the luminance of the other sub-pixel without making it constant. It is the method characterized by this.
  • This display method is a method used in the above-described display device. Therefore, in these display methods, it is possible to reduce the shift in one frame as compared with the configuration in which the normal hold display is performed, and it is possible to suppress the whitening phenomenon caused by this shift. In addition, the user's feeling of crushing can be reduced.
  • the display device (present display device) of the present invention is a display device that displays an image by dividing one frame into m (m; an integer of 2 or more) subframes.
  • a display unit that displays a luminance image based on the voltage of the display signal, and the first to mth so that the total luminance output from the display unit per frame is not changed by dividing the frame.
  • a control unit that generates 1st to m-th display signals, which are display signals of the subframe, and outputs them to the display unit.
  • Each pixel of the display unit is connected to the same source line and gate line.
  • This is a configuration in which a luminance difference is given to the second sub-pixel, and the relationship between the luminance of one sub-pixel and the luminance of the other sub-pixel is always changed without making it constant.
  • control unit is designed so as to change the relationship between the luminance of one subpixel and the luminance of the other subpixel without always being constant when performing pixel division driving. ing. That is, in this display device, the relationship between the brightness of one subpixel and the brightness of the other subpixel is exchanged periodically or randomly. Therefore, in the present display device, even when an image of a uniform color is displayed, the brightness and / or dots are not fixed. For this reason, it is possible to reduce the crushing feeling that the user feels as described above.
  • FIG. 1 is a block diagram showing a configuration of a display device that is useful for one embodiment of the present invention.
  • FIG. 2 is a graph showing the display brightness (relationship between planned brightness and actual brightness) output from the liquid crystal panel in the case of normal hold display.
  • FIG. 3 is a graph showing display luminance (relation between planned luminance and actual luminance) output from the liquid crystal panel when subframe display is performed in the display device shown in FIG.
  • FIG. 4 (a) is an explanatory diagram showing an image signal input to the frame memory of the display device shown in FIG. 1, and (b) is a diagram of the frame memory in the case of 3: 1 division. It is explanatory drawing which shows the image signal output to a front
  • FIG. 5 is an explanatory diagram showing the ON timing of the gate line regarding the front display signal and the rear display signal when the frame is divided into 3: 1 in the display device shown in FIG.
  • FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness.
  • FIG. 7 is a graph showing the relationship between planned brightness and actual brightness when the frame is divided into 3: 1 in the display device shown in FIG.
  • FIG. 8 is an explanatory diagram showing a display device in which the configuration of the display device shown in FIG. 1 is partially changed.
  • FIG. 9 is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
  • FIG. 9B is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • FIG. 10 (a) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 10 (b) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 10 (c) is a diagram for explaining the response speed of the liquid crystal.
  • FIG. 11 is a graph showing display luminance (relationship between planned luminance and actual luminance) output from a liquid crystal panel when subframe display is performed using liquid crystal with a slow response speed.
  • FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance force Lmax is 3Z4 and 1Z4.
  • ⁇ 13 (a)] is an explanatory diagram showing a method of inverting the polarity of the interelectrode voltage at the frame period.
  • 13 (b)] is an explanatory diagram showing a method of inverting the polarity of the voltage between electrodes at a frame period.
  • FIG. 14 (a) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (b) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (c) is an explanatory diagram showing the four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 14 (d) is an explanatory diagram showing four pixels in the liquid crystal panel and the polarity of the liquid crystal voltage of each pixel.
  • FIG. 16 (a) is a graph showing the voltage (liquid crystal voltage) applied to the liquid crystal capacitance of the sub-pixel when a positive ( ⁇ Vcom) display signal is applied to the source line S.
  • FIG. 16 (b) When a negative ( ⁇ Vcom) display signal is applied to source line S, It is a graph which shows the voltage (liquid crystal voltage) applied to the liquid crystal capacity of a pixel.
  • FIG. 16 (c) is a graph showing the voltage (liquid crystal voltage) applied to the liquid crystal capacitance of the sub-pixel when a positive ( ⁇ Vcom) display signal is applied to the source line S.
  • FIG. 16 (d) is a graph showing the voltage (liquid crystal voltage) applied to the liquid crystal capacitance of the sub-pixel when a negative ( ⁇ Vcom) display signal is applied to the source line S.
  • FIG. 18 (a) is a graph showing a change in liquid crystal voltage (for one pixel) in the case of performing sub-frame display while inverting the polarity of the liquid crystal voltage every l frame.
  • ⁇ 18 (c)] is a graph showing the liquid crystal voltage of the sub-pixel (dark pixel) having the same low luminance.
  • ⁇ 19 (a)] is a graph showing the luminance of the bright and dark pixels corresponding to FIG. 18 (b).
  • ⁇ 19 (b)] is a graph showing the luminance of the bright pixel and the dark pixel corresponding to FIG. 18 (c).
  • ⁇ 20 (a)] is a graph showing the brightness of bright pixels and dark pixels when polarity inversion is performed in a frame cycle.
  • FIG. 20 (b) is a graph showing the brightness of bright pixels and dark pixels when polarity inversion is performed in the frame period.
  • ⁇ 21 This is a graph showing the combination of the subframe display, polarity inversion drive, and pixel division drive display results (broken line and solid line) and the normal hold display result (dashed line and solid line). is there.
  • ⁇ 22 (a)] is a graph showing the luminance of each sub-pixel when the polarity inversion of the liquid crystal voltage and the state change of the auxiliary signal are both performed in the sub-frame period.
  • ⁇ 22 (b)] is a graph showing the luminance of each sub-pixel when the polarity inversion of the liquid crystal voltage and the state change of the auxiliary signal are both performed in the sub-frame period.
  • FIG. 23 (a) is a graph showing the luminance of each sub-pixel corresponding to FIG. 22 (a).
  • FIG. 23 (b) is a graph showing the luminance of each sub-pixel corresponding to FIG. 22 (b).
  • FIG. 19 is an explanatory diagram showing a display state of sub-pixels of the liquid crystal panel in the case where the display is performed (in the case shown in FIGS. 18A and 18B).
  • FIG. 25 (a) “The liquid crystal voltage has the opposite polarity between two subframes in one frame, and the same polarity in the subsequent subframe and the previous subframe of the next frame” 6 is a graph showing the luminance of each sub-pixel when the state of the auxiliary signal is changed in the sub-frame cycle.
  • FIG. 25 (b) “The liquid crystal voltage has the opposite polarity between two subframes in one frame, and the same polarity in the subsequent subframe and the previous subframe of the next frame.”
  • 6 is a graph showing the luminance of each sub-pixel when the state of the auxiliary signal is changed in the sub-frame cycle.
  • FIG.26 This is a graph showing the result of dividing the frame into three equal subframes (broken line and solid line) and the result of normal hold display (dashed line and solid line). .
  • FIG. 27 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • FIG. 28 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each subframe.
  • FIG. 29 (a) Dividing the frame into three subframes and inverting the voltage polarity for each frame, while changing the auxiliary signal state between the three subframes in one frame , The transition of the luminance of each sub-pixel when the third (last) subframe of one frame is equal to the first (first) subframe of the next frame It is.
  • FIG. 29 (b) Dividing the frame into three sub-frames and inverting the voltage polarity for each frame, while changing the auxiliary signal state alternately between the three sub-frames in one frame , The transition of the luminance of each sub-pixel when the third (last) subframe of one frame is equal to the first (first) subframe of the next frame It is.
  • FIG. 30 (a) Dividing the frame into three sub-frames and inverting the voltage polarity for each sub-frame, while changing the auxiliary signal state between the three sub-frames in one frame.
  • the transition of the luminance of each sub-pixel when the third (last) subframe of one frame is equal to the first (first) subframe of the next frame It is a graph which shows.
  • FIG.31 Relationship between signal gradation (%; luminance gradation of display signal) output to display unit and actual luminance gradation (%) corresponding to each signal gradation in sub-frames without adjusting luminance It is a graph which shows (viewing angle gradation characteristic (actual measurement)).
  • FIG. 32 is an explanatory diagram showing a configuration of a liquid crystal television including the display device shown in FIG.
  • the liquid crystal display device (present display device) according to the present embodiment includes a vertical alignment (VA) mode liquid crystal panel divided into a plurality of domains.
  • VA vertical alignment
  • This display device functions as a liquid crystal monitor that displays externally input image signals on a liquid crystal panel.
  • FIG. 1 is a block diagram showing an internal configuration of the display device. As shown in this figure, this display device includes a frame memory (FM) 11, a front LUT 12, a rear LUT 13, a display unit 14 and a display unit 14. And a control unit 15.
  • FM frame memory
  • FIG. 1 is a block diagram showing an internal configuration of the display device. As shown in this figure, this display device includes a frame memory (FM) 11, a front LUT 12, a rear LUT 13, a display unit 14 and a display unit 14. And a control unit 15.
  • FM frame memory
  • the frame memory (image signal input unit) 11 stores an image signal (R GB signal) input from an external signal source for one frame.
  • the front-stage LUT (look-up table) 12 and the rear-stage LUT 13 are correspondence tables (conversion tables) between image signals input from the outside and display signals output to the display unit 14.
  • the present display device displays subframes! /.
  • the subframe display is a method of displaying one frame divided into a plurality of subframes.
  • the present display device performs display by two subframes having the same size (period) at twice the frequency based on the image signal for one frame input in one frame period. Designed.
  • the front LUT 12 is a correspondence table for display signals (previous display signal; second display signal) output in the previous subframe (previous subframe; second subframe).
  • the rear stage LUT 13 is a correspondence table for display signals (rear stage display signals; first display signals) output in a rear stage subframe (rear subframe; first subframe).
  • the display unit 14 includes a liquid crystal panel 21, a gate driver 22, and a source driver 23, and performs image display based on an input display signal.
  • the liquid crystal panel 21 is a VA mode active matrix (TFT) liquid crystal panel.
  • the control unit 15 is a central part of the display device that controls all operations in the display device.
  • the control unit 15 also generates a display signal from the image signal power accumulated in the frame memory 11 using the preceding LUT 12 and the latter LUT 13 and outputs the display signal to the display unit 14.
  • control unit 15 stores in the frame memory 11 an image signal transmitted at a normal output frequency (normal clock; for example, 25 MHz). Then, the control unit 15 outputs the image signal from the frame memory 11 twice with a clock having a frequency twice that of the normal clock (double clock; 50 MHz).
  • normal clock for example, 25 MHz
  • double clock twice that of the normal clock
  • control unit 15 generates a front display signal using the front LUT 12 based on the image signal output for the first time. After that, based on the image signal output for the second time, A rear display signal is generated using the LUT 13. These display signals are sequentially output to the display unit 14 with a double clock.
  • the display unit 14 displays different images once in one frame period based on two display signals that are sequentially input (the liquid crystal panel in both subframe periods).
  • the luminance gradation (signal gradation) of the display signal is in the range from 0 to 255.
  • L is the signal gradation (frame gradation) when displaying an image in one frame (when displaying an image with normal hold display)
  • Lmax is the maximum luminance gradation (255)
  • T is the display luminance.
  • is the correction value (usually 2.2).
  • the display brightness T output from the liquid crystal panel 21 in this case is shown as a graph in FIG.
  • This graph shows the “brightness that should be output (scheduled brightness; value according to signal gradation, equivalent to the above display brightness T)” on the horizontal axis, and “brightness actually output (actual Brightness) ”.
  • control unit 15 In the present display device, the control unit 15 is arranged in the present display device.
  • control unit 15 is designed to divide the frame equally into two subframes and display the luminance up to half of the maximum luminance by one subframe. .
  • the control unit 15 sets the previous subframe to the minimum luminance (black), and Tone expression is performed by adjusting only the display luminance of the sub-frame (tone expression is performed using only the subsequent sub-frame).
  • the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) Z2”.
  • the control unit 15 sets the rear subframe to the maximum luminance (white) and adjusts the display luminance of the previous subframe to adjust the display luminance. Make a representation.
  • the integrated luminance in one frame is “(luminance of the previous subframe + maximum luminance) Z2”.
  • the signal gradation setting is performed by the control unit 15 shown in FIG.
  • the control unit 15 preliminarily calculates the frame gradation corresponding to the above-described threshold luminance (TmaxZ2) using the above-described equation (1).
  • the control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11.
  • L is equal to or less than Lt
  • the control unit 15 sets the luminance gradation (F) of the preceding display signal to the minimum (0) by the preceding LUT 12.
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • the control unit 15 accumulates the previous stage display signal of the pixel (a number) of the first gate line with respect to the source driver 23 with a double clock.
  • control unit 15 turns on the first gate line by the gate driver 22 and writes the previous stage display signal to the pixels of this gate line. Thereafter, the control unit 15 similarly turns on the second to b-th gate lines with a double clock while changing the preceding display signal accumulated in the source driver 23. As a result, the previous stage display signal can be written to all the pixels in a half period of 1 frame (1Z2 frame period).
  • control unit 15 performs the same operation, and writes the post-stage display signal to the pixels of all the gate lines in the remaining 1Z2 frame period. As a result, the front display signal and the rear display signal are written to each pixel in equal time (1Z2 frame period).
  • Fig. 3 shows the result (broken line and solid line) of the subframe display in which the preceding display signal and the subsequent display signal are divided into the front and rear subframes and output (the dashed line and the solid line). It is a graph shown together with a chain line and a solid line.
  • the actual brightness and the planned brightness ( The deviation from the solid line is the minimum (0) when the display luminance is the minimum or maximum, while the liquid crystal panel 21 is the largest in the halftone (near the threshold luminance).
  • subframe display is performed in which one frame is divided into subframes. Further, the period of the two subframes is set to be equal, and in the case of low luminance, the previous subframe is displayed in black and the display is performed using only the rear subframe within a range in which the integrated luminance in one frame is not changed. Therefore, since the deviation in the previous subframe is minimized, as shown by the broken line in FIG. 3, the total deviation between both subframes can be reduced to about half.
  • the display is performed by adjusting the luminance of only the previous subframe while the subsequent subframe is displayed in white within a range in which the integrated luminance in one frame is not changed. For this reason, in this case as well, the shift of the subsequent subframe is minimized, so that the total shift of both subframes can be reduced to about half as shown by the broken line in FIG.
  • the overall shift can be reduced by about half compared to a configuration in which normal hold display is performed (a configuration in which an image is displayed in one frame without using a subframe). It is possible. For this reason, it is possible to suppress the phenomenon that a halftone image becomes bright and floats white as shown in FIG.
  • the white-floating phenomenon which is a problem in this display device, has a characteristic as shown in Fig. 2 when the viewing angle is large. It is a phenomenon that looks white.
  • an image captured by a camera is a signal based on luminance.
  • the image is converted into a display signal using ⁇ shown in equation (1) (that is, the luminance signal is multiplied by ( ⁇ ⁇ ) and divided equally. To add gradation).
  • shown in equation (1)
  • an image displayed by a display device such as a liquid crystal panel
  • a display luminance represented by equation (1).
  • the human visual sense receives an image not as luminance but as brightness.
  • the lightness (lightness index) M is expressed by the following equations (5) and (6) (see Non-Patent Document 1).
  • y is the y value of tristimulus values in the xyz color system of an arbitrary color
  • yn is the y value of standard diffuse reflection surface light
  • yn 100.
  • FIG. 6 is a graph showing the luminance graph shown in FIG. 3 converted to lightness.
  • This graph shows “lightness that should be output (scheduled lightness; value corresponding to signal tone, equivalent to lightness M above)” on the horizontal axis, and “lightness actually output (actual lightness). ) ”.
  • the above two brightness values are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 °).
  • ⁇ in this equation is about 2.5.
  • the subframe used for display when the luminance is low (the subframe that is maintained at the maximum luminance when the luminance is high) is set to a short period. Will be.
  • the control unit 15 sets the previous subframe to the minimum luminance (black).
  • gradation expression by adjusting only the display luminance of the subsequent sub-frame (representing gradation using only the subsequent sub-frame).
  • the integral luminance in one frame is “(minimum luminance + luminance of subsequent subframe) / 4”.
  • the control unit 15 sets the rear subframe to the maximum luminance (white) and sets the display luminance of the previous subframe. Adjust and perform gradation expression.
  • the integrated luminance in one frame is “(the luminance of the previous subframe + the maximum luminance) Z4”.
  • the signal gradation setting of display signals (previous display signal and subsequent display signal) for obtaining such display luminance will be specifically described. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
  • control unit 15 corresponds to the above threshold luminance (TmaxZ4) using the above equation (1).
  • the frame gradation to be calculated is preliminarily calculated.
  • control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11.
  • control unit 15 sets the luminance gradation (F) of the front display signal to the minimum (0) using the front LUT 12.
  • control unit 15 determines the luminance gradation (R) of the subsequent display signal based on the equation (1).
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255).
  • control unit 15 sets the luminance gradation F of the previous subframe based on the equation (1).
  • the write start timing of the subsequent display signal (the gate related to the subsequent display signal)
  • FIG. 4 (a) is an image signal input to the frame memory 11, (b) is an image signal output from the frame memory 11 to the preceding LUT 12 in the case of 3: 1 division, (C) is an explanatory view showing an image signal output to the subsequent LUT 13 in the same manner.
  • Fig. 5 shows the gate signal for the front display signal and the rear display signal in the same case of 3: 1 division. It is explanatory drawing which shows the ON timing of IN.
  • the control unit 15 writes the first stage display signal of the first frame to the pixels of each gate line with a normal clock. Then, after the 3Z4 frame period, writing of the subsequent display signal is started. From this time, the front display signal and the rear display signal are written alternately with a double clock.
  • FIG. 7 is a graph showing the relationship between the planned brightness and the actual brightness when the frame is divided into 3: 1. As shown in this figure, in this configuration, the frame can be divided at the point where the difference between the planned brightness and the actual brightness is the largest. Therefore, compared with the result shown in FIG. 6, the difference between the planned brightness and the actual brightness when the viewing angle is 60 degrees is very small.
  • the front subframe in the case of low luminance (low brightness) up to “TmaxZ4”, the front subframe is displayed in black and only the rear subframe is used within a range in which the integrated luminance in one frame is not changed. Is displayed. Therefore, the deviation in the previous subframe (the difference between the actual brightness and the planned brightness) is minimized, and the total deviation in both subframes can be reduced to approximately half as shown by the broken line in FIG.
  • the display is performed by adjusting the luminance of only the previous subframe while the subsequent subframe is displayed in white within a range where the integrated luminance in one frame is not changed. This Therefore, in this case as well, the deviation of the subsequent subframe is minimized, so that the total deviation of both subframes can be reduced to about half as shown by the broken line in FIG.
  • the previous stage display signal of the first frame is written to the pixels of each gate line with a normal clock. This is because the timing for writing the subsequent display signal has not been reached.
  • the display start time force may be displayed with a double clock using a dummy rear stage display signal.
  • the former display signal and the latter display signal of signal gradation 0 may be output alternately.
  • the control unit 15 outputs the previous sub-frame with the minimum luminance when outputting the luminance up to lZ (n + 1) (threshold luminance; Tmax / (n + 1)) of the maximum luminance in one frame (when the luminance is low).
  • lZ (n + 1) threshold luminance; Tmax / (n + 1)
  • gradation expression is performed by adjusting only the display luminance of the subsequent subframe (tone expression is performed using only the subsequent subframe).
  • the integrated luminance in one frame is “(minimum luminance + luminance of subsequent subframe) / (n + 1)”.
  • the control unit 15 sets the rear subframe to the maximum luminance (white) and displays the previous subframe. Adjust gradation and express gradation. In this case, the integral luminance in one frame is “(luminance of the previous subframe + maximum luminance) / (n + 1)”.
  • the signal gradation setting of the display signals (the front display signal and the rear display signal) for obtaining such display luminance will be specifically described. Also in this case, the signal gradation (and output operation described later) is set so as to satisfy the conditions (a) and (b) described above.
  • control unit 15 preliminarily calculates the frame gradation corresponding to the above-described threshold luminance (TmaxZ (n + 1)) using the above-described equation (1).
  • the frame gradation (threshold luminance gradation; Lt) corresponding to such display luminance is obtained from equation (1):
  • control unit 15 obtains the frame gradation L based on the image signal output from the frame memory 11.
  • control unit 15 sets the luminance gradation (F) of the previous display signal to the minimum (0) using the previous LUT 12.
  • control unit 15 determines the luminance gradation (R) of the rear display signal based on the equation (1).
  • the control unit 15 sets the luminance gradation R of the subsequent display signal to the maximum (255). On the other hand, the control unit 15 determines the luminance gradation F of the previous subframe based on the equation (1).
  • the display signal output operation in the operation when the frame is divided into 3: 1, the display signal of the previous stage is output with the double clock after the nZ (n + l) frame period of the first frame. It is sufficient to design so that and the subsequent display signal are output alternately.
  • n 2 or more
  • the clock needs to be very fast, which increases the device cost. Therefore, when n is 2 or more, it is preferable to alternately output the preceding display signal and the succeeding display signal as described above.
  • the ratio of the preceding subframe and the succeeding subframe can be set to n: 1 by adjusting the output timing of the subsequent display signal. Can be maintained at twice the normal level.
  • the control unit 15 converts the image signal into a display signal using the front-stage LUT 12 and the rear-stage LUT 13.
  • the front LUT12 provided in this display device
  • the latter LUT 13 may be plural.
  • FIG. 8 shows the configuration shown in FIG. 1, in which three front-stage LUTs 12a to
  • the rear stage LUT 13 is replaced with three rear stage LUTs 13a to 13c, and a temperature sensor 16 is further provided.
  • the liquid crystal panel 21 changes its response characteristics and gradation luminance characteristics depending on the environmental temperature (the temperature (temperature) of the environment where the display unit 14 is placed). For this reason, the optimum display signal corresponding to the image signal also changes according to the environmental temperature.
  • the preceding LUTs 12a to 12c are the preceding LUTs suitable for use in different temperature ranges.
  • the rear LUTs 13a to 13c are also rear LUTs suitable for use in different temperature ranges.
  • the temperature sensor 16 measures the ambient temperature of the display device and transmits the measurement result to the control unit 15.
  • control unit 15 is designed to switch the LUT to be used based on the environmental temperature information transmitted from the temperature sensor 16. Therefore, in this configuration, a more appropriate display signal can be transmitted to the liquid crystal panel 21 with respect to the image signal. Therefore, it is possible to display an image with a more faithful luminance in the entire assumed temperature range (for example, a range of 0 ° C to 65 ° C).
  • the liquid crystal panel 21 is preferably driven by alternating current. This is because by using AC driving, the charge polarity of the pixel (the direction of the voltage between the pixel electrodes (voltage between the electrodes) sandwiching the liquid crystal) can be changed for each frame.
  • the present display device it is preferable to reverse the polarity of the voltage between the electrodes at the frame period (period of one frame time width).
  • One method is to apply a voltage of the same polarity for one frame.
  • the voltage between the electrodes is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are driven with the same polarity. It is.
  • Figure 9 (a) shows the relationship between the voltage polarity (polarity of the voltage between electrodes) and the frame period when the former method is used.
  • Figure 9 (b) shows the relationship between voltage polarity and frame period when the latter method is used.
  • the liquid crystal panel 21 is driven by sub-frame display, thereby suppressing whitening.
  • the response speed of the liquid crystal the speed at which the voltage applied to the liquid crystal (interelectrode voltage) becomes equal to the applied voltage
  • the effect of such subframe display may be diminished.
  • one liquid crystal state corresponds to a certain luminance gradation in the TFT liquid crystal panel. Therefore, the response characteristics of the liquid crystal do not depend on the luminance gradation of the display signal.
  • the relationship between the planned brightness and the actual brightness is as shown in FIG. In other words, even when subframe display is performed, it is not possible to perform display with luminance (minimum luminance / maximum luminance) in which the difference (shift) between the planned luminance and the actual luminance when the viewing angle is large is small.
  • the response speed of the liquid crystal in the liquid crystal panel 21 is designed to satisfy the following (c) and (d): Is preferred.
  • control unit 15 is preferably designed so that the response speed of the liquid crystal can be monitored.
  • the control unit 15 interrupts the subframe display.
  • the liquid crystal panel 21 may be set to be driven by normal hold display.
  • the display device functions as a liquid crystal monitor.
  • this display device function as a liquid crystal television receiver (liquid crystal television).
  • liquid crystal television has the display device shown in FIG. This can be realized by providing a tuner unit 17 in the installation.
  • the tuner unit 17 selects a channel of a television broadcast signal, and the television image signal of the selected channel is transmitted to the control unit 15 via a circuit (not shown) that performs various video processing.
  • control unit 15 generates a display signal based on the TV image signal.
  • a liquid crystal television can also be realized by including the tuner unit 17 in the display device shown in FIG.
  • the previous subframe is black, and gradation representation is performed using only the rear subframe.
  • the subframe contexts are exchanged (if the luminance is low, the subsequent subframe is black and the gradation is expressed using only the previous subframe), the same display is obtained. can get.
  • the luminance gradation (signal gradation) of the display signal (the preceding display signal and the succeeding display signal) is set using equation (1).
  • the actual panel has brightness even in the case of black display (gradation 0), and the response speed of the liquid crystal is finite. Therefore, these factors must be taken into account when setting the signal gradation. Is preferred.
  • an actual image is displayed on the liquid crystal panel 21, the relationship between the signal gradation and the display luminance is measured, and the LUT (output table) is determined so as to meet the equation (1) based on the actual measurement result. Is preferred.
  • This range is not strictly derived, but is a range that is considered to be almost appropriate for human visual sense.
  • y 2.2 is set according to the input signal gradation (luminance gradation of the display signal).
  • a voltage signal is output to each pixel (liquid crystal) so that the display brightness obtained using equation (1) can be obtained.
  • Such a source driver 23 outputs the voltage signal used in the normal hold display as it is in each subframe according to the input signal gradation even when performing the subframe display. It becomes.
  • the source driver 23 is preferably designed to output a voltage signal converted into the divided luminance. That is, it is preferable that the source driver 23 is set so as to finely adjust the voltage (interelectrode voltage) applied to the liquid crystal according to the signal gradation. For this reason, it is preferable to design the source driver 23 for sub-frame display so that the fine adjustment described above can be performed.
  • the liquid crystal panel 21 is a VA panel!
  • the present invention is not limited to this, and even when a liquid crystal panel of a mode other than the VA mode is used, the white-out phenomenon can be suppressed by the sub-frame display of this display device.
  • the sub-frame display of this display device is a liquid crystal panel in which the planned brightness (scheduled brightness) and actual brightness (actual brightness) deviate when the viewing angle is increased. It is possible to suppress the white floating phenomenon for liquid crystal panels in changing modes.
  • the sub-frame display of the present display device is effective for a liquid crystal panel having a characteristic that the display luminance increases as the viewing angle is increased.
  • the liquid crystal panel 21 in the present display device may be NB (Normally Black) or NW (Normally White). Furthermore, in this display device, instead of the liquid crystal panel 21, another display panel (for example, an organic EL panel or a plasma display panel) may be used! ,.
  • the present invention it is preferable to divide the frame into 1: 3 to 1: 7.
  • the present invention is not limited to this, and the display device may be designed to divide the frame within a range of l: n or n: l (n is a natural number of 1 or more)! /.
  • the signal gradation of the display signal (the front display signal and the rear display signal) is set using the above-described equation (10).
  • the gradation Lt is the frame gradation of this luminance.
  • Lt may be a little more complicated, and the threshold luminance Tt may not be expressed by a simple equation. Therefore, it may be difficult to express Lt with Lmax. In such a case, to obtain Lt, it is preferable to use the result of measuring the luminance of the liquid crystal panel. In other words, when the sub-frame on one side has the maximum luminance and the luminance of the other sub-frame has the minimum luminance, the luminance emitted from the liquid crystal panel is measured and the luminance is defined as Tt. Then, the gradation Lt of spillage is determined by the following formula.
  • Lt obtained using Equation (10) is an ideal value, and is preferably used as a guideline.
  • FIG. 12 (a) is a graph showing the luminance displayed by the previous subframe and the rear subframe when the display luminance power Lmax is 3Z4 and 1Z4.
  • the voltage value applied to the liquid crystal (voltage value applied between pixel electrodes; absolute value) differs between sub-frames.
  • the polarity of the liquid crystal voltage at the frame period there are two ways to invert the polarity of the liquid crystal voltage with the frame period.
  • One method is to apply a voltage of the same polarity for one frame.
  • the other method is a method in which the liquid crystal voltage is reversed in polarity between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame are in the same polarity. is there.
  • FIG. 13 (a) is a graph showing the relationship between the voltage polarity (polarity of the liquid crystal voltage), the frame period, and the liquid crystal voltage when the former method is used.
  • Fig. 13 (b) is a similar graph when the latter method is used.
  • FIGS. 14 (a) to 14 (d) are explanatory diagrams showing the four pixels in the liquid crystal panel 21 and the polarity of the liquid crystal voltage of each pixel. As described above, regarding the voltage applied to one pixel, it is preferable to reverse the polarity in the frame period. In this case, the polarity of the liquid crystal voltage of each pixel changes as shown in FIG. 14 (a) to FIG. 14 (d) in each frame period.
  • the sum of the liquid crystal voltages applied to all the pixels of the liquid crystal panel 21 is preferably set to OV.
  • Such control can be realized, for example, by changing the voltage polarity between adjacent pixels as shown in FIGS. 14 (a) to 14 (d).
  • this display device may be designed to perform pixel division driving (area gradation driving)! /.
  • FIG. 15 is an explanatory diagram showing the configuration of the liquid crystal panel 21 driven by pixel division.
  • pixel division driving one pixel P connected to the gate line G and source line S of the liquid crystal panel 21 is divided into two sub-pixels (sub-pixels) SP1. SP2. To do. Then, the display is performed by changing the voltage applied to each of the sub-pixels SP1'SP2.
  • Such pixel division driving is described in Patent Documents 4 to 7, for example.
  • auxiliary capacitance lines CS1′CS2 are arranged so as to sandwich one pixel P. These auxiliary capacitance lines CS1 'CS2 are connected to one of the sub-pixels SP1 and SP2, respectively.
  • each subpixel SP1.SP2 has a TFT31, a liquid crystal capacitor 32, and an auxiliary capacitor 33 provided therein.
  • the TFT 31 is connected to the gate line G, the source line S, and the liquid crystal capacitor 32.
  • the auxiliary capacitor 33 is connected to the TFT 31, the liquid crystal capacitor 32, and the auxiliary capacitor line CS1 or CS2.
  • An auxiliary signal that is an AC voltage signal having a predetermined frequency is applied to the auxiliary capacitance lines CS1′CS2.
  • the phases of the auxiliary signals applied to the auxiliary capacitance lines CS1′CS2 are inverted (180 ° different).
  • the liquid crystal capacitor 32 is connected to the TFT 31, the common voltage Vcom, and the auxiliary capacitor 33.
  • the liquid crystal capacitor 32 is connected to a parasitic capacitor 34 generated between itself and the gate line G.
  • Fig. 16 (a) and Fig. 16 (c) show the voltage applied to the liquid crystal capacitance 32 of the sub-pixel SPl 'S P2 when a positive ( ⁇ Vcom) display signal is applied to the source line S at this time. It is a graph which shows (liquid crystal voltage). In this case, as shown in FIGS. 16 (a) and 16 (c), the voltage value of the liquid crystal capacitance 32 of both subpixels SP1 and SP2 rises to a value (VO) corresponding to the display signal.
  • VO value
  • the auxiliary signal of the auxiliary capacitance line CS2 falls (goes from high to low). Then, the liquid crystal voltage of the sub-pixel SP2 connected thereto decreases by a value Vcs corresponding to the amplitude of the auxiliary signal. Then, it vibrates between VO-Vd and VO-Vd Vcs.
  • FIGS. 16 (b) and 16 (d) show the subpixel SP1 when a negative ( ⁇ Vcom) display signal is applied to the source line S when the gate line G is turned ON. 'This is a graph showing the liquid crystal voltage of SP2. In this case, as shown in these figures, the liquid crystal voltage of the subpixels SP1 and SP2 drops to a value (one VI) corresponding to the display signal.
  • the auxiliary signal of the auxiliary capacitance line CS2 rises.
  • the liquid crystal voltage of the sub-pixel SP2 connected to this increases by Vcs. After that, it vibrates between VO—Vd and V0—Vd—Vcs.
  • the absolute value of the applied voltage of the liquid crystal capacitor 32 is the display signal. It becomes higher than the voltage (Fig. 16 (b)). On the other hand, input an auxiliary signal that rises at this time. For the sub-pixel, the absolute value of the liquid crystal voltage is lower than the display signal voltage (FIG. 16 (d)).
  • the liquid crystal voltage (absolute value) power of the subpixel SP1 is higher than the subpixel SP2 (the display luminance power of the subpixel SP1 Higher than SP2).
  • the liquid crystal voltage difference (Vcs) of the sub-pixels SP1′SP2 can be controlled according to the amplitude value of the auxiliary signal applied to the auxiliary capacitance line CS1′CS2. As a result, a desired difference can be given to the display luminance (first luminance, second luminance) of the two sub-pixels S P1 ′ SP2.
  • Table 1 shows the polarity of the liquid crystal voltage applied to the sub-pixel (bright pixel) with high luminance and the sub-pixel (low pixel) with low luminance, and the state of the auxiliary signal immediately after the pull-in phenomenon. Shown together.
  • the polarity of the liquid crystal voltage is indicated by “+, ⁇ ”.
  • the case where the auxiliary signal rises immediately after the pull-in phenomenon is indicated by “ ⁇ ”, and the case where it falls is indicated by “I”.
  • the luminance of the pixel P is the sum of the luminances of the two sub-pixels SP1 ′ SP2 (corresponding to the liquid crystal transmittance).
  • Fig. 17 is a graph showing the relationship between the transmittance of the liquid crystal panel 21 and the applied voltage at two viewing angles (0 ° (front) and 60 °) when pixel division driving is not performed. It is. As shown in this graph, when the transmittance at the front is NA (when the liquid crystal voltage is controlled to be NA), the transmittance at a viewing angle of 60 ° is LA.
  • NA (NB1 + NB2) / 2).
  • the transmittance at 0 ° in the subpixels SP1 and SP2 is NB1 ⁇ ⁇ 2, the transmittance at 60 ° is LB1 -LB2. And LB1 is almost zero. Therefore, the transmittance of one pixel is M (LB2Z2), which is lower than LA. Thus, the viewing angle characteristics can be improved by performing pixel division driving.
  • the luminance of one subpixel is set to black display (white display), and the luminance of the other subpixel is adjusted. It is also possible to display a low luminance (high luminance) image. As a result, similarly to the sub-frame display, the deviation between the display luminance and the actual luminance in one sub-pixel can be minimized, so that the viewing angle characteristics can be further improved.
  • one of the sub-pixels may be configured not to display black (white display). That is, if there is a luminance difference between both subpixels, in principle, the viewing angle can be improved. Therefore, since the CS amplitude can be reduced, the panel drive design becomes easy.
  • the sub-pixel SP1 is set to the first luminance, while the sub-pixel SP2 is designed to have the second luminance different from the first luminance. It only has to be.
  • the total voltage in two frames applied to the two liquid crystal capacitors 32 of the pixel P can be set to OV. Therefore, it becomes possible to cancel the DC component of the applied voltage.
  • one pixel is divided into two.
  • the present invention is not limited to this, and one pixel may be divided into three sub-pixels.
  • the above-described pixel division driving may be combined with normal hold display, or may be combined with subframe display.
  • the polarity inversion driving shown in FIGS. 12 (a), 12 (b), 13 (a) and 13 (b) may be combined.
  • Fig. 18 (a) is the same as Fig. 13 (a), but the change in the liquid crystal voltage (for one pixel) when the sub-frame display is performed while inverting the polarity of the liquid crystal voltage every frame. It is a graph which shows.
  • FIG. 18 (b) shows the liquid crystal voltage of the sub-pixel (bright pixel) that increases in luminance in pixel division driving
  • FIG. 18 (c) shows the sub-pixel (dark pixel) that also decreases in luminance.
  • the wavy line indicates the liquid crystal voltage when pixel division driving is not performed, while the solid line indicates the liquid crystal voltage when pixel division driving is performed.
  • FIGS. 19 (a) and 19 (b) are graphs showing the luminances of bright pixels and dark pixels corresponding to FIGS. 18 (b) and 18 (c).
  • ⁇ and ⁇ shown in these figures are symbols indicating the state of the auxiliary signal immediately after the pulling phenomenon (whether it rises or falls immediately after the pulling phenomenon).
  • the liquid crystal voltage polarity of each sub-pixel is inverted every frame. This is to appropriately cancel the liquid crystal voltage that differs between subframes (the total liquid crystal voltage in two frames is OV).
  • the auxiliary signal state (phase immediately after the pull-in phenomenon; I) is reversed with the same phase as the polarity reversal.
  • the liquid crystal voltage (absolute value) and The brightness is high for bright pixels, but low for dark pixels.
  • the amount of increase in the liquid crystal voltage at the bright pixel in the previous subframe coincides with the amount of decrease at the dark pixel.
  • the increase amount of the liquid crystal voltage at the bright pixel in the subsequent subframe is equal to the decrease amount at the dark pixel.
  • the total liquid crystal voltage in two frames can be set to OV (note that the previous subframe and the rear subframe
  • the amount of increase (decrease) in the liquid crystal voltage due to pixel division drive differs from that of the screen. This occurs because the volume changes depending on the transmittance of the liquid crystal).
  • the liquid crystal voltage polarity of each sub-pixel is inverted every frame.
  • the present invention is not limited to this, and the polarity of the liquid crystal voltage may be reversed at the frame period. Therefore, as shown in Fig. 13 (b), the liquid crystal voltage is reversed between two subframes in one frame, and the subsequent subframe and the previous subframe of the next frame have the same polarity. You can do that.
  • FIG. 20 (a) and FIG. 20 (b) are graphs showing the luminance of the bright pixel and the dark pixel when the polarity is inverted in this way.
  • the total liquid crystal voltage in two frames can be set to OV by inverting the polarity of the auxiliary signal in the same phase as the polarity inversion ( ⁇ , ⁇ ).
  • Fig. 21 shows the result of displaying a combination of sub-frame display, polarity inversion drive, and pixel division drive (broken line and solid line) as described above, and normal hold display. It is a graph shown together with the results (dotted line and solid line; similar to those shown in FIG. 2). As shown in this graph, when the viewing angle is 60 °, the actual luminance can be made very close to the planned luminance by combining sub-frame display and pixel division driving. Therefore, it can be seen that the viewing angle characteristic can be made extremely good by the synergistic effect of the sub-frame display and the pixel division driving.
  • the state of the auxiliary signal (phase immediately after the pull-in phenomenon; I) is the same phase as the polarity inversion, and is inverted in the frame period (period of one frame time width). It is going to let you.
  • the control unit 15 may change the period or phase between the change of the auxiliary signal and the polarity reversal.
  • FIG. 22 (a) and Fig. 22 (b) show the state of the auxiliary signal when the sub-frame display is performed while the polarity of the liquid crystal voltage is inverted every frame (see Fig. 18 (a)).
  • 6 is a graph showing the liquid crystal voltage applied to both sub-pixels SP1 ′ SP2 when is changed with the subframe period.
  • FIG. 23 (a) and FIG. 23 (b) are graphs showing the luminance of the subpixels SP1′SP2 corresponding to FIG. 22 (a) and FIG. 22 (b).
  • the liquid crystal voltage in the subsequent sub-frame Decreases, while the liquid crystal voltage of the previous subframe increases. Further, in the sub-pixel SP2, the liquid crystal voltage in the subsequent subframe increases while the liquid crystal voltage in the previous subframe decreases. Therefore, even with this configuration, the total liquid crystal voltage within two frames can be reduced to approximately 0V. For this reason, it is possible to cancel the direct current component of the liquid crystal voltage to an extent that there is no problem.
  • FIG. 6 is an explanatory diagram showing a display state of sub-pixels SP1′SP2 of the liquid crystal panel 21 in the case of FIG.
  • FIG. 24 (a) is a diagram showing a display state in the previous subframe in pixels (part) of one line.
  • FIG. 24 (b) shows the display state in the subsequent subframe of pixels for one line.
  • FIG. 24 (c) shows the state of pixels for three lines in any subframe.
  • each ij pixel SP1.SP2 is fixed to either one of the bright pixel and the ⁇ pixel. And even if the subframe changes
  • each sub-pixel is maintained (bright pixels always remain light pixels without changing to dark pixels).
  • each subpixel SP1 'SP2 changes the role of bright pixels' dark pixels (changes the brightness; changes the brightness relationship between the luminance of one subpixel and the luminance of the other subpixel without changing it constantly in the frame period. ).
  • Sarako in this case, light and dark are exchanged within one frame.
  • each of the sub-pixels SP1'SP2 has a target display luminance (Fig.
  • the display luminance in one frame from both sub-pixels in the configuration of Fig. 18 (b) can be displayed independently in two frames.
  • the sub-pixels SP1 and SP2 output display lights having substantially the same luminance as each other (in FIGS. 23 (a) and 23 (b), the timing of the bright pixel is shown by a solid line while the dark pixel is dark). The pixel timing is indicated by a broken line).
  • the sub-frame display is performed while inverting the polarity of the liquid crystal voltage for each frame.
  • the liquid crystal voltage has a reverse polarity between two subframes in one frame, and the And the same polarity for the previous subframe of the next frame (see Fig. 19 (b)) ", and the same effect can be achieved with a configuration in which the state of the auxiliary signal is changed by the subframe period.
  • each subpixel SP1.SP2 is fixed to either a bright pixel or a dark pixel within one frame.
  • display light having almost the same luminance is output from the entire two frames.
  • each of the sub-pixels SP1 and SP2 has the target display luminance (display luminance in one frame from both sub-pixels in the configurations of FIGS. 18 (a) and 18 (b)). Can be displayed independently in two frames. For this reason, it is possible to reduce the above-mentioned crushing feeling.
  • the ratio of the previous subframe period and the subsequent subframe period (frame division ratio) to 3: 1 to 7: 1.
  • the present invention is not limited to this, and the frame division ratio may be set to 1: 1 or 2: 1.
  • the liquid crystal panel 21 it takes time according to the response speed of the liquid crystal before the liquid crystal voltage (voltage applied to the liquid crystal; voltage between electrodes) is set to a value corresponding to the display signal. Therefore, if any of the subframe periods is too short, there is a possibility that the voltage of the liquid crystal cannot be increased to a value corresponding to the display signal within this period.
  • n 1
  • the division ratio may be n: l (n is a real number of 1 or more (more preferably, a real number greater than 1)). For example, by setting this division ratio to 1.5: 1, viewing angle characteristics can be improved as compared to 1: 1. In addition, it becomes easier to use a liquid crystal material with a slow response speed as compared with the case of 2: 1.
  • the front subframe When displaying low-brightness (low brightness) images up to 1 / (TmaxZ (n + l)) j, the front subframe should be displayed in black and only the back subframe should be used for display. Is preferred.
  • the rear subframe when displaying an image with high brightness (high brightness) that is greater than or equal to "TmaxZ (n + 1)", the rear subframe should be displayed in white and only the brightness of the previous subframe adjusted. Is preferred. This ensures that one subframe is always in a state where there is no difference between the actual luminance and the planned luminance. Therefore, the viewing angle characteristics of the display device can be improved.
  • n 1
  • n l and l: n are the same in terms of viewing angle improvement effect.
  • n is a real number of 1 or more, it is effective for controlling the luminance gradation using the above equations (10) to (12).
  • the sub-frame display of this display device is divided into two frames. It is assumed that the display is divided into subframes. However, the present invention is not limited to this, and the display device may be designed to perform subframe display in which a frame is divided into three or more subframes.
  • Fig. 26 shows the result of dividing the display into three equal sub-frames by this display device (dashed line and solid line) and the result of normal hold display (dashed line and solid line). The same as in FIG. 2). As shown in this graph, when the number of subframes is increased to 3, the actual brightness can be made very close to the planned brightness. Therefore, it can be seen that the viewing angle characteristics of the present display device can be improved.
  • Fig. 27 is a graph showing the transition of the liquid crystal voltage when the frame is divided into three and the voltage polarity is inverted for each frame.
  • the total liquid crystal voltage in two frames can be OV.
  • Fig. 28 is a graph showing the transition of the liquid crystal voltage when the frame is similarly divided into three and the voltage polarity is inverted for each subframe.
  • the voltage polarity is set for each subframe. Even if it is inverted, the total liquid crystal voltage in two frames can be set to OV.
  • the control unit 15 has different forces between the M-th (M; l to m) subframes between adjacent frames. It can be said that the liquid crystal voltage is preferably applied. As a result, the total liquid crystal voltage in two frames can be set to OV.
  • the liquid crystal voltage is set so that the total liquid crystal voltage in 2 frames (or more frames) is OV. It is preferable to reverse the polarity.
  • Fig. 29 (a) and Fig. 29 (b) the frame is divided into three sub-frames, and the polarity of the voltage is inverted for each frame. Alternate between the three subframes of the same, and make the third (last) subframe of one frame equal to the first (first) subframe of the next frame.
  • 4 is a graph showing the transition of luminance of each sub-pixel SP1 ′ SP2.
  • Fig. 30 (a) and Fig. 30 (b) the frame is divided into three subframes, and the polarity of the voltage is inverted for each subframe. Alternating between three subframes and equalizing the third (last) subframe of one frame and the first (first) subframe of the next frame 4 is a graph showing the transition of luminance of each sub-pixel SP1 ′ SP2.
  • each of the sub-pixels SP1 and SP2 has the target display luminance (display luminance in one frame from both sub-pixels in the configurations of FIGS. 18 (a) and 18 (b)). Can be displayed alone in a frame. For this reason, it is possible to reduce the above-mentioned crushing feeling.
  • Fig. 30 (b) the configuration in which the roles of the subpixels SP1 and SP2 (bright pixels and dark pixels) are changed within one frame (or with a frame period) causes the following problems. May occur. That is, as shown in Figs. 23 (b) and 29 (b), when the frame frequency is set to 60 Hz, a luminance difference occurs between the frames, so the frequency of the luminance change in each sub-pixel SP1 'SP2 is 30 Hz. It becomes. For this reason, in this configuration, there is a possibility of generating a flickering force.
  • the configuration shown in Figs. 29 (a) and 29 (b) is more in comparison with the configuration shown in Figs. 30 (a) and 30 (b). It can be said that it is excellent. That is, in the former, the role of the bright pixel ' ⁇ pixel in each subpixel SP1' SP2 changes within one frame. On the other hand, in the latter case, the gij pixel SP1.SP2 is fixed to one of the bright pixel and the negative pixel only within one frame.
  • the luminance difference between frames in the sub-pixels SP1 and SP2 can be reduced as compared with the latter. For this reason, it becomes possible to reduce generation
  • this display device Inverts the liquid crystal voltage at the frame period and inputs it to each subpixel SP1'SP2. It is preferable to change the state of the auxiliary signal to be changed at the subframe period. As a result, the brightness of the subpixels SP1 and SP2 can be changed by the frame period.
  • the total liquid crystal voltage in two frames should be OV even if the voltage polarity is inverted for each subframe. Is possible.
  • control unit 15 alternately changes the state of the auxiliary signal input to each of the subpixels SP1'SP2 between subframes within one frame, and at the same time, the last subframe of one frame and the subsequent frame Is preferably equal to the first subframe.
  • the brightness of the subpixels S P1 and SP2 can be changed in the frame period.
  • the subpixel S is changed by changing the state of the auxiliary signal in the subframe cycle.
  • the brightness of PI 'SP2 is changed by the frame period.
  • the brightness of the subpixels SP1 and SP2 may be changed at a period other than the frame period or may be changed randomly without a period.
  • black display (minimum luminance) can improve viewing angle characteristics.
  • the luminance is not adjusted!
  • the luminance of the subframe may be set to "a value greater than the maximum or the second predetermined value” instead of the maximum luminance.
  • “the minimum or smaller than the first predetermined value” may be used instead of setting the minimum luminance.
  • the deviation (brightness deviation) between the actual brightness and the scheduled brightness in the subframe in which the luminance is not adjusted can be sufficiently reduced. Therefore, the viewing angle characteristics of the present display device can be improved.
  • FIG. 31 shows the signal gradation (%: luminance gradation of the display signal) output to the display unit 14 and the actual luminance scale corresponding to each signal gradation in the sub-frame where the luminance is not adjusted. It is a graph showing the relationship (viewing angle gradation characteristics (actual measurement)) with tone (%).
  • the actual luminance gradation is “the luminance (actual luminance) output from the liquid crystal panel 21 of the display unit 14 in accordance with each signal gradation is calculated using the above equation (1). Converted into a key. ” As shown in this graph, the above two gradations are equal on the front surface of the liquid crystal panel 21 (viewing angle 0 degree). On the other hand, when the viewing angle is set to 60 degrees, the actual luminance gradation is halftone and brighter than the signal gradation due to whitening. Also, this whitening takes the maximum value when the luminance gradation is between 20% and 30% regardless of the viewing angle.
  • the second predetermined value it is preferable to set the second predetermined value to 80% of the maximum luminance, and it is preferable to set the first predetermined value to 0.02% of the maximum luminance. I can say that.
  • the present invention is a display device that displays an image by dividing one frame into m (m; an integer of 2 or more) subframes, and is based on the voltage of an input display signal. This is a display signal for the 1st to mth sub-frames so that the sum of the luminance output from the display unit per frame is not changed by dividing the frame.
  • each pixel of the liquid crystal display unit is the same
  • the first subpixel and the second subpixel are connected to the source line and the gate line, and the luminance changes in accordance with the voltage of the display signal, and the control unit applies to at least one display signal voltage.
  • Brighten one of the first and second subpixels And iodine, the other side with a ⁇ element, the sub-pixels to be bright pixel, the display device is designed so interchanged in a predetermined cycle, and can also be expressed.
  • the liquid crystal television receiver of the present invention is a display device that displays an image by dividing one frame into m (m; an integer greater than or equal to 2) sub-frames.
  • the display unit which has a liquid crystal display element that displays an image with a brightness based on the display, and the sum of the brightness output from the display unit in one frame are not changed by dividing the frame into the first to mth sub-frames.
  • a control unit that generates first to mth display signals that are display signals and outputs them to the display unit
  • Each pixel of the display unit includes a first subpixel and a second subpixel connected to the same source line and gate line, and the control unit includes the first subpixel and the second subpixel.
  • the arithmetic device (CPU or MPU) of the information processing device reads the program recorded on the recording medium and executes processing. Therefore, it can be said that this program itself realizes processing.
  • the information processing apparatus in addition to a general computer (workstation or personal computer), a function expansion board or a function expansion boot mounted on the computer can be used.
  • the above-mentioned program is a program code (execution format program, intermediate code program, source program, etc.) of software that realizes processing.
  • This program may be used alone or in combination with other programs (such as OS).
  • the program may be such that after the recording medium power is read out, it is stored in memory (such as RAM) in the apparatus, and then read out and executed again.
  • the recording medium on which the program is recorded may be one that can be easily separated from the information processing apparatus, or one that is fixed (attached) to the apparatus. It can also be connected to the device as an external storage device.
  • Examples of such recording media include magnetic tapes such as video tapes and cassette tapes, magnetic disks such as floppy disks (registered trademark) and hard disks, CDs, MOs, MDs, DVs.
  • Optical disks such as D, memory cards such as IC cards and optical cards, semiconductor memories such as mask ROM, EPROM, EEPROM, and flash ROM can be applied.
  • a recording medium connected to the information processing apparatus via a network may be used.
  • the information processing apparatus acquires the program by downloading via the network. That is, the above program
  • the present invention can be suitably used for an apparatus having a display screen in which whitening occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

表示装置、液晶モニター、液晶テレビジョン受像機および表示方法 技術分野
[0001] 本発明は、 1フレームを、複数のサブフレームに分割して画像表示を行う表示装置 に関するものである。
背景技術
[0002] 近年、 CRT (陰極線管)が用いられて ヽた分野で、液晶表示装置、特に TN(Twisted
Nematic)型の液晶表示パネル(TNモードの液晶パネル; TNパネル)を有するカラ 一液晶表示装置が多く用いられるようになってきて!/、る。
[0003] 例えば、特許文献 1には、表示する画像が動画像であるか静止画像であるかによつ て TNパネルの駆動方法を切り替える、液晶表示装置が開示されて 、る。
[0004] ところで、このような TNパネルでは、 CRTに比して、視野角特性にやや問題がある
[0005] このため、視線角度 (パネルを見る角度;パネルの法線方向と、パネルを見る方向と のなす角度)の増加に応じて階調特性が変わり、階調反転してしまう角度も存在する
[0006] そこで、従来、光学フィルムを用いて視野角特性の改善する技術や、表示方法に 工夫を凝らすことで階調反転を抑制する記述が開発されている。
[0007] 例えば、特許文献 2および特許文献 3では、 1フレームを分割して 1画素に複数回 信号書込みを行う、またその信号書込み電圧レベルを組み合わせて改善する方法 がある。
[0008] また、 TV (テレビジョン受像機)などの広視野角を必要とする液晶表示パネルでは 、 TNモードではなぐ IPS (In-Plane- Switching)モードや VA (Vertical Alignment)モ ードなどの液晶を用いることによって、広視野角化を図っている。
[0009] 例えば、 VAモードの液晶パネル (VAパネル)では、上下左右 170° の範囲でコン トラストが 10以上となり、階調反転もなくなつている。
特許文献 1 :特開 2002— 23707号公報 (公開日;2002年 1月 25日) 特許文献 2:特開平 5 - 68221号公報 (発行日; 1993年 3月 19日)
特許文献 3:特開 2001— 296841号公報 (公開日; 2001年 10月 26日)
特許文献 4 :特開 2004— 78157号公報 (公開日;2004年 3月 11日)
特許文献 5:特開 2003 - 295160号公報 (公開日; 2003年 10月 15日)
特許文献 6 :特開 2004— 62146号公報 (公開日;2004年 2月 26日)
特許文献 7:特開 2004— 258139号公報 (公開日; 2004年 9月 16日)
非特許文献 1 :新編 色彩科学ハンドブック;第 2版 (東京大学出版会;公開日; 1998 年 6月 10曰)
発明の開示
[0010] しカゝしながら、広視野角と!ヽわれて ヽる VAパネルでも、視野角度による階調特性 の変化を完全になくすことはできず、例えば左右方向の視野角度が大きくなると階調 特性が悪化する。
[0011] すなわち、図 2に示すように、視野角度が 60度となると、正面からパネルを望む場 合 (視野角度 0度)に対し、階調 γ特性が変わり、中間調の輝度が明るくなる白浮き 現象が起こってしまう。
[0012] また、 IPSモードの液晶パネルに関しても、光学フィルムなどの光学特性の設計に もよるが、程度の大小はあれ、視野角度の増加に応じて階調特性の変化が起こる。
[0013] 本発明は、上記のような従来の問題点に鑑みてなされたものである。そして、その 目的は、白浮き現象を抑制可能な表示装置を提供することにある。
[0014] 上記の目的を達成するために、本発明の表示装置 (本表示装置)は、 1フレームを 、 m個(m; 2以上の整数)のサブフレームに分割して画像表示を行う表示装置であつ て、表示信号の電圧に基づ 、た輝度の画像を表示する液晶表示素子力 なる表示 部と、 1フレームに表示部から出力される輝度の総和をフレームの分割によって変え ないように、第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成し て表示部に出力する制御部とを備えており、表示部の各画素が、同一のソースライン およびゲートラインに接続された第 1副画素および第 2副画素を有しており、制御部 力 第 1副画素と第 2副画素とに輝度差をつけ、一方の副画素の輝度と他方の副画 素の輝度との高低の関係を常に一定にしないで変えることを特徴としている。 [0015] 本表示装置は、液晶表示素子からなる表示画面を備えた表示部を用いて画像を表 示するものである。そして、本表示装置は、制御部が、サブフレーム表示によって表 示部を駆動するようになっている。ここで、サブフレーム表示とは、 1つのフレームを複 数 (m個; mは 2以上の整数)のサブフレーム(第 1〜第 mサブフレーム)に分けて行う 表示方法である。
[0016] すなわち、制御部は、 1フレーム期間に、表示部に対して、表示信号を m回出力す る(第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を順に出力する) 。これにより、制御部は、各サブフレーム期間で、表示部の表示画面の全ゲートライン を 1回づっ ONとする(1フレームに m回 ONとする)こととなる。
[0017] また、制御部は、表示信号の出力周波数 (クロック)を、好ましくは通常ホールド表示 時の m倍(m倍クロック)とする。なお、通常ホールド表示とは、フレームをサブフレー ムに分割せずに行う通常の表示(1フレーム期間で、表示画面の全ゲートラインを 1回 だけ ONとする表示)のことである。
[0018] また、表示部(表示画面)は、制御部力 入力された表示信号の電圧 (表示信号の 輝度階調に応じた電圧)に基づいた輝度の画像を表示するように設計されている。そ して、制御部は、フレームを分割することで 1フレームに画面から出力される輝度の総 和 (^度)を変えないように、第 1〜第 m表示信号を生成する(これらの表示信号の 電圧を設定する)ようになつている。なお、表示信号の電圧は、表示部における各画 素の液晶に印加される電圧 (液晶電圧)である。
[0019] ここで、通常、表示部の表示画面では、表示信号の電圧 (液晶電圧)を最小ある 、 は最大に近づける場合に、大きな視野角度での実際明度と予定明度とのズレ(明度 ズレ)を十分に小さくできる。
[0020] ここで、明度とは、表示される画像の輝度に応じた、人間の感じる明るさの度合いで ある(後述する実施形態における(5) (6)式参照)。なお、 1フレームで出力される輝 度の総和が不変の場合、同じく 1フレームで出力される明度の総和も変わらない。
[0021] また、予定明度とは、表示画面で表示されるはずの明度 (液晶電圧に応じた値)の ことである。また、実際明度とは、画面で実際に表示された明度のことであり、視野角 度に応じて変化する値である。画面の正面では、これら実際明度と予定明度とは等し くなり、明度ズレはない。一方、視野角を大きくするにつれて、明度ズレも大きくなる。
[0022] 従って、本表示装置では、画像を表示する際、制御部が、第 1〜第 m表示信号の 少なくとも 1つの電圧を最小あるいは最大に近づけることが好ましい。これにより、少 なくとも 1つのサブフレームでの明度ズレを十分に小さくできる。これにより、本表示装 置では、通常ホールド表示を行う場合に比して、明度ズレを小さく抑えられるので、視 野角特性を向上させることが可能となる。このため、白浮き現象を良好に抑制できる。
[0023] また、本表示装置では、表示部における 1つの画素が、同一のソースラインおよび ゲートラインに接続された 2つの副画素 (第 1副画素および第 2副画素)から構成され ている。そして、制御部が、中間調の輝度(白および黒以外の輝度)を表示するとき に、第 1副画素の輝度と第 2副画素の輝度とに差をつけ、一方の副画素を明画素 (比 較的に輝度の高い画素)、他方を暗画素(一方の画素よりも輝度の低い画素)とする ように設計されている (画素分割駆動)。なお、本表示装置では、制御部は、両副画 素から出力される輝度の総和が表示信号に応じた輝度となるように、各副画素の輝 度を設定することが好ましい。
[0024] この場合、 1つの画素全体で表示を行う場合に比して、双方の副画素の輝度を最 大あるいは最小に近づけられる。従って、本表示装置の視野角特性をさらに向上さ せられる。
[0025] 例えば、一方の副画素の輝度を黒表示とし、他方の副画素の輝度を調整すること で、低輝度の画像を表示することも可能である。これにより、一方の副画素における 実際明度と予定明度とのズレを最小にできる。なお、この場合に、一方の副画素を黒 表示に設定することが好ましいが、このように設定しなくてもよい。つまり、 2つの副画 素を明画素と暗画素とに分ければ (副画素間に輝度差が生じれば)、原理的には視 野角を改善できる。
[0026] このように、本表示装置は、この画素分割駆動とサブフレーム表示とを併用するもの である。従って、これらの相乗効果により、視野角特性を極めて良好にできる。
[0027] ここで、画素分割駆動を行う際、各副画素の明暗を固定する(一方の副画素を明画 素に、他方の副画素を暗画素にした状態を続ける)場合、以下に示すような問題があ る。 [0028] すなわち、この場合、同じ画像を表示し続けている期間では、同一の副画素が常に 明るい(あるいは暗い)状態に維持される。このため、一様な色の画像を表示する場 合でも、ユーザーにとっては、明るいドットと暗いドットとの混在した網かけ模様に視認 されてしまう(ユーザーにぶつぶつ感を抱力せる)可能性がある。
[0029] そこで、本表示装置では、制御部が、画素分割駆動を行う際、一方の副画素の輝 度と他方の副画素の輝度との高低の関係を常に一定にしないで変えるように設計さ れている。すなわち、本表示装置では、一方の副画素の輝度と他方の副画素の輝度 との高低の関係を、周期的あるいはランダムに交換するようになっている。従って、本 表示装置では、一様な色の画像を表示する場合でも、明る 、(あるいは喑 、)ドットを 固定してしまうことがない。このため、上記のようなぶつぶつ感を低減することが可能 となる。
[0030] なお、本表示装置では、制御部は、両副画素から出力される輝度の総和が表示信 号に応じた輝度となるように、各副画素の輝度を設定することが好ま 、。
[0031] また、上記のような画素分割駆動を行うための構成を、以下のように設計してもよい 。まず、各副画素を、互いに異なる補助線に接続する。そして、各副画素に、画素容 量と、ゲートラインが ON状態となったときに、ソースラインに印加された表示信号を画 素容量に印加するスィッチ素子と、画素容量と補助線とに接続された補助容量とを備 える。
[0032] この構成では、補助信号の状態と表示信号の電圧 (液晶電圧)の極性とを調整する ことで、各副画素の明暗を設定することが可能となる。すなわち、通常の表示装置で は、ゲートラインが OFFとなったとき、寄生容量に起因する引き込み現象が生じる。そ して、このとき、補助線を介して各副画素に入力される補助信号が立ち下がる (ハイ 力もローになる)と、液晶電圧は所定値だけ下がる。また、このときに補助信号が立ち 上がる(ローからハイになる)と、液晶電圧は所定値だけ上がる。
[0033] 従って、液晶電圧が正の場合、引き込み現象の直後に、各副画素に入力されてい る補助信号を立ち上げることで、副画素の輝度を高くできる。一方、液晶電圧が負の 場合、引き込み現象の直後に、各副画素に入力されている補助信号を立ち上げるこ とで、副画素の輝度を低くできる。 [0034] このため、制御部は、各副画素に入力される補助信号の状態(引き込み現象の直 後での波形の状態(立ち上がっているか立ち下がっているか))を副画素ごとに変え るとともに、表示信号の電圧極性を調整することで、副画素間の輝度の高低の関係を 制御することが可能となる。
[0035] また、通常ホールド表示では、制御部は、液晶電圧を交流駆動することが好ま 、 。これは、フレーム毎に、画素の電荷極性 (液晶を挟む画素電極間の電圧極性の向 き)を変えられるからである。
[0036] 仮に直流駆動とすると、電極間に偏った電圧が力かるため、画素電極に電荷がた まる。そして、この状態が続くと、電圧を印加していないときでも、電極間に電位差が 発生した状態 ( 、わゆる焼き付きと 、う状態)になってしまう。
[0037] ここで、本表示装置のようなサブフレーム表示を行う場合、サブフレーム間で、画素 電極間に印加される液晶電圧の値 (絶対値)が異なることが多!、。
[0038] 従って、通常の駆動方法に倣って、液晶電圧の極性をサブフレーム周期で反転さ せると、サブフレーム間での電圧値の違いにより、印加される液晶電圧に偏りが生じ ることがある。このような場合には、液晶パネルを長時間駆動させると、電極に電荷が たまり、上記した焼き付きゃフリツ力などの発生する可能性がある。従って、本表示装 置では、液晶電圧の極性をフレーム周期で反転させることが好ま 、。
[0039] このような極性反転方法は、 1フレームを mサブフレーム(mサブフィールド)に分割 する場合に対しても有効である。また、 1フレームを 2サブフレーム(2サブフィールド) に分割し、その分割比を 1 :nあるいは n: 1の比で分割する場合に対しても有効である
[0040] 例えば、 2つのサブフレームで表示を行う場合、液晶電圧の極性をフレーム周期で 反転させる方法は 2つある。 1つの方法は、液晶電圧の極性を、第 1サブフレームと第 2サブフレームとで等しくする(1フレームの間、液晶に同極性の電圧を印加する)一 方、隣接するフレーム間で変える方法である。
[0041] また、 2つのサブフレームで表示を行う場合、液晶電圧の極性を、 1フレーム内の 2 つのサブフレーム間で変える一方、 1つのフレームの第 1サブフレームと、この第 1サ ブフレームに隣接する他のフレームの第 2サブフレームとで等しくする方法である。上 記のように、フレーム周期で液晶電圧を交流化することにより、サブフレーム間で液 晶電圧が大きく異なっていても、 2フレームのトータルでは、画素の電極に力かる電圧 をキャンセルできる。従って、焼き付きゃフリツ力を防止できる。
[0042] また、本表示装置では、液晶電圧をフレーム周期で反転させる場合、制御部は、各 副画素に入力する補助信号の状態をフレーム内で変更することが好ましい。これによ り、副画素の明暗を固定してしまうことを回避できる。
[0043] また、液晶電圧をフレーム周期で反転させるとともに、フレームを偶数個のサブフレ ームに分割する(上記の mを偶数個とする)場合、制御部は、各副画素に入力する補 助信号の状態を、サブフレーム周期で変更してもよい。これにより、副画素の明暗を、 フレーム周期で変更できる。
[0044] なお、サブフレームを奇数個とする(フレームを奇数個に分割する)場合には、サブ フレームごとに電圧極性を反転させても、 2フレームでのトータルの液晶電圧を OVと することが可能である。
[0045] 従って、この場合、制御部は、液晶電圧の極性反転周期を、フレーム周期としても、 サブフレーム周期としてもよい。そして、いずれの周期とする場合でも、制御部は、各 副画素に入力する補助信号の状態を、 1フレーム内のサブフレーム間で交互に変え るとともに、 1フレームの最後のサブフレームと、後続フレームの最初のサブフレーム とで等しくすることが好ましい。これにより、副画素の明暗を、フレーム周期で変更でき る。
[0046] なお、各副画素の明暗をフレーム周期で変える構成では、以下のような問題の発 生する可能性がある。すなわち、フレーム周波数を 60Hzに設定した場合、各副画素 における輝度変化の周波数は、 30Hzとなる。このため、この構成では、フリツ力の発 生する可能性がある。
[0047] し力し、このようなフリツ力に関しては、フレームを 3つ以上のサブフレームに分割す る(上記の mを 3以上とする)場合では、 1フレーム内で、副画素間で設定している輝 度の高低の関係入れ換えることで軽減できる。すなわち、この場合には、各副画素に おけるフレーム間での輝度の差を小さくできる。このため、フリツ力の発生を軽減する ことが可能となる。 [0048] また、本表示装置と画像信号入力部 (信号入力部)とを組み合わせることで、パーソ ナルコンピューターなどに使用される液晶モニターを構成することが可能である。
[0049] ここで、画像信号入力部とは、外部から入力された画像信号を制御部に伝達する ためのものである。この構成では、本表示装置の制御部が、画像信号入力部から伝 達された画像信号に基づいて、表示信号を生成して表示部に出力することとなる。
[0050] また、本表示装置とチューナ部とを組み合わせることで、液晶テレビジョン受像機を 構成することも可能である。ここで、チューナ部とは、テレビ放送信号を受信するため のものである。
[0051] また、本発明の画像表示方法 (本表示方法)は、 1フレームを、 m個(m; 2以上の整 数)のサブフレームに分割して画像表示を行う表示方法であって、 1フレームに表示 部から出力される輝度の総和をフレームの分割によって変えないように、第 1〜第 m サブフレームの表示信号である第 1〜第 m表示信号を生成して液晶表示素子からな る表示部に出力する出力工程を含み、 表示部の各画素が、同一のソースラインお よびゲートラインに接続された第 1副画素および第 2副画素を有しており、上記の出 力工程が、第 1副画素と第 2副画素とに輝度差をつけ、一方の副画素の輝度と他方 の副画素の輝度の高低の関係を常に一定にしないで変えるように設計されているこ とを特徴とする方法である。
[0052] 本表示方法は、上記した本表示装置において使用されている方法である。従って、 これらの表示方法では、通常ホールド表示を行う構成に比して、 1フレームでのズレ を減らすことが可能となり、このズレに起因する白浮き現象を抑制できる。また、ユー ザ一の感ずるぶつぶつ感を低減できる。
[0053] 以上のように、本発明の表示装置 (本表示装置)は、 1フレームを、 m個(m; 2以上 の整数)のサブフレームに分割して画像表示を行う表示装置であって、表示信号の 電圧に基づいた輝度の画像を表示する液晶表示素子力 なる表示部と、 1フレーム に表示部から出力される輝度の総和をフレームの分割によって変えないように、第 1 〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成して表示部に出力 する制御部とを備えており、表示部の各画素が、同一のソースラインおよびゲートライ ンに接続された第 1副画素および第 2副画素を有しており、制御部が、第 1副画素と 第 2副画素とに輝度差をつけ、一方の副画素の輝度と他方の副画素の輝度との高低 の関係を常に一定にしないで変える構成である。
[0054] 本表示装置では、サブフレーム表示と画素分割駆動とを併用するものである。従つ て、これらの相乗効果により、視野角特性を極めて良好にできる。
[0055] また、本表示装置では、制御部が、画素分割駆動を行う際、一方の副画素の輝度 と他方の副画素の輝度との高低の関係を常に一定にしないで変えるように設計され ている。すなわち、本表示装置では、一方の副画素の輝度と他方の副画素の輝度と の高低の関係を、周期的あるいはランダムに交換するようになっている。従って、本 表示装置では、一様な色の画像を表示する場合でも、明る 、(あるいは喑 、)ドットを 固定してしまうことがない。このため、上記のようなユーザーの感じるぶつぶつ感を低 減することが可能となる。
[0056] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0057] [図 1]本発明の一実施形態に力かる表示装置の構成を示すブロック図である。
[図 2]通常ホールド表示の場合に液晶パネルから出力される表示輝度(予定輝度と実 際輝度との関係)を示すグラフである。
[図 3]図 1に示した表示装置においてサブフレーム表示を行う場合に液晶パネルから 出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。
[図 4] (a)は、図 1に示した表示装置のフレームメモリに入力される画像信号を示す説 明図であり、(b)は、 3 : 1に分割する場合における、フレームメモリから前段 LUTに出 力される画像信号を示す説明図であり、(c)は、同じく後段 LUTに出力される画像信 号を示す説明図である。
[図 5]図 1に示した表示装置においてフレームを 3 : 1に分割する場合における、前段 表示信号と後段表示信号とに関するゲートラインの ONタイミングを示す説明図であ る。
[図 6]図 3に示した輝度のグラフを明度に変換したものを示すグラフである。 [図 7]図 1に示した表示装置においてフレームを 3 : 1に分割した場合における、予定 明度と実際明度との関係を示すグラフである。
[図 8]図 1に示した表示装置の構成を一部変更した表示装置を示す説明図である。 圆 9(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 9(b)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。
[図 10(a)]液晶の応答速度を説明するための図である。
[図 10(b)]液晶の応答速度を説明するための図である。
[図 10(c)]液晶の応答速度を説明するための図である。
[図 11]応答速度の遅い液晶を用いてサブフレーム表示を行う場合に、液晶パネルか ら出力される表示輝度 (予定輝度と実際輝度との関係)を示すグラフである。
[図 12(a)]表示輝度力Lmaxの 3Z4および 1Z4の場合に、前サブフレームおよび後 サブフレームによって表示される輝度を示すグラフである。
圆 12(b)]液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で変えた場 合の、液晶電圧の遷移状態を示すグラフである。
圆 13(a)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。 圆 13(b)]電極間電圧の極性をフレーム周期で反転させる方法を示す説明図である。
[図 14(a)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明図 である。
[図 14(b)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明 図である。
[図 14(c)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明図 である。
[図 14(d)]液晶パネルにおける 4つの画素と、各画素の液晶電圧の極性を示す説明 図である。
圆 15]画素分割で駆動される液晶パネルの構成を示す説明図である。
[図 16(a)]ソースライン Sに正(≥Vcom)の表示信号が印加された場合における、副画 素の液晶容量に印加される電圧 (液晶電圧)を示すグラフである。
[図 16(b)]ソースライン Sに負(≤Vcom)の表示信号が印加された場合における、副 画素の液晶容量に印加される電圧 (液晶電圧)を示すグラフである。
[図 16(c)]ソースライン Sに正(≥Vcom)の表示信号が印加された場合における、副画 素の液晶容量に印加される電圧 (液晶電圧)を示すグラフである。
[図 16(d)]ソースライン Sに負(≤Vcom)の表示信号が印加された場合における、副 画素の液晶容量に印加される電圧 (液晶電圧)を示すグラフである。
圆 17]画素分割駆動を行わない場合における、 2つの視野角(0° (正面)および 60
° )での、液晶パネル 21の透過率と印加電圧との関係を示すグラフである。
[図 18(a)] lフレームごとに液晶電圧の極性を反転させながらサブフレーム表示を行う 場合における、液晶電圧(1画素分)の変化を示すグラフである。
圆 18(b)]画素分割駆動において輝度の高くなる副画素(明画素)の液晶電圧を示す グラフである。
圆 18(c)]同じく輝度の低くなる副画素(暗画素)の液晶電圧を示すグラフである。 圆 19(a)]図 18 (b)に対応する、明画素および暗画素の輝度を示すグラフである。 圆 19(b)]図 18 (c)に対応する、明画素および暗画素の輝度を示すグラフである。 圆 20(a)]フレーム周期で極性反転を行う場合における、明画素および暗画素の輝度 を示すグラフである。
[図 20(b)]フレーム周期で極性反転を行う場合における、明画素および暗画素の輝度 を示すグラフである。
圆 21]サブフレーム表示、極性反転駆動および画素分割駆動を組み合わせて表示 を行った結果 (破線および実線)と、通常ホールド表示を行った結果 (一点鎖線およ び実線)と合わせて示すグラフである。
圆 22(a)]液晶電圧の極性反転と補助信号の状態変化とをともにサブフレーム周期で 行う場合における、各副画素の輝度を示すグラフである。
圆 22(b)]液晶電圧の極性反転と補助信号の状態変化とをともにサブフレーム周期で 行う場合における、各副画素の輝度を示すグラフである。
[図 23(a)]図 22 (a)に対応する、各副画素の輝度を示すグラフである。
[図 23(b)]図 22 (b)に対応する、各副画素の輝度を示すグラフである。
圆 24(a)]補助信号の状態を液晶電圧の極性と同位相で、サブフレーム周期で反転さ せる場合(図 18 (a)および図 18 (b)に示した場合)における、液晶パネルの副画素の 表示状態を示す説明図である。
圆 24(b)]補助信号の状態を液晶電圧の極性と同位相で、サブフレーム周期で反転 させる場合(図 18 (a)および図 18 (b)に示した場合)における、液晶パネルの副画素 の表示状態を示す説明図である。
圆 24(c)]補助信号の状態を液晶電圧の極性と同位相で、サブフレーム周期で反転さ せる場合(図 18 (a)および図 18 (b)に示した場合)における、液晶パネルの副画素の 表示状態を示す説明図である。
[図 25(a)]「液晶電圧を、 1フレーム内の 2つのサブフレーム間で逆極性とし、さらに、 後サブフレームと 1つ後のフレームの前サブフレームとで同極性とする」とともに、補 助信号の状態をサブフレーム周期で変える場合における、各副画素の輝度を示すグ ラフである。
[図 25(b)]「液晶電圧を、 1フレーム内の 2つのサブフレーム間で逆極性とし、さらに、 後サブフレームと 1つ後のフレームの前サブフレームとで同極性とする」とともに、補 助信号の状態をサブフレーム周期で変える場合における、各副画素の輝度を示すグ ラフである。
[図 26]均等な 3つのサブフレームにフレームを分割して表示を行った結果 (破線およ び実線)と、通常ホールド表示を行った結果 (一点鎖線および実線)と合わせて示す グラフである。
[図 27]フレームを 3つに分割し、フレームごとに電圧極性を反転した場合における、 液晶電圧の遷移を示すグラフである。
[図 28]フレームを 3つに分割し、サブフレームごとに電圧極性を反転した場合におけ る、液晶電圧の遷移を示すグラフである。
[図 29(a)]フレームを 3つのサブフレームに分割し、フレームごとに電圧極性を反転す る一方、補助信号の状態を、「1フレーム内の 3つのサブフレーム間で交互に変えると ともに、 1フレームの 3つ目の(最後の)サブフレームと、 1つ後のフレームにおける 1つ 目の(最初の)サブフレームとで等しくする」場合における、各副画素の輝度の遷移を 示すグラフである。 [図 29(b)]フレームを 3つのサブフレームに分割し、フレームごとに電圧極性を反転す る一方、補助信号の状態を、「1フレーム内の 3つのサブフレーム間で交互に変えると ともに、 1フレームの 3つ目の(最後の)サブフレームと、 1つ後のフレームにおける 1つ 目の(最初の)サブフレームとで等しくする」場合における、各副画素の輝度の遷移を 示すグラフである。
[図 30(a)]フレームを 3つのサブフレームに分割し、サブフレームごとに電圧極性を反 転する一方、補助信号の状態を、「1フレーム内の 3つのサブフレーム間で交互に変 えるとともに、 1フレームの 3つ目の(最後の)サブフレームと、 1つ後のフレームにおけ る 1つ目の(最初の)サブフレームとで等しくする」場合における、各副画素の輝度の 遷移を示すグラフである。
[図 30(b)]フレームを 3つのサブフレームに分割し、サブフレームごとに電圧極性を反 転する一方、補助信号の状態を、「1フレーム内の 3つのサブフレーム間で交互に変 えるとともに、 1フレームの 3つ目の(最後の)サブフレームと、 1つ後のフレームにおけ る 1つ目の(最初の)サブフレームとで等しくする」場合における、各副画素の輝度の 遷移を示すグラフである。
[図 31]輝度を調整しないサブフレームにおける、表示部に出力される信号階調(%; 表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)との関係 (視野角 階調特性 (実測) )を示すグラフである。
[図 32]図 8に示した表示装置を備えた液晶テレビの構成を示す説明図である。
発明を実施するための最良の形態
[0058] 〔実施の形態 1〕
本発明の一実施形態について説明する。
[0059] 本実施の形態にかかる液晶表示装置 (本表示装置)は、複数のドメインに分割され た垂直配向(VA)モードの液晶パネルを有するものである。本表示装置は、外部から 入力された画像信号を液晶パネルに表示する液晶モニターとして機能するものであ る。
[0060] 図 1は、本表示装置の内部構成を示すブロック図である。この図に示すように、本表 示装置は、フレームメモリ(F. M. ) 11、前段 LUT12、後段 LUT13、表示部 14およ び制御部 15を備えている。
[0061] フレームメモリ(画像信号入力部) 11は、外部の信号源から入力される画像信号 (R GB信号)を 1フレーム分蓄積するものである。前段 LUT (look-up table) 12および後 段 LUT13は、外部から入力される画像信号と、表示部 14に出力する表示信号との 対応表 (変換表)である。
[0062] なお、本表示装置は、サブフレーム表示を行うようになって!/、る。ここで、サブフレー ム表示とは、 1つのフレームを複数のサブフレームに分けて表示を行う方法である。
[0063] すなわち、本表示装置は、 1フレーム期間に入力される 1フレーム分の画像信号に 基づいて、その 2倍の周波数で、サイズ (期間)の等しい 2つのサブフレームによって 表示を行うように設計されて 、る。
[0064] そして、前段 LUT12は、前段のサブフレーム(前サブフレーム;第 2サブフレーム) において出力される表示信号 (前段表示信号;第 2表示信号)のための対応表である 。一方、後段 LUT13は、後段のサブフレーム(後サブフレーム;第 1サブフレーム)に おいて出力される表示信号 (後段表示信号;第 1表示信号)のための対応表である。
[0065] 表示部 14は、図 1に示すように、液晶パネル 21、ゲートドライバー 22、ソースドライ バー 23を備えており、入力される表示信号に基づいて画像表示を行うものである。こ こで、液晶パネル 21は、 VAモードのアクティブマトリックス(TFT)液晶パネルである
[0066] 制御部 15は、本表示装置における全動作を制御する、本表示装置の中枢部であ る。そして、制御部 15は、上記した前段 LUT12、後段 LUT13を用いて、フレームメ モリ 11に蓄積された画像信号力も表示信号を生成し、表示部 14に出力するものであ る。
[0067] すなわち、制御部 15は、通常の出力周波数 (通常クロック;例えば 25MHz)で送ら れてくる画像信号をフレームメモリ 11に蓄える。そして、制御部 15は、この画像信号 を、通常クロックの 2倍の周波数を有するクロック(倍クロック; 50MHz)により、フレー ムメモリ 11から 2回出力する。
[0068] そして、制御部 15は、 1回目に出力する画像信号に基づいて、前段 LUT12を用い て前段表示信号を生成する。その後、 2回目に出力する画像信号に基づいて、後段 LUT13を用いて後段表示信号を生成する。そして、これらの表示信号を、倍クロック で順次的に表示部 14に出力する。
[0069] これにより、表示部 14が、順に入力される 2つの表示信号に基づいて、 1フレーム 期間に、互いに異なる画像を 1回づっ表示する(両サブフレーム期間で、液晶パネル
21の全ゲートラインを 1回づっ ONとする)。
[0070] なお、表示信号の出力動作については、後により詳細に説明する。
[0071] ここで、制御部 15による、前段表示信号および後段表示信号の生成について説明 する。まず、液晶パネルに関する一般的な表示輝度 (パネルによって表示される画像 の輝度)について説明する。
[0072] 通常の 8ビットデータを、サブフレームを用いずに 1フレームで画像を表示する場合
(1フレーム期間で、液晶パネルの全ゲートラインを 1回だけ ONとする、通常ホールド 表示する場合)、表示信号の輝度階調 (信号階調)は、 0〜255までの段階となる。
[0073] そして、液晶パネルにおける信号階調と表示輝度とは、以下の(1)式によって近似 的に表現される。
( (T-T0) / (Tmax-TO) ) = (L/Lmax) " γ - - - (1)
ここで、 Lは 1フレームで画像を表示する場合 (通常ホールド表示で画像を表示する 場合)の信号階調 (フレーム階調)、 Lmaxは最大の輝度階調 (255)、 Tは表示輝度
、 Tmaxは最大輝度(L = Lmax = 255のときの輝度;白)、 TOは最小輝度(L = 0のと きの輝度;黒)、 γは補正値 (通常 2. 2)である。
[0074] なお、実際の液晶パネル 21では、 ΤΟ = 0ではない。し力しながら、説明を簡略化す るため、以下では、 TO = 0とする。
[0075] また、この場合 (通常ホールド表示の場合)に液晶パネル 21から出力される表示輝 度 Tを、図 2にグラフとして示す。このグラフは、横軸に『出力されるはずの輝度(予定 輝度;信号階調に応じた値、上記の表示輝度 Tに相当)』を、縦軸に『実際に出力さ れた輝度 (実際輝度)』を示して 、る。
[0076] このグラフに示すように、この場合には、上記した 2つの輝度は、液晶パネル 21の 正面 (視野角度 0度)においては等しくなる。一方、視野角度を 60度としたときには、 実際輝度が、階調 γ特性の変化によって、中間調の輝度で明るくなつてしまう。 [0077] 次に、本表示装置における表示輝度について説明する。
[0078] 本表示装置では、制御部 15が、
(a)「前サブフレームおよび後サブフレームのそれぞれにおいて表示部 14によって表 示される画像の輝度 (表示輝度)の総和(1フレームにおける積分輝度)を、通常ホー ルド表示を行う場合の 1フレームの表示輝度と等しくする」
(b)「一方のサブフレームを黒 (最小輝度)、または白(最大輝度)にする」
を満たすように階調表現を行うように設計されて!ヽる。
[0079] このために、本表示装置では、制御部 15が、フレームを 2つのサブフレームに均等 に分割し、 1つのサブフレームによって最大輝度の半分までの輝度を表示するように 設計されている。
[0080] すなわち、最大輝度の半分(閾輝度; TmaxZ2)までの輝度を 1フレームで出力す る場合 (低輝度の場合)、制御部 15は、前サブフレームを最小輝度(黒)とし、後サブ フレームの表示輝度のみを調整して階調表現を行う(後サブフレームのみを用いて 階調表現を行う)。この場合、 1フレームにおける積分輝度は『(最小輝度 +後サブフ レームの輝度) Z2』の輝度となる。
[0081] また、上記の閾輝度より高い輝度を出力する場合 (高輝度の場合)、制御部 15は、 後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整して階調表 現を行う。この場合、 1フレームにおける積分輝度は『(前サブフレームの輝度 +最大 輝度) Z2』の輝度となる。
[0082] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、信号階調設定について は、図 1に示した制御部 15が行う。制御部 15は、上記した(1)式を用いて、上記した 閾輝度 (TmaxZ2)に対応するフレーム階調をあら力じめ算出しておく。
[0083] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Lt = 0. 5" (ΐ/ γ ) X Lmax …(2)
たたし、 Lmax= max y · · · (2aノ
となる。 [0084] そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。そして、この Lが Lt以下の場合、制御部 15 は、前段表示信号の輝度階調 (Fとする)を、前段 LUT12によって最小 (0)とする。
[0085] 一方、制御部 15は、後段表示信号の輝度階調 (Rとする)を、(1)式に基づいて、 R = 0. 5" (ΐ/ γ ) X L …(3)
となるように、後段 LUT13を用いて設定する。
[0086] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、
F= (L" y -0. 5 X Lmax" γ ) " (1/ γ ) · · · (4)
とする。
[0087] 次に、本表示装置における表示信号の出力動作について、より詳細に説明する。
なお、以下では、液晶パネル 21の画素数を a X bとする。この場合、制御部 15は、ソ ースドライバー 23に対し、倍クロックで、 1番目のゲートラインの画素(a個)の前段表 示信号を蓄積する。
[0088] そして、制御部 15は、ゲートドライバー 22によって、 1番目のゲートラインを ONとし 、このゲートラインの画素に対して前段表示信号を書き込む。その後、制御部 15は、 ソースドライバー 23に蓄積する前段表示信号を変えながら、同様に、 2〜b番目のゲ 一トラインを倍クロックで ONしてゆく。これにより、 1フレームの半分の期間(1Z2フレ ーム期間)で、全ての画素に前段表示信号を書き込める。
[0089] さらに、制御部 15は、同様の動作を行って、残りの 1Z2フレーム期間で、全ゲート ラインの画素に後段表示信号の書き込みを行う。これにより、各画素には、前段表示 信号と後段表示信号とが、それぞれ均等の時間(1Z2フレーム期間)づっ書き込ま れること〖こなる。
[0090] 図 3は、このような前段表示信号および後段表示信号を前'後サブフレームに分け て出力するサブフレーム表示を行った結果 (破線および実線)を、図 2に示した結果 ( 一点鎖線および実線)と合わせて示すグラフである。
[0091] 本表示装置では、図 2に示したように、大きな視野角度での実際輝度と予定輝度( 実線と同等)とのズレが、表示輝度が最小あるいは最大の場合に最小 (0)となる一方 、中間調(閾輝度近傍)で最も大きくなる液晶パネル 21を用いて 、る。
[0092] そして、本表示装置では、 1つのフレームをサブフレームに分割するサブフレーム 表示を行っている。さらに、 2つのサブフレームの期間を等しく設定し、低輝度の場合 、 1フレームにおける積分輝度を変化させない範囲で、前サブフレームを黒表示とし 、後サブフレームのみを用いて表示を行っている。従って、前サブフレームでのズレ が最小となるので、図 3の破線に示すように、両サブフレームのトータルのズレを約半 分に減らせる。
[0093] 一方、高輝度の場合、 1フレームにおける積分輝度を変化させない範囲で、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行っている。こ のため、この場合にも、後サブフレームのズレが最小となるので、図 3の破線に示すよ うに、両サブフレームのトータルのズレを約半分に減らせる。
[0094] このように、本表示装置では、通常ホールド表示を行う構成 (サブフレームを用いず に 1フレームで画像を表示する構成)に比して、全体的にズレを約半分に減らすこと が可能となっている。このため、図 2に示したような、中間調の画像が明るくなつて白く 浮!、てしまう現象(白浮き現象)を抑制することが可能である。
[0095] なお、本実施の形態では、前サブフレームと後サブフレームとの期間が等しいとし ている。これは、最大値の半分までの輝度を 1つのサブフレームで表示するためであ る。し力しながら、これらのサブフレームの期間を、互いに異なる値に設定してもよい
[0096] すなわち、本表示装置において問題とされている白浮き現象は、視野角度の大き い場合に実際輝度が図 2のような特性を持つことで、中間調の輝度の画像が明るくな つて白く浮いて見える現象のことである。
[0097] なお、通常、カメラに撮像された画像は、輝度に基づ!/、た信号となる。そして、この 画像をデジタル形式で送信する場合には、(1)式に示した γを用いて画像を表示信 号に変換する (すなわち、輝度の信号を(ΐΖ γ )乗し、均等割りして階調をつける)。 そして、このような表示信号に基づいて、液晶パネル等の表示装置によって表示され る画像は、(1)式によって示される表示輝度を有することとなる。 [0098] ところで、人間の視覚感覚は、画像を、輝度ではなく明度として受け取つている。ま た、明度(明度指数) Mとは、以下の(5) (6)式によって表されるものである(非特許文 献 1参照)。
[0099] M= 116 XY' (lZ3)— 16、 Y>0. 008856 …(5)
Μ = 903. 29 ΧΥ, Υ≤0. 008856 · · · (6)
ここで、 Υは、上記した実際輝度に相当するものであり、 Y= (yZyn)なる量である。 なお、 yは、任意な色の xyz表色系における三刺激値の y値であり、また、 ynは、完全 拡散反射面の標準の光による y値であり yn= 100と定められている。
[0100] これらの式より、人間は、輝度的に暗い映像に対して敏感であり、明るい映像に対 しては鈍感になっていく傾向がある。そして、白浮きに関しても、人間は、輝度のズレ ではなぐ明度のズレとして受け取っていると考えられる。
[0101] ここで、図 6は、図 3に示した輝度のグラフを明度に変換したものを示すグラフである 。このグラフは、横軸に『出力されるはずの明度 (予定明度;信号階調に応じた値、上 記の明度 Mに相当)』を、縦軸に『実際に出力された明度 (実際明度)』を示している。 このグラフに実線で示すように、上記した 2つの明度は、液晶パネル 21の正面 (視野 角度 0度)においては等しくなる。
[0102] 一方、このグラフの破線に示すように、視野角度を 60度とし、かつ、各サブフレーム の期間を均等とした場合 (すなわち、最大値の半分までの輝度を 1つのサブフレーム で表示する場合)には、実際明度と予定明度とのズレは、通常ホールド表示を行う従 来の場合よりは改善されている。従って、白浮き現象を、ある程度は抑制できているこ とがわかる。
[0103] また、人間の視覚感覚にあわせて白浮き現象をより大きく抑制するためには、輝度 ではなぐ明度に合わせてフレームの分割割合を決定することがより好ましいといえる 。そして、実際明度と予定明度とのズレは、輝度の場合と同様に、予定明度における 最大値の半分の点で最も大きくなる。
[0104] 従って、最大値の半分までの輝度を 1つのサブフレームで表示するようにフレーム を分割するよりも、最大値の半分までの明度を 1つのサブフレームで表示するようにフ レームを分割する方が、人間に感じられるズレ (すなわち白浮き)を改善できることに なる。
[0105] そこで、以下に、フレームの分割点における好ましい値について説明する。
まず、演算を簡単に行うために、上記した(5) (6)式を、以下の(6a)式のような形((1 )式に類似の形)にまとめて近似する。
Μ =Υ" ( 1/ α ) - - - (6a)
このような形に変換した場合、この式の αは、約 2. 5となる。
[0106] また、この aの値が 2. 2〜3. 0の間にあれば、(6a)式における輝度 Yと明度 Mとの 関係は適切となる(人間の視覚感覚に対応している)と考えられている。
[0107] そして、 1つのサブフレームで、最大値の半分の明度 Mを表示するためには、 2つ のサブフレームの期間を、 γ = 2. 2のときは約 1 : 3、 γ = 3. 0のときは約 1: 7とするこ とが好ましいことがわ力つている。なお、このようにフレームを分割する場合には、輝 度の小さいときに表示に使用する方のサブフレーム(高輝度の場合に最大輝度に維 持しておく方のサブフレーム)を短い期間とすることとなる。
[0108] 以下に、前サブフレームと後サブフレームとの期間を 3 : 1とする場合について説明 する。まず、この場合における表示輝度について説明する。
[0109] この場合には、最大輝度の 1Ζ4 (閾輝度; TmaxZ4)までの輝度を 1フレームで出 力する表示する低輝度表示を行う際、制御部 15は、前サブフレームを最小輝度(黒) とし、後サブフレームの表示輝度のみを調整して階調表現を行う(後サブフレームの みを用いて階調表現を行う)。このときには、 1フレームにおける積分輝度は『(最小輝 度 +後サブフレームの輝度) /4』の輝度となる。
[0110] また、閾輝度 (TmaxZ4)より高い輝度を 1フレームで出力する場合 (高輝度の場合 )、制御部 15は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を 調整して階調表現を行う。この場合、 1フレームにおける積分輝度は『(前サブフレー ムの輝度 +最大輝度) Z4』の輝度となる。
[0111] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、この場合にも、信号階調( および後述する出力動作)は、上記した (a)(b)の条件を満たすように設定される。
[0112] まず、制御部 15は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ4)に対応 するフレーム階調をあら力じめ算出しておく。
[0113] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Lt= (l/4) " (l/ y ) X Lmax · · · (7)
そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。
[0114] そして、この Lが Lt以下の場合、制御部 15は、前段表示信号の輝度階調 (F)を、 前段 LUT12を用いて最小 (0)とする。
[0115] 一方、制御部 15は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、
R= (l/4) " (l/ y ) X L · · · (8)
となるように、後段 LUT13を用いて設定する。
[0116] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。
[0117] 一方、制御部 15は、前サブフレームの輝度階調 Fを、(1)式に基づいて、
F= ( (L - (1/4) X Lmax" γ ) ) ΊΐΖ Ύ ) · · · (9)
とする。
[0118] 次に、このような前段表示信号および後段表示信号の出力動作について説明する 上記したように、フレームを均等分割する構成では、画素には、前段表示信号と後段 表示信号とが、それぞれ均等の時間(1Z2フレーム期間)書き込まれる。これは、倍 クロックで前段表示信号を全て書き込んだ後に、後段表示信号の書き込みを行うた め、各表示信号に関するゲートラインの ON期間が均等となったためである。
[0119] 従って、後段表示信号の書き込みの開始タイミング (後段表示信号に関するゲート
ONタイミング)を変えることにより、分害の害合を変えられる。
[0120] 図 4中、(a)は、フレームメモリ 11に入力される画像信号、(b)は、 3 : 1に分割する場 合における、フレームメモリ 11から前段 LUT12に出力される画像信号、そして、 (c) は、同じく後段 LUT13に出力される画像信号を示す説明図である。また、図 5は、同 じく 3 : 1に分割する場合における、前段表示信号と後段表示信号とに関するゲートラ インの ONタイミングを示す説明図である。
[0121] これらの図に示すように、この場合、制御部 15は、 1フレーム目の前段表示信号を、 通常のクロックで各ゲートラインの画素に書き込んでゆく。そして、 3Z4フレーム期間 後に、後段表示信号の書き込みを開始する。このときからは、前段表示信号と後段表 示信号とを、倍クロックで、交互に書き込んでゆく。
[0122] すなわち、「全ゲートラインの 3Z4」番目のゲートラインの画素に前段表示信号を書 き込んだ後、ソースドライバー 23に 1番目のゲートラインに関する後段表示信号の蓄 積し、このゲートラインを ONする。次に、ソースドライバー 23に「全ゲートラインの 3/ 4」 + 1番目のゲートラインに関する前段表示信号を蓄積し、このゲートラインを ONす る。
[0123] このように 1フレーム目の 3Z4フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力することで、前サブフレームと後サブフレームとの割合 を 3 : 1とすることが可能となる。そして、これら 2つのサブフレームにおける表示輝度の 総和 (積分総和)が、 1フレームにおける積分輝度となる。なお、フレームメモリ 11に 蓄えられたデータは、ゲートタイミングにあわせてソースドライバー 23に出力されるこ とになる。
[0124] また、図 7は、フレームを 3 : 1に分割した場合における、予定明度と実際明度との関 係を示すグラフである。この図に示すように、この構成では、予定明度と実際明度との ズレの最も大きくなる点でフレームを分割できている。従って、図 6に示した結果に比 ベて、視野角度を 60度とした場合における予定明度と実際明度との差が、非常に小 さくなつている。
[0125] すなわち、本表示装置では、「TmaxZ4」までの低輝度 (低明度)の場合、 1フレー ムにおける積分輝度を変化させない範囲で、前サブフレームを黒表示とし、後サブフ レームのみを用いて表示を行っている。従って、前サブフレームでのズレ(実際明度 と予定明度との差)が最小となるので、図 7の破線に示すように、両サブフレームのト 一タルのズレを約半分に減らせる。
[0126] 一方、高輝度の場合、 1フレームにおける積分輝度を変化させない範囲で、後サブ フレームを白表示とし、前サブフレームの輝度だけを調整して表示を行っている。こ のため、この場合にも、後サブフレームのズレが最小となるので、図 7の破線に示すよ うに、両サブフレームのトータルのズレを約半分に減らせる。
[0127] このように、本表示装置では、通常ホールド表示を行う構成に比して、全体的に明 度のズレを約半分に減らすことが可能となっている。このため、図 2に示したような、中 間調の画像が明るくなつて白く浮いてしまう現象(白浮き現象)を、より効果的に抑制 することが可能である。
[0128] ここで、上記では、表示開始時から 3Z4フレーム期間までの間において、 1フレー ム目の前段表示信号を、通常のクロックで各ゲートラインの画素に書き込むとしてい る。これは、後段表示信号を書き込むべきタイミングに達していないからである。
[0129] し力しながら、このような措置に変えて、ダミーの後段表示信号を用いて、表示開始 時力も倍クロックでの表示を行うようにしてもよい。すなわち、表示開始時から 3Z4フ レーム期間までの間に、前段表示信号と、信号階調 0の後段表示信号 (ダミーの後段 表示信号)とを交互に出力するようにしてもょ 、。
[0130] ここで、以下に、より一般的に、前サブフレームと後サブフレームとの割合を n: 1とす る場合について説明する。この場合、制御部 15は、最大輝度の lZ (n+ l) (閾輝度 ; Tmax/ (n+ 1) )までの輝度を 1フレームで出力する場合 (低輝度の場合)、前サブ フレームを最小輝度(黒)とし、後サブフレームの表示輝度のみを調整して階調表現 を行う(後サブフレームのみを用いて階調表現を行う)。この場合、 1フレームにおける 積分輝度は『 (最小輝度 +後サブフレームの輝度) / (n+ 1)』の輝度となる。
[0131] また、閾輝度 (TmaxZ (n+ 1) )より高い輝度を出力する場合 (高輝度の場合)、制 御部 15は、後サブフレームを最大輝度(白)とし、前サブフレームの表示輝度を調整 して階調表現を行う。この場合、 1フレームにおける積分輝度は『(前サブフレームの 輝度 +最大輝度) / (n+ 1)』の輝度となる。
[0132] 次に、このような表示輝度を得るための表示信号 (前段表示信号および後段表示 信号)の信号階調設定について具体的に説明する。なお、この場合にも、信号階調( および後述する出力動作)は、上記した (a)(b)の条件を満たすように設定される。
[0133] まず、制御部 15は、上記した(1)式を用いて、上記した閾輝度 (TmaxZ (n+ 1) ) に対応するフレーム階調をあら力じめ算出しておく。 [0134] すなわち、このような表示輝度に応じたフレーム階調(閾輝度階調; Lt)は、(1)式よ り、
Figure imgf000026_0001
XLmax ··· (10)
そして、制御部 15は、画像を表示する際、フレームメモリ 11から出力された画像信 号に基づいて、フレーム階調 Lを求める。
[0135] そして、この Lが Lt以下の場合、制御部 15は、前段表示信号の輝度階調 (F)を、 前段 LUT12を用いて最小 (0)とする。
[0136] 一方、制御部 15は、後段表示信号の輝度階調 (R)を、(1)式に基づいて、
Figure imgf000026_0002
となるように、後段 LUT13を用いて設定する。
[0137] また、フレーム階調 Lが L り大きい場合、制御部 15は、後段表示信号の輝度階 調 Rを最大(255)とする。一方、制御部 15は、前サブフレームの輝度階調 Fを、 (1) 式に基づいて、
F=((L -(l/(n+l))XLmax ))"(l/y)---(12)
とする。
[0138] また、表示信号の出力動作については、フレームを 3: 1に分けた場合の動作にお いて、 1フレーム目の nZ(n+l)フレーム期間後から、倍クロックで、前段表示信号と 後段表示信号とを交互に出力するように設計すればよい。
[0139] また、フレームを均等分割する構成は、以下のような構成であるといえる。すなわち 、 1フレームを「l+n( = l)」のサブフレーム期間に分割する。そして、通常クロックの 「l+n( = l)」倍のクロックで、 1つのサブフレーム期間に前段表示信号を出力し、後 の n( = l)個のサブフレーム期間に後段表示信号を連続的に出力する。
[0140] し力しながら、この構成では、 nが 2以上となると、クロックを非常に速める必要がある ため、装置コストが増大する。従って、 nが 2以上となる場合には、上記したような前段 表示信号と後段表示信号とを交互に出力する構成とすることが好ましい。
[0141] この場合には、後段表示信号の出力タイミングを調整することで、前サブフレームと 後サブフレームとの割合を n: 1とすることが可能となるため、必要となるクロック周波数 を、通常の 2倍に維持できる。 [0142] また、本実施の形態では、制御部 15が、前段 LUT12、後段 LUT13を用いて、画 像信号を表示信号に変換するとしている。ここで、本表示装置に備える前段 LUT12
、後段 LUT13を、複数としてもよい。
[0143] 図 8は、図 1に示した構成において、前段 LUT12に変えて 3つの前段 LUT12a〜
12c、後段 LUT13に代えて 3つの後段 LUT13a〜13cを備え、さらに、温度センサ 一 16を備えた構成である。
[0144] すなわち、液晶パネル 21は、環境温度 (表示部 14のおかれている環境の温度 (気 温))により、その応答特性や階調輝度特性の変化するものである。このため、画像信 号に応じた最適な表示信号も、環境温度に応じて変化する。
[0145] そして、上記の前段 LUT12a〜12cは、互いに異なる温度範囲での使用に適した 前段 LUTである。また、後段 LUT13a〜13cも、互いに異なる温度範囲での使用に 適した後段 LUTである。
[0146] また、温度センサー 16は、本表示装置のおかれて 、る環境温度を計測し、計測結 果を制御部 15に伝達するものである。
[0147] そして、この構成では、制御部 15は、温度センサー 16から伝達された環境温度の 情報に基づいて、使用する LUTを切り替えるように設計されている。従って、この構 成では、画像信号に対してより適切な表示信号を液晶パネル 21に伝達できる。従つ て、想定される全ての温度範囲(例えば 0°C〜65°Cの範囲)で、より忠実な輝度での 画像表示を行うことが可能となる。
[0148] また、液晶パネル 21は、交流により駆動されることが好ましい。これは、交流駆動と することにより、フレーム毎に、画素の電荷極性 (液晶を挟む画素電極間の電圧(電 極間電圧)の向き)を変えられるからである。
[0149] 直流駆動とすると、電極間に偏った電圧が力かるため、電極に電荷がたまる。そし て、この状態が続くと、電圧を印加していないときでも、電極間に電位差が発生した 状態 ( 、わゆる焼き付きと 、う状態)になってしまう。
[0150] ここで、本表示装置のようにサブフレーム表示を行う場合、サブフレーム間で、画素 電極間に印加される電圧値 (絶対値)が異なることが多!、。
[0151] 従って、電極間電圧の極性をサブフレーム周期で反転させると、前サブフレームと 後サブフレームとの電圧値の違いにより、印加される電極間電圧に偏りが生じる。こ のため、液晶パネル 21を長時間駆動させると、電極に電荷がたまり、上記した焼き付 きゃフリツ力などの発生する可能性がある。
[0152] そこで、本表示装置では、電極間電圧の極性をフレーム周期(1フレームの時間幅 の周期)で反転させることが好ましい。なお、電極間電圧の極性をフレーム周期で反 転させる方法は 2つある。 1つの方法は、 1フレームの間、同極性の電圧を印加する 方法である。また、もう 1つの方法は、 1フレーム内の 2つのサブフレーム間で電極間 電圧を逆極性とし、さらに、後サブフレームと、 1つ後のフレームの前サブフレームと を同極性で駆動する方法である。
[0153] 図 9 (a)に、前者の方法をとつた場合における、電圧極性 (電極間電圧の極性)とフ レーム周期との関係を示す。また、図 9 (b)に、後者の方法をとつた場合における、電 圧極性とフレーム周期との関係を示す。このようにフレーム周期で電極間電圧を交流 化することにより、サブフレーム間で電極間電圧が大きく異なっていても、焼き付きや フリツ力を防止できる。
[0154] また、上記のように、本表示装置では、サブフレーム表示によって液晶パネル 21を 駆動しており、これにより、白浮きを抑制している。しかしながら、液晶の応答速度 (液 晶にカゝかる電圧 (電極間電圧)が印加電圧と等しくなるまでの速度)が遅い場合、この ようなサブフレーム表示による効果が薄れてしまうことがある。
[0155] すなわち、通常ホールド表示を行う場合、 TFT液晶パネルでは、ある輝度階調に 対して 1つの液晶状態が対応する。従って、液晶の応答特性は、表示信号の輝度階 調に依存しない。
[0156] 一方、本表示装置のようにサブフレーム表示を行う場合、前サブフレームが最小輝 度(白)で後サブフレームが最大輝度となる、中間階調の表示信号を表示する場合、 1フレームで液晶に印加される電圧は、図 10 (a)に示すように変動する。また、電極 間電圧は、液晶の応答速度 (応答特性)に従って、図 10 (b)に実線 Xで示すように変 化する。
[0157] ここで、液晶の応答速度が遅い場合、このような中間調表示を行うと、電極間電圧( 実線 X)は、図 10 (c)に示すように変化する。従って、この場合には、前サブフレーム の表示輝度が最小とならないとともに、後サブフレームの表示輝度が最大とならない
[0158] このため、予定輝度と実際輝度との関係は、図 11に示すようになる。すなわち、サ ブフレーム表示を行っても、視野角度の大きい場合における予定輝度と実際輝度と の差 (ズレ)の少なくなる輝度 (最小輝度 ·最大輝度)での表示を行えなくなる。
このため、白浮き現象の抑制効果が減少する。
[0159] 従って、本表示装置のようなサブフレーム表示を良好に行うためには、液晶パネル 21における液晶の応答速度が、以下の (c)(d)を満足するように設計されていることが 好ましい。
(c)最小輝度 (黒;最小明度に相当)を表示している液晶に最大輝度(白;最大明度に 相当)となるための電圧信号 (表示信号に基づいてソースドライバー 23によって生成 されるもの)を与えたときに、短い方のサブフレーム期間内で、液晶の電圧(電極間電 圧)が、電圧信号の電圧における 90%以上の値に到達する(正面の実際明度が最 大明度の 90%に到達する。 )
(d)最大輝度 (白)を表示して 、る液晶に最小輝度 (黒)となるための電圧信号を与え たときに、短い方のサブフレーム期間内で、液晶の電圧 (電極間電圧)が、電圧信号 の電圧における 5%以下の値に到達する(正面の実際明度が最小明度の 5%に到達 する)。
[0160] また、制御部 15は、液晶の応答速度をモニターできるように設計されていることが 好ましい。
[0161] そして、環境温度の変化等によって液晶の応答速度が遅くなり、上記の (c)(d)を満 足できなくなつたと判断した場合、制御部 15は、サブフレーム表示を中断して、液晶 パネル 21を、通常ホールド表示によって駆動するように設定されていてもよい。
[0162] これにより、サブフレーム表示によって白浮き現象がかえって顕著となってしまった 場合に、液晶パネル 21の表示方式を通常ホールド表示に切り替えられる。
[0163] また、本実施の形態では、本表示装置が液晶モニターとして機能するとしている。し 力しながら、本表示装置を、液晶テレビジョン受像機 (液晶テレビ)として機能させるこ とも可能である。このような液晶テレビは、図 32に示すように、図 8に示した本表示装 置に、チューナ部 17を備えることで実現できる。このチューナ部 17でテレビ放送信号 のチャネルを選択し、選択されたチャネルのテレビ画像信号は、各種映像処理を行う 回路(図示せず)を介して制御部 15に伝達される。
[0164] この構成では、制御部 15が、このテレビ画像信号に基づ!/、て表示信号を生成する こととなる。なお、図 1に示した本表示装置にチューナ部 17を備えることでも、液晶テ レビを実現することは可能である。
[0165] なお、本実施の形態では、低輝度の場合に前サブフレームを黒とし、後サブフレー ムのみを用いて階調表現を行うとしている。し力しながら、サブフレームの前後関係を 交換しても(低輝度の場合に後サブフレームを黒として、前サブフレームのみを用い て階調表現を行うようにしても)、同様の表示を得られる。
[0166] また、本実施の形態では、(1)式を用いて表示信号 (前段表示信号および後段表 示信号)の輝度階調 (信号階調)を設定するとしている。しかしながら、実際のパネル では、黒表示(階調 0)の場合でも輝度を有し、さらに液晶の応答速度は有限である ため、従って、信号階調の設定に関しては、これらの要素を加味することが好ましい。 すなわち、液晶パネル 21によって実際の画像を表示させて、信号階調と表示輝度と の関係を実測し、実測結果に基づいて、(1)式に合うよう LUT (出力テーブル)を決 めることが好ましい。
[0167] また、本実施の形態では、式(6a)に示した aを、 2. 2〜3の範囲であるとして!/、る。
この範囲は、厳密に導き出されたものではないが、人間の視覚感覚的にほぼ妥当で あるとされて 、る範囲である。
[0168] また、本表示装置のソースドライバー 23として通常ホールド表示用のソースドライバ 一を用いると、入力される信号階調 (表示信号の輝度階調)に応じて、 y = 2. 2とし た(1)式を用いて得られる表示輝度を得られるように、各画素 (液晶)に対して電圧信 号が出力される。
[0169] そして、このようなソースドライバー 23は、サブフレーム表示を行う場合でも、各サブ フレームにおいて、入力される信号階調に応じて、通常ホールド表示で使用する電 圧信号をそのまま出力することとなる。
[0170] しかしながら、このような電圧信号の出力方法では、サブフレーム表示における 1フ レーム内での輝度の総和を、通常ホールド表示での値と同一にできない (信号階調 を表現しきれな ヽ)ことがある。
[0171] 従って、サブフレーム表示では、ソースドライバー 23は、分割した輝度に換算した 電圧信号を出力するように設計されていることが好ましい。すなわち、ソースドライバ 一 23が、信号階調に応じて、液晶に印加する電圧 (電極間電圧)を微調整するように 設定されていることが好ましい。このため、ソースドライバー 23をサブフレーム表示用 に設計し、上記のような微調整を行えるようにしておくことが好ま 、。
[0172] また、本実施の形態では、液晶パネル 21が VAパネルであるとして!/、る。しかしなが ら、これに限らず、 VAモード以外の他のモードの液晶パネルを用いても、本表示装 置のサブフレーム表示によって、白浮き現象を抑制することが可能である。
[0173] すなわち、本表示装置のサブフレーム表示は、視野角度を大きくしたときに予定輝 度 (予定明度)と実際輝度 (実際明度)とがずれてしまう液晶パネル (階調ガンマの視 野角特性変化するモードの液晶パネル)に対しては、白浮き現象を抑制することが可 能である。また、特に、本表示装置のサブフレーム表示は、視野角度を増加させると 表示輝度の強くなるような特性を有している液晶パネルに有効である。
[0174] また、本表示装置における液晶パネル 21は、 NB (Normally Black;ノーマリーブラッ ク)であっても、また、 NW (Normally White ;ノーマリーホワイト)であってもよい。さらに 、本表示装置では、液晶パネル 21に変えて、他の表示パネル (例えば有機 ELパネ ルゃプラズマディスプレイパネル)を用いてもよ!、。
[0175] また、本実施の形態では、フレームを 1 : 3〜1: 7に分割することが好ましいとしてい る。しかしながら、これに限らず、本表示装置を、フレームを l :nあるいは n: l (nは 1 以上の自然数)の範囲で分割するように設計してもよ!/、。
[0176] また、本実施の形態では、上記した(10)式を用いて、表示信号 (前段表示信号お よび後段表示信号)の信号階調設定を行うとしている。しかしながら、この設定は、液 晶の応答速度を Omsとし、かつ、 TO (最小輝度) =0とした設定方法である。このため 、実使用の際には、さらに工夫を重ねることが好ましい。
[0177] すなわち、片側のサブフレーム (後サブフレーム)で出力できる最大の輝度(閾輝度 )は、液晶応答が Omsで T0 = 0の場合には、 TmaxZ (n+ l)となる。そして、閾輝度 階調 Ltは、この輝度のフレーム階調である。
Lt = ( (Tmax/(n + 1)— TO) Z (Tmax -ΤΟ))"(ΐ/γ)
(γ =2.2、Τ0 = 0)
液晶の応答速度が 0でない場合、例えば、黒→白がサブフレーム内で Υ%の応答、 白→黒がサブフレーム内で Ζ%の応答、 ΤΟ=ΤΟとすると、閾輝度 (Ltの輝度) Ttは、 Tt=((Tmax-TO) XY/100+ (Tmax -TO) XZ/100)/2
となる。従って、
Lt= ( (Tt TO) / (Tmax -TO) )"(ΐ/γ)
(y=2.2)
となる。
[0178] また、実際には、 Ltはもう少し複雑になることもあり、閾輝度 Ttを単純な式では表せ ないこともある。従って、 Ltを Lmaxで表現することが困難なこともある。このような場 合に Ltを求めるには、液晶パネルの輝度を測定した結果を用いることが好ましい。す なわち、片側のサブフレームが最大の輝度、かつ、他方のサブフレームの輝度が最 小輝度の場合に液晶パネルから照射される輝度を測定して、その輝度を Ttとする。 そして、下式により、こぼれだしの階調 Ltを決める。
Lt= ( (Tt TO) / (Tmax -TO) )"(ΐ/γ)
(y=2.2)
このように、 (10)式を用いて求めた Ltについては、理想的な値であり、目安として 使用することが好まし 、場合もあると 、える。
[0179] ここで、本表示装置において、電極間電圧の極性をフレーム周期で反転させること が好ましい点について、より詳細に説明する。図 12(a)は、表示輝度力Lmaxの 3Z 4および 1Z4の場合に、前サブフレームおよび後サブフレームによって表示される輝 度を示すグラフである。この図に示すように、本表示装置のようにサブフレーム表示を 行う場合、サブフレーム間で、液晶に印加される電圧値 (画素電極間に印加される電 圧値;絶対値)は異なる。
[0180] 従って、液晶に印加される電圧 (液晶電圧)の極性をサブフレーム周期で反転させ ると、図 12(b)に示すように、前サブフレームと後サブフレームとの電圧値の違いによ り、印加される液晶電圧に偏りが生じる(トータルの印加電圧が (ことならない)。この ため、液晶電圧の直流成分をキャンセルできなくなり、液晶パネル 21を長時間駆動 させると、電極に電荷がたまり、焼き付きゃフリツ力などの発生する可能性がある。
[0181] そこで、本表示装置では、液晶電圧の極性をフレーム周期で反転させることが好ま しい。なお、液晶電圧の極性をフレーム周期で反転させる方法は 2つある。 1つの方 法は、 1フレームの間、同極性の電圧を印加する方法である。また、もう 1つの方法は 、 1フレーム内の 2つのサブフレーム間で液晶電圧を逆極性とし、さらに、後サブフレ ームと、 1つ後のフレームの前サブフレームとを同極性とする方法である。
[0182] 図 13 (a)は、前者の方法をとつた場合における、電圧極性 (液晶電圧の極性)とフ レーム周期および液晶電圧との関係を示すグラフである。一方、図 13 (b)は、後者の 方法をとつた場合の、同様のグラフである。
[0183] これらのグラフに示すように、液晶電圧を 1フレーム周期で反転させる場合、隣り合 う 2つのフレーム間で、前サブフレームどうしのトータル電圧、および、後サブフレーム のトータル電圧を、 OVとできる。従って、 2フレームでのトータル電圧を OVとできるの で、印加電圧の直流成分をキャンセルすることが可能となる。このようにフレーム周期 で液晶電圧を交流化することにより、サブフレーム間で液晶電圧が大きく異なってい ても、焼き付きゃフリツ力を防止できる。
[0184] また、図 14 (a)ないし図 14 (d)は、液晶パネル 21における 4つの画素と、各画素の 液晶電圧の極性を示す説明図である。上記したように、 1つの画素に印加される電圧 については、フレーム周期で極性を反転させることが好ましい。この場合、各画素の 液晶電圧の極性は、フレーム周期ごとに、図 14 (a)ないし図 14 (d)の順で示すように 変ィ匕することとなる。
[0185] ここで、液晶パネル 21の全画素に印加される液晶電圧の和については、 OVとする ことが好ましい。このような制御については、例えば、図 14 (a)ないし図 14 (d)に示す ように、隣接する画素間で電圧極性を変えることで実現できる。
[0186] また、本表示装置を、画素分割駆動 (面積階調駆動)するように設計してもよ!/、。
以下に、本表示装置の画素分割駆動について説明する。図 15は、画素分割で駆動 される液晶パネル 21の構成を示す説明図である。 [0187] この図に示すように、画素分割駆動では、液晶パネル 21のゲートライン Gおよびソ ースライン Sに接続された 1つの画素 Pを、 2つ副画素(サブピクセル) SP1. SP2に分 割する。そして、各副画素 SP1 ' SP2に印加する電圧を変えて、表示を行うようになる 。なお、このような画素分割駆動については、例えば、特許文献 4〜7に記載されて いる。
[0188] 以下に、画素分割駆動について、簡単に説明する。図 15に示すように、画素分割 駆動を行う構成の本表示装置では、 1つの画素 Pを挟むように、異なる 2本の補助容 量配線 CS1 'CS2が配されている。これら補助容量配線 CS1 'CS2は、それぞれ、副 画素 SP1 · SP2の一方に接続されて!、る。
[0189] また、各副画素 SP1. SP2内〖こは、 TFT31、液晶容量 32、補助容量 33が設けられ ている。 TFT31は、ゲートライン Gおよびソースライン Sおよび液晶容量 32に接続さ れている。補助容量 33は、 TFT31、液晶容量 32および補助容量配線 CS1あるいは CS2に接続されている。この補助容量配線 CS1 'CS2には、所定周波数の交流電圧 信号である補助信号が印加されている。また、補助容量配線 CS1 'CS2に印加され る補助信号の位相は、互いに反転している(180° 異なっている)。
[0190] 液晶容量 32は、 TFT31、共通電圧 Vcomおよび補助容量 33に接続されている。
また、液晶容量 32は、自身とゲートライン Gとの間に生成される、寄生容量 34に接続 される。
[0191] この構成において、ゲートライン Gが ON状態となると、 1つの画素 Pにおける両副画 素 SP1. SP2の TFT31が導通状態となる。図 16 (a)および図 16 (c)は、このときにソ ースライン Sに正(≥Vcom)の表示信号が印加された場合における、副画素 SPl ' S P2の液晶容量 32に印加される電圧 (液晶電圧)を示すグラフである。この場合、図 1 6 (a)および図 16 (c)に示すように、両副画素 SP1 · SP2の液晶容量 32の電圧値は、 表示信号に応じた値 (VO)まで上昇する。
[0192] そして、ゲートライン Gが OFF状態となると、寄生容量 34に起因するゲート引き込み 現象の影響で、液晶電圧が Vdだけ下がる。このとき、図 16 (a)に示すように、補助容 量配線 CS1の補助信号が立ち上がった場合 (ローからハイになった場合)、これに接 続されている副画素 SP1の液晶電圧は、 Vcs (補助容量配線 CS1に流れる補助信 号の振幅に応じた値)だけ上昇する。そして、 VO〜VO—Vdの間で、補助容量配線 CSの周波数に応じて、振幅 Vcsをもって、補助信号の周波数に応じて振動すること となる。
[0193] 一方、この場合には、図 16 (c)に示すように、補助容量配線 CS2の補助信号は立 ち下がる(ハイからローになる)。そして、これに接続されている副画素 SP2の液晶電 圧は、補助信号の振幅に応じた値 Vcsだけ下降する。その後、 VO—Vd〜VO—Vd Vcsの間で振動する。
[0194] また、図 16 (b)および図 16 (d)は、ゲートライン Gが ONとなったときにソースライン S に負(≤Vcom)の表示信号が印加された場合における、副画素 SP1 ' SP2の液晶 電圧を示すグラフである。この場合、これらの図に示すように、副画素 SP1. SP2の液 晶電圧は、表示信号に応じた値(一 VI)まで下降する。
[0195] その後、ゲートライン Gが OFF状態となると、上記の引き込み現象によって、液晶電 圧は Vdだけさらに下がる。このとき、図 16 (b)に示すように、補助容量配線 CS1の補 助信号が立ち下がった場合、これに接続されている副画素 SP1の液晶電圧は、 Vcs だけさらに下降する。そして、ー¥0—¥(1—¥じ5〜ー¥0—¥(1の間で振動することと なる。
[0196] 一方、この場合には、図 16 (d)に示すように、補助容量配線 CS2の補助信号は立 ち上がる。そして、これに接続されている副画素 SP2の液晶電圧は、 Vcsだけ上昇す る。その後、 VO— Vd〜V0— Vd— Vcsの間で振動する。
[0197] このように、補助容量配線 CS1 'CS2に位相の 180° 異なる補助信号を印加するこ とで、副画素 SP1 ' SP2の液晶電圧を、互いに異ならせることが可能となる。
[0198] すなわち、ソースライン Sの表示信号が正の場合、引き込み現象の直後に立ち上が る補助信号を入力する副画素については、液晶電圧の絶対値が表示信号電圧より 高くなる(図 16 (a) )。一方、このときに立ち下がる補助信号を入力する副画素につい ては、液晶電圧の絶対値が表示信号電圧より低くなる(図 16 (c) )。
[0199] また、ソースライン Sの表示信号が負の場合、引き込み現象の直後に電位が立ち下 力 ¾補助信号を入力する副画素については、液晶容量 32の印加電圧の絶対値が表 示信号電圧より高くなる(図 16 (b) )。一方、このときに立ち上がる補助信号を入力す る副画素については、液晶電圧の絶対値が表示信号電圧より低くなる(図 16 (d) )。
[0200] 従って、図 16 (a)ないし図 16 (d)に示した例では、副画素 SP1の液晶電圧 (絶対値 )力 副画素 SP2よりも高くなる(副画素 SP1の表示輝度力 副画素 SP2より高くなる) 。また、副画素 SP1 ' SP2の液晶電圧の差 (Vcs)については、補助容量配線 CS1 ' CS2に印加する補助信号の振幅値に応じて制御できる。これにより、 2つの副画素 S P1 ' SP2の表示輝度 (第 1輝度、第 2輝度)に、所望の差をつけることが可能となる。
[0201] 表 1に、輝度の高くなる副画素(明画素)および輝度の低くなる副画素(喑画素)に 印加される、液晶電圧の極性と、引き込み現象の直後での補助信号の状態をまとめ て示す。なお、この表では、液晶電圧の極性を「 +、―」で示している。また、引き込 み現象の直後で補助信号が立ち上がる場合を「†」で、立ち下がる場合を「 I」で示 している。
[表 1]
Figure imgf000036_0001
なお、画素分割駆動では、画素 Pの輝度は、 2つの副画素 SP1 ' SP2の輝度(液晶 の透過率に相当)の合計となる。
[0202] 図 17は、画素分割駆動を行わない場合における、 2つの視野角(0° (正面)およ び 60° )での、液晶パネル 21の透過率と印加電圧との関係を示すグラフである。こ のグラフに示すように、正面での透過率が NAの場合 (NAとなるように液晶電圧を制 御した場合)、視野角 60° での透過率は LAとなる。ここで、画素分割駆動において 正面の透過率を NAとするためには、 2つの副画素 SP1 . SP2に、 Vcsだけ異なる電 圧を印加し、それぞれの透過率を ΝΒ1 ·ΝΒ2とすればよい(NA= (NB1 +NB2) / 2)。 [0203] また、副画素 SP1. SP2における 0° での透過率が NB1 ·ΝΒ2である場合、 60° で の透過率は LB1 -LB2となる。そして、 LB1は、ほぼ 0である。従って、 1画素での透 過率は M (LB2Z2)となり、 LAより低くなる。このように、画素分割駆動を行うことで、 視野角特性を向上させることが可能となる。
[0204] また、例えば、画素分割駆動を用いれば、 CS信号の振幅を大きくすることにより、 一方の副画素の輝度を黒表示(白表示)とし、他方の副画素の輝度を調整することで 、低輝度(高輝度)の画像を表示することも可能である。これにより、サブフレーム表 示と同様に、一方の副画素における表示輝度と実際輝度とのズレを最小にできるた め、視野角特性をさらに向上させられる。
[0205] また、上記の構成において、一方の副画素を黒表示(白表示)としない構成としても よい。すなわち、双方の副画素に輝度差が生じれば、原理的には、視野角を改善で きる。従って、 CS振幅を小さくできるので、パネル駆動の設計が容易となる。
[0206] また、全ての表示信号に関して、副画素 SP1 ' SP2の輝度に差をつける必要はない 。例えば、白表示 '黒表示の際には、これらの輝度を等しくすることが好ましい。従つ て、少なくとも 1つの表示信号 (表示信号電圧)に対して、副画素 SP1を第 1輝度とす る一方、副画素 SP2を、第 1輝度とは異なる第 2輝度とするように設計されていればよ い。
[0207] また、上記の画素分割駆動については、フレームごとに、ソースライン Sに印加する 表示信号の極性を変更することが好ましい。すなわち、あるフレームで副画素 SP1 ' SP2を図 16 (a)および図 16 (c)のように駆動した場合、次のフレームでは、図 16 (b) および図 16 (d)のように駆動することが好ま 、。
[0208] これにより、画素 Pの 2つの液晶容量 32に力かる、 2フレームでのトータル電圧を OV とできる。従って、印加電圧の直流成分をキャンセルすることが可能となる。
[0209] なお、上記した画素分割駆動では、 1つの画素を 2つに分割するとしている。しかし ながら、これに限らず、 1つの画素を 3つ上の副画素に分割してもよい。
[0210] また、上記したような画素分割駆動については、通常ホールド表示と組み合わせて もよいし、サブフレーム表示とを組み合わせてもよい。さらに、図 12 (a)、図 12 (b)お よび図 13 (a)および図 13 (b)を用いて示した、極性反転駆動を組み合わせてもよい [0211] 以下に、画素分割駆動、サブフレーム表示および極性反転駆動の組み合わせに ついて説明する。
[0212] 図 18 (a)は、図 13 (a)と同様の、 1フレームごとに液晶電圧の極性を反転させなが らサブフレーム表示を行う場合における、液晶電圧(1画素分)の変化を示すグラフで ある。
[0213] このような極性反転駆動によるサブフレーム表示と画素分割駆動と組み合わせる場 合、各副画素の液晶電圧は、図 18 (b)および図 18 (c)に示すように変遷する。
[0214] すなわち、図 18 (b)は、画素分割駆動において輝度の高くなる副画素(明画素)の 液晶電圧を、また、図 18 (c)は、同じく輝度の低くなる副画素(暗画素)の液晶電圧を 示すグラフである。
[0215] なお、波線は画素分割駆動を行わな ヽ場合の液晶電圧を示す一方、実線は、画 素分割駆動を行う場合の液晶電圧を示して!/ヽる。
[0216] また、図 19 (a)および図 19 (b)は、図 18 (b)および図 18 (c)に対応する、明画素お よび暗画素の輝度を示すグラフである。
[0217] なお、これらの図に示した†、 丄は、引き込み現象の直後での補助信号の状態(引 き込み現象の直後で立ち上がるか、立ち下がるか)を示す記号である。これらの図に 示すように、この場合には、各副画素の液晶電圧極性を、 1フレームごとに反転させ る。これは、サブフレーム間で異なる液晶電圧を、適切にキャンセルする(2フレーム でのトータルの液晶電圧を OVとする)ためである。また、補助信号の状態(引き込み 現象の直後での位相; I )については、極性の反転と同じ位相で反転させる。
[0218] 上記のように駆動すると、図 18 (b)、図 18 (c)および図 19 (a)、図 19 (b)に示すよう に、両サブフレームでの液晶電圧 (絶対値)および輝度は、明画素では高くなる一方 、暗画素では低くなる。また、前サブフレームの明画素での液晶電圧の増加量は、暗 画素での減少量と一致する。同様に、後サブフレームの明画素での液晶電圧の増加 量は、暗画素での減少量と等しくなる。
[0219] 従って、 1画素に印加される液晶電圧に極性の偏りが生じることを防止できるので、 2フレームでのトータルの液晶電圧を OVとできる(なお、前サブフレームと後サブフレ ームとでは、画素分割駆動による液晶電圧の増加量 (減少量)は異なる。これは、液 晶の透過率に応じて容量が変化してしまうために起こる)。
[0220] ここで、上記では、各副画素の液晶電圧極性を、 1フレームごとに反転させるとして いる。しかしながら、これに限らず、液晶電圧の極性については、フレーム周期で反 転させればよい。従って、図 13 (b)に示したように、 1フレーム内の 2つのサブフレー ム間で液晶電圧を逆極性とし、さらに、後サブフレームと、 1つ後のフレームの前サブ フレームとを同極性とするようにしてもよ 、。
[0221] 図 20 (a)および図 20 (b)は、このように極性反転を行う場合における、明画素およ び暗画素の輝度を示すグラフである。
[0222] この場合も、補助信号の状態( ΐ、 丄)につ 、ては、極性の反転と同位相で反転さ せることで、 2フレームでのトータルの液晶電圧を OVとできる。
[0223] 図 21は、本表示装置によって上記のようにサブフレーム表示、極性反転駆動およ び画素分割駆動を組み合わせて表示を行った結果 (破線および実線)と、通常ホー ルド表示を行った結果 (一点鎖線および実線;図 2に示したものと同様)と合わせて示 すグラフである。このグラフに示すように、視野角を 60° とする場合、サブフレーム表 示と画素分割駆動とを組み合わせることで、実際輝度を予定輝度に非常に近づける ことが可能となる。従って、サブフレーム表示と画素分割駆動との相乗効果によって、 視野角特性を極めて良好な状態とできることがわかる。
[0224] なお、上記では、補助信号の状態(引き込み現象の直後での位相 ; I )につ ヽ ては、極性の反転と同位相で、フレーム周期(1フレームの時間幅の周期)で反転さ せるとしている。し力しながら、これに限らず、制御部 15は、補助信号の変化と極性 反転との周期あるいは位相を変えてもょ 、。
[0225] 例えば、図 22 (a)および図 22 (b)は、 1フレームごとに液晶電圧の極性を反転させ ながらサブフレーム表示を行う場合 (図 18 (a)参照)において、補助信号の状態をサ ブフレーム周期で変えた場合における、両副画素 SP1 ' SP2に印加される液晶電圧 を示すグラフである。また、図 23 (a)および図 23 (b)は、図 22 (a)および図 22 (b)に 対応する、副画素 SP1 ' SP2の輝度を示すグラフである。
[0226] これらの図に示すように、この場合、副画素 SP1では、後サブフレームの液晶電圧 が減少する一方、前サブフレームの液晶電圧は増加する。また、副画素 SP2では、 後サブフレームの液晶電圧が増大する一方、前サブフレームの液晶電圧は減少する 。従って、この構成でも、 2フレーム内でのトータルの液晶電圧をほぼ 0Vに出来る。こ のため、液晶電圧の直流成分を、問題ない程度にキャンセルすることが可能である。
[0227] また、この構成には、以下のような利点がある。図 24 (a)ないし図 24 (c)は、補助信 号の状態を液晶電圧の極性と同位相で、サブフレーム周期で反転させる場合(図 18 (a)および図 18 (b)に示した場合)における、液晶パネル 21の副画素 SP1 ' SP2の 表示状態を示す説明図である。
[0228] なお、これらの図では、明画素を白で、暗画素を黒で表現している。また、図 24 (a) は、 1ライン分の画素(一部)における前サブフレームでの表示状態を示す図である。 一方、図 24 (b)は、同じく 1ライン分の画素における後サブフレームでの表示状態を 示している。さらに、図 24 (c)は、いずれかのサブフレームにおける、 3ライン分の画 素の状態を示している。
[0229] 図 24 (a)および図 24 (b)に示すように、この場合、各畐 ij画素 SP1. SP2は、それぞ れ明画素 .喑画素のいずれか一方に固定される。そして、サブフレームが変わっても
、各副画素の役割は維持される(明画素は、暗画素に変わることなく常に明画素のま まである)。
[0230] 従って、同じ画像を表示し続けている期間では、図 24 (c)に示すように、明画素と 暗画素とが、液晶パネルの縦方向 ·横方向に 1つおきに並んだままとなる。
[0231] このため、一様な色の画像を表示する場合でも、ユーザーにとっては、明るいドット と暗いドットとの混在した網かけ模様に視認されてしまう(ユーザーにぶつぶつ感を抱 かせる)可能性がある。
[0232] これに対し、図 23 (a)および図 23 (b)に示すように、液晶電圧の極性をフレーム毎 に変える一方、補助信号の状態をサブフレーム周期で変える場合、各副画素 SP1 ' SP2は、フレーム周期で、明画素 '暗画素の役割を入れ換える(明暗を交換する;一 方の副画素の輝度と他方の副画素の輝度との高低の関係を常に一定にしないで変 える)。さら〖こ、この場合、明暗の交換は、 1フレーム内でも行われる。
[0233] 上記の構成によれば、各副画素 SP1 ' SP2は、目的の表示輝度(図 18 (a)および 図 18 (b)の構成における、両副画素からの 1フレームでの表示輝度)を、 2フレームで 単独で表示することができる。従って、各副画素 SP1 . SP2は、互いにほぼ同じ輝度 の表示光を出力することとなる(図 23 (a)および図 23 (b)では、明画素となるタイミン グを実線で示す一方、暗画素となるタイミングを破線で示している)。この結果、この ため、 2つの副画素 SP1 ' SP2を明画素 *喑画素の一方に固定する駆動方式に比し て、上記のようなぶつぶつ感を低減することが可能となる。
[0234] なお、上記では、補助信号の変化の周期と極性の反転周期とを変える場合の例と して、「1フレームごとに液晶電圧の極性を反転させながらサブフレーム表示を行う一 方、補助信号の状態をサブフレーム周期で変えた場合」を示した。し力しながら、これ に限らず、図 25 (a)及び図 25 (b)に示すように、「液晶電圧を、 1フレーム内の 2つの サブフレーム間で逆極性とし、さらに、後サブフレームと 1つ後のフレームの前サブフ レームとで同極性とする(図 19 (b)参照)」とともに、補助信号の状態をサブフレーム 周期で変える構成でも、同様の効果を得られる。
[0235] すなわち、この構成では、各副画素 SP1. SP2は、 1フレーム内では、明画素あるい は暗画素のいずれかに固定される。しかし、フレーム毎にその役割を変えるため、 2 フレーム全体では、互いにほぼ同じ輝度の表示光を出力することとなる。
従って、この構成でも、上記のようなぶつぶつ感を低減できる。
[0236] このように、フレーム周期で液晶電圧の極性を反転する一方、サブフレーム周期で 補助信号の状態を変えることで、各副画素 SP1 · SP2の役割(明画素 ·暗画素)をフ レーム周期で (あるいはフレーム毎に)入れ換えられる。従って、この構成では、副画 素 SP1 · SP2のそれぞれが、目的の表示輝度(図 18 (a)および図 18 (b)の構成にお ける、両副画素からの 1フレームでの表示輝度)を、 2フレームで単独で表示できる。 このため、上記のようなぶつぶつ感を低減することが可能となる。
[0237] また、本実施の形態では、前サブフレーム期間と後サブフレーム期間との比(フレ ームの分割比)を、 3 : 1〜7 : 1に設定することが好ましいとしている。し力しながら、こ れに限らず、フレームの分割比を、 1 : 1あるいは 2 : 1に設定してもよい。
[0238] 例えば、フレームの分割比を 1: 1とする場合、図 3に示したように、通常ホールド表 示に比して、実際輝度を予定輝度に近づけることが可能となる。また、図 6に示したよ うに、明度に関しても、通常ホールド表示に比して、実際明度を予定明度に近くでき る。従って、この場合でも、通常ホールド表示に比して、視野角特性を改善できること は明らかである。
[0239] また、液晶パネル 21では、液晶電圧 (液晶に印加される電圧;電極間電圧)を表示 信号に応じた値とするまでに、液晶の応答速度に応じた時間がかかる。従って、いず れかのサブフレーム期間が短すぎると、この期間内に、液晶の電圧を表示信号に応 じた値にまで上げられな 、可能性がある。
[0240] 従って、前サブフレームと後サブフレーム期間との比を、 1 : 1あるいは 2 : 1に設定す ることで、一方のサブフレーム期間を短くしすぎることを防止できる。従って、応答速 度の遅い液晶を用いても、適切な表示を行える。
[0241] また、フレームの分割比(前サブフレームと後サブフレームとの比)については、 n: 1
(nは 7以上の自然)に設定してもよい。また、この分割比を、 n: l (nは 1以上の実数( より好ましくは 1より大きい実数))としてもよい。例えば、この分割比を 1. 5 : 1に設定 することで、 1 : 1とする場合に比して視野角特性を向上させられる。また、 2 : 1とする 場合に比べて、応答速度の遅い液晶材料を使用することが容易となる。
[0242] また、フレームの分割比を n: 1 (nは 1以上の実数)とする場合でも、「最大輝度の (n
+ 1)分の 1 (TmaxZ (n+ l) ) jまでの低輝度 (低明度)の画像を表示する際には、 前サブフレームを黒表示とし、後サブフレームのみを用いて表示を行うことが好まし い。
[0243] また、「TmaxZ (n+ 1)」以上の高輝度(高明度)の画像を表示するときには、後サ ブフレームを白表示とし、前サブフレームの輝度だけを調整して表示を行うことが好 ましい。これにより、常に 1つのサブフレームを、実際輝度と予定輝度との差のない状 態としておける。従って、本表示装置の視野角特性を良好にできる。
[0244] ここで、フレームの分割比を n: 1にする場合、前フレームを nとしても後フレーム nと しても実質的に同じ効果が狙える。すなわち n: lと l :nは視野角改善効果に関しては 同一である。また、 nは 1以上の実数とした場合でも、上記した(10)〜(12)式を用い た輝度階調の制御にっ 、ては有効である。
[0245] また、本実施の形態では、本表示装置のサブフレーム表示を、フレームを 2つのサ ブフレームに分割して行う表示であるとしている。しかしながら、これに限らず、本表 示装置を、フレームを 3つ以上のサブフレームに分割したサブフレーム表示を行うよう に設計してもよい。
[0246] フレームを m個に分割する場合のサブフレーム表示では、輝度の非常に低い場合 には、 m— 1個のサブフレームを黒表示とする一方、 1つのサブフレームの輝度 (輝度 階調)だけを調整して表示を行う。そして、このサブフレームだけでは表現できないく らい輝度の高くなつた場合に、このサブフレームを白表示とする。そして、 m— 2個の サブフレームを黒表示とする一方、残った 1つのサブフレームの輝度を調整して表示 を行う。
[0247] すなわち、フレームを m個に分割する場合でも、 2個に分割するときと同様に、輝度 を調整する(変化させる)サブフレームを常に 1つとし、他のサブフレームを白表示あ るいは黒表示としておくことが好ましい。これにより、 m—l個のサブフレームを、実際 輝度と予定輝度とのズレのない状態とできる。従って、本表示装置の視野角特性を 良好にできる。
[0248] 図 26は、本表示装置によって、均等な 3つのサブフレームにフレームを分割して表 示を行った結果 (破線および実線)と、通常ホールド表示を行った結果 (一点鎖線お よび実線;図 2に示したものと同様)と合わせて示すグラフである。このグラフに示すよ うに、サブフレームを 3つに増やした場合、実際輝度を予定輝度に非常に近づけるこ とが可能となる。従って、本表示装置の視野角特性をより良好な状態とできることがわ かる。
[0249] また、フレームを m個に分割する場合でも、上記した極性反転駆動を行うことが好ま しい。図 27は、フレームを 3つに分割し、フレームごとに電圧極性を反転した場合に おける、液晶電圧の遷移を示すグラフである。
[0250] この図に示すように、この場合でも、 2フレームでのトータルの液晶電圧を OVとでき る。
[0251] また、図 28は、同様にフレームを 3つに分害 ijし、サブフレームごとに電圧極性を反 転した場合における、液晶電圧の遷移を示すグラフである。
このように、フレームを奇数個に分割する場合には、サブフレームごとに電圧極性を 反転させても、 2フレームでのトータルの液晶電圧を OVとできる。
[0252] 従って、フレームを m個(m; 2以上の整数)に分割した場合には、制御部 15は、隣 接するフレーム間の M番目(M ; l〜m)のサブフレームどうし力 異なる極性の液晶 電圧を印加されている状態とすることが好ましいといえる。これにより、 2フレームでの トータルの液晶電圧を OVとできる。
[0253] また、フレームを m個(m; 2以上の整数)に分割した場合には、 2フレーム(ある 、は より多くのフレーム)でのトータルの液晶電圧を OVとするように、液晶電圧の極性を反 転させることが好ま ヽと 、える。
[0254] また、フレームを m個(m; 3以上の整数)に分割した場合でも、図 23 (a)、図 23 (b) 、図 25 (a)および図 25 (b)に示したような、液晶電圧の極性反転の位相と補助信号 の状態変化の位相とを変えることで、各副画素 SP1 ' SP2の役割(明画素 '喑画素) をフレーム周期で(あるいはフレーム毎に)入れ換えられる。
[0255] 例えば、図 29 (a)および図 29 (b)は、フレームを 3つのサブフレームに分割し、フレ ームごとに電圧極性を反転する一方、補助信号の状態を、「1フレーム内の 3つのサ ブフレーム間で交互に変えるとともに、 1フレームの 3つ目の(最後の)サブフレームと 、 1つ後のフレームにおける 1つ目の(最初の)サブフレームとで等しくする」場合にお ける、各副画素 SP1 ' SP2の輝度の遷移を示すグラフである。
[0256] さらに、図 30 (a)および図 30 (b)は、フレームを 3つのサブフレームに分割し、サブ フレームごとに電圧極性を反転する一方、補助信号の状態を、「1フレーム内の 3つ のサブフレーム間で交互に変えるとともに、 1フレームの 3つ目の(最後の)サブフレー ムと、 1つ後のフレームにおける 1つ目の(最初の)サブフレームとで等しくする」場合 における、各副画素 SP1 ' SP2の輝度の遷移を示すグラフである。
[0257] これらの図に示すように、このような構成でも、各副画素 SP1 . SP2における明画素
'喑画素の役割を 1フレーム内あるいは 2フレーム内で変えられる。従って、この構成 でも、副画素 SP1. SP2のそれぞれは、目的の表示輝度(図 18 (a)および図 18 (b) の構成における、両副画素からの 1フレームでの表示輝度)を、 2フレームで単独で 表示できる。このため、上記のようなぶつぶつ感を低減することが可能となる。
[0258] なお、図 23 (a)、図 23 (b)、図 25 (a)、図 25 (b)、図 29 (a)、図 29 (b)、図 30 (a)お よび図 30 (b)に示したような、各副画素 SP1 · SP2の役割(明画素 ·暗画素)を 1フレ ーム内で (あるいはフレーム周期で)変える構成では、以下のような問題の発生する 可能性がある。すなわち、図 23 (b)、 29 (b)に示したように、フレーム周波数を 60Hz に設定した場合、フレーム間で輝度差が生じるため各副画素 SP1 ' SP2における輝 度変化の周波数は、 30Hzとなる。このため、この構成では、フリツ力の発生する可能 '性がある。
[0259] なお、このようなフリツ力に関しては、図 29 (a)および図 29 (b)に示した構成の方が 、図 30 (a)および図 30 (b)の構成に比して、優れているといえる。すなわち、前者で は、各副画素 SP1 ' SP2における明画素 '喑画素の役割が 1フレーム内で変わる。一 方、後者では、 1フレーム内に限っては、 gij画素 SP1. SP2は、明画素'喑画素のい ずれかに固定される。
[0260] 従って、前者の場合、後者に比して、副画素 SP1. SP2におけるフレーム間での輝 度の差を小さくできる。このため、フリツ力の発生を軽減することが可能となる。
[0261] なお、フレームを m個(m; 3以上の整数)に分割した場合、各副画素 SP1. SP2に おける明画素 ·暗画素の役割にっ 、ては、 1フレーム内で変わるように設定すること が好ましいといえる。これにより、フリツ力を低減できる。
[0262] また、フレームを偶数個のサブフレームに分割する(上記の mを偶数個とする)場合 、本表示装置では、液晶電圧をフレーム周期で反転させるとともに、各副画素 SP1 ' SP2に入力する補助信号の状態を、サブフレーム周期で変更することが好ましい。こ れにより、副画素 SP1. SP2の明暗を、フレーム周期で変更できる。
[0263] また、サブフレームを奇数個とする(フレームを奇数個に分割する)場合には、サブ フレームごとに電圧極性を反転させても、 2フレームでのトータルの液晶電圧を OVと することが可能である。
[0264] また、制御部 15は、各副画素 SP1 ' SP2に入力する補助信号の状態を、 1フレーム 内のサブフレーム間で交互に変えるとともに、 1フレームの最後のサブフレームと、後 続フレームの最初のサブフレームとで等しくすることが好ましい。これにより、副画素 S P1. SP2の明暗を、フレーム周期で変更できる。
[0265] なお、上記では、補助信号の状態をサブフレーム周期で変更することで、副画素 S PI ' SP2の明暗をフレーム周期で変更するとしている。
[0266] しかしながら、上記のようなぶつぶつ感を低減については、各副画素の明暗を固定 することを回避することで達成できる。
[0267] 従って、表示信号の電圧極性をフレーム周期で反転する一方、各副画素に入力す る補助信号の状態をフレーム内で変えるだけでも、ぶつぶつ感の低減を図れる。
[0268] また、副画素 SP1. SP2の明暗については、フレーム周期以外の周期で変えても、 あるいは、周期なくランダムに変えてもよい。
[0269] また、上述したように、フレームを m個に分割する場合、輝度を調整するサブフレー ムを常に 1つとし、他のサブフレームを白表示 (最大輝度)あるいは黒表示 (最小輝度
)とすることが好ましい。しかしながら、これに限らず、輝度を調整するサブフレームを
2つ以上としてもよい。この場合でも少なくとも 1つのサブフレームを白表示 (最大輝度
)あるいは黒表示 (最小輝度)とすることで、視野角特性を向上させられる。
[0270] また、輝度を調整しな!、サブフレームの輝度を、最大輝度とする代わりに「最大また は第 2所定値より大きい値」としてもよい。また、最小輝度とする代わりに、「最小また は第 1所定値より小さ 、値」としてもよ 、。
[0271] この場合でも、輝度を調整しないサブフレームにおける実際明度と予定明度とのズ レ(明度ズレ)を十分に小さくできる。従って、本表示装置の視野角特性を向上させら れる。
[0272] ここで、図 31は、輝度を調整しないサブフレームにおける、表示部 14に出力される 信号階調 (%;表示信号の輝度階調)と、各信号階調に応じた実際輝度階調 (%)と の関係 (視野角階調特性 (実測) )を示すグラフである。
[0273] なお、実際輝度階調とは、「各信号階調に応じて表示部 14の液晶パネル 21から出 力された輝度 (実際輝度)を、上記した(1)式を用いて輝度階調に変換したもの」であ る。このグラフに示すように、上記した 2つの階調は、液晶パネル 21の正面 (視野角 度 0度)においては等しくなる。一方、視野角度を 60度としたときには、白浮きのため 、実際輝度階調が中間調で信号階調より明るくなる。また、この白浮きは、視野角度 によらず、輝度階調が 20%〜30%の間となるときに最大値をとる。
[0274] ここで、このような白浮きについては、上記のグラフに破線で示した「最大値の 10% 」を越えて 、な 、場合には、本表示装置の十分に表示品位を保てる(上記した明度 ズレを十分に小さくできる)ことがわ力つている。また、白浮きが「最大値の 10%」を越 えないような信号階調の範囲は、信号階調の最大値の 80〜100%、および、 0〜0. 02%である。また、この範囲は、視野角度が変化しても不変である。
[0275] 従って、上記した第 2所定値としては、最大輝度の 80%に設定することが好ましぐ また、第 1所定値としては、最大輝度の 0. 02%に設定することが好ましいといえる。
[0276] また、輝度を調整しな!、サブフレームを設けなくてもよ 、。すなわち、 m個のサブフ レームで表示を行う場合、各サブフレームの表示状態に差をつけなくてもよい。この ような構成であっても、上記したような、フレーム周期で液晶電圧の極性を反転する 極性反転駆動を行うことが好ま Uヽ。
[0277] なお、 m個のサブフレームで表示を行う場合、各サブフレームの表示状態に少しで も差をつけるだけで、液晶パネル 21の視野角特性を向上させることは可能である。
[0278] また、本発明を、 1フレームを、 m個(m; 2以上の整数)のサブフレームに分割して 画像表示を行う表示装置であって、入力された表示信号の電圧に基づ!、た輝度の 画像を表示する液晶表示部と、 1フレームに表示部から出力される輝度の総和をフレ ームの分割によって変えないように、第 1〜第 mサブフレームの表示信号である第 1 〜第 m表示信号を生成し、液晶表示部に出力するとともに、表示信号の電圧極性を 、フレーム周期で反転させる制御部とを備えた表示装置において、液晶表示部の各 画素が、同一のソースラインおよびゲートラインに接続され、表示信号の電圧に応じ て輝度が変化する第 1副画素および第 2副画素を有しており、制御部が、少なくとも 1 つの表示信号電圧に対して、第 1副画素および第 2副画素の一方を明画素とし、他 方を喑画素とするとともに、明画素となる副画素を、所定周期で入れ換えるように設 計されている表示装置、と表現することもできる。
[0279] また、本発明の液晶テレビジョン受像機を、 1フレームを、 m個(m; 2以上の整数)の サブフレームに分割して画像表示を行う表示装置であって、表示信号の電圧に基づ いた輝度の画像を表示する液晶表示素子力 なる表示部と、 1フレームに表示部か ら出力される輝度の総和をフレームの分割によって変えないように、第 1〜第 mサブ フレームの表示信号である第 1〜第 m表示信号を生成して表示部に出力する制御部 とを備えており、表示部の各画素が、同一のソースラインおよびゲートラインに接続さ れた第 1副画素および第 2副画素を有しており、制御部が、第 1副画素と第 2副画素 とに輝度差をつけ、一方の副画素の輝度と他方の副画素の輝度との高低の関係を 常に一定にしな 、で変えるようになって!/、る表示装置と、テレビ放送信号のチャネル を選択し、選択されたチャネルのテレビ画像信号を制御部に伝達するためのチュー ナ部とを備え、表示装置の制御部が、このテレビ画像信号に基づいて表示信号を生 成する構成、としてもよい。
[0280] また、上記では、本表示装置における全ての処理を、制御部 15の制御により行うと している。し力しながら、これに限らず、これらの処理を行うためのプログラムを記録媒 体に記録し、このプログラムを読み出すことのできる情報処理装置を、制御部 15に代 えて用いるようにしてもよい。
[0281] この構成では、情報処理装置の演算装置 (CPUや MPU)が、記録媒体に記録さ れているプログラムを読み出して処理を実行する。従って、このプログラム自体が処 理を実現するといえる。
[0282] ここで、上記の情報処理装置としては、一般的なコンピューター(ワークステーション やパソコン)の他に、コンピューターに装着される、機能拡張ボードや機能拡張ュ-ッ トを用いることができる。
[0283] また、上記のプログラムとは、処理を実現するソフトウェアのプログラムコード (実行 形式プログラム、中間コードプログラム、ソースプログラム等)のことである。このプログ ラムは、単体で使用されるものでも、他のプログラム (OS等)と組み合わせて用いられ るものでもよい。また、このプログラムは、記録媒体力 読み出された後、装置内のメ モリ (RAM等)にいつたん記憶され、その後再び読み出されて実行されるようなもの でもよい。
[0284] また、プログラムを記録させる記録媒体は、情報処理装置と容易に分離できるもの でもよいし、装置に固定 (装着)されるものでもよい。さらに、外部記憶機器として装置 に接続するものでもよ ヽ。
[0285] このような記録媒体としては、ビデオテープやカセットテープ等の磁気テープ、フロ ッピー(登録商標)ディスクやハードディスク等の磁気ディスク、 CD、 MO、 MD、 DV D等の光ディスク (光磁気ディスク)、 ICカード,光カード等のメモリカード、マスク RO M、 EPROM、 EEPROM、フラッシュ ROM等の半導体メモリなどを適用できる。
[0286] また、ネットワーク (イントラネット'インターネット等)を介して情報処理装置と接続さ れている記録媒体を用いてもよい。この場合、情報処理装置は、ネットワークを介する ダウンロードによりプログラムを取得する。すなわち、上記のプログラムを、ネットワーク
(有線回線あるいは無線回線に接続されたもの)等の伝送媒体 (流動的にプログラム を保持する媒体)を介して取得するようにしてもよい。なお、ダウンロードを行うための プログラムは、装置内(あるいは送信側装置'受信側装置内)にあらかじめ記憶されて 、ることが好まし!/、。
[0287] 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あく までも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限 定して狭義に解釈されるべきものではなぐ本発明の精神と次に記載する特許請求 事項の範囲内で、いろいろと変更して実施することができるものである。
産業上の利用可能性
[0288] 本発明は、白浮き現象の生じる表示画面を備えた装置に対し、好適に使用できるも のである。

Claims

請求の範囲
[1] 1フレームを、 m個(m; 2以上の整数)のサブフレームに分割して画像表示を行う表 示装置であって、
表示信号の電圧に基づいた輝度の画像を表示する液晶表示素子力 なる表示部 と、
1フレームに表示部から出力される輝度の総和をフレームの分割によって変えない ように、第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成して表 示部に出力する制御部とを備えており、
表示部の各画素が、同一のソースラインおよびゲートラインに接続された第 1副画 素および第 2副画素を有しており、
制御部が、第 1副画素と第 2副画素とに輝度差をつけ、一方の副画素の輝度と他方 の副画素の輝度との高低の関係を常に一定にしないで変えることを特徴とする表示 装置。
[2] 各副画素が、互いに異なる補助線に接続されているとともに、画素容量と、ゲートラ インが ON状態となったときに、ソースラインに印加された表示信号を画素容量に印 加するスィッチ素子と、画素容量および補助線に接続された補助容量とを備えており 制御部が、
補助線を介して各副画素に入力される補助信号を、副画素ごとに異なる状態とする とともに、表示信号の電圧極性を調整して副画素間の輝度の高低の関係を制御する ことを特徴とする請求項 1に記載の表示装置。
[3] 上記の制御部は、
表示信号の電圧極性をフレーム周期で反転する一方、各副画素に入力する補助 信号の状態をフレーム内で変更することを特徴とする、請求項 2に記載の表示装置。
[4] 上記の mが偶数の場合、
制御部は、
各副画素に入力する補助信号の状態を、サブフレーム周期で変更することを特徴 とする、請求項 3に記載の表示装置。
[5] 上記の mが奇数の場合、
制御部は、
各副画素に入力する補助信号の状態を、 1フレーム内のサブフレーム間で交互に 変えるとともに、 1フレームの最後のサブフレームと、後続フレームの最初のサブフレ ームとで等しくするように設計されていることを特徴とする、請求項 3に記載の表示装 置。
[6] 上記の mが奇数の場合、
制御部は、
表示信号の電圧極性をサブフレーム周期で反転する一方、
各副画素に入力する補助信号の状態を、 1フレーム内のサブフレーム間で交互に 変えるとともに、 1フレームの最後のサブフレームと、後続フレームの最初のサブフレ ームとで等しくするように設計されていることを特徴とする、請求項 2に記載の表示装 置。
[7] 上記の mが 3以上の場合、
制御部は、 1フレーム内で、副画素間で設定している輝度の高低の関係を入れ換 えるように設計されて 、ることを特徴とする請求項 1に記載の表示装置。
[8] 請求項 1に記載の表示装置と、
外部カゝら入力された画像信号を制御部に伝達するための信号入力部とを備え、 表示装置の制御部が、この画像信号に基づいて表示信号を生成するように設計さ れて 、ることを特徴とする液晶モニター。
[9] 請求項 1に記載の表示装置と、
テレビ放送信号を受信するチューナ部とを備えたことを特徴とする液晶テレビジョン 受像機。
[10] 1フレームを、 m個(m; 2以上の整数)のサブフレームに分割して画像表示を行う表 示方法であって、
1フレームに表示部から出力される輝度の総和をフレームの分割によって変えない ように、第 1〜第 mサブフレームの表示信号である第 1〜第 m表示信号を生成して液 晶表示素子力 なる表示部に出力する出力工程を含み、 表示部の各画素が、同一のソースラインおよびゲートラインに接続された第 1副画 素および第 2副画素を有しており、
上記の出力工程が、第 1副画素と第 2副画素とに輝度差をつけ、一方の副画素の 輝度と他方の副画素の輝度の高低の関係を常に一定にしないで変えるように設計さ れてレヽることを特徴とする表示方法。
PCT/JP2006/303783 2005-03-03 2006-02-28 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法 WO2006093163A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007505967A JP5031553B2 (ja) 2005-03-03 2006-02-28 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
US11/884,344 US8350796B2 (en) 2005-03-03 2006-02-28 Display device, liquid crystal monitor, liquid crystal television receiver, and display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005059700 2005-03-03
JP2005-059700 2005-03-03

Publications (1)

Publication Number Publication Date
WO2006093163A1 true WO2006093163A1 (ja) 2006-09-08

Family

ID=36941192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303783 WO2006093163A1 (ja) 2005-03-03 2006-02-28 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法

Country Status (3)

Country Link
US (1) US8350796B2 (ja)
JP (1) JP5031553B2 (ja)
WO (1) WO2006093163A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073192A1 (en) * 2007-08-08 2009-03-19 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US20100231560A1 (en) * 2009-03-13 2010-09-16 Seiko Epson Corporation Electro-optical apparatus, electronic device, and driving method for the electro-optical apparatus
US8767017B2 (en) * 2008-02-22 2014-07-01 Hitachi Consumer Electronics Co., Ltd. Display device
WO2015011933A1 (en) * 2013-07-26 2015-01-29 Sharp Kabushiki Kaisha Active matrix display device and method of driving same
US9741302B2 (en) 2012-12-26 2017-08-22 Sharp Kabushiki Kaisha Liquid crystal display device
JP2019049748A (ja) * 2018-11-28 2019-03-28 株式会社半導体エネルギー研究所 液晶表示装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI356222B (en) * 2006-09-18 2012-01-11 Chimei Innolux Corp Liquid crystal display panel and liquid crystal di
TWI382390B (zh) * 2008-01-29 2013-01-11 Novatek Microelectronics Corp 液晶顯示器的脈衝驅動方法與驅動電路
JP5264348B2 (ja) * 2008-07-29 2013-08-14 キヤノン株式会社 画像処理装置及びその制御方法、コンピュータプログラム及び記憶媒体
US8976096B2 (en) * 2009-11-27 2015-03-10 Sharp Kabushiki Kaisha Liquid crystal display device, television receiver, and display method for liquid crystal display device
CN101800022B (zh) * 2010-03-17 2012-01-11 福州大学 基于子行驱动技术场致发射显示的低灰度增强方法
CN103185975B (zh) * 2011-12-29 2016-02-03 上海天马微电子有限公司 液晶显示面板及驱动方法
JP5986442B2 (ja) * 2012-07-06 2016-09-06 シャープ株式会社 表示装置および表示方法
CN104991362B (zh) * 2015-04-22 2018-04-03 深圳市华星光电技术有限公司 显示面板及显示装置
US10113837B2 (en) 2015-11-03 2018-10-30 N2 Imaging Systems, LLC Non-contact optical connections for firearm accessories
JP6983674B2 (ja) 2018-01-19 2021-12-17 株式会社ジャパンディスプレイ 表示装置及び液晶表示装置
US10753709B2 (en) 2018-05-17 2020-08-25 Sensors Unlimited, Inc. Tactical rails, tactical rail systems, and firearm assemblies having tactical rails
US10645348B2 (en) 2018-07-07 2020-05-05 Sensors Unlimited, Inc. Data communication between image sensors and image displays
US11079202B2 (en) 2018-07-07 2021-08-03 Sensors Unlimited, Inc. Boresighting peripherals to digital weapon sights
US10742913B2 (en) 2018-08-08 2020-08-11 N2 Imaging Systems, LLC Shutterless calibration
US20200051481A1 (en) * 2018-08-10 2020-02-13 N2 Imaging Systems, LLC Burn-in resistant display systems
US10921578B2 (en) 2018-09-07 2021-02-16 Sensors Unlimited, Inc. Eyecups for optics
WO2020093216A1 (zh) * 2018-11-05 2020-05-14 昆山龙腾光电股份有限公司 液晶显示装置的驱动方法
US11122698B2 (en) 2018-11-06 2021-09-14 N2 Imaging Systems, LLC Low stress electronic board retainers and assemblies
US10801813B2 (en) 2018-11-07 2020-10-13 N2 Imaging Systems, LLC Adjustable-power data rail on a digital weapon sight
US10796860B2 (en) 2018-12-12 2020-10-06 N2 Imaging Systems, LLC Hermetically sealed over-molded button assembly
US11143838B2 (en) 2019-01-08 2021-10-12 N2 Imaging Systems, LLC Optical element retainers
CN112150979B (zh) * 2020-10-23 2022-04-08 京东方科技集团股份有限公司 液晶显示装置及其驱动方法
US20220223095A1 (en) * 2021-01-11 2022-07-14 Tcl China Star Optoelectronics Technology Co., Ltd. Display panel, and method and device for pixel compensation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004021069A (ja) * 2002-06-19 2004-01-22 Sharp Corp アクティブマトリクス基板および表示装置
JP2004085608A (ja) * 2002-08-22 2004-03-18 Seiko Epson Corp 画像表示装置、画像表示方法及び画像表示プログラム
JP2004233813A (ja) * 2003-01-31 2004-08-19 Seiko Epson Corp 色むら補正画像処理装置、方法及びプログラム、並びに投射型画像表示装置
JP2004325571A (ja) * 2003-04-22 2004-11-18 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2005189804A (ja) * 2003-12-05 2005-07-14 Sharp Corp 液晶表示装置
JP2005234552A (ja) * 2004-01-21 2005-09-02 Sharp Corp 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP2006011427A (ja) * 2004-06-25 2006-01-12 Samsung Electronics Co Ltd 表示装置の駆動装置及びその駆動方法、並びに表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568221A (ja) 1991-09-05 1993-03-19 Toshiba Corp 液晶表示装置の駆動方法
JPH07294881A (ja) 1994-04-20 1995-11-10 Kodo Eizo Gijutsu Kenkyusho:Kk 液晶表示装置
US6310594B1 (en) * 1998-11-04 2001-10-30 International Business Machines Corporation Driving method and circuit for pixel multiplexing circuits
JP2001296841A (ja) 1999-04-28 2001-10-26 Matsushita Electric Ind Co Ltd 表示装置
JP4655341B2 (ja) * 2000-07-10 2011-03-23 日本電気株式会社 表示装置
JP2002236472A (ja) 2001-02-08 2002-08-23 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその駆動方法
JP3999081B2 (ja) * 2002-01-30 2007-10-31 シャープ株式会社 液晶表示装置
JP4113042B2 (ja) * 2002-05-24 2008-07-02 シチズンホールディングス株式会社 表示装置およびカラー表示方法
JP4342200B2 (ja) 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP4248306B2 (ja) 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
JP2004258139A (ja) 2003-02-24 2004-09-16 Sharp Corp 液晶表示装置
JP2005250361A (ja) * 2004-03-08 2005-09-15 Sharp Corp 液晶表示装置
TWI254813B (en) * 2004-12-24 2006-05-11 Au Optronics Corp Crystal panel, liquid crystal display and driving method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004021069A (ja) * 2002-06-19 2004-01-22 Sharp Corp アクティブマトリクス基板および表示装置
JP2004085608A (ja) * 2002-08-22 2004-03-18 Seiko Epson Corp 画像表示装置、画像表示方法及び画像表示プログラム
JP2004233813A (ja) * 2003-01-31 2004-08-19 Seiko Epson Corp 色むら補正画像処理装置、方法及びプログラム、並びに投射型画像表示装置
JP2004325571A (ja) * 2003-04-22 2004-11-18 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2005189804A (ja) * 2003-12-05 2005-07-14 Sharp Corp 液晶表示装置
JP2005234552A (ja) * 2004-01-21 2005-09-02 Sharp Corp 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP2006011427A (ja) * 2004-06-25 2006-01-12 Samsung Electronics Co Ltd 表示装置の駆動装置及びその駆動方法、並びに表示装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090073192A1 (en) * 2007-08-08 2009-03-19 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US8487919B2 (en) * 2007-08-08 2013-07-16 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US8767017B2 (en) * 2008-02-22 2014-07-01 Hitachi Consumer Electronics Co., Ltd. Display device
US9892713B2 (en) 2008-02-22 2018-02-13 Hitachi Maxell, Ltd. Display device
US20100231560A1 (en) * 2009-03-13 2010-09-16 Seiko Epson Corporation Electro-optical apparatus, electronic device, and driving method for the electro-optical apparatus
US9741302B2 (en) 2012-12-26 2017-08-22 Sharp Kabushiki Kaisha Liquid crystal display device
WO2015011933A1 (en) * 2013-07-26 2015-01-29 Sharp Kabushiki Kaisha Active matrix display device and method of driving same
CN105452944A (zh) * 2013-07-26 2016-03-30 夏普株式会社 有源矩阵显示设备及其驱动方法
JP2016526692A (ja) * 2013-07-26 2016-09-05 シャープ株式会社 アクティブマトリックス・ディスプレイ装置およびその駆動方法
JP2019049748A (ja) * 2018-11-28 2019-03-28 株式会社半導体エネルギー研究所 液晶表示装置

Also Published As

Publication number Publication date
JPWO2006093163A1 (ja) 2008-08-07
US8350796B2 (en) 2013-01-08
US20100149227A1 (en) 2010-06-17
JP5031553B2 (ja) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5031553B2 (ja) 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
JP4197322B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP4567052B2 (ja) 表示装置,液晶モニター,液晶テレビジョン受像機および表示方法
JP4176818B2 (ja) 表示装置、表示装置の調整方法、画像表示モニター、及びテレビジョン受像機
JP5299741B2 (ja) 表示パネルの制御装置、液晶表示装置、電子機器、表示装置の駆動方法、及び制御プログラム
JP4707301B2 (ja) 液晶表示装置及びその駆動方法
JP4444334B2 (ja) 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
US8253678B2 (en) Drive unit and display device for setting a subframe period
US20170124962A1 (en) Liquid crystal display and dimming control method thereof
WO2006098194A1 (ja) 表示装置の駆動方法、表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、それを備える表示装置
US8599193B2 (en) Liquid crystal display
JP2008256954A (ja) 表示装置
KR20070080290A (ko) 표시 장치 및 그 구동 장치
WO2006095743A1 (ja) 表示装置、液晶モニター、液晶テレビジョン受像機および表示方法
US8570316B2 (en) Liquid crystal display
US20080158122A1 (en) Liquid crystal display and driving method thereof
JP2004117752A (ja) 表示装置
JP2009145788A (ja) 液晶表示装置およびその駆動方法
JP4199655B2 (ja) 液晶パネルの駆動回路及び駆動方法
KR100604272B1 (ko) 액정 표시 장치 및 그 구동 방법
KR100994229B1 (ko) 액정 표시 장치 및 그 구동 방법
JP2006292973A (ja) 表示装置の駆動装置、および、それを備える表示装置
JP2008309839A (ja) 表示装置
KR20060071573A (ko) 액정 표시장치와 그의 구동방법
KR20170050674A (ko) 액정표시장치 및 이의 동작방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505967

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11884344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714910

Country of ref document: EP

Kind code of ref document: A1