WO2006093133A1 - Robot arm and robot - Google Patents

Robot arm and robot Download PDF

Info

Publication number
WO2006093133A1
WO2006093133A1 PCT/JP2006/303726 JP2006303726W WO2006093133A1 WO 2006093133 A1 WO2006093133 A1 WO 2006093133A1 JP 2006303726 W JP2006303726 W JP 2006303726W WO 2006093133 A1 WO2006093133 A1 WO 2006093133A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
transmission mechanism
power
pulley
robot
Prior art date
Application number
PCT/JP2006/303726
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Yazawa
Yasunori Takeuchi
Hiroto Nakajima
Original Assignee
Nidec Sankyo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005052276A external-priority patent/JP4603388B2/en
Priority claimed from JP2005351325A external-priority patent/JP4719562B2/en
Application filed by Nidec Sankyo Corporation filed Critical Nidec Sankyo Corporation
Priority to CN2006800061367A priority Critical patent/CN101128289B/en
Publication of WO2006093133A1 publication Critical patent/WO2006093133A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons

Definitions

  • the present invention relates to a robot arm and a robot. More specifically, the present invention relates to an improvement in the structure of a robot arm in an articulated robot that moves a workpiece such as a semiconductor Ueno, a liquid crystal transfer robot, etc., between process devices such as a cassette or a film coating apparatus.
  • the present invention relates to a robot arm used in a reduced pressure atmosphere such as a semiconductor manufacturing apparatus and a robot equipped with the robot arm.
  • a robot arm is configured such that a first arm and a working means are connected to each other so as to be able to rotate.
  • the robot arm is configured to transmit a rotational force of a rotational drive source to perform operations such as expansion and contraction. It is.
  • This robot arm is mounted on an articulated robot that moves a workpiece such as a semiconductor wafer or a liquid crystal between process devices such as a force setting device and a film attaching device.
  • a robot arm 2030 shown in FIG. 16 is a so-called belt direct drive type, and a first arm 2050 that can rotate around a first timing pulley 2070 fixed to a base 2040 of the robot body.
  • a second arm 2060 rotatably connected to the tip of the first arm 2050 via a second timing pulley 2080, and a hand side pulley 2100 attached to the tip of the second arm 2060.
  • a timing belt 2110 hung over a first timing pulley 2070 and a second timing pulley 2080.
  • the first arm 2050 is provided with a drive shaft 2130 that is rotatable at a position that is concentric with the first timing pulley 2070.
  • the first arm 2050 is provided with respect to the base 2040 and the first timing pulley 2070.
  • One arm 2050 is rotatably supported.
  • the drive shaft 2130 is rotated by a motor (not shown) built in the base 2040.
  • Second timing pulley 2080 and second arm 2060 are fixed by connecting cylinder 2140. Yes.
  • a connecting shaft 2150 is housed in the connecting cylinder 2140 so as to be rotatable.
  • the connecting shaft 2150 is fixed to the first arm 2050 and the third timing pulley 2090.
  • the first arm 2050 and the second arm 2060 have the same length, and the first arm 2050 accommodates two timing pulleys 2070 and 2080 and one length!
  • the arm 2060 houses two timing pulleys 2090, 2100 and one long! /, Timing benore 2120.
  • the robot arm 2030 has a ratio of the diameter (number of teeth) of the first pulley 2070 and the second pulley 2080 to 2
  • the rotation angle ratio of the first pulley 2070, the second pulley 2080, and the fourth pulley 2100 is 1: 2: 1.
  • the robot arm 2030 rotates the first arm 2050 with respect to the base 2040 by driving a motor.
  • the first belt 2110 that rotates relative to the fixed first pulley 2070 rotates the second pulley 2080 relative to the first arm 2050.
  • the second arm 2060 rotates relative to the first arm 2050
  • the third pulley 2090 rotates relative to the second arm 2060.
  • the fourth pulley 2100 rotates with respect to the second arm 2060, and the hand 2020 rotates.
  • the first arm 2050 and the second arm 2060 have the same length, and the base side pulley 2070 and the hand side pulley 2080 of the first arm 2050 (ie, the base side pulley 2090 of the second arm 2060).
  • the second arm 2060 on the hand side pulley 2100 has a rotation angle ratio of 1: 2: 1. Therefore, by rotating the first arm 2050, the first arm 2050 and the second arm 1060 As the angle changes, the hand 2020 moves while keeping the direction constant on a straight line connecting the center of the base pulley 2070 of the first arm 2050 and the center of the hand pulley 2100 of the second arm 2060.
  • the length of the timing belt is shortened to increase its rigidity, thereby preventing a decrease in position accuracy when the robot arm is rotated (for example, patent document). (See 1).
  • a semiconductor device manufacturing system a system in which a workpiece transfer robot is incorporated in a system for manufacturing a semiconductor device is known.
  • Such a manufacturing system has a plurality of chambers for processing in a reduced-pressure atmosphere, and the workpiece transfer robot operates so that the medium force of the plurality of chambers can carry semiconductor wafers in and out of the predetermined chambers.
  • the semiconductor wafer is loaded into each chamber and the chamber is returned to normal pressure every time it is unloaded, it takes a lot of time to reduce the inside of the chamber again and start processing, thereby reducing the throughput.
  • a manufacturing system in which a space including a workpiece transfer robot for loading / unloading a semiconductor wafer into / from each chamber is used as a preliminary decompression chamber (load lock chamber). Yes. With this manufacturing system, semiconductor wafers can be loaded and unloaded without returning the chamber to normal pressure, so the snooping output is improved.
  • Patent Document 1 As a workpiece transfer robot used in such a manufacturing system, various transfer robots have been proposed for the purpose of improving transfer efficiency and shortening operation time.
  • a first arm portion that is pivotably supported, a second arm portion that is flexibly supported at the tip, and a central portion that is rotatably supported at the tip.
  • a workpiece mounting portion for mounting and holding the workpiece on both ends of the third arm portion, and handling two workpieces at a time.
  • a transfer arm device has been proposed.
  • Patent Document 1 JP 2004-160568 A
  • Patent Document 2 JP-A-7-142551
  • the rigidity is increased by using a timing belt connected to a connecting portion made of a metal plate.
  • the ratio of the timing belt is higher than that of the connecting part that also has the metal plate force as before.
  • the timing belt to be used is a composite material force mainly composed of rubber, it is a material having elasticity. For this reason, the robot arm remained largely affected by the elongation and hysteresis of the timing belt, affecting the rotation of the robot arm. Therefore, there is a problem that it is difficult to ensure the high accuracy and position accuracy of the robot arm.
  • the width of the timing pulley having a tooth portion that stagnates the tooth surface is also increased. It is necessary to provide it. For this reason, increasing the rigidity of the timing belt has the problem that the robot arm becomes larger and the installation space for the robot arm must be increased.
  • the transfer robot shown in Patent Document 2 is intended to improve the transfer efficiency and shorten the operation time, but even if the transfer efficiency is improved and the operation time is shortened, Unless dust or the like coming out of the transfer robot is reduced as much as possible in a reduced pressure atmosphere, the inside of the chamber cannot be reduced to a predetermined pressure, and overall throughput cannot be improved.
  • a robot arm that performs an expansion / contraction operation has a plurality of power transmission means such as a belt and a pulley therein, so that dust and the like are easily generated.
  • a steel belt can be selected and used as power transmission means that does not generate dust.
  • the steel belt has to be fixed to the pulley with a bolt or the like to prevent slippage or transmission loss, so there is a problem that the rotation range of the pulley is limited and the driving of the robot is limited. .
  • a wide pulley is required (see Figs. 2 and 7 of JP-A-11-165290), and the robot arm becomes thicker and larger, and workpieces are taken in and out.
  • the mouth is narrow in the height direction ⁇ ⁇ ⁇
  • the present invention has been made to solve the above-described problem, and a robot arm that can improve the accuracy of arm position control without enlarging the arm, and Another object of the present invention is to provide a robot having the robot arm.
  • the present invention provides a first arm that is rotatably attached to the robot body via a first transmission mechanism, and a tip part of the first arm that is rotatable via a second transmission mechanism.
  • a robot arm comprising a first connection means for transmitting power by connecting the first transmission mechanism and the second transmission mechanism, and the first series connection means comprises: A first power transmission member that also serves as a first rigid member that transmits and receives the power of the first transmission mechanism force or the power to the first transmission mechanism, and the power of the second transmission mechanism force or the first A second power transmission member that transmits and receives power to the second transmission mechanism, and a first connection portion and a second connection made of a second rigid member that connect the first power transmission member and the second power transmission member.
  • the diameter of the first transmission mechanism is the second transmission mechanism.
  • the length of the second power transmission member is shorter than the length of the first power transmission member.
  • the rigidity of the first connecting means can be increased while maintaining the size of the conventional robot arm, and the influence of the elongation, hysteresis, and the like can be suppressed. For this reason, position control of the robot arm can be ensured with high accuracy.
  • the first power transmission member including the first rigid member having a width substantially the same as the width of the first transmission member is used for the large-diameter first transmission member having a small bending stress.
  • the rigidity of the first connecting means can be increased.
  • the first transmission member is not configured by meshing, friction can be suppressed and dust generation can be suppressed.
  • the length of the second power transmission member hung over the second transmission member having a small diameter can be made shorter than before, it is possible to suppress dust generation caused by mating with the second transmission member. I'll do it.
  • the working means is fixed to the second transmission mechanism and rotatable with respect to the first arm; and the second transmission mechanism is concentric with the second arm.
  • On the first arm A third transmission mechanism that is fixed, and a node that is rotatably attached to the tip of the second arm via a fourth transmission mechanism; and the third transmission mechanism and the fourth transmission mechanism.
  • a robot arm comprising a second connecting means for connecting the transmission mechanism and transmitting power, wherein the second connecting means transmits or receives power from the fourth transmission mechanism or power to the fourth transmission mechanism;
  • a fourth power transmission member that is a third rigid member force; a third power transmission member that receives power from the third transmission mechanism or power to the third transmission mechanism; the third power transmission member;
  • the fourth transmission mechanism includes a third connection portion and a fourth connection portion that are connected to the fourth power transmission member.
  • the fourth transmission mechanism has a diameter larger than that of the third transmission mechanism. It is large and the length of the third power transmission member is the front It is preferable that the rotation angle ratio of the first transmission mechanism, the second transmission mechanism, and the fourth transmission mechanism is 1: 2: 1, which is shorter than the length of the fourth power transmission member.
  • the rigidity of the second connecting means can be increased while maintaining the size of the conventional robot arm, and the influence of elongation, hysteresis, and the like can be achieved. Can be suppressed as much as possible. Therefore, when the robot arm is rotated, the node provided at the tip of the second arm can move on a straight line with high accuracy while keeping the direction constant.
  • the rotation angle ratio of the first transmission mechanism, the second transmission mechanism, and the fourth transmission mechanism is 1: 2: 1
  • the first arm is turned by rotating the first arm.
  • the angle between the first arm and the second arm changes to move along the straight line connecting the center of the first transmission mechanism of the first arm and the center of the fourth transmission mechanism of the second arm while keeping the direction constant. can do .
  • position control of the robot arm can be ensured with high accuracy.
  • the tension of the power transmission member can be adjusted at least in the first connecting portion and the third connecting portion. Thereby, it can set to these 1st, 3rd connection parts, adjusting predetermined tension.
  • the first connecting portion and the second connecting portion may include a center line position in the thickness direction of the first power transmission member and a center line position in the thickness direction of the second power transmission member. Are preferably connected so as to be in substantially the same position.
  • the center line position in the thickness direction of the third power transmission member is substantially the same as the center line position in the thickness direction of the fourth power transmission member. Concatenated as It is preferable to become.
  • the robot arm of the present invention includes a first arm that is rotatably attached to the robot body via the first transmission mechanism, and a distal end portion of the first arm that is rotated via the second transmission mechanism.
  • a robot arm comprising a work arm attached movably and having a first connection means for connecting the first transmission mechanism and the second transmission mechanism to transmit power. It is characterized in that the connecting means is a fluoro rubber force.
  • This invention uses the first connecting means that also has a fluororubber strength.
  • the first connecting means which also has fluororubber power, is suitable for a reduced pressure atmosphere that generates less gas and dust in a reduced pressure atmosphere than conventional belts made of black plain, nitrile rubber, and urethane rubber. There are few adverse effects. As a result, the inside of the chamber can be quickly depressurized to a predetermined pressure, and the overall throughput can be improved. In addition, there is no increase in the thickness of the robot arm or the drive is limited as in the case of using a steel belt.
  • the working arm is fixed to the second transmission mechanism and is rotatable with respect to the first arm, and is concentric with the second transmission mechanism.
  • a third transmission mechanism fixed to the first arm; a node arm rotatably attached to the tip of the second arm via a fourth transmission mechanism; the third transmission mechanism and the fourth transmission mechanism;
  • the third transmission mechanism side having a large drive amount (rotational frequency) is a timing belt that uses fluororubber force, and the drive amount (rotational frequency) is small (within approximately 180 degrees, (This is a drive amount that does not limit the drive of the bot.)
  • the second connecting means which is a so-called hybrid belt in which they are connected by a connecting portion was used.
  • Such a second connecting means, which is a hybrid belt has sufficient rigidity and driving accuracy in a portion made of a steel belt, hardly generates gas or dust, and in a portion made of fluoro rubber.
  • the first arm and the second arm so that the air in the first arm and the second arm is extracted to the outside of the proximal end force of the first arm. It is preferable that a punch hole leading to the base end portion of the first arm is provided inside.
  • the first arm and the second arm are provided with a through hole that communicates with the base end of the first arm, so that when the robot arm is exposed to a reduced-pressure atmosphere, The air in one arm and the second arm is easily extracted to the outside of the proximal end force of the first arm through the hole.
  • the air inside the robot arm can be easily discharged, and the force of the air is low in dust and the like, so the time to reach a predetermined pressure in a reduced-pressure atmosphere can be shortened. Can do.
  • an opening for escaping air in the arm to the outside is provided at the base end of the first arm, and a filter is attached to the opening.
  • the base end portion of the first arm is provided with the opening for releasing the air in the arm to the outside, and the filter is attached to the opening, so that, for example, in each arm Even if dust or the like is generated by the rotation of the belt and pulley, the generated dust or the like is captured by a filter attached to the opening.
  • a rapid decompression atmosphere can be achieved with a favorable environment in the preliminary decompression chamber (load lock chamber), which is the moving space of the robot arm.
  • the robot arm of the present invention as a part thereof, the inside of the chamber can be quickly reduced to a predetermined pressure, and the overall throughput is improved.
  • a robot that can be used is provided.
  • the present invention provides a first arm that is rotatably attached to a robot body via a first transmission mechanism, and a tip part of the first arm that is rotatable via a second transmission mechanism. And a first connecting means for transmitting power by connecting the first transmission mechanism and the second transmission mechanism, and the first arm constituting the robot arm.
  • a first rigid member coupling, wherein the first coupling means for coupling the transmission mechanism and the second transmission mechanism to transmit power transmits or receives the power of the first transmission mechanism force or the power to the first transmission mechanism.
  • a first power transmission member, a second power transmission member for transmitting / receiving power of the second transmission mechanism or power to the second transmission mechanism, the first power transmission member and the second power transmission The first series of second rigid members connecting the members
  • the first transmission mechanism is larger in diameter than the second transmission mechanism, and the length of the second power transmission member is the first power mechanism. Since it is shorter than the length of the transmission member, the rigidity of the first connecting means can be increased while maintaining the size of the conventional robot arm, and the effects of elongation, hysteresis, etc. can be suppressed. it can. For this reason, the position control of the robot arm can be ensured with high accuracy.
  • the first connecting means having fluororubber power is used, so that gas generation, dust generation, etc. under reduced pressure atmosphere are reduced. It is possible to reduce the adverse effect on. As a result, the inside of the chamber can be quickly depressurized to a predetermined pressure, and the overall throughput can be improved.
  • FIG. 1 is a longitudinal sectional side view showing a main part of a robot arm that works according to the present invention.
  • FIG. 2 is an overall view showing a main part of a robot arm that is useful for the present invention.
  • FIG. 3 is a plan view showing a first connecting means.
  • FIG. 4 is a plan view showing a second connecting means.
  • FIG. 5 is a side view showing a first connecting portion (third connecting portion).
  • ⁇ 6] It is a side view showing a second connecting part (fourth connecting part).
  • FIG. 7 is a plan view showing a double arm articulated robot using a robot arm to which the present invention is applied.
  • FIG. 8 is a plan view (A) showing an example of the robot arm of the present invention and A-A sectional view (B).
  • FIG. 9A is a plan view showing the internal structure of the second arm shown in FIG. 8 and FIG.
  • FIG. 11 is a schematic explanatory view showing an example of a mode in which the filter is attached to the first arm.
  • FIG. 12 is a schematic configuration diagram showing an example of a connecting portion.
  • FIG. 13 is a schematic configuration diagram showing another example of a connecting portion.
  • FIG. 15 is a schematic plan view showing an example in which a robot including a robot arm of the present invention is used in a semiconductor manufacturing process.
  • FIG. 16 is a longitudinal sectional side view showing a conventional robot arm.
  • FIG. 1 is a longitudinal sectional side view showing the main part of the robot arm.
  • FIG. 2 is a plan view showing the main part of the robot arm.
  • a robot arm 1 shown in FIGS. 1 and 2 includes a first arm 50 that is rotatably attached to a base 200 of a robot body via a first transmission mechanism 2, and a distal end portion of the first arm 50.
  • the working means 500 which is rotatably mounted via the second transmission mechanism 4.
  • the working means 500 includes a second arm 100 fixed to the second transmission mechanism 4 and rotatable relative to the first arm 50, and a third transmission fixed to the first arm 50 concentrically with the second transmission mechanism 4.
  • the mechanism 52 includes a node 252 (see FIG. 7) that is rotatably attached to the tip of the second arm 100 via a fourth transmission mechanism 54.
  • first transmission mechanism 2 and the second transmission mechanism 4 are connected to the robot arm 1 to connect the first transmission means 10 for transmitting power, and similarly, the third transmission mechanism 52 and the fourth transmission mechanism 54 are connected. And a second connecting means 60 for transmitting power.
  • the first transmission mechanism 2 is fixed to the base 200 of the robot body on the base side in the first arm 50.
  • the first transmission mechanism 2 has a flat outer peripheral surface. It is the first flat pulley.
  • the second transmission mechanism 4 is fixed to the second arm 100 with a screw at the distal end in the first arm 50, that is, on the second arm 100 side.
  • the second transmission mechanism 4 is composed of a second timing pulley having a tooth portion on its outer peripheral surface.
  • the connecting cylinder 3 is housed inside the second timing pulley 4, and the connecting cylinder 3 is The wiring is housed.
  • One end of the connecting cylinder 3 is fixed to the first arm 50, and the other end is housed in the second arm 100. As a result, the first arm 50 and the second arm 100 are interlocked!
  • a motor 150 serving as a rotational drive source, a speed reducer 151 attached to the motor 150, and a speed reducer 151 are attached.
  • the first connecting means 10 connects the first power transmission member 11 that is the first rigid member force, the second power transmission member 12, and the first power transmission member 11 and the second power transmission member 12.
  • the first connecting portion 20 and the second connecting portion 25 are the second rigid member force.
  • the first power transmission member 11 is formed of a first rigid member, and is formed of a steel belt in the present embodiment.
  • the first rigid member may be a belt other than a steel belt as long as it is a member having excellent ductility and toughness.
  • the first steel belt 11 is wound around the plane of the first flat pulley 2, and the intermediate position of the entire length is fixed to the first flat pulley 2 with a plurality of screws 16.
  • the second power transmission member 12 is composed of a timing belt having a tooth surface, and the second timing belt 12 is disposed so that the tooth surface meshes with the tooth portion of the second timing pulley 4.
  • the total length is set to the minimum required length calculated from the transfer distance of the robot arm 1.
  • the first steel belt 11, the second timing belt 12, the first connecting portion 20, and the second connecting portion 25 have substantially the same width in the axial direction.
  • FIG. 3 is a plan view showing first connection means for transmitting power by connecting the first transmission mechanism and the second transmission mechanism in the first arm.
  • FIG. 5 is a side view showing the first connecting portion (third connecting portion).
  • FIG. 6 is a side view showing the second connecting portion (fourth connecting portion).
  • the first connecting portion 20 is an adjustment-side connecting portion that can be adjusted by sandwiching one end portion of the first steel belt 11 and one end portion of the second timing belt 12. Yes.
  • the second connecting portion 25 is a fixed-side connecting portion that sandwiches and fixes the other end portion of the first steel belt 11 and the other end portion of the second timing belt 12.
  • the first connecting portion 20 includes plates 30, 31, 32 for fixing one end portions of the first steel belt 11 and the second timing belt 12, and the first steel belt 11.
  • the adjustment screw 145 for adjusting the tension with the second timing belt 12 is a main component, and the plates 30, 31, and 32 are also provided with a second rigid member.
  • the plate 32 is made of aluminum in the present embodiment, and is thicker than the first steel belt 11 and the second timing belt 12 in order to maintain its strength! Become! On the aluminum plate 32, a groove portion 32a is formed on one end side thereof, and the tooth surface of one end portion of the second timing belt 12 is disposed in the groove portion 32a.
  • the second timing belt 12 is sandwiched between an aluminum plate 32 and a stainless steel plate 31 and fixed using a plurality of screws.
  • a stainless steel plate 30 is fixed using a plurality of screws.
  • the stainless plate 30 is formed with a long hole 30b along the longitudinal direction through which a plurality of screws pass. As a result, the overlap allowance between the stainless steel plate 30 and the aluminum plate 32 can be adjusted.
  • FIG. 5 is for clarifying the relationship between the force screw in which a plurality of screws are formed in one row in the width direction and the long holes 30b, and the plurality of screws are limited to one row in the width direction. It is not something.
  • the other end of the stainless steel plate 30 is screwed to one end of the first steel belt 11 with a shim 40 interposed therebetween.
  • This shim 40 adjusts the height in the thickness direction of the first steel belt 11 and the second timing belt 12, and the center line C between the first steel belt 11 and the second timing belt 12 The distance of force is almost the same.
  • the number of shims 40 is not limited.
  • the stainless steel plates 30, 31 are formed with rising portions 30a, 3 la on opposite sides, and an adjustment screw 145 is screwed into the rising portions 30a, 3 la.
  • the adjustment screw 145 allows the distance between the stainless steel plate 30, 31 to be adjusted and the stainless steel plate
  • the tension of the first steel belt 11 and the second timing belt 12 can be adjusted along the long hole 30b formed in the rate 30.
  • the second connecting portion 25 is mainly composed of plates 33 and 34 that sandwich and fix the other ends of the first steel belt 11 and the second timing belt 12, and the plate 33 and 34 also have a second rigid member.
  • the second rigid member should be a member with excellent ductility and toughness.
  • the plate 33 is made of stainless steel, and the first steel belt 11 and the second timing belt 12 are fixed to both ends of the stainless steel plate 33 using a plurality of screws, respectively. ing.
  • the first steel belt 11 is fixed to the stainless steel plate 33 with a shim 40 interposed therebetween.
  • the shim 40 is used to adjust the height in the thickness direction. Use one or more shims 40 and adjust so that the distance between the centerline C force and the second timing belt 12 is substantially the same.
  • the second timing belt 12 is sandwiched between an aluminum plate 34 and a stainless steel plate 33, and is fixed using a plurality of screws. As shown in FIG. 6, the flat side of the second timing belt 12 is disposed on the stainless steel plate 33, and the aluminum plate 34 having grooves formed on the tooth surface side of the second timing belt 12 is provided. Is arranged. Then, the tooth surface of the second timing belt 12 is fixed to the groove of the aluminum plate 34 using a plurality of screws.
  • the first arm 50 drives the motor 150 to rotate clockwise (CW direction) or counterclockwise (CCW direction) with respect to the fixed first flat pulley 2.
  • the position where the first connecting means 10 rotates clockwise (CW direction) and when it rotates counterclockwise (C CW direction) is indicated by dotted lines. .
  • the first connecting means 10 When the first connecting means 10 is rotated in the counterclockwise direction (CCW direction), the first steel belt 11 is rotated to 16A, the first connecting portion 20 is moved to 20A, and the second connecting portion 25 moves to 25A. Further, when the first connecting means 10 rotates clockwise (CW direction), the first steel belt 11 rotates to the reference numeral 16B, the first connecting portion 20 moves to the reference numeral 20B, and the second connection Part 25 moves to the sign 25B.
  • a plurality of ribs 219 are formed in the first arm 50 at predetermined intervals, so that cross-sectional deformation can be suppressed, and the first arm 50 has a vertical rigidity shown in the figure. Can now be improved! /.
  • the thickness of the first arm 50 is reduced to achieve a light weight.
  • Each rib 219 is formed with three holes 220, 220, 221 in the longitudinal direction, and the middle hole 222 is a through-hole for wiring in the first arm 50 for arranging an electric wire or the like. Yes. Furthermore, the first steel belt 11, the second timing belt 12, and the through holes 220, 220 through which the first and second connecting portions 20, 25 pass are formed on both sides of the wiring through hole.
  • the first connecting means 10 is configured to pass through the through holes 220 and 220 in a state where one of the first and second connecting portions 20 and 25 is cut off, and to connect the connecting portions cut off after the penetration. ing.
  • first flat pulley 2 has a plurality of axially penetrating holes 2a formed uniformly in the circumferential direction so that the weight of the first arm 50 can be reduced by reducing the weight.
  • the working means 500 provided at the tip of the first arm 50 includes a second arm 100 fixed to the second timing pulley 4 and rotatable with respect to the first arm 50, and a second timing pulley. 4 and a third transmission mechanism 52 fixed to the first arm 50 concentrically with the hand 4, and a hand 252 rotatably attached to the end of the second arm 100 via a fourth transmission mechanism 54 (see FIG. 7) And a second connecting means 60 for connecting the third transmission mechanism 52 and the fourth transmission mechanism 54 to transmit power. And is composed.
  • the connecting cylinder 3 extending from the first arm 50 and concentric with the second timing pulley 4 is housed.
  • a third transmission mechanism 52 is fixed to the other end of the tube 3.
  • the third transmission mechanism 52 is composed of a timing pulley having a tooth portion on its outer peripheral surface.
  • a fourth transmission mechanism 54 is provided at the distal end of the second arm 100 so as to be rotatable with respect to the second arm 100 via a bearing.
  • a hand 525 (see FIG. 7) for conveying the cake is attached to the tip of the fourth transmission mechanism 54 so as to be rotatable integrally with the fourth transmission mechanism 54.
  • the fourth transmission mechanism 54 is a flat pulley whose outer peripheral surface is a plane.
  • the diameter R4 of the fourth flat pulley 54 is larger than the diameter R3 of the third timing pulley 52.
  • the second connecting means 60 connects the fourth power transmission member 62 having the third rigid member force, the third power transmission member 61, and the third power transmission member 61 and the fourth power transmission member 62.
  • the third connecting portion 70 and the fourth connecting portion 75 also serve as a fourth rigid member.
  • the third power transmission member 61 is configured by a timing belt having a tooth surface, and the third timing belt 61 is configured so that the tooth surface meshes with a tooth portion of the third timing pulley 52.
  • the total length is set to the required minimum length calculated from the transfer distance of the robot arm 1.
  • the fourth power transmission member 62 is formed of a rigid member having excellent ductility and toughness, and is formed of a steel belt in the present embodiment.
  • the fourth steel belt 62 is wound around the plane of the fourth flat pulley 54, and an intermediate position of the entire length thereof is fixed on the outer peripheral surface of the fourth flat pulley 54 with a plurality of screws 66.
  • One end side of the fourth steel belt 62 is fixed to the third connecting portion 70, and the other end side is fixed to the fourth connecting portion 75.
  • FIG. 4 is a plan view showing second connection means for transmitting power by connecting the third transmission mechanism and the fourth transmission mechanism in the second arm constituting the working means.
  • Figure 5 shows the first consolidated It is a side view which shows a part (3rd connection part).
  • FIG. 6 is a side view showing the second connecting portion (fourth connecting portion).
  • the third connecting portion 70 and the fourth connecting portion 75 have substantially the same configuration as the first connecting portion 20 and the second connecting portion 25 of the first arm 50 described above. It is filled in as the code inside. Therefore, detailed description here is omitted.
  • the length of the third connecting portion 70 and the fourth connecting portion 75 that is, the length of the connecting portion made of the plate is the connection of the first arm 50. It is longer than the length of the part. That is, when the second arm 100 is rotated, the length is such that it does not contact the third timing pulley 52 and the fourth flat pulley 54, the length of the third timing belt 61 is shortened, and the strength of the second connecting means 60 is increased. The high, the thing becomes.
  • the second arm 100 receives the rotation of the first arm 50 and rotates clockwise (CW direction) or counterclockwise with respect to the connecting cylinder 3 and the fixed third timing pulley 52.
  • CCW direction the dotted line shows the position when the second connecting means 60 is rotated clockwise (CW direction) and when it is rotated counterclockwise (CCW direction). It is shown.
  • the fourth steel belt 62 rotates to the reference numeral 66A
  • the third connecting portion 70 moves to the reference numeral 70A
  • the fourth connecting portion. 75 moves to 75A.
  • the fourth steel belt 62 rotates to the reference numeral 66B
  • the third connecting portion 70 moves to the reference numeral 70B.
  • the four connecting parts 75 move to the reference numeral 75B.
  • the third timing pulley 52 rotates about 1Z2. Therefore, the length of the third timing belt 61 moves in the clockwise direction (CW direction) and counterclockwise direction (CCW direction) to the length that fits the third timing pulley 52 (about 1Z2 rotation).
  • the total length is about 3 Z2 rotations. That is, the total length is set to the necessary minimum length calculated from the transfer distance of the robot arm 1.
  • a plurality of ribs 210 are formed at predetermined intervals in the second arm 100, so that the cross-sectional deformation can be suppressed, and the second arm 100 in the vertical direction shown in the figure can be suppressed. High rigidity So that you can Further, by forming these ribs 210, the thickness of the second arm 100 is reduced and the weight is reduced.
  • Each rib 210 is formed with three holes 211, 211, and 212 in the longitudinal direction, and the middle hole 212 is a through hole for wiring in the arm. Further, on both sides of the wiring through hole, a third timing belt 61, a fourth steel belt 62, and through holes 211 and 211 through which the third and fourth connecting portions 70 and 75 pass are formed.
  • the second connecting means 60 is configured to pass through the through holes 211 and 211 in a state where one of the third and fourth connecting portions 70 and 75 is cut off, and to connect the connecting portions cut off after the penetration. It has become.
  • the fourth flat pulley 54 has a plurality of holes 54a penetrating in the axial direction evenly formed in the circumferential direction, and the second arm can be reduced by reducing the weight. We are trying to reduce the weight by 100.
  • the operation of the robot arm 1 described above will be described below.
  • the robot arm 1 is driven by a motor 150 disposed in the vicinity of the second timing pulley 4 in the first arm 50.
  • the rotation of the motor 150 is transmitted to the drive pulley 152 via the speed reducer 151.
  • the rotation of the drive pulley 1 52 is transmitted to the second timing pulley 4 via the drive belt 154.
  • the rotation of the second timing pulley 4 is transmitted to the first flat pulley 2 via the first connecting portion 20 and the second connecting portion 25.
  • the second timing pulley 4 is rotated, the second arm 100 is rotated with respect to the first arm 50 and the third timing pulley 52 is rotated with respect to the second arm 100.
  • the third timing pulley 52 rotates with respect to the second arm 100
  • the fourth flat pulley 54 rotates with respect to the second arm 100
  • the hand 252 rotates.
  • the interval between the rotation centers of the first flat pulley 2 and the second timing pulley 4 and the interval between the rotation centers of the third timing pulley 52 and the fourth flat pulley 54 are the same length. .
  • first flat pulley 2 and the second timing pulley 4 have a ratio of diameter (number of teeth) in a state where the first steel belt 11 and the second timing belt 12 are strung. Is set to be 2: 1.
  • the third timing pulley 52 and the fourth flat pulley 54 have a ratio of diameter (number of teeth) when the third timing belt 61 and the fourth steel belt 62 are strung. 1: 2 is provided. For this reason, the rotation angle ratio of the first flat pulley 2, the second timing pulley 4, and the fourth flat pulley 54 is 1: 2: 1.
  • the first flat pulley 2 and the second timing pulley 4 of the first arm 50 ie, the third timing pulley 52 of the second arm 100
  • the fourth pulley of the second arm 100 Since the rotation angle ratio with the flat pulley 54 is 1: 2: 1, when the first arm 50 is rotated, the angle between the first arm 50 and the second arm 100 changes, and the first arm 50
  • the hand 252 moves on a straight line connecting the center of the first flat pulley 2 and the center of the fourth flat pulley 54 of the second arm 100 while keeping the direction constant.
  • FIG. 7 is a plan view showing a double arm articulated robot using a robot arm to which the present invention is applied.
  • the above-described robot arm 1 is arranged on the base 200 of the robot body side by side, for example, as shown in FIG.
  • one robot arm is in a load state for picking up a workpiece
  • the other robot arm is in an unload state for pulling out another workpiece.
  • the two robot arms have a rotation angle ratio of 1: 2: 1 between the first transmission mechanism of the first arm 50, the second transmission mechanism, and the fourth transmission mechanism of the second arm 100. Therefore, by rotating the first arm 50, the angle between the first arm 50 and the second arm 100 changes, and the center of the first transmission mechanism of the first arm 50 and the fourth of the second arm 100 are changed. On the straight line connecting the center of the transmission mechanism, the 252 moves while keeping the direction constant.
  • the double arm type articulated robot is provided so that the robot arm can be moved up and down!
  • the first connecting means 10 for transmitting the power by connecting the timing pulley 4 is also a first rigid member that transmits and receives power from the first flat pulley 2 or power to the first flat pulley 2.
  • the first steel belt 11, the second timing belt 12 for transmitting / receiving the power from the second timing pulley 4 or the power to the second timing pulley 4, and the first steel belt 11 and the second timing It is composed of a first connecting portion 20 and a second connecting portion 25 that also serve as a second rigid member that connects the belt 12, and the diameter of the first flat pulley 2 is the diameter of the second timing pulley 4.
  • the first connecting means 10 is maintained while maintaining the size of the conventional robot arm 103.
  • Can increase the rigidity of It is possible to minimize the influence of the elongation and hysteresis. For this reason, the position control of the robot arm 1 can be ensured with high accuracy.
  • the second connecting means 60 has a third rigid member force that transmits and receives the dynamic force from the fourth flat pulley 54 or the power to the fourth flat pulley 54.
  • the fourth connecting member 75 and the fourth connecting member 75 are also connected to the steel belt 62, and the diameter of the fourth flat pulley 54 is the same as that of the third timing pulley 52.
  • the size of the conventional robot arm 103 is made to be the same as that of the first arm 50. While maintaining the rigidity of the first connecting means 60 The effects of elongation and hysteresis can be suppressed as much as possible. Therefore, when the robot arm 1 is rotated, the position of the node 252 provided at the tip of the second arm 100 can be controlled with high accuracy while keeping its direction constant on a straight line.
  • the hand 252 can move on a straight line with high accuracy.
  • first connecting portion 20 and the third connecting portion 75 are each provided with an adjusting portion for adjusting the tension of each dynamic force transmitting member.
  • first and third connecting portions 20, 75 can be set while adjusting a predetermined tension.
  • the first steel belt 11 having a width substantially the same as that of the first flat pulley 2 having a small bending stress and a large diameter can be stretched over the first arm.
  • the rigidity of the 50 first connecting means 10 can be increased.
  • the length of the third timing belt 12 stretched around the small-diameter second timing pulley 4 can be made shorter than that of the conventional belt. Dust generation caused by mating can be suppressed.
  • the first connecting portion 20 and the second connecting portion 25 are arranged such that the center line C position in the thickness direction of the first steel belt 11 and the thickness direction of the second timing belt 12 are It is preferable that they are connected so as to be substantially the same position as the center line C position.
  • the third connecting portion 70 and the fourth connecting portion 75 are positioned substantially the same as the center line C position in the thickness direction of the third timing belt 61 and the center line C position in the thickness direction of the fourth steel belt 62. They are connected so that
  • the first steel belt is provided on the large first flat pulley 2 side with a small bending stress so as to have substantially the same length as the rotation range of the first arm 50. Multiply by 11 By passing, the rigidity of the power transmission system is increased. Further, since the first steel belt 11 is fixed on the outer peripheral surface of the first flat pulley 2, a power transmission member (steel belt 11, 62, the timing belt 12, 61) is equally applied, so that power can be transmitted efficiently and durability can be improved.
  • the widths of the first steel belt 11 and the second timing belt 12 and the widths of the first flat pulley 2 and the second timing pulley 4 are substantially the same.
  • the width of the third timing belt 61 and the fourth steel belt 62 and the width of the third timing pulley 52 and the fourth flat pulley 54 can be made substantially the same. For this reason, it is possible to make constant the moment over which the member supporting each transmission mechanism is applied.
  • the lengths of the second timing belt 12 and the third timing belt 61 are set to the necessary minimum lengths calculated from the transport distance of the robot arm 1. Therefore, when the second timing belt 12 moves while meshing with the second timing pulley 4 when the robot arm 1 rotates, the third timing belt 61 moves against the third timing pulley 52. It is possible to suppress dust generation that occurs when moving while facing each other.
  • the second timing belt 12 and the third timing belt 61 to be used also have a composite material force mainly composed of rubber, there has been a problem that harmful gas is generated in a vacuum environment.
  • the lengths of the second and third timing belts 12 and 61 are set to the minimum length, generation of harmful gas can be suppressed as compared with the conventional case.
  • At least the first connecting portion 20 and the third connecting portion 70 are provided so that the tension of each power transmission member (steel belts 11, 62, timing belts 12, 61) can be adjusted. Therefore, during use, each power transmission member (steel belts 11, 62, timing belts 12, 61) is easily disengaged from each transmission mechanism (flat pulleys 2, 54, timing pulleys 4, 52). Can be adjusted.
  • the force using a timing belt for the second power transmission member 12 and the third power transmission member 61 is not limited to this, and a chain or the like may be used.
  • the arms 50 and 100 are provided with the ribs 219 and 210.
  • the ribs are not limited to the shape of the ribs, and the load is not so large. May not be provided.
  • the first to fourth connecting portions 20, 25, 70, 75 are provided to adjust the tension of the first connecting means 10 and the second connecting means 60.
  • an idler pulley may be provided on the steel belts 11 and 62 side to adjust the tension.
  • the angle of the steel belts 11 and 62 in contact with the first flat pulley 2 and the fourth flat pulley 54 is increased to increase the first flat pulley 2 and the fourth flat pulley.
  • the rotation angle of the pulley 54 increases and the arm transfer distance increases.
  • the motor 150 is provided in the vicinity of the second timing pulley 4 of the first arm 50.
  • the present invention is not limited to this, and the motor 150 is incorporated in the robot body. Also good.
  • the first arm 50 is driven by the motor 150 to transmit power from the first flat pulley 2 to the second timing pulley 4, the third timing pulley 52, and the fourth flat pulley 54.
  • the motor 150 may be provided on the second arm 100 and the fourth flat pulley 54 may be driven. In this case, power is transmitted from the fourth flat pulley 54 to the third timing pulley 52, the second timing pulley 4, and the first flat pulley 2.
  • the second connecting portion 25 and the fourth connecting portion 75 are fixed-side connecting portions that do not have an adjustment function, but the first connecting portion 20 and the third connecting portion 75 are not provided. Similar to the connecting part 70, it may be an adjusting side connecting part having a tension adjusting function.
  • FIG. 8 is a plan view (A) and an AA sectional view (B) showing an example of the robot arm of the present invention.
  • 9 is a plan view (A) and BB cross-sectional view (B) showing the internal structure of the first arm shown in FIG. 8
  • FIG. 10 is a plan view showing the internal structure of the second arm shown in FIG. Figure (A) and CC cross section (C).
  • the robot arm 1010 includes a first arm 1020 rotatably attached to the base 1200 of the robot body via the first transmission mechanism 1021, and a second transmission mechanism 1022 at the tip of the first arm 1020.
  • a work arm (working means) 1050 that is rotatably attached via a first connection mechanism 1021 and a first connection means 1023 that connects the first transmission mechanism 1021 and the second transmission mechanism 1022 to transmit power.
  • the robot arm 1010 is characterized in that the first connecting means 1023 has a fluororubber force.
  • the working arm (working means) 1050 is fixed to the second transmission mechanism 1022 and is rotatable with respect to the first arm 1010.
  • the second arm 1050 and the second transmission mechanism 1022 are concentric with the first arm.
  • a third transmission mechanism 1031 fixed to the arm 1020 and a node arm 1040 rotatably attached to the tip of the second arm 1030 via a fourth transmission mechanism 1032 are configured.
  • the robot arm 1010 connects the first transmission mechanism 1021 and the second transmission mechanism 1022 to transmit power, and connects the third transmission mechanism 1031 and the fourth transmission mechanism 1032 to transmit power.
  • first transmission mechanism 1 021 is “first pulley 1021” and the second transmission mechanism 1022 is “second pulley” so that the force of the second embodiment illustrated in FIGS. ⁇ 1022 '', the third transmission mechanism 1031 is ⁇ third pulley 1031 '', the fourth transmission mechanism 1032 is ⁇ fourth pulley 1032 '', the first connecting means 1023 is ⁇ first belt 1023 '', and the second connecting means 1033 is "Second belt 1033"
  • a first pulley 1021 force is provided on the robot body side of the first arm 1020, and the first pulley 1021 is fixed to a shaft extending from the base 1200 of the robot body.
  • a second pulley 1022 is provided on the work arm side of the first arm 1020.
  • the second pulley 1022 of the first arm 1020 The tube) is connected concentrically with the third pulley 1031 of the second arm 1050 by 1024, and as a result, the two arms operate so as to be interlocked.
  • the first belt 1023 is made of fluororubber.
  • a belt with fluororubber strength has less adverse effects on the reduced-pressure atmosphere with less gas generation and dust generation in a reduced-pressure atmosphere compared to the conventional black-prene belt, nitrile rubber belt, urethane rubber belt, and the like.
  • the robot arm 1010 is used in a reduced-pressure atmosphere as in a semiconductor device manufacturing process, the inside of the vacuum chamber can be quickly reduced to a predetermined pressure, thereby improving the overall throughput.
  • the type of the first belt 1023 is not particularly limited, but in the present embodiment, it is constituted by a toothed belt (timing belt) as shown.
  • the types of the first pulley 1021 and the second pulley 1022 are appropriately selected according to the type of the first belt 1023. Therefore, a flat pulley is used.
  • the idler pulley 1026 is provided with a mechanism that can be finely adjusted.
  • the idler pulley 1026 adjusts the tension of the first belt 1023 and adjusts the contact angle between the first pulley 1021 and the first belt 1023. Can be larger.
  • the inside of the first arm 1020 preferably has a rib 1025 as shown in FIG.
  • the rib 1025 acts to increase the rigidity of the first arm 1020 and suppress deformation. By providing such a rib 1025, the thickness of the first arm 1020 can be reduced to reduce the weight.
  • the rib 1025 is formed with a through hole 1029 leading to the base end of the first arm 1020.
  • the hole 1029 forms a passage through which the air in the first arm 1020 is extracted from the base end of the first arm 1020 to the outside. Since the robot arm 1010 has such a hole 1029, when the robot arm 1010 is exposed to a reduced pressure atmosphere, the air in the first arm 1020 passes through the hole 1029 and the proximal end force of the first arm 1020 is also transferred to the outside. It will be easily removed.
  • the first arm 1020 uses a first belt that also has fluororubber power,
  • the internal air is air with less dust and the like, but since such air can be easily extracted, the time to reach a predetermined pressure in a reduced pressure atmosphere can be shortened compared to the conventional one.
  • the base end portion of the first arm 1020 is the base 1200 side of the robot body, and in this application, the base end portion is a portion on the shaft 1011 that rotates the first pulley 1021.
  • FIG. 8 As shown in FIG. 8 (A), on the shaft 1011 that rotates the first pulley 1021 at the base end of the first arm 1020, there is an opening 1028 that allows the air in the arm to escape to the outside.
  • a filter 1060 is attached to the opening 1028.
  • FIG. 11 is a schematic explanatory view showing an example of a mode in which the filter is attached to the first arm.
  • (A) is a plan view
  • (B) is a cross-sectional view
  • (C) is a bottom view.
  • the filter is not limited to the example of FIG.
  • the filter shape is usually processed into a disk shape.
  • a filter 1060 having a disk shape is mounted from above and below with disk-shaped members 1062, 1063.
  • a method of attaching the sandwiched filter structure 1061 to the casing of the first arm 1020 can be given.
  • a small hole 1062a is formed in the upper member 1062
  • a slightly larger hole 1063a is formed in the lower member 1063, and both the members are positioned so that the positions of the holes substantially coincide with each other. Thread together with screws 1064.
  • Such a filter structure 1061 is attached by screwing the periphery of the upper member 1062 having a larger outer diameter and the housing of the first arm 1020.
  • Reference numeral 1065 denotes a screw.
  • a disk-shaped filter is disposed between a ring groove provided around the opening 1028 having a circular force and the ring member having the same shape, and the ring member is moved upward.
  • a method of attaching the filter to the opening by pressing and fitting in the ring groove can also be exemplified.
  • Other mounting methods may be used.
  • the working arm (working means) 1050 is fixed to the second pulley 1022 and rotatable with respect to the first arm 1020, and the second arm 1030 is concentric with the second pulley 1022.
  • a second belt 1033 for transmitting power by connecting 1032 is provided.
  • the second belt 1033 includes a fluororubber timing belt 1036, which is a power transmission member that transmits and receives power from the third pulley or power to the third pulley 1031, and a fourth belt.
  • the steel belt 1037 is a power transmission member that transmits and receives power from the pulley 1032 or power to the fourth pulley 1032 and a connecting portion 1070 that connects these belts 1036 and 1037.
  • a third pulley 1031 is provided on the base side (first arm 1020 side) of the second arm 1030, and the third pulley 1031 is It is connected concentrically with the second pulley 1022 of one arm 1 020, and as a result, both arms operate so as to interlock.
  • a fourth pulley 1032 force S is provided on the distal end side (node (arm) 1040 side) of the second arm 1030, and the fourth pulley 1032 is connected to the hand (arm) 1040 by the connecting shaft 34.
  • the hand (arm) 1040 is an arm for transporting a workpiece, and is attached to the fourth pulley 1032 so as to be rotatable together.
  • the second belt 1033 is a belt that transmits power by connecting the third pulley 1031 and the fourth pulley 1032.
  • two types of belts are connected as shown in FIG.
  • a high-burd belt is used.
  • Hybrid belts depend on their intended use and conditions.
  • the belt may be a combination of two types of belts with one side being a toothed belt (timing belt) and the other side being a flat belt. It is possible to combine two types of belts with different strengths with the other side as a normal strength belt and the other side as a high strength belt, and both belt types and strengths are different. It may be configured as.
  • the second belt 1033 shown in FIG. 10 includes a fluororubber toothed belt 1036 (timing belt) for transferring power from the third pulley 1031 or power to the third pulley 1031, and a fourth pulley 1032.
  • This is a hybrid belt that is combined with a flat steel belt 1037 that transmits and receives power from the pulley or power to the fourth pulley 1032.
  • the fluororubber toothed belt 1036 and the steel flat belt 1037 are connected by a connecting portion 1070.
  • the types of the third pulley 1031 and the fourth pulley 1032 are appropriately selected.
  • the third pulley 1 031 is A timing pulley having a tooth portion corresponding to the toothed belt on the outer peripheral surface is used, and the fourth pulley 1032 is a flat pulley corresponding to the flat belt.
  • the steel flat belt 1037 is a belt excellent in strength and toughness, and is wound around the fourth pulley 1032.
  • the intermediate position of the entire length is fixed on the outer peripheral surface of the fourth pulley 1032 with a plurality of screws 1042, as shown in FIG.
  • Both ends of this steel flat belt 1037 are fixed to a connecting portion 1070, respectively, and are integrally formed with a fluororubber toothed benolet 1036.
  • the connecting portion 1070 has a mechanism for connecting a toothed belt 1036 made of fluoro rubber and a flat belt 1037 made of steel and adjusting the distance between them.
  • both of the pair of connecting portions have an adjustable mechanism. However, only one of the connecting portions can be adjusted, and the other connecting portion has no adjustment function. There may be.
  • FIG. 12 is a schematic configuration diagram showing an example of the connecting portion
  • FIG. 13 is a schematic configuration diagram showing another example of the connecting portion.
  • the connecting part 1070a shown in Fig. 12 is mainly composed of plates 1043, 1044, 1045, 1049 for fixing the toothed belt 1036 and the flat belt 10 037, and adjusting screws 1046 for adjusting the tension of the belt. As! / Speak.
  • As the plate cages 1043, 1044, 1045, 1049 metal plates made of steel or aluminum are preferably used.
  • the plate 1045 has a groove 1047 on the surface of the toothed belt 1036 side.
  • the groove portion 10 047 is formed so as to mate with the tooth surface of the toothed belt 1036.
  • the toothed belt 1 036 is sandwiched between the plate 1045 and the plate 1043 and fixed with a plurality of screws 1048.
  • a long hole 1052 is formed along the longitudinal direction through which one or two or more screws 1051 pass, and the long hole 1052 and the screw 1051 form a plate.
  • the tension of the second belt 1033 can be adjusted by adjusting the overlap of 1044 and the plate 1045.
  • the steel flat belt 1037 is fixed to the plate 1044 with a shim 1049 with screws 1053.
  • the shim 1049 adjusts the height in the thickness direction between the toothed belt 1036 and the flat belt 1037 so that the distance of the center line C force between them is almost the same.
  • the number of Sim 1049 is not limited.
  • Play ⁇ 1043, 1044 is raised to ⁇ J opposite to each other, and ⁇ 1043a, 1044a force ⁇ is formed, and adjustment screws 1046 are formed on this rise part 1043a, 1044a It is screwed.
  • This adjustment screw 1046 makes it possible to adjust the distance between the plates 1043 and 1044 and finely adjust the tension between the toothed belt 1036 and the flat belt 1037 adjusted using the long hole 1052 formed in the plate 1044. be able to.
  • FIG. 13 is an example of a connecting portion that does not have a tension adjusting mechanism. 13 includes plates 1054 and 1055 and a shim 1056 for fixing the toothed belt 1036 and the flat belt 1037.
  • the connecting portion 1070b shown in FIG. As the plates 1054 and 1055 and shim 1056, a metal plate made of steel or aluminum is preferably used as described above.
  • the plate 1055 has a groove 1057 on the surface of the toothed belt 1036 side.
  • the groove portion 1057 is formed in a form that meshes with the tooth surface of the toothed belt 1036.
  • the toothed belt 1 036 is sandwiched between a plate 1054 and a plate 1055 and fixed with a plurality of screws 1058.
  • the flat belt 1037 side of the plate 1054 is fixed to the plate 1054 by a screw 1059 with a shim 1056 interposed therebetween.
  • This shim 1056 has a toothed belt 103 as described above.
  • the height of the belt 637 and the flat belt 1037 are adjusted so that the distance from the center line of the belt belt 1037 is almost the same.
  • the number of shims 1056 is not limited.
  • the second arm 1030 having the second belt 1033 made of such a hybrid belt receives the rotation of the first arm 1020 and rotates in the clockwise direction or the counterclockwise direction.
  • the third pulley 1031 and the fourth pulley 1032 are only rotated to a position where they do not come into contact with each other.
  • the second arm 1030 also has a rib 1035 that is inside the first arm 1020.
  • the rib 1035 acts to increase the rigidity of the second arm 1030 and suppress deformation. By providing such a rib 1035, the thickness of the second arm 1030 can be reduced and the weight can be reduced.
  • the rib 1035 is formed with a hole 1039 that communicates with the base end (the third pulley 1031 side) of the second arm 1030.
  • the punch hole 1039 forms a passage through which the air in the second arm 1030 is extracted to the outside through the first arm 1020 as well as the base end force of the second arm 1030. Since the robot arm 1010 has such a hole 1039, when the robot arm 1010 is exposed to a reduced pressure atmosphere, the air in the second arm 1030 passes through the hole 1039 from the base end of the second arm 1030. It enters into one arm 1020, and further passes through the first arm 1020 and is easily pulled out.
  • the second arm 1030 also uses a toothed belt 1036 made of fluororubber for a part of it, so it is contained in comparison with the case of using a conventional black mouth plain belt, nitrile rubber belt, urethane rubber belt, etc. As a result of less generation of air, dust, etc., the air in the second arm 1030 can be easily extracted, so the time to reach a predetermined pressure in a reduced pressure atmosphere is shortened compared to the conventional one. be able to.
  • the base end portion of the second arm 1030 is the first arm 1020 side, and in the present application, is a shaft portion that rotates the third pulley 1031.
  • the air in the vicinity of the connecting shaft 1034 of the fourth pulley 1032 passes through the hole 1034a in the vicinity of the connecting shaft 1034.
  • the rib 1035 reaches the rib 1035, the air inside the rib 1035 passes through the hole 1039 and reaches the vicinity of the third pulley 1031, and the air passes through the hole 1024a provided on the connecting shaft 1024 and is further formed on the first arm 1020.
  • the air in the second arm 1030 easily enters the first arm 1020, and then passes through the hole 1029 in the first arm 1020 and is provided at the base end of the first arm 1020. For example, it goes out from the opening 1028 with the filter 1060. Since the robot arm 1010 also has such a configuration force, for example, even when dust or the like is generated due to the rotation of the belt and the pulley in the arm, the generated dust or the like is attached to the opening. Captured by filter 1060. As a result, the environment in the preliminary decompression chamber (load lock chamber), which is the movement space of the robot arm 1010, is made favorable, and a rapid decompression atmosphere can be achieved.
  • load lock chamber which is the movement space of the robot arm 1010
  • the robot arm 1010 is connected to the first pulley 1021 of the first arm 1020 with the shaft 1011 of the base 1200 of the robot body, and rotates to the first pulley 1021 by the rotation of the shaft 1011. Power is transmitted.
  • the rotation control of the first pulley 1021 is performed by a control mechanism in the robot body that controls the rotation of the shaft 1011.
  • the rotation angle ratio between the first pulley 1021 of the first arm 1020, the second pulley 1022 (the third pulley 1031 of the second arm 1030), and the fourth pulley 1032 of the second arm 1030 is 1:
  • the first arm 1021 is rotated by rotating the first pulley 1021, so that the state shown in FIG. 14 (A) is changed to FIG. 14 (B) or FIG. 14 (C).
  • the force that changes the angle between the first arm 1020 and the second arm 1030 is connected to the center of the first pulley 1021 of the first arm 1020 and the center of the fourth pulley 1032 of the second arm 1030.
  • the node (arm) 1040 moves on the straight line while keeping the direction constant. [0137] (Robot)
  • FIG. 15 is a schematic plan view showing an example in which a robot having a robot arm of the present invention is used in a semiconductor manufacturing process.
  • the apparatus shown in FIG. 15 is a processing aggregation apparatus 1071 in a semiconductor manufacturing process.
  • a load lock chamber 1073 that can be depressurized, and a robot 1072 equipped with the robot arm 1010 of the present invention is arranged.
  • a processing chamber divided into eight in the circumferential direction is arranged.
  • the four chambers 1074A, 1074B, 1074C, and 1074D are vacuum processing chambers
  • the two chambers 1075 and 1076 are processing chambers for heating and cooling
  • the two chambers 1077A and 1077B are The chamber.
  • the chamber is a storage chamber for transferring wafers from outside the collective processing chamber.
  • Reference numeral 1079 is a robot for delivering a wafer from outside the collective processing chamber
  • reference numeral 1078 is a wafer.
  • gate vents are provided at the entrances of the chambers, and the gates are opened and closed to enter and exit the processing chamber.
  • the gate ben is formed in a wide rectangular shape with a low height so as to allow the wafer to be taken in and out.
  • the robot 1072 having the robot arm 1010 is arranged in such a collective processing chamber.
  • the robot arm 1010 and the robot 1072 have less adverse effects on the reduced-pressure atmosphere with less gas generation or dust generation in the reduced-pressure atmosphere. Therefore, the environment in the load lock chamber 1073 (preliminary decompression chamber), which is the moving space of the robot arm 1010, can be made favorable, and a rapid decompression atmosphere can be achieved.
  • the inside of the processing chambers 1074A to 1074D reaches the same pressure as that in the load lock chamber 1073 by opening the gate vent, each processing chamber can be quickly reduced to a predetermined pressure by the subsequent decompression. Overall throughput can be improved.
  • the robot arm 1010 has a reduced thickness in the height direction, it is possible to move forward and backward with respect to a rectangular gate ben with a low height.
  • the robot arm 1010 of the present invention moves on the straight line connecting the centers of the first pulley 1021 and the fourth pulley 1032 while the hand arm 1040 moves in a constant direction, so that the robot arm 1010 is placed on the hand arm 1040.
  • the transferred wafer can be stably transferred with high positional accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

A robot arm (1) having a first arm (50) with a first transmission mechanism (2), a working means (500) with a second transmission mechanism (4), and a first connection means (10) for connecting the first and second transmission mechanisms (2, 4). The first connection means (10) has a first power transmission member (11) constructed from a rigid member, a second power transmission member (12), and connection sections (20, 25) for connecting the transmission members and constructed from rigid members. The diameter of the first transmission mechanism (2) is greater than that of the second transmission mechanism (4), and the length of the second power transmission member (12) is less than that of the first power transmission member (11).

Description

明 細 書  Specification
ロボットアーム及びロボット  Robot arm and robot
技術分野  Technical field
[0001] 本発明は、ロボットアーム及びロボットに関する。更に詳述すると、本発明は、例え ば半導体のウエノ、、液晶搬送ロボット等のワークをカセットや膜付装置等のプロセス 装置の間で移動させる多関節ロボットにおけるロボットアームの構造の改良に関する 更に、例えば半導体製造装置等の減圧雰囲気下で用いられるロボットアーム及び そのロボットアームを備えたロボットに関する。  [0001] The present invention relates to a robot arm and a robot. More specifically, the present invention relates to an improvement in the structure of a robot arm in an articulated robot that moves a workpiece such as a semiconductor Ueno, a liquid crystal transfer robot, etc., between process devices such as a cassette or a film coating apparatus. For example, the present invention relates to a robot arm used in a reduced pressure atmosphere such as a semiconductor manufacturing apparatus and a robot equipped with the robot arm.
背景技術  Background art
[0002] ロボットアームは、第一アームと作業手段とを互いに回動可能に連結したものであり 、このロボットアームに回転駆動源の回転力を伝達して伸縮等の動作をさせるように したものである。このロボットアームは、例えば半導体のウエノ、、液晶等のワークを力 セットや膜付装置等のプロセス装置の間で移動させる多関節ロボットに搭載されてい る。  [0002] A robot arm is configured such that a first arm and a working means are connected to each other so as to be able to rotate. The robot arm is configured to transmit a rotational force of a rotational drive source to perform operations such as expansion and contraction. It is. This robot arm is mounted on an articulated robot that moves a workpiece such as a semiconductor wafer or a liquid crystal between process devices such as a force setting device and a film attaching device.
[0003] 例えば図 16に示すロボットアーム 2030は、いわゆるベルト直接駆動型と呼ばれる もので、ロボット本体の基台 2040に固定された第一のタイミングプーリ 2070を中心 に回動可能な第一アーム 2050と、この第一アーム 2050の先端部に第二のタイミン グプーリ 2080を介して回動可能に連結された第二アーム 2060と、この第二アーム 2 060の先端部にハンド側プーリ 2100に取り付けられているハンド 2020と、第一のタ イミングプーリ 2070及び第二のタイミングプーリ 2080に掛け渡されたタイミングベル ト 2110とを備えている。  [0003] For example, a robot arm 2030 shown in FIG. 16 is a so-called belt direct drive type, and a first arm 2050 that can rotate around a first timing pulley 2070 fixed to a base 2040 of the robot body. A second arm 2060 rotatably connected to the tip of the first arm 2050 via a second timing pulley 2080, and a hand side pulley 2100 attached to the tip of the second arm 2060. And a timing belt 2110 hung over a first timing pulley 2070 and a second timing pulley 2080.
[0004] 第一アーム 2050には、駆動軸 2130が第一のタイミングプーリ 2070と同心となる位 置に回動可能に設けられており、基台 2040及び第一のタイミングプーリ 2070に対し て第一アーム 2050を回動可能に支持している。この駆動軸 2130は、基台 2040内 に内蔵されるモータ(図示せず)によって回動される。  [0004] The first arm 2050 is provided with a drive shaft 2130 that is rotatable at a position that is concentric with the first timing pulley 2070. The first arm 2050 is provided with respect to the base 2040 and the first timing pulley 2070. One arm 2050 is rotatably supported. The drive shaft 2130 is rotated by a motor (not shown) built in the base 2040.
第二のタイミングプーリ 2080と第二アーム 2060とは連結筒 2140により固定されて いる。連結筒 2140には、その内部に回動可能に連結軸 2150が収納されている。連 結軸 2150は、第一アーム 2050と第三のタイミングプーリ 2090とに固定されている。 Second timing pulley 2080 and second arm 2060 are fixed by connecting cylinder 2140. Yes. A connecting shaft 2150 is housed in the connecting cylinder 2140 so as to be rotatable. The connecting shaft 2150 is fixed to the first arm 2050 and the third timing pulley 2090.
[0005] 第一アーム 2050と第二アーム 2060とは同じ長さであり、第一アーム 2050は 2つの タイミングプーリ 2070、 2080と 1本の長!ヽタイミングべノレト 2110とを収容し、第二ァ ーム 2060は 2つのタイミングプーリ 2090、 2100と 1本の長! /、タイミングべノレト 2120と を収容している。 [0005] The first arm 2050 and the second arm 2060 have the same length, and the first arm 2050 accommodates two timing pulleys 2070 and 2080 and one length! The arm 2060 houses two timing pulleys 2090, 2100 and one long! /, Timing benore 2120.
[0006] ロボットアーム 2030は、第一プーリ 2070と第二プーリ 2080との径(歯数)の比は 2  [0006] The robot arm 2030 has a ratio of the diameter (number of teeth) of the first pulley 2070 and the second pulley 2080 to 2
: 1とし、第三プーリ 2090と第四プーリ 2100との径 (歯数)の比は 1 : 2としている。この ため、第一プーリ 2070、第二プーリ 2080、第四プーリ 2100の回転角度比は 1 : 2 : 1 となっている。  : 1 and the ratio of the diameter (number of teeth) between the third pulley 2090 and the fourth pulley 2100 is 1: 2. For this reason, the rotation angle ratio of the first pulley 2070, the second pulley 2080, and the fourth pulley 2100 is 1: 2: 1.
[0007] ロボットアーム 2030は、モータを駆動することにより、第一アーム 2050を基台 204 0に対して回動させる。このとき、固定的な第一プーリ 2070に対し相対的に回動する 第一ベルト 2110が、第一アーム 2050に対して第二プーリ 2080を相対回動させる。 第二プーリ 2080の第一アーム 2050に対する回動により、第一アーム 2050に対し 第二アーム 2060が回動すると共に第二アーム 2060に対して第三プーリ 2090が回 動する。  The robot arm 2030 rotates the first arm 2050 with respect to the base 2040 by driving a motor. At this time, the first belt 2110 that rotates relative to the fixed first pulley 2070 rotates the second pulley 2080 relative to the first arm 2050. By the rotation of the second pulley 2080 relative to the first arm 2050, the second arm 2060 rotates relative to the first arm 2050, and the third pulley 2090 rotates relative to the second arm 2060.
さらに、第二アーム 2060に対して第三プーリ 2090が回動することにより、第二ァー ム 2060に対して第四プーリ 2100が回動してハンド 2020が回動する。  Further, when the third pulley 2090 rotates with respect to the second arm 2060, the fourth pulley 2100 rotates with respect to the second arm 2060, and the hand 2020 rotates.
[0008] ここで、第一アーム 2050及び第二アーム 2060が同じ長さであると共に第一アーム 2050の基台側プーリ 2070とハンド側プーリ 2080 (即ち、第二アーム 2060の基台 側プーリ 2090)と第二アーム 2060のハンド側プーリ 2100との回転角度比は 1 : 2 : 1 であるので、第一アーム 2050を回動させることにより、第一アーム 2050と第二ァー ム 1060との角度が変化して、第一アーム 2050の基台側プーリ 2070の中心と第二 アーム 2060のハンド側プーリ 2100の中心とを結んだ直線上をハンド 2020が向きを 一定にしながら移動する。  Here, the first arm 2050 and the second arm 2060 have the same length, and the base side pulley 2070 and the hand side pulley 2080 of the first arm 2050 (ie, the base side pulley 2090 of the second arm 2060). ) And the second arm 2060 on the hand side pulley 2100 has a rotation angle ratio of 1: 2: 1. Therefore, by rotating the first arm 2050, the first arm 2050 and the second arm 1060 As the angle changes, the hand 2020 moves while keeping the direction constant on a straight line connecting the center of the base pulley 2070 of the first arm 2050 and the center of the hand pulley 2100 of the second arm 2060.
[0009] ところで、ロボットアーム 2030では、近年、半導体のウェハや液晶ガラスが大型化し 、アーム寸法、重量が大きくなると、タイミングベルトにかかる力が大きくなつてタイミン グベルトの剛性が不足してワークの位置精度が低下してしまうという問題があった。 [0010] そこで、プーリ間に掛け渡された長い 1本のタイミングベルトを用いるのではなぐ回 動の際にプーリと接触しない領域に金属プレートからなる連結部を連結したタイミング ベルトを用いることが開示されて 、る。 [0009] By the way, in the robot arm 2030, when the size of semiconductor wafers and liquid crystal glass has increased in recent years and the arm dimensions and weight have increased, the force applied to the timing belt has increased, and the rigidity of the timing belt has become insufficient. There was a problem that the accuracy was lowered. [0010] Therefore, it is disclosed that a timing belt in which a connecting portion made of a metal plate is connected to an area that does not come into contact with the pulley in the case of rotation, rather than using a single long timing belt stretched between pulleys, is disclosed. It has been.
これにより、金属プレートを用いた連結部を介在することにより、タイミングベルトの 長さを短く設けてその剛性を高め、ロボットアームの回動時の位置精度低下を防止し ている(例えば、特許文献 1を参照)。  As a result, by interposing a connecting part using a metal plate, the length of the timing belt is shortened to increase its rigidity, thereby preventing a decrease in position accuracy when the robot arm is rotated (for example, patent document). (See 1).
[0011] また、半導体デバイスの製造システムにお ヽては、半導体デバイスを製造するため のシステムにワーク搬送ロボットを組み込んだシステムが知られて 、る。こうした製造 システムは、減圧雰囲気下で処理する複数のチャンバを有しており、ワーク搬送ロボ ットは、複数のチャンバの中力も所定のチャンバに対し、半導体ウェハの出し入れを 行うように動作する。このとき、半導体ウェハを各チャンバに搬入 Z搬出する毎にチヤ ンバ内を常圧に戻すとすると、再びチャンバ内を減圧して処理を開始するまでに多く の時間を要し、スループットの低下を招くことになるので、近年の製造システムは、一 般的に、各チャンバに半導体ウェハを搬入 Z搬出するワーク搬送ロボットを含む空間 を予備減圧室(ロードロック室)とした製造システムが採用されている。こうした製造シ ステムにより、チャンバ内を常圧にまで戻すことなく半導体ウェハを搬入 Z搬出できる ので、スノレープットの向上を図っている。 [0011] As a semiconductor device manufacturing system, a system in which a workpiece transfer robot is incorporated in a system for manufacturing a semiconductor device is known. Such a manufacturing system has a plurality of chambers for processing in a reduced-pressure atmosphere, and the workpiece transfer robot operates so that the medium force of the plurality of chambers can carry semiconductor wafers in and out of the predetermined chambers. At this time, if the semiconductor wafer is loaded into each chamber and the chamber is returned to normal pressure every time it is unloaded, it takes a lot of time to reduce the inside of the chamber again and start processing, thereby reducing the throughput. Therefore, in recent years, a manufacturing system in which a space including a workpiece transfer robot for loading / unloading a semiconductor wafer into / from each chamber is used as a preliminary decompression chamber (load lock chamber). Yes. With this manufacturing system, semiconductor wafers can be loaded and unloaded without returning the chamber to normal pressure, so the snooping output is improved.
[0012] こうした製造システムに用いられるワーク搬送ロボットとしては、搬送効率の向上や 動作時間を短縮させることを目的とした種々搬送ロボットが提案されている。例ば特 許文献 1には、旋回可能に支持された第一のアーム部と、この先端に屈曲可能に支 持された第二のアーム部と、この先端にその中央部が回転可能に支持された第三の アーム部とにより構成され、第三のアーム部の両端に被処理体を載置保持する被処 理体載置部を形成し、一度に 2枚の被処理体を取り扱うことができる搬送アーム装置 が提案されている。  As a workpiece transfer robot used in such a manufacturing system, various transfer robots have been proposed for the purpose of improving transfer efficiency and shortening operation time. For example, in Patent Document 1, a first arm portion that is pivotably supported, a second arm portion that is flexibly supported at the tip, and a central portion that is rotatably supported at the tip. A workpiece mounting portion for mounting and holding the workpiece on both ends of the third arm portion, and handling two workpieces at a time. A transfer arm device has been proposed.
[0013] 特許文献 1 :特開 2004— 160568号公報  Patent Document 1: JP 2004-160568 A
特許文献 2 :特開平 7— 142551号公報  Patent Document 2: JP-A-7-142551
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0014] し力しながら、特許文献 1に示すロボットアームでは、金属プレートからなる連結部 を連結したタイミングベルトを用いて剛性を高めている力 回動時のプーリと接触しな い領域は全体の 50%以下であり、以前としてタイミングベルトの割合は金属プレート 力もなる連結部に比べて高 、ものとなって 、る。 Problems to be solved by the invention [0014] However, in the robot arm shown in Patent Document 1, the rigidity is increased by using a timing belt connected to a connecting portion made of a metal plate. The ratio of the timing belt is higher than that of the connecting part that also has the metal plate force as before.
[0015] また、使用するタイミングベルトがゴムを主体とする複合材料力 なるので、弾性を 持つ材質である。このため、ロボットアームは、タイミングベルトの伸びやヒステリシス 等は大きく影響したままであり、ロボットアームの回動に影響を与えていた。したがつ て、ロボットアームの高 、位置精度を確保することは難 、と 、う問題があった。  [0015] Further, since the timing belt to be used is a composite material force mainly composed of rubber, it is a material having elasticity. For this reason, the robot arm remained largely affected by the elongation and hysteresis of the timing belt, affecting the rotation of the robot arm. Therefore, there is a problem that it is difficult to ensure the high accuracy and position accuracy of the robot arm.
[0016] タイミングベルトの剛性を高めるために、タイミングベルトの強度、例えば幅を広くし た場合には、その歯面に嚙みあう歯部をもつタイミングプーリの幅も同じように幅を広 く設ける必要がある。このため、タイミングベルトの剛性を高めることは、ロボットアーム が大型化し、ロボットアームの設置空間を広くしなければならないという問題があった  [0016] When the strength of the timing belt, for example, the width is increased in order to increase the rigidity of the timing belt, the width of the timing pulley having a tooth portion that stagnates the tooth surface is also increased. It is necessary to provide it. For this reason, increasing the rigidity of the timing belt has the problem that the robot arm becomes larger and the installation space for the robot arm must be increased.
[0017] また、特許文献 2に示す搬送ロボットは、搬送効率の向上や動作時間を短縮させる ことを目的としたものであるが、たとえ搬送効率の向上や動作時間を短縮させたとし ても、減圧雰囲気下で搬送ロボットから出てくる粉塵等を極力少なくしなければチャン バ内を所定の圧力に減圧できず、全体としてスループットの向上を図れない。特に、 伸縮動作を行うロボットアームは、その中にベルトやプーリ等、複数の動力伝達手段 を有するので、粉塵等が発生し易い。 [0017] The transfer robot shown in Patent Document 2 is intended to improve the transfer efficiency and shorten the operation time, but even if the transfer efficiency is improved and the operation time is shortened, Unless dust or the like coming out of the transfer robot is reduced as much as possible in a reduced pressure atmosphere, the inside of the chamber cannot be reduced to a predetermined pressure, and overall throughput cannot be improved. In particular, a robot arm that performs an expansion / contraction operation has a plurality of power transmission means such as a belt and a pulley therein, so that dust and the like are easily generated.
[0018] 一方、粉塵を発生させない動力伝達手段としてスチールベルトを選択して用いるこ ともできる。しかし、スチールベルトは、滑りや伝達ロスを防止するためにプーリにボル ト等により固定しなければならないため、プーリの回転範囲が限られ、ひいてはロボッ トの駆動が制限されてしまうという問題がある。また、プーリ回転領域を確保する場合 は、幅広のプーリが必要となり(特開平 11— 165290号公報の図 2、図 7を参照。)、 ロボットのアームが厚く大型化してしま 、、ワークの出し入れ口が高さ方向に幅狭 ヽ チャンバ内での使用には適合しな ヽと ヽぅ問題がある。  [0018] On the other hand, a steel belt can be selected and used as power transmission means that does not generate dust. However, the steel belt has to be fixed to the pulley with a bolt or the like to prevent slippage or transmission loss, so there is a problem that the rotation range of the pulley is limited and the driving of the robot is limited. . In addition, to secure the pulley rotation area, a wide pulley is required (see Figs. 2 and 7 of JP-A-11-165290), and the robot arm becomes thicker and larger, and workpieces are taken in and out. The mouth is narrow in the height direction が あ る There are ヽ and ヽ ぅ problems that are not suitable for use in the chamber.
[0019] そこで、本発明は、上記課題を解決するためになされたものであって、アームを大 型化することなぐアームの位置制御の精度を高めることができるロボットアーム、及 びそのロボットアームを備えたロボットを提供することを目的とする。 [0019] Therefore, the present invention has been made to solve the above-described problem, and a robot arm that can improve the accuracy of arm position control without enlarging the arm, and Another object of the present invention is to provide a robot having the robot arm.
また、減圧雰囲気下で内部から出る粉塵等を少なくすると共に、高さ方向の厚さの 増大を抑えたロボットアーム、及びそのロボットアームを備えたロボットを提供すること を他の目的とする。  It is another object of the present invention to provide a robot arm that reduces dust from the inside in a reduced pressure atmosphere and suppresses an increase in thickness in the height direction, and a robot equipped with the robot arm.
課題を解決するための手段  Means for solving the problem
[0020] 本発明は、ロボット本体に第一伝達機構を介して回動可能に取り付けられた第一ァ ームと、該第一アームの先端部に第二伝達機構を介して回動可能に取り付けられた 作業手段とから構成されると共に、前記第一伝達機構及び前記第二伝達機構を連 結して動力を伝達する第一連結手段を備えるロボットアームにおいて、前記第一連 結手段が、前記第一伝達機構力 の動力または該第一伝達機構への動力を授受す る、第一の剛性部材カもなる第一動力伝達部材と、前記第二伝達機構力もの動力ま たは該第二伝達機構への動力を授受する第二動力伝達部材と、これら第一動力伝 達部材と前記第二動力伝達部材とを繋ぐ、第二の剛性部材からなる第一連結部及 び第二連結部とから構成されているとともに、前記第一伝達機構の径は前記第二伝 達機構の径よりも大きぐかつ、前記第二動力伝達部材の長さは前記第一動力伝達 部材の長さよりも短 、ことを特徴とする。  [0020] The present invention provides a first arm that is rotatably attached to the robot body via a first transmission mechanism, and a tip part of the first arm that is rotatable via a second transmission mechanism. A robot arm comprising a first connection means for transmitting power by connecting the first transmission mechanism and the second transmission mechanism, and the first series connection means comprises: A first power transmission member that also serves as a first rigid member that transmits and receives the power of the first transmission mechanism force or the power to the first transmission mechanism, and the power of the second transmission mechanism force or the first A second power transmission member that transmits and receives power to the second transmission mechanism, and a first connection portion and a second connection made of a second rigid member that connect the first power transmission member and the second power transmission member. And the diameter of the first transmission mechanism is the second transmission mechanism. And the length of the second power transmission member is shorter than the length of the first power transmission member.
[0021] この発明によれば、従来のロボットアームの大きさを維持しながら、上記第一連結手 段の剛性を高めることができ、その伸びやヒステリシス等の影響を抑えることができる 。このため、ロボットアームの位置制御を高精度で確保することができる。  [0021] According to the present invention, the rigidity of the first connecting means can be increased while maintaining the size of the conventional robot arm, and the influence of the elongation, hysteresis, and the like can be suppressed. For this reason, position control of the robot arm can be ensured with high accuracy.
[0022] この発明によれば、曲げ応力の小さい大径の第一伝達部材には、この第一伝達部 材の幅とほぼ同じ幅で第一の剛性部材からなる第一動力伝達部材を用いることがで きるので、第一連結手段の剛性を高めることができる。また、第一伝達部材は嚙合い による構成ではないことから、摩擦を抑制することができ、発塵を抑制することができ る。また、小径の第二伝達部材に掛け渡された第二動力伝達部材の長さを従来より も短くすることができるので、第二伝達部材との嚙合いによって生じる発塵を抑制す ることがでさる。  [0022] According to the present invention, the first power transmission member including the first rigid member having a width substantially the same as the width of the first transmission member is used for the large-diameter first transmission member having a small bending stress. As a result, the rigidity of the first connecting means can be increased. Further, since the first transmission member is not configured by meshing, friction can be suppressed and dust generation can be suppressed. In addition, since the length of the second power transmission member hung over the second transmission member having a small diameter can be made shorter than before, it is possible to suppress dust generation caused by mating with the second transmission member. I'll do it.
[0023] また、本発明は、前記作業手段が、前記第二伝達機構に固定されて前記第一ァー ムに対して回動可能な第二アームと、前記第二伝達機構と同心で前記第一アームに 固定された第三伝達機構と、前記第二アームの先端部に第四伝達機構を介して回 動可能に取り付けられたノ、ンドとから構成されるとともに、前記第三伝達機構と前記 第四伝達機構を連結して動力を伝達する第二連結手段を備えるロボットアームであ つて、前記第二連結手段が、前記第四伝達機構からの動力または該第四伝達機構 への動力を授受する、第三の剛性部材力 なる第四動力伝達部材と、前記第三伝 達機構からの動力または該第三伝達機構への動力を授受する第三動力伝達部材と 、これら第三動力伝達部材と前記第四動力伝達部材とを繋ぐ、第四の剛性部材から なる第三連結部及び第四連結部とから構成されているとともに、前記第四伝達機構 の径は前記第三伝達機構の径よりも大きぐかつ、前記第三動力伝達部材の長さは 前記第四動力伝達部材の長さよりも短ぐさらに、前記第一伝達機構と前記第二伝 達機構と前記第四伝達機構との回転角度比は 1: 2 : 1であることが好ましい。 [0023] Further, according to the present invention, the working means is fixed to the second transmission mechanism and rotatable with respect to the first arm; and the second transmission mechanism is concentric with the second arm. On the first arm A third transmission mechanism that is fixed, and a node that is rotatably attached to the tip of the second arm via a fourth transmission mechanism; and the third transmission mechanism and the fourth transmission mechanism. A robot arm comprising a second connecting means for connecting the transmission mechanism and transmitting power, wherein the second connecting means transmits or receives power from the fourth transmission mechanism or power to the fourth transmission mechanism; A fourth power transmission member that is a third rigid member force; a third power transmission member that receives power from the third transmission mechanism or power to the third transmission mechanism; the third power transmission member; The fourth transmission mechanism includes a third connection portion and a fourth connection portion that are connected to the fourth power transmission member. The fourth transmission mechanism has a diameter larger than that of the third transmission mechanism. It is large and the length of the third power transmission member is the front It is preferable that the rotation angle ratio of the first transmission mechanism, the second transmission mechanism, and the fourth transmission mechanism is 1: 2: 1, which is shorter than the length of the fourth power transmission member.
[0024] 本発明によれば、第一アームと同様に、従来のロボットアームの大きさを維持しなが ら、上記第二連結手段の剛性を高めることができ、その伸びやヒステリシス等の影響 を極力抑えることができる。そのため、ロボットアームの回動時、第二アームの先端に 設けられたノ、ンドが向きを一定にしながら高精度で直線上に移動することができる。  [0024] According to the present invention, like the first arm, the rigidity of the second connecting means can be increased while maintaining the size of the conventional robot arm, and the influence of elongation, hysteresis, and the like can be achieved. Can be suppressed as much as possible. Therefore, when the robot arm is rotated, the node provided at the tip of the second arm can move on a straight line with high accuracy while keeping the direction constant.
[0025] また、前記第一伝達機構と前記第二伝達機構と前記第四伝達機構との回転角度 比は 1 : 2 : 1であるので、第一アームを回動させることにより、第一アームと第二アーム との角度が変化して、第一アームの第一伝達機構の中心と第二アームの第四伝達 機構の中心とを結んだ直線上をノ、ンドが向きを一定にしながら移動することができる 。このため、ロボットアームの位置制御を高精度で確保することができる。  [0025] Further, since the rotation angle ratio of the first transmission mechanism, the second transmission mechanism, and the fourth transmission mechanism is 1: 2: 1, the first arm is turned by rotating the first arm. The angle between the first arm and the second arm changes to move along the straight line connecting the center of the first transmission mechanism of the first arm and the center of the fourth transmission mechanism of the second arm while keeping the direction constant. can do . For this reason, position control of the robot arm can be ensured with high accuracy.
[0026] 本発明は、少なくとも前記第一連結部及び前記第三連結部には、前記動力伝達部 材の張力が調整可能となっていることが好ましい。これにより、これら第一、第三連結 部には、所定の張力を調整しながら設定することができる。  In the present invention, it is preferable that the tension of the power transmission member can be adjusted at least in the first connecting portion and the third connecting portion. Thereby, it can set to these 1st, 3rd connection parts, adjusting predetermined tension.
[0027] さらに、本発明は、前記第一連結部及び前記第二連結部は、前記第一動力伝達 部材の厚み方向の中心線位置と前記第二動力伝達部材の厚み方向の中心線位置 とはほぼ同じ位置となるように連結してなることが好ましい。同様に、前記第三連結部 及び前記第四連結部は、前記第三動力伝達部材の厚み方向の中心線位置と前記 第四動力伝達部材の厚み方向の中心線位置とはほぼ同じ位置となるように連結して なることが好ましい。 [0027] Further, according to the present invention, the first connecting portion and the second connecting portion may include a center line position in the thickness direction of the first power transmission member and a center line position in the thickness direction of the second power transmission member. Are preferably connected so as to be in substantially the same position. Similarly, in the third connecting portion and the fourth connecting portion, the center line position in the thickness direction of the third power transmission member is substantially the same as the center line position in the thickness direction of the fourth power transmission member. Concatenated as It is preferable to become.
本発明によれば、これら動力伝達部材に力かる張力が働く方向がほぼ同じ位置と なるので、スムーズなベルト搬送動作を行うことができる。  According to the present invention, since the direction in which the tension applied to these power transmission members acts is substantially the same position, a smooth belt conveyance operation can be performed.
[0028] また、本発明のロボットアームは、ロボット本体に第一伝達機構を介して回動可能に 取り付けられた第一アームと、該第一アームの先端部に第二伝達機構を介して回動 可能に取り付けられた作業アームとから構成されると共に、前記第一伝達機構及び 前記第二伝達機構を連結して動力を伝達する第一連結手段を備えるロボットアーム にお 、て、前記第一連結手段がフッ素ゴム力 なることを特徴とする。  [0028] Further, the robot arm of the present invention includes a first arm that is rotatably attached to the robot body via the first transmission mechanism, and a distal end portion of the first arm that is rotated via the second transmission mechanism. A robot arm comprising a work arm attached movably and having a first connection means for connecting the first transmission mechanism and the second transmission mechanism to transmit power. It is characterized in that the connecting means is a fluoro rubber force.
[0029] この発明は、フッ素ゴム力もなる第一連結手段を用いている。フッ素ゴム力もなる第 一連結手段は、従来のクロ口プレン製ベルト、二トリルゴム製ベルト、ウレタンゴム製べ ルト等に比べ、減圧雰囲気下でのガス発生や粉塵発生等が少なぐ減圧雰囲気に対 する悪影響が少ない。その結果、チャンバ内を所定の圧力に迅速に減圧することが でき、全体としてスループットを向上させることができる。また、スチールベルトを使用 する場合のような、ロボットアームの厚さの増大や、駆動が制限されてしまうこともない  [0029] This invention uses the first connecting means that also has a fluororubber strength. The first connecting means, which also has fluororubber power, is suitable for a reduced pressure atmosphere that generates less gas and dust in a reduced pressure atmosphere than conventional belts made of black plain, nitrile rubber, and urethane rubber. There are few adverse effects. As a result, the inside of the chamber can be quickly depressurized to a predetermined pressure, and the overall throughput can be improved. In addition, there is no increase in the thickness of the robot arm or the drive is limited as in the case of using a steel belt.
[0030] 本発明のロボットアームにおいて、前記作業アームは、前記第二伝達機構に固定さ れて前記第一アームに対して回動可能な第二アームと、前記第二伝達機構と同心で 前記第一アームに固定された第三伝達機構と、前記第二アームの先端部に第四伝 達機構を介して回動可能に取り付けられたノ、ンドアームと、前記第三伝達機構及び 前記第四伝達機構を連結して動力を伝達する第二連結手段とを備え、さらに、前記 第二連結手段が、前記第三伝達機構力 の動力又は前記第三伝達機構への動力 を授受する、フッ素ゴム製のタイミングベルトからなる動力伝達部材と、前記第四伝達 機構からの動力又は前記第四伝達機構への動力を授受する、スチールベルトからな る動力伝達部材と、これらの動力伝達部材を繋ぐ連結部とから構成されることが好ま しい。 [0030] In the robot arm of the present invention, the working arm is fixed to the second transmission mechanism and is rotatable with respect to the first arm, and is concentric with the second transmission mechanism. A third transmission mechanism fixed to the first arm; a node arm rotatably attached to the tip of the second arm via a fourth transmission mechanism; the third transmission mechanism and the fourth transmission mechanism; A second coupling means for coupling the transmission mechanism to transmit power; and the second coupling means transmits or receives the power of the third transmission mechanism force or the power to the third transmission mechanism. A power transmission member made of a timing belt made of steel, a power transmission member made of a steel belt that transmits and receives power from the fourth transmission mechanism or power to the fourth transmission mechanism, and a connection that connects these power transmission members Composed of parts I like it.
[0031] この発明によれば、駆動量(回転度数)の多い第三伝達機構側をフッ素ゴム力 な るタイミングベルトとし、駆動量(回転度数)が少ない(およそ 180度以内であって、口 ボットの駆動を制限しない駆動量である)第四伝達機構側をスチールベルトとして、こ れらを連結部で結合した所謂ハイブリッドベルトである第二連結手段を用いた。この ようなハイブリッドベルトである第二連結手段は、スチールベルトからなる部分では、 十分な剛性と駆動精度を備えると共に、ガス発生や粉塵発生等を殆ど発生させず、 また、フッ素ゴム力 なる部分では、上記同様、従来の各種のベルト等に比べ、減圧 雰囲気下でのガス発生や粉塵発生等が少なぐ減圧雰囲気に対する悪影響が少な い。その結果、チャンバ内を所定の圧力に迅速に減圧することができ、全体としてス ループットを向上させることができる。そのうえ、駆動精度と剛性を確保すると同時に、 縦方向の厚さを抑えたロボットアームを提供することができる。 [0031] According to the present invention, the third transmission mechanism side having a large drive amount (rotational frequency) is a timing belt that uses fluororubber force, and the drive amount (rotational frequency) is small (within approximately 180 degrees, (This is a drive amount that does not limit the drive of the bot.) The second connecting means which is a so-called hybrid belt in which they are connected by a connecting portion was used. Such a second connecting means, which is a hybrid belt, has sufficient rigidity and driving accuracy in a portion made of a steel belt, hardly generates gas or dust, and in a portion made of fluoro rubber. As described above, there are few adverse effects on the reduced-pressure atmosphere with less gas generation and dust generation in a reduced-pressure atmosphere as compared to various conventional belts. As a result, the inside of the chamber can be quickly depressurized to a predetermined pressure, and the throughput can be improved as a whole. In addition, it is possible to provide a robot arm that secures drive accuracy and rigidity, and at the same time suppresses the thickness in the vertical direction.
[0032] 本発明のロボットアームにおいて、前記第一アーム及び前記第二アーム内の空気 が前記第一アームの基端部力 外部に抜かれるように、該第一アーム及び該第二ァ ーム内に、該第一アームの基端部に通じる抜き穴が設けられていることが好ましい。  [0032] In the robot arm of the present invention, the first arm and the second arm so that the air in the first arm and the second arm is extracted to the outside of the proximal end force of the first arm. It is preferable that a punch hole leading to the base end portion of the first arm is provided inside.
[0033] この発明によれば、第一アーム内部及び第二アーム内部に、第一アームの基端部 に通じる抜き穴が設けられているので、ロボットアームが減圧雰囲気に曝されると、第 一アーム内及び第二アーム内の空気は抜き穴を通って第一アームの基端部力 外 部に容易に抜かれることになる。その結果、ロボットアームの内部の空気までも容易 に吐き出すことができ、し力もその空気は粉塵等が少ない空気であるので、減圧雰囲 気下での所定の圧力への到達時間を短縮することができる。  [0033] According to the present invention, the first arm and the second arm are provided with a through hole that communicates with the base end of the first arm, so that when the robot arm is exposed to a reduced-pressure atmosphere, The air in one arm and the second arm is easily extracted to the outside of the proximal end force of the first arm through the hole. As a result, even the air inside the robot arm can be easily discharged, and the force of the air is low in dust and the like, so the time to reach a predetermined pressure in a reduced-pressure atmosphere can be shortened. Can do.
[0034] 本発明のロボットアームにおいて、前記第一アームの基端部には、アーム内の空気 を外部に逃がす開口部が設けられ、該開口部には、フィルターが装着されていること が好ましい。  In the robot arm of the present invention, it is preferable that an opening for escaping air in the arm to the outside is provided at the base end of the first arm, and a filter is attached to the opening. .
[0035] この発明によれば、第一アームの基端部にはアーム内の空気を外部に逃がす開口 部が設けられ、その開口部にはフィルターが装着されているので、例えば各アーム内 でのベルトとプーリ等との回動動作により粉塵等が生じた場合であっても、生じた粉 塵等は開口部に装着されたフィルターで捕捉される。その結果、ロボットアームの移 動空間である予備減圧室(ロードロック室)内の環境を良好なものとして、迅速な減圧 雰囲気を達成できる。  [0035] According to the present invention, the base end portion of the first arm is provided with the opening for releasing the air in the arm to the outside, and the filter is attached to the opening, so that, for example, in each arm Even if dust or the like is generated by the rotation of the belt and pulley, the generated dust or the like is captured by a filter attached to the opening. As a result, a rapid decompression atmosphere can be achieved with a favorable environment in the preliminary decompression chamber (load lock chamber), which is the moving space of the robot arm.
[0036] また、本発明は、上記本発明のロボットアームをその一部に備えることにより、チャン バ内を所定の圧力に迅速に減圧することができ、全体としてスループットを向上させ ることができるロボットを提供する。 [0036] Further, according to the present invention, by providing the robot arm of the present invention as a part thereof, the inside of the chamber can be quickly reduced to a predetermined pressure, and the overall throughput is improved. A robot that can be used is provided.
発明の効果  The invention's effect
[0037] 本発明は、ロボット本体に第一伝達機構を介して回動可能に取り付けられた第一ァ ームと、該第一アームの先端部に第二伝達機構を介して回動可能に取り付けられた 作業手段とから構成されると共に、前記第一伝達機構及び前記第二伝達機構を連 結して動力を伝達する第一連結手段を備えるロボットアームにおいて、ロボットアーム を構成する前記第一伝達機構及び前記第二伝達機構を連結して動力を伝達する第 一連結手段が、前記第一伝達機構力 の動力または該第一伝達機構への動力を授 受する、第一の剛性部材カもなる第一動力伝達部材と、前記第二伝達機構力もの動 力または該第二伝達機構への動力を授受する第二動力伝達部材と、これら第一動 力伝達部材と前記第二動力伝達部材とを繋ぐ、第二の剛性部材からなる第一連結 部及び第二連結部とから構成されているとともに、前記第一伝達機構の径は前記第 二伝達機構の径よりも大きぐかつ、前記第二動力伝達部材の長さは前記第一動力 伝達部材の長さよりも短くしているので、従来のロボットアームの大きさを維持しなが ら、上記第一連結手段の剛性を高めることができ、その伸びやヒステリシス等の影響 を抑えることができる。このため、ロボットアームの位置制御を高精度で確保すること ができる。  [0037] The present invention provides a first arm that is rotatably attached to a robot body via a first transmission mechanism, and a tip part of the first arm that is rotatable via a second transmission mechanism. And a first connecting means for transmitting power by connecting the first transmission mechanism and the second transmission mechanism, and the first arm constituting the robot arm. A first rigid member coupling, wherein the first coupling means for coupling the transmission mechanism and the second transmission mechanism to transmit power transmits or receives the power of the first transmission mechanism force or the power to the first transmission mechanism. A first power transmission member, a second power transmission member for transmitting / receiving power of the second transmission mechanism or power to the second transmission mechanism, the first power transmission member and the second power transmission The first series of second rigid members connecting the members The first transmission mechanism is larger in diameter than the second transmission mechanism, and the length of the second power transmission member is the first power mechanism. Since it is shorter than the length of the transmission member, the rigidity of the first connecting means can be increased while maintaining the size of the conventional robot arm, and the effects of elongation, hysteresis, etc. can be suppressed. it can. For this reason, the position control of the robot arm can be ensured with high accuracy.
[0038] また、本発明のロボットアーム及びそれを備えたロボットによれば、フッ素ゴム力 な る第一連結手段を用いたので、減圧雰囲気下でのガス発生や粉塵発生等が少なぐ 減圧雰囲気に対する悪影響が少ないものとすることができる。その結果、チャンバ内 を所定の圧力に迅速に減圧することができ、全体としてスループットを向上させること ができる。  [0038] Further, according to the robot arm of the present invention and the robot equipped with the robot arm, the first connecting means having fluororubber power is used, so that gas generation, dust generation, etc. under reduced pressure atmosphere are reduced. It is possible to reduce the adverse effect on. As a result, the inside of the chamber can be quickly depressurized to a predetermined pressure, and the overall throughput can be improved.
図面の簡単な説明  Brief Description of Drawings
[0039] [図 1]本発明に力かるロボットアームの主要部を示す縦断面側面図である。 [0039] FIG. 1 is a longitudinal sectional side view showing a main part of a robot arm that works according to the present invention.
[図 2]本発明に力かるロボットアームの主要部を示す全体図である。  FIG. 2 is an overall view showing a main part of a robot arm that is useful for the present invention.
[図 3]第一連結手段を示す平面図である。  FIG. 3 is a plan view showing a first connecting means.
[図 4]第二連結手段を示す平面図である。  FIG. 4 is a plan view showing a second connecting means.
[図 5]第一連結部 (第三連結部)を示す側面図である。 圆 6]第二連結部 (第四連結部)を示す側面図である。 FIG. 5 is a side view showing a first connecting portion (third connecting portion). 圆 6] It is a side view showing a second connecting part (fourth connecting part).
[図 7]本発明を適用したロボットアームが用いられたダブルアーム型多関節ロボットを 示す平面図である。  FIG. 7 is a plan view showing a double arm articulated robot using a robot arm to which the present invention is applied.
[図 8]本発明のロボットアームの一例を示す平面図(A)及び A— A断面図(B)である 圆 9]図 8に示す第一アームの内部構造を示す平面図 (A)及び B— B断面図(B)で ある。  FIG. 8 is a plan view (A) showing an example of the robot arm of the present invention and A-A sectional view (B). 圆 9] Plan view showing the internal structure of the first arm shown in FIG. B—B is a cross-sectional view (B).
圆 10]図 8に示す第二アームの内部構造を示す平面図 (A)及び C— C断面図(C)で ある。 10] FIG. 9A is a plan view showing the internal structure of the second arm shown in FIG. 8 and FIG.
圆 11]フィルターを第一アームに装着する形態の一例を示す概略説明図である。 [11] FIG. 11 is a schematic explanatory view showing an example of a mode in which the filter is attached to the first arm.
[図 12]連結部の一例を示す概略構成図である。 FIG. 12 is a schematic configuration diagram showing an example of a connecting portion.
[図 13]連結部の他の例を示す概略構成図である。 FIG. 13 is a schematic configuration diagram showing another example of a connecting portion.
圆 14]ハンドアームの移動形態を示す説明図である。 圆 14] It is explanatory drawing which shows the movement form of a hand arm.
[図 15]本発明のロボットアームを備えたロボットが半導体の製造プロセスに用いられる 例を示す概略平面図である。  FIG. 15 is a schematic plan view showing an example in which a robot including a robot arm of the present invention is used in a semiconductor manufacturing process.
[図 16]従来のロボットアームを示す縦断面側面図である。  FIG. 16 is a longitudinal sectional side view showing a conventional robot arm.
符号の説明 Explanation of symbols
1、 1010 ロボットアーム  1, 1010 Robot arm
2、 1021 第一伝達機構  2, 1021 First transmission mechanism
4、 1022 第二伝達機構  4, 1022 Second transmission mechanism
10、 1023 第一連結手段  10, 1023 First connecting means
11 第一動力伝達部材  11 First power transmission member
12 第二動力伝達部材  12 Second power transmission member
20 第一連結部  20 First connecting part
25 第二連結部  25 Second connecting part
50、 1020 第一アーム  50, 1020 1st arm
60、 1033 第二連結手段  60, 1033 Second connecting means
61、 1031 第三動力伝達部材 62、 1032 第四動力伝達部材 61, 1031 Third power transmission member 62, 1032 Fourth power transmission member
70 第三連結部  70 Third connection
75 第四連結部  75 Fourth connection
100、 1030 第二アーム  100, 1030 Second arm
200、 1200 ロボッ卜本体の基台  200, 1200 Robot body base
50、 500 作業手段 (作業アーム)  50, 500 Working means (working arm)
1011 ロボット本体の軸  1011 Robot body axis
1024 連結軸  1024 connecting shaft
1025 リブ  1025 Ribs
1026 アイドラプーリ  1026 idler pulley
1028 開口部  1028 opening
1029 抜き穴  1029 Punching hole
1034 連結軸  1034 connecting shaft
1035 リブ  1035 ribs
1036 歯付きベルト  1036 Toothed belt
1037 平べノレト  1037 flat beret
1039 抜き穴  1039 Punching hole
1040 ハンドアーム  1040 hand arm
1042 ネジ  1042 screw
1043, 1044, 1045, 1054, 1055 プレード 1046, 1048, 1051, 1053, 1058, 1059 ネジ 1060 フイノレター  1043, 1044, 1045, 1054, 1055 blades 1046, 1048, 1051, 1053, 1058, 1059 screws 1060
1061 フィルター構造体 1061 Filter structure
1070, 1070a, 1070b 連結部 1070, 1070a, 1070b Connecting part
1071 集合処理室 1071 Assembly processing room
1072 ロボット  1072 robot
1073 ロード、ロック室  1073 Road, lock room
1079 搬送ロボット 発明を実施するための最良の形態 1079 Transfer robot BEST MODE FOR CARRYING OUT THE INVENTION
[0041] 以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。  Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.
[0042] (第一実施の形態) [0042] (First embodiment)
(ロボットアームの構成)  (Robot arm configuration)
図 1は、ロボットアームの主要部を示す縦断面側面図である。図 2は、ロボットアーム の主要部を示す平面図である。  FIG. 1 is a longitudinal sectional side view showing the main part of the robot arm. FIG. 2 is a plan view showing the main part of the robot arm.
[0043] 図 1及び図 2に示すロボットアーム 1は、ロボット本体の基台 200に第一伝達機構 2 を介して回動可能に取り付けられた第一アーム 50と、第一アーム 50の先端部に第二 伝達機構 4を介して回動可能に取り付けられた作業手段 500とを主として構成してい る。作業手段 500は、第二伝達機構 4に固定されて第一アーム 50に対して回動可能 な第二アーム 100と、第二伝達機構 4と同心で第一アーム 50に固定された第三伝達 機構 52と、第二アーム 100の先端部に第四伝達機構 54を介して回動可能に取り付 けられたノ、ンド 252 (図 7参照)とから構成されている。 A robot arm 1 shown in FIGS. 1 and 2 includes a first arm 50 that is rotatably attached to a base 200 of a robot body via a first transmission mechanism 2, and a distal end portion of the first arm 50. And the working means 500 which is rotatably mounted via the second transmission mechanism 4. The working means 500 includes a second arm 100 fixed to the second transmission mechanism 4 and rotatable relative to the first arm 50, and a third transmission fixed to the first arm 50 concentrically with the second transmission mechanism 4. The mechanism 52 includes a node 252 (see FIG. 7) that is rotatably attached to the tip of the second arm 100 via a fourth transmission mechanism 54.
さらに、ロボットアーム 1には、第一伝達機構 2及び第二伝達機構 4を連結して動力 を伝達する第一連結手段 10と、同様に、第三伝達機構 52と第四伝達機構 54を連結 して動力を伝達する第二連結手段 60とが備えられて 、る。  Furthermore, the first transmission mechanism 2 and the second transmission mechanism 4 are connected to the robot arm 1 to connect the first transmission means 10 for transmitting power, and similarly, the third transmission mechanism 52 and the fourth transmission mechanism 54 are connected. And a second connecting means 60 for transmitting power.
[0044] (第 1アーム) [0044] (First arm)
第一アーム 50内の基台側には、第一伝達機構 2がロボット本体の基台 200に固定 されており、本実施の形態では、第一伝達機構 2は、その外周面が平面である第一 の平プーリとなっている。  The first transmission mechanism 2 is fixed to the base 200 of the robot body on the base side in the first arm 50. In the present embodiment, the first transmission mechanism 2 has a flat outer peripheral surface. It is the first flat pulley.
さらに、第一の平プーリ 2の径 R1は、第二伝達機構 4の径 R2に比べて大きくなつて おり、第一連結手段 10が設置された状態において、 R1 :R2 = 2 : 1の関係となってい る。  Furthermore, the diameter R1 of the first flat pulley 2 is larger than the diameter R2 of the second transmission mechanism 4, and when the first connecting means 10 is installed, the relationship of R1: R2 = 2: 1 It is.
[0045] 第一アーム 50内の先端部、すなわち、第二アーム 100側には、第二伝達機構 4が 第二アーム 100にねじを用いて固定されて!、る。  [0045] The second transmission mechanism 4 is fixed to the second arm 100 with a screw at the distal end in the first arm 50, that is, on the second arm 100 side.
本実施の形態では、この第二伝達機構 4は、その外周面に歯部を有する第二のタ イミングプーリで構成されて 、る。  In the present embodiment, the second transmission mechanism 4 is composed of a second timing pulley having a tooth portion on its outer peripheral surface.
また、第二のタイミングプーリ 4の内部には連結筒 3が収納され、連結筒 3の内部に は配線が収容されて 、る。この連結筒 3の一端部は第一アーム 50に固定されており 、その他端部は第二アーム 100内に収納されている。これにより、第一アーム 50と第 二アーム 100とが連動するようになって!/、る。 The connecting cylinder 3 is housed inside the second timing pulley 4, and the connecting cylinder 3 is The wiring is housed. One end of the connecting cylinder 3 is fixed to the first arm 50, and the other end is housed in the second arm 100. As a result, the first arm 50 and the second arm 100 are interlocked!
[0046] さらに、本実施の形態では、第二のタイミングプーリ 4の近傍には、回転駆動源とな るモータ 150と、モータ 150に取り付けられた減速機 151と、減速機 151に取り付けら れた駆動プーリ 152と、この駆動プーリ 152と第二のタイミングプーリ 4とに掛け渡され る駆動ベルト 154とを備えて!/、る。  Furthermore, in the present embodiment, in the vicinity of the second timing pulley 4, a motor 150 serving as a rotational drive source, a speed reducer 151 attached to the motor 150, and a speed reducer 151 are attached. A drive pulley 152 and a drive belt 154 stretched over the drive pulley 152 and the second timing pulley 4.
[0047] 第一連結手段 10は、第一の剛性部材力 なる第一動力伝達部材 11と、第二動力 伝達部材 12と、これら第一動力伝達部材 11と第二動力伝達部材 12とを繋ぐ第二の 剛性部材力 なる第一連結部 20、第二連結部 25とで構成されて 、る。  [0047] The first connecting means 10 connects the first power transmission member 11 that is the first rigid member force, the second power transmission member 12, and the first power transmission member 11 and the second power transmission member 12. The first connecting portion 20 and the second connecting portion 25 are the second rigid member force.
[0048] 第一動力伝達部材 11は、第一の剛性部材で形成されており、本実施の形態では スチールベルトで形成されている。なお、第一の剛性部材は、延性、靭性に優れた 部材であればよぐスチールベルト以外のベルトであってもよい。第一のスチールべ ルト 11は、第一の平プーリ 2の平面に巻き掛けられており、その全長の中間位置が第 一の平プーリ 2に複数のネジ 16で固定されている。  [0048] The first power transmission member 11 is formed of a first rigid member, and is formed of a steel belt in the present embodiment. The first rigid member may be a belt other than a steel belt as long as it is a member having excellent ductility and toughness. The first steel belt 11 is wound around the plane of the first flat pulley 2, and the intermediate position of the entire length is fixed to the first flat pulley 2 with a plurality of screws 16.
[0049] そして、第一のスチールベルト 11の一端側は、第一連結部 20に固定され、その他 端側は第二連結部 25に固定されている。第二動力伝達部材 12は歯面を有するタイ ミングベルトで構成されており、第二のタイミングベルト 12は、その歯面が第二のタイ ミングプーリ 4の歯部に嚙み合うように配置されており、その全長は、ロボットアーム 1 の搬送距離より計算される必要最小長さに設定されている。  [0049] One end side of the first steel belt 11 is fixed to the first connecting portion 20, and the other end side is fixed to the second connecting portion 25. The second power transmission member 12 is composed of a timing belt having a tooth surface, and the second timing belt 12 is disposed so that the tooth surface meshes with the tooth portion of the second timing pulley 4. The total length is set to the minimum required length calculated from the transfer distance of the robot arm 1.
[0050] また、本実施の形態では、第一のスチールベルト 11と、第二のタイミングベルト 12 及び第一連結部 20、第二連結部 25の軸方向における幅は、ほぼ同じ幅となってい る。  [0050] In the present embodiment, the first steel belt 11, the second timing belt 12, the first connecting portion 20, and the second connecting portion 25 have substantially the same width in the axial direction. The
[0051] 図 3は、第一アームにおいて第一伝達機構と第二伝達機構を連結して動力を伝達 する第一連結手段を示す平面図である。また、図 5は第一連結部 (第三連結部)を示 す側面図である。図 6は第二連結部 (第四連結部)を示す側面図である。  FIG. 3 is a plan view showing first connection means for transmitting power by connecting the first transmission mechanism and the second transmission mechanism in the first arm. FIG. 5 is a side view showing the first connecting portion (third connecting portion). FIG. 6 is a side view showing the second connecting portion (fourth connecting portion).
[0052] 第一連結部 20は、第一のスチールベルト 11の一端部及び第二のタイミングベルト 12の一端部を挟みこんでその間隔を調整可能になっている調整側連結部となって いる。また、第二連結部 25は、第一のスチールベルト 11の他端部及び第二のタイミ ングベルト 12の他端部を挟み込み固定する固定側連結部となっている。 [0052] The first connecting portion 20 is an adjustment-side connecting portion that can be adjusted by sandwiching one end portion of the first steel belt 11 and one end portion of the second timing belt 12. Yes. The second connecting portion 25 is a fixed-side connecting portion that sandwiches and fixes the other end portion of the first steel belt 11 and the other end portion of the second timing belt 12.
[0053] 第一連結部 20は、図 5に示すように、第一のスチールベルト 11及び第二のタイミン グベルト 12の一端部を固定するプレート 30、 31、 32と、第一のスチールベルト 11、 第二のタイミングベルト 12との張力の調整を行う調整用ネジ 145とを主な構成とし、 プレート 30、 31、 32は、第二の剛性部材カもなつている。  As shown in FIG. 5, the first connecting portion 20 includes plates 30, 31, 32 for fixing one end portions of the first steel belt 11 and the second timing belt 12, and the first steel belt 11. The adjustment screw 145 for adjusting the tension with the second timing belt 12 is a main component, and the plates 30, 31, and 32 are also provided with a second rigid member.
[0054] 具体的には、プレート 32は、本実施の形態ではアルミ製であり、その強度を保った めに、第一のスチールベルト 11や第二のタイミングベルト 12よりも厚!、ものとなって!/ヽ る。このアルミ製プレート 32上には、その一端側に溝部 32aが形成されており、その 溝部 32aに第二のタイミングベルト 12の一端部の歯面が嚙み合うように配置されてい る。  [0054] Specifically, the plate 32 is made of aluminum in the present embodiment, and is thicker than the first steel belt 11 and the second timing belt 12 in order to maintain its strength! Become! On the aluminum plate 32, a groove portion 32a is formed on one end side thereof, and the tooth surface of one end portion of the second timing belt 12 is disposed in the groove portion 32a.
さらに、第二のタイミングベルト 12は、アルミ製プレート 32とステンレス製プレート 31 とに挟みこまれて、複数のネジを用いて固定されている。  Further, the second timing belt 12 is sandwiched between an aluminum plate 32 and a stainless steel plate 31 and fixed using a plurality of screws.
[0055] アルミ製プレート 32の他端側は、ステンレス製プレート 30が複数のネジを用いて固 定されている。このステンレス製プレート 30には、複数のネジが貫通する、長手方向 に沿った長孔 30bが形成されている。これにより、ステンレス製プレート 30とアルミ製 プレート 32との重ね代を調整できるようになって 、る。 [0055] On the other end side of the aluminum plate 32, a stainless steel plate 30 is fixed using a plurality of screws. The stainless plate 30 is formed with a long hole 30b along the longitudinal direction through which a plurality of screws pass. As a result, the overlap allowance between the stainless steel plate 30 and the aluminum plate 32 can be adjusted.
なお、図 5には、複数のネジが幅方向に 1列で形成されている力 ネジと長孔 30bと の関係を明確にするためであり、複数のネジは幅方向に 1列に限定されるものではな い。  Note that FIG. 5 is for clarifying the relationship between the force screw in which a plurality of screws are formed in one row in the width direction and the long holes 30b, and the plurality of screws are limited to one row in the width direction. It is not something.
[0056] また、ステンレス製プレート 30の他端は、第一のスチールベルト 11の一端部をシム 40が介在させてネジ固定されている。このシム 40は、第一のスチールベルト 11と第 二のタイミングベルト 12との厚み方向の高さを調整するものであり、第一のスチール ベルト 11と第二のタイミングベルト 12との中心線 C力もの距離をほぼ同じとなるように している。なお、シム 40の枚数には限定されるものではない。  [0056] Further, the other end of the stainless steel plate 30 is screwed to one end of the first steel belt 11 with a shim 40 interposed therebetween. This shim 40 adjusts the height in the thickness direction of the first steel belt 11 and the second timing belt 12, and the center line C between the first steel belt 11 and the second timing belt 12 The distance of force is almost the same. The number of shims 40 is not limited.
[0057] さらに、ステンレス製プレート 30、 31には、互いに対向する側に立ち上げ部 30a、 3 laが形成され、立ち上げ部 30a、 3 laに調整用ネジ 145が螺合されている。調整用 ネジ 145は、ステンレス製プレート 30、 31との間隔を調整可能にし、ステンレス製プ レート 30に形成された長孔 30bに沿って、第一のスチールベルト 11と第二のタイミン グベルト 12との張力の加減を調整することができるようになつている。 [0057] Further, the stainless steel plates 30, 31 are formed with rising portions 30a, 3 la on opposite sides, and an adjustment screw 145 is screwed into the rising portions 30a, 3 la. The adjustment screw 145 allows the distance between the stainless steel plate 30, 31 to be adjusted and the stainless steel plate The tension of the first steel belt 11 and the second timing belt 12 can be adjusted along the long hole 30b formed in the rate 30.
[0058] 第二連結部 25は、図 6に示すように、第一のスチールベルト 11及び第二のタイミン グベルト 12の他端部を挟み込み固定するプレート 33、 34とを主な構成とし、プレート 33、 34は第二の剛性部材カもなつている。なお、第二の剛性部材は、延性、靭性に 優れた部材であればょ 、。  [0058] As shown in Fig. 6, the second connecting portion 25 is mainly composed of plates 33 and 34 that sandwich and fix the other ends of the first steel belt 11 and the second timing belt 12, and the plate 33 and 34 also have a second rigid member. The second rigid member should be a member with excellent ductility and toughness.
[0059] 本実施の形態では、プレート 33はステンレス製であり、ステンレス製プレート 33の両 端にそれぞれ、第一のスチールベルト 11と第二のタイミングベルト 12とが複数のネジ を用いて固定されている。第一のスチールベルト 11は、ステンレス製プレート 33との 間にシム 40を介在させてネジ固定されている。シム 40は厚み方向の高さを調整する ものであり、 1枚または複数枚のシム 40を用 、て第二のタイミングベルト 12との中心 線 C力 の距離とほぼ同じとなるように調整して 、る。  [0059] In the present embodiment, the plate 33 is made of stainless steel, and the first steel belt 11 and the second timing belt 12 are fixed to both ends of the stainless steel plate 33 using a plurality of screws, respectively. ing. The first steel belt 11 is fixed to the stainless steel plate 33 with a shim 40 interposed therebetween. The shim 40 is used to adjust the height in the thickness direction. Use one or more shims 40 and adjust so that the distance between the centerline C force and the second timing belt 12 is substantially the same. And
[0060] 第二のタイミングベルト 12は、アルミ製プレート 34とステンレス製プレート 33とに挟 みこまれて、複数のネジを用いて固定されている。図 6に示すように、第二のタイミン グベルト 12の平坦側は、ステンレス製プレート 33上に配置され、第二のタイミングべ ルト 12の歯面側には、溝部が形成されたアルミ製プレート 34が配置されている。そし て、アルミ製プレート 34の溝部に、第二のタイミングベルト 12の歯面が嚙み合いなが ら複数のネジを用いて固定されて 、る。  [0060] The second timing belt 12 is sandwiched between an aluminum plate 34 and a stainless steel plate 33, and is fixed using a plurality of screws. As shown in FIG. 6, the flat side of the second timing belt 12 is disposed on the stainless steel plate 33, and the aluminum plate 34 having grooves formed on the tooth surface side of the second timing belt 12 is provided. Is arranged. Then, the tooth surface of the second timing belt 12 is fixed to the groove of the aluminum plate 34 using a plurality of screws.
[0061] 図 3に戻り、第一アーム 50は、モータ 150を駆動することにより、固定の第一の平プ ーリ 2に対して時計方向(CW方向)または反時計方向(CCW方向)に回動することに なるが、第一連結手段 10が時計方向(CW方向)に回動した場合と、反時計方向(C CW方向)に回動した場合との位置が点線で示されている。  Returning to FIG. 3, the first arm 50 drives the motor 150 to rotate clockwise (CW direction) or counterclockwise (CCW direction) with respect to the fixed first flat pulley 2. The position where the first connecting means 10 rotates clockwise (CW direction) and when it rotates counterclockwise (C CW direction) is indicated by dotted lines. .
第一連結手段 10が反時計方向(CCW方向)に回動した場合は、第一のスチール ベルト 11は符号 16Aまで回動し、第一連結部 20は符号 20Aまで移動し、第二連結 部 25は符号 25Aまで移動する。また、第一連結手段 10が時計方向(CW方向)に回 動した場合は、第一のスチールベルト 11が符号 16Bまで回動し、第一連結部 20は 符号 20Bまで移動し、第二連結部 25は符号 25Bまで移動する。  When the first connecting means 10 is rotated in the counterclockwise direction (CCW direction), the first steel belt 11 is rotated to 16A, the first connecting portion 20 is moved to 20A, and the second connecting portion 25 moves to 25A. Further, when the first connecting means 10 rotates clockwise (CW direction), the first steel belt 11 rotates to the reference numeral 16B, the first connecting portion 20 moves to the reference numeral 20B, and the second connection Part 25 moves to the sign 25B.
[0062] 第一の平プーリ 2と第二のタイミングプーリ 4とは、上述したとおり、これらの径 (歯数 )の比カ¾1 2 = 2 : 1であるため、第一の平プーリ 2に形成された固定部 16が符号 16Aまで到達するまでに第一の平プーリ 2が約 1Z4回転する。この間に、第二のタイ ミングプーリ 4は約 1Z2回転する。従って、第二のタイミングベルト 12の長さは、第二 のタイミングプーリ 4に嚙み合う長さ(約 1Z2回転)に、時計方向(CW方向)、反時計 方向(CCW方向)に移動する長さを加算した約 3Z2回転の長さとなっている。すな わち、その全長は、ロボットアーム 1の搬送距離より計算される必要最小長さに設定さ れている。 [0062] As described above, the first flat pulley 2 and the second timing pulley 4 have their diameters (the number of teeth). ) Ratio of 1/12 = 2: 1, the first flat pulley 2 rotates about 1Z4 before the fixing portion 16 formed on the first flat pulley 2 reaches the reference numeral 16A. During this time, the second timing pulley 4 rotates about 1Z2. Therefore, the length of the second timing belt 12 is the length that moves in the clockwise direction (CW direction) and counterclockwise direction (CCW direction) to the length that fits the second timing pulley 4 (about 1Z2 rotation). The total length is about 3Z2 rotations. In other words, the total length is set to the required minimum length calculated from the transfer distance of the robot arm 1.
[0063] 第一アーム 50内には、図 2に示すように、所定の間隔で複数のリブ 219が形成され ており、断面変形を抑えることができ、第一アーム 50の図示上下方向の剛性を高め ることができるようになって!/、る。  [0063] As shown in FIG. 2, a plurality of ribs 219 are formed in the first arm 50 at predetermined intervals, so that cross-sectional deformation can be suppressed, and the first arm 50 has a vertical rigidity shown in the figure. Can now be improved! /.
また、これらリブ 219が形成されたことにより、第一アーム 50の肉厚を薄くして軽量 ィ匕が図られている。  Further, since the ribs 219 are formed, the thickness of the first arm 50 is reduced to achieve a light weight.
[0064] 各リブ 219には長手方向に 3つの孔 220、 220、 221が形成されており、真中の孔 2 21は第一アーム 50内を、電線等を配置する配線用透孔となっている。さらに、この 配線用透孔の両側には第一のスチールベルト 11、第二のタイミングベルト 12及び第 一、第二連結部 20、 25が貫通する透孔 220、 220が形成されている。  [0064] Each rib 219 is formed with three holes 220, 220, 221 in the longitudinal direction, and the middle hole 222 is a through-hole for wiring in the first arm 50 for arranging an electric wire or the like. Yes. Furthermore, the first steel belt 11, the second timing belt 12, and the through holes 220, 220 through which the first and second connecting portions 20, 25 pass are formed on both sides of the wiring through hole.
第一連結手段 10は、その第一、第二連結部 20、 25の一方が切り離された状態で 、透孔 220、 220を貫通させて、貫通後に切り離された連結部を連結するようになつ ている。  The first connecting means 10 is configured to pass through the through holes 220 and 220 in a state where one of the first and second connecting portions 20 and 25 is cut off, and to connect the connecting portions cut off after the penetration. ing.
また、第一の平プーリ 2には、軸方向に貫通する複数の孔 2aが円周方向に均等に 形成されており、重量を減らすことにより第一アーム 50の軽量ィ匕を図るようにしている  Further, the first flat pulley 2 has a plurality of axially penetrating holes 2a formed uniformly in the circumferential direction so that the weight of the first arm 50 can be reduced by reducing the weight. Have
[0065] (作業手段) [0065] (Working means)
第一アーム 50の先端部に設けられた作業手段 500は、第二のタイミングプーリ 4に 固定されて第一アーム 50に対して回動可能な第二アーム 100と、第二のタイミングプ ーリ 4と同心で第一アーム 50に固定された第三伝達機構 52と、第二アーム 100の先 端部に第四伝達機構 54を介して回動可能に取り付けられたハンド 252 (図 7参照)と 、第三伝達機構 52と第四伝達機構 54を連結して動力を伝達する第二連結手段 60 とカゝら構成されている。 The working means 500 provided at the tip of the first arm 50 includes a second arm 100 fixed to the second timing pulley 4 and rotatable with respect to the first arm 50, and a second timing pulley. 4 and a third transmission mechanism 52 fixed to the first arm 50 concentrically with the hand 4, and a hand 252 rotatably attached to the end of the second arm 100 via a fourth transmission mechanism 54 (see FIG. 7) And a second connecting means 60 for connecting the third transmission mechanism 52 and the fourth transmission mechanism 54 to transmit power. And is composed.
[0066] 第二アーム 100内の基台側(第一アーム 50側)には、第二のタイミングプーリ 4と同 心で、第一アーム 50から伸びた連結筒 3が収納されており、連結筒 3の他端部には、 第三伝達機構 52が固定されている。なお、第三伝達機構 52は、本実施の形態では 、その外周面に歯部を有するタイミングプーリで構成されている。  [0066] On the base side (first arm 50 side) in the second arm 100, the connecting cylinder 3 extending from the first arm 50 and concentric with the second timing pulley 4 is housed. A third transmission mechanism 52 is fixed to the other end of the tube 3. In the present embodiment, the third transmission mechanism 52 is composed of a timing pulley having a tooth portion on its outer peripheral surface.
[0067] 第二アーム 100の先端部には、第四伝達機構 54が第二アーム 100に対して軸受 を介して回動可能に支持されて設けられている。第四伝達機構 54の先端部には、ヮ ークを搬送するハンド 525 (図 7参照)が第四伝達機構 54と一体的に回動可能に取り 付けられている。本実施の形態では、第四伝達機構 54は、その外周面が平面である 平プーリとなっている。  [0067] A fourth transmission mechanism 54 is provided at the distal end of the second arm 100 so as to be rotatable with respect to the second arm 100 via a bearing. A hand 525 (see FIG. 7) for conveying the cake is attached to the tip of the fourth transmission mechanism 54 so as to be rotatable integrally with the fourth transmission mechanism 54. In the present embodiment, the fourth transmission mechanism 54 is a flat pulley whose outer peripheral surface is a plane.
さらに、第四の平プーリ 54の径 R4は、第三のタイミングプーリ 52の径 R3に比べて 大きくなつており、第二連結手段 60が設置された状態において、 R3 :R4= 1 : 2の関 係になっている。  Furthermore, the diameter R4 of the fourth flat pulley 54 is larger than the diameter R3 of the third timing pulley 52. When the second connecting means 60 is installed, R3: R4 = 1: 2 It is related.
[0068] 第二連結手段 60は、第三の剛性部材力 なる第四動力伝達部材 62と、第三動力 伝達部材 61と、これら第三動力伝達部材 61と第四動力伝達部材 62とを繋ぐ、第四 の剛性部材カもなる第三連結部 70、第四連結部 75とで構成されている。  [0068] The second connecting means 60 connects the fourth power transmission member 62 having the third rigid member force, the third power transmission member 61, and the third power transmission member 61 and the fourth power transmission member 62. The third connecting portion 70 and the fourth connecting portion 75 also serve as a fourth rigid member.
[0069] 第三動力伝達部材 61は歯面を有するタイミングベルトで構成されており、第三のタ イミングベルト 61は、その歯面が第三のタイミングプーリ 52の歯部に嚙み合うように配 置されており、その全長は、ロボットアーム 1の搬送距離より計算される必要最小長さ に設定されている。  [0069] The third power transmission member 61 is configured by a timing belt having a tooth surface, and the third timing belt 61 is configured so that the tooth surface meshes with a tooth portion of the third timing pulley 52. The total length is set to the required minimum length calculated from the transfer distance of the robot arm 1.
[0070] 第四動力伝達部材 62は、延性、靭性に優れた剛性部材で形成されており、本実施 の形態ではスチールベルトで形成されている。第四のスチールベルト 62は、第四の 平プーリ 54の平面に巻き掛けられており、その全長の中間位置が第四の平プーリ 54 の外周面上に複数のネジ 66で固定されている。そして、第四のスチールベルト 62の 一端側は、第三連結部 70に固定され、その他端側は第四連結部 75に固定されてい る。  [0070] The fourth power transmission member 62 is formed of a rigid member having excellent ductility and toughness, and is formed of a steel belt in the present embodiment. The fourth steel belt 62 is wound around the plane of the fourth flat pulley 54, and an intermediate position of the entire length thereof is fixed on the outer peripheral surface of the fourth flat pulley 54 with a plurality of screws 66. One end side of the fourth steel belt 62 is fixed to the third connecting portion 70, and the other end side is fixed to the fourth connecting portion 75.
[0071] 図 4は、作業手段を構成する第二アームにおいて第三伝達機構と第四伝達機構を 連結して動力を伝達する第二連結手段を示す平面図である。また、図 5は第一連結 部 (第三連結部)を示す側面図である。図 6は第二連結部 (第四連結部)を示す側面 図である。 FIG. 4 is a plan view showing second connection means for transmitting power by connecting the third transmission mechanism and the fourth transmission mechanism in the second arm constituting the working means. Figure 5 shows the first consolidated It is a side view which shows a part (3rd connection part). FIG. 6 is a side view showing the second connecting portion (fourth connecting portion).
なお、第三連結部 70、第四連結部 75は、上述した第一アーム 50の第一連結部 20 、第二連結部 25とほぼ同じ構成となっているので、図 5、 6内にカツコ内の符号として 記入している。したがって、ここでの詳細な説明は省略する。  The third connecting portion 70 and the fourth connecting portion 75 have substantially the same configuration as the first connecting portion 20 and the second connecting portion 25 of the first arm 50 described above. It is filled in as the code inside. Therefore, detailed description here is omitted.
また、図 4に示すように、第二アーム 100においては、第三連結部 70、第四連結部 75の長さ、すなわち、そのプレートからなる連結部の長さは、第一アーム 50の連結部 の長さよりも長くしている。すなわち、第二アーム 100の回動時に、第三のタイミング プーリ 52、第四の平プーリ 54と接触しない長さとし、第三のタイミングベルト 61の長さ を短くし、第二連結手段 60の強度を高 、ものとなって 、る。  Further, as shown in FIG. 4, in the second arm 100, the length of the third connecting portion 70 and the fourth connecting portion 75, that is, the length of the connecting portion made of the plate is the connection of the first arm 50. It is longer than the length of the part. That is, when the second arm 100 is rotated, the length is such that it does not contact the third timing pulley 52 and the fourth flat pulley 54, the length of the third timing belt 61 is shortened, and the strength of the second connecting means 60 is increased. The high, the thing becomes.
[0072] 図 4に戻り、第二アーム 100は、第一アーム 50の回動を受けて、連結筒 3及び固定 の第三のタイミングプーリ 52に対して時計方向(CW方向)または反時計方向(CCW 方向)に回動することになるが、第二連結手段 60が時計方向(CW方向)に回動した 場合と、反時計方向(CCW方向)に回動した場合との位置が点線で示されている。 第二連結手段 60が時計方向(CW方向)に回動した場合は、第四のスチールベル ト 62は符号 66Aまで回動し、第三連結部 70は符号 70Aまで移動し、第四連結部 75 は符号 75Aまで移動する。第二連結手段 60が反時計方向(CCW方向)に回動した 場合は、第四のスチールベルト 62は符号 66Bまで回動し、第三連結部 70は符号 70 Bまで移動し、同時に、第四連結部 75は符号 75Bまで移動する。  Returning to FIG. 4, the second arm 100 receives the rotation of the first arm 50 and rotates clockwise (CW direction) or counterclockwise with respect to the connecting cylinder 3 and the fixed third timing pulley 52. (CCW direction), the dotted line shows the position when the second connecting means 60 is rotated clockwise (CW direction) and when it is rotated counterclockwise (CCW direction). It is shown. When the second connecting means 60 rotates in the clockwise direction (CW direction), the fourth steel belt 62 rotates to the reference numeral 66A, the third connecting portion 70 moves to the reference numeral 70A, and the fourth connecting portion. 75 moves to 75A. When the second connecting means 60 rotates counterclockwise (CCW direction), the fourth steel belt 62 rotates to the reference numeral 66B, and the third connecting portion 70 moves to the reference numeral 70B. The four connecting parts 75 move to the reference numeral 75B.
[0073] 第三のタイミングプーリ 52と第四の平プーリ 54とは、上述したとおり、これらの径 (歯 数)の比力 ¾3 :R4= 1: 2であるため、第四の平プーリ 54に形成された固定部 66が 約 1Z4回転すると、第三のタイミングプーリ 52は約 1Z2回転する。従って、第三のタ イミングベルト 61の長さは、第三のタイミングプーリ 52に嚙み合う長さ(約 1Z2回転) に、時計方向(CW方向)、反時計方向(CCW方向)に移動する長さを加算した約 3 Z2回転の長さとなっている。すなわち、その全長は、ロボットアーム 1の搬送距離より 計算される必要最小長さに設定されて ヽる。  [0073] As described above, the third timing pulley 52 and the fourth flat pulley 54 have a specific force of these diameters (the number of teeth) ¾3: R4 = 1: 2, so the fourth flat pulley 54 When the fixed portion 66 formed in the step 1 rotates about 1Z4, the third timing pulley 52 rotates about 1Z2. Therefore, the length of the third timing belt 61 moves in the clockwise direction (CW direction) and counterclockwise direction (CCW direction) to the length that fits the third timing pulley 52 (about 1Z2 rotation). The total length is about 3 Z2 rotations. That is, the total length is set to the necessary minimum length calculated from the transfer distance of the robot arm 1.
[0074] 第二アーム 100内には、図 2に示すように、所定の間隔で複数のリブ 210が形成さ れており、断面変形を抑えることができ、第二アーム 100の図示上下方向の剛性を高 めることができるようになつている。また、これらリブ 210が形成されたことにより、第二 アーム 100の肉厚を薄くして軽量化が図られている。 [0074] As shown in FIG. 2, a plurality of ribs 210 are formed at predetermined intervals in the second arm 100, so that the cross-sectional deformation can be suppressed, and the second arm 100 in the vertical direction shown in the figure can be suppressed. High rigidity So that you can Further, by forming these ribs 210, the thickness of the second arm 100 is reduced and the weight is reduced.
各リブ 210には長手方向に 3つの孔 211、 211、 212力 ^形成されており、真中の孔 2 12はアーム内を、電線等を配置する配線用透孔となっている。さらに、この配線用透 孔の両側には第三のタイミングベルト 61、及び第四のスチールベルト 62及び第三、 第四連結部 70、 75が貫通する透孔 211、 211が形成されている。  Each rib 210 is formed with three holes 211, 211, and 212 in the longitudinal direction, and the middle hole 212 is a through hole for wiring in the arm. Further, on both sides of the wiring through hole, a third timing belt 61, a fourth steel belt 62, and through holes 211 and 211 through which the third and fourth connecting portions 70 and 75 pass are formed.
第二連結手段 60は、その第三、第四連結部 70、 75の一方が切り離された状態で 、上記透孔 211、 211を貫通させて、貫通後に切り離された連結部を連結するように なっている。  The second connecting means 60 is configured to pass through the through holes 211 and 211 in a state where one of the third and fourth connecting portions 70 and 75 is cut off, and to connect the connecting portions cut off after the penetration. It has become.
[0075] また、図 2に示すように、第四の平プーリ 54には、軸方向に貫通する複数の孔 54a が円周方向に均等に形成されており、重量を減らすことにより第二アーム 100の軽量 化を図るようにしている。  In addition, as shown in FIG. 2, the fourth flat pulley 54 has a plurality of holes 54a penetrating in the axial direction evenly formed in the circumferential direction, and the second arm can be reduced by reducing the weight. We are trying to reduce the weight by 100.
[0076] (ロボットアームの動作)  [0076] (Operation of robot arm)
上述したロボットアーム 1の動作を以下に説明する。ロボットアーム 1は、第一アーム 50内の第二のタイミングプーリ 4の近傍に配置されたモータ 150により駆動される。モ ータ 150の回転は、減速機 151を介して駆動プーリ 152に伝達される。駆動プーリ 1 52の回動は、駆動ベルト 154を介して第二のタイミングプーリ 4に伝達される。第二の タイミングプーリ 4の回動は第一連結部 20及び第二連結部 25を介して第一の平ブー リ 2に伝達される。  The operation of the robot arm 1 described above will be described below. The robot arm 1 is driven by a motor 150 disposed in the vicinity of the second timing pulley 4 in the first arm 50. The rotation of the motor 150 is transmitted to the drive pulley 152 via the speed reducer 151. The rotation of the drive pulley 1 52 is transmitted to the second timing pulley 4 via the drive belt 154. The rotation of the second timing pulley 4 is transmitted to the first flat pulley 2 via the first connecting portion 20 and the second connecting portion 25.
[0077] また、第二のタイミングプーリ 4の回動により、第一アーム 50に対して第二アーム 10 0が回動すると共に第二アーム 100に対して第三のタイミングプーリ 52が回動する。 第二アーム 100に対して第三のタイミングプーリ 52が回動することにより、第二アーム 100に対して第四の平プーリ 54が回動してハンド 252が回動する。  Further, as the second timing pulley 4 is rotated, the second arm 100 is rotated with respect to the first arm 50 and the third timing pulley 52 is rotated with respect to the second arm 100. . When the third timing pulley 52 rotates with respect to the second arm 100, the fourth flat pulley 54 rotates with respect to the second arm 100, and the hand 252 rotates.
[0078] ここで、第一の平プーリ 2及び第二のタイミングプーリ 4の回転中心の間隔と第三の タイミングプーリ 52及び第四の平プーリ 54の回転中心の間隔とは同じ長さである。  Here, the interval between the rotation centers of the first flat pulley 2 and the second timing pulley 4 and the interval between the rotation centers of the third timing pulley 52 and the fourth flat pulley 54 are the same length. .
[0079] さらに、第一の平プーリ 2と第二のタイミングプーリ 4とは、第一のスチールベルト 11 、第二のタイミングベルト 12が卷きかけられた状態において、径 (歯数)の比が 2 : 1と なるように設けられている。 同様に、第三のタイミングプーリ 52と第四の平プーリ 54とは、第三のタイミングベル ト 61、第四のスチールベルト 62が卷きかけられた状態において、径 (歯数)の比が 1 : 2となるように設けられている。このため、第一の平プーリ 2、第二のタイミングプーリ 4 、及び第四の平プーリ 54の回転角比は 1: 2: 1となる。 [0079] Further, the first flat pulley 2 and the second timing pulley 4 have a ratio of diameter (number of teeth) in a state where the first steel belt 11 and the second timing belt 12 are strung. Is set to be 2: 1. Similarly, the third timing pulley 52 and the fourth flat pulley 54 have a ratio of diameter (number of teeth) when the third timing belt 61 and the fourth steel belt 62 are strung. 1: 2 is provided. For this reason, the rotation angle ratio of the first flat pulley 2, the second timing pulley 4, and the fourth flat pulley 54 is 1: 2: 1.
[0080] 上記のことより、第一アーム 50の第一の平プーリ 2と第二のタイミングプーリ 4 (即ち 、第二アーム 100の第三のタイミングプーリ 52)と第二アーム 100の第四の平プーリ 5 4との回転角度比は 1 : 2 : 1であるので、第一アーム 50を回転させることにより、第一 アーム 50と第二アーム 100との角度が変化して、第一アーム 50の第一の平プーリ 2 の中心と第二アーム 100の第四の平プーリ 54の中心とを結んだ直線上をハンド 252 が向きを一定にしながら移動する。  From the above, the first flat pulley 2 and the second timing pulley 4 of the first arm 50 (ie, the third timing pulley 52 of the second arm 100) and the fourth pulley of the second arm 100 Since the rotation angle ratio with the flat pulley 54 is 1: 2: 1, when the first arm 50 is rotated, the angle between the first arm 50 and the second arm 100 changes, and the first arm 50 The hand 252 moves on a straight line connecting the center of the first flat pulley 2 and the center of the fourth flat pulley 54 of the second arm 100 while keeping the direction constant.
[0081] 図 7は、本発明を適用したロボットアームが用いられたダブルアーム型多関節ロボッ トを示す平面図である。  FIG. 7 is a plan view showing a double arm articulated robot using a robot arm to which the present invention is applied.
このダブルアーム型多関節ロボットにおいては、上述したロボットアーム 1が、例え ば図 7に示すように 2組並べてロボット本体の基台 200上に配置されている。このダブ ルアーム型多関節ロボットによれば、一方のロボットアームは、ワークをとりに行く動作 であるロードの状態であり、他方のロボットアームは別のワークを引き出し動作である アンロードの状態であり、これら 2つの動作を同時に行うことができるようになつている  In this double-arm multi-joint robot, the above-described robot arm 1 is arranged on the base 200 of the robot body side by side, for example, as shown in FIG. According to this double-arm type multi-joint robot, one robot arm is in a load state for picking up a workpiece, and the other robot arm is in an unload state for pulling out another workpiece. , These two actions can be performed at the same time
[0082] また、 2つのロボットアームは、上述したとおり、第一アーム 50の第一伝達機構と第 二伝達機構と第二アーム 100の第四伝達機構との回転角度比は 1 : 2 : 1であるので、 第一アーム 50を回転させることにより、第一アーム 50と第二アーム 100との角度が変 化して、第一アーム 50の第一伝達機構の中心と第二アーム 100の第四伝達機構の 中心とを結んだ直線上をノ、ンド 252が向きを一定にしながら移動するようになってい る。 Further, as described above, the two robot arms have a rotation angle ratio of 1: 2: 1 between the first transmission mechanism of the first arm 50, the second transmission mechanism, and the fourth transmission mechanism of the second arm 100. Therefore, by rotating the first arm 50, the angle between the first arm 50 and the second arm 100 changes, and the center of the first transmission mechanism of the first arm 50 and the fourth of the second arm 100 are changed. On the straight line connecting the center of the transmission mechanism, the 252 moves while keeping the direction constant.
[0083] さらに、図 7において、ダブルアーム型多関節ロボットは、ロボットアームを昇降可能 となって!/、ると共に、多関節ロボットを走行可能に設けられて 、る。  Further, in FIG. 7, the double arm type articulated robot is provided so that the robot arm can be moved up and down!
[0084] (第一実施の形態の効果) [0084] (Effects of First Embodiment)
第一実施の形態によれば、ロボットアーム 1を構成する第一の平プーリ 2及び第二 のタイミングプーリ 4を連結して動力を伝達する第一連結手段 10が、第一の平プーリ 2からの動力または第一の平プーリ 2への動力を授受する、第一の剛性部材カもなる 第一のスチールベルト 11と、第二のタイミングプーリ 4からの動力または第二のタイミ ングプーリ 4への動力を授受する第二のタイミングベルト 12と、これら第一のスチール ベルト 11と第二のタイミングベルト 12とを繋ぐ、第二の剛性部材カもなる第一連結部 20及び第二連結部 25とから構成されているとともに、第一の平プーリ 2の径は第二 のタイミングプーリ 4の径よりも大きぐかつ、第二のタイミングベルト 12の長さは第一 のスチールベルト 11の長さよりも短くしているので、従来のロボットアーム 103の大き さを維持しながら、第一連結手段 10の剛性を高めることができ、その伸びやヒステリ シス等の影響を極力抑えることができる。このため、ロボットアーム 1の位置制御を高 精度で確保することができる。 According to the first embodiment, the first flat pulley 2 and the second pulley constituting the robot arm 1 The first connecting means 10 for transmitting the power by connecting the timing pulley 4 is also a first rigid member that transmits and receives power from the first flat pulley 2 or power to the first flat pulley 2. The first steel belt 11, the second timing belt 12 for transmitting / receiving the power from the second timing pulley 4 or the power to the second timing pulley 4, and the first steel belt 11 and the second timing It is composed of a first connecting portion 20 and a second connecting portion 25 that also serve as a second rigid member that connects the belt 12, and the diameter of the first flat pulley 2 is the diameter of the second timing pulley 4. Since the length of the second timing belt 12 is shorter than the length of the first steel belt 11, the first connecting means 10 is maintained while maintaining the size of the conventional robot arm 103. Can increase the rigidity of , It is possible to minimize the influence of the elongation and hysteresis. For this reason, the position control of the robot arm 1 can be ensured with high accuracy.
[0085] また、第一実施の形態によれば、第二連結手段 60が、第四の平プーリ 54からの動 力または第四の平プーリ 54への動力を授受する第三の剛性部材力 なる第四のス チールベルト 62と、第三のタイミングプーリ 52からの動力または第三のタイミングプー リ 52への動力を授受する第三のタイミングベルト 61と、これら第三のタイミングベルト 61と第四のスチールベルト 62とを繋ぐ第四の剛性部材カもなる第二連結部 70及び 第四連結部 75とから構成されているとともに、第四の平プーリ 54の径は第三のタイミ ングプーリ 52の径よりも大きぐかつ、第四のタイミングベルト 61の長さは第三のスチ ールベルト 62の長さよりも短くしているので、第一アーム 50と同様に、従来のロボット アーム 103の大きさを維持しながら、第一連結手段 60の剛性を高めることができ、そ の伸びやヒステリシス等の影響を極力抑えることができる。そのため、ロボットアーム 1 の回動時、第二アーム 100の先端に設けられたノヽンド 252が直線上を、その向きを 一定にしながら高精度で位置制御することができる。  [0085] According to the first embodiment, the second connecting means 60 has a third rigid member force that transmits and receives the dynamic force from the fourth flat pulley 54 or the power to the fourth flat pulley 54. A fourth timing belt 62, a third timing belt 61 for transmitting / receiving power from the third timing pulley 52 or power to the third timing pulley 52, and the third timing belt 61 and the fourth timing belt 61. The fourth connecting member 75 and the fourth connecting member 75 are also connected to the steel belt 62, and the diameter of the fourth flat pulley 54 is the same as that of the third timing pulley 52. Since the length of the fourth timing belt 61 is shorter than the length of the third steel belt 62 and is larger than the diameter, the size of the conventional robot arm 103 is made to be the same as that of the first arm 50. While maintaining the rigidity of the first connecting means 60 The effects of elongation and hysteresis can be suppressed as much as possible. Therefore, when the robot arm 1 is rotated, the position of the node 252 provided at the tip of the second arm 100 can be controlled with high accuracy while keeping its direction constant on a straight line.
[0086] また、第一の平プーリ 2と第二のタイミングプーリ 4と第四の平プーリ 54との回転角 度比は 1 : 2 : 1であるので、第一アーム 50を回動させることにより、第一アーム 50と第 二アーム 100との角度が変化して、第一アーム 50の第一の平プーリ 2の中心と第二 アーム 100の第四の平プーリ 54の中心とを結んだ直線上をハンド 252が向きを一定 にしながら移動することができる。これにより、ハンド 252に載置され搬送されるワーク を位置精度を高くすることができるとともに、安定した搬送を行うことができる。 [0086] Since the rotation angle ratio of the first flat pulley 2, the second timing pulley 4, and the fourth flat pulley 54 is 1: 2: 1, the first arm 50 is rotated. As a result, the angle between the first arm 50 and the second arm 100 changes, and the center of the first flat pulley 2 of the first arm 50 and the center of the fourth flat pulley 54 of the second arm 100 are connected. The hand 252 can move on the straight line while keeping the direction constant. As a result, the workpiece placed on the hand 252 and transported The position accuracy can be increased and stable conveyance can be performed.
さらに、第一連結手段 10及び第二連結手段 60の剛性が高めることができるので、 ハンド 252は精度良く直線上を移動することができる。  Furthermore, since the rigidity of the first connecting means 10 and the second connecting means 60 can be increased, the hand 252 can move on a straight line with high accuracy.
[0087] また、第一実施の形態は、少なくとも第一連結部 20及び第三連結部 75には、各動 力伝達部材の張力を調整する調整部をそれぞれ備えて ヽることが好ま Uヽ。これ〖こよ り、これら第一、第三連結部 20、 75は、所定の張力を調整しながら設定することがで きる。 [0087] In the first embodiment, it is preferable that at least the first connecting portion 20 and the third connecting portion 75 are each provided with an adjusting portion for adjusting the tension of each dynamic force transmitting member. . Thus, the first and third connecting portions 20, 75 can be set while adjusting a predetermined tension.
[0088] 第一実施の形態によれば、曲げ応力の小さい大径の第一の平プーリ 2には、これと ほぼ同じ幅で第一のスチールベルト 11を掛け渡すことができ、第一アーム 50の第一 連結手段 10の剛性を高めることができる。また、小径の第二のタイミングプーリ 4側に 掛け渡された第三のタイミングベルト 12の長さを従来のベルトよりも短くすることがで きるので、小径の第二のタイミングプーリ 4との嚙合いによって生じる発塵を抑制する ことができる。  [0088] According to the first embodiment, the first steel belt 11 having a width substantially the same as that of the first flat pulley 2 having a small bending stress and a large diameter can be stretched over the first arm. The rigidity of the 50 first connecting means 10 can be increased. In addition, the length of the third timing belt 12 stretched around the small-diameter second timing pulley 4 can be made shorter than that of the conventional belt. Dust generation caused by mating can be suppressed.
[0089] さらに、第一実施の形態は、第一連結部 20及び第二連結部 25は、第一のスチー ルベルト 11の厚み方向の中心線 C位置と第二のタイミングベルト 12の厚み方向の中 心線 C位置とはほぼ同じ位置となるように連結してなることが好ましい。同様に、第三 連結部 70及び第四連結部 75は、第三のタイミングベルト 61の厚み方向の中心線 C 位置と第四のスチールベルト 62の厚み方向の中心線 C位置とはほぼ同じ位置となる ように連結している。  Further, in the first embodiment, the first connecting portion 20 and the second connecting portion 25 are arranged such that the center line C position in the thickness direction of the first steel belt 11 and the thickness direction of the second timing belt 12 are It is preferable that they are connected so as to be substantially the same position as the center line C position. Similarly, the third connecting portion 70 and the fourth connecting portion 75 are positioned substantially the same as the center line C position in the thickness direction of the third timing belt 61 and the center line C position in the thickness direction of the fourth steel belt 62. They are connected so that
この構成により、材質や厚み等の異なる第一のスチールベルト 11と第二のタイミン グベルト 12を第一連結部 20及び第二連結部 25で連結する際、または第三のタイミ ングベルト 61と第四のスチールベルト 62を第三連結部 70及び第四連結部 75で連 結する際、厚み方向の中心線 C位置がほぼ同じとなっているので、これら動力伝達 部材 (スチールベルト 11、 62、タイミングベルト 12、 61)に力かる張力が働く方向がほ ぼ同じ位置となるので、張力の方向と動力伝達部材が移動する方向とがほぼ同じ方 向となり、スムーズなベルト搬送動作を行うことができる。  With this configuration, when the first steel belt 11 and the second timing belt 12 of different materials and thicknesses are connected by the first connecting portion 20 and the second connecting portion 25, or when the third timing belt 61 and the fourth timing belt 12 are connected. When the steel belt 62 is connected at the third connecting portion 70 and the fourth connecting portion 75, the center line C position in the thickness direction is almost the same, so these power transmission members (steel belts 11, 62, timing Since the direction in which the tension applied to the belts 12, 61) is applied is almost the same position, the direction of the tension and the direction in which the power transmission member moves are almost the same, and smooth belt transport operation can be performed. .
[0090] 第一実施の形態によれば、曲げ応力の小さい大径の第一の平プーリ 2側に、第一 アーム 50の回動範囲とほぼ同一の長さとなるように第一のスチールベルト 11を掛け 渡すことにより、動力伝達系の剛性が高められる。また、第一のスチールベルト 11が 第一の平プーリ 2の外周面上に固定されることにより、第一のスチールベルト 11の回 動においてずれが生じることがなぐ動力伝達部材 (スチールベルト 11、 62、タイミン グベルト 12、 61)には均等に力が力かるため、効率良く動力伝達を行うことができ、さ らに、耐久性を高めることができる。 [0090] According to the first embodiment, the first steel belt is provided on the large first flat pulley 2 side with a small bending stress so as to have substantially the same length as the rotation range of the first arm 50. Multiply by 11 By passing, the rigidity of the power transmission system is increased. Further, since the first steel belt 11 is fixed on the outer peripheral surface of the first flat pulley 2, a power transmission member (steel belt 11, 62, the timing belt 12, 61) is equally applied, so that power can be transmitted efficiently and durability can be improved.
[0091] また、第一実施の形態では、第一のスチールベルト 11及び第二のタイミングベルト 12の幅と第一の平プーリ 2及び第二のタイミングプーリ 4の幅をほぼ同じ幅にすること ができ、同様に、第三のタイミングベルト 61及び第四のスチールベルト 62の幅と第三 のタイミングプーリ 52及び第四の平プーリ 54の幅をほぼ同じ幅にすることができる。 このため、各伝達機構を支持する部材に力かるモーメント過重を一定にすることがで きる。 In the first embodiment, the widths of the first steel belt 11 and the second timing belt 12 and the widths of the first flat pulley 2 and the second timing pulley 4 are substantially the same. Similarly, the width of the third timing belt 61 and the fourth steel belt 62 and the width of the third timing pulley 52 and the fourth flat pulley 54 can be made substantially the same. For this reason, it is possible to make constant the moment over which the member supporting each transmission mechanism is applied.
[0092] また、第一実施の形態によれば、第二のタイミングベルト 12及び第三のタイミングべ ルト 61の長さをロボットアーム 1の搬送距離より計算される必要最小長さに設定するこ とができるので、ロボットアーム 1の回転時における第二のタイミングベルト 12が第二 のタイミングプーリ 4に嚙み合いながら移動する際や、第三のタイミングベルト 61が第 三のタイミングプーリ 52に嚙み合いながら移動する際に生じる発塵を抑制することが できる。  Further, according to the first embodiment, the lengths of the second timing belt 12 and the third timing belt 61 are set to the necessary minimum lengths calculated from the transport distance of the robot arm 1. Therefore, when the second timing belt 12 moves while meshing with the second timing pulley 4 when the robot arm 1 rotates, the third timing belt 61 moves against the third timing pulley 52. It is possible to suppress dust generation that occurs when moving while facing each other.
[0093] 使用する第二のタイミングベルト 12及び第三のタイミングベルト 61がゴムを主体と する複合材料力もなるので、真空環境下で有害なガスを発生するという問題も生じて いたが、本実施の形態では第二及び第三のタイミングベルト 12、 61の長さを必要最 小の長さにしたので、従来に比べて有害なガスの発生を抑制することができる。  [0093] Since the second timing belt 12 and the third timing belt 61 to be used also have a composite material force mainly composed of rubber, there has been a problem that harmful gas is generated in a vacuum environment. In this embodiment, since the lengths of the second and third timing belts 12 and 61 are set to the minimum length, generation of harmful gas can be suppressed as compared with the conventional case.
[0094] 第一実施の形態では、少なくとも第一連結部 20及び第三連結部 70には、各動力 伝達部材 (スチールベルト 11、 62、タイミングベルト 12、 61)の張力を調整可能に設 けることにより、使用時において各動力伝達部材 (スチールベルト 11、 62、タイミング ベルト 12、 61)が各伝達機構 (平プーリ 2、 54、タイミングプーリ 4、 52)力 外れこと 力 、ように容易に張力を調整することができる。  [0094] In the first embodiment, at least the first connecting portion 20 and the third connecting portion 70 are provided so that the tension of each power transmission member (steel belts 11, 62, timing belts 12, 61) can be adjusted. Therefore, during use, each power transmission member (steel belts 11, 62, timing belts 12, 61) is easily disengaged from each transmission mechanism (flat pulleys 2, 54, timing pulleys 4, 52). Can be adjusted.
[0095] (他の実施の形態)  [0095] (Other Embodiments)
なお、上述の第一実施の形態は本発明の好適な実施の一例ではあるがこれに限 定されるものではなぐ本発明の要旨を逸脱しない範囲において種々変形実施可能 である。 The above-described first embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto. Various modifications can be made without departing from the scope of the present invention.
例えば本実施の形態では第二動力伝達部材 12、及び第三動力伝達部材 61にタ イミングベルトを使用している力 これには限られず、チェーン等を用いてもよい。  For example, in the present embodiment, the force using a timing belt for the second power transmission member 12 and the third power transmission member 61 is not limited to this, and a chain or the like may be used.
[0096] また、上述した第一実施の形態では各アーム 50、 100にリブ 219、 210が設けられ ているが、リブの形状に限定されるものではなぐまた、荷重が余り大きくない場合な どは設けなくても良い。 [0096] In the first embodiment described above, the arms 50 and 100 are provided with the ribs 219 and 210. However, the ribs are not limited to the shape of the ribs, and the load is not so large. May not be provided.
[0097] また、第一実施の形態では、第一から第四連結部 20、 25、 70、 75を設けて、第一 連結手段 10、第二連結手段 60の張力を調整しているが、各連結部を用いずに、ス チールベルト 11、 62側にアイドラプーリを設けて張力を調整してもよい。アイドラブ一 リを設けた場合、第一の平プーリ 2、及び第四の平プーリ 54に接触しているスチール ベルト 11、 62の角度を大きくして第一の平プーリ 2、及び第四の平プーリ 54の回転 角度が大きくなり、アームの搬送距離が大きくなる。  In the first embodiment, the first to fourth connecting portions 20, 25, 70, 75 are provided to adjust the tension of the first connecting means 10 and the second connecting means 60. Instead of using each connecting portion, an idler pulley may be provided on the steel belts 11 and 62 side to adjust the tension. When an idler is provided, the angle of the steel belts 11 and 62 in contact with the first flat pulley 2 and the fourth flat pulley 54 is increased to increase the first flat pulley 2 and the fourth flat pulley. The rotation angle of the pulley 54 increases and the arm transfer distance increases.
[0098] さらに、上述した第一実施の形態ではモータ 150を第一アーム 50の第二のタイミン グプーリ 4の近傍に設けている力 これには限られずモータ 150をロボット本体に内蔵 させるようにしても良い。この場合は、モータ 150により第一アーム 50を駆動させて、 第一の平プーリ 2から第二のタイミングプーリ 4、第三のタイミングプーリ 52、第四の平 プーリ 54と動力を伝達させる。あるいは、モータ 150を第二アーム 100に設けて、第 四の平プーリ 54を駆動させても良い。この場合は、第四の平プーリ 54から、第三のタ イミングプーリ 52、第二のタイミングプーリ 4、第一の平プーリ 2と動力を伝達させる。  Furthermore, in the first embodiment described above, the motor 150 is provided in the vicinity of the second timing pulley 4 of the first arm 50. However, the present invention is not limited to this, and the motor 150 is incorporated in the robot body. Also good. In this case, the first arm 50 is driven by the motor 150 to transmit power from the first flat pulley 2 to the second timing pulley 4, the third timing pulley 52, and the fourth flat pulley 54. Alternatively, the motor 150 may be provided on the second arm 100 and the fourth flat pulley 54 may be driven. In this case, power is transmitted from the fourth flat pulley 54 to the third timing pulley 52, the second timing pulley 4, and the first flat pulley 2.
[0099] また、第一実施の形態では、第二連結部 25、及び第四連結部 75は調整機能を持 たせていない固定側連結部であつたが、第一連結部 20、及び第三連結部 70と同様 に張力の調整機能を持たせた調整側連結部としても良い。  [0099] In the first embodiment, the second connecting portion 25 and the fourth connecting portion 75 are fixed-side connecting portions that do not have an adjustment function, but the first connecting portion 20 and the third connecting portion 75 are not provided. Similar to the connecting part 70, it may be an adjusting side connecting part having a tension adjusting function.
[0100] (第二実施の形態)  [0100] (Second embodiment)
以下、本発明を実施するための最良の第二実施の形態を、図面に基づき説明する 。なお、本発明のロボットアームは、その技術的特徴を有する範囲において、以下の 説明及び図面に限定されない。  Hereinafter, the best second embodiment for carrying out the present invention will be described with reference to the drawings. The robot arm of the present invention is not limited to the following description and drawings as long as it has the technical features.
[0101] (ロボットアーム) 図 8は、本発明のロボットアームの一例を示す平面図(A)及び A— A断面図(B)で ある。図 9は、図 8に示す第一アームの内部構造を示す平面図 (A)及び B— B断面図 (B)であり、図 10は、図 1に示す第二アームの内部構造を示す平面図 (A)及び C— C断面図(C)である。 [0101] (Robot arm) FIG. 8 is a plan view (A) and an AA sectional view (B) showing an example of the robot arm of the present invention. 9 is a plan view (A) and BB cross-sectional view (B) showing the internal structure of the first arm shown in FIG. 8, and FIG. 10 is a plan view showing the internal structure of the second arm shown in FIG. Figure (A) and CC cross section (C).
[0102] ロボットアーム 1010は、ロボット本体の基台 1200に第一伝達機構 1021を介して 回動可能に取り付けられた第一アーム 1020と、第一アーム 1020の先端部に第二伝 達機構 1022を介して回動可能に取り付けられた作業アーム (作業手段) 1050と、第 一伝達機構 1021及び第二伝達機構 1022を連結して動力を伝達する第一連結手 段 1023とを少なくとも備えている。そして、ロボットアーム 1010は、第一連結手段 10 23がフッ素ゴム力もなることに特徴を有している。  [0102] The robot arm 1010 includes a first arm 1020 rotatably attached to the base 1200 of the robot body via the first transmission mechanism 1021, and a second transmission mechanism 1022 at the tip of the first arm 1020. A work arm (working means) 1050 that is rotatably attached via a first connection mechanism 1021 and a first connection means 1023 that connects the first transmission mechanism 1021 and the second transmission mechanism 1022 to transmit power. . The robot arm 1010 is characterized in that the first connecting means 1023 has a fluororubber force.
[0103] 作業アーム (作業手段) 1050は、第二伝達機構 1022に固定されて第一アーム 10 10に対して回動可能な第二アーム 1050と、第二伝達機構 1022と同心で第一ァー ム 1020に固定された第三伝達機構 1031と、第二アーム 1030の先端部に第四伝達 機構 1032を介して回動可能に取り付けられたノヽンドアーム 1040とから構成されて いる。さらに、ロボットアーム 1010は、第一伝達機構 1021及び第二伝達機構 1022 を連結して動力を伝達する第一連結手段 1023と、第三伝達機構 1031と第四伝達 機構 1032を連結して動力を伝達する第二連結手段 1033とを備えている。  [0103] The working arm (working means) 1050 is fixed to the second transmission mechanism 1022 and is rotatable with respect to the first arm 1010. The second arm 1050 and the second transmission mechanism 1022 are concentric with the first arm. A third transmission mechanism 1031 fixed to the arm 1020 and a node arm 1040 rotatably attached to the tip of the second arm 1030 via a fourth transmission mechanism 1032 are configured. Further, the robot arm 1010 connects the first transmission mechanism 1021 and the second transmission mechanism 1022 to transmit power, and connects the third transmission mechanism 1031 and the fourth transmission mechanism 1032 to transmit power. Second connection means 1033 for transmission.
[0104] なお、図 8〜図 10に例示した第二実施の形態力ももわ力るように、第一伝達機構 1 021を「第一プーリ 1021」、第二伝達機構 1022を「第二プーリ 1022」、第三伝達機 構 1031を「第三プーリ 1031」、第四伝達機構 1032を「第四プーリ 1032」、第一連 結手段 1023を「第一ベルト 1023」、第二連結手段 1033を「第二ベルト 1033」という  It should be noted that the first transmission mechanism 1 021 is “first pulley 1021” and the second transmission mechanism 1022 is “second pulley” so that the force of the second embodiment illustrated in FIGS. `` 1022 '', the third transmission mechanism 1031 is `` third pulley 1031 '', the fourth transmission mechanism 1032 is `` fourth pulley 1032 '', the first connecting means 1023 is `` first belt 1023 '', and the second connecting means 1033 is "Second belt 1033"
[0105] (第一アーム) [0105] (First arm)
図 8及び図 9に示すように、第一アーム 1020のロボット本体側には、第一プーリ 10 21力設けられ、第一プーリ 1021は、ロボット本体の基台 1200から延びる軸に固定さ れている。一方、第一アーム 1020の作業アーム側には、第二プーリ 1022が設けら れている。第一プーリ 1021の径 R1は、第二プーリ 1022の径 R2に比べて大きぐ R1 : R2 = 2 : 1の関係となって 、る。第一アーム 1020の第二プーリ 1022は、連結軸 (連 結筒) 1024により第二アーム 1050の第三プーリ 1031と同心で連結され、その結果 、両アームが連動するように動作する。 As shown in FIGS. 8 and 9, a first pulley 1021 force is provided on the robot body side of the first arm 1020, and the first pulley 1021 is fixed to a shaft extending from the base 1200 of the robot body. Yes. On the other hand, a second pulley 1022 is provided on the work arm side of the first arm 1020. The diameter R1 of the first pulley 1021 is larger than the diameter R2 of the second pulley 1022, and the relationship is R1: R2 = 2: 1. The second pulley 1022 of the first arm 1020 The tube) is connected concentrically with the third pulley 1031 of the second arm 1050 by 1024, and as a result, the two arms operate so as to be interlocked.
[0106] 第一ベルト 1023はフッ素ゴムで形成されている。フッ素ゴム力もなるベルトは、従来 のクロ口プレン製ベルト、二トリルゴム製ベルト、ウレタンゴム製ベルト等に比べ、減圧 雰囲気下でのガス発生や粉塵発生等が少なぐ減圧雰囲気に対する悪影響が少な い。その結果、半導体デバイスの製造プロセスのように、ロボットアーム 1010が減圧 雰囲気下で用いられる場合には、真空チャンバ内を所定の圧力に迅速に減圧するこ とができ、全体としてスループットを向上させることができる。なお、第一ベルト 1023 の種類は特に限定されないが、本実施の形態では、図示のような歯付きベルト (タイミ ングベルト)で構成している。なお、歯付きベルト以外のベルト、例えば、平ベルトを使 用した場合には、第一ベルト 1023の種類に応じて、第一プーリ 1021や第二プーリ 1 022の種類も適宜選択されることになり、平プーリが用いられる。  [0106] The first belt 1023 is made of fluororubber. A belt with fluororubber strength has less adverse effects on the reduced-pressure atmosphere with less gas generation and dust generation in a reduced-pressure atmosphere compared to the conventional black-prene belt, nitrile rubber belt, urethane rubber belt, and the like. As a result, when the robot arm 1010 is used in a reduced-pressure atmosphere as in a semiconductor device manufacturing process, the inside of the vacuum chamber can be quickly reduced to a predetermined pressure, thereby improving the overall throughput. Can do. The type of the first belt 1023 is not particularly limited, but in the present embodiment, it is constituted by a toothed belt (timing belt) as shown. Note that when a belt other than a toothed belt, for example, a flat belt is used, the types of the first pulley 1021 and the second pulley 1022 are appropriately selected according to the type of the first belt 1023. Therefore, a flat pulley is used.
[0107] 第一プーリ 1021と第二プーリ 1022との間に掛けられた第一ベルト 1023を適当な 張力にするために、図 9に示すように、第一ベルト 1023を背面力も押さえるアイドラブ ーリ 1026を設けることが好ましい。アイドラプーリ 1026は、微調整可能な機構で設け られており、このアイドラプーリ 1026により、第一ベルト 1023の張力を調整すると共 に、第一プーリ 1021と第一ベルト 1023との間の接触角度をより大きくすることができ る。  [0107] To make the first belt 1023 hung between the first pulley 1021 and the second pulley 1022 have an appropriate tension, as shown in FIG. 1026 is preferably provided. The idler pulley 1026 is provided with a mechanism that can be finely adjusted. The idler pulley 1026 adjusts the tension of the first belt 1023 and adjusts the contact angle between the first pulley 1021 and the first belt 1023. Can be larger.
[0108] 第一アーム 1020の内部は、図 9に示すようなリブ 1025を有することが好ましい。こ のリブ 1025は、第一アーム 1020の剛性を高めて変形を抑えるように作用する。こう したリブ 1025を設けることにより、第一アーム 1020の肉厚を薄くして軽量ィ匕を図るこ とがでさる。  [0108] The inside of the first arm 1020 preferably has a rib 1025 as shown in FIG. The rib 1025 acts to increase the rigidity of the first arm 1020 and suppress deformation. By providing such a rib 1025, the thickness of the first arm 1020 can be reduced to reduce the weight.
[0109] リブ 1025には、第一アーム 1020の基端部に通じる抜き穴 1029が形成されている 。抜き穴 1029は、第一アーム 1020内の空気が第一アーム 1020の基端部から外部 に抜かれるための通路をなしている。ロボットアーム 1010は、こうした抜き穴 1029を 有するので、ロボットアーム 1010が減圧雰囲気に曝されると、第一アーム 1020内の 空気は抜き穴 1029を通って第一アーム 1020の基端部力も外部に容易に抜かれる ことになる。し力も、第一アーム 1020はフッ素ゴム力もなる第一ベルトを用いるので、 その内部の空気は粉塵等が少ない空気であるが、こうした空気を容易に抜くことがで きるので、減圧雰囲気下での所定の圧力への到達時間を従来のものよりも短縮する ことができる。なお、第一アーム 1020の基端部とは、ロボット本体の基台 1200側のこ とであり、本願においては、第一プーリ 1021を回動する軸 1011上の部位である。 [0109] The rib 1025 is formed with a through hole 1029 leading to the base end of the first arm 1020. The hole 1029 forms a passage through which the air in the first arm 1020 is extracted from the base end of the first arm 1020 to the outside. Since the robot arm 1010 has such a hole 1029, when the robot arm 1010 is exposed to a reduced pressure atmosphere, the air in the first arm 1020 passes through the hole 1029 and the proximal end force of the first arm 1020 is also transferred to the outside. It will be easily removed. Since the first arm 1020 uses a first belt that also has fluororubber power, The internal air is air with less dust and the like, but since such air can be easily extracted, the time to reach a predetermined pressure in a reduced pressure atmosphere can be shortened compared to the conventional one. The base end portion of the first arm 1020 is the base 1200 side of the robot body, and in this application, the base end portion is a portion on the shaft 1011 that rotates the first pulley 1021.
[0110] 図 8 (A)に示すように、第一アーム 1020の基端部であって第一プーリ 1021を回動 する軸 1011上には、アーム内の空気を外部に逃がす開口部 1028が設けられ、その 開口部 1028には、フィルター 1060が装着されている。図 11は、フィルターを第一ァ ームに装着する形態の一例を示す概略説明図であり、(A)は平面図、(B)は断面図 、(C)は底面図である。なお、フィルタ一は図 11の例に限定されるものではない。  [0110] As shown in FIG. 8 (A), on the shaft 1011 that rotates the first pulley 1021 at the base end of the first arm 1020, there is an opening 1028 that allows the air in the arm to escape to the outside. A filter 1060 is attached to the opening 1028. FIG. 11 is a schematic explanatory view showing an example of a mode in which the filter is attached to the first arm. (A) is a plan view, (B) is a cross-sectional view, and (C) is a bottom view. The filter is not limited to the example of FIG.
[0111] フィルター 1060としては種々のものを用いることができる力 ロボットアーム 1010の 使用環境、例えば要求される減圧の程度や、除去すべき粉塵の程度等により、種々 のフィルターの中力も選択することができる。一例としては、 PTFE (ポリテトラフルォロ エチレン)等の材質力 なる公称で孔径 0. 5 μ m程度の巿販フィルターを例示するこ とができる。具体的な巿販フィルタ一としては、フロリナ一トメンブレンフィルタ (製造元 : MILLIPORE,型番: FHLP 047 00)等を挙げることができるがこれらに限定されるも のではない。  [0111] Force that can use various types of filter 1060 Select the medium force of various filters depending on the usage environment of robot arm 1010, for example, the degree of required decompression and the degree of dust to be removed. Can do. As an example, a commercial filter having a nominal pore size of about 0.5 μm, such as PTFE (polytetrafluoroethylene), can be exemplified. Specific examples of the sales filter include, but are not limited to, a florina membrane filter (manufacturer: MILLIPORE, model number: FHLP 0470).
[0112] フィルター形状は、通常は円盤状に加工されたものが用いられ、その装着方法とし ては、図 11に示すように、円盤状のフィルター 1060を円盤状の部材 1062, 1063で 上下から挟んだフィルター構造体 1061を、第一アーム 1020の筐体に装着する方法 等を挙げることができる。図 11の例では、上部材 1062には小孔 1062aが形成され ており、下部材 1063にはやや大きめの孔 1063aが形成されており、それらの孔の位 置が略一致するように両部材をネジ 1064で一体ィ匕させる。こうしたフィルター構造体 1061は、より大きい外径を持つ上部材 1062の周縁と、第一アーム 1020の筐体とを ネジ止めして装着される。なお、符号 1065はネジである。  [0112] The filter shape is usually processed into a disk shape. As shown in Fig. 11, a filter 1060 having a disk shape is mounted from above and below with disk-shaped members 1062, 1063. For example, a method of attaching the sandwiched filter structure 1061 to the casing of the first arm 1020 can be given. In the example of FIG. 11, a small hole 1062a is formed in the upper member 1062, and a slightly larger hole 1063a is formed in the lower member 1063, and both the members are positioned so that the positions of the holes substantially coincide with each other. Thread together with screws 1064. Such a filter structure 1061 is attached by screwing the periphery of the upper member 1062 having a larger outer diameter and the housing of the first arm 1020. Reference numeral 1065 denotes a screw.
[0113] また、他の装着方法としては、例えば円形力もなる開口部 1028の周りに設けられた リング溝と、同形状のリング部材との間に円盤状のフィルターを配置し、リング部材を 上方力 押し当ててリング溝に嵌め合わせることにより、フィルターを開口部に装着す る方法も例示できる。なお、それ以外の装着方法であっても構わない。 [0114] こうした構成とすることにより、例えばアーム内でのベルトとプーリ等との回動動作に より粉塵等が生じた場合であっても、生じた粉塵等は開口部に装着されたフィルター 1060で捕捉される。その結果、ロボットアーム 1010の移動空間である予備減圧室( ロードロック室)内の環境を良好なものとして、迅速な減圧雰囲気を達成できる。 [0113] As another mounting method, for example, a disk-shaped filter is disposed between a ring groove provided around the opening 1028 having a circular force and the ring member having the same shape, and the ring member is moved upward. A method of attaching the filter to the opening by pressing and fitting in the ring groove can also be exemplified. Other mounting methods may be used. [0114] By adopting such a configuration, for example, even when dust or the like is generated by the rotation operation of the belt and the pulley in the arm, the generated dust or the like is filtered by the filter 1060 attached to the opening. Captured. As a result, the environment in the preliminary decompression chamber (load lock chamber), which is the movement space of the robot arm 1010, is made favorable, and a rapid decompression atmosphere can be achieved.
[0115] (作業アーム)  [0115] (Working arm)
作業アーム (作業手段) 1050は、図 10に示すように、第二プーリ 1022に固定され て第一アーム 1020に対して回動可能な第二アーム 1030と、第二プーリ 1022と同 心で第一アーム 1020に固定された第三プーリ 1031と、第二アーム 1030の先端部 に第四プーリ 1032を介して回動可能に取り付けられたハンド (アーム) 1040と、第三 プーリ 1031及び第四プーリ 1032を連結して動力を伝達する第二ベルト 1033とを備 えている。  As shown in FIG. 10, the working arm (working means) 1050 is fixed to the second pulley 1022 and rotatable with respect to the first arm 1020, and the second arm 1030 is concentric with the second pulley 1022. A third pulley 1031 fixed to one arm 1020; a hand (arm) 1040 rotatably attached to the tip of the second arm 1030 via a fourth pulley 1032; a third pulley 1031 and a fourth pulley A second belt 1033 for transmitting power by connecting 1032 is provided.
[0116] 第二ベルト 1033は、図 10に示すように、第三プーリからの動力又は第三プーリ 10 31への動力を授受する動力伝達部材であるフッ素ゴム製のタイミングベルト 1036と 、第四プーリ 1032からの動力又は第四プーリ 1032への動力を授受する動力伝達 部材であるスチールベルト 1037と、これらのベルト 1036, 1037を繋ぐ連結部 1070 とから構成される。  As shown in FIG. 10, the second belt 1033 includes a fluororubber timing belt 1036, which is a power transmission member that transmits and receives power from the third pulley or power to the third pulley 1031, and a fourth belt. The steel belt 1037 is a power transmission member that transmits and receives power from the pulley 1032 or power to the fourth pulley 1032 and a connecting portion 1070 that connects these belts 1036 and 1037.
[0117] 図 8及び図 10に示すように、第二アーム 1030の基台側(第一アーム 1020側)には 、第三プーリ 1031が設けられ、第三プーリ 1031は、連結軸 1024により第一アーム 1 020の第二プーリ 1022と同心で連結され、その結果、両アームが連動するように動 作する。一方、第二アーム 1030の先端側 (ノヽンド (アーム) 1040側)には、第四ブー リ 1032力 S設けられ、その第四プーリ 1032は、連結軸 34によりハンド(アーム) 1040 に連結され、その結果、両アームが連動するように動作する。第三プーリ 1031の径 R 3は、第四プーリ 1032の径 R4に比べて小さぐ R3 :R4= 1 : 2の関係となっている。  As shown in FIGS. 8 and 10, a third pulley 1031 is provided on the base side (first arm 1020 side) of the second arm 1030, and the third pulley 1031 is It is connected concentrically with the second pulley 1022 of one arm 1 020, and as a result, both arms operate so as to interlock. On the other hand, a fourth pulley 1032 force S is provided on the distal end side (node (arm) 1040 side) of the second arm 1030, and the fourth pulley 1032 is connected to the hand (arm) 1040 by the connecting shaft 34. As a result, both arms operate so as to be interlocked. The diameter R 3 of the third pulley 1031 is smaller than the diameter R 4 of the fourth pulley 1032, and the relationship is R 3: R 4 = 1: 2.
[0118] ハンド(アーム) 1040は、図 8に示すように、ワークを搬送するためのアームであり、 第四プーリ 1032と一体的に回動可能に取り付けられている。  As shown in FIG. 8, the hand (arm) 1040 is an arm for transporting a workpiece, and is attached to the fourth pulley 1032 so as to be rotatable together.
[0119] 第二ベルト 1033は、第三プーリ 1031と第四プーリ 1032を連結して動力を伝達す るベルトであり、本実施形態では、図 10に示すように、 2種類のベルトを接続したハイ ブリツドベルトを用いている。ハイブリッドベルトは、その使用目的や使用条件等によ つて組み合わせが選択されたベルトであり、例えば一方の側を歯付きベルト(タイミン グベルト)とし、他方の側を平ベルトとして形状の異なる 2種類のベルトを組み合わせ たものであってもよいし、一方の側を通常強度のベルトとし、他方の側を強強度のベ ルトとして強度の異なる 2種類のベルトを組み合わせたものであってもよ!/、し、ベルト の種類と強度の両方が異なるものとして構成したものであってもよい。 [0119] The second belt 1033 is a belt that transmits power by connecting the third pulley 1031 and the fourth pulley 1032. In the present embodiment, two types of belts are connected as shown in FIG. A high-burd belt is used. Hybrid belts depend on their intended use and conditions. For example, the belt may be a combination of two types of belts with one side being a toothed belt (timing belt) and the other side being a flat belt. It is possible to combine two types of belts with different strengths with the other side as a normal strength belt and the other side as a high strength belt, and both belt types and strengths are different. It may be configured as.
[0120] 図 10に示す第二ベルト 1033は、第三プーリ 1031からの動力又は第三プーリ 103 1への動力を授受するフッ素ゴム製の歯付きベルト 1036 (タイミングベルト)と、第四 プーリ 1032からの動力又は第四プーリ 1032への動力を授受するスチール製の平 ベルト 1037とを組み合わせたハイブリッドベルトである。なお、フッ素ゴム製の歯付き ベルト 1036と、スチール製の平ベルト 1037とは、連結部 1070で繋がれている。な お、第二ベルト 1033の種類に応じて、第三プーリ 1031や第四プーリ 1032の種類も 適宜選択されることになり、図示のようなハイブリッドベルトの場合には、第三プーリ 1 031は歯付きベルトに対応した歯部を外周面に有するタイミングプーリが用いられ、 第四プーリ 1032は平ベルトに対応した平プーリが用いられる。  [0120] The second belt 1033 shown in FIG. 10 includes a fluororubber toothed belt 1036 (timing belt) for transferring power from the third pulley 1031 or power to the third pulley 1031, and a fourth pulley 1032. This is a hybrid belt that is combined with a flat steel belt 1037 that transmits and receives power from the pulley or power to the fourth pulley 1032. The fluororubber toothed belt 1036 and the steel flat belt 1037 are connected by a connecting portion 1070. Depending on the type of the second belt 1033, the types of the third pulley 1031 and the fourth pulley 1032 are appropriately selected. In the case of the hybrid belt as shown, the third pulley 1 031 is A timing pulley having a tooth portion corresponding to the toothed belt on the outer peripheral surface is used, and the fourth pulley 1032 is a flat pulley corresponding to the flat belt.
[0121] スチール製の平ベルト 1037は、強度と靭性に優れたベルトであり、第四プーリ 103 2に巻き掛けられている。そして、その全長の中間位置は、図 10に示すように、第四 プーリ 1032の外周面上に複数のネジ 1042で固定されている。このスチール製の平 ベルト 1037の両端は、それぞれ連結部 1070に固定され、フッ素ゴム製の歯付きべ ノレト 1036と一体ィ匕している。  [0121] The steel flat belt 1037 is a belt excellent in strength and toughness, and is wound around the fourth pulley 1032. The intermediate position of the entire length is fixed on the outer peripheral surface of the fourth pulley 1032 with a plurality of screws 1042, as shown in FIG. Both ends of this steel flat belt 1037 are fixed to a connecting portion 1070, respectively, and are integrally formed with a fluororubber toothed benolet 1036.
[0122] 連結部 1070は、フッ素ゴム製の歯付きベルト 1036と、スチール製の平ベルト 103 7とを接続すると共に、その間隔を調整できる機構となっている。なお、図 10の例で は、一対の連結部の両方が調整可能な機構を備えているが、一方の連結部のみが 調整可能になっており他方の連結部は調整機能を持たないものであってもよい。  [0122] The connecting portion 1070 has a mechanism for connecting a toothed belt 1036 made of fluoro rubber and a flat belt 1037 made of steel and adjusting the distance between them. In the example of FIG. 10, both of the pair of connecting portions have an adjustable mechanism. However, only one of the connecting portions can be adjusted, and the other connecting portion has no adjustment function. There may be.
[0123] 図 12は、連結部の一例を示す概略構成図であり、図 13は、連結部の他の例を示 す概略構成図である。図 12に示す連結部 1070aは、歯付きベルト 1036と平ベルト 1 037とを固定するプレー卜 1043, 1044, 1045, 1049と、ベノレ卜の張力調整を行う調 整用ネジ 1046とを主な構成として!/ヽる。なお、プレー卜 1043, 1044, 1045, 1049 としては、スチール製又はアルミニウム製の金属プレートが好ましく用いられる。 [0124] プレート 1045は、歯付きベルト 1036側の面に溝部 1047を有している。その溝部 1 047は、歯付きベルト 1036の歯面と嚙み合う形態で形成されている。歯付きベルト 1 036はプレート 1045とプレート 1043とで挟まれ、複数のネジ 1048で固定される。 FIG. 12 is a schematic configuration diagram showing an example of the connecting portion, and FIG. 13 is a schematic configuration diagram showing another example of the connecting portion. The connecting part 1070a shown in Fig. 12 is mainly composed of plates 1043, 1044, 1045, 1049 for fixing the toothed belt 1036 and the flat belt 10 037, and adjusting screws 1046 for adjusting the tension of the belt. As! / Speak. As the plate cages 1043, 1044, 1045, 1049, metal plates made of steel or aluminum are preferably used. [0124] The plate 1045 has a groove 1047 on the surface of the toothed belt 1036 side. The groove portion 10 047 is formed so as to mate with the tooth surface of the toothed belt 1036. The toothed belt 1 036 is sandwiched between the plate 1045 and the plate 1043 and fixed with a plurality of screws 1048.
[0125] 一方、プレート 1045の平ベルト 1037側は、 1又は 2以上のネジ 1051が貫通する、 長手方向に沿った長孔 1052が形成されており、この長孔 1052とネジ 1051とにより 、プレート 1044とプレート 1045との重ね代を調整することにより、第二ベルト 1033の 張力調整を可能にしている。なお、スチール製の平ベルト 1037は、プレート 1044に シム 1049を介在してネジ 1053により固定されている。このシム 1049は、歯付きベル ト 1036と平ベルト 1037との厚さ方向の高さを調整するものであり、両者の中心線 C 力もの距離がほぼ同じになるようにしている。なお、シム 1049の枚数は限定されない 。中心線 Cの位置をほぼ同じとすることにより、ハイブリッドベルト(歯付きベルト 1036 と平ベルト 1037)に力かる張力が働く方向がほぼ同じ位置となるので、張力の方向と ベルトが移動する方向とがほぼ同じ方向となり、スムーズなベルト搬送動作を行うこと ができる。  On the other hand, on the flat belt 1037 side of the plate 1045, a long hole 1052 is formed along the longitudinal direction through which one or two or more screws 1051 pass, and the long hole 1052 and the screw 1051 form a plate. The tension of the second belt 1033 can be adjusted by adjusting the overlap of 1044 and the plate 1045. The steel flat belt 1037 is fixed to the plate 1044 with a shim 1049 with screws 1053. The shim 1049 adjusts the height in the thickness direction between the toothed belt 1036 and the flat belt 1037 so that the distance of the center line C force between them is almost the same. The number of Sim 1049 is not limited. By making the position of the center line C substantially the same, the direction in which the tension acting on the hybrid belt (toothed belt 1036 and flat belt 1037) acts is almost the same, so the direction of tension and the direction in which the belt moves The directions are almost the same, and smooth belt transport can be performed.
[0126] プレー卜 1043, 1044に ίま、互!/、に対向する佃 Jに立ち上げ、咅 1043a, 1044a力 ^形 成されており、この立ち上げ部 1043a, 1044aに調整用ネジ 1046が螺合されている 。この調整用ネジ 1046は、プレート 1043, 1044との間隔を調整可能にし、プレート 1044に形成された長孔 1052を用いて調整された歯付きベルト 1036と平ベルト 103 7との張力を微調整することができる。  [0126] Play 卜 1043, 1044 is raised to 佃 J opposite to each other, and 佃 1043a, 1044a force ^ is formed, and adjustment screws 1046 are formed on this rise part 1043a, 1044a It is screwed. This adjustment screw 1046 makes it possible to adjust the distance between the plates 1043 and 1044 and finely adjust the tension between the toothed belt 1036 and the flat belt 1037 adjusted using the long hole 1052 formed in the plate 1044. be able to.
[0127] 図 13は、張力調整機構を持たない連結部の例である。図 13に示す連結部 1070b は、歯付きベルト 1036と平ベルト 1037とを固定するプレート 1054, 1055及びシム 1056を有している。プレート 1054, 1055ゃシム 1056は、上記同様、スチール製又 はアルミニウム製の金属プレートが好ましく用いられる。  FIG. 13 is an example of a connecting portion that does not have a tension adjusting mechanism. 13 includes plates 1054 and 1055 and a shim 1056 for fixing the toothed belt 1036 and the flat belt 1037. The connecting portion 1070b shown in FIG. As the plates 1054 and 1055 and shim 1056, a metal plate made of steel or aluminum is preferably used as described above.
[0128] プレート 1055は、歯付きベルト 1036側の面に溝部 1057を有している。その溝部 1 057は、歯付きベルト 1036の歯面と嚙み合う形態で形成されている。歯付きベルト 1 036はプレート 1054とプレート 1055とで挟まれ、複数のネジ 1058で固定される。  [0128] The plate 1055 has a groove 1057 on the surface of the toothed belt 1036 side. The groove portion 1057 is formed in a form that meshes with the tooth surface of the toothed belt 1036. The toothed belt 1 036 is sandwiched between a plate 1054 and a plate 1055 and fixed with a plurality of screws 1058.
[0129] 一方、プレート 1054の平ベルト 1037側は、そのプレート 1054にシム 1056を介在 してネジ 1059により固定されている。このシム 1056は、上記同様、歯付きベルト 103 6と平ベルト 1037との厚さ方向の高さを調整するものであり、両者の中心線じからの 距離がほぼ同じになるようにしている。なお、シム 1056の枚数は限定されない。 On the other hand, the flat belt 1037 side of the plate 1054 is fixed to the plate 1054 by a screw 1059 with a shim 1056 interposed therebetween. This shim 1056 has a toothed belt 103 as described above. The height of the belt 637 and the flat belt 1037 are adjusted so that the distance from the center line of the belt belt 1037 is almost the same. The number of shims 1056 is not limited.
[0130] こうしたハイブリッドベルトからなる第二ベルト 1033を有する第二アーム 1030は、 第一アーム 1020の回動を受けて、時計方向ないし反時計方向に回動することにな る力 連結部 1070は、第三プーリ 1031や第四プーリ 1032に接触しない位置までし か回動しな 、ようになって 、る。  [0130] The second arm 1030 having the second belt 1033 made of such a hybrid belt receives the rotation of the first arm 1020 and rotates in the clockwise direction or the counterclockwise direction. The third pulley 1031 and the fourth pulley 1032 are only rotated to a position where they do not come into contact with each other.
[0131] 図 10に示すように、第二アーム 1030の内部にも、第一アーム 1020内部にあるよう なリブ 1035を有することが好ましい。リブ 1035は、第二アーム 1030の剛性を高めて 変形を抑えるように作用する。こうしたリブ 1035を設けることにより、第二アーム 1030 の肉厚を薄くして軽量ィ匕を図ることができる。  [0131] As shown in FIG. 10, it is preferable that the second arm 1030 also has a rib 1035 that is inside the first arm 1020. The rib 1035 acts to increase the rigidity of the second arm 1030 and suppress deformation. By providing such a rib 1035, the thickness of the second arm 1030 can be reduced and the weight can be reduced.
[0132] リブ 1035には、第二アーム 1030の基端部(第三プーリ 1031側)に通じる抜き穴 1 039が形成されている。抜き穴 1039は、第二アーム 1030内の空気が第二アーム 10 30の基端部力も第一アーム 1020内を経由して外部に抜かれるための通路をなして いる。ロボットアーム 1010は、こうした抜き穴 1039を有するので、ロボットアーム 101 0が減圧雰囲気に曝されると、第二アーム 1030内の空気は抜き穴 1039を通って第 二アーム 1030の基端部から第一アーム 1020内に入り、さらに第一アーム 1020内を 通って外部に容易に抜かれることになる。し力も、第二アーム 1030はフッ素ゴムから なる歯付きベルト 1036を一部に用いるので、従来のクロ口プレン製ベルト、二トリルゴ ム製ベルト、ウレタンゴム製ベルト等を用いた場合に比べて含有空気や粉塵等の発 生が少なぐその結果、第二アーム 1030内のそうした空気を容易に抜くことができる ので、減圧雰囲気下での所定の圧力への到達時間を従来のものよりも短縮すること ができる。なお、第二アーム 1030の基端部とは、第一アーム 1020側のことであり、 本願においては、第三プーリ 1031を回動する軸部である。  [0132] The rib 1035 is formed with a hole 1039 that communicates with the base end (the third pulley 1031 side) of the second arm 1030. The punch hole 1039 forms a passage through which the air in the second arm 1030 is extracted to the outside through the first arm 1020 as well as the base end force of the second arm 1030. Since the robot arm 1010 has such a hole 1039, when the robot arm 1010 is exposed to a reduced pressure atmosphere, the air in the second arm 1030 passes through the hole 1039 from the base end of the second arm 1030. It enters into one arm 1020, and further passes through the first arm 1020 and is easily pulled out. The second arm 1030 also uses a toothed belt 1036 made of fluororubber for a part of it, so it is contained in comparison with the case of using a conventional black mouth plain belt, nitrile rubber belt, urethane rubber belt, etc. As a result of less generation of air, dust, etc., the air in the second arm 1030 can be easily extracted, so the time to reach a predetermined pressure in a reduced pressure atmosphere is shortened compared to the conventional one. be able to. The base end portion of the second arm 1030 is the first arm 1020 side, and in the present application, is a shaft portion that rotates the third pulley 1031.
[0133] 第二アーム 1030内の空気を第一アーム 1020内に導くための経路としては、先ず 、第四プーリ 1032の連結軸 1034付近の空気はその連結軸 1034付近の抜き穴 10 34aを通ってリブ 1035に至り、リブ 1035内の空気は抜き穴 1039を通って第三プー リ 1031近傍に至り、その空気は連結軸 1024に設けられた抜き穴 1024aを通りさらに 第一アーム 1020に形成された抜き穴 1020aを通って第一アーム 1020内に導かれ る。こうした経路により、第二アーム 1030内の空気は第一アーム 1020内に容易に入 り込み、その後、第一アーム 1020内の抜き穴 1029を通過して第一アーム 1020の 基端部に設けられた例えばフィルター 1060付きの開口部 1028から外部に出て行く ことになる。ロボットアーム 1010は、こうした構成力もなることにより、例えばアーム内 でのベルトとプーリ等との回動動作により粉塵等が生じた場合であっても、生じた粉 塵等は開口部に装着されたフィルター 1060で捕捉される。その結果、ロボットアーム 1010の移動空間である予備減圧室(ロードロック室)内の環境を良好なものとして、 迅速な減圧雰囲気を達成できる。 [0133] As a path for guiding the air in the second arm 1030 into the first arm 1020, first, the air in the vicinity of the connecting shaft 1034 of the fourth pulley 1032 passes through the hole 1034a in the vicinity of the connecting shaft 1034. The rib 1035 reaches the rib 1035, the air inside the rib 1035 passes through the hole 1039 and reaches the vicinity of the third pulley 1031, and the air passes through the hole 1024a provided on the connecting shaft 1024 and is further formed on the first arm 1020. Guided into first arm 1020 through punched hole 1020a The By such a path, the air in the second arm 1030 easily enters the first arm 1020, and then passes through the hole 1029 in the first arm 1020 and is provided at the base end of the first arm 1020. For example, it goes out from the opening 1028 with the filter 1060. Since the robot arm 1010 also has such a configuration force, for example, even when dust or the like is generated due to the rotation of the belt and the pulley in the arm, the generated dust or the like is attached to the opening. Captured by filter 1060. As a result, the environment in the preliminary decompression chamber (load lock chamber), which is the movement space of the robot arm 1010, is made favorable, and a rapid decompression atmosphere can be achieved.
[0134] (ロボットアームの動作) [0134] (Robot arm movement)
ロボットアーム 1010の動作を以下に説明する。ロボットアーム 1010は、図 8及び図 9に示すように、ロボット本体の基台 1200の軸 1011が第一アーム 1020の第 1プーリ 1021に連結され、軸 1011の回転により第一プーリ 1021に回動動力が伝達される。 第一プーリ 1021の回動制御は、軸 1011の回動を制御するロボット本体内の制御機 構により行われる。  The operation of the robot arm 1010 will be described below. As shown in FIGS. 8 and 9, the robot arm 1010 is connected to the first pulley 1021 of the first arm 1020 with the shaft 1011 of the base 1200 of the robot body, and rotates to the first pulley 1021 by the rotation of the shaft 1011. Power is transmitted. The rotation control of the first pulley 1021 is performed by a control mechanism in the robot body that controls the rotation of the shaft 1011.
[0135] 回動制御された第一プーリ 1021の回動は、第一ベルト 1023を介して第二プーリ 1 022に伝達され、さらに第三プーリ 1031、第二べノレト 1033、第四プーリ 1032、ノヽン ド (アーム) 1040の順に伝達される。なお、上記のように、各プーリの径の比は、第一 プーリ 1021の径 R1と第二プーリ 1022の径 R2とは R1 :R2 = 2 : 1の関係であり、第 三プーリ 1031の径 R3と第四プーリ 1032の径 R4とは R3 :R4 = 1 : 2の関係であるの で、第一プーリ 1021、第二プーリ 1022 (第三プーリ 1031)及び第四プーリ 1032の 回転角比は 1 : 2 : 1となる。  [0135] The rotation of the first pulley 1021 whose rotation is controlled is transmitted to the second pulley 1022 via the first belt 1023, and further, the third pulley 1031, the second benore 1033, the fourth pulley 1032, Transmitted in order of node (arm) 1040. As described above, the ratio of the diameters of the pulleys is such that the diameter R1 of the first pulley 1021 and the diameter R2 of the second pulley 1022 are in the relationship of R1: R2 = 2: 1, and the diameter of the third pulley 1031 R3 and the diameter of the fourth pulley 1032 R4 has the relationship R3: R4 = 1: 2, so the rotation angle ratio of the first pulley 1021, the second pulley 1022 (the third pulley 1031) and the fourth pulley 1032 is 1: 2: 1
[0136] したがって、第一アーム 1020の第一プーリ 1021と、第二プーリ 1022 (第二アーム 1030の第三プーリ 1031)と、第二アーム 1030の第四プーリ 1032との回転角度比 は 1 : 2 : 1であるので、図 14に示すように、第一プーリ 1021の回転により第一アーム 1 020を回動させて図 14 (A)の状態から図 14 (B)又は図 14 (C)の状態に変化させる と、第一アーム 1020と第二アーム 1030との角度が変化する力 第一アーム 1020の 第一プーリ 1021の中心と第二アーム 1030の第四プーリ 1032の中心とを結んだ直 線上をノヽンド (アーム) 1040が向きを一定にしながら移動することとなる。 [0137] (ロボット) Accordingly, the rotation angle ratio between the first pulley 1021 of the first arm 1020, the second pulley 1022 (the third pulley 1031 of the second arm 1030), and the fourth pulley 1032 of the second arm 1030 is 1: As shown in FIG. 14, the first arm 1021 is rotated by rotating the first pulley 1021, so that the state shown in FIG. 14 (A) is changed to FIG. 14 (B) or FIG. 14 (C). The force that changes the angle between the first arm 1020 and the second arm 1030 is connected to the center of the first pulley 1021 of the first arm 1020 and the center of the fourth pulley 1032 of the second arm 1030. The node (arm) 1040 moves on the straight line while keeping the direction constant. [0137] (Robot)
図 15は、本発明のロボットアームを備えたロボットが半導体の製造プロセスに用い られる例を示す概略平面図である。図 15に示す装置は、半導体の製造プロセスにお ける処理集合装置 1071である。装置中央には、減圧可能なロードロック室 1073が あり、本発明のロボットアーム 1010を備えたロボット 1072が配置されている。  FIG. 15 is a schematic plan view showing an example in which a robot having a robot arm of the present invention is used in a semiconductor manufacturing process. The apparatus shown in FIG. 15 is a processing aggregation apparatus 1071 in a semiconductor manufacturing process. In the center of the apparatus, there is a load lock chamber 1073 that can be depressurized, and a robot 1072 equipped with the robot arm 1010 of the present invention is arranged.
[0138] ロードロック室 1073の周りには、その周方向に 8分割された処理室が配置されてい る。このうち、符号 1074A, 1074B, 1074C, 1074Dの 4室は、真空処理室であり、 符号 1075, 1076の 2室は、加熱や冷却を行うための処理室であり、符号 1077A, 1 077Bの 2室は、その集合処理室外からウェハの受け渡しを行う収容室である。また、 符号 1079は、集合処理室外からウェハの受け渡し行うロボットであり、符号 1078は 、ウェハである。こうした集合処理室では、各室の入り口にはゲートベンが設けられ、 そのゲートベンの開閉により処理室への出し入れが行われる。また、ゲートベンは、ゥ ェハの出し入れを許容するように高さ方向を低く幅広の矩形に形成されている。  [0138] Around the load lock chamber 1073, a processing chamber divided into eight in the circumferential direction is arranged. Among these, the four chambers 1074A, 1074B, 1074C, and 1074D are vacuum processing chambers, the two chambers 1075 and 1076 are processing chambers for heating and cooling, and the two chambers 1077A and 1077B. The chamber is a storage chamber for transferring wafers from outside the collective processing chamber. Reference numeral 1079 is a robot for delivering a wafer from outside the collective processing chamber, and reference numeral 1078 is a wafer. In these collective processing chambers, gate vents are provided at the entrances of the chambers, and the gates are opened and closed to enter and exit the processing chamber. The gate ben is formed in a wide rectangular shape with a low height so as to allow the wafer to be taken in and out.
[0139] こうした集合処理室内にロボットアーム 1010を備えたロボット 1072が配置されるが 、ロボットアーム 1010及びロボット 1072は、減圧雰囲気下でのガス発生や粉塵発生 等が少なぐ減圧雰囲気に対する悪影響が少ないものとすることができるので、ロボッ トアーム 1010の移動空間であるロードロック室 1073 (予備減圧室)内の環境を良好 なものとして、迅速な減圧雰囲気を達成できる。さらに、ゲートベンを開けることにより 、処理室 1074A〜1074D内がロードロック室 1073内の圧力と同じ圧力になっても、 その後の減圧により各処理室内を所定の圧力に迅速に減圧することができ、全体と してスループットを向上させることができる。さらに、高さ方向の厚を抑えたロボットァ ーム 1010であるので、高さの低い矩形のゲートベンに対する進出後退が可能となつ ている。  [0139] The robot 1072 having the robot arm 1010 is arranged in such a collective processing chamber. However, the robot arm 1010 and the robot 1072 have less adverse effects on the reduced-pressure atmosphere with less gas generation or dust generation in the reduced-pressure atmosphere. Therefore, the environment in the load lock chamber 1073 (preliminary decompression chamber), which is the moving space of the robot arm 1010, can be made favorable, and a rapid decompression atmosphere can be achieved. Furthermore, even if the inside of the processing chambers 1074A to 1074D reaches the same pressure as that in the load lock chamber 1073 by opening the gate vent, each processing chamber can be quickly reduced to a predetermined pressure by the subsequent decompression. Overall throughput can be improved. Furthermore, since the robot arm 1010 has a reduced thickness in the height direction, it is possible to move forward and backward with respect to a rectangular gate ben with a low height.
[0140] さらに、本発明のロボットアーム 1010は、第一プーリ 1021と第四プーリ 1032との 中心を結んだ直線上をハンドアーム 1040が向きを一定にしながら移動するので、ハ ンドアーム 1040に載置され搬送されるウェハを位置精度よく安定して搬送することが できる。  [0140] Furthermore, the robot arm 1010 of the present invention moves on the straight line connecting the centers of the first pulley 1021 and the fourth pulley 1032 while the hand arm 1040 moves in a constant direction, so that the robot arm 1010 is placed on the hand arm 1040. The transferred wafer can be stably transferred with high positional accuracy.
[0141] 以上、本発明のロボットアーム及びそのロボットアームを備えたロボットについて説 明したが、上述の本実施の形態は本発明の好適な実施の一例ではあって、これに限 定されるものではなぐ本発明の要旨を逸脱しない範囲において種々変形実施可能 である。 [0141] The robot arm of the present invention and the robot equipped with the robot arm have been described above. As described above, the above-described embodiment is an example of a preferred embodiment of the present invention, and the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] ロボット本体に第一伝達機構を介して回動可能に取り付けられた第一アームと、該 第一アームの先端部に第二伝達機構を介して回動可能に取り付けられた作業手段 とから構成されると共に、前記第一伝達機構及び前記第二伝達機構を連結して動力 を伝達する第一連結手段を備えるロボットアームにぉ 、て、前記第一連結手段が、 前記第一伝達機構力 の動力または該第一伝達機構への動力を授受する、第一の 剛性部材力 なる第一動力伝達部材と、前記第二伝達機構力 の動力または該第 二伝達機構への動力を授受する第二動力伝達部材と、これら第一動力伝達部材と 前記第二動力伝達部材とを繋ぐ、第二の剛性部材からなる第一連結部及び第二連 結部とから構成されているとともに、前記第一伝達機構の径は前記第二伝達機構の 径よりも大きぐかつ、前記第二動力伝達部材の長さは前記第一動力伝達部材の長 さよりも短 、ことを特徴とするロボットアーム  [1] a first arm rotatably attached to the robot body via a first transmission mechanism, and a working means rotatably attached to the tip of the first arm via a second transmission mechanism; And a first arm for connecting the first transmission mechanism and the second transmission mechanism to transmit power to the first arm. A first power transmission member that is a first rigid member force that transmits and receives power of power or power to the first transmission mechanism, and power of the second transmission mechanism force or power to the second transmission mechanism The second power transmission member, and the first power transmission member and the second power transmission member are connected to each other. The diameter of the first transmission mechanism is the same as the diameter of the second transmission mechanism And also large equipment, robotic arm length of the second power transmission member, wherein the short, than the length of the first power transmission member
[2] 前記作業手段が、前記第二伝達機構に固定されて前記第一アームに対して回動 可能な第二アームと、前記第二伝達機構と同心で前記第一アームに固定された第 三伝達機構と、前記第二アームの先端部に第四伝達機構を介して回動可能に取り 付けられたハンドとから構成されるとともに、前記第三伝達機構と前記第四伝達機構 を連結して動力を伝達する第二連結手段を備えるロボットアームであって、前記第二 連結手段が、前記第四伝達機構からの動力または該第四伝達機構への動力を授受 する、第三の剛性部材カもなる第四動力伝達部材と、前記第三伝達機構からの動力 または該第三伝達機構への動力を授受する第三動力伝達部材と、これら第三動力 伝達部材と前記第四動力伝達部材とを繋ぐ、第四の剛性部材カもなる第三連結部 及び第四連結部とから構成されているとともに、前記第四伝達機構の径は前記第三 伝達機構の径よりも大きぐかつ、前記第三動力伝達部材の長さは前記第四動力伝 達部材の長さよりも短ぐさらに、前記第一伝達機構と前記第二伝達機構と前記第四 伝達機構との回転角度比は 1: 2 : 1であることを特徴とする請求項 1記載のロボットァ ーム  [2] The working means is a second arm fixed to the second transmission mechanism and rotatable with respect to the first arm, and a second arm fixed to the first arm concentrically with the second transmission mechanism. A third transmission mechanism and a hand pivotally attached to the tip of the second arm via a fourth transmission mechanism, and the third transmission mechanism and the fourth transmission mechanism are connected to each other. A third rigid member that includes second connecting means for transmitting power, wherein the second connecting means transmits or receives power from the fourth transmission mechanism or power to the fourth transmission mechanism. A fourth power transmission member, a third power transmission member for transmitting / receiving power from the third transmission mechanism or power to the third transmission mechanism, the third power transmission member and the fourth power transmission member A third connecting part that also serves as a fourth rigid member And the fourth connecting portion, the diameter of the fourth transmission mechanism is larger than the diameter of the third transmission mechanism, and the length of the third power transmission member is the fourth power transmission 2. The robot according to claim 1, wherein the rotation angle ratio of the first transmission mechanism, the second transmission mechanism, and the fourth transmission mechanism is 1: 2: 1, which is shorter than the length of the member. The
[3] 少なくとも前記第一連結部及び前記第三連結部には、前記動力伝達部材の張力 が調整可能となっていることを特徴とする請求項 1または 2記載のロボットアーム 3. The robot arm according to claim 1 or 2, wherein the tension of the power transmission member is adjustable at least in the first connecting part and the third connecting part.
[4] 前記第一連結部及び前記第二連結部は、前記第一動力伝達部材の厚み方向の 中心線位置と前記第二動力伝達部材の厚み方向の中心線位置とはほぼ同じ位置と なるように連結してなることを特徴とする請求項 1から 3 、ずれか記載のロボットアーム[4] In the first connecting portion and the second connecting portion, the center line position in the thickness direction of the first power transmission member and the center line position in the thickness direction of the second power transmission member are substantially the same position. The robot arm according to any one of claims 1 to 3, characterized in that the robot arms are connected as described above.
[5] 前記第三連結部及び前記第四連結部は、前記第三動力伝達部材の厚み方向の 中心線位置と前記第四動力伝達部材の厚み方向の中心線位置とはほぼ同じ位置と なるように連結してなることを特徴とする請求項 2または 3記載のロボットアーム [5] In the third connecting portion and the fourth connecting portion, the center line position in the thickness direction of the third power transmission member and the center line position in the thickness direction of the fourth power transmission member are substantially the same position. The robot arm according to claim 2 or 3, wherein the robot arms are connected in the manner described above.
[6] ロボット本体に第一伝達機構を介して回動可能に取り付けられた第一アームと、該 第一アームの先端部に第二伝達機構を介して回動可能に取り付けられた作業ァー ムとから構成されると共に、前記第一伝達機構及び前記第二伝達機構を連結して動 力を伝達する第一連結手段を備えるロボットアームにおいて、前記第一連結手段が フッ素ゴム力もなることを特徴とするロボットアーム  [6] A first arm rotatably attached to the robot body via the first transmission mechanism, and a work arm rotatably attached to the tip of the first arm via the second transmission mechanism And a first connecting means for connecting the first transmission mechanism and the second transmission mechanism to transmit the dynamic force, wherein the first connecting means also has a fluororubber force. Characteristic robot arm
[7] 前記作業アームは、前記第二伝達機構に固定されて前記第一アームに対して回 動可能な第二アームと、前記第二伝達機構と同心で前記第一アームに固定された 第三伝達機構と、前記第二アームの先端部に第四伝達機構を介して回動可能に取 り付けられたハンドアームと、前記第三伝達機構及び前記第四伝達機構を連結して 動力を伝達する第二連結手段とを備え、前記第二連結手段が、前記第三伝達機構 力もの動力又は前記第三伝達機構への動力を授受する、フッ素ゴム製のタイミング ベルトからなる動力伝達部材と、前記第四伝達機構からの動力又は前記第四伝達 機構への動力を授受する、スチールベルトからなる動力伝達部材と、これらの動力伝 達部材を繋ぐ連結部とから構成されることを特徴とする請求項 6に記載のロボットァー ム  [7] The working arm is fixed to the second transmission mechanism and is rotatable with respect to the first arm, and is fixed to the first arm concentrically with the second transmission mechanism. A third transmission mechanism, a hand arm pivotally attached to the tip of the second arm via a fourth transmission mechanism, and the third transmission mechanism and the fourth transmission mechanism to connect the power. A power transmission member comprising a fluororubber timing belt for transmitting power to the third transmission mechanism or to the third transmission mechanism. A power transmission member made of a steel belt that transmits and receives power from the fourth transmission mechanism or power to the fourth transmission mechanism, and a connecting portion that connects these power transmission members. The roboter according to claim 6, Beam
[8] 前記第一アーム及び前記第二アーム内の空気が前記第一アームの基端部から外 部に抜かれるように、該第一アーム内部及び該第二アーム内部に、該第一アームの 基端部に通じる抜き穴が設けられていることを特徴とする請求項 6又は 7に記載の口 ボットアーム  [8] The first arm inside the first arm and the second arm so that the air in the first arm and the second arm is extracted from the base end of the first arm to the outside. A mouth bot arm according to claim 6 or 7, characterized in that a punched hole leading to the base end of the mouth bot arm is provided.
[9] 前記第一アームの基端部には、アーム内の空気を外部に逃がす開口部が設けら れ、該開口部には、フィルターが装着されていることを特徴とする請求項 8に記載の口 ボットアーム [10] 請求項 1〜9のいずれかに記載のロボットアームを備えたロボット [9] The base end of the first arm is provided with an opening for escaping air in the arm to the outside, and a filter is attached to the opening. Mentioned mouth bot arm [10] A robot comprising the robot arm according to any one of claims 1 to 9.
PCT/JP2006/303726 2005-02-28 2006-02-28 Robot arm and robot WO2006093133A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800061367A CN101128289B (en) 2005-02-28 2006-02-28 Robot arm and robot

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005052276A JP4603388B2 (en) 2005-02-28 2005-02-28 Robot arm
JP2005-052276 2005-02-28
JP2005-351325 2005-12-05
JP2005351325A JP4719562B2 (en) 2005-12-05 2005-12-05 Robot arm and robot

Publications (1)

Publication Number Publication Date
WO2006093133A1 true WO2006093133A1 (en) 2006-09-08

Family

ID=36941162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303726 WO2006093133A1 (en) 2005-02-28 2006-02-28 Robot arm and robot

Country Status (3)

Country Link
KR (1) KR101265356B1 (en)
TW (2) TWI447004B (en)
WO (1) WO2006093133A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502130B1 (en) * 2008-07-10 2015-03-13 주식회사 원익아이피에스 Transfer apparatus, Transfer chamber having the same and vacuum processing system including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151190A (en) * 1993-11-29 1995-06-13 Bando Chem Ind Ltd Toothed belt
JP2000141270A (en) * 1998-11-06 2000-05-23 Matsushita Electric Ind Co Ltd Articulated robot
JP2002110768A (en) * 2000-09-28 2002-04-12 Daihen Corp Wafer transfer robot
JP2004160568A (en) * 2002-11-11 2004-06-10 Sankyo Seiki Mfg Co Ltd Robot arm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056043A (en) * 1999-05-31 2001-02-27 Mitsuboshi Belting Ltd Toothed belt
JP2002307365A (en) * 2001-04-11 2002-10-23 Aitec:Kk Arm of scalar robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151190A (en) * 1993-11-29 1995-06-13 Bando Chem Ind Ltd Toothed belt
JP2000141270A (en) * 1998-11-06 2000-05-23 Matsushita Electric Ind Co Ltd Articulated robot
JP2002110768A (en) * 2000-09-28 2002-04-12 Daihen Corp Wafer transfer robot
JP2004160568A (en) * 2002-11-11 2004-06-10 Sankyo Seiki Mfg Co Ltd Robot arm

Also Published As

Publication number Publication date
TW201213071A (en) 2012-04-01
KR101265356B1 (en) 2013-05-20
TW200635726A (en) 2006-10-16
TWI392568B (en) 2013-04-11
KR20070106623A (en) 2007-11-02
TWI447004B (en) 2014-08-01

Similar Documents

Publication Publication Date Title
TWI433765B (en) Industrial robotic arm and collection processing device
JP5627599B2 (en) Transfer arm and transfer robot including the same
JP4411025B2 (en) 2-arm transfer robot
JP4699312B2 (en) Transport device
TWI481487B (en) Industrial robots
JPH0538686A (en) Transport device
JPH1133950A (en) Two-arm type carrier robot device
JP2000168948A (en) Cross feeder
WO2018021270A1 (en) Industrial robot
JPH1133951A (en) Two arm type carrier robot device
JP4603388B2 (en) Robot arm
WO2006093133A1 (en) Robot arm and robot
JP2015123551A (en) Multijoint robot
JPH07122620A (en) Power transmission mechanism
US6729201B2 (en) Traction drive speed reducer, conveyance apparatus using traction drive speed reducer, and arrangement of two-axis output encoder in conveyance apparatus
JPH10193287A (en) Closed link robot device
JPH10296666A (en) Carrying robot
US20100040447A1 (en) Transport apparatus
JP4719562B2 (en) Robot arm and robot
JP6474678B2 (en) Work transfer device
JP4437743B2 (en) Opening / closing mechanism for vacuum processing apparatus and vacuum processing apparatus
JP2006247812A (en) Linear drive device
JP2019090538A (en) Coaxial two shaft speed reduction mechanism
JPH1034585A (en) Robot arm drive mechanism
JPH10329060A (en) Robot device for conveyance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680006136.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077019644

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714863

Country of ref document: EP

Kind code of ref document: A1