WO2006092910A1 - 分散安定化された触媒ナノ粒子含有液 - Google Patents

分散安定化された触媒ナノ粒子含有液 Download PDF

Info

Publication number
WO2006092910A1
WO2006092910A1 PCT/JP2006/300193 JP2006300193W WO2006092910A1 WO 2006092910 A1 WO2006092910 A1 WO 2006092910A1 JP 2006300193 W JP2006300193 W JP 2006300193W WO 2006092910 A1 WO2006092910 A1 WO 2006092910A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nanoparticles
colloidal solution
metal
layer
Prior art date
Application number
PCT/JP2006/300193
Other languages
English (en)
French (fr)
Inventor
Yuzuru Shimazaki
Yoshio Kobayashi
Mikio Konno
Original Assignee
Tohoku Techno Arch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co., Ltd. filed Critical Tohoku Techno Arch Co., Ltd.
Publication of WO2006092910A1 publication Critical patent/WO2006092910A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a dispersion-stabilized catalyst nanoparticle-containing liquid and its application.
  • Fuel cells have the potential to achieve an energy density more than 10 times that of lithium-ion secondary batteries, and can be carried anywhere without charging if you carry the fuel. Expected to change.
  • direct methanol fuel cells (DMFC) that use methanol as fuel are expected to be smaller and lighter and have lower costs.
  • DMFC direct methanol fuel cells
  • Catalyst nanoparticles containing Pt are known to exhibit strong oxidation activity against hydrogen and alcohol, and are used as typical polymer electrolyte fuel cell (PEFC) electrode catalysts.
  • PEFC polymer electrolyte fuel cell
  • these catalysts that also have noble metal power are expensive, it is required to use them as little as possible. Therefore, it is necessary to make the catalyst more highly active in a small amount.
  • the metal particles such as Ru coexist in the nanoparticles to poison the carbon monoxide produced as a reaction intermediate on the Pt surface. Suppress.
  • the PEFC electrode catalyst is prepared by reducing metal ions in the presence of carrier carbon in a solution and precipitating catalyst nanoparticles on the carrier carbon (deposition method: for example, Physica B 323 ⁇ , p. 124 (2002) [Non-patent document 1]) and a method of adsorbing catalyst nanoparticles in a colloidal solution on a carrier carbon (colloid method: for example, Nano Letter 2 ⁇ , 235 (2002) [Non-Patent Document 2]).
  • colloid method colloid solution Since the structure of the catalyst nanoparticles can be controlled during production, it is possible to produce a catalyst based on precise design.
  • the dispersion stabilizer is usually adsorbed on the surface of the catalyst nanoparticles prepared by the colloid method, and it is necessary to heat-treat the prepared catalyst in order to expose the active surface.
  • Ru nanoparticles having Pt on the surface have been reported.
  • Ru nanoparticles having Pt on the surface have higher Pt utilization efficiency than Pt and Ru alloy nanoparticles because Pt having catalytic activity is concentrated on the particle surface. Since Pt is an expensive noble metal, the ability to reduce the amount of Pt in the catalyst is a great merit in terms of cost and environment.
  • Patent Document 1 adsorbs hydrogen on the surface of Ru nanoparticles dispersed and stabilized with a polymer such as polybulurpyrrolidone to give reduction ability, and Pt ions on the surface of Ru nanoparticles.
  • a polymer such as polybulurpyrrolidone
  • Pt ions on the surface of Ru nanoparticles.
  • a technology for producing Ru nanoparticles with Pt on the surface by reduction is disclosed.
  • the catalyst prepared by the above technique since the polymer covers the active surface, it is necessary to perform high temperature heat treatment at about 300 ° C. in the presence of hydrogen to decompose and remove the polymer. Therefore, there is a problem that the heat treatment induces aggregation of the catalyst nanoparticles and the active surface area decreases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-231257
  • Non-patent literature l Physica B 323 ⁇ , 124 (2002)
  • Non-Patent Document 2 Nano Letter 2 ⁇ , 235 (2002)
  • Non-Patent Document 3 Journal of Catalysts 195 ⁇ , 383 (2000)
  • Non-Patent Literature 4 Journal of Physical Chemistry 99, 14129 (1995) Disclosure of the Invention
  • the present invention as a result of intensive research and investigation, (a) nanoparticles having a metal element, and (b) coating part or all of the surface of the nanoparticles
  • the catalyst nanoparticles having a catalytically active metal layer such as a Pt layer are dispersed and stabilized in a colloidal solution by a carboxylic acid compound such as citrate, and further, a rubonic acid compound such as citrate.
  • a colloidal solution in which the catalyst nanoparticles are dispersed and stabilized, it is possible to avoid a decrease in the activity of the catalyst nanoparticles due to heat treatment, and the catalyst thus obtained is used as an electrode.
  • the present invention provides a catalyst nanoparticle force having (a) a nanoparticle having a metal element, and (b) a catalytically active element layer such as a Pt layer covering a part or all of the surface of the nanoparticle.
  • Colloid by carboxylic acid compound such as acid A colloidal solution characterized by being dispersed and stabilized with a solution is provided.
  • a fuel cell electrode catalyst and a fuel cell produced using the colloid solution are also provided.
  • a colloidal solution characterized in that the catalyst nanoparticles are dispersed and stabilized with a strong rubonic acid compound in the colloidal solution.
  • a nanoparticle-containing catalyst characterized in that catalyst nanoparticles are supported on a support using the colloidal solution according to any one of [1] to [5] above.
  • a battery electrode characterized by using the catalyst according to [6] or [7].
  • a fuel cell comprising the electrode according to [8].
  • a fuel cell electrode characterized in that a catalyst produced using the colloidal solution according to any one of [1] to [5] is used as an electrode catalyst.
  • a fuel cell characterized in that a catalyst produced using the colloidal solution according to any one of [1] to [5] is used as an electrode catalyst.
  • a metal salt-containing liquid containing a carboxylic acid compound as a dispersion stabilizer is subjected to colloid formation conditions to form nanoparticles having metal elements, and then a platinum group metal salt-containing liquid is added. Reduction treatment, containing catalyst nanoparticles, and the catalyst nanoparticles are Colloidal solution dispersed and stabilized by acid compound
  • the catalyst nanoparticles are N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)
  • a process for producing a colloidal solution characterized in that
  • the carboxylic acid compound such as citrate adsorbed on the surface of the catalyst nanoparticle contained in the fuel cell electrode catalyst of the present invention has a weak adsorption force on the surface of the catalyst nanoparticle.
  • the surface force of the catalyst nanoparticles is desorbed. Therefore, a heat treatment for cleaning the catalyst nanoparticle surface does not induce a reduction in the active surface area, and a catalyst having a clean and highly functional catalyst nanoparticle surface can be obtained. It is out.
  • FIG. 1 is a schematic diagram of catalyst A (Example 1).
  • FIG. 2 is a schematic diagram of Catalyst B (Comparative Example 1).
  • the colloidal solution of the present invention is obtained by subjecting the coexisting platinum group transition metal ions to reducing conditions in a colloidal solution of metal nanoparticles stabilized with a carboxylic acid compound, thereby reducing the metal nanoparticle.
  • Force that can be prepared by supporting the platinum group transition metal on part or all of the surface of the particle The carboxylic acid compound adsorbs on the surface of the metal nanoparticle and It contributes to stable dispersion, stabilizes the colloidal solution, and also has a suitable effect on the reduction reaction, and is useful for forming a platinum group metal layer on part or all of the surface of the nanoparticle. is there.
  • the colloidal solution of the present invention is used in the colloidal solution of metal nanoparticles stabilized with taenic acid, and uses the reducing ability of citrate adsorbed on the surface of the metal nanoparticles. It is prepared by reducing Pt ions and supporting the generated Pt layer on part or all of the surface of the metal nanoparticles.
  • the platinum group transition metal include those in which Pt, Ru, Ir, Pd, Os, and Rh force are also selected, and may be one of them or a mixture thereof. Pt is preferable.
  • the carboxylic acid compound include monocarboxylic acid, dicarboxylic acid, tricarboxylic acid, and tetracarboxylic acid.
  • Typical examples include hydroxycarboxylic acid compounds, and for example, citrate is preferred.
  • the metal nanoparticles are composed of metal elements Ru, Mo, W, Co, Fe, and Ni that have an effect of suppressing adsorption of carbon monoxide on the surface of the platinum group transition metal layer (for example, the surface of the Pt layer). It is preferable that one or more kinds of poisoning suppression elemental powers selected are configured (however, elements different from those constituting the platinum group transition metal layer are usually selected).
  • the metal nanoparticles can be obtained by subjecting a solution (for example, an aqueous solution) containing a metal salt to colloid formation conditions to precipitate the metal colloid.
  • metal nanoparticles can be formed by a method such as stirring an aqueous solution of the above metal salt in the presence of a reducing reagent.
  • the particle diameter of the metal nanoparticles is preferably in the range of lnm to 10 nm, which varies depending on the size of the platinum group transition metal layer (for example, Pt layer) that is reduced and supported on the surface. If it is less than 1 nm, it is not preferable because a sufficient poisoning suppression effect cannot be given to the surface of the supported platinum group transition metal layer (for example, Pt layer). On the other hand, the thickness of 10 nm or more is not preferable because the number of metal atom portions not involved in the suppression of poisoning on the surface of the platinum group transition metal layer (for example, Pt layer) increases and the cost increases.
  • the particle size can be evaluated by an electron microscope or X-ray diffraction measurement.
  • the colloidal solution of the metal nanoparticles can be prepared by reducing the metal ion in a solution having a carboxylic acid compound and a metal ion.
  • the reduction of the metal ion can be usually performed by adding a reducing agent to the solution while stirring the solution.
  • the colloid formation condition may be that metal ions are gradually reduced by agitating the metal salt-containing liquid under reducing conditions to form fine particles having metallic strength.
  • the reducing conditions may be, for example, maintaining a solvent in a hydrogen atmosphere and achieving a condition in which the hydrogen atmosphere is in contact with the solution, or adding a reducing reagent to the solution.
  • the reducing reagent one selected from those known to those skilled in the art can be used.
  • the colloidal solution of the metal nanoparticles is preferably prepared by reducing the metal ion in a solution containing citrate and metal ions.
  • the metal ions are preferably reduced by adding a reducing agent to the solution while stirring the solution.
  • the reducing agent is not particularly limited as long as it is a reagent that reduces the metal ion, and examples thereof include hydrogen, sodium borohydride, dimethylamine borane, hydrazine, and hydroxylamine.
  • the solvent applied to the colloidal solution varies depending on the solubility of the metal salt.
  • the concentration of the metal ion is preferably in the range of 0.001% to 0.1% force that varies depending on the solvent in which the metal salt is dissolved.
  • the concentration of citrate is preferably 0.001%, which varies depending on the solvent, and a saturated concentration of taenoic acid. If it is less than 0.001%, the metal nanoparticles are not sufficiently dispersed and stabilized, and an aggregate is formed. In addition, when the concentration is higher than the saturated concentration of citrate, it is not preferable because of precipitation of citrate.
  • typical methods for producing the colloidal solution include: (1) Carboxylic acid compounds (for example, A metal salt-containing liquid (for example, a Ru ion-containing liquid) containing quanic acid as a dispersion stabilizer is subjected to colloid formation conditions to form nanoparticles having a metal element (for example, Ru nanoparticles). (2) A platinum group metal salt-containing liquid (for example, a Pt ion-containing liquid) is added to the catalyst, followed by reduction treatment, containing catalyst nanoparticles, and the catalyst nanoparticles are a carboxylic acid compound (for example, quenate).
  • Carboxylic acid compounds for example, A metal salt-containing liquid (for example, a Ru ion-containing liquid) containing quanic acid as a dispersion stabilizer is subjected to colloid formation conditions to form nanoparticles having a metal element (for example, Ru nanoparticles).
  • a platinum group metal salt-containing liquid for example, a Pt ion-containing liquid
  • the catalyst nanoparticles cover a part or all of the surface of the nanoparticles with (a) nanoparticles containing metal elements (eg Ru nanoparticles) and (b) And a layer made of a metal selected from a platinum group metal (for example, a Pt layer).
  • a metal element eg Ru nanoparticles
  • a layer made of a metal selected from a platinum group metal for example, a Pt layer
  • Platinum salts include those comprising Pt 2+ , Pt 3+ , or Pt 4+ , and PtX
  • 3 4 6 2 2 4 2 2 2 3 2 2 2 6 and Y are all F-, Cl-, Br-, ⁇ , OH-, CN-, NO-, N-, CH COO ", SCN-, Asechi
  • M 1 is K, Na or ⁇
  • A is NH or amines
  • Ruthenium salts include R u 2+ , Ru 3+ or Ru 4+ , RuX, RuX, RuX,
  • RuCl ((NH) RuCl, Ru (SO;), RuS, RuO, RuO, Na RuO, K Ru
  • Palladium salts contain Pd 2+ and can usually be represented in the form of Pd-Z
  • Z is a salt of halogen such as Cl, Br, and I, acetate, trifluoroacetate, acetylacetonate, carbonate, park mouthrate, nitrate, sulfate, oxide, and the like.
  • halogen such as Cl, Br, and I
  • Os +, Os 2+ those comprising Os 3+ or Os 4+, OsX, OsX, O
  • M 1 is a monovalent cation such as K, Na, Rb, Cs or H). Specifically, OsBr, OsO, OsCl, KOs (SO), RbOs (SO), CsOs (SO), etc.
  • Rhodium salts include Rh 3+ , RhX, Rh X, [RhA] X, M 1 [RhX], M
  • Rh 0, RhO, Rh (SO), Rh (OH), Rh (NO), RhCl, RhF, Rh
  • Metal salts such as Mo, W, Co, Fe, and Ni can also be appropriately selected from those known in the field or the field of inorganic chemistry, and water-soluble salts are preferably used. It is not limited to it.
  • the salts include those containing halogens such as Cl, Br, and I, organic acid salts such as sulfates, nitrates, halogen peroxides, and acetates, and various double salts.
  • the coating ratio of the Pt layer supported on the surface of the metal nanoparticles is not particularly limited as long as the Pt surface area necessary for obtaining the required catalytic activity can be ensured. It is desirable to be 5% or more of the surface area of the genus nanoparticles.
  • the thickness of the Pt layer is not limited as long as the metal nanoparticles affect the electronic state of the Pt atoms existing on the surface of the Pt layer, but the thickness of the lPt atomic layer is in the range of 3 nm. Is preferred.
  • the metal nanoparticles do not affect the electronic state of the Pt atoms present on the surface of the Pt layer, and the effect of inhibiting the oxidation of carbon and carbon on the surface of Pt cannot be obtained.
  • the particle diameter can be evaluated by an electron microscope or X-ray diffraction measurement.
  • the catalyst of the present invention can be obtained by supporting the catalyst nanoparticles on a support using the catalyst nanoparticle-containing colloidal solution.
  • the colloidal solution is mixed with a catalyst support, and catalyst nanoparticles are supported on the support to obtain a nanoparticle-containing catalyst.
  • the high-temperature heat treatment refers to a material that is applied at about 250 ° C or higher, for example, including exposure to a high temperature of 300 ° C, or even in a hydrogen atmosphere. It may mean that the heat treatment is carried out under the reducing conditions and the step of decomposing Z or polymer.
  • the fuel cell electrode catalyst of the present invention is composed of the catalyst nanoparticles and a carrier strength of one bon.
  • the carrier carbon is not particularly limited as long as it is conductive carbon, but preferably has a high surface area because it is necessary to adsorb a large amount of the catalyst nanoparticles.
  • a force bon used to constitute the electrode powdery, fibrous, granular, etc. can be used according to the purpose as appropriate, and a mixture thereof can also be used.
  • Typical force-bons include force-bon powder, spherical force-bon black, scaly graphite, pitch, fibrous carbon, and hollow carbon balloon.
  • a variety of carbon blacks are known and can be characterized by particle size, specific surface area, nitrogen pore volume, oil absorption, etc. Examples include VULCAN TM XC72R (Cabot), BLACK PEAR LS TM 2000 (Manufactured by Cabot), ketjen black, furnace black, acetylene black, activated charcoal and the like. Examples of the fibrous carbon include isotropic pitch-type, liquid crystal pitch-type, and PNA-type, and a commercially available medium force can be selected and used.
  • the fuel electrode catalyst of the present invention can obtain the desired effect of the present invention without being subjected to heat treatment, but in order to remove impurities on the surface of the catalyst nanoparticles, heat treatment is performed as necessary. It is also possible.
  • kenic acid undergoes thermal decomposition at a lower temperature than the polymer, and therefore, heat treatment at a lower temperature is required than when the polymer is used as a dispersion stabilizer. Therefore, the reduction of the active surface area of the catalyst by heat treatment is less than when using a polymer.
  • the catalyst obtained in the present invention is perfluorosulfonic acid (Perfluorosulfonic acid) according to a conventional method.
  • the electrolyte membrane can be selected from those known to those skilled in the art in the art.
  • Nafion TM is a registered trademark of DuPont
  • the molded body obtained by force can be suitably used as an electrode of a PEFC fuel cell, for example, an anode.
  • DMFC methanol fuel cells
  • a new high-performance fuel cell can be constructed by replacing the existing anode of a fuel cell known in the art with the electrode of the present invention. Therefore, even batteries having a structure known in the art include all batteries using the catalyst of the present invention.
  • Fig. 1 is a schematic view of a catalyst prepared by using a citrate-stable catalyst nanoparticle colloidal solution in which a Pt layer is supported on the surface of Ru nanoparticles.
  • the catalyst shown in Fig. 1 (Catalyst A) was prepared by the following method.
  • An aqueous solution (4 mL) in which 38 mg of sodium borohydride (manufactured by Wako Pure Chemical Industries) was dissolved was added, and stirred for 1 day to prepare a Ru nanoparticle colloid solution stabilized with taenic acid.
  • a current value of 108 mA was obtained at 0.7 V (vs. NHE).
  • the catalyst nanoparticles having a clean surface that does not undergo a heat treatment that induces a reduction in the active surface area due to the desorption effect of the catalyst surface force of citrate, and that supports the Pt layer on the surface of the Ru nanoparticles.
  • the catalyst which has was able to be obtained.
  • FIG. 2 is a schematic diagram of a catalyst prepared using a polymer-stable catalyst nanoparticle colloidal solution in which a Pt layer is supported on the Ru nanoparticle surface. It can be seen that the surface of the catalyst (catalyst nanoparticle surface) is covered extensively with the polymer, preventing the expression of activity.
  • the catalyst shown in FIG. 2 (Catalyst B) was prepared by the following method.
  • Ethanol-water mixed solution (496 mL) in which 38 mg of polymer polybutyrrolidone (PVP: Wako Pure Chemical Industries, Ltd.) and 24 mg of ruthenium (III) chloride n hydrate (Wako Pure Chemical Industries, Ltd.) are dissolved
  • An aqueous solution (4 mL) in which 38 mg of sodium borohydride (manufactured by Wako Pure Chemical Industries) was dissolved was added to the solution and stirred for 1 day to prepare a Ru colloid solution stabilized with PVP.
  • the colloidal Ru particles separated by ultrafiltration were washed and dispersed in an equal volume mixture of water-ethylene glycol-ethanol.
  • the present invention it is possible to provide a highly functional catalyst composed of nanoparticles that maintain high activity, so that an inexpensive fuel cell electrode and the like can be obtained despite its excellent function. Can be provided.
  • the highly active and highly functional nanoparticle catalyst By using the highly active and highly functional nanoparticle catalyst, the problem of instability such as agglomeration unique to nanoparticles can be solved, while the nanoparticles can be used while maintaining high activity.
  • the field of application can be expanded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】 燃料電池電極用触媒中の触媒ナノ粒子として、表面にPtなどを有する金属ナノ粒子を用いる際に、触媒の熱処理による活性表面積の減少を抑制する。 【解決手段】 (a)金属元素を有するナノ粒子と、(b)前記ナノ粒子の表面の一部を被覆するPtなどの層と、を有する触媒ナノ粒子が、クエン酸などのカルボン酸化合物により分散安定化されていることを特徴とするコロイド溶液を提供する。また、前記コロイド溶液を用いて作製した燃料電池電極用触媒並びに燃料電池を提供する。

Description

明 細 書
分散安定化された触媒ナノ粒子含有液
技術分野
[0001] 本発明は、分散安定化された触媒ナノ粒子含有液、及びその応用に関する。
背景技術
[0002] 燃料電池はリチウムイオン二次電池の 10倍以上のエネルギー密度を達成できる可 能性を有し、また燃料を携帯すれば充電不要でどこでも持ち運びができることから携 帯機器の設計思想を大きく変えるものとして期待されている。特にメタノールを燃料と する直接メタノール燃料電池 (DMFC)は小型軽量化、低コストィ匕が見込まれる。また、 携帯電話やノートパソコンに代表される携帯機器に対する長時間駆動の要求を満足 させることのできる電源として、小型でありながら起動性、負荷応答性、安定性に優れ 、燃料を供給する限り発電が可能であるため長時間の使用も可能であるとの特性に 注目も集まって ヽる。
現在、燃料電池、特には DMFC燃料電池の開発において、電極用酸化触媒として 高 、活性を有する材料を開発することが求められて 、る。
Ptを有する触媒ナノ粒子は、水素やアルコールに対して強!ヽ酸化活性を示すこと が知られており、代表的な高分子電解質型燃料電池 (PEFC)電極用触媒に利用され ている。し力しながら、貴金属力もなるこれらの触媒は高価であるため、その使用量は できるだけ少なくすることが求められているので、少量でより高活性な触媒とする必要 がある。前記触媒ナノ粒子をアルコール酸ィ匕触媒として利用する際には、通常、ナノ 粒子中に Ruなどの金属元素を共存させて、反応中間体として生成する一酸化炭素 の Pt表面への被毒を抑制する。
[0003] 前記 PEFC電極用触媒の作製方法には、溶液中で担持体カーボンの存在下で金 属イオンを還元し、担持体カーボン上に触媒ナノ粒子を析出させる方法 (析出法:例 えば、 Physica B 323卷、 124頁(2002年)〔非特許文献 1〕)と、コロイド溶液中の触 媒ナノ粒子を担持体カーボン上に吸着させる方法 (コロイド法:例えば、 Nano Letter 2卷、 235貢(2002年)〔非特許文献 2〕)とがある。コロイド法によると、コロイド溶液調 製時に触媒ナノ粒子の構造制御が可能であるため、精密な設計に基づ!、た触媒作 製が可能である。一方、コロイド法により作製した触媒ナノ粒子表面には、通常、分散 安定化剤が吸着しており、活性表面を露出するために、作製した触媒に熱処理を施 す必要がある。
[0004] コロイド法を用いて作製した触媒中の Pt— Ru系ナノ粒子の構造としては、これまで に、
(1) Ptと Ruとの合金ナノ粒子(例えば Journal of Catalysts 195卷、 383貢(2000年 )〔非特許文献 3〕)と、
(2)表面に Ptを有する Ruナノ粒子 (例えば特開 2002— 231257〔特許文献 1〕 )と が報告されている。特に、表面に Ptを有する Ruナノ粒子は、触媒活性を有する Ptが 粒子表面に集中して存在するため、 Ptと Ruとの合金ナノ粒子に比べて、 Ptの利用効 率が高い。 Ptは、高価な貴金属であるため、触媒中の Pt量が低減できることは、コスト 面、環境面において大きなメリットである。
[0005] 前記の表面に Ptを有する Ruナノ粒子のコロイド溶液作製技術に関して、特開 2002
-231257〔特許文献 1〕では、ポリビュルピロリドンなどのポリマーで分散安定ィ匕した R uナノ粒子の表面に水素を吸着して還元能を付与し、前記 Ruナノ粒子の表面上で Pt イオンを還元することにより、表面に Ptを有する Ruナノ粒子を作製する技術を公開し ている。しかし、前記技術で作製した触媒では、ポリマーが活性表面を被覆している ため、 300°C程度の高温熱処理を水素存在下で施し、ポリマーを分解除去する必要 がある。従って、熱処理が触媒ナノ粒子の凝集を誘起して活性表面積が減少する問 題があった。
[0006] ところで、クェン酸による Ptイオンの還元に関しては、例えば Journal of Physical Che mistry 99卷、 14129頁(1995年)〔非特許文献 4〕に記載がある。この論文には、塩 化白金 (IV)酸をクェン酸で熱還元することにより、 Ptナノ粒子を作製できることが記載 されている。また、クェン酸がナノ粒子表面に吸着して、前記ナノ粒子を分散安定ィ匕 することは、例えばィ匕学工学シンポジウムシリーズ 56卷、 35頁に記載がある。しかし、 ナノ粒子表面に吸着したクェン酸による Ptイオンの還元に関する報告はない。
[0007] 特許文献 1 :特開 2002— 231257号公報 非特許文献 l : Physica B 323卷、 124頁(2002年)
非特許文献 2: Nano Letter 2卷、 235貫(2002年)
非特許文献 3 Journal of Catalysts 195卷、 383頁(2000年)
非特許文献 4 Journal of Physical Chemistry99卷、 14129頁(1995年) 発明の開示
発明が解決しょうとする課題
[0008] 高 、機能を有する触媒ナノ粒子を製造するためには、その製造場である液体媒質 中でも安定的にその生成するナノ粒子を保持しておく(分散安定ィ匕しておく)必要が ある。つまり、凝集などを避けて、ナノ粒子を分散安定ィ匕することが不可欠である。し たがって、これまで表面に Ptなど白金族元素を有する金属ナノ粒子のコロイド溶液を 作製する際には、ナノ粒子の分散安定化剤としてポリマーを用いることが不可欠であ つたが、上記したようにポリマーを用いると、触媒用の金属ナノ粒子を含有しているコ ロイド溶液力も触媒を調製する場合に、ポリマーを分解除去する必要があり、このた め折角得られた高機能触媒ナノ粒子を使用しても、ポリマー分解除去のための熱処 理などにより、活性表面積の減少などを誘起してしまうなどといった問題があった。こ うした問題がなぐし力も安価で且つ簡単、確実な触媒ナノ粒子含有コロイド溶液の 取扱 、技術の開発が求められて 、る。
課題を解決するための手段
[0009] 本発明は、上記課題を克服するために、鋭意研究調査を行った結果、(a)金属元 素を有するナノ粒子と、 (b)前記ナノ粒子の表面の一部または全部を被覆する Pt層 などの触媒活性金属層と、を有する触媒ナノ粒子が、クェン酸などのカルボン酸化合 物によりコロイド溶液で分散安定ィ匕されていることを見出し、さらにクェン酸などの力 ルボン酸化合物で該触媒ナノ粒子を分散安定化してあるコロイド溶液を使用して触 媒を作製すると熱処理による触媒ナノ粒子の活性低減を避けることが可能であること 、そして、こうして得られた触媒を電極に使用した燃料電池は優れた性能を発揮する ことを見出し、本発明を完成した。したがって、本発明は、(a)金属元素を有するナノ 粒子と、 (b)前記ナノ粒子の表面の一部または全部を被覆する Pt層などの触媒活性 元素層と、を有する触媒ナノ粒子力 クェン酸などのカルボン酸ィ匕合物によりコロイド 溶液で分散安定化されていることを特徴とするコロイド溶液を提供する。また、前記コ ロイド溶液を用いて作製した燃料電池電極用触媒並びに燃料電池を提供する。 力べして、本発明は、次の態様を提供している。
〔1〕(a)金属元素を有するナノ粒子と、
(b)前記ナノ粒子の表面の一部または全部を被覆し且つ白金族金属から選択された 金属からなる層と、
を有する触媒ナノ粒子を含有して 、るコロイド溶液にぉ 、て、前記触媒ナノ粒子が力 ルボン酸ィ匕合物により分散安定ィ匕されていることを特徴とするコロイド溶液。
〔2〕上記〔1〕に記載の層(b)力 Pt層であることを特徴とする上記〔1〕に記載のコロイ ド溶液。
〔3〕上記〔1〕の(a)に記載の金属元素力 Ru、 Mo、 W、 Co、 Fe及び Niからなる群から 選択されたものであることを特徴とする上記〔1〕に記載のコロイド溶液。
〔4〕上記〔1〕の(a)に記載の金属元素力 Ruであることを特徴とする上記〔1〕に記載 のコロイド溶液。
〔5〕上記〔1〕に記載のカルボン酸ィ匕合物が、クェン酸であることを特徴とする上記〔1 〕に記載のコロイド溶液。
[0010] 〔6〕 上記〔1〕〜〔5〕のいずれか一に記載のコロイド溶液を使用して触媒ナノ粒子を 担持体に担持せしめてあることを特徴とするナノ粒子含有触媒。
〔7〕 燃料電池電極用触媒であることを特徴とする上記〔6〕に記載の触媒。
〔8〕 上記〔6〕または〔7〕に記載の触媒を使用してあることを特徴とする電池用電極。 〔9〕 上記〔8〕に記載の電極を備えて ヽることを特徴とする燃料電池。
〔10〕上記〔1〕〜〔5〕のいずれか一に記載のコロイド溶液を用いて作製した触媒を電 極用触媒として!/ヽることを特徴とする燃料電池電極。
〔11〕上記〔1〕〜〔5〕のいずれか一に記載のコロイド溶液を用いて作製した触媒を電 極用触媒として!/ヽることを特徴とする燃料電池。
[0011] 〔12〕カルボン酸化合物を分散安定化剤として含有する金属塩含有液をコロイド形成 条件に付して金属元素を有するナノ粒子を形成せしめ、次に白金族金属塩含有液 を添加して、還元処理し、触媒ナノ粒子を含有し且つ前記触媒ナノ粒子がカルボン 酸ィ匕合物により分散安定ィ匕されているコロイド溶液
ここで、触媒ナノ粒子は
(a)金属元素を有するナノ粒子と
(b)前記ナノ粒子の表面の一部または全部を被覆し且つ 白金族金属から選択された金属からなる層と
を有する
を得ることを特徴とするコロイド溶液の製造法。
〔13〕上記〔1〕〜〔5〕のいずれか一に記載のコロイド溶液を触媒用担持体と混合し、 担持体上に触媒ナノ粒子を担持せしめてナノ粒子含有触媒を得ることを特徴とする 触媒の製造法。
〔 14〕上記〔 13〕の触媒の製造法で、高温加熱処理が施されて!/ヽな!ヽことを特徴とす る上記〔13〕に記載の触媒の製造法。
〔15〕高温加熱処理は、おおよそ 250°C以上で施されるものであるが、該加熱処理は 適用されていないことを特徴とする上記〔13〕に記載の触媒の製造法。
発明の効果
本発明の燃料電池電極用触媒が含有する触媒ナノ粒子の表面に吸着しているク ェン酸などのカルボン酸ィ匕合物は、前記触媒ナノ粒子表面への吸着力が弱!、ため、 触媒として利用する際に前記触媒ナノ粒子表面力 脱離する。従って、触媒ナノ粒 子表面を清浄にするための熱処理などは必要なぐ活性表面積の減少を誘起せず に、清浄なかつ高!ヽ機能を保持したままの触媒ナノ粒子表面を有する触媒を得るこ とがでさる。
本発明のその他の目的、特徴、優秀性及びその有する観点は、以下の記載より当 業者にとっては明白であろう。し力しながら、以下の記載及び具体的な実施例等の記 載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のた めにのみ示されて 、るものであることを理解された!、。本明細書に開示した本発明の 意図及び範囲内で、種々の変化及び Z又は改変(あるいは修飾)をなすことは、以 下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明ら かであろう。本明細書で引用されている全ての特許文献及び参考文献は、説明の目 的で引用されているもので、それらは本明細書の一部としてその内容はここに含めて 解釈されるべきものである。
図面の簡単な説明
[0013] [図 1]触媒 A (実施例 1)の模式図である。
[図 2]触媒 B (比較例 1)の模式図である。
符号の説明
[0014] 1 Ruナノ粒子
2 クェン酸分子
3 Pt層
4 担持体カーボン
11 Pt層
12 ポリビュルピロリドン分子
13 Ruナノ粒子
14 担持体カーボン
発明を実施するための最良の形態
[0015] 本発明のコロイド溶液は、カルボン酸ィ匕合物で安定ィ匕された金属ナノ粒子のコロイ ド溶液中において、共存する白金族遷移金属イオンを還元条件に付すことにより、該 金属ナノ粒子の表面の一部または全部に当該白金族遷移金属が担持せしられること により調製されることができる力 該カルボン酸ィ匕合物は前記金属ナノ粒子の表面に 吸着して金属ナノ粒子の安定分散に寄与してコロイド溶液を安定ィ匕し、さらに還元反 応にも好適な作用を及ぼして白金族金属層を該ナノ粒子の表面の一部または全部 の上に形成せしめのに有用である。特に、好ましくは、本発明のコロイド溶液は、タエ ン酸で安定ィ匕された金属ナノ粒子のコロイド溶液中にぉ 、て、前記金属ナノ粒子の 表面に吸着したクェン酸の還元能を用いて Ptイオンを還元し、生成した Pt層を前記 金属ナノ粒子の表面の一部または全部に担持することにより調製する。白金族遷移 金属としては、 Pt, Ru, Ir, Pd, Os, Rh力も選択されたものが挙げられ、それらのうちの 一種又はそれらの混合物であってよい。好ましくは、 Ptが挙げられる。該カルボン酸 化合物としては、モノカルボン酸、ジカルボン酸、トリカルボン酸、テトラカルボン酸な どであってよぐ水酸基、ケト基などの官能基を有するものも包含され、炭素原子 1〜 12個を有するものであってよぐさらに含有される炭素鎖が直鎖状又は分岐鎖状で あってもよい。代表的なものとしては、ヒドロキシカルボン酸ィ匕合物が挙げられ、例え ば、クェン酸が好ましいものとして挙げられる。
[0016] 前記金属ナノ粒子は、白金族遷移金属層表面 (例えば、 Pt層表面)への一酸化炭 素吸着を抑制する効果のある金属元素、 Ru、 Mo、 W、 Co、 Fe、 Niからなる群力 選択 された 1種類以上の被毒抑制元素力 構成されることが好ましい (ただし、白金族遷 移金属層を構成する元素とは通常は異なるものが選択される)。当該金属ナノ粒子 は、金属塩を含んでいる溶液 (例えば、水溶液など)をコロイド形成条件に付して該 金属コロイドを析出せしめることでそれを得ることができる。代表的には上記金属塩の 水溶液を還元試薬存在下に攪拌するなどの方法で金属ナノ粒子を形成できる。また 、前記金属ナノ粒子の粒径は、表面において還元されて担持される白金族遷移金属 層(例えば、 Pt層)の大きさにより異なる力 lnm〜10nmの範囲が好ましい。 lnm以下 では、担持される白金族遷移金属層(例えば、 Pt層)表面に十分な被毒抑制効果を 与えることができないため、好ましくない。また、 10nm以上では、白金族遷移金属層( 例えば、 Pt層)表面の被毒抑制に関与しない金属原子部分が多くなりコストが高くな るため、好ましくない。なお、前記粒径は、電子顕微鏡や X線回折測定により評価す ることがでさる。
[0017] 前記金属ナノ粒子のコロイド溶液は、カルボン酸化合物と金属イオンを有する溶液 中で前記金属イオンを還元することにより調製することができる。また、前記金属ィォ ンの還元は、普通、溶液を攪拌しながら、還元剤を前記溶液に添加することにより行 うことができる。コロイド形成条件は、金属塩含有液を還元条件下に攪拌処理すること で金属イオンが徐々に還元されて金属力 なる微粒子を形成するものであってよ 、。 還元条件は、例えば、水素雰囲気下に溶媒を保持し、水素雰囲気と溶液が接触する 条件を達成することでもよぐあるいは還元試薬を溶液に添加することでもよい。還元 試薬としては、当該分野で当業者に知られたものの中から選択してそれを使用できる 1S 例えば、水素化ホウ素ナトリウム、トリメトキシ水素化ホウ素ナトリウム、シアン化水 素化ホウ素ナトリウム、トリァセトキシ水素化ホウ素ナトリウム、水素化トリ- s-ブチルホウ 素リチウム、水素化トリ- s-ブチルホウ素カリウム、水素化トリシアミルホウ素リチウム、 水素化トリシアミルホウ素カリウム、水素化トリアルコキシホウ素リチウム、水素化トリア ルコキシホウ素カリウム、水素化トリェチルホウ素リチウム、水素化ホウ素亜鉛、水素 化ホウ素カルシウムなどの水素化ホウ素ナトリウムあるいは水素化ホウ素リチウム並び にその関連化合物、水素化アルムニゥムリチウム、そのトリアルコキシ誘導体 LiAlH(0 R)及び水素化ビス (2-メトキシエトキシ)アルムニゥムナトリウムなどの金属水素錯ィ匕合
3
物、ボラン、ジボラン、ボランの THF、ジメチルスルフイド、アミン類などとの錯体、テキ シルボラン、ジシァミルボラン、 9-ボラビシクロ [3.3.1]ノナン、カテコールボラン、イソピ ノカンフエニルボランなどアルキルボラン、ヒドラジン、チォエタノールァミン、ジチォス レイトール、還元型ダルタチオン、システィン等が挙げられる。
[0018] 本発明の好ましい態様では、前記金属ナノ粒子のコロイド溶液は、クェン酸と金属 イオンを有する溶液中で前記金属イオンを還元することにより調製することが好まし い。また、前記金属イオンの還元は、溶液を攪拌しながら、還元剤を前記溶液に添カロ することにより行うことが好ましい。前記還元剤は、前記金属イオンを還元する試薬で あれば特に制約はないが、例として、水素、水素化ホウ素ナトリウム、ジメチルアミンボ ラン、ヒドラジン、ヒドロキシルァミンなどが挙げられる。前記コロイド溶液に適用する溶 媒は、金属塩の溶解性により異なる力 水、メタノールやエタノールなどのアルコール 類、アセトン、メチルェチルケトンのようなケトン類、酢酸ェチルのようなエステル類、 ァセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、ジグリムなど の極性の高い溶媒が好ましい。特に、水や水を混合したアルコールゃケトンのような 親水性有機溶剤が好適に用いうる。また、前記金属イオンの濃度は、金属塩を溶解 させる溶剤によって異なる力 0.001%〜0.1%の範囲が好ましい。 0.001%未満では、形 成される金属ナノ粒子の量が十分でなぐまた、 0.1%を超えると金属ナノ粒子の凝集 体が析出するため好ましくない。一方、クェン酸の濃度は、溶媒により異なる力 0.00 1%〜タエン酸の飽和濃度が好ましい。 0.001%未満では、金属ナノ粒子が十分に分散 安定化されず、凝集体を形成するため好ましくない。また、クェン酸の飽和濃度以上 では、クェン酸の析出があるため好ましくない。
[0019] 力べして、典型的な該コロイド溶液の製造法では、 (1)カルボン酸ィ匕合物(例えば、 クェン酸)を分散安定化剤として含有する金属塩含有液 (例えば、 Ruイオン含有液) をコロイド形成条件に付して金属元素を有するナノ粒子 (例えば、 Ruナノ粒子)を形 成せしめ、次に(2)白金族金属塩含有液 (例えば、 Ptイオン含有液)を添加して、還 元処理し、触媒ナノ粒子を含有し且つ前記触媒ナノ粒子がカルボン酸化合物 (例え ば、クェン酸)により分散安定化されているコロイド溶液 (ここで、触媒ナノ粒子は (a) 金属元素を有するナノ粒子 (例えば、 Ruナノ粒子)と (b)前記ナノ粒子の表面の一部 または全部を被覆し且つ白金族金属から選択された金属からなる層(例えば、 Pt層) とを有する)を得る工程を包含するものであってょ 、。
[0020] 白金(プラチナ)塩としては、 Pt2+、 Pt3+、又は Pt4+を含んでなるものが挙げられ、 PtX
2
、 PtX、 PtX、 [PtA ]X、 M1 [PtX ]、 M1 [PtX Y ]、 M^PtX Y]、 M^PtX Y ]、 M1 [PtX ](X
3 4 6 2 2 4 2 2 2 3 2 2 2 6 及び Yは、いずれも F―、 Cl—、 Br―、 Γ、 OH―、 CN―、 NO―、 N―、 CH COO", SCN―、ァセチ
3 3 3
ルァセトナート、 1/2SO 2、 1/2CO 2—等の陰イオンであり、 M1は、 K、 Naあるいは Η等の
4 3
一価の陽イオンであり、 Aは、 NH又はアミン類である)などの形で表すことができる。
3
具体的【こ ίま、 PtCl、 PtBr、 Ptl、 Pt(CN)、 Pt(SCN)、 PtCl、 PtBr、 Ptl、 PtF、 PtCl、
2 2 2 2 2 3 3 3 4 4
PtBr、 Ptl、 K [PtCl (acac) ]、 H PtClなどが挙げられる。
4 4 2 2 2 2 6
ルテニウム塩としては、 Ru 2+、 Ru3+又は Ru4+を含んでなるもので、 RuX、 RuX、 RuX、
2 3 4
[RuX ]M]、 M][RuX ](Xは、 Cl、 Br等のハロゲン、 NO―、 SOなどの陰イオンであり、 M1
6 3 4 3 4
は、 K、 Na、 Rb、 Csあるいは H等の一価の陽イオンである)などの形で表すことができ る。具体的には、 RuCl、 ((NH ) RuCl、 Ru(SO;)、 RuS、 RuO、 RuO、 Na RuO、 K Ru
3 4 2 6 4 2 2 2 4 2 4 2
O等が例示される。
4
[0021] イリジウム塩としては、 Ir+、 Ir2+、 Ir3+又は Ir4+を含んでなるもので、 IrX、 IrX、 IrX、 IrX
2 3 4
、 [IrX JM1、 MJ[IrX ](Xは、 Cl、 Br等のハロゲン、 SOなどの陰イオンであり、 M1は、 K、
6 3 4 4
Na、 Rb、 Csあるいは H等の一価の陽イオンである。)などの形で表すことができる。具 体的には、 KIr(SO )、 RbIr(SO )、 CsIr(SO )等が例示される。
4 2 4 2 4 2
パラジウム塩としては、 Pd2+を含んでなるもので、通常 Pd-Zの形で表すことができる
2
。 Zは、 Cl、 Br、 I等のハロゲン、アセテート、トリフルォロアセテート、ァセチルァセトネ ート、カーボネート、パーク口レート、ナイトレート、スルフェート、オキサイド等の塩で ある。具体的には、 PdCl、 PdBr、 Pdl、 Pd(OCOCH )、 Pd(OCOCF )、 PdSO、 Pd(N O )、 PdO等が例示される。
3 2
[0022] オスミウム塩としては、 Os+、 Os2+、 Os3+又は Os4+を含んでなるもので、 OsX、 OsX、 O
2 sX、 OsX、 [OsX ]M]、 M'[OsX ](Xは、 Cl、 Br等のハロゲン、 SOなどの陰イオンであり
3 4 6 3 4 4
、 M1は、 K、 Na、 Rb、 Csあるいは H等の一価の陽イオンである)などの形で表すことが できる。具体的には、 OsBr、 OsO、 OsCl、 KOs(SO )、 RbOs(SO )、 CsOs(SO )等が
4 4 4 4 2 4 2 4 2 例示される。
ロジウム塩としては、 Rh3+を含んでなるもので、 RhX、 Rh X、 [RhA ]X、 M1 [RhX ]、 M
3 2 6 6 3 3 6
'[RhX ](Xは、 F、 CI等のハロゲン、 CN、 SOなどの陰イオンであり、 M1は、 K、 Naあるい
4 4
は H等の一価陽イオンであり、 Aは、 NH又はアミン類である。)などの形で表すことが
3
できる。具体的に【ま、 Rh 0、 RhO、 Rh (SO )、 Rh(OH) 、 Rh(NO )、 RhCl、 RhF、 Rh
2 3 2 2 4 3 3 3 3 3 3
CN、 KRh(SO )、 Na RhCl、 NaRh(SO )、 HRh(SO )等が例示される。
3 4 2 2 4 4 2 4 2
Mo、 W、 Co、 Fe、 Niなどの金属の塩も、当該分野あるいは無機化学の分野で知ら れて ヽるものから適宜選択して使用でき、好ましくは水溶性の塩を好適に使用できる 力 それには限定されない。当該塩は、 Cl、 Br、 I等のハロゲンを含有するもの、硫酸 塩、硝酸塩、過酸化ハロゲン酸塩、酢酸塩などの有機酸塩、種々の複塩等が挙げら れる。
[0023] また、前記金属ナノ粒子の表面に担持される Pt層の被覆割合は、所要の触媒活性 を得るために必要な Pt表面積が確保できる割合であれば特に制限はな 、が、前記金 属ナノ粒子の表面積の 5%以上であることが望ましい。また、前記 Pt層の厚さは、前記 金属ナノ粒子が Pt層表面に存在する Pt原子の電子状態に影響を与える厚さであれ ば制約はないが、 lPt原子層の厚さ〜 3nmの範囲が好ましい。 3nm以上であると、前 記金属ナノ粒子が前記 Pt層表面に存在する Pt原子の電子状態に影響を与えなくなり 、 Pt表面の 酸ィ匕炭素被毒抑制効果が得られなくなるため、好ましくない。なお、前 記粒径は、電子顕微鏡や X繰回折測定により評価することができる。
[0024] 本発明の触媒、特には燃料電池電極用触媒は、前記触媒ナノ粒子含有コロイド溶 液を使用して、該触媒ナノ粒子を担持体に担持せしめることで得られる。代表的な方 法では、上記コロイド溶液を触媒用担持体と混合し、担持体上に触媒ナノ粒子を担 持せしめてナノ粒子含有触媒を得ることで達成される。該触媒の製造法では、高温 加熱処理が施されていないという特徴があるものが好ましい。そして、当該高温加熱 処理とは、おおよそ 250°C以上で施されるようなものを指してよぐ例えば、 300°Cの 高温に曝すことをことを包含してよぐさらには水素雰囲気下などの還元条件下でそう した加熱処理をすること、及び Z又はポリマーを分解せしめる工程を意味するもので あってよい。
[0025] 典型的な場合、本発明の燃料電池電極用触媒は、前記触媒ナノ粒子と担持体力 一ボンとから構成される。前記担持体カーボンは、導電性を有するカーボンであれば 特に制限は無いが、前記触媒ナノ粒子を多く吸着する必要があるため、高表面積で あることが好ましい。電極を構成するのに使用される力一ボンとしては、粉状のもの、 繊維状のもの、粒状のものなど適宜目的に応じて使用できるし、それらの混合物も使 用できる。代表的な力—ボンとしては、力—ボン粉、球状力—ボンブラック、鱗片状グ ラフアイト、ピッチ、繊維状炭素、中空の炭素バルーンなどが利用できる。カーボンブ ラックは、様々なものが知られており、粒子径、比表面積、窒素細孔容積、吸油量な どで特徴付けることができ、例として、 VULCAN™ XC72R (Cabot製)、 BLACK PEAR LS™ 2000 (Cabot製)、ケッチェンブラック、ファーネスブラック、アセチレンブラック、活 性炭などが挙げられる。繊維状炭素としては、例えば、等方性ピッチ系のもの、液晶 ピッチ系のもの、 PNA系のものなどが挙げられ、市販されたものの中力も選択して使 用できる。また、本発明の燃料電極用触媒は、熱処理を施さずに、所望の本発明の 効果を得ることができるが、前記触媒ナノ粒子表面の不純物を除去するために、必要 に応じて熱処理を施すことも可能である。その際に、クェン酸はポリマーより低温で熱 分解が進むため、分散安定化剤としてポリマーを用いたときよりも低温の熱処理で済 む。従って、熱処理による触媒の活性表面積の減少は、ポリマーを用いたときより少 ない。
[0026] 本発明で得られた触媒は、常法に従い、パーフルォロスルホン酸 (Perfluorosulfonic
Acid)/PTFEコボリマー(H")型など、パーフルォロカーボン膜などの高分子電解質 膜の基材と配合し、つぎにカーボンペーパーなどに塗布することで電極を構成できる 。電極用高分子電解質膜としては当該分野で当業者に知られたものの中から選択し てそれを使用できるが、例えば、 Nafion™けフイオン™はデュポン社の登録商標)など の商品名で販売されているものを好適に使用できる。力べして得られた成形体などは 、 PEFC燃料電池の電極、例えば、アノードとして好適に使用できる。特には、次世代 モノィル電子機器などのためのメタノール型燃料電池 (DMFC)などに搭載できる。当 該分野で公知の燃料電池の既存のアノードに置き換えて本発明の電極を使用する ことで新たな高性能の燃料電池を構成できる。したがって、当該分野で知られている 構造を有する電池であっても、本発明の触媒を使用しているものはすべて包含され る。
[0027] 以下に実施例及び比較例を掲げ、本発明を具体的に説明するが、この実施例は 単に本発明の説明のため、その具体的な態様の参考のために提供されているもので ある。これらの例示は本発明の特定の具体的な態様を説明するためのもので、本願 で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。本 発明では、本明細書の思想に基づく様々な実施形態が可能であることは理解される べきである。全ての実施例は、他に詳細に記載するもの以外は、標準的な技術を用 いて実施したもの、又は実施することのできるものであり、これは当業者にとり周知で 'β用的なものである。
実施例 1
[0028] 図 1は、 Ruナノ粒子表面に Pt層を担持したクェン酸安定ィ匕触媒ナノ粒子コロイド溶 液を用いて作製した触媒の模式図である。図 1に示した触媒 (触媒 A)は、下記の方 法により作製した。
まず、クェン酸 (和光純薬製) 38 mg、塩化ルテニウム (III) n水和物(和光純薬製) 24 mg、水酸化ナトリウム (和光純薬製) 40 mgを溶解した水溶液 (496 mL)に、水素化ホウ 素ナトリウム (和光純薬製) 38 mgを溶解した水溶液 (4 mL)を加え、 1日攪拌して、タエ ン酸で安定ィ匕した Ruナノ粒子コロイド溶液を調製した。その後、塩化白金 (IV)酸六水 和物(和光純薬製) 47 mgを含む水溶液 (2.5 mL)を加え、窒素パブリングを施した。そ の後、コロイド溶液を前記コロイド溶液の沸点で 5時間還流して、 Pt層を担持した Ru ナノ粒子のコロイド溶液を得た。
[0029] このコロイド溶液中に、 BLACK PEARL 2000 (Cabot製) 27 mgの分散水溶液 (10 mL )を加えて 5時間超音波照射し、遠心分離 Z乾操して触媒 Aを得た。触媒 Aを透過型 電子顕微鏡で観察し、 Ruナノ粒子上に Pt層が担持されていることを確認した。 Ruナノ 粒子の粒径は 5nm程度であり、 Pt層の厚さは 2nm程度であった。また、触媒 A中の Ru の重量分率は 15wt%であり、 Ptの重量分率は 31wt%であった。
[0030] 次に、触媒 A 50 mgと 5% Nafion™ 117溶液(和光純薬製) 600mgとを混合してスラリ 一を作製した。その後、触媒 Aと Nafion™ 117との混合物の乾燥重量が 16mgとなるよ うに、前記スラリーをカーボンペーパー (TGP-H- 060 :東レ製)に塗布して、電極を作 製した。電極の表面積は 3cm2とした。この電極のメタノール酸化電流を評価したところ
、 0.7 V(vs.NHE)において、 108 mAの電流値が得られた。
[0031] 従って、クェン酸の触媒表面力 の脱離効果により、活性表面積の減少を誘起する 熱処理を施すことなぐ清浄な表面を有する、 Ruナノ粒子表面に Pt層を担持した触媒 ナノ粒子、を有する触媒を得ることができた。
〔比較例 1〕
[0032] 図 2は Ruナノ粒子表面に Pt層を担持したポリマー安定ィ匕触媒ナノ粒子コロイド溶液 を用いて作製した触媒の模式図である。ポリマーで広範に触媒表面 (触媒ナノ粒子 表面)が覆われて活性発現が妨げられている様子がわかる。図 2に示した触媒 (触媒 B)は、下記の方法により作製した。
ポリマーであるポリビュルピロリドン(PVP:和光純薬製) 38 mgと、塩化ルテニウム (III) n水和物(和光純薬製) 24 mgと、を溶解したエタノール-水の混合溶液 (496 mL)に、 水素化ホウ素ナトリウム (和光純薬製) 38 mgを溶解した水溶液 (4 mL)を加え、 1日攪 拌して、 PVPで安定ィ匕した Ruコロイド溶液を調製した。限外濾過器により濾別した Ru コロイド粒子を洗浄し、水-エチレングリコール-エタノールの等容積混合液に分散さ せた。この Ruコロイド溶液に水素をパブリングして Ruコロイド粒子に水素を吸着させた 後、窒素で脱気した塩化白金 (IV)酸六水和物 (和光純薬製) 47 mgを含む水溶液 (2.5 mL)を滴下し、 Ruナノ粒子表面に Pt層を担持した PVP安定化触媒ナノ粒子コロイド溶 液を調製した。
[0033] このコロイド溶液中に、 BLACK PEARL 2000 (Cabot製) 27mgの分散水溶液 (10 mL) を加えて 5時間超音波照射し、遠心分離 Z乾燥して触媒 Bを得た。触媒 Bを透過型 電子顕微鏡で観察し、 Ruナノ粒子上に Pt層が担持されていることを確認した。 Ruナノ 粒子の粒径は 5nm程度であり、 Pt層の厚さは 2nm程度であった。また、触媒 B中の Ru の重量分率は 24wt%であり、 Ptの重量分率は 20wt%であった。
[0034] 次に、触媒 B 50mgと 5% Nafion™ 117溶液(和光純薬製) 600mgとを混合してスラリー を作製した。その後、触媒 Bと Nafion™ 117との混合物の乾燥重量が 16mgとなるように 、前記スラリーをカーボンペーパー (TGP— H— 060 :東レ製)に塗布して、電極を作製 した。電極の表面積は 3cm2とした。この電極のメタノール酸化電流を評価したところ、 どの電位においても、ほとんど電流は観測されなかった (0.7V(vs.NHE))において、 10 mA以下)。
産業上の利用可能性
[0035] 本発明によれば、高 ヽ活性を維持して ヽるナノ粒子で構成された高機能な触媒が 提供できるので、機能が優れているにもかかわらず安価な燃料電池用電極などが提 供できる。該高活性且つ高機能なナノ粒子触媒を使用することで、ナノ粒子に特有 な凝集などの不安定性の問題の解決が図られる一方で、高い活性を保持したままで そのナノ粒子を利用できるので、その応用分野を拡大することができる。特には携帯 用電源などの分野で、安価且つ安定的な高容量の電池を提供することが可能となる 本発明は、前述の説明及び実施例に特に記載した以外も、実行できることは明らか である。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従って それらも本件添付の請求の範囲の範囲内のものである。

Claims

請求の範囲
[1] (a)金属元素を有するナノ粒子と、
(b)前記ナノ粒子の表面の一部または全部を被覆し且つ白金族金属から選択され た金属からなる層と、
を有する触媒ナノ粒子を含有して 、るコロイド溶液にぉ 、て、前記触媒ナノ粒子が力 ルボン酸ィ匕合物により分散安定ィ匕されていることを特徴とするコロイド溶液。
[2] 請求項 1に記載の層(b)力 Pt層であることを特徴とする請求項 1に記載のコロイド 溶液。
[3] 請求項 1の(a)に記載の金属元素力 Ru、 Mo、 W、 Co、 Fe及び Niからなる群力 選 択されたものであることを特徴とする請求項 1に記載のコロイド溶液。
[4] 請求項 1の(a)に記載の金属元素が、 Ruであることを特徴とする請求項 1に記載の コロイド溶液。
[5] 請求項 1に記載のカルボン酸ィ匕合物が、クェン酸であることを特徴とする請求項 1 に記載のコロイド溶液。
[6] 請求項 1〜5の!ヽずれか一に記載のコロイド溶液を使用して触媒ナノ粒子を担持体 に担持せしめてあることを特徴とするナノ粒子含有触媒。
[7] 請求項 6に記載の触媒を使用してあることを特徴とする電池用電極。
[8] 請求項 7に記載の電極を備えて 、ることを特徴とする燃料電池。
[9] カルボン酸化合物を分散安定化剤として含有する金属塩含有液をコロイド形成条 件に付して金属元素を有するナノ粒子を形成せしめ、次に白金族金属塩含有液を 添加して、還元処理し、触媒ナノ粒子を含有し且つ前記触媒ナノ粒子がカルボン酸 化合物により分散安定ィ匕されているコロイド溶液
ここで、触媒ナノ粒子は
(a)金属元素を有するナノ粒子と
(b)前記ナノ粒子の表面の一部または全部を被覆し且つ
白金族金属から選択された金属からなる層と
を有する
を得ることを特徴とするコロイド溶液の製造法。 請求項 1〜5の ヽずれか一に記載のコロイド溶液を触媒用担持体と混合し、担持体 上に触媒ナノ粒子を担持せしめてナノ粒子含有触媒を得ることを特徴とする触媒の 製造法。
PCT/JP2006/300193 2005-02-28 2006-01-11 分散安定化された触媒ナノ粒子含有液 WO2006092910A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-052574 2005-02-28
JP2005052574A JP3870282B2 (ja) 2005-02-28 2005-02-28 分散安定化された触媒ナノ粒子含有液

Publications (1)

Publication Number Publication Date
WO2006092910A1 true WO2006092910A1 (ja) 2006-09-08

Family

ID=36940952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300193 WO2006092910A1 (ja) 2005-02-28 2006-01-11 分散安定化された触媒ナノ粒子含有液

Country Status (2)

Country Link
JP (1) JP3870282B2 (ja)
WO (1) WO2006092910A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055229A1 (ja) * 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. 燃料電池用電極触媒ならびにその製造方法
EP2351614A1 (en) * 2008-10-30 2011-08-03 Sony Corporation Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device
JP2013085988A (ja) * 2011-10-13 2013-05-13 Noritake Co Ltd 触媒材料および該触媒材料の製造方法
JP2013094705A (ja) * 2011-10-28 2013-05-20 Noritake Co Ltd カーボン粒子を備えた触媒材料とその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443029B2 (ja) * 2009-03-18 2014-03-19 トヨタ自動車株式会社 コア‐シェル粒子の製造方法
JP2010274235A (ja) * 2009-06-01 2010-12-09 Sony Corp 白金含有触媒及びこれを用いた燃料電池
JP2012041581A (ja) * 2010-08-17 2012-03-01 Sony Corp コアシェル型微粒子及びこれを用いた機能デバイス
JP6203865B2 (ja) 2013-01-08 2017-09-27 アウディ アクチェンゲゼルシャフトAudi Ag 燃料電池の触媒処理
KR101466470B1 (ko) * 2013-03-08 2014-12-02 성균관대학교산학협력단 코어-셀 구조를 갖는 수증기-이산화탄소 혼합개질 반응용 니켈계 촉매 및 이의 제조방법
KR102002208B1 (ko) * 2014-02-04 2019-07-19 타츠타 전선 주식회사 나노콜로이드 입자 담지체의 제조방법 및 그 담지체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224969A (ja) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd 合金触媒の調製方法及び固体高分子型燃料電池の製造方法
JP2003017075A (ja) * 2001-05-23 2003-01-17 Omg Ag & Co Kg 燃料電池用のアノード触媒を調製するプロセスおよびそのプロセスを用いて調製されたアノード触媒

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042825A (ja) * 2000-05-18 2002-02-08 Matsushita Electric Ind Co Ltd 燃料電池用電極触媒、その製造方法および燃料電池
JP2003320249A (ja) * 2002-05-01 2003-11-11 Mitsubishi Heavy Ind Ltd 金属担持触媒並びにその製造方法及びこれを利用する固体高分子電解質型燃料電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224969A (ja) * 2000-02-17 2001-08-21 Mitsubishi Heavy Ind Ltd 合金触媒の調製方法及び固体高分子型燃料電池の製造方法
JP2003017075A (ja) * 2001-05-23 2003-01-17 Omg Ag & Co Kg 燃料電池用のアノード触媒を調製するプロセスおよびそのプロセスを用いて調製されたアノード触媒

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055229A1 (ja) * 2005-11-09 2007-05-18 Shin-Etsu Chemical Co., Ltd. 燃料電池用電極触媒ならびにその製造方法
EP2351614A1 (en) * 2008-10-30 2011-08-03 Sony Corporation Platinum-containing catalyst, process for producing the platinum-containing catalyst, electrode, and electrochemical device
EP2351614A4 (en) * 2008-10-30 2014-11-26 Sony Corp PLATINUM-CONTAINING CATALYST, PROCESS FOR PREPARING THE PLATINUM-CONTAINING CATALYST, ELECTRODE AND ELECTROCHEMICAL DEVICE
JP2013085988A (ja) * 2011-10-13 2013-05-13 Noritake Co Ltd 触媒材料および該触媒材料の製造方法
JP2013094705A (ja) * 2011-10-28 2013-05-20 Noritake Co Ltd カーボン粒子を備えた触媒材料とその製造方法

Also Published As

Publication number Publication date
JP2006231266A (ja) 2006-09-07
JP3870282B2 (ja) 2007-01-17

Similar Documents

Publication Publication Date Title
JP3867232B2 (ja) 触媒ナノ粒子
JP3870282B2 (ja) 分散安定化された触媒ナノ粒子含有液
Long et al. Synthesis and characterization of Pt–Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): Enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures
Singh et al. Synergistic catalysis over bimetallic alloy nanoparticles
JP4401059B2 (ja) 燃料電池用のアノード触媒を調製するプロセスおよびそのプロセスを用いて調製されたアノード触媒
Singh et al. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media
Ulas et al. Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media
Crisafulli et al. On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium
Bharti et al. Surfactant assisted synthesis of Pt-Pd/MWCNT and evaluation as cathode catalyst for proton exchange membrane fuel cell
Jamil et al. Synthesis of hollow Pt-Ni nanoboxes for highly efficient methanol oxidation
Boone et al. Pt–Pd and Pt–Pd–(Cu or Fe or Co)/graphene nanoribbon nanocomposites as efficient catalysts toward the oxygen reduction reaction
Wang et al. Low temperature and surfactant-free synthesis of Pd2Sn intermetallic nanoparticles for ethanol electro-oxidation
Yang et al. The PtPdAg/C electrocatalyst with Pt-rich surfaces via electrochemical dealloying of Ag and Pd for ethanol oxidation
Huang et al. A facile approach for preparation of highly dispersed platinum-copper/carbon nanocatalyst toward formic acid electro-oxidation
Wang et al. Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions
Li et al. Promotional effects of trace Bi on its highly catalytic activity for methanol oxidation of hollow Pt/graphene catalyst
El-Khatib et al. Core–shell structured Cu@ Pt nanoparticles as effective electrocatalyst for ethanol oxidation in alkaline medium
JP5204714B2 (ja) 合金微粒子およびその製造と利用
Choudhary et al. Enhancement of ethanol electrooxidation in half cell and single direct ethanol fuel cell (DEFC) using post-treated polyol synthesized Pt-Ru nano electrocatalysts supported on HNO3-functionalized acetylene black carbon
Cheng et al. Core–shell structured PtRuCox nanoparticles on carbon nanotubes as highly active and durable electrocatalysts for direct methanol fuel cells
Cheng et al. Enhanced activity and stability of core–shell structured PtRuNix electrocatalysts for direct methanol fuel cells
Sharma et al. Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction
Ahmad et al. Rational one-pot synthesis of ternary PtIrCu nanocrystals as robust electrocatalyst for methanol oxidation reaction
Yang et al. Pt1 (CeO2) 0.5 nanoparticles supported on multiwalled carbon nanotubes for methanol electro-oxidation
Safdar Hossain et al. Recent advances in anode electrocatalysts for direct formic acid fuel cells–part i–fundamentals and Pd based catalysts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711542

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711542

Country of ref document: EP