WO2006092892A1 - Method of evaluating fertilizer qualities, appratus for evaluating fertilizer qualities and program for evaluating fertilizer qualities - Google Patents

Method of evaluating fertilizer qualities, appratus for evaluating fertilizer qualities and program for evaluating fertilizer qualities Download PDF

Info

Publication number
WO2006092892A1
WO2006092892A1 PCT/JP2005/021580 JP2005021580W WO2006092892A1 WO 2006092892 A1 WO2006092892 A1 WO 2006092892A1 JP 2005021580 W JP2005021580 W JP 2005021580W WO 2006092892 A1 WO2006092892 A1 WO 2006092892A1
Authority
WO
WIPO (PCT)
Prior art keywords
activity
fertilizer
quality evaluation
index
fertilizer quality
Prior art date
Application number
PCT/JP2005/021580
Other languages
French (fr)
Japanese (ja)
Inventor
Eiichi Tamiya
Miyuki Chikae
Original Assignee
Japan Advanced Institute Of Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute Of Science And Technology filed Critical Japan Advanced Institute Of Science And Technology
Publication of WO2006092892A1 publication Critical patent/WO2006092892A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH

Definitions

  • Fertilizer quality evaluation method Fertilizer quality evaluation method, fertilizer quality evaluation device, and fertilizer quality evaluation program
  • the present invention relates to a fertilizer quality evaluation method, a fertilizer quality evaluation apparatus, and a fertilizer quality evaluation program for evaluating fertilizer quality such as the degree of maturity of compost.
  • composting of organic waste has attracted attention.
  • Composting organic waste is an effective way to prevent energy loss.
  • compost made from kitchen waste has been reported to be less contaminated with heavy metals and other toxic substances with high nitrogen, phosphorus and potassium contents. In this way, organic waste can become high-quality compost, so it is expected to build a composting system for organic waste.
  • the quality of fertilizers such as compost is determined by the content of active ingredients, maturity, toxicity, etc., and quality evaluation is important in considering the compost process and the application of the product fertilizer.
  • the crop is severely nitrogen starved and oxygen is consumed near the crop roots to become deficient as it is consumed to decompose the compost.
  • the application of immature compost also causes the disadvantage of inhibiting growth of plants by producing growth inhibitory substances such as ammonia, ethylene oxide, and various organic acids.
  • growth inhibitory substances such as ammonia, ethylene oxide, and various organic acids.
  • Germination index (hereinafter referred to as GI) method is one of the methods for assessing maturity using plant responses, and is the most sensitive parameter for assessing compost toxicity and maturity.
  • GI Germination index
  • a compost water extract immediately after extraction is added to a plastic petri dish with filter paper, and seeds of plants such as komatsuna are sown on the filter paper, and in a dark place at 26 ° C.
  • a visibility cultivation tank having an open top, a landing member for germinating seeds of a plant accommodated in the cultivation tank, and a germination from the landing member while being accommodated in the cultivation tank.
  • a supporting substrate provided in parallel with a cylindrical growth holder having visibility for growing plants, and a flooring member is provided at a lower portion of the growth holder and is provided in a visibility cultivation tank.
  • a plant growth measuring instrument provided with a scale for measuring the degree of growth of a plant growing in a growth holder (see, for example, Patent Document 1).
  • a germination test can be performed with a simple operation even when the number of samples is large. It is said that the maturity of organic matter such as compost can be judged.
  • Non-Patent Document 1 Shinichiro Kanazawa, Use of Organic Resources in Agricultural Lands 1st Report Compost Maturity Test, Regeneration and Utilization, Vol.27 No.102 (2004)
  • Patent Document 1 JP 2004-201586
  • the present invention has been proposed in view of such conventional circumstances, and it is possible to estimate the germination index of fertilizer with high accuracy, for example, at the site of composting organic waste.
  • An object of the present invention is to provide a fertilizer quality evaluation method, a quality evaluation apparatus, and a fertilizer quality evaluation program capable of quickly, simply and accurately evaluating the quality of fertilizer such as maturity.
  • the inventors of the present invention have made studies over a long period of time in order to achieve the above-described object. As a result, we obtain knowledge that there is a good correlation between the germination index as an index to evaluate the maturity of fertilizer and the specific physico-chemical index and specific enzyme activity of fertilizer water extract It reached to. The present invention has been completed based on such findings.
  • the fertilizer quality evaluation method acquires at least two types of information selected from the physicochemical index and enzyme activity of the fertilizer extract to be evaluated, and stores the information as a predetermined value.
  • the germination index of the fertilizer is estimated by applying to a calculation formula
  • the fertilizer quality evaluation apparatus is an information collection device that acquires at least two types of information selected from the physicochemical index and enzyme activity of the extract of the fertilizer to be evaluated. And a control unit that estimates the germination index of the fertilizer by applying the information to a predetermined calculation formula.
  • a physicochemical index such as pH and ammonium ion concentration of an extract of fertilizer
  • an enzyme that represents the activity of microorganisms
  • the germination index of the fertilizer can be estimated with high accuracy. Since the germination index expresses the maturity of the fertilizer with high sensitivity, the maturity of the fertilizer can be accurately grasped by the present invention.
  • Measurement of physicochemical indicators such as pH measurement, ammonia ion concentration measurement, and enzyme activity measurement take less time for measurement compared to germination tests, etc. The assessment of maturity is done quickly and easily.
  • the fertilizer quality evaluation program acquires information for acquiring at least two types of information selected from the physical and physiological indices and enzyme activity of the fertilizer extract to be evaluated.
  • An input function and a control function for estimating the germination index of the fertilizer by applying the information to a predetermined calculation formula are realized in a computer.
  • the computer in order to make the computer estimate the germination index of the fertilizer, the computer can quickly and easily determine the germination index as an index of the fertilizer maturity. It is possible to estimate with high accuracy and evaluate the quality of fertilizer.
  • the invention's effect is possible to estimate with high accuracy and evaluate the quality of fertilizer.
  • the germination index of the fertilizer is estimated with high accuracy by measuring the physical and physiological indices such as the pH and ammonium ion concentration of the fertilizer extract, the enzyme activity, etc. Since the degree of maturity can be evaluated, it is possible to provide a fertilizer quality evaluation method capable of evaluating fertilizer quality quickly, easily and with high accuracy.
  • the fertilizer quality evaluation apparatus of the present invention it is possible to estimate the germination index, which is an index of the fertilizer maturity, with high accuracy, and it is possible to evaluate the fertilizer quality quickly, easily and with high accuracy. Is possible.
  • a high-quality fertilizer can be stably supplied in a composting system that composts city waste and the like.
  • the fertilizer quality evaluation program of the present invention since the fertilizer quality evaluation can be executed by a computer, the fertilizer quality can be evaluated quickly, easily and with high accuracy. Can do.
  • FIG. 1 is a schematic diagram showing an example of a fertilizer quality evaluation apparatus of the present invention.
  • FIG. 2 is a characteristic diagram showing the GI change over time of fertilizer produced by the deposition method.
  • FIG. 3 is a characteristic diagram showing the GI change with time of compost produced by the reactor method.
  • FIG. 4 is a characteristic diagram showing the relationship between actual GI and estimated GI in deposition method A.
  • FIG. 5 is a characteristic diagram showing the relationship between actual GI and estimated GI in deposition method B.
  • FIG. 6 is a characteristic diagram showing the relationship between actual GI and estimated GI in reactor method A.
  • FIG. 7 is a characteristic diagram showing the relationship between actual GI and estimated GI in reactor method B.
  • the germination index of the fertilizer to be evaluated is estimated, the maturity of the fertilizer is evaluated using the estimated germination index as an index, and the quality of the fertilizer is evaluated.
  • the fertilizer refers to compost produced by fermenting or rotting organic waste containing organic matter, organic fertilizer produced by drying raw materials such as fish meal, soil improvement material, etc.
  • the present invention is applicable to all of these fertilizers.
  • the present invention is also applicable to fertilizers that are in the process of production, such as immature compost.
  • raw materials for compost and fertilizer raw household wastes and facilities, food waste, food residues from food processing factories, pruned branches of wood, rice chaff, cows, pigs, chickens, etc. It is not particularly limited, such as livestock manure and husk (bark compost raw material), and any conventionally known waste can be used.
  • Germination index (hereinafter referred to as GI) is a measure of fertilizer maturity based on the degree of germination and growth of plant seeds, and is an index of fertilizer maturity. .
  • GI measures the number of seeds and root length germinated by germination tests, and the number of seeds and root length germinated in the control plot (distilled water), and applies each data to the following formula (1). Is required.
  • germination tests for example, immediately after extraction on a petri dish with filter paper. Add 10 ml of fertilizer water extract or water (distilled water), sow seeds of plants such as Komatsuna on filter paper, incubate in dark place at 26 ° C for 48 hours, and then determine the number of germinated seeds and the length of roots. taking measurement.
  • calculating GI in addition to the root length, stem length or the like may be used.
  • Germination rate of measurement sample X average root length X 100.
  • Germination rate of control plot X Average root length of control plot
  • the GI of the fertilizer to be evaluated is estimated in order to evaluate the maturity of the fertilizer. Prior to the estimation of the GI, an expression necessary for the estimation of the GI is obtained in advance as described below. Wait
  • a fertilizer similar to the fertilizer to be evaluated is prepared separately, an appropriate number is sampled at an appropriate time interval with this similar fertilizer force, and an extract is prepared by, for example, water extraction.
  • the fertilizer similar to the fertilizer to be evaluated means a fertilizer manufactured using a raw material substantially the same as the raw material of the fertilizer to be evaluated. From the viewpoint of improving the estimation accuracy of GI, it is preferable to use a raw material having the same composition as the fertilizer to be evaluated. However, due to the nature of the raw material (waste), it is difficult to accurately reproduce the raw material composition. Therefore, the raw material substantially the same as the raw material of the fertilizer to be evaluated may be, for example, a raw material having the same source as the raw material of the fertilizer to be evaluated.
  • a raw material that is substantially the same as the raw material for the fertilizer to be evaluated is, for example, a match made with the species of livestock such as cow dung, pig dung, chicken dung, etc. It is. Furthermore, when the fertilizer raw material to be evaluated is raw garbage, it is preferable to match the raw material of the fertilizer to be evaluated with the presence or absence of fish meal.
  • a fertilizer manufactured by a manufacturing method substantially similar to the fertilizer to be evaluated is preferable to use as a similar fertilizer.
  • the fertilizer production method is preferably the same as the fertilizer to be evaluated, but may be slightly different.
  • physicochemical index of the fertilizer extract various kinds of physicochemical indices of conventionally known aqueous solutions can be mentioned, for example, pH, ammonium ion concentration, glass Examples include acid ion concentration, electrical conductivity, temperature, oxidation-reduction potential, etc. Among them, it is desirable to employ pH and ammonium ion concentration as physical physical indicators.
  • the enzyme activity it is preferable to employ the enzyme activity of an enzyme selected from the group of enzymes representing the activity of microorganisms capable of targeting the activity of any conventionally known enzyme.
  • the enzyme activity representing the activity of microorganisms include protease activity, amylase activity, cellulase activity, alkaline phosphatase activity, acid phosphatase activity, phosphohydrase activity, esterase activity, esterase lipase activity, lipase activity, leucine arylamidase activity.
  • Noryalylamidase activity Cystine arylamidase activity, Trypsin activity, Chymotrypsin activity, a-galatatosidase activity, ⁇ -galactosidase activity, ⁇ -dalclonidase activity, a-darcosidase activity, ⁇ -darcosidase activity, ⁇ acetyl- ⁇ -darcosamini Examples include dase activity, at mannosidase activity, and a fucosidase activity.
  • the enzyme activity an optimum one may be selected from the above according to the type of fertilizer, and it is preferable to select acid phosphatase activity and esterase activity, especially when evaluating the quality of compost. Good.
  • the relationship between the acquired GI and information such as a physicochemical index and enzyme activity is analyzed. Specifically, by performing multiple regression analysis on the relationship between the acquired GI and the corresponding information such as physicochemical indicators and enzyme activities, GI is the target variable, and the physicochemical indicators and enzyme activity are explanatory variables. The multiple regression equation is obtained. It is preferable to select a large number of parameters from among the physicochemical indicators listed above and the enzyme activities listed above as parameters for the analysis, but at least two of these parameters are preferable. Should be selected.
  • the GI of the fertilizer to be evaluated is estimated and the maturity is evaluated as follows.
  • the fertilizer to be evaluated is extracted using, for example, water to prepare an extract.
  • the prepared extract is subjected to at least two kinds selected from measurement of physicochemical index and measurement of enzyme activity. Get at least two types of information to be selected. That is, information on parameters adopted in the multiple regression equation is acquired.
  • the fertilizer to be evaluated Estimate GI.
  • the obtained estimated value of GI shows a good correlation with the measured value of GI, so the fertilizer maturity is evaluated using this estimated GI as an index.
  • GI 50% is the standard for determining whether or not the fertilizer is fully ripened. The standard value of GI should be determined appropriately according to the type of fertilizer!
  • the fertilizer quality evaluation method of the present invention as described above, the maturity of the fertilizer to be evaluated can be evaluated with high accuracy, and the quality of the fertilizer can be evaluated with high accuracy.
  • the measurement time for physicochemical indicators and enzyme activities is short, and GI can be estimated based on information that can be obtained by simple operations, and there is no need to perform a germination test for each evaluation. In other words, the labor and time required for measurement are drastically reduced, and the fertilizer maturity can be evaluated quickly and easily. Therefore, according to the present invention, it is possible to evaluate the quality of fertilizers quickly, simply, and with high accuracy at, for example, a composting site, and contribute to the supply of high-quality fertilizers.
  • the present invention can be applied to quality evaluation of various types of fertilizers regardless of raw materials and production methods by appropriately changing the coefficient of the multiple regression equation.
  • the fertilizer quality evaluation program of the present invention is a program for controlling the operation of a computer and performing the quality evaluation of the fertilizer as described above.
  • the pH and ammonia for the fertilizer extract to be evaluated are as follows.
  • Physicochemical indicators such as the concentration of niobium ions, enzyme activity such as enzyme activity representing the activity of microorganisms
  • Information acquisition input function that acquires at least two types of information selected, and the acquired information is applied to a predetermined calculation formula
  • This is a program that allows a computer to realize a control function for estimating the germination index of fertilizer. With a powerful program, the fertilizer germination index can be automatically estimated by a computer, and the quality of the fertilizer can be grasped quickly, easily and with high accuracy.
  • the fertilizer quality evaluation device 1 includes an information acquisition / input unit 2 for obtaining various information such as compost, physicochemical indicators and fertilizer extracts, enzyme activity, etc., a control unit 3, a program executed by the control unit 3, It basically includes a storage unit 4 in which various data such as multiple regression equations necessary for GI value estimation are stored.
  • the fertilizer quality evaluation device 1 includes a display and the like, and includes a display unit 5 that displays information acquired by the information acquisition input unit 2 and results calculated by the control unit 3.
  • the information acquisition input unit 2 will be described by taking as an example a configuration that can acquire information on pH, ammonia ion concentration, acid phosphatase activity, and esterase activity.
  • the invention is not limited to these, and it is needless to say that it is possible to obtain information on at least two of the physicochemical indicators and enzyme activities as described above! /.
  • the information acquisition input unit 2 includes, for example, a pH measurement unit 2a that performs pH measurement on the fertilizer extract, an ammonium ion concentration measurement unit 2b that performs measurement of the ammonium ion concentration, and a second unit that performs measurement of acid phosphatase activity.
  • the first enzyme activity measurement unit 2c and the second enzyme activity measurement unit 2d that measure esterase activity are also configured to obtain information on the pH, ammonia concentration, enzyme activity, etc. of the fertilizer extract.
  • the pH measuring unit 2a, the ammonium ion concentration measuring unit 2b, the first enzyme activity measuring unit 2c, and the second enzyme activity measuring unit 2d are respectively a conventionally known pH sensor, ammonium ion concentration sensor, and enzyme.
  • each measurement unit may be externally attached to the fertilizer quality evaluation apparatus 1.
  • information The acquisition unit 2 may be configured by an input device such as a keyboard. In this case, information on pH, ammonium ion concentration, acid phosphatase activity, esterase activity, etc. is measured separately using a test paper such as a pH test paper, and input via the input device of the information acquisition unit 2. Is done.
  • the control unit 3 and the storage unit 4 are configured by a computer device including a CPU and a storage device such as a ROM, a RAM, and a magnetic disk, for example, and control each unit of the fertilizer quality evaluation device 1.
  • the control unit 3 stores in advance in the storage unit 4 and reads out a program, a predetermined calculation formula, etc. as necessary, and at the same time the pH of the fertilizer extract obtained by the information acquisition input unit 2, the ammonia ion concentration, Apply information about enzyme activity, etc., and calculate.
  • the calculation formula is, for example, a measurement variable GI of an extract of a fertilizer similar to the target fertilizer to be evaluated as a target variable, and at least two kinds selected from pH, ammonia ion concentration, and enzyme activity column as explanatory variables. It is a regression equation.
  • the information acquisition unit 2 is composed of a pH sensor, an ammonia ion concentration sensor, an enzyme activity sensor, and performs both measurement and information acquisition of the pH, ammonium ion concentration and enzyme activity of the fertilizer extract. Take as an example.
  • the information acquisition input unit 2 is immersed, for example, in the fertilizer extract to be evaluated, and various measurements are performed in the information acquisition input unit 2 to determine pH, ammonia ion concentration, acid phosphatase activity, esterase activity. Get at least two types of information to be selected.
  • the acquired information is converted into an electric signal or the like and sent to the control unit 3 or the storage unit 4.
  • control unit 3 reads, for example, a multiple regression equation stored in the storage unit 4 in advance, and calculates the estimated GI of the fertilizer to be evaluated by applying the information and performing calculation.
  • the estimated GI calculated by the control unit 3 and the maturity evaluation based on the estimated GI are displayed, for example, on the display unit 5 or the like.
  • the fertilizer quality evaluation apparatus 1 the GI can be estimated without performing a germination test, and the quality such as the maturity of the fertilizer can be evaluated quickly and accurately with a simple operation.
  • the fertilizer quality evaluation device 1 can be used as a growing device used for germination tests when obtaining GI. There is an advantage that it is small in size. Furthermore, since the fertilizer quality evaluation apparatus 1 is easier to maintain than the growing equipment used in the germination test, it is possible to evaluate the quality of the fertilizer at a low cost.
  • compost was made using the pruned branches of park trees and roadside trees and school meals left from Kaga Pass in Ishikawa Prefecture as raw materials. School lunches were collected from junior high schools in the city. In addition to the pruned branches and rice husks made into chips in these school meal residues so that the water content is about 65%, commercially available fermentation-promoting microorganisms (A: uron C or B: Uchijou) are mixed, The mixture was mechanically stirred at 65 ° C for 3 hours. The mixture was then processed in two ways. One is piled up in the yard and stirred twice a week (deposition method). The other is a method using a reactor manufactured by Mizushima Bussan Co., Ltd. (reactor method).
  • the moisture content was also calculated by the amount of decrease after compost was heated at 105 ° C for 5 hours.
  • Total carbon and total nitrogen are measured with an automatic elemental analyzer (trade name Vario EL ⁇ ), and the CZN ratio is From the above.
  • the compost water extract was prepared by filtering the compost with 10 times the amount of distilled water per dry weight, stirring at 120 rpm for 30 minutes, and then filtering. The pH and electrical conductivity of the extract were immediately measured. The extract was stored at -20 ° C. The ammonium ion concentration and nitrate ion concentration of the extract were measured by a colorimetric method.
  • Protease, amylase and cellulase activities in the water extract were detected according to the following method.
  • Protease 2 g agar, 0.1 lg sodium azide is dissolved in 0.1 M phosphate buffer (PH 7.0) by heating, and then ImL 1M calcium chloride, lOmL 1% casein added. 15 mL of these mixtures were cooled in a 9 cm diameter plastic petri dish.
  • Amylase 0.8 g soluble starch and 2 g agar were dissolved in lOOmL 1.OM acetate buffer (pH 5.0). It was put into a petri dish and cooled as described above.
  • a hole with a diameter of 3 mm was formed in each agar plate of (1) to (3) with a cork borer, and 10 / z L of a compost water extract was dropped into the hole and incubated at 55 ° C for 18 hours. After incubation, protease activity could be confirmed by observing a clear halo around the sample hole. Amylase activity was visualized by adding 0.2% potassium iodide and 0.02% iodine solution, and cellulase activity by adding 0.1% Congo red solution followed by washing to visualize the halo around the sample hole. The diameter of each mouth was measured with a grip.
  • the measured enzymes were alkaline phosphatase, acid phosphatase, phosphohydrase, esterase, esterase monolipase, lipase, leucine amylamidase, nornarlylamidase, cystine arylamidase, trypsin, chymo Trypsin, a galactosidase, ⁇ -galactosidase, ⁇ -glucuronidase, ⁇ -darcosidase, / 3-darcosidase, N-acetylyl ⁇ -darcosaminidase, a mannosidase and ⁇ -fucosidase.
  • Enzyme activity was achieved by adding 60 ⁇ L of reagent to a well coated with a specific chromogenic substrate for each enzyme, incubating at 36 ° C for 4 hours, and then stopping the reaction with reagents A and B to cause color development. . The enzyme activity was judged by visual comparison of the color density with the attached color chart.
  • GI was calculated according to the above equation (1) proposed by Zucconi et al. (1981). About 50% of GI is a measure of the presence or absence of inhibition of the compost growth. Since it is known that the storage condition of the sample affects the parameter value of the maturity assessment, in this experiment, a compost extract was prepared immediately after sampling, and the extract immediately after extraction was used for the germination test. It was.
  • Figure 2 shows the GI change in the deposition method
  • Figure 3 shows the GI change in the reactor method.
  • GI and other parameters moisture content, temperature, pH, electrical conductivity, ammonia ion concentration, nitrate ion concentration, carbon and nitrogen content, CZN ratio, 22 enzyme activities
  • a linear multiple regression analysis was performed by the stepwise method using the famous statview. The correlation between each parameter was also analyzed using the same software.
  • GI measured value obtained by Komatsuna germination test and corresponding water content, temperature, pH, electrical conductivity, ammonium ion concentration, nitrate ion concentration, carbon content, nitrogen content, CZN
  • the relationship between the ratio and the activity of the 22 enzymes was analyzed using stepwise linear multiple regression analysis. The number of samples was 159 samples for all composting systems. Table 2 shows the parameters selected in the multiple regression analysis and their characteristics. The coefficient of determination R 2 in the multiple regression model is 0.896, I that these parameters force estimated GI is that good agreement with the measured values ChikaraTsuta.
  • the coefficient of determination R 2 in the multiple regression model was 0.791.
  • Figures 4 to 7 show the correlation between the GI, which is estimated for these parameter forces, and the actual GI in each composting system.
  • Pearson's correlation coefficients (r) for deposition method A, deposition method B, reactor method A, and reactor method B were 0.96, 0.93, 0.84, and 0.89, respectively.
  • the slope of the regression equation was about 1 in the sedimentation method. In the force reactor method, both A and B had a smaller force than the deposition method. When estimating GI, it may be more effective to perform analysis for each composting method.
  • the four parameters selected this time are not substantially correlated with GI by themselves (ri, 0.369, 0.019, 0.047, 0.321, respectively). For this reason, the GI cannot be estimated by the power of these norms themselves. However, GI can be estimated by combining these, and multiple regression analysis was effective in selecting parameters.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

In a site of, for example, composting organic wastes, the germination index of a fertilizer can be accurately estimated and the qualities of the fertilizer such as the extent of maturation are quickly, conveniently and highly accurately evaluated. At least two factors selected from the physicochemical indexes and enzymatic activities of an extract of a fertilizer to be evaluated are obtained. Then, these factors are assigned to definite numerical formula to estimate the germination index of the fertilizer. The definite numerical formula as described above is a multiple regression formula obtained by a multiple-regression analysis on the germination indexes and the above-described factors of fertilizers similar to the fertilizer to be evaluated. The physicochemical index(es) as described above mean at least one factor selected from the group consisting of pH, ammonium ion concentration, nitrate ion concentration, electrical conductivity, temperature and redox potential. The enzymatic activities as described above are enzymatic activities indicating microbial activities.

Description

明 細 書  Specification
肥料品質評価方法、肥料品質評価装置及び肥料品質評価プログラム 技術分野  Fertilizer quality evaluation method, fertilizer quality evaluation device, and fertilizer quality evaluation program
[0001] 本発明は、堆肥の腐熟度等、肥料の品質を評価するための肥料品質評価方法、 肥料品質評価装置及び肥料品質評価プログラムに関する。  The present invention relates to a fertilizer quality evaluation method, a fertilizer quality evaluation apparatus, and a fertilizer quality evaluation program for evaluating fertilizer quality such as the degree of maturity of compost.
背景技術  Background art
[0002] 従来、廃棄物処理としては焼却処理や埋め立て処理が一般的に実施されてきたが 、近年環境問題が盛んに議論されていることから、廃棄物の新しい物やエネルギー 等へのリサイクル '再利用が進みつつある。一方で、台所の生ごみや食品加工工場 の残渣等の排出量はますます増大する傾向にあり、このような都市生活の副生物で ある有機性廃棄物をいかに処理するかが大きな問題となっている。  [0002] Conventionally, incineration treatment and landfill treatment have been generally carried out as waste treatment. However, since environmental problems have been actively discussed in recent years, recycling of waste to new materials, energy, etc. Reuse is progressing. On the other hand, the amount of kitchen waste and food processing factory residues is increasing, and how to deal with organic waste, a by-product of city life, is a major issue. ing.
[0003] このような状況から、有機性廃棄物の堆肥化が注目 ^^めて 、る。有機性廃棄物 の堆肥化は、エネルギーのロスを防ぐ方法として有効である。また、台所ごみ等から 作られる堆肥は、窒素、りん、カリウムの含量が高ぐ重金属やその他の毒性物質に よる汚染が少ないことが報告されている。このように、有機性廃棄物は良質な堆肥と なり得るため、有機性廃棄物の堆肥化システムの構築が各方面力 期待されている [0003] Under such circumstances, composting of organic waste has attracted attention. Composting organic waste is an effective way to prevent energy loss. In addition, compost made from kitchen waste has been reported to be less contaminated with heavy metals and other toxic substances with high nitrogen, phosphorus and potassium contents. In this way, organic waste can become high-quality compost, so it is expected to build a composting system for organic waste.
1S リサイクルの巿場をさらに開発し、拡大してゆくためには、供給する堆肥の品質の 安定化や、堆肥化システムがコスト的に見合うものであること等が必須といえる。 In order to further develop and expand the 1S recycling plant, it is essential to stabilize the quality of the compost supplied and to ensure that the composting system is suitable for cost.
[0004] ところで、堆肥等の肥料の品質は、有効成分の含量、腐熟度や毒性等によって決 まり、品質評価はコンポストプロセスと生成物である肥料の応用を考える上で重要で ある。例えば、未熟な堆肥が施用された場合、作物は重篤な窒素飢餓状態となり、作 物の根の付近では酸素が堆肥の分解に消費されて欠乏状態となる力もである。さら に、未熟堆肥の施用は、アンモニア、エチレンオキサイド、各種有機酸などの生育阻 害物質を生じて植物の生育を阻害するという不都合も引き起こす。以上のように、未 熟な堆肥の出荷を防止するためにも、堆肥が充分に腐熟した力否かの腐熟度を評 価し、堆肥の品質を迅速且つ簡便に評価する技術の確立が強く求められている。  [0004] Meanwhile, the quality of fertilizers such as compost is determined by the content of active ingredients, maturity, toxicity, etc., and quality evaluation is important in considering the compost process and the application of the product fertilizer. For example, when immature compost is applied, the crop is severely nitrogen starved and oxygen is consumed near the crop roots to become deficient as it is consumed to decompose the compost. Furthermore, the application of immature compost also causes the disadvantage of inhibiting growth of plants by producing growth inhibitory substances such as ammonia, ethylene oxide, and various organic acids. As described above, in order to prevent the shipment of immature compost, it is strongly established to establish a technology to evaluate the degree of maturity of compost and whether it is sufficiently mature and to evaluate the quality of compost quickly and easily. It has been demanded.
[0005] そのため、これまでに様々な腐熟度の評価方法が提案されて!、る。例えば、現場で 行える腐熟度の評価方法として、外観による評点法、品温 (堆積物の温度)評価法、 色調評価法、臭気評価法、手触り評価法、ポリ袋評価法、ミミズ評価法等が提案され ている (例えば、非特許文献 1等参照)。また、化学分析を利用する腐熟度の評価方 法としては、 CZN比、硝酸検出法、 BOD,COD評価法、還元糖割合評価法、腐植 の色彩色差評価法、陽イオン交換 (CEC)法、円形濾紙クロマトグラフィー法、ゲルク 口マトグラフィ一法等がある(例えば、非特許文献 1等参照)。し力しながら、いずれの 評価法も、適用可能な堆肥が限られる、評価のための作業が煩雑である等の問題を 有し、また、腐熟度の評価精度の面では未だ不十分なものである。 [0005] Therefore, various methods for evaluating maturity have been proposed so far! For example, on site Appropriate maturity evaluation methods have been proposed, such as an external scoring method, product temperature (sediment temperature) evaluation method, color tone evaluation method, odor evaluation method, touch evaluation method, plastic bag evaluation method, and earthworm evaluation method. (For example, refer nonpatent literature 1 etc.). In addition, methods for evaluating maturity using chemical analysis include CZN ratio, nitric acid detection method, BOD, COD evaluation method, reducing sugar ratio evaluation method, humus color difference evaluation method, cation exchange (CEC) method, Examples include a circular filter paper chromatography method and a gel mouth matography method (for example, see Non-Patent Document 1). However, each of the evaluation methods has problems such as limited applicable compost and complicated evaluation work, and is still insufficient in terms of accuracy of maturity evaluation. It is.
[0006] また、腐熟度評価方法として、植物の応答を利用した方法も提案されている。植物 の応答を利用した評価方法は、堆肥の腐熟度の検定とその有機肥料としての評価に 非常に有効である。発芽指数 (germination index:以下、 GIと称する)法は、植物の応 答を利用した腐熟度の評価方法の 1つであり、堆肥の毒性及び腐熟度を評価するに あたって最も感度の高いパラメータの 1つとして知られている。 GIは発芽試験により求 められ、具体的には、濾紙を敷いたプラスチックシャーレに抽出直後の堆肥水抽出 液を添加し、濾紙上にコマツナ等の植物の種子を蒔き、 26°Cの暗所で 48時間インキ ュペートした後、発芽した種子数及び根の長さを測定し、対照区 (蒸留水)の発芽し た種子数及び根の長さに対する比を取ることにより求められる。前記 GIの精度を高め るためには多くのサンプル数について前述の発芽試験を行う必要がある力 測定用 器具として濾紙を収容したシャーレを用い、植物の種子の生育に時間を要し、さらに 植物の種子を生育するための生育環境の保持や生育後の測定等に時間と手間がか 力る点に課題がある。 [0006] As a method for evaluating maturity, a method using the response of a plant has also been proposed. The evaluation method using the response of the plant is very effective for the examination of compost maturity and its evaluation as an organic fertilizer. Germination index (hereinafter referred to as GI) method is one of the methods for assessing maturity using plant responses, and is the most sensitive parameter for assessing compost toxicity and maturity. Known as one of the GI is determined by a germination test.Specifically, a compost water extract immediately after extraction is added to a plastic petri dish with filter paper, and seeds of plants such as komatsuna are sown on the filter paper, and in a dark place at 26 ° C. After 48 hours of incubation, the number of germinated seeds and root length are measured, and the ratio of the number of germinated seeds and root length in the control plot (distilled water) is calculated. In order to increase the accuracy of the GI, it is necessary to perform the germination test described above for a large number of samples. A petri dish containing filter paper is used as an instrument for measuring force, and it takes time to grow plant seeds. There is a problem in that it takes time and labor to maintain the growth environment for growing seeds and to measure after the growth.
[0007] そこで、上方が開口した視認性を有する栽培槽と、該栽培槽に収容される植物の 種子を発芽させる着床部材と、前記栽培槽に収容されると共に、着床部材より発芽し た植物が生育する視認性を有する筒状の生育ホルダーが並列に設けられた支持基 板とを有し、着床部材は生育ホルダーの下部に設けられ、かつ、視認性を有する栽 培槽には、生育ホルダー内で生育する植物の生育度合いを測定する目盛部が設け られた植物の生育測定器具が提案されている (例えば特許文献 1参照)。特許文献 1 記載の発明によれば、サンプル数が多くても簡単な作業で発芽試験を行うことができ 、コンポスト (堆肥)などの有機物の腐熟度の判定ができるとされる。 [0007] Therefore, a visibility cultivation tank having an open top, a landing member for germinating seeds of a plant accommodated in the cultivation tank, and a germination from the landing member while being accommodated in the cultivation tank. And a supporting substrate provided in parallel with a cylindrical growth holder having visibility for growing plants, and a flooring member is provided at a lower portion of the growth holder and is provided in a visibility cultivation tank. Has proposed a plant growth measuring instrument provided with a scale for measuring the degree of growth of a plant growing in a growth holder (see, for example, Patent Document 1). According to the invention described in Patent Document 1, a germination test can be performed with a simple operation even when the number of samples is large. It is said that the maturity of organic matter such as compost can be judged.
非特許文献 1 :金澤晋ニ郎、有機資源の農地利用について 第 1報 コンポストの腐 熟度検定、再生と利用、 Vol.27 No.102 (2004)  Non-Patent Document 1: Shinichiro Kanazawa, Use of Organic Resources in Agricultural Lands 1st Report Compost Maturity Test, Regeneration and Utilization, Vol.27 No.102 (2004)
特許文献 1 :特開 2004— 201586号公報  Patent Document 1: JP 2004-201586
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、前記特許文献 1の発明も、実際に発芽試験を行うことにより GIを求め るため、測定時間に長時間を要し、測定が煩雑である等の問題を残しており、迅速且 つ正確な判定が要求されるような実際の堆肥化の現場での利用を考えると現実的で はない。したがって、発芽試験等を行うことなく GIを高精度に推定し、堆肥等の肥料 の腐熟度を評価する技術が切望されているが、このような技術は未だ確立されていな いのが現状である。 However, in the invention of Patent Document 1 as well, the GI is obtained by actually carrying out a germination test, so that it takes a long time to measure and the measurement is complicated. Therefore, it is not realistic considering the actual use of composting that requires quick and accurate judgment. Therefore, there is a strong need for a technology that estimates GI with high accuracy without conducting germination tests and evaluates the maturity of fertilizers such as compost, but such a technology has not yet been established. is there.
[0009] そこで本発明はこのような従来の実情に鑑みて提案されたものであり、例えば有機 性廃棄物の堆肥化の現場等において、肥料の発芽指数を高精度に推定可能であり [0009] Therefore, the present invention has been proposed in view of such conventional circumstances, and it is possible to estimate the germination index of fertilizer with high accuracy, for example, at the site of composting organic waste.
、腐熟度等の肥料の品質を迅速、簡便且つ高精度に評価することが可能な肥料品 質評価方法、品質評価装置及び肥料品質評価プログラムを提供することを目的とす る。 An object of the present invention is to provide a fertilizer quality evaluation method, a quality evaluation apparatus, and a fertilizer quality evaluation program capable of quickly, simply and accurately evaluating the quality of fertilizer such as maturity.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、前述の目的を達成するために長期にわたり検討を重ねてきた。その 結果、肥料の腐熟度を評価する指標としての発芽指数と、肥料の水抽出液の特定の 物理ィ匕学的指標及び特定の酵素活性との間に良好な相関があるとの知見を得るに 至った。本発明はこのような知見に基づいて完成されたものである。 [0010] The inventors of the present invention have made studies over a long period of time in order to achieve the above-described object. As a result, we obtain knowledge that there is a good correlation between the germination index as an index to evaluate the maturity of fertilizer and the specific physico-chemical index and specific enzyme activity of fertilizer water extract It reached to. The present invention has been completed based on such findings.
[0011] すなわち、本発明に係る肥料品質評価方法は、評価対象の肥料の抽出液につい ての物理化学的指標、酵素活性力 選択される少なくとも 2種の情報を取得し、前記 情報を所定の計算式に当てはめて前記肥料の発芽指数を推定することを特徴とする  [0011] That is, the fertilizer quality evaluation method according to the present invention acquires at least two types of information selected from the physicochemical index and enzyme activity of the fertilizer extract to be evaluated, and stores the information as a predetermined value. The germination index of the fertilizer is estimated by applying to a calculation formula
[0012] また、本発明に係る肥料品質評価装置は、評価対象の肥料の抽出液についての 物理化学的指標、酵素活性力 選択される少なくとも 2種の情報を取得する情報取 得部と、前記情報を所定の計算式に当てはめて前記肥料の発芽指数を推定する制 御部とを備えることを特徴とする。 [0012] In addition, the fertilizer quality evaluation apparatus according to the present invention is an information collection device that acquires at least two types of information selected from the physicochemical index and enzyme activity of the extract of the fertilizer to be evaluated. And a control unit that estimates the germination index of the fertilizer by applying the information to a predetermined calculation formula.
[0013] 本発明では、腐熟度の指標となる発芽指数を求める際のパラメータとして、肥料の 抽出液についての pH、アンモ-ゥムイオン濃度等の物理ィ匕学的指標、微生物の活 性を表す酵素活性等の酵素活性カゝら選ばれるパラメータを複数組み合わせることで 、肥料の発芽指数が高精度に推定される。発芽指数は肥料の腐熟度を高感度に表 すことから、本発明により、肥料の腐熟度が的確に把握される。 pH測定、アンモ-ゥ ムイオン濃度測定等の物理化学的指標の測定や、酵素活性測定は、発芽試験等に 比べて測定等に要する時間が短ぐまた、測定に伴う労力も小さいため、肥料の腐熟 度の評価が迅速且つ簡単に行われる。  [0013] In the present invention, as a parameter for determining a germination index that is an index of maturity, a physicochemical index such as pH and ammonium ion concentration of an extract of fertilizer, an enzyme that represents the activity of microorganisms By combining a plurality of parameters selected from enzyme activity such as activity, the germination index of the fertilizer can be estimated with high accuracy. Since the germination index expresses the maturity of the fertilizer with high sensitivity, the maturity of the fertilizer can be accurately grasped by the present invention. Measurement of physicochemical indicators such as pH measurement, ammonia ion concentration measurement, and enzyme activity measurement take less time for measurement compared to germination tests, etc. The assessment of maturity is done quickly and easily.
[0014] さらに、本発明に係る肥料品質評価プログラムは、評価対象の肥料の抽出液につ いての物理ィ匕学的指標、酵素活性力 選択される少なくとも 2種の情報を取得する情 報取得入力機能と、前記情報を所定の計算式に当てはめて前記肥料の発芽指数を 推定する制御機能とを、コンピュータに実現させることを特徴とする。  [0014] Furthermore, the fertilizer quality evaluation program according to the present invention acquires information for acquiring at least two types of information selected from the physical and physiological indices and enzyme activity of the fertilizer extract to be evaluated. An input function and a control function for estimating the germination index of the fertilizer by applying the information to a predetermined calculation formula are realized in a computer.
[0015] 以上のような構成の肥料品質評価プログラムによれば、前記肥料の発芽指数の推 定をコンピュータにさせるため、コンピュータにおいて、肥料の腐熟度の指標となる発 芽指数を迅速、簡単且つ高精度に推定し、肥料の品質を評価することができる。 発明の効果  [0015] According to the fertilizer quality evaluation program configured as described above, in order to make the computer estimate the germination index of the fertilizer, the computer can quickly and easily determine the germination index as an index of the fertilizer maturity. It is possible to estimate with high accuracy and evaluate the quality of fertilizer. The invention's effect
[0016] 本発明によれば、肥料抽出液の pH、アンモ-ゥムイオン濃度等の物理ィ匕学的指標 、酵素活性等を測定することによって、肥料の発芽指数を高精度に推定し、肥料の 腐熟度を評価できることから、肥料の品質を迅速、簡単且つ高精度に評価することが 可能な肥料品質評価方法を提供することができる。  [0016] According to the present invention, the germination index of the fertilizer is estimated with high accuracy by measuring the physical and physiological indices such as the pH and ammonium ion concentration of the fertilizer extract, the enzyme activity, etc. Since the degree of maturity can be evaluated, it is possible to provide a fertilizer quality evaluation method capable of evaluating fertilizer quality quickly, easily and with high accuracy.
[0017] また、本発明の肥料品質評価装置によれば、肥料の腐熟度の指標となる発芽指数 を高精度に推定可能であり、肥料の品質を迅速、簡単且つ高精度に評価することが 可能である。また、本発明の肥料品質評価装置を用いることにより、都巿ゴミ等を堆 肥化する堆肥化システムにおいて、良質な肥料を安定して供給することができる。  [0017] Further, according to the fertilizer quality evaluation apparatus of the present invention, it is possible to estimate the germination index, which is an index of the fertilizer maturity, with high accuracy, and it is possible to evaluate the fertilizer quality quickly, easily and with high accuracy. Is possible. In addition, by using the fertilizer quality evaluation apparatus of the present invention, a high-quality fertilizer can be stably supplied in a composting system that composts city waste and the like.
[0018] さらに、本発明の肥料品質評価プログラムによれば、肥料品質評価をコンピュータ に実行させることができるので、迅速、簡単且つ高精度に肥料の品質を評価すること ができる。 [0018] Furthermore, according to the fertilizer quality evaluation program of the present invention, since the fertilizer quality evaluation can be executed by a computer, the fertilizer quality can be evaluated quickly, easily and with high accuracy. Can do.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の肥料品質評価装置の一例を示す模式図である。  FIG. 1 is a schematic diagram showing an example of a fertilizer quality evaluation apparatus of the present invention.
[図 2]堆積法により作製した肥料の GIの経時変化を示す特性図である。  FIG. 2 is a characteristic diagram showing the GI change over time of fertilizer produced by the deposition method.
[図 3]リアクター法により作製した堆肥の GIの経時変化を示す特性図である。  FIG. 3 is a characteristic diagram showing the GI change with time of compost produced by the reactor method.
[図 4]堆積法 Aにおける実際の GIと推定 GIとの関係を示す特性図である。  FIG. 4 is a characteristic diagram showing the relationship between actual GI and estimated GI in deposition method A.
[図 5]堆積法 Bにおける実際の GIと推定 GIとの関係を示す特性図である。  FIG. 5 is a characteristic diagram showing the relationship between actual GI and estimated GI in deposition method B.
[図 6]リアクター法 Aにおける実際の GIと推定 GIとの関係を示す特性図である。  FIG. 6 is a characteristic diagram showing the relationship between actual GI and estimated GI in reactor method A.
[図 7]リアクター法 Bにおける実際の GIと推定 GIとの関係を示す特性図である。  FIG. 7 is a characteristic diagram showing the relationship between actual GI and estimated GI in reactor method B.
符号の説明  Explanation of symbols
[0020] 1 肥料品質評価装置、 2 情報取得入力部、 3 制御部、 4 記憶部、 5 表示部 発明を実施するための最良の形態  [0020] 1 fertilizer quality evaluation device, 2 information acquisition input unit, 3 control unit, 4 storage unit, 5 display unit BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明に係る肥料品質評価方法、肥料品質評価装置及び肥料品質評価プ ログラムについて詳細に説明する。 Hereinafter, a fertilizer quality evaluation method, a fertilizer quality evaluation device, and a fertilizer quality evaluation program according to the present invention will be described in detail.
[0022] 本発明の肥料品質評価方法では、評価対象の肥料の発芽指数を推定し、推定さ れた発指数を指標として、肥料の腐熟度を評価し、その肥料の品質を評価する。 In the fertilizer quality evaluation method of the present invention, the germination index of the fertilizer to be evaluated is estimated, the maturity of the fertilizer is evaluated using the estimated germination index as an index, and the quality of the fertilizer is evaluated.
[0023] ここで、肥料とは、有機物を含む有機性廃棄物を発酵又は腐らせて製造した堆肥、 魚かす等の原料を乾燥させて製造した有機質肥料、土質改良材等のことをいい、本 発明はこれら肥料全般に適用可能である。また、本発明は、未熟な堆肥等、製造途 中の肥料にも適用可能である。堆肥や肥料の原料 (素材)としては、一般家庭や施設 等力 排出される生ゴミ、食品加工工場等から排出される食品残渣、榭木の剪定枝、 もみがらや、牛、豚、鶏等の畜糞、榭皮 (バーク堆肥原料)等、特に限定されず、従来 知られているあらゆる廃棄物等を使用可能である。 [0023] Here, the fertilizer refers to compost produced by fermenting or rotting organic waste containing organic matter, organic fertilizer produced by drying raw materials such as fish meal, soil improvement material, etc. The present invention is applicable to all of these fertilizers. The present invention is also applicable to fertilizers that are in the process of production, such as immature compost. As raw materials for compost and fertilizer, raw household wastes and facilities, food waste, food residues from food processing factories, pruned branches of wood, rice chaff, cows, pigs, chickens, etc. It is not particularly limited, such as livestock manure and husk (bark compost raw material), and any conventionally known waste can be used.
[0024] 発芽指数 (germination index:以下、 GIと称する。 )とは、植物種子の発芽や生育の 度合いから肥料の腐熟度を表したものであり、肥料の腐熟度の指標となるものである 。 GIは、例えば、発芽試験により発芽した種子数及び根の長さ、並びに対照区 (蒸留 水)の発芽した種子数及び根の長さを測定し、各データを下記の式(1)にあてはめる ことにより求められる。発芽試験では、例えば、濾紙を敷いたシャーレに抽出直後の 肥料水抽出液又は水 (蒸留水) 10mlを添加し、濾紙上にコマツナ等の植物の種子を 蒔き、 26°Cの暗所で 48時間インキュベートした後に、発芽した種子数及び根の長さ を測定する。なお、 GIの算出においては、根の長さの他、茎長等を用いてもよい。 [0024] Germination index (hereinafter referred to as GI) is a measure of fertilizer maturity based on the degree of germination and growth of plant seeds, and is an index of fertilizer maturity. . For example, GI measures the number of seeds and root length germinated by germination tests, and the number of seeds and root length germinated in the control plot (distilled water), and applies each data to the following formula (1). Is required. In germination tests, for example, immediately after extraction on a petri dish with filter paper. Add 10 ml of fertilizer water extract or water (distilled water), sow seeds of plants such as Komatsuna on filter paper, incubate in dark place at 26 ° C for 48 hours, and then determine the number of germinated seeds and the length of roots. taking measurement. In calculating GI, in addition to the root length, stem length or the like may be used.
[0025] [数 1] [0025] [Equation 1]
GI値 測定試料の発芽率 X平均根長 X 100 . · ·式(1) GI value Germination rate of measurement sample X average root length X 100.
対照区の発芽率 X対照区の平均根長  Germination rate of control plot X Average root length of control plot
[0026] 本発明では、肥料の腐熟度を評価するために評価対象の肥料の GIを推定するが、 GIの推定に先立ち、以下に説明するように GIの推定に必要となる式を予め求めてお[0026] In the present invention, the GI of the fertilizer to be evaluated is estimated in order to evaluate the maturity of the fertilizer. Prior to the estimation of the GI, an expression necessary for the estimation of the GI is obtained in advance as described below. Wait
<o <o
[0027] 先ず、評価対象の肥料と類似の肥料を別途用意し、この類似の肥料力 適当な時 間間隔をお 、て適当数をサンプリングし、例えば水抽出して抽出液を調製する。  [0027] First, a fertilizer similar to the fertilizer to be evaluated is prepared separately, an appropriate number is sampled at an appropriate time interval with this similar fertilizer force, and an extract is prepared by, for example, water extraction.
[0028] ここで、評価対象の肥料と類似の肥料とは、評価対象の肥料の原料と略同様の原 料を用いて製造される肥料のことを意味する。 GIの推定精度を高める観点では、評 価対象の肥料と同一組成の原料を用いることが好ましいが、原料 (廃棄物)の性質上 、原料組成を厳密に再現することは困難である。したがって、評価対象の肥料の原料 と略同様の原料とは、例えば、評価対象の肥料の原料と供給源等が同一の原料等 であればよい。具体的には、評価対象の肥料の原料と略同様の原料とは、例えば評 価対象の肥料原料が畜糞の場合においては、牛糞、豚糞、鶏糞等、家畜の種を一 致させたものである。さらに、評価対象の肥料原料が生ゴミの場合、評価対象の肥料 の原料と、魚あらの含有の有無等を一致させることが好まし 、。  [0028] Here, the fertilizer similar to the fertilizer to be evaluated means a fertilizer manufactured using a raw material substantially the same as the raw material of the fertilizer to be evaluated. From the viewpoint of improving the estimation accuracy of GI, it is preferable to use a raw material having the same composition as the fertilizer to be evaluated. However, due to the nature of the raw material (waste), it is difficult to accurately reproduce the raw material composition. Therefore, the raw material substantially the same as the raw material of the fertilizer to be evaluated may be, for example, a raw material having the same source as the raw material of the fertilizer to be evaluated. Specifically, a raw material that is substantially the same as the raw material for the fertilizer to be evaluated is, for example, a match made with the species of livestock such as cow dung, pig dung, chicken dung, etc. It is. Furthermore, when the fertilizer raw material to be evaluated is raw garbage, it is preferable to match the raw material of the fertilizer to be evaluated with the presence or absence of fish meal.
[0029] また、推定精度をより高める観点では、類似の肥料として、評価対象の肥料と略同 様の製造方法により製造される肥料を用いることが好ましい。肥料の製造方法につい ても、評価対象の肥料と同一の製造方法とすることが好ましいが、多少異なっていて も構わない。  [0029] From the viewpoint of further improving the estimation accuracy, it is preferable to use a fertilizer manufactured by a manufacturing method substantially similar to the fertilizer to be evaluated as a similar fertilizer. The fertilizer production method is preferably the same as the fertilizer to be evaluated, but may be slightly different.
[0030] 次に、調製した抽出液を用いて通常の発芽試験を行い、例えば前記式(1)に基づ いて GIを求める。  [0030] Next, a normal germination test is performed using the prepared extract, and, for example, GI is obtained based on the formula (1).
[0031] ここで、肥料抽出液の物理化学的指標としては、従来力 知られている水溶液の各 種の物理ィ匕学的指標を挙げることができ、例えば、 pH、アンモ-ゥムイオン濃度、硝 酸イオン濃度、電気伝導度、温度、酸化還元電位等が挙げられ、中でも pH及びアン モ -ゥムイオン濃度を物理ィ匕学的指標として採用することが望ましい。 [0031] Here, as the physicochemical index of the fertilizer extract, various kinds of physicochemical indices of conventionally known aqueous solutions can be mentioned, for example, pH, ammonium ion concentration, glass Examples include acid ion concentration, electrical conductivity, temperature, oxidation-reduction potential, etc. Among them, it is desirable to employ pH and ammonium ion concentration as physical physical indicators.
[0032] 酵素活性としては、従来知られているあらゆる酵素の活性を対象とすることができる 力 微生物の活性を表す酵素群から選ばれる酵素の酵素活性を採用することが好ま しい。微生物の活性を表す酵素活性としては、例えばプロテアーゼ活性、アミラーゼ 活性、セルラーゼ活性、アルカリフォスファターゼ活性、酸フォスファターゼ活性、フォ スフオハイドラーゼ活性、エステラーゼ活性、エステラーゼ リパーゼ活性、リパーゼ 活性、ロイシンァリルアミダーゼ活性、ノ リンァリルアミダーゼ活性、シスチンァリルァ ミダーゼ活'性、トリプシン活性、キモトリブシン活性、 a—ガラタトシダーゼ活性、 β - ガラクトシダーゼ活性、 β—ダルクロニダーゼ活性、 a—ダルコシダーゼ活性、 β ダルコシダーゼ活性、 Ν ァセチルー β—ダルコサミニダーゼ活性、 at マンノシダ ーゼ活性、 a フコシダーゼ活性等が挙げられる。酵素活性としては、これらの中か ら肥料の種類等に応じて適宜最適なものを選択すればよぐ特に堆肥の品質評価を 行う際には、酸フォスファターゼ活性及びエステラーゼ活性を選択することが好まし い。  [0032] As the enzyme activity, it is preferable to employ the enzyme activity of an enzyme selected from the group of enzymes representing the activity of microorganisms capable of targeting the activity of any conventionally known enzyme. Examples of the enzyme activity representing the activity of microorganisms include protease activity, amylase activity, cellulase activity, alkaline phosphatase activity, acid phosphatase activity, phosphohydrase activity, esterase activity, esterase lipase activity, lipase activity, leucine arylamidase activity. , Noryalylamidase activity, Cystine arylamidase activity, Trypsin activity, Chymotrypsin activity, a-galatatosidase activity, β-galactosidase activity, β-dalclonidase activity, a-darcosidase activity, β-darcosidase activity, Ν acetyl-β-darcosamini Examples include dase activity, at mannosidase activity, and a fucosidase activity. As the enzyme activity, an optimum one may be selected from the above according to the type of fertilizer, and it is preferable to select acid phosphatase activity and esterase activity, especially when evaluating the quality of compost. Good.
[0033] そして、取得した GIと、物理化学的指標、酵素活性等の情報との関係について解 析する。具体的には、取得した GIと、対応する物理化学的指標、酵素活性等の情報 との関係について重回帰分析を行うことにより、 GIを目的変量とし、物理化学的指標 、酵素活性を説明変量とする重回帰式を求める。解析の際のパラメータとしては、上 記に列挙した物理化学的指標、上記に列挙した酵素活性の中から多数のパラメータ を選択することが精度向上の面力も好ましいが、これらパラメータのうち少なくとも 2つ を選択すればよい。  [0033] Then, the relationship between the acquired GI and information such as a physicochemical index and enzyme activity is analyzed. Specifically, by performing multiple regression analysis on the relationship between the acquired GI and the corresponding information such as physicochemical indicators and enzyme activities, GI is the target variable, and the physicochemical indicators and enzyme activity are explanatory variables. The multiple regression equation is obtained. It is preferable to select a large number of parameters from among the physicochemical indicators listed above and the enzyme activities listed above as parameters for the analysis, but at least two of these parameters are preferable. Should be selected.
[0034] 本発明では、前記重回帰式を利用して、以下のように評価対象の肥料の GIを推定 し、腐熟度を評価する。  In the present invention, using the multiple regression equation, the GI of the fertilizer to be evaluated is estimated and the maturity is evaluated as follows.
[0035] 先ず、評価対象の肥料について、例えば水等を用いて抽出を行い、抽出液を調製 する。  [0035] First, the fertilizer to be evaluated is extracted using, for example, water to prepare an extract.
[0036] 次に、調製した抽出液に対して、物理化学的指標の測定、酵素活性測定から選択 される少なくとも 2種を実施し、抽出液についての物理ィ匕学的指標、酵素活性力 選 択される少なくとも 2種の情報を取得する。すなわち、前記重回帰式で採用したパラメ ータに関する情報を取得する。 [0036] Next, the prepared extract is subjected to at least two kinds selected from measurement of physicochemical index and measurement of enzyme activity. Get at least two types of information to be selected. That is, information on parameters adopted in the multiple regression equation is acquired.
[0037] 次に、予め求めておいた重回帰式に、評価対象の肥料の抽出液についての物理 化学的指標、酵素活性力 選択される少なくとも 2種の情報をあてはめることにより、 評価対象の肥料の GIを推定する。得られた GIの推定値は、 GIの実測値と良好な相 関を示すことから、この推定 GIを指標として肥料の腐熟度を評価する。例えば GI50 %がその肥料が充分に腐熟した力否かの基準となる力 GIの基準値は肥料の種類 等に応じて適宜定めればよ!、。  [0037] Next, by applying at least two types of information selected from the physicochemical index and enzyme activity of the extract of the fertilizer to be evaluated to the multiple regression equation obtained in advance, the fertilizer to be evaluated Estimate GI. The obtained estimated value of GI shows a good correlation with the measured value of GI, so the fertilizer maturity is evaluated using this estimated GI as an index. For example, GI 50% is the standard for determining whether or not the fertilizer is fully ripened. The standard value of GI should be determined appropriately according to the type of fertilizer!
[0038] このように予め肥料抽出液の物理ィ匕学的指標、酵素活性等を用いてこれらの関係 を解析し、得られた式に評価対象の肥料の物理化学的指標や酵素活性等の対応す る情報を当てはめることにより、 GIの高精度な推定が可能となる。特に、前記 pH、ァ ンモ -ゥムイオン濃度、酵素活性をパラメータとして選択することにより、 GIの推定を 精度良く簡単に行うことができる。また、前記 pH、アンモ-ゥムイオン濃度、酵素活性 に加えて肥料抽出液について、前述したような他の物理化学的指標、酵素活性等を 重回帰分析のパラメータとして併用してもよぐ適当なパラメータを選択した場合には GIの推定の精度をさらに向上させることができる。  [0038] As described above, these relationships are analyzed in advance using the physico-chemical index, enzyme activity, etc. of the fertilizer extract, and the obtained formula is used to determine the physicochemical index, enzyme activity, etc. of the fertilizer to be evaluated. By applying the corresponding information, it is possible to estimate GI with high accuracy. In particular, by selecting the pH, ammonia ion concentration, and enzyme activity as parameters, GI can be estimated accurately and easily. In addition to the pH, ammonia ion concentration, enzyme activity, and other suitable physicochemical indicators, enzyme activity, etc. as described above for fertilizer extracts, multiple parameters can be used as parameters for multiple regression analysis. When selecting, the accuracy of GI estimation can be further improved.
[0039] 以上のような本発明の肥料品質評価方法により、評価対象の肥料の腐熟度を高精 度に評価し、肥料の品質を高精度に評価することができる。また、本発明では、物理 化学的指標や酵素活性等の測定時間が短時間で、簡単な操作で取得可能な情報 に基づいて GIを推定でき、評価毎に発芽試験を行う必要はない。つまり、測定に要 する手間や時間が飛躍的に削減され、迅速且つ簡単に肥料の腐熟度を評価できる 。したがって、本発明によれば、例えば堆肥化の現場等において、肥料の品質を迅 速、簡便且つ高精度に評価することが可能であり、良質な肥料の供給に貢献できる。 また、本発明は、重回帰式の係数を適宜変更することによって、原料や製造方法に よらず様々な種類の肥料の品質評価に適用することができる。  [0039] By the fertilizer quality evaluation method of the present invention as described above, the maturity of the fertilizer to be evaluated can be evaluated with high accuracy, and the quality of the fertilizer can be evaluated with high accuracy. In the present invention, the measurement time for physicochemical indicators and enzyme activities is short, and GI can be estimated based on information that can be obtained by simple operations, and there is no need to perform a germination test for each evaluation. In other words, the labor and time required for measurement are drastically reduced, and the fertilizer maturity can be evaluated quickly and easily. Therefore, according to the present invention, it is possible to evaluate the quality of fertilizers quickly, simply, and with high accuracy at, for example, a composting site, and contribute to the supply of high-quality fertilizers. In addition, the present invention can be applied to quality evaluation of various types of fertilizers regardless of raw materials and production methods by appropriately changing the coefficient of the multiple regression equation.
[0040] 次に、本発明の肥料品質評価プログラムについて説明する。本発明の肥料品質評 価プログラムは、コンピュータの動作を制御し先に説明したような肥料の品質評価を 行わせるためのプログラムであり、評価対象の肥料の抽出液についての pH、アンモ ニゥムイオン濃度等の物理化学的指標、微生物の活性を表す酵素活性等の酵素活 性力 選択される少なくとも 2種の情報を取得する情報取得入力機能と、取得した情 報を所定の計算式に当てはめて肥料の発芽指数を推定する制御機能とをコンビユー タに実現させるためのプログラムである。力かるプログラムにより、コンピュータにおい て自動的に肥料の発芽指数を推定し、肥料の品質を迅速、簡単且つ高精度に把握 することができる。 [0040] Next, the fertilizer quality evaluation program of the present invention will be described. The fertilizer quality evaluation program of the present invention is a program for controlling the operation of a computer and performing the quality evaluation of the fertilizer as described above. The pH and ammonia for the fertilizer extract to be evaluated are as follows. Physicochemical indicators such as the concentration of niobium ions, enzyme activity such as enzyme activity representing the activity of microorganisms Information acquisition input function that acquires at least two types of information selected, and the acquired information is applied to a predetermined calculation formula This is a program that allows a computer to realize a control function for estimating the germination index of fertilizer. With a powerful program, the fertilizer germination index can be automatically estimated by a computer, and the quality of the fertilizer can be grasped quickly, easily and with high accuracy.
[0041] 次に、本発明の肥料品質評価装置について説明する。本発明の肥料品質評価装 置の一例を、図 1に示す。肥料品質評価装置 1は、堆肥等、肥料の抽出液について の物理化学的指標、酵素活性等の各種情報を得る情報取得入力部 2と、制御部 3と 、制御部 3で実行されるプログラムや GI値の推定に必要な重回帰式等の各種のデー タが格納される記憶部 4とを基本的に備えるものである。また、肥料品質評価装置 1 は、ディスプレイ等から構成され、情報取得入力部 2で取得した情報や制御部 3で計 算した結果等を表示する表示部 5を備える。  [0041] Next, the fertilizer quality evaluation apparatus of the present invention will be described. An example of the fertilizer quality evaluation device of the present invention is shown in FIG. The fertilizer quality evaluation device 1 includes an information acquisition / input unit 2 for obtaining various information such as compost, physicochemical indicators and fertilizer extracts, enzyme activity, etc., a control unit 3, a program executed by the control unit 3, It basically includes a storage unit 4 in which various data such as multiple regression equations necessary for GI value estimation are stored. The fertilizer quality evaluation device 1 includes a display and the like, and includes a display unit 5 that displays information acquired by the information acquisition input unit 2 and results calculated by the control unit 3.
[0042] なお、以下では、情報取得入力部 2として、 pH、アンモ-ゥムイオン濃度、酸フォス ファターゼ活性、エステラーゼ活性にっ 、ての情報を取得可能な構成を例に挙げて 説明するが、本発明はこれらに限定されるものではなぐ前述したような物理化学的 指標、酵素活性のうち少なくとも 2種にっ 、ての情報を取得可能であればよ!/、ことは 言うまでもない。  [0042] In the following, the information acquisition input unit 2 will be described by taking as an example a configuration that can acquire information on pH, ammonia ion concentration, acid phosphatase activity, and esterase activity. The invention is not limited to these, and it is needless to say that it is possible to obtain information on at least two of the physicochemical indicators and enzyme activities as described above! /.
[0043] 情報取得入力部 2は、例えば肥料抽出液についての pH測定を行う pH測定部 2a、 アンモニゥムイオン濃度の測定を行うアンモニゥムイオン濃度測定部 2b、酸フォスフ ァターゼ活性の測定を行う第 1の酵素活性測定部 2c、エステラーゼ活性の測定を行 う第 2の酵素活性測定部 2d等力も構成され、肥料の抽出液の pH、アンモ-ゥムィォ ン濃度、酵素活性等に関する情報を取得する。 pH測定部 2a、アンモニゥムイオン濃 度測定部 2b、第 1の酵素活性測定部 2c及び第 2の酵素活性測定部 2dは、それぞれ 、従来知られている pHセンサ、アンモ-ゥムイオン濃度センサ、酵素活性センサ等か ら構成されてもよぐまた、例えば pH試験紙等の試験紙等力も構成されてもよい。情 報取得入力部 2の構成は、各種情報を取得可能であればこれらに限定されるもので はなぐ例えば、肥料品質評価装置 1に各測定部が外付けされてもよい。また、情報 取得部 2は例えばキーボード等の入力装置で構成されてもよい。この場合、 pH、アン モ -ゥムイオン濃度、酸フォスファターゼ活性、エステラーゼ活性等に関する情報は 、別途 pH試験紙等の試験紙等を用いて測定しておき、情報取得部 2の入力装置を 介して入力される。 [0043] The information acquisition input unit 2 includes, for example, a pH measurement unit 2a that performs pH measurement on the fertilizer extract, an ammonium ion concentration measurement unit 2b that performs measurement of the ammonium ion concentration, and a second unit that performs measurement of acid phosphatase activity. The first enzyme activity measurement unit 2c and the second enzyme activity measurement unit 2d that measure esterase activity are also configured to obtain information on the pH, ammonia concentration, enzyme activity, etc. of the fertilizer extract. The pH measuring unit 2a, the ammonium ion concentration measuring unit 2b, the first enzyme activity measuring unit 2c, and the second enzyme activity measuring unit 2d are respectively a conventionally known pH sensor, ammonium ion concentration sensor, and enzyme. It may be composed of an activity sensor or the like, and may also be composed of a test paper force such as a pH test paper. The configuration of the information acquisition / input unit 2 is not limited to this as long as various types of information can be acquired. For example, each measurement unit may be externally attached to the fertilizer quality evaluation apparatus 1. Also information The acquisition unit 2 may be configured by an input device such as a keyboard. In this case, information on pH, ammonium ion concentration, acid phosphatase activity, esterase activity, etc. is measured separately using a test paper such as a pH test paper, and input via the input device of the information acquisition unit 2. Is done.
[0044] 制御部 3や記憶部 4は、例えば CPUと、 ROM, RAM,磁気ディスク等の記憶装置 等を含むコンピュータ装置により構成され、肥料品質評価装置 1の各部を制御する。 制御部 3は、予め記憶部 4に記憶してぉ 、たプログラムや所定の計算式等を必要に 応じて読み出すとともに、情報取得入力部 2で取得した肥料抽出液の pH、アンモ- ゥムイオン濃度、酵素活性等に関する情報をあてはめ、計算を行う。計算式は、例え ば、評価対象の肥料と類似の肥料の抽出液についての実測 GIを目的変量とし、 pH 、アンモ-ゥムイオン濃度、酵素活性カゝら選ばれる少なくとも 2種を説明変量とする重 回帰式である。  The control unit 3 and the storage unit 4 are configured by a computer device including a CPU and a storage device such as a ROM, a RAM, and a magnetic disk, for example, and control each unit of the fertilizer quality evaluation device 1. The control unit 3 stores in advance in the storage unit 4 and reads out a program, a predetermined calculation formula, etc. as necessary, and at the same time the pH of the fertilizer extract obtained by the information acquisition input unit 2, the ammonia ion concentration, Apply information about enzyme activity, etc., and calculate. The calculation formula is, for example, a measurement variable GI of an extract of a fertilizer similar to the target fertilizer to be evaluated as a target variable, and at least two kinds selected from pH, ammonia ion concentration, and enzyme activity column as explanatory variables. It is a regression equation.
[0045] このような構成の肥料品質評価装置 1を使用して肥料の GIを推定し、腐熟度を評 価する方法について説明する。なお、以下では、情報取得部 2が pHセンサ、アンモ -ゥムイオン濃度センサ、酵素活性センサカゝら構成され、肥料抽出液の pH、アンモ ニゥムイオン濃度及び酵素活性の各種測定及び情報取得の両方を行う場合を例に 挙げる。  A method for estimating the GI of fertilizer using the fertilizer quality evaluation apparatus 1 having such a configuration and evaluating the maturity will be described. In the following, the information acquisition unit 2 is composed of a pH sensor, an ammonia ion concentration sensor, an enzyme activity sensor, and performs both measurement and information acquisition of the pH, ammonium ion concentration and enzyme activity of the fertilizer extract. Take as an example.
[0046] 先ず、評価対象の肥料の抽出液に情報取得入力部 2を例えば浸漬し、情報取得 入力部 2において各種測定を行い、 pH、アンモ-ゥムイオン濃度、酸フォスファタ一 ゼ活性、エステラーゼ活性力 選択される少なくとも 2種の情報を取得する。取得され た情報は、電気信号等に変換され、制御部 3又は記憶部 4に送られる。  [0046] First, the information acquisition input unit 2 is immersed, for example, in the fertilizer extract to be evaluated, and various measurements are performed in the information acquisition input unit 2 to determine pH, ammonia ion concentration, acid phosphatase activity, esterase activity. Get at least two types of information to be selected. The acquired information is converted into an electric signal or the like and sent to the control unit 3 or the storage unit 4.
[0047] 次に、制御部 3は、予め記憶部 4に記憶しておいた例えば重回帰式等を読み出し、 前記情報を当てはめて計算を行うことにより、評価対象の肥料の推定 GIを求める。制 御部 3で計算された推定 GIやこれに基づく腐熟度評価は、例えば表示部 5等にぉ 、 て表示される。  Next, the control unit 3 reads, for example, a multiple regression equation stored in the storage unit 4 in advance, and calculates the estimated GI of the fertilizer to be evaluated by applying the information and performing calculation. The estimated GI calculated by the control unit 3 and the maturity evaluation based on the estimated GI are displayed, for example, on the display unit 5 or the like.
[0048] 以上のように、肥料品質評価装置 1によれば、発芽試験を行うことなく GIを推定でき 、簡単な操作で迅速且つ高精度に肥料の腐熟度等の品質を評価することができる。 また、肥料品質評価装置 1は、 GIを求める際の発芽試験に用いられる生育器具等に 比べて小型であるという利点がある。さらに、肥料品質評価装置 1は、発芽試験に用 いられる生育器具等に比べてメンテナンス等が容易なため、低コストにて肥料の品質 評価が可能となる。 [0048] As described above, according to the fertilizer quality evaluation apparatus 1, the GI can be estimated without performing a germination test, and the quality such as the maturity of the fertilizer can be evaluated quickly and accurately with a simple operation. . In addition, the fertilizer quality evaluation device 1 can be used as a growing device used for germination tests when obtaining GI. There is an advantage that it is small in size. Furthermore, since the fertilizer quality evaluation apparatus 1 is easier to maintain than the growing equipment used in the germination test, it is possible to evaluate the quality of the fertilizer at a low cost.
実施例  Example
[0049] 以下、本発明の実施例について実験結果に基づいて説明する。  [0049] Examples of the present invention will be described below based on experimental results.
[0050] <堆肥化とサンプリング >  [0050] <Composting and sampling>
本実験では、石川県加賀巿より発生した公園の木や街路樹の剪定枝及び学校給 食残さを原料として用いて堆肥を作製した。学校給食残さは市内の中学校より収集し た。これら学校給食残さにチップ化した剪定枝及びもみがらを含水率が約 65%とな るように加え、さらに市販の発酵促進微生物 (A:ゥロン C、又は B:内城菌)を混合し、 3時間、 65°Cで機械的に攪拌した。その後、混合物を 2種の方法で処理した。 1つは ヤードに山積に堆積し、週に 2回攪拌するものである (堆積法)。もう 1つは、水島物産 社製のリアクターを使った方法 (リアクター法)である。リアクターは側面のメッシュ部分 力も自然に酸素が供給されるようになっている。それぞれ 1週間毎に、同一処理群内 の 3ケ所力 サンプリングを行った。その際、生成物温度も測定した。堆肥化試験は 巿内において、 10月力も翌年 3月にかけて行った。試験期間中の市内の 1日の平均 気温は 1. 6°C〜11. 7°Cであった。各種製造法とその原材料成分を表 1に示す。  In this experiment, compost was made using the pruned branches of park trees and roadside trees and school meals left from Kaga Pass in Ishikawa Prefecture as raw materials. School lunches were collected from junior high schools in the city. In addition to the pruned branches and rice husks made into chips in these school meal residues so that the water content is about 65%, commercially available fermentation-promoting microorganisms (A: uron C or B: Uchijou) are mixed, The mixture was mechanically stirred at 65 ° C for 3 hours. The mixture was then processed in two ways. One is piled up in the yard and stirred twice a week (deposition method). The other is a method using a reactor manufactured by Mizushima Bussan Co., Ltd. (reactor method). In the reactor, oxygen is supplied naturally to the mesh part force on the side. Each week, three force samplings within the same treatment group were performed. At that time, the product temperature was also measured. The composting test was conducted in Sakai in October and the following March. The average daily temperature in the city during the test period ranged from 1.6 ° C to 11.7 ° C. Table 1 shows the various production methods and their raw material components.
[0051] [表 1] 総重量 原材料成分 (%)  [0051] [Table 1] Gross weight Raw material components (%)
堆肥名 製造法  Compost name Manufacturing method
(kg) 剪定枝 ちみがり ご飯'パン 野菜くず 残飯 堆積 A 堆積 ·撹拌 6615 13 13 19 26 29 堆積 B 堆積 ·撹拌 4540 13 13 20 25 29 リアクター A 静的換気システム 400 13 13 19 25 30 リアクター B 静的換気システム 400 14 14 18 37 28  (kg) Pruned branch Chimigari rice 'bread Vegetable scrap Waste rice Soil A Sedimentation / stirring 6615 13 13 19 26 29 Sedimentation B Sedimentation / stirring 4540 13 13 20 25 29 Reactor A Static ventilation system 400 13 13 19 25 30 Reactor B Static ventilation system 400 14 14 18 37 28
[0052] <物理化学的分析 > [0052] <Physicochemical analysis>
含水率は、堆肥を 105°Cで 5時間加熱した後の減少量力も計算した。総炭素及び 総窒素量は自動元素分析装置 (商品名 Vario EL ΙΠ)で測定し、 CZN比はそれ らから計算した。 The moisture content was also calculated by the amount of decrease after compost was heated at 105 ° C for 5 hours. Total carbon and total nitrogen are measured with an automatic elemental analyzer (trade name Vario EL ΙΠ), and the CZN ratio is From the above.
[0053] 堆肥の水抽出液は、堆肥に乾燥重量当り 10倍量の蒸留水をカ卩え、 120rpmで 30 分攪拌後、ろ過して調製した。直ちに抽出液の pH及び電気伝導度を測定した。抽 出液の保存は— 20°Cで行った。抽出液のアンモ-ゥムイオン濃度及び硝酸イオン濃 度は比色法により測定した。  [0053] The compost water extract was prepared by filtering the compost with 10 times the amount of distilled water per dry weight, stirring at 120 rpm for 30 minutes, and then filtering. The pH and electrical conductivity of the extract were immediately measured. The extract was stored at -20 ° C. The ammonium ion concentration and nitrate ion concentration of the extract were measured by a colorimetric method.
[0054] <酵素活性:寒天プレートアツセィ >  [0054] <Enzyme activity: Agar plate assembly>
水抽出液のプロテアーゼ、アミラーゼ、セルラーゼ活性は以下の方法にしたがって 検出した。  Protease, amylase and cellulase activities in the water extract were detected according to the following method.
(1)プロテアーゼ: 2gのァガー、 0. lgのアジ化ナトリウムを 0. 1Mのリン酸バ ッファー(PH7. 0)に加熱して溶かし、そこに ImLの 1M塩化カルシウム、 lOmLの 1 %カゼインを加えた。これらの混合物 15mLを直径 9cmのプラスチックシャーレに入 れて冷やした。  (1) Protease: 2 g agar, 0.1 lg sodium azide is dissolved in 0.1 M phosphate buffer (PH 7.0) by heating, and then ImL 1M calcium chloride, lOmL 1% casein added. 15 mL of these mixtures were cooled in a 9 cm diameter plastic petri dish.
(2)アミラーゼ: 0. 8gの可溶性デンプンと 2gのァガーを lOOmLの 1. OM酢酸バッフ ァー(pH5. 0)に加熱して溶かした。前記と同様にシャーレに入れて冷やした。  (2) Amylase: 0.8 g soluble starch and 2 g agar were dissolved in lOOmL 1.OM acetate buffer (pH 5.0). It was put into a petri dish and cooled as described above.
(3)セルラーゼ: 0. 8gのカルボキシメチルセルローズと 2gのァガーを lOOmLの 1. 0 M酢酸バッファー(pH5. 0)に加熱して溶かした。前記と同様にシャーレに入れて冷 やした。  (3) Cellulase: 0.8 g of carboxymethyl cellulose and 2 g of agar were dissolved in lOOmL of 1.0 M acetate buffer (pH 5.0). As above, it was cooled in a petri dish.
[0055] (1)〜(3)の各寒天プレートに直径 3mmの穴をコルクボーラ一で開け、堆肥の水 抽出液 10 /z Lをその穴に滴下し、 55°Cで 18時間インキュベートした。インキュベート 後、プロテアーゼ活性はサンプル穴の周りの透明なハロを観察することによって確認 できた。アミラーゼ活性は 0. 2%ヨウ化カリウムと 0. 02%ヨウ素液の添加、セルラー ゼ活性は 0. 1%コンゴ一レッド溶液の添加とその後の洗浄によって、サンプル穴周り のハロを可視化した。それぞれのハ口の直径をのぎすで計測した。  [0055] A hole with a diameter of 3 mm was formed in each agar plate of (1) to (3) with a cork borer, and 10 / z L of a compost water extract was dropped into the hole and incubated at 55 ° C for 18 hours. After incubation, protease activity could be confirmed by observing a clear halo around the sample hole. Amylase activity was visualized by adding 0.2% potassium iodide and 0.02% iodine solution, and cellulase activity by adding 0.1% Congo red solution followed by washing to visualize the halo around the sample hole. The diameter of each mouth was measured with a grip.
[0056] く酵素活性:ァピザィムアツセィ〉  [0056] <Enzyme activity: Apizzaim Atssey>
堆肥水抽出液についての 19種の酵素活性を、アツセィキットである商品名ァピザィ ムを用いて測定した。測定した酵素はアルカリフォスファターゼ、酸フォスファターゼ、 フォスフォハイドラーゼ、エステラーゼ、エステラーゼ一リパーゼ、リパーゼ、ロイシン ァリルアミダーゼ、ノ リンァリルアミダーゼ、シスチンァリルアミダーゼ、トリプシン、キモ トリプシン、 a ガラクトシダーゼ、 β ガラクトシダーゼ、 βーグルクロニダーゼ、 α —ダルコシダーゼ、 /3—ダルコシダーゼ、 N ァセチルー β—ダルコサミニダーゼ、 a マンノシダーゼ及び α フコシダーゼである。 Nineteen enzyme activities of the compost water extract were measured using the brand name Apizza, which is an Atsey kit. The measured enzymes were alkaline phosphatase, acid phosphatase, phosphohydrase, esterase, esterase monolipase, lipase, leucine amylamidase, nornarlylamidase, cystine arylamidase, trypsin, chymo Trypsin, a galactosidase, β-galactosidase, β-glucuronidase, α-darcosidase, / 3-darcosidase, N-acetylyl β-darcosaminidase, a mannosidase and α-fucosidase.
酵素活性は、それぞれの酵素に特異的な発色基質が塗布されたゥエルに試薬 60 μ Lを入れ、 4時間、 36°Cでインキュベートした後、試薬 Aと Bで反応を停止、発色さ せた。酵素活性は、 目視により発色の濃さを添付のカラーチャートと比較して判断し た。  Enzyme activity was achieved by adding 60 μL of reagent to a well coated with a specific chromogenic substrate for each enzyme, incubating at 36 ° C for 4 hours, and then stopping the reaction with reagents A and B to cause color development. . The enzyme activity was judged by visual comparison of the color density with the attached color chart.
[0057] <コマツナ発芽試験 >  [0057] <Komatsuna germination test>
ろ紙を敷いたプラスチックシャーレに抽出直後の水抽出液 10mLを入れ、コマツナ の種 30粒を蒔き、 26°Cの暗所で 48時間インキュベートした。その後、発芽した種の 数及び根の長さを測定した。対照として、 10mLの蒸留水を用いて同様の操作を行 つた。 GIは Zucconiら(1981)によって提案された前記式(1)に従って計算した。 GI は約 50%がその堆肥の生育阻害の有無の目安となる。サンプルの保存状態が腐熟 度評価のパラメータ値に影響を与えることが知られているので、本実験では、サンプリ ング直後の堆肥力 抽出液を調製するとともに、抽出直後の抽出液を発芽試験に用 いた。堆積法における GIの変化を図 2に、リアクター法における GIの変化を図 3に示 す。  In a plastic petri dish with filter paper, 10 mL of the water extract immediately after extraction was placed, 30 seeds of Komatsuna seeds were seeded, and incubated in a dark place at 26 ° C for 48 hours. Thereafter, the number of germinated seeds and the length of the roots were measured. As a control, the same operation was performed using 10 mL of distilled water. GI was calculated according to the above equation (1) proposed by Zucconi et al. (1981). About 50% of GI is a measure of the presence or absence of inhibition of the compost growth. Since it is known that the storage condition of the sample affects the parameter value of the maturity assessment, in this experiment, a compost extract was prepared immediately after sampling, and the extract immediately after extraction was used for the germination test. It was. Figure 2 shows the GI change in the deposition method, and Figure 3 shows the GI change in the reactor method.
[0058] <統計解析 >  [0058] <Statistical analysis>
GIとその他のパラメータ (含水率、温度、 pH、電気伝導度、アンモ-ゥムイオン濃 度、硝酸イオン濃度、炭素および窒素含量、 CZN比、 22種類の酵素活性)との関 係は、ソフトウェア(商品名スタツトビユー)を用いたステップワイズ法による線形重回 帰分析にて行った。それぞれのパラメータ間の相関についても、同じソフトウェアを用 いて解析した。  The relationship between GI and other parameters (moisture content, temperature, pH, electrical conductivity, ammonia ion concentration, nitrate ion concentration, carbon and nitrogen content, CZN ratio, 22 enzyme activities) A linear multiple regression analysis was performed by the stepwise method using the famous statview. The correlation between each parameter was also analyzed using the same software.
[0059] コマツナ発芽試験により求められた GI (実測値)と、それに対応する同一サンプル の含水率、温度、 pH、電気伝導度、アンモ-ゥムイオン濃度、硝酸イオン濃度、炭素 含量、窒素含量、 CZN比、 22種類の酵素の活性との関係を、ステップワイズの線形 重回帰分析を用いて解析した。サンプル数はすべての堆肥化システムを合わせて 1 59サンプルであった。重回帰分析で選択されたパラメータとその特性を表 2に示す。 この重回帰モデルでの決定係数 R2は 0. 896であり、これらのパラメータ力 推定した GIは実測値と良く一致していることがわ力つた。 [0059] GI (measured value) obtained by Komatsuna germination test and corresponding water content, temperature, pH, electrical conductivity, ammonium ion concentration, nitrate ion concentration, carbon content, nitrogen content, CZN The relationship between the ratio and the activity of the 22 enzymes was analyzed using stepwise linear multiple regression analysis. The number of samples was 159 samples for all composting systems. Table 2 shows the parameters selected in the multiple regression analysis and their characteristics. The coefficient of determination R 2 in the multiple regression model is 0.896, I that these parameters force estimated GI is that good agreement with the measured values ChikaraTsuta.
[0060] [表 2] 因子 回帰係数 標準誤差 S.R.C.* F-値 切片 -43.028 13.312 -43.028 10.447 pH 15.430 1.341 0.703 132.478 電 1 専度 4.982 2.019 0.132 6.088 [0060] [Table 2] Factor Regression coefficient Standard error S.R.C. * F-value Intercept -43.028 13.312 -43.028 10.447 pH 15.430 1.341 0.703 132.478 Electricity 1 4.982 2.019 0.132 6.088
NH4+濃度 -0.291 0.039 -0.489 55.463 NH 4 + concentration -0.291 0.039 -0.489 55.463
N03—濃度 -0.183 0.052 -0.133 12.203 温度 -0.244 0.094 -0.140 6.725 アルカリフォスファタ一 -セ' 3.181 1.178 - 0.183 7.284 酸フォスファターゼ -5.504 1.026 -0.307 28.761 ホスホヒドロキシラ -ゼ -2.962 1.429 -0.110 4.297 エステラーゼ -9.675 1.954 -0.267 24.526 β -グルコシダ-ーゼ 3.530 1.168 0.150 9.133 N0 3 -concentration -0.183 0.052 -0.133 12.203 Temperature -0.244 0.094 -0.140 6.725 Alkaline phosphatase -Se '3.181 1.178-0.183 7.284 Acid phosphatase -5.504 1.026 -0.307 28.761 Phosphohydroxylase -2.962 1.429 -0.110 4.297 Esterase- 9.675 1.954 -0.267 24.526 β-glucosidase 3.530 1.168 0.150 9.133
S.R.C.*: 標準回帰係数  S.R.C. *: Standard regression coefficient
[0061] さらにより簡単なモデルとするため、表 2の中から F値の高い 4つのパラメータ、すな わち、 ρΗ、アンモ-ゥムイオン濃度、酸フォスファターゼ活性及びエステラーゼ活性 を選び、重回帰分析を行った。その結果、下記の式(2)を得た。なお、式(2)中、「Ν Η +」はアンモ-ゥムイオン濃度 (mgZDを表す。また、「AP」は酸フォスファターゼ[0061] To make the model even simpler, we selected four parameters with high F values from Table 2, that is, ρΗ, ammonium ion concentration, acid phosphatase activity, and esterase activity. went. As a result, the following formula (2) was obtained. In the formula (2), “Ν Η +” represents ammonium ion concentration (mgZD. “AP” represents acid phosphatase.
4 Four
活性、「E」はエステラーゼ活性を表す。  Activity, “E” represents esterase activity.
[0062] GI=— 60. 239 + 19. 057pH— 0. 238 [NH +]—5. 381AP— 5. 117E · · · [0062] GI = — 60. 239 + 19. 057pH— 0. 238 [NH +] — 5. 381AP— 5. 117E
4  Four
式 (2)  Formula (2)
[0063] 前記重回帰モデルでの決定係数 R2は 0. 791であった。それぞれの堆肥化システ ムにおいて、これらのパラメータ力も推定された GIと実際の GIとの相関を図 4〜図 7 に示す。堆積法 A、堆積法 B、リアクター法 A及びリアクター法 Bでのピアソンの相関 係数 (r)は、それぞれ 0. 96、 0. 93、 0. 84及び 0. 89であった。回帰式の傾きは、堆 積法では約 1であった力 リアクター法では A, Bのどちらも堆積法より小さ力つた。 GI の推定に際しては、堆肥化法ごとに解析を行うことがより効果的である可能性がある。 [0063] The coefficient of determination R 2 in the multiple regression model was 0.791. Figures 4 to 7 show the correlation between the GI, which is estimated for these parameter forces, and the actual GI in each composting system. Pearson's correlation coefficients (r) for deposition method A, deposition method B, reactor method A, and reactor method B were 0.96, 0.93, 0.84, and 0.89, respectively. The slope of the regression equation was about 1 in the sedimentation method. In the force reactor method, both A and B had a smaller force than the deposition method. When estimating GI, it may be more effective to perform analysis for each composting method.
[0064] なお、今回選択された 4つのパラメータ (pH、アンモ-ゥムイオン濃度、酸フォスファ ターゼ活性、エステラーゼ活性)は、それぞれ単独では GIとほとんど相関していない( riまそれぞれ 0. 369、 0. 019、 一0. 047、 0. 321である。;)。このため、これらのノ ラ メータ自身力も GIを推定することは出来ない。しかし、これらを組み合わせることで GI を推定可能であり、その際のパラメータの選択に重回帰分析は有効であった。 [0064] The four parameters selected this time (pH, ammonia ion concentration, acid phosphate) Tase activity and esterase activity) are not substantially correlated with GI by themselves (ri, 0.369, 0.019, 0.047, 0.321, respectively). For this reason, the GI cannot be estimated by the power of these norms themselves. However, GI can be estimated by combining these, and multiple regression analysis was effective in selecting parameters.
図 4〜図 7から明らかなように、推定 GIは、実際の GIと良好な相関を示した。したが つて、以上の実験から、 GIとこれに対応する物理ィ匕学的指標及び酵素活性等につ いて重回帰分析を行い、例えば式(2)のような重回帰式を得、この重回帰式に評価 対象の肥料のデータを当てはめることによって、肥料の GIを高精度に推定可能であ ることがわ力る。また、本実験で用いた肥料においては、ノ メータとして、 pH、アン モ -ゥムイオン濃度、酸フォスファターゼ活性及びエステラーゼ活性を選択すること で、簡単なモデルで GIの高精度な推定が実現された。  As is clear from Figs. 4 to 7, the estimated GI showed a good correlation with the actual GI. Therefore, from the above experiment, multiple regression analysis was performed on GI and the corresponding physico-physical indices and enzyme activity, and a multiple regression equation such as Equation (2) was obtained. By applying the fertilizer data to be evaluated to the regression equation, it is clear that the GI of the fertilizer can be estimated with high accuracy. In the fertilizer used in this experiment, the pH, ammonia ion concentration, acid phosphatase activity, and esterase activity were selected as the parameters, and a high-precision estimation of GI was realized with a simple model.

Claims

請求の範囲 The scope of the claims
[1] 評価対象の肥料の抽出液についての物理化学的指標、酵素活性から選択される 少なくとも 2種の情報を取得し、前記情報を所定の計算式に当てはめて前記肥料の 発芽指数を推定することを特徴とする肥料品質評価方法。  [1] Obtain at least two types of information selected from the physicochemical index and enzyme activity of the fertilizer extract to be evaluated, and apply the information to a predetermined calculation formula to estimate the germination index of the fertilizer Fertilizer quality evaluation method characterized by that.
[2] 前記所定の計算式が、評価対象の肥料と類似の肥料についての発芽指数と、物理 化学的指標、酵素活性力 選択される少なくとも 2種の情報とについて重回帰分析を 行うことにより得られる重回帰式であることを特徴とする請求項 1記載の肥料品質評 価方法。  [2] The predetermined calculation formula is obtained by performing a multiple regression analysis on a germination index for a fertilizer to be evaluated and a similar fertilizer, and at least two types of information selected for a physicochemical index and enzyme activity. The fertilizer quality evaluation method according to claim 1, wherein the fertilizer quality evaluation method is a multiple regression equation.
[3] 前記物理化学的指標が、 pH、アンモ-ゥムイオン濃度、硝酸イオン濃度、電気伝 導度、温度、酸ィ匕還元電位力 なる群力 選択される少なくとも 1種であることを特徴 とする請求項 1または 2記載の肥料品質評価方法。  [3] The physicochemical index is at least one selected from the group force consisting of pH, ammonia ion concentration, nitrate ion concentration, electrical conductivity, temperature, and acid reduction potential force. The fertilizer quality evaluation method according to claim 1 or 2.
[4] 前記物理化学的指標が、 pH及びアンモ-ゥムイオン濃度であることを特徴とする 請求項 3記載の肥料品質評価方法。  4. The method for evaluating fertilizer quality according to claim 3, wherein the physicochemical index is pH and ammonium ion concentration.
[5] 前記酵素活性が、微生物の活性を表す酵素活性であることを特徴とする請求項 1 〜4の 、ずれか 1項記載の肥料品質評価方法。  [5] The method for evaluating fertilizer quality according to any one of claims 1 to 4, wherein the enzyme activity is an enzyme activity representing the activity of a microorganism.
[6] 前記微生物の活性を表す酵素活性が、プロテアーゼ活性、アミラーゼ活性、セルラ ーゼ活性、アルカリフォスファターゼ活性、酸フォスファターゼ活性、フォスフォハイド ラーゼ活'性、エステラーゼ活'性、エステラーゼ リパーゼ活'性、リパーゼ活'性、口イシ ンァリルアミダーゼ活性、ノ リンァリルアミダーゼ活性、シスチンァリルアミダーゼ活性 、トリプシン活性、キモトリブシン活性、 a—ガラタトシダーゼ活性、 β—ガラタトシダー ゼ活性、 13 ダルクロニダーゼ活性、 (X ダルコシダーゼ活性、 13 ダルコシダーゼ 活性、 Ν—ァセチノレー β ダルコサミニダーゼ活性、 a マンノシダーゼ活性及び α—フコシダーゼ活性カゝらなる群カゝら選択される少なくとも 1種であることを特徴とす る請求項 5記載の肥料品質評価方法。  [6] The enzyme activity representing the activity of the microorganism is protease activity, amylase activity, cellulase activity, alkaline phosphatase activity, acid phosphatase activity, phosphohydrase activity, esterase activity, esterase lipase activity. Lipase activity, oral isinalarylamidase activity, norarylamidase activity, cystine arylamidase activity, trypsin activity, chymotrypsin activity, a-galatatosidase activity, β-galatatosidase activity, 13 dalcronidase activity, (X darcosidase 6. The activity according to claim 5, wherein the activity is at least one selected from the group consisting of 13 activity, 13 darcosidase activity, ァ -acetyleno β β darcosaminidase activity, a mannosidase activity and α-fucosidase activity. Fertilizer quality evaluation method.
[7] 評価対象の肥料の抽出液についての物理化学的指標、酵素活性から選択される 少なくとも 2種の情報を取得する情報取得部と、 [7] An information acquisition unit that acquires at least two types of information selected from the physicochemical index and the enzyme activity of the fertilizer extract to be evaluated;
前記情報を所定の計算式に当てはめて前記肥料の発芽指数を推定する制御部と を備えることを特徴とする肥料品質評価装置。 A fertilizer quality evaluation apparatus, comprising: a controller that applies the information to a predetermined calculation formula to estimate a germination index of the fertilizer.
[8] 前記所定の計算式が、評価対象の肥料と類似の肥料についての発芽指数と、物理 化学的指標、酵素活性力 選択される少なくとも 2種の情報とについて重回帰分析を 行うことにより得られる重回帰式であることを特徴とする請求項 7記載の肥料品質評 価装置。 [8] The predetermined calculation formula is obtained by performing a multiple regression analysis on a germination index for a fertilizer similar to a fertilizer to be evaluated, a physicochemical index, and at least two types of information selected for enzyme activity. The fertilizer quality evaluation device according to claim 7, wherein the fertilizer quality evaluation device is a multiple regression equation.
[9] 前記物理化学的指標が、 pH、アンモ-ゥムイオン濃度、硝酸イオン濃度、電気伝 導度、温度、酸ィ匕還元電位力 なる群力 選択される少なくとも 1種であることを特徴 とする請求項 7または 8記載の肥料品質評価装置。  [9] The physicochemical index is at least one selected from the group force consisting of pH, ammonia ion concentration, nitrate ion concentration, electrical conductivity, temperature, and acid reduction potential force. The fertilizer quality evaluation apparatus according to claim 7 or 8.
[10] 前記物理化学的指標が、 pH及びアンモニゥムイオン濃度であることを特徴とする 請求項 9記載の肥料品質評価装置。  10. The fertilizer quality evaluation device according to claim 9, wherein the physicochemical index is pH and ammonium ion concentration.
[11] 前記酵素活性が、微生物の活性を表す酵素活性であることを特徴とする請求項 7 〜 10のいずれか 1項記載の肥料品質評価装置。  [11] The fertilizer quality evaluation device according to any one of [7] to [10], wherein the enzyme activity is an enzyme activity representing the activity of a microorganism.
[12] 前記微生物の活性を表す酵素活性が、プロテアーゼ活性、アミラーゼ活性、セルラ ーゼ活性、アルカリフォスファターゼ活性、酸フォスファターゼ活性、フォスフォハイド ラーゼ活'性、エステラーゼ活'性、エステラーゼ リパーゼ活'性、リパーゼ活'性、口イシ ンァリルアミダーゼ活性、ノ リンァリルアミダーゼ活性、シスチンァリルアミダーゼ活性 、トリプシン活性、キモトリブシン活性、 a—ガラタトシダーゼ活性、 β—ガラタトシダー ゼ活性、 13 ダルクロニダーゼ活性、 (X ダルコシダーゼ活性、 13 ダルコシダーゼ 活性、 Ν—ァセチノレー β ダルコサミニダーゼ活性、 a マンノシダーゼ活性及び α—フコシダーゼ活性力 なる群選択される少なくとも 1種であることを特徴とする請 求項 11記載の肥料品質評価装置。  [12] The enzyme activity representing the activity of the microorganism is protease activity, amylase activity, cellulase activity, alkaline phosphatase activity, acid phosphatase activity, phosphohydrase activity, esterase activity, esterase lipase activity. Lipase activity, oral isinalarylamidase activity, norarylamidase activity, cystine arylamidase activity, trypsin activity, chymotrypsin activity, a-galatatosidase activity, β-galatatosidase activity, 13 dalcronidase activity, (X darcosidase 12. The fertilizer quality evaluation apparatus according to claim 11, wherein the fertilizer quality evaluation apparatus is at least one selected from the group consisting of: activity, 13 darcosidase activity, Ν-acetylinole β darcosaminidase activity, a mannosidase activity and α-fucosidase activity.
[13] 評価対象の肥料の抽出液についての物理化学的指標、酵素活性から選択される 少なくとも 2種の情報を取得する情報取得入力機能と、 [13] An information acquisition and input function for acquiring at least two types of information selected from the physicochemical index and enzyme activity of the fertilizer extract to be evaluated;
前記情報を所定の計算式に当てはめて前記肥料の発芽指数を推定する制御機能 とを、コンピュータに実現させることを特徴とする肥料品質評価プログラム。  A fertilizer quality evaluation program for causing a computer to realize a control function for estimating the germination index of the fertilizer by applying the information to a predetermined calculation formula.
[14] 前記所定の計算式が、評価対象の肥料と類似の肥料についての発芽指数と、物理 化学的指標、酵素活性力 選択される少なくとも 2種の情報とについて重回帰分析を 行うことにより得られる重回帰式であることを特徴とする請求項 13記載の肥料品質評 価プログラム。 [14] The predetermined calculation formula is obtained by performing a multiple regression analysis on a germination index for a fertilizer to be evaluated and similar fertilizers, and at least two types of information selected for physicochemical indicators and enzyme activity. 14. The fertilizer quality evaluation program according to claim 13, wherein the program is a multiple regression equation.
[15] 前記物理化学的指標が、 pH、アンモニゥムイオン濃度、硝酸イオン濃度、電気伝 導度、温度、酸ィ匕還元電位力 なる群力 選択される少なくとも 1種であることを特徴 とする請求項 13又は 14記載の肥料品質評価プログラム。 [15] The physicochemical index is at least one selected from the group force consisting of pH, ammonium ion concentration, nitrate ion concentration, electric conductivity, temperature, and acid reduction potential force. The fertilizer quality evaluation program according to claim 13 or 14.
[16] 前記物理化学的指標が、 pH及びアンモニゥムイオン濃度であることを特徴とする 請求項 15記載の肥料品質評価プログラム。  16. The fertilizer quality evaluation program according to claim 15, wherein the physicochemical index is pH and ammonium ion concentration.
[17] 前記酵素活性が、微生物の活性を表す酵素活性であることを特徴とする請求項 13 〜16のいずれか 1項記載の肥料品質評価プログラム。  17. The fertilizer quality evaluation program according to any one of claims 13 to 16, wherein the enzyme activity is an enzyme activity representing the activity of a microorganism.
[18] 前記微生物の活性を表す酵素活性が、プロテアーゼ活性、アミラーゼ活性、セルラ ーゼ活性、アルカリフォスファターゼ活性、酸フォスファターゼ活性、フォスフォハイド ラーゼ活'性、エステラーゼ活'性、エステラーゼ リパーゼ活'性、リパーゼ活'性、口イシ ンァリルアミダーゼ活性、ノ リンァリルアミダーゼ活性、シスチンァリルアミダーゼ活性 、トリプシン活性、キモトリブシン活性、 a—ガラタトシダーゼ活性、 β—ガラタトシダー ゼ活性、 13 ダルクロニダーゼ活性、 (X ダルコシダーゼ活性、 13 ダルコシダーゼ 活性、 Ν—ァセチノレー β ダルコサミニダーゼ活性、 a マンノシダーゼ活性及び α—フコシダーゼ活性カゝらなる群カゝら選択される少なくとも 1種であることを特徴とす る請求項 17記載の肥料品質評価プログラム。  [18] The enzyme activity representing the activity of the microorganism is protease activity, amylase activity, cellulase activity, alkaline phosphatase activity, acid phosphatase activity, phosphohydrase activity, esterase activity, esterase lipase activity. Lipase activity, oral isynarylamidase activity, norarylamidase activity, cystinearylamidase activity, trypsin activity, chymotrypsin activity, a-galatatosidase activity, β-galatatosidase activity, 13 dalcronidase activity, (X darcosidase 18. The activity according to claim 17, wherein the activity is at least one selected from the group consisting of: 13 activity, 13 darcosidase activity, ァ -acetylenore β darcosaminidase activity, a mannosidase activity and α-fucosidase activity. Fertilizer quality evaluation program .
PCT/JP2005/021580 2005-03-02 2005-11-24 Method of evaluating fertilizer qualities, appratus for evaluating fertilizer qualities and program for evaluating fertilizer qualities WO2006092892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005058208A JP4019153B2 (en) 2005-03-02 2005-03-02 Fertilizer quality evaluation method, fertilizer quality evaluation device, and fertilizer quality evaluation program
JP2005-058208 2005-03-02

Publications (1)

Publication Number Publication Date
WO2006092892A1 true WO2006092892A1 (en) 2006-09-08

Family

ID=36940934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021580 WO2006092892A1 (en) 2005-03-02 2005-11-24 Method of evaluating fertilizer qualities, appratus for evaluating fertilizer qualities and program for evaluating fertilizer qualities

Country Status (2)

Country Link
JP (1) JP4019153B2 (en)
WO (1) WO2006092892A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661982A (en) * 2012-04-20 2012-09-12 广东省生态环境与土壤研究所 Method for quickly determining compost rotten degree
CN113607915A (en) * 2021-04-23 2021-11-05 重庆工商大学 Portable compost maturity detector based on embedded system and detection method
CN114757543A (en) * 2022-04-20 2022-07-15 福建农林大学 Compost process efficiency evaluation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211374A (en) * 2017-05-09 2017-11-30 五洋建設株式会社 Decay degree determination method of compost, and composting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127003A (en) * 1995-09-01 1997-05-16 Nkk Corp Method for judging degree of humification of compost-treated object
JP2004201586A (en) * 2002-12-25 2004-07-22 Shinjiro Kanazawa Instrument for assaying plant growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127003A (en) * 1995-09-01 1997-05-16 Nkk Corp Method for judging degree of humification of compost-treated object
JP2004201586A (en) * 2002-12-25 2004-07-22 Shinjiro Kanazawa Instrument for assaying plant growth

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENITO M. ET AL.: "Chemical and microbiological parameters for the characterization of the stability and maturity of puring waste compost", BIO. FERTIL. SOILS, vol. 37, 2003, pages 184 - 189, XP003004538 *
KANAZAWA S.: "Compost Fujuku Katei ni okeru Yukibutsu no Henka narabini sono Hyoka", JAPAN JOURNAL OF WATER POLLUTION RESEARCH, vol. 9, no. 5, 1986, pages 10 - 17, XP003004536 *
KANAZAWA S.: "Taihi Fujuku Hantei Juraiho to Hatsuga Index-ho no Hikaku", JAPANESE SOCIETY OF SOIL SCIENCE AND PLANT NUTRITION KOEN YOSHISHU, vol. 47TH, 2001, pages 193, XP003004537 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661982A (en) * 2012-04-20 2012-09-12 广东省生态环境与土壤研究所 Method for quickly determining compost rotten degree
CN113607915A (en) * 2021-04-23 2021-11-05 重庆工商大学 Portable compost maturity detector based on embedded system and detection method
CN113607915B (en) * 2021-04-23 2024-02-02 重庆工商大学 Portable compost maturity detector and detection method based on embedded system
CN114757543A (en) * 2022-04-20 2022-07-15 福建农林大学 Compost process efficiency evaluation method

Also Published As

Publication number Publication date
JP4019153B2 (en) 2007-12-12
JP2006242723A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
Dilly Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter
Marinari et al. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy
Sullivan et al. Compost quality attributes, measurements and variability
Dilly et al. Ratios between estimates of microbial biomass content and microbial activity in soils
Verchot et al. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils
Moody et al. Using biochemical methane potential assays to aid in co-substrate selection for co-digestion
Griffin Nitrogen availability
Wang et al. Evolution of phytotoxicity during the active phase of co-composting of chicken manure, tobacco powder and mushroom substrate
Li et al. Dynamics of soil microbial metabolic activity during grassland succession after farmland abandonment
Fitts et al. The determination of lime and fertilizer requirements of soils through chemical tests
Meena et al. Maturity indices as an index to evaluate the quality of sulphur enriched municipal solid waste compost using variable byproduct of sulphur
CN109214635A (en) A kind of evaluation method of compost maturity
Curtin et al. Biological and chemical assays to estimate nitrogen supplying power of soils with contrasting management histories
Brinton et al. Compost sampling for nutrient and quality parameters: variability of sampler, timing and pile depth
US20090035871A1 (en) Method for measuring maturity degree of compost and measuring solution
JP4019153B2 (en) Fertilizer quality evaluation method, fertilizer quality evaluation device, and fertilizer quality evaluation program
Sullivan et al. Soil organic matter as a soil health indicator: Sampling, testing, and interpretation
You et al. Hydrolysis of fluorescein diacetate in an avocado plantation mulch suppressive to Phytophthora cinnamomi and its relationship with certain biotic and abiotic factors
Tan et al. Responses of soil nutrient and enzyme activities to long-term mulched drip irrigation (MDI) after the conversion of wasteland to cropland
Antil et al. Mineralization of nitrogen in permanent pastures amended with fertilizer or dung
Lakaria et al. Soil organic carbon pools and indices under different land use systems in Vertisols of Central India
Lohr et al. Use of ergosterol as an indicator for colonization of peat-based growing media by saprophytic fungi
JP2006329639A (en) Method of diagnosing soil environment
Hase et al. Germination test on Komatsuna (Brassica rapa var. peruviridis) seed using water extract from compost for evaluating compost maturity: evaluating criteria for germination and effects of cultivars on germination rate
Henry, PC* & Smith Two-step approach to determining some useful phosphorus characteristics of South African soils: a review of work done at the ARC-Institute for Soil, Climate and Water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05809393

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5809393

Country of ref document: EP