JP2017211374A - Decay degree determination method of compost, and composting method - Google Patents
Decay degree determination method of compost, and composting method Download PDFInfo
- Publication number
- JP2017211374A JP2017211374A JP2017093216A JP2017093216A JP2017211374A JP 2017211374 A JP2017211374 A JP 2017211374A JP 2017093216 A JP2017093216 A JP 2017093216A JP 2017093216 A JP2017093216 A JP 2017093216A JP 2017211374 A JP2017211374 A JP 2017211374A
- Authority
- JP
- Japan
- Prior art keywords
- compost
- maturity
- composting
- temperature
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Fertilizers (AREA)
Abstract
Description
本発明は、堆肥の腐熟度を判定する方法及び堆肥化を行う方法に関する。 The present invention relates to a method for determining the degree of maturity of compost and a method for composting.
近年、食品廃棄物を始めとした有機性廃棄物のリサイクルがますます重要となっている。この有機性廃棄物の有効利用の1つに堆肥化がある。有機性廃棄物の堆肥化において、従来は堆肥化作業者や農業従事者の勘や経験に基づいた管理が主であったが、今後は農作物の安全性を確保するためにも、堆肥の品質について迅速かつ正確な評価手法が求められている。 In recent years, recycling of organic waste including food waste has become increasingly important. One effective use of organic waste is composting. Conventionally, composting of organic waste has mainly been managed based on the intuition and experience of composting workers and farmers, but in the future, in order to ensure the safety of crops, compost quality There is a need for rapid and accurate assessment methods.
堆肥の品質の一つとして、堆肥の腐熟度が挙げられる。腐熟が進んでいない未熟な堆肥を土壌に施用すると、土壌中における有機質の急速な分解に伴って、高濃度無機態窒素の発生、土壌の異常還元及び窒素飢餓等の間接的障害作用と、生育阻害物質等の放出による直接的障害作用により、農作物の生育を阻害するおそれがある。このため、堆肥を土壌に施用する前に、堆肥の腐熟度を把握しておく必要がある。例えば特許文献1には、堆肥抽出液から発せられる微弱な光の光量に基づいて堆肥の腐熟度を判定する方法が提案されている。
One quality of compost is the maturity of compost. When immature compost, which has not progressed in maturity, is applied to soil, it is accompanied by indirect damages such as generation of high-concentration inorganic nitrogen, abnormal reduction of soil, and nitrogen starvation, along with rapid decomposition of organic matter in the soil. There is a risk that the growth of crops may be hindered by a direct hindrance effect due to the release of inhibitors and the like. For this reason, before applying compost to soil, it is necessary to grasp the maturity of compost. For example,
堆肥の腐熟度は、物理性及び化学性の観点で評価される。物理性に関する腐熟度判定は、堆肥を土壌に施用することにより適度な空気量を与えて土壌を柔らかくする効果(土壌改良効果であり、膨軟化ともいう)を判定するものである。化学性に関する腐熟度判定は、堆肥中の易分解性有機質の分解度が進行することにより分解時の中間生成物である生育阻害物質(低級脂肪酸、フェノール類等)を無害化したり、難分解性有機物の分解がゆっくりと進行することにより農作物に栄養として作用したりする効果(緩効性を主とした肥料要素の供給効果)を判定するものである。堆肥化作業者や農業従事者が堆肥の完成度を見るときには、視覚及び嗅覚によって化学性に関する腐熟度を確認し、触覚によって物理性に関する腐熟度を確認するという、いわゆる主観的な判定手法に留まっているのが現状である。 The maturity of compost is evaluated in terms of physical and chemical properties. The determination of the degree of maturity related to physicality is to determine the effect of applying an appropriate amount of air by applying compost to the soil to soften the soil (this is a soil improvement effect and is also referred to as swelling and softening). Determination of the degree of maturity related to chemicals can be achieved by detoxifying growth inhibitors (lower fatty acids, phenols, etc.), which are intermediate products during decomposition, as the degree of decomposition of readily degradable organic matter in the compost progresses. The effect of acting as a nutrient on agricultural products by slowly decomposing organic matter (the effect of supplying fertilizer elements mainly of slow release) is determined. When composting workers and agricultural workers look at the degree of compost completion, the so-called subjective judgment method of checking the degree of chemical maturity by visual and olfactory senses and checking the degree of physical maturity by tactile sense remains. This is the current situation.
そこで、本発明は、堆肥の腐熟度を化学性において客観的に判定する方法を提供することを目的とし、さらに、これらの腐熟度判定を経て堆肥化を行う方法を提供することを目的とする。 Then, this invention aims at providing the method of judging the maturity of compost objectively in chemical nature, and also providing the method of composting through these maturity judgments. .
上記課題を解決するため、本発明は、有機性廃棄物を原料に含む堆肥の発酵を開始してからの積算温度を求める工程と、前記積算温度が異なる堆肥をそれぞれ用いて発芽試験を行う工程と、前記積算温度と前記発芽試験に基づくGI値(Germination index)との相関関係を求める工程と、判定対象となる堆肥の積算温度を前記相関関係に当てはめて、当該堆肥の化学性における腐熟度を判定する工程とを具備することを特徴とする堆肥の腐熟度判定方法を提供する。ここで、前記相関関係においては、前記GI値が50%となるときの積算温度が1500℃であってもよい。
また、本発明は、有機性廃棄物を含む原料を混合する工程と、前記原料を発酵させる工程と、発酵した前記原料を熟成させる工程と、上記の少なくともいずれかの堆肥の腐熟度判定方法に基づく腐熟度の判定を行う工程とを備えることを特徴とする堆肥化方法を提供する。
In order to solve the above problems, the present invention provides a step of obtaining an integrated temperature after starting fermentation of compost containing organic waste as a raw material, and a step of performing a germination test using compost having different integrated temperatures. And a step of obtaining a correlation between the integrated temperature and a GI value (Germination index) based on the germination test, and applying the integrated temperature of the compost to be determined to the correlation, the degree of maturity in the chemical properties of the compost A method for determining the degree of maturity of compost. Here, in the correlation, the integrated temperature when the GI value is 50% may be 1500 ° C.
The present invention also includes a step of mixing raw materials containing organic waste, a step of fermenting the raw materials, a step of aging the fermented raw materials, and the maturity determination method of at least one of the above composts. A composting method comprising: a step of determining a degree of maturity based on the method.
本発明によれば、堆肥の腐熟度を化学性において客観的に判定し、さらにこれらの判定を経て堆肥化を行うことが可能となる。 According to the present invention, it is possible to objectively determine the degree of maturity of compost in terms of chemistry, and to perform composting through these determinations.
本発明を実施するための形態の一例について説明する。以下の説明において「堆肥」とは、土壌改良効果及び肥料要素の供給効果を期待して利用される農業生産資材である。「堆肥の腐熟」とは、堆肥を土壌に施用した場合に農作物の生育に対する障害性が小さく、堆肥の施用により土壌中の微生物にエネルギーを与えて活動を活発にさせること等により直接的または間接的に地力維持と結びつき、かつ土壌環境の悪変を招かない程度に、堆肥内の有機物をあらかじめ腐朽させることである。そして、このような状態まで腐熟したときが、腐熟の終了すなわち終熟であり、このような状態に達するまでの腐熟の程度を「腐熟度」という。物理性に関する腐熟度は、主として土壌改良効果に寄与し、化学性に関する腐熟度は、主として肥料要素の供給効果に寄与する。 An example for carrying out the present invention will be described. In the following description, “compost” is an agricultural production material used in expectation of soil improvement effect and fertilizer element supply effect. “Maturation of compost” means that when compost is applied to the soil, the obstacle to the growth of the crop is small, and by applying the compost, energy is given to microorganisms in the soil to activate the activity directly or indirectly. In particular, the organic matter in the compost must be rotted in advance to such an extent that it is linked to the maintenance of geological strength and does not cause adverse changes in the soil environment. And when it ripens to such a state, it is the end of ripening, that is, final ripening, and the degree of ripening until it reaches such a state is called “maturity”. The maturity degree related to physical properties mainly contributes to the soil improvement effect, and the maturity degree related to chemical properties mainly contributes to the supply effect of fertilizer elements.
(1)堆肥化方法の概要
図1は、本実施形態に係る堆肥化方法を示す工程図である。図1において、堆肥化のための主要な工程について説明する。まず前処理・混合工程が行われる(ステップS1)。具体的には、作業者が食品工場等から受け入れた食品廃棄物等の有機性廃棄物を原料とし、これを木チップ等の副資材と混合する。この混合物を、以下では「堆肥化物」という。
(1) Overview of Composting Method FIG. 1 is a process diagram showing a composting method according to the present embodiment. In FIG. 1, the main steps for composting will be described. First, a pretreatment / mixing step is performed (step S1). Specifically, organic waste such as food waste received by a worker from a food factory or the like is used as a raw material, and this is mixed with auxiliary materials such as wood chips. This mixture is hereinafter referred to as “compost”.
次に、発酵工程が行われる(ステップS2)。具体的には、作業者が例えば自動撹拌搬送機やその他の作業機械等によって堆肥化物を定期的に撹拌させながら発酵施設内を移送させる。また、このとき併せて発酵施設の底面側からブロワによる送気を行う場合もある。この発酵工程に要する期間は例えば約25日間である。 Next, a fermentation process is performed (step S2). Specifically, the worker moves the inside of the fermentation facility while periodically stirring the compost by, for example, an automatic stirring and conveying machine or other working machines. In addition, air may be supplied by a blower from the bottom side of the fermentation facility. The period required for this fermentation process is, for example, about 25 days.
次に、熟成工程が行われる(ステップS3)。具体的には、熟成施設内で作業者が堆肥化物を高さ数m程度までに積み上げ、ひと山を単位として定期的に例えばホイールローダーやその他の作業機械等で切返し等の作業を行う。また、このとき併せて発酵施設の底面側からブロワによる送気を行う場合もある。この熟成工程に要する期間は例えば約95日間である。なお、本実施形態では、発酵工程における堆肥化物の混合攪拌作業を「攪拌」と呼び、熟成工程における堆肥化物の混合攪拌作業を「切返し」と呼んで、両者を区別している。 Next, an aging process is performed (step S3). Specifically, an operator piles up compost in a maturation facility up to a height of several meters, and periodically performs a work such as turning over with a wheel loader or other work machine in units of one pile. In addition, air may be supplied by a blower from the bottom side of the fermentation facility. The period required for this aging step is, for example, about 95 days. In the present embodiment, the mixing and stirring work of the composted product in the fermentation process is referred to as “stirring”, and the mixing and stirring work of the composted product in the aging process is referred to as “turning back” to distinguish them.
次に、堆肥化物が、堆肥としての物理性及び化学性における所定の腐熟条件を満たしたか否かを判定する腐熟度判定工程が行われる(ステップS4)。この腐熟度判定工程に関するステップS10,S20については後で詳述する。 Next, a maturity determination process is performed for determining whether the composted material satisfies predetermined maturation conditions in physical properties and chemical properties as compost (step S4). Steps S10 and S20 relating to the maturity determination process will be described in detail later.
腐熟条件を満たしたと判断されると(ステップS4;YES)、作業者によって例えばふるい分けや収容などの製品化工程が実施される(ステップS5)。これにより、堆肥として製品として出荷可能な状態となる。 When it is determined that the ripening conditions are satisfied (step S4; YES), a commercialization process such as sieving and storage is performed by the worker (step S5). Thereby, it will be in the state which can be shipped as a compost as a product.
(2)ステップS10に関する化学性腐熟条件について
発酵及び熟成工程においては、微生物による有機物分解に伴って温度が上昇するが、一般に、堆肥化作業の管理のためにこの温度を測定・記録することが行われている。ただし、このとき測定された温度は、作業者が堆肥の腐熟度を確認するにあたっての勘や経験を補佐するためのデータにはなるが、これに基づいて堆肥化の進捗を定量化するまでには今のところ至っていない。本発明者らは、堆肥化物の積算温度と、いわゆるGI(Germination index)値との間に何らかの相関関係があるとの仮説を立て、堆肥の化学性における腐熟度を積算温度に基づいて判定する手法の確立を試みた。
(2) Chemical ripening conditions for step S10 In the fermentation and ripening process, the temperature rises with the decomposition of organic matter by microorganisms, but generally this temperature can be measured and recorded for the management of composting work. Has been done. However, the temperature measured at this time is data that assists the intuition and experience in confirming the degree of maturity of the compost, but based on this, it is necessary to quantify the progress of composting. Has not reached so far. The present inventors made a hypothesis that there is some correlation between the accumulated temperature of compost and a so-called GI (Germination index) value, and determined the degree of maturity in compost chemistry based on the accumulated temperature. Tried to establish a method.
発酵及び熟成工程では、堆肥化物が均一となるように撹拌又は切返しが行われるが、堆肥化物の一部の性状(温度等)は表層付近の大気(気温)の影響を受ける。このため、堆肥化物の表面から深さ30cm の温度が堆肥化物の品質確認基準の一つとして挙げられている。本発明者らは大気の影響を受けない深さを把握するため、堆肥化工程の全期間を通して堆肥化物の異なる深さでの温度を時系列で測定した(具体的には10分間隔で約8か月間)。この結果、表面から70cm 以深で温度が安定することが分かったので、堆肥化物の温度の測定深さを70cmに設定した。
In the fermentation and aging process, stirring or turning is performed so that the compost is uniform, but some properties (temperature, etc.) of the compost are affected by the atmosphere (temperature) in the vicinity of the surface layer. For this reason, a temperature of 30
また、堆肥化工程においては撹拌又は切返しの作業により、堆肥化物の温度が低下、上昇、安定という状況を繰り返す。本発明者らは、堆肥化物の温度が安定している時間を堆肥化物の性状が安定している時間と考え、堆肥化工程における作業時間帯の中で調査に適した時間帯を検討した。具体的には、深さ70cmの測定温度について日平均温度及び正時ごとの平均温度を算出して両者を比較し、日平均温度と正時の平均温度との間に有意差(ここでは1%棄却域)が無い時間帯が0〜8時、18 時〜23 時であることを確認した。これは、堆肥化工程において通常は午前中に撹拌又は切返しの作業を行うため、その作業から一定時間経過後の18 時以降になると温度が安定すると想定された。そこで、堆肥化物の性状把握のための温度測定に適した時間帯を、撹拌又は切返し作業後8時間が経過した以降から、次の撹拌又は切返し作業までの間に設定した。 Moreover, in the composting process, the temperature of the composted material is lowered, raised, and stabilized by stirring or turning over. The present inventors considered the time when the temperature of the compost is stable as the time when the property of the compost is stable, and examined the time zone suitable for the investigation in the work time zone in the composting process. Specifically, for the measured temperature of 70 cm in depth, the daily average temperature and the average temperature for every hour are calculated and compared, and a significant difference (here, 1) It was confirmed that the time zone without the (% rejection area) was 0-8 o'clock, 18: 00-23: 00. This is because the composting process usually involves stirring or turning in the morning, so the temperature was assumed to be stable after 18:00 after a certain period of time had elapsed from that work. Therefore, a time zone suitable for temperature measurement for grasping the properties of compost was set after 8 hours had passed after the stirring or turning operation until the next stirring or turning operation.
堆肥化工程では、病原菌や雑草の種子を死滅させるために適度な高温が必要であるが、温度が高すぎると堆肥化に有効な微生物にも影響を及ぼす。これらのことを考慮して、堆肥化物の温度の管理目標値を、発酵工程で60〜75℃、熟成工程で50〜75℃とした In the composting process, a moderately high temperature is required to kill pathogenic bacteria and weed seeds. However, if the temperature is too high, microorganisms effective for composting are also affected. Considering these things, the management target value of the temperature of the compost was set to 60 to 75 ° C. in the fermentation process and 50 to 75 ° C. in the aging process.
ここで、図2は、積算温度とGI値との相関関係を求める工程図である。まず、作業者は堆肥化物の発酵を開始してからの積算温度を求め(ステップS11)、積算温度が異なる堆肥をそれぞれ用いて発芽試験を行い(ステップS12)、積算温度と発芽試験に基づくGI値(Germination index)との相関関係を求める(ステップS13)。 Here, FIG. 2 is a process diagram for obtaining the correlation between the integrated temperature and the GI value. First, an operator calculates | requires the integrated temperature after starting fermentation of a compost | cure material (step S11), performs a germination test using each compost from which integrated temperature differs (step S12), and is based on integrated temperature and a germination test. A correlation with the value (Germination index) is obtained (step S13).
図3は、発酵工程を開始したときからの経過日数(横軸:堆肥化日数[日])と、堆肥化物の測定温度の日平均温度(縦軸:温度[℃])との関係を示すグラフである。また、図4は、発酵工程を開始したときからの経過日数(横軸:堆肥化日数[日])と、発酵工程開始時からの堆肥化物の測定温度の日平均温度の積算結果(縦軸:積算温度[℃・日])との関係を示すグラフである。また、図5は、発酵工程開始時からの堆肥化物の積算温度(横軸:積算温度[℃・日])と、積算温度がそれぞれ異なる堆肥化物から採取したサンプルを用いて発芽試験(ここではコマツナの種子を使用)を行った結果から得られたGI値(ここではズッコーニのGI値)(縦軸:GI[%])との相関関係を示すグラフである。図3〜図5は、図2のステップS11〜S13によって求められたグラフである。 FIG. 3 shows the relationship between the number of days elapsed since the start of the fermentation process (horizontal axis: composting days [days]) and the daily average temperature of the composted measurement temperature (vertical axis: temperature [° C.]). It is a graph. Moreover, FIG. 4 shows the integrated result (vertical axis) of the number of days elapsed since the start of the fermentation process (horizontal axis: days of composting [days]) and the daily average temperature of the measured compost from the start of the fermentation process. : Accumulated temperature [° C./day]). In addition, FIG. 5 shows a germination test using samples collected from compost having different integrated temperatures (horizontal axis: integrated temperature [° C./day]) from the start of the fermentation process. It is a graph which shows correlation with the GI value (here, the GI value of zucchini) (vertical axis: GI [%]) obtained from the result of having performed the seed of Komatsuna. 3 to 5 are graphs obtained by steps S11 to S13 of FIG.
図3,4から、測定時の温度は概ね管理目標値の範囲内に入っていたが、積算温度は管理目標値よりも若干高い値であった。また、堆肥化120 日経過時点で積算温度の増加傾向は鈍化し、そのときの積算温度は8,800[℃・日]程度であった。図4,5から、GI 値に関しては、堆肥化日数21 日の時点で、堆肥を製品として出荷し得る最低基準とされる50%を超えていることが分かった。このときの積算温度は約1,500[℃・日]である。 3 and 4, the temperature at the time of measurement was generally within the range of the management target value, but the integrated temperature was slightly higher than the management target value. In addition, when the composting period was 120 days, the trend of increase in accumulated temperature slowed down, and the accumulated temperature at that time was about 8,800 [° C./day]. 4 and 5, it was found that the GI value exceeded 50%, which is the minimum standard at which compost can be shipped as a product, at 21 days of composting. The accumulated temperature at this time is about 1,500 [° C./day].
よって、堆肥化日数21日、つまり積算温度1,500[℃・日]を超える時点が経過すると、化学性における堆肥の腐熟度条件が満たされると言える。つまり、腐熟度の判定対象となる堆肥化物の積算温度を、図5に示した積算温度及びGI値の相関関係に当てはめれば、化学性における腐熟度を判定することができる。 Therefore, it can be said that the compost maturity condition in the chemical nature is satisfied when the composting days of 21 days, that is, when the cumulative temperature exceeds 1,500 [° C. · day]. That is, if the integrated temperature of the compost that is the target for determining the maturity level is applied to the correlation between the integrated temperature and the GI value shown in FIG. 5, the maturity level in chemistry can be determined.
そこで、前述した図1のステップS10では、腐熟度の判定対象となる堆肥化物について温度測定及び積算を行う。そして、ステップS4では、この積算温度を用いて、上記のような化学性における堆肥の腐熟度条件に関する判定(積算温度が1,500度を超えるか否か)を行う。ここでは、積算温度が1,500度を超えると、化学性における堆肥の腐熟度条件が満たされたと判断される。
なお、上記実施形態は本発明の一実施例に過ぎず、本発明の実施においては様々な変形が可能である。例えば、積算温度とGI値の関係において、例えば堆肥の材料に応じて、修正を行なってもよい。
Therefore, in step S10 of FIG. 1 described above, temperature measurement and integration are performed on the compost that is the target of maturity determination. Then, in step S4, using the accumulated temperature, the determination regarding the maturity condition of compost in the above-described chemistry (whether the accumulated temperature exceeds 1,500 degrees) is performed. Here, when the integrated temperature exceeds 1,500 degrees, it is determined that the compost maturity condition in chemical properties is satisfied.
The above embodiment is only an example of the present invention, and various modifications can be made in the implementation of the present invention. For example, the relationship between the integrated temperature and the GI value may be corrected according to, for example, the compost material.
(3)ステップS20に関する物理性腐熟条件について
物理性に関する腐熟度は、主として土壌改良効果(いわゆる膨軟化)に寄与する。本発明者らは、熟成工程において堆肥化物の分解が進んで粒度が小さくなることで、土壌と混合されたときに土壌の隙間に入り込み、その結果、土壌が柔らかくなるとの仮説を立てた。
(3) About physical maturation conditions regarding step S20 The maturity regarding physicality mainly contributes to the soil improvement effect (so-called swelling and softening). The present inventors have hypothesized that the compost is decomposed and the particle size is reduced in the ripening process, so that when mixed with the soil, it enters the gap between the soils, and as a result, the soil becomes soft.
(3−1) 粒度分析
堆肥化日数ごとに堆肥化物からサンプルを採取し、堆肥化による変化の大きい粒度を抽出するため、粒度分析(土の粒度試験方法を定めたJIS A 1204に準拠)を行った。図6は、堆肥化日数ごとの粒径加積曲線を示す図である。この図6から、有機性廃棄物は堆肥化が進むにつれて細分化し、 特に0.85〜2mmの範囲における粒径の変化が大きいことが分かった。このことから、堆肥化物から採取したサンプルを2mmメッシュのふるいを通過した分の重量百分率が、堆肥化工程の指標となり得ることを確認した。これは木質(ヘミセルロース,セルロース)及びリグニンといった難分解性有機物の分解及び細分化によるものと思われる。
(3-1) Particle size analysis Samples from compost are collected every composting period, and particle size analysis (based on JIS A 1204, which defines the soil particle size test method) is performed in order to extract the particle size that varies greatly due to composting. went. FIG. 6 is a diagram showing a particle size accumulation curve for each composting day. From FIG. 6, it was found that the organic waste was subdivided as composting progressed, and the change in particle size was particularly large in the range of 0.85 to 2 mm. From this, it was confirmed that the weight percentage of the sample collected from the compost was passed through a 2 mm mesh sieve could serve as an index for the composting process. This is thought to be due to decomposition and fragmentation of persistent organic substances such as wood (hemicellulose, cellulose) and lignin.
(3−2)圧縮試験
堆肥化物から採取したサンプルに荷重をかけたときの沈下量を測定する圧縮試験を実施した。この試験では、図7に示すように、内径10cm、高さ20cm の円筒形の容器(図8参照)にサンプルを締固めの力が加わらないように詰めてから(ステップS21)、3.2kgの重りを載せて荷重(0.4kN/m 2 )をかけ(ステップS22)、その沈下量を測って、全高(20cm)に対する割合(%)を算出した(ステップS23)。この圧縮試験時のサンプルとして、15mmメッシュのふるいで夾雑物を除いたものを用いた。またサンプルの単位体積重量と、粒度分析で得た変化の大きい粒度以下の重量百分率[%]を算出した。
(3-2) Compression test A compression test was conducted to measure the amount of settlement when a load was applied to a sample collected from compost. In this test, as shown in FIG. 7, the sample is packed in a cylindrical container (see FIG. 8) having an inner diameter of 10 cm and a height of 20 cm so that no compaction force is applied (step S21), and 3.2 kg. A weight (0.4 kN / m 2 ) was applied with a weight (step S22), the amount of settlement was measured, and the ratio (%) to the total height (20 cm) was calculated (step S23). As a sample at the time of this compression test, a 15 mm mesh screen from which impurities were removed was used. Moreover, the unit volume weight of the sample and the weight percentage [%] below the particle size having a large change obtained by particle size analysis were calculated.
さらに、熟練の堆肥化作業者の経験に基づいて主観的な堆肥腐熟度を判断し、上述の圧縮試験の結果と比較した。腐熟度は、熟成工程の堆肥化物ひと山ごとに、0〜100%の範囲(0%が堆肥化開始当初の状態で、100%が堆肥化完成の状態)とした。図9に示すように、堆肥の腐熟度と圧縮試験による沈下量との関係から、堆肥化つまり腐熟度が進むにつれて圧縮前の堆肥総量に対する圧縮時の沈下量の割合が小さくなる傾向が見られた。腐熟度100%の場合,沈下量の割合は平均15.1%(標準偏差σ=1.536)であった。また、図10、図11に示すように、単位体積重量及び2mm以下重量百分率は、堆肥化つまり腐熟度が進むにつれて大きくなる傾向があった。堆肥化の腐熟度の15%から100%への変化に対して、単位体積重量は0.38/cm 3 (σ=0.012)から0.47g/cm 3 (σ=0.005)への変化が、2mm以下重量百分率30.07%(σ=3.892)から60.08%(σ=2.218)の変化が認められた。 Furthermore, subjective compost maturity was judged based on the experience of skilled composting workers and compared with the results of the compression test described above. The degree of maturity was in the range of 0 to 100% for each pile of compost in the ripening process (0% was the state at the beginning of composting and 100% was composted). As shown in FIG. 9, from the relationship between the degree of compost maturity and the amount of subsidence in the compression test, as the composting, that is, the degree of maturity , the ratio of the amount of subsidence during compression to the total amount of compost before compression tends to decrease. It was. When the degree of maturity was 100%, the ratio of settlement was 15.1% on average (standard deviation σ = 1.536). Further, as shown in FIGS. 10 and 11, the unit volume weight and the weight percentage of 2 mm or less tended to increase as composting, that is, the degree of maturity progressed. The unit volume weight is changed from 0.38 / cm 3 (σ = 0.012) to 0.47 g / cm 3 (σ = 0.005) for the change of compost maturity from 15% to 100%. A change in weight percentage of 2 mm or less from 30.07% (σ = 3.892) to 60.08% (σ = 2.218) was observed.
上記のように、有機性廃棄物を原料に含む堆肥を容器に入れる工程と、前記容器に入れられた堆肥に荷重を加えていないときの当該堆肥の総量に対する、当該堆肥に荷重を加えたときの当該堆肥の沈下量の割合を計測する工程と、計測した前記割合と目標となる割合とを対比して、前記堆肥の物理性における腐熟度を判定する工程によって、物理性における堆肥の腐熟度条件の充足の可否を判定することができる。前述した図1では、腐熟度の判定対象となる堆肥について圧縮試験を行い(ステップS20)、ステップS4では、この圧縮試験によって測定された沈下量の割合と目標となる割合とを対比して、堆肥の物理性における腐熟度の判定(沈下量の割合が目標15%を超えるか否か)を行う。ここでは、沈下量の割合が目標15%を下回ると、物理性における腐熟度条件が満たされたと判定される。
As described above, when a load is applied to the compost relative to the total amount of the compost when the load is not applied to the compost placed in the container and the compost containing organic waste as a raw material The compost maturity level of the compost is determined by comparing the measured ratio with the target ratio, and determining the maturity level of the compost physical property. Whether or not the condition is satisfied can be determined. In Figure 1 described above, it performs compression tested compost as the maturity of the determination target (step S20), in step S 4, and comparing the ratio to form the ratio and the target of the settlement amount measured by the compression test Then, the maturity in the physical properties of the compost is judged (whether or not the rate of settlement will exceed the
以上に説明した実施形態によれば、堆肥の腐熟度を物理性又は化学性において従来よりも客観的に判定することが可能となる。さらに、有機性廃棄物を含む原料を混合する工程と、原料を撹拌しながら発酵させる工程と、発酵した原料を熟成させる工程と、堆肥の腐熟度判定方法に基づく腐熟度の判定を行う工程とによって、十分に腐熟した堆肥化を行うことが可能となる。
なお、上記実施形態は本発明の一実施例に過ぎず、本発明の実施においては様々な変形が可能である。例えば、圧縮試験において、例えば堆肥の材料に応じて、おもりによる荷重条件を変更してもよい。
According to the embodiment described above, the maturity of compost can be determined more objectively than conventional in terms of physicality or chemical properties. Furthermore, a step of mixing raw materials containing organic waste, a step of fermenting the raw materials while stirring, a step of aging the fermented raw materials, and a step of determining the maturity based on the method for determining the maturity of compost By this, it becomes possible to perform composting that is sufficiently matured.
The above embodiment is only an example of the present invention, and various modifications can be made in the implementation of the present invention. For example, in the compression test, the load condition due to the weight may be changed according to the material of compost, for example.
1 容器、2 おもり。 1 container, 2 weights.
Claims (3)
前記積算温度が異なる堆肥をそれぞれ用いて発芽試験を行う工程と、
前記積算温度と前記発芽試験に基づくGI値(Germination index)との相関関係を求める工程と、
判定対象となる堆肥の積算温度を前記相関関係に当てはめて、当該堆肥の化学性における腐熟度を判定する工程と
を具備することを特徴とする堆肥の腐熟度判定方法。 A process for obtaining an integrated temperature after starting fermentation of compost containing organic waste as a raw material;
A step of performing a germination test using each of the composts having different integrated temperatures;
Obtaining a correlation between the integrated temperature and a GI value (Germination index) based on the germination test;
Applying the accumulated temperature of the compost to be determined to the correlation, and determining the maturity in the chemical properties of the compost.
ことを特徴とする請求項1記載の堆肥の腐熟度判定方法。 In the correlation, the integrated temperature when the GI value is 50% is 1500 ° C.
前記原料を発酵させる工程と、
発酵した前記原料を熟成させる工程と、
請求項1又は2に記載の堆肥の腐熟度判定方法に基づく腐熟度の判定を行う工程と
を備えることを特徴とする堆肥化方法。 Mixing raw materials including organic waste,
Fermenting the raw material;
Aging the fermented raw material;
And a step of determining a maturity level based on the method for determining a maturity level of compost according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017093216A JP2017211374A (en) | 2017-05-09 | 2017-05-09 | Decay degree determination method of compost, and composting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017093216A JP2017211374A (en) | 2017-05-09 | 2017-05-09 | Decay degree determination method of compost, and composting method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016104225A Division JP6165296B2 (en) | 2016-05-25 | 2016-05-25 | Method for determining compost maturity and composting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017211374A true JP2017211374A (en) | 2017-11-30 |
Family
ID=60475572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017093216A Pending JP2017211374A (en) | 2017-05-09 | 2017-05-09 | Decay degree determination method of compost, and composting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017211374A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117368410A (en) * | 2023-09-26 | 2024-01-09 | 浙江省农业科学院 | Method for evaluating composting degree of livestock and poultry manure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55124425A (en) * | 1979-03-20 | 1980-09-25 | Kagome Kk | Compost for mushroom |
JP2004230340A (en) * | 2003-01-31 | 2004-08-19 | Kotaro Kurita | Garbage disposal device, temperature/humidity controller used therefor, and garbage disposal method using these |
JP2006242723A (en) * | 2005-03-02 | 2006-09-14 | Japan Advanced Institute Of Science & Technology Hokuriku | Quality evaluation method of fertilizer, quality evaluation device of fertilizer and quality evaluation program of fertilizer |
WO2007114324A1 (en) * | 2006-03-31 | 2007-10-11 | Menicon Co., Ltd. | Method of treating biomass, compost, mulching material for livestock and agent for treating biomass |
JP2016033106A (en) * | 2014-07-30 | 2016-03-10 | アスザックフーズ株式会社 | Compost fermentation tank, production method, and determining system |
-
2017
- 2017-05-09 JP JP2017093216A patent/JP2017211374A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55124425A (en) * | 1979-03-20 | 1980-09-25 | Kagome Kk | Compost for mushroom |
JP2004230340A (en) * | 2003-01-31 | 2004-08-19 | Kotaro Kurita | Garbage disposal device, temperature/humidity controller used therefor, and garbage disposal method using these |
JP2006242723A (en) * | 2005-03-02 | 2006-09-14 | Japan Advanced Institute Of Science & Technology Hokuriku | Quality evaluation method of fertilizer, quality evaluation device of fertilizer and quality evaluation program of fertilizer |
WO2007114324A1 (en) * | 2006-03-31 | 2007-10-11 | Menicon Co., Ltd. | Method of treating biomass, compost, mulching material for livestock and agent for treating biomass |
US20090241623A1 (en) * | 2006-03-31 | 2009-10-01 | Menicon Co., Ltd | Method of treating biomass, compost, mulching material for livestock and agent for treating biomass |
JP2016033106A (en) * | 2014-07-30 | 2016-03-10 | アスザックフーズ株式会社 | Compost fermentation tank, production method, and determining system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117368410A (en) * | 2023-09-26 | 2024-01-09 | 浙江省农业科学院 | Method for evaluating composting degree of livestock and poultry manure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fulton‐Smith et al. | Pathways of soil organic matter formation from above and belowground inputs in a Sorghum bicolor bioenergy crop | |
Jordan et al. | Composition variability of spent mushroom compost in Ireland | |
Kätterer et al. | Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment | |
Laird et al. | Long-term impacts of residue harvesting on soil quality | |
Otero et al. | Digestion of cattle manure: thermogravimetric kinetic analysis for the evaluation of organic matter conversion | |
Subehia et al. | Long-term effect of organic and inorganic fertilizers on rice (Oryza sativa L.)–wheat (Triticum aestivum L.) yield, and chemical properties of an acidic soil in the western Himalayas | |
Griffin et al. | Compost maturity effects on nitrogen and carbon mineralization and plant growth | |
Sadef et al. | Uncertainty in degradation rates for organic micro-pollutants during full-scale sewage sludge composting | |
FI20185676A1 (en) | Method for manufacturing a growing substrate | |
WO2012122530A2 (en) | Method of processing organic waste | |
JP2017211374A (en) | Decay degree determination method of compost, and composting method | |
Sahu et al. | Thermophilic ligno-cellulolytic fungi: The future of efficient and rapid bio-waste management | |
Curtin et al. | Physical properties of some intensively cultivated soils of Ireland amended with spent mushroom compost | |
JP6165296B2 (en) | Method for determining compost maturity and composting method | |
AT397959B (en) | METHOD AND DEVICE FOR PRODUCING FERTILIZER FROM SLURRY AND CROP RESIDUES | |
DE69834534T2 (en) | METHOD AND DEVICE FOR PRODUCING COMPOST | |
CN110790602A (en) | Preparation method of woody peat-derived soil conditioner | |
CN110178477A (en) | A kind of restorative procedure of half matrix covering to cultivating soil | |
Cheruiyot et al. | Environmental and economic impacts of biodegradable plastic film mulching on rainfed maize: Evaluations on sustainability and productivity | |
Mu et al. | Response of soil organic carbon to land-use change after farmland abandonment in the karst desertification control | |
Xu et al. | Assessment of soil aggregation properties after conversion from rice to greenhouse organic cultivation on SOC controlling mechanism | |
Rashwan et al. | Enhancement of Poultry Waste Compost by Adding Biochar | |
KR102354677B1 (en) | Manufacturing method of compost with separated moisture control material | |
Badalíková et al. | Effect of soil tillage and digestate application on some soil properties | |
EP3944757A1 (en) | A method for producing growing media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180316 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180925 |