JP2006329639A - Method of diagnosing soil environment - Google Patents

Method of diagnosing soil environment Download PDF

Info

Publication number
JP2006329639A
JP2006329639A JP2005148989A JP2005148989A JP2006329639A JP 2006329639 A JP2006329639 A JP 2006329639A JP 2005148989 A JP2005148989 A JP 2005148989A JP 2005148989 A JP2005148989 A JP 2005148989A JP 2006329639 A JP2006329639 A JP 2006329639A
Authority
JP
Japan
Prior art keywords
soil
diagnosing
soil environment
microorganisms
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005148989A
Other languages
Japanese (ja)
Inventor
Masao Karube
征夫 輕部
Soueishi Aketani
早映子 明谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005148989A priority Critical patent/JP2006329639A/en
Publication of JP2006329639A publication Critical patent/JP2006329639A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of generally diagnosing a soil environment for specifying the selection of a soil additives or the like fitted to the growth of a plant in soil to be used or the optimum mixing condition of the soil additives or the like and soil from various combinations of a soil improving agent and soil in an extremely simple manner in a short time without planting a plant. <P>SOLUTION: The activity of microorganisms present in soil is measured, specifically a microorganism culture medium is added to a soil suspension to perform culture and a mediator is added to the obtained culture supernatant to perform reaction before the current value obtained by the application of voltage is measured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、土壌環境の診断方法に関する。さらに詳しくは、各種土壌に適した土壌改良剤などの選別を可能とする土壌環境の診断方法に関する。   The present invention relates to a soil environment diagnostic method. More specifically, the present invention relates to a soil environment diagnosis method that enables selection of a soil conditioner suitable for various types of soil.

植物の栽培においては、適切な土壌環境が重要であり、例えば過剰な施肥は作物の生育に悪影響を及ぼすだけでなく、農業系外へ流出した過剰な養分は環境汚染の原因ともなり好ましくない。そこで、土壌環境を健全な状態に保ち、安定した作物生産を保証すべく、作付け前に土壌環境の診断が行われる。   In plant cultivation, an appropriate soil environment is important. For example, excessive fertilization not only adversely affects the growth of crops, but excessive nutrients that flow out of the agricultural system also cause environmental pollution, which is undesirable. Therefore, the soil environment is diagnosed before planting in order to keep the soil environment healthy and ensure stable crop production.

土壌環境の診断による土の養分状態の分析法としては、土壌の酸性度や電気伝導度を中心とした簡易診断あるいは高価な分析機械を利用した多項目分析による養分バランスの診断など多種多様である。
「土壌診断の方法と活用」農文協 「土壌、水質及び作物体分析法」農林水産省農産園芸局農産課編 (1979) 樋口太重 他、土肥誌 54巻377-82頁, 1983 特開平9−178735号公報 特開2004−337027号公報
There are a variety of methods for analyzing soil nutrient status by diagnosing the soil environment, including simple diagnosis centered on soil acidity and electrical conductivity, and diagnosis of nutrient balance by multi-item analysis using expensive analytical machines. .
“Method and application of soil diagnosis” “Soil, Water Quality and Crop Body Analysis”, Ministry of Agriculture, Forestry and Fisheries, Agriculture and Horticulture Bureau, Agriculture Division (1979) Takashige Higuchi et al., Doi 54, 377-82, 1983 JP-A-9-178735 JP 2004-337027 A

しかるに、簡易診断は土壌の化学性の一要素を取り出すにすぎず、土壌診断に適用するには同一標本に対して複数の手法を併用しなければならない。また、各分析対象物質の抽出成分ごとに土壌の秤量・抽出液の分注・ろ過を必要とし、成分によっては煩雑な操作と労力を必要とするので、操作の省力化・簡便性が強く求められている。一方、高価な機器を用いた他項目分析では、時間とコストが問題となっている。   However, the simple diagnosis only extracts one element of soil chemistry, and in order to apply to soil diagnosis, a plurality of methods must be used in combination for the same specimen. In addition, it is necessary to weigh the soil, dispense the extract, and filter for each extracted component of each analysis target substance, and depending on the component, complicated operations and labor are required. It has been. On the other hand, in other item analysis using expensive equipment, time and cost are problems.

本発明の目的は、多様な土壌改良剤と土壌の組み合わせの中から、使用する土壌のもとでの植物の生育に適した土壌添加剤などの選択または土壌添加剤などと土壌の最適な混合条件などを、植物を植えることなく短時間でしかも極めて簡便に特定するための、汎用性のある土壌環境の診断方法を提供することにある。   The object of the present invention is to select a soil additive suitable for the growth of plants under the soil to be used from among various soil improver and soil combinations, or to optimally mix the soil with the soil additive. An object of the present invention is to provide a versatile soil environment diagnostic method for specifying conditions and the like in a short time and in a very simple manner without planting a plant.

かかる本発明の目的は、土壌中に存在する微生物の活性度を測定、具体的には土壌懸濁液に微生物培養培地を添加して培養を行い、得られた培養上澄にメディエーターを添加して反応を行った後に印加電圧を加えて得られる電流値を測定することによって達成される。   The purpose of the present invention is to measure the activity of microorganisms present in the soil, specifically, to perform culture by adding a microorganism culture medium to the soil suspension, and to add a mediator to the obtained culture supernatant. This is accomplished by measuring the current value obtained by applying an applied voltage after the reaction.

従来法では、土壌成分の化学分析と土壌状態の物理分析は土壌の性質を一面的にしか評価できず、土壌中の微生物が増殖しやすい環境が肥沃かつ植物の生育に適した環境であるという側面の評価は困難であったが、本発明方法によれば、土壌と一種以上の土壌改良剤などの存在下で土壌微生物の活性を評価するため、様々な要因が複雑に絡む土壌環境それ自体を総合的に判断することができる。   In the conventional method, chemical analysis of soil components and physical analysis of soil conditions can only evaluate the properties of the soil only in one aspect, and the environment in which microorganisms in the soil are easy to grow is suitable for the growth of fertile and plants. Although evaluation of the aspect was difficult, according to the method of the present invention, the activity of soil microorganisms was evaluated in the presence of soil and one or more types of soil improvers. Can be judged comprehensively.

また、農業従事者や専門家は、経験的な勘に頼りながら各土壌の質を判断して最適な土壌改良剤やその添加量を模索していたが、本発明方法を用いることにより、これらの経験的かつ主観的な判断を数値化し、各条件を定量的に比較することにより、客観的かつ迅速に土壌改良剤などの最適量や最適混合比を決定することができる。   In addition, farmers and specialists have determined the quality of each soil while relying on empirical intuitions to find the optimum soil conditioner and its addition amount. By quantifying empirical and subjective judgments and quantitatively comparing each condition, it is possible to objectively and quickly determine the optimum amount and optimum mixing ratio of the soil conditioner and the like.

本方法においては土壌改良剤が土壌環境に与える影響のみならず、殺菌剤や農薬など土壌中の微生物に影響を与えうるすべての物質に対する土壌環境の評価に適用できる。各条件下での検討結果を数値化することで、データベースの作成も可能となる。   This method can be applied not only to the effect of the soil conditioner on the soil environment but also to the evaluation of the soil environment for all substances that can affect microorganisms in the soil, such as fungicides and agricultural chemicals. A database can be created by quantifying the examination results under each condition.

診断に用いられる土壌としては、特に限定はされないが、好ましくは目的とする植物の根がのびて養分吸収する位置あたりの土壌が用いられ、採取土壌そのもののほか土壌に土壌環境に影響を及ぼす添加物、例えば土壌改良剤、農薬および殺菌剤などの少なくとも一種を添加したものが用いられる。   The soil used for diagnosis is not particularly limited, but preferably the soil around the position where the root of the target plant grows and absorbs nutrients is used. In addition to the collected soil itself, the soil affects the soil environment. For example, a product to which at least one of a soil conditioner, a pesticide, a disinfectant and the like is added is used.

土壌中に存在する微生物の活性度とは、微生物の生菌数に依存する酸化還元能力、濁度、呼吸量(二酸化炭素発生量)、色素による菌体の着色、蛍光染色による強度などを測定することにより得られる数値を指しており、好ましくは呼吸に関る酵素活性を測定することにより得られる数値が用いられる。一般に、土壌中の微生物は植物の成長に必須であるといわれており、微生物が多くそれらが活発に活動している土壌は肥沃な土地であるとされているので、微生物の活性を数値化することにより、診断対象である土壌の肥沃の程度が推測されるとともに、土壌環境に影響を及ぼす添加物の添加による土壌状態の変化を数値化することができる。   The activity of microorganisms present in soil is measured by redox ability, turbidity, respiration (carbon dioxide generation), coloring of cells by pigment, intensity by fluorescent staining, etc. depending on the number of living microorganisms. The numerical value obtained by measuring the enzyme activity related to respiration is preferably used. In general, microorganisms in soil are said to be essential for plant growth, and soil in which many microorganisms are actively active is considered to be fertile land, so the activity of microorganisms is quantified. As a result, the degree of fertilization of the soil to be diagnosed can be estimated, and changes in the soil state due to the addition of additives that affect the soil environment can be quantified.

このような微生物の活性度の測定方法としては、例えば診断対象である土壌をPBS緩衝液、リン酸緩衝液などの緩衝液に懸濁し、さらに微生物培養培地などを添加して28〜45℃、好ましくは30〜35℃で、4〜24時間、好ましくは16〜18時間程度培養を行い、かかる培養液をろ過あるいは遠心分離することにより得られた培養上澄中にヘキサシアノ鉄(III)酸カリウム、レザズリンなどのメディエーターを添加して、10分〜8時間、好ましくは2〜5時間反応を行った後に印加電圧を加えて得られる電流値を測定することにより行われる。上記温度以外の培養では、微生物が十分増殖しないため好ましくない。これにより、土壌中の土壌微生物の呼吸に伴う細胞質中の電子伝達系の活動による還元触媒活性能を、メディエーターを介して電気化学的に測定し、土壌環境を数値化することとなる。   As a method for measuring the activity of such microorganisms, for example, the soil to be diagnosed is suspended in a buffer solution such as a PBS buffer solution or a phosphate buffer solution, and a microorganism culture medium is further added at 28 to 45 ° C., Preferably, potassium hexacyanoferrate (III) is added to the culture supernatant obtained by culturing at 30 to 35 ° C. for about 4 to 24 hours, preferably about 16 to 18 hours, and filtering or centrifuging the culture solution. The reaction is carried out by adding a mediator such as resazurin and reacting for 10 minutes to 8 hours, preferably 2 to 5 hours, and then measuring the current value obtained by applying an applied voltage. Incubation other than the above temperature is not preferable because microorganisms do not grow sufficiently. As a result, the reduction catalytic activity by the activity of the electron transfer system in the cytoplasm accompanying the respiration of soil microorganisms in the soil is measured electrochemically through the mediator, and the soil environment is quantified.

微生物の活性のメディエーターを介した電気化学的測定の原理は、以下の通りである。微生物をそれが資化しうる有機および無機化合物を含む試料溶液に存在させると、微生物はそれらをエネルギー獲得のために代謝する。その過程において呼吸鎖の電子伝達系に電子の移動が起こる。この際、代謝される物質濃度と移動する電子の量には相関がある。従って、この移動する電子の量を測定することによって微生物のまわりの物質環境を判定する事ができる。この電子の移動量を直接計測するのは困難なので、本発明においては電極および対極を試料溶液に浸漬し、メディエーターの酸化還元の検出により試料溶液中の微生物活性を評価する。   The principle of electrochemical measurement through the mediator of the activity of microorganisms is as follows. When microorganisms are present in sample solutions containing organic and inorganic compounds that they can assimilate, they metabolize them for energy acquisition. In the process, electrons move in the electron transport system of the respiratory chain. At this time, there is a correlation between the concentration of the metabolized substance and the amount of transferred electrons. Therefore, the material environment around the microorganism can be determined by measuring the amount of the moving electrons. Since it is difficult to directly measure the amount of transferred electrons, the present invention evaluates the microbial activity in the sample solution by immersing the electrode and counter electrode in the sample solution and detecting the redox of the mediator.

土壌中の微生物を測定前に培養し、増殖させているのは、微生物活性に由来する電流応答を増幅するためであり、培養に際しては、微生物を増殖、すなわち微生物を活性化させるための添加剤、例えば一般的に用いられている微生物増殖用の培地、例えばLB培地、ポテトデキストロース培地、肉エキス培地などの他に、King'B培地、SM培地など特定の微生物群の増殖を選択的に促進・抑制するような添加剤が用いられる。   The reason why microorganisms in the soil are cultured and propagated before the measurement is to amplify the current response derived from the microorganism activity, and during the cultivation, the microorganisms are propagated, that is, additives for activating the microorganisms. For example, in addition to commonly used microbial growth media such as LB media, potato dextrose media, meat extract media, etc., selectively promote the growth of specific microbial groups such as King'B media, SM media, etc. -Additives that suppress it are used.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例1
土壌サンプルとしての種まき用基礎土(サカタのタネ製品モジュラーシード)5g、PBS溶液(和光純薬製品)20ml、LB培地(10g Bacto-Tryptone、5g Yeast Extract、10g NaClを1Lの蒸留水に溶解し滅菌したもの)2mlおよび(1)むさしの配合肥料2号(むさしの有機製品)0.5gまたは(2)メネデール肥料(メネデール製品)0.2mlを混合し、IWAKI Universal Shaker SHK-U4を用いて30℃、150 rpmの条件下で一晩振とう後、懸濁液を綿栓ろ過した。次いで、得られたろ液に最終濃度80 mMになるようメディエーターとしてのヘキサシアノ鉄(III)酸カリウム(関東化学製品)を添加し、スターラーを用いて攪拌しながら反応を行い、所定時間経過後に溶液中に炭素電極の作用極と対極を浸漬し、900 mVの印加電圧を加えて3秒後に得られる電流値(微生物由来の酸化還元反応による)を、電気化学アナライザー(ALS, MODEL 1202)を用いてクロノアンペロメトリー法により測定した。電気化学測定中は、恒温槽(タイテック社製品Cool Thermo Unit, CTU-N)を用いて反応系を25℃に保ち、測定を行った。
Example 1
5g of basic soil for seeding as a soil sample (modular seed of Sakata seed product), 20ml of PBS solution (Wako Pure Chemicals), LB medium (10g Bacto-Tryptone, 5g Yeast Extract, 10g NaCl in 1L of distilled water Sterilized) 2 ml and (1) Musa compound fertilizer No. 2 (Musashi organic product) 0.5 g or (2) Menedale fertilizer (Mendale product) 0.2 ml are mixed, and 30 ° C using IWAKI Universal Shaker SHK-U4 After shaking overnight at 150 rpm, the suspension was filtered with a cotton plug. Next, potassium hexacyanoferrate (III) as a mediator (Kanto Chemical Product) was added to the obtained filtrate to a final concentration of 80 mM, and the reaction was carried out with stirring using a stirrer. Immerse the working electrode and counter electrode of the carbon electrode into the electrode, apply an applied voltage of 900 mV, and obtain the current value (due to the microbial redox reaction) 3 seconds later using an electrochemical analyzer (ALS, MODEL 1202). It was measured by chronoamperometry. During the electrochemical measurement, the reaction system was kept at 25 ° C. using a thermostatic bath (Cool Thermo Unit, CTU-N, manufactured by Taitec Co., Ltd.).

比較例1
実施例1において、土壌サンプルおよびいずれの肥料も用いられなかった。
Comparative Example 1
In Example 1, neither a soil sample nor any fertilizer was used.

実施例1および比較例1で得られた結果は、図1に示される。ここで、経過時間はメディエーター添加後の経過時間を示している。その結果、メディエーター添加後4時間後の電流応答値の再現性が最もすぐれていることが確認された。   The results obtained in Example 1 and Comparative Example 1 are shown in FIG. Here, the elapsed time indicates the elapsed time after the addition of the mediator. As a result, it was confirmed that the reproducibility of the current response value 4 hours after the addition of the mediator was the best.

実施例2
実施例1において、肥料としてむさしの有機肥料2号を0g、0.05g、0.15g、0.5gまたは1.5gとし、メディエーター添加後4時間後における電流値を測定した。肥料を添加せずに得られた応答値を1として、種まき用基礎土のみの場合とむさしの有機肥料共存時の応答値の活性比を算出した。
Example 2
In Example 1, Musashino organic fertilizer No. 2 was set to 0 g, 0.05 g, 0.15 g, 0.5 g, or 1.5 g as a fertilizer, and the current value was measured 4 hours after adding the mediator. Assuming that the response value obtained without adding fertilizer was 1, the activity ratio of the response value when coexisting with organic fertilizer in the case of only the soil for seed sowing and the organic fertilizer was calculated.

算出結果は、図2に示される。活性比が大きいほど土壌懸濁液中の微生物活性が活発化していることを示しており、むさしの有機肥料2号を0.5g添加した場合において微生物が最も活性化(活性比 3.0)されることが示された。一方、有機肥料がこれ以下でもこれ以上でも微生物の活性が容量依存的に低下した。微生物が活性化されたむさしの有機肥料2号0.5gは、土壌試料5gに対して10%(w/w)の添加量であり、これは野菜・花・庭木の育成に際して販売元が推奨する配合量と一致することが確認された。   The calculation result is shown in FIG. The larger the activity ratio, the more active the microbial activity in the soil suspension is, and when 0.5 g of Musashino organic fertilizer 2 is added, the microorganism is most activated (activity ratio 3.0). It has been shown. On the other hand, the activity of microorganisms decreased in a volume-dependent manner when the amount of organic fertilizer was lower or higher. Musa organic fertilizer No. 2 0.5 g activated microorganisms is 10% (w / w) added to 5 g soil sample, which is recommended by the vendor when growing vegetables, flowers and garden trees It was confirmed that it was consistent with the blending amount.

実施例3
実施例1において、肥料としてメネデールを0ml、0.02ml、0.06ml、0.2ml、0.6mlまたは1.2ml用い、メディエーター添加後4時間後における電流値を測定した。肥料を添加せずに得られた応答値を1として、種まき用基礎土のみの場合とメネデール共存時の応答値の活性比を算出した。
Example 3
In Example 1, 0 ml, 0.02 ml, 0.06 ml, 0.2 ml, 0.6 ml or 1.2 ml of Menedale was used as a fertilizer, and the current value was measured 4 hours after the addition of the mediator. The response value obtained without adding fertilizer was taken as 1, and the activity ratio of the response value when coexisting with Menedale was calculated.

算出結果は、図3に示される。メネデールを0.2ml添加した場合において微生物が最も活性化(活性比 1.5)されることが示された。一方、メネデールがこれ以下でも、これ以上でも微生物の活性が容量依存的に低下した。微生物が活性化されたメネデール0.2mlは、PBS溶液20mlに対して1%(v/v)の添加量であり、これは販売元が推奨する配合量と一致することが確認された。   The calculation result is shown in FIG. It was shown that the microorganism was most activated (activity ratio 1.5) when 0.2 ml of Menedale was added. On the other hand, the activity of microorganisms decreased in a dose-dependent manner even when Menedale was below this level and above. 0.2 ml of Menedale with activated microorganisms was added in an amount of 1% (v / v) to 20 ml of PBS solution, and it was confirmed that this was consistent with the recommended amount by the vendor.

実施例4
実施例1において、種まき用基礎土の代わりに赤土(新栄物産製品)を同量用い、肥料として堆肥(沼田商店製品)を堆肥/(堆肥+赤土)×100(%)=0〜100%量となるように混合して、メディエーター添加後4時間後における電流値を測定した。
Example 4
In Example 1, the same amount of red soil (Shinei product) is used in place of the basic soil for seeding, and compost (Numata Shoten product) is composted as fertilizer / (compost + red soil) x 100 (%) = 0-100% The current value was measured 4 hours after the addition of the mediator.

得られた結果は、図4に示される。堆肥/(堆肥+赤土)=20%、すなわち堆肥:赤土=1:4の時に電流応答が最大になり、微生物が最も活性化されることが示され、販売元が推奨する配合量と一致することが確認された。   The results obtained are shown in FIG. Compost / (compost + red soil) = 20%, that is, compost: red soil = 1: 4, the current response is maximized, indicating that the microorganisms are most activated, which is consistent with the recommended amount by the vendor It was confirmed.

実施例5
実施例1において、種まき用基礎土の代わりに山土(東京都多摩地区御殿峠にて採取)を同量用い、肥料として腐葉土(沼田商店製品)を腐葉土/(腐葉土+山土)×100 (%) = 0〜100%量となるように混合して、メディエーター添加後4時間後における電流値を測定した。
Example 5
In Example 1, instead of the basic soil for sowing seeds, the same amount of mountain soil (collected at Gotenbuchi, Tama area, Tokyo) is used, and humus (manufactured by Numata Shoten) is used as fertilizer. %) = 0 to 100%, and the current value was measured 4 hours after adding the mediator.

得られた結果は、図5に示される。腐葉土/(腐葉土+山土)=40%、すなわち腐葉土:山土=2:3の時に電流応答が最大になり、微生物が最も活性化されることが示された。ここで、野菜や花の栽培において腐葉土とベース用土を混合する場合、腐葉土の混合比は全体の3-4割が推奨されており、農業従事者の経験的な模索においても同様の混合比が最適とされており、本実施例の結果は、このような経験に基づく土壌の混合比と一致していることが示された。
「用土と肥料の選び方・使い方」農文協
The results obtained are shown in FIG. It was shown that the current response was maximized when humus / (humus + mountain) = 40%, that is, humus: mountain = 2: 3, and the microorganisms were most activated. Here, when mixing humus and base soil in the cultivation of vegetables and flowers, the mixing ratio of humus is recommended to be 30 to 40% of the total, and the same mixing ratio is also used in experiential exploration by farmers. The results of this example were shown to be consistent with the soil mixing ratio based on such experience.
“How to select and use soil and fertilizer”

以上の実施例2〜5で得られた結果より、土壌中に存在する微生物の活性化度を測定することで、従来経験にもとづき決定されていた各種土壌に対する肥料の添加割合などを、簡便に数値化できる可能性が示唆された。   From the results obtained in Examples 2 to 5 above, by measuring the degree of activation of microorganisms present in the soil, the ratio of fertilizer addition to various soils, which has been determined based on conventional experience, can be easily achieved. The possibility that it could be quantified was suggested.

実施例6
実施例1において、土壌サンプルとして(1)バラの根元(東京工科大学キャンパス内バラ園にて採取)、(2)松の根元(東京工科大学キャンパス内にて採取)、(3)山土-1(東京都多摩地区御殿峠にて採取)、(4) 山土-2 (東京都多摩地区御殿峠にて採取)、(5)種まき用基礎土(モジュラーシード)または(6)赤土(新栄物産製品)5gが用いられ、肥料が用いられなかった。
Example 6
In Example 1, as soil samples, (1) rose roots (collected at the Tokyo Institute of Technology campus rose garden), (2) pine roots (collected at the Tokyo University of Technology campus), (3) mountain soil- 1 (collected at Tama district Gotenbuchi, Tokyo), (4) Yamado-2 (collected at Tama district Gotenbuchi, Tokyo), (5) sowing foundation soil (modular seed) or (6) red soil (Shinei) Product) 5g was used and no fertilizer was used.

得られた結果は、図6に示される。一般に、土壌中の微生物は植物の成長に必須であるといわれており、微生物が多い土壌は肥沃な土地であるとされている。従って、微生物活性が高い、すなわちメディエーター添加4時間後の電流応答が400μA以上である山土-2およびバラの根元は、肥沃な土地(肥沃土壌群)であることが示唆され、一方、電流応答が200μA以下である種まき用基礎土および松の根元は、貧栄養土壌群に分類できる。また300μA付近である山土-1および赤土は、これらの中間土壌群にあたると判断される。   The results obtained are shown in FIG. Generally, microorganisms in soil are said to be essential for plant growth, and soils rich in microorganisms are considered to be fertile land. Therefore, it is suggested that mountain soil-2 and rose roots with high microbial activity, that is, current response of 400 μA or more 4 hours after addition of mediator is fertile land (fertile soil group), while current response The sowing base soil and the root of the pine that have a current of 200 μA or less can be classified into oligotrophic soil groups. Mountain soil-1 and red soil, which are around 300 μA, are judged to correspond to these intermediate soil groups.

実施例7
実施例1において、土壌サンプルとしていずれも実施例6で用いられた(1)バラ根元の土壌、(2)松根元の土壌、(3)山土-1、(4)山土-2、(5)種まき用基礎土または(6)赤土5gが、また肥料としてむさしの有機肥料2号を0g、0.05g、0.15g、0.5gまたは1.5gが用いられ、メディエーター添加後4時間後における電流値を測定した。肥料を添加せずに得られた応答値を1として、サンプル土壌のみの場合とむさしの有機肥料共存時の応答値の活性比を算出した。算出結果は、図7に示される。
Example 7
In Example 1, (1) Rose root soil, (2) Matsune root soil, (3) Mountain soil-1, (4) Mountain soil-2, ( 5) Basic soil for sowing or (6) 5 g of red soil and 0 g, 0.05 g, 0.15 g, 0.5 g or 1.5 g of Musashino organic fertilizer No. 2 as fertilizer are used, and the current value after 4 hours from the addition of the mediator Was measured. Assuming that the response value obtained without adding fertilizer was 1, the activity ratio of the response value when coexisting with the organic fertilizer in the case of the sample soil alone and the mud was calculated. The calculation result is shown in FIG.

まず、実施例6において肥沃土壌群と判断された山土-2(A-1)およびバラ根元(A-2)では、肥料無添加から肥料0.15g添加までは微生物の活性化効果に変動はみられず(活性比 1.0〜1.1)、販売元の推奨量である0.5g添加時においては逆に微生物活性が阻害される結果となっている。この結果は、肥沃土壌群と判断される土壌は肥料を必要とせず過剰な施肥はむしろ土壌の質の低下をもたらす可能性を示唆している。   First, in soil-2 (A-1) and rose root (A-2), which were determined to be fertile soil groups in Example 6, there was a change in the microorganism activation effect from the addition of no fertilizer to the addition of 0.15 g of fertilizer. Not seen (activity ratio 1.0-1.1), when 0.5g which is the recommended amount of the vendor is added, the microbial activity is conversely inhibited. This result suggests that the soil judged to be a fertile soil group does not require fertilizer and excessive fertilization may lead to a decrease in soil quality.

次に、実施例6において中間土壌群と判断された山土-1(B-1)および赤土(B-2)では、施肥による効果はサンプル自体の性質に依存しており、山土-1では肥料を0.05g添加した場合に最大の活性化効果(活性比 1.4)が得られ、施肥量が0.5gを超えると微生物活性を阻害するようになる。一方赤土では、販売元の推奨量である0.5gにおいて最大の微生物活性(活性比 1.9)を示し、それ以外の施肥量においてはほとんど活性化がみられない。従って中間土壌群と判断される土壌は、施肥量を適宜選択することにより、土壌の質を改善することが可能であると考えられる。   Next, in the soil-1 (B-1) and red soil (B-2), which were determined to be intermediate soil groups in Example 6, the effect of fertilization depends on the properties of the sample itself, and the soil-1 Then, when 0.05 g of fertilizer is added, the maximum activation effect (activity ratio 1.4) is obtained, and when the fertilizer amount exceeds 0.5 g, the microbial activity is inhibited. On the other hand, red soil shows the maximum microbial activity (activity ratio 1.9) at 0.5 g, which is the recommended amount by the vendor, and almost no activation is observed at other fertilizer levels. Therefore, it is considered that the soil judged to be an intermediate soil group can improve the quality of the soil by appropriately selecting the amount of fertilization.

さらに貧栄養土壌群においては、中間土壌群と比較して施肥による微生物の活性化効果が大きく、種まき用基礎土(C-1)では、肥料添加量が0gから0.5gまで用量依存的に微生物活性が増大し、最大の活性化効果は肥料を0.5g添加した場合(活性比 3.0)であった。また施肥量1.5gでは活性化は見られるものの0.5g添加した場合と比較して大幅に活性化効果が減少していることから(活性比 1.5)、これ以上の過剰な施肥は土壌の質の低下をもたらすことが示唆された。さらに、施肥量0.5gの活性比が肥料なしの場合と比較して3倍に及ぶことから、中間土壌群より貧栄養土壌群の方が同量の肥料で明らかに土壌改善効果を発揮することが示された。また松根元の土壌(C-2)では、肥料添加量が1.5gまで用量依存的に微生物活性が増大し、最大の活性化効果は肥料を1.5g添加した場合(活性比 1.4)であった。   Furthermore, in the eutrophic soil group, the microbial activation effect by fertilization is larger than in the intermediate soil group, and in the basic soil for seeding (C-1), the amount of fertilizer added is from 0 g to 0.5 g in a dose-dependent manner. The activity increased and the maximum activation effect was obtained when 0.5 g of fertilizer was added (activity ratio 3.0). In addition, although the activation is seen at the fertilizer amount of 1.5 g, the activation effect is greatly reduced compared to the case where 0.5 g is added (activity ratio 1.5). It was suggested to bring about a decrease. In addition, since the activity ratio of fertilizer application amount 0.5g is three times that of the case without fertilizer, the oligotrophic soil group clearly demonstrates the soil improvement effect with the same amount of fertilizer than the intermediate soil group. It has been shown. In addition, in the soil of Matsune (C-2), the microbial activity increased in a dose-dependent manner up to 1.5 g of fertilizer addition, and the maximum activation effect was when 1.5 g of fertilizer was added (activity ratio 1.4) .

実施例6および7の結果より、土壌自体の微生物活性を測定することにより、土壌の肥沃度を推定し、必要な肥料量を推測することが可能であるとともに、使用する土壌に対して予め各種肥料の濃度を変動させて用いた場合の微生物活性を調べることにより、さらに詳細に各種土壌に適切な肥料の種類およびその量を推測することが可能となることが示された。   From the results of Examples 6 and 7, by measuring the microbial activity of the soil itself, it is possible to estimate the fertility of the soil and to estimate the amount of fertilizer required. It was shown that by examining the microbial activity when the fertilizer concentration was varied, it was possible to estimate the type and amount of fertilizer appropriate for various soils in more detail.

比較例2
実施例1において、メディエーターが用いられなかった。得られた結果は、表に示される。

電流応答(μA)
0.5分 30分 1時間 2時間 3時間 4時間
むさしの配合肥料2号 0.07 0.03 0.08 0.07 0.01 0.08
メネデール 0.02 0.06 0.08 0.02 0.03 0.06
Comparative Example 2
In Example 1, no mediator was used. The results obtained are shown in the table.
table
Current response (μA)
0.5 min 30 min 1 hr 2 hr 3 hr 4 hr Musashino fertilizer No. 2 0.07 0.03 0.08 0.07 0.01 0.08
Menedale 0.02 0.06 0.08 0.02 0.03 0.06

本発明方法を用いることにより、植物の栽培に用いられる土壌に対し、予め各種肥料を濃度を変動させて用いた場合の微生物活性を調べることにより、各種土壌に適切な肥料の種類およびその量を推測することが可能となる。従って、本発明方法は土壌環境の診断方法として有効に用いることができる。   By using the method of the present invention, by examining the microbial activity when various fertilizers are used with varying concentrations in advance with respect to the soil used for plant cultivation, the types and amounts of fertilizers appropriate for various soils are determined. It becomes possible to guess. Therefore, the method of the present invention can be effectively used as a soil environment diagnostic method.

メディエーター添加後の電流応答値の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the electric current response value after mediator addition. 種まき用基礎土に所定量のむさしの配合肥料2号を用いた場合の微生物活性比を示すグラフである。It is a graph which shows the microbial activity ratio at the time of using the predetermined amount of mix fertilizer No. 2 of the seedling for the basic soil for sowing. 種まき用基礎土に所定量のメネデールを用いた場合の微生物活性比を示すグラフである。It is a graph which shows the microbial activity ratio at the time of using predetermined amount of Menedale for the basic soil for sowing. 赤土に所定量の堆肥を用いた場合の微生物活性を示すグラフである。It is a graph which shows microbial activity at the time of using a predetermined amount of compost for red soil. 山土に所定量の腐葉土を用いた場合の微生物活性を示すグラフである。It is a graph which shows microbial activity at the time of using a predetermined amount of humus for mountain soil. 各種土壌サンプルの微生物活性を示すグラフである。It is a graph which shows the microbial activity of various soil samples. 各種土壌サンプルに所定量のむさしの配合肥料2号を用いた場合の微生物活性比を示すグラフである。It is a graph which shows the microbial activity ratio at the time of using the predetermined amount Musashino compound fertilizer No. 2 for various soil samples.

Claims (12)

土壌中に存在する微生物の活性度を測定することを特徴とする土壌環境の診断方法。   A method for diagnosing a soil environment, comprising measuring the activity of microorganisms present in soil. 微生物の活性度が、呼吸量を測定することにより行われる請求項1記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 1, wherein the activity of the microorganism is determined by measuring a respiration rate. 土壌環境に影響を及ぼす添加物を含有する土壌が用いられる請求項1または2記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 1 or 2, wherein soil containing an additive that affects the soil environment is used. 土壌環境に影響を及ぼす添加物が、土壌改良剤、農薬および殺菌剤の少なくとも一種である請求項3記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 3, wherein the additive affecting the soil environment is at least one of a soil conditioner, a pesticide and a fungicide. 微生物の活性度の測定が、土壌懸濁液中の微生物を培養することにより得られた培養上澄中に、メディエーターを添加して反応を行った後、印加電圧を加えて得られる電流値を測定することにより行われる請求項1記載の土壌環境の診断方法。   The activity of microorganisms is measured by adding a mediator to the culture supernatant obtained by culturing microorganisms in a soil suspension, and then applying the applied voltage to determine the current value obtained. The method for diagnosing a soil environment according to claim 1, which is carried out by measurement. 土壌懸濁液が、土壌を緩衝液に混合することにより得られたものである請求項5記載の土壌環境の診断方法。   The soil environment diagnostic method according to claim 5, wherein the soil suspension is obtained by mixing soil with a buffer solution. 微生物の培養が、28〜45℃で行われる請求項5記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 5, wherein the microorganism is cultured at 28 to 45 ° C. 微生物の培養に際して、微生物を活性化させるための添加剤が用いられる請求項5記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 5, wherein an additive for activating the microorganism is used in culturing the microorganism. 微生物を活性化させるための添加剤として、微生物増殖用培地が用いられる請求項8記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 8, wherein a microorganism growth medium is used as an additive for activating microorganisms. 微生物増殖用培地がLB培地、ポテトデキストロース培地または肉エキス培地である請求項9記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 9, wherein the microorganism growth medium is an LB medium, a potato dextrose medium, or a meat extract medium. 微生物を活性化させるための添加剤として、特定の微生物群の増殖を選択的に促進または抑制するための添加剤が用いられる請求項8記載の土壌環境の診断方法。   The method for diagnosing a soil environment according to claim 8, wherein an additive for selectively promoting or suppressing the growth of a specific group of microorganisms is used as an additive for activating microorganisms. 土壌中に存在する微生物の活性度を測定することにより土壌の肥沃度を測定する請求項1記載の土壌環境の診断方法。
The method for diagnosing a soil environment according to claim 1, wherein the fertility of the soil is measured by measuring the activity of microorganisms present in the soil.
JP2005148989A 2005-05-23 2005-05-23 Method of diagnosing soil environment Pending JP2006329639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148989A JP2006329639A (en) 2005-05-23 2005-05-23 Method of diagnosing soil environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148989A JP2006329639A (en) 2005-05-23 2005-05-23 Method of diagnosing soil environment

Publications (1)

Publication Number Publication Date
JP2006329639A true JP2006329639A (en) 2006-12-07

Family

ID=37551490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148989A Pending JP2006329639A (en) 2005-05-23 2005-05-23 Method of diagnosing soil environment

Country Status (1)

Country Link
JP (1) JP2006329639A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046020A (en) * 2008-08-21 2010-03-04 Dgc Sogo Kenkyusho:Kk Method for measuring soil degree for growing crops
WO2011092860A1 (en) 2010-02-01 2011-08-04 有限会社 ディージーシー総合研究所 Method for measuring crop cultivation frequency of soil and method for assessing production region deception
CN102156185A (en) * 2010-02-11 2011-08-17 日本有限公司Dgc综合研究所 Crop culture degree measuring method for soil and judgment method for origin place camouflage
JP2014050401A (en) * 2013-10-25 2014-03-20 Dgc Sogo Kenkyusho:Kk Device and method for measuring soil degree of growing crops
JP7141576B1 (en) * 2021-07-16 2022-09-26 南京▲農業▼大学 Chemical oxidative remediation of toxic organic matter-contaminated farmland soil and method for restoring soil fertility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471483A (en) * 1990-07-13 1992-03-06 Honda Motor Co Ltd Method for continuously controlling culture of aerobic microorganism
JPH09192695A (en) * 1996-01-22 1997-07-29 Shigeru Ochiai Activating method of bottom sludge, estimating method of activity, estimating method of retention effect and microorganism aggregate collected from activated bottom sludge
JP2001021529A (en) * 1999-07-02 2001-01-26 Akebono Brake Res & Dev Center Ltd Measuring method by using biosensor
JP2003116591A (en) * 2001-10-15 2003-04-22 Japan Science & Technology Corp Method for evaluating metabolic function of microorganism and device thereof
JP2004147547A (en) * 2002-10-30 2004-05-27 Enlighten Corporation Gardening culture soil and method for improving acid soil
JP2005034044A (en) * 2003-07-14 2005-02-10 National Institute Of Advanced Industrial & Technology Method for producing hydrogen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471483A (en) * 1990-07-13 1992-03-06 Honda Motor Co Ltd Method for continuously controlling culture of aerobic microorganism
JPH09192695A (en) * 1996-01-22 1997-07-29 Shigeru Ochiai Activating method of bottom sludge, estimating method of activity, estimating method of retention effect and microorganism aggregate collected from activated bottom sludge
JP2001021529A (en) * 1999-07-02 2001-01-26 Akebono Brake Res & Dev Center Ltd Measuring method by using biosensor
JP2003116591A (en) * 2001-10-15 2003-04-22 Japan Science & Technology Corp Method for evaluating metabolic function of microorganism and device thereof
JP2004147547A (en) * 2002-10-30 2004-05-27 Enlighten Corporation Gardening culture soil and method for improving acid soil
JP2005034044A (en) * 2003-07-14 2005-02-10 National Institute Of Advanced Industrial & Technology Method for producing hydrogen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046020A (en) * 2008-08-21 2010-03-04 Dgc Sogo Kenkyusho:Kk Method for measuring soil degree for growing crops
WO2011092860A1 (en) 2010-02-01 2011-08-04 有限会社 ディージーシー総合研究所 Method for measuring crop cultivation frequency of soil and method for assessing production region deception
AU2010344467B2 (en) * 2010-02-01 2014-08-07 Dgc Technology Inc. Method for measuring crop cultivation frequency of soil and method for assessing production region deception
JP5807956B2 (en) * 2010-02-01 2015-11-10 株式会社Dgcテクノロジー Method for measuring crop growth frequency of soil and method for judging fake production
CN102156185A (en) * 2010-02-11 2011-08-17 日本有限公司Dgc综合研究所 Crop culture degree measuring method for soil and judgment method for origin place camouflage
JP2014050401A (en) * 2013-10-25 2014-03-20 Dgc Sogo Kenkyusho:Kk Device and method for measuring soil degree of growing crops
JP7141576B1 (en) * 2021-07-16 2022-09-26 南京▲農業▼大学 Chemical oxidative remediation of toxic organic matter-contaminated farmland soil and method for restoring soil fertility

Similar Documents

Publication Publication Date Title
Yang et al. Selection of sensitive seeds for evaluation of compost maturity with the seed germination index
Ge et al. Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: a case study
Zhao et al. How different long‐term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain
Sullivan et al. Interpreting compost analyses
CN102356312B (en) Novel soil diagnosis method
Ohm et al. Long-term negative phosphorus budgets in organic crop rotations deplete plant-available phosphorus from soil
Černý et al. The changes in microbial biomass C and N in long-term field experiments
JP2019201605A (en) Novel organic soil
Preece et al. Drought is a stronger driver of soil respiration and microbial communities than nitrogen or phosphorus addition in two Mediterranean tree species
Franzluebbers et al. Multispecies cover cropping promotes soil health in no-tillage cropping systems of North Carolina
JP2006329639A (en) Method of diagnosing soil environment
Lopes et al. Shifts in microbial and physicochemical parameters associated with increasing soil quality in a tropical Ultisol under high seasonal variation
Zydlik et al. The effect of microbiological products on soil properties in the conditions of replant disease.
US20090229179A1 (en) Method of Land Management Involving Microbial Bioassay
Olsen et al. Compost carryover: nitrogen, phosphorus and FT-IR analysis of soil organic matter
Aguilera et al. Evaluation of a rapid field test method for assessing nitrogen status in potato plant tissue in rural communities in the Bolivian Andean highlands
CA2601042A1 (en) Method of land management involving microbial bioassay
JP4019153B2 (en) Fertilizer quality evaluation method, fertilizer quality evaluation device, and fertilizer quality evaluation program
Sciarappa et al. Assessing soil health in highbush blueberry with the Solvita® CO2 respiration test
Dželetović et al. Available nitrogen in the surface mineral layer of natural meadows.
Fouts Impacts of crop rotations and nitrogen fertilizer on soil biological factors in semi-arid Montana
Vishwakarma et al. Chlorophyll Content in Leaves of Wheat as Influenced by Inorganic, Organic and Integrated Sources of Nutrient Application
Bobuľská et al. Functional Diversity and Activity of Microbial Communities is Altered by Land Use Management in Agricultural Soil of North-East Slovakia
Agyei et al. Farm‐level variability in soil biological health indicators in Michigan is dependent on management and soil properties
Jia et al. Comparison of heat output and CO2 respiration to assess soil microbial activity: a case of ultisol soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019