WO2006090791A1 - 消石灰注入装置 - Google Patents

消石灰注入装置 Download PDF

Info

Publication number
WO2006090791A1
WO2006090791A1 PCT/JP2006/303305 JP2006303305W WO2006090791A1 WO 2006090791 A1 WO2006090791 A1 WO 2006090791A1 JP 2006303305 W JP2006303305 W JP 2006303305W WO 2006090791 A1 WO2006090791 A1 WO 2006090791A1
Authority
WO
WIPO (PCT)
Prior art keywords
slaked lime
slurry
water
insoluble substance
tank
Prior art date
Application number
PCT/JP2006/303305
Other languages
English (en)
French (fr)
Inventor
Sakae Kosanda
Yuichi Fuchu
Mika Takemura
Naohiro Tateishi
Kazunori Arakawa
Yukihiro Hoshino
Raita Kitsutaka
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to JP2007504778A priority Critical patent/JP4951805B2/ja
Publication of WO2006090791A1 publication Critical patent/WO2006090791A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5281Installations for water purification using chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • C02F5/06Softening water by precipitation of the hardness using calcium compounds

Definitions

  • the present invention relates to a method and an apparatus for preparing a slaked lime solution used for preventing corrosion of water pipes, that is, for improving the Langeria index of tap water.
  • Japanese tap water is soft water with low hardness and low pH, and is corrosive. If you continue to use corrosive water, corrosion of water pipes and the like will progress and red water may be generated.
  • the Langeria index is used as a target for determining the corrosivity of water.
  • the Langeria index (hereinafter sometimes referred to as LI) is a function of pH, total alkalinity, calcium hardness, etc. and is expressed by the following formula:
  • pH pH value in an equilibrium state where calcium carbonate in water is not dissolved or precipitated
  • slaked lime hydrooxide calcium hydroxide
  • a thin metal oxide mixed film containing calcium carbonate and ferrous carbonate (siderite) is formed on the water pipe wall.
  • This metal oxide mixed film breaks the contact between the water pipe wall and water, so that the corrosion of the pipe can be surely prevented.
  • the metal oxide mixed coating prevents the oxidation of the water pipe wall metal due to chlorine added to the tap water, thus reducing the consumption of chlorine in the pipe and thus reducing the amount of chlorine injected into the tap water. can do.
  • the conventional sedimentation separation method uses a dissolution tank of a type that combines slaked lime dissolution and insoluble substance separation, in which slaked lime is dissolved in water in one tank and insoluble substances are settled and separated. Therefore, if priority is given to separation of insoluble substances, slaked lime may not dissolve sufficiently.
  • the dissolution of slaked lime by the conventional method does not involve adding powdered slaked lime batchwise into the slaked lime dissolving tank and dissolving it continuously, so the slaked lime is temporarily put into the dissolution tank while it is being charged. During this period, the production of the slaked lime solution is also stopped.
  • the method of filtering insoluble substances may increase maintenance costs due to clogging of the filter membrane.
  • the method of centrifuging insoluble substances there is a problem that energy consumption is large and equipment costs may increase.
  • References related to the present invention include the following: Water Purification Technology Guidelines 2000 Edition, Water Technology Research Center Issued; Measures against red water by the injection method such as calcium hydroxide, “Building equipment and piping work” ”March 1999, pp. 17-19
  • the present invention provides a method and apparatus for injecting slaked lime into drinking water that solves the above-described problems of the prior art, has a fast dissolution rate, requires a small installation area, is low in cost, and is easy to maintain. Objective. Means for solving the problem
  • an apparatus used to improve the quality of tap water using slaked lime comprising at least one supply slaked lime slurry preparation tank;
  • At least one separation device based on the principle of separation by specific gravity difference and / or particle size difference, and slaked lime solution storage tank
  • a first separation device that separates an insoluble substance-containing slurry from the supplied slaked lime slurry preparation tank from the supplied slaked lime slurry by a difference in specific gravity and / or particle size;
  • Piping and pump for connecting the supply slaked lime slurry preparation tank and the first separator, and an insoluble substance-containing slurry receiving tank for storing the insoluble substance-containing slurry discharged from the first separator
  • a slaked lime solution storage tank for storing treated water obtained by the second separator, and means for injecting dilution water into the slaked lime solution storage tank;
  • a device used to improve the quality of tap water using slaked lime comprising a supply slaked lime slurry preparation tank and
  • a separation device that separates the slurry containing insoluble substances from the supplied slaked lime slurry from the supplied slaked lime slurry preparation tank by specific gravity difference and Z or particle size difference; Pipes and pumps connecting the supply slaked lime slurry preparation tank and the separation device, and two or more insoluble substance-containing slurry receiving tanks and slaked lime slurry storing the insoluble material-containing slurry discharged from the separation device A preparation tank;
  • An insoluble substance-containing slurry receiving tank for finally storing the insoluble substance-containing slurry discharged from the separator
  • a slaked lime solution storage tank for storing treated water obtained by the separation device
  • the apparatus characterized by including.
  • the apparatus according to claim 4 further comprising means for directly adding carbonated water or hydrochloric acid to the water purification process.
  • Dispersing means for stirring the slurry containing insoluble substances separated by the separating device to disperse slaked lime particles
  • Extraction means for extracting a part of the slurry containing the insoluble material separated by the separation device
  • a device used to improve the quality of tap water using slaked lime comprising a supply slaked lime slurry preparation tank equipped with a dispersion means for dispersing slaked lime, and a supply slaked lime slurry prepared with the dispersion means
  • a separator for separating an insoluble substance-containing slurry from a supply slaked lime slurry from a tank by a difference in specific gravity and / or a particle size, and a supply slaked lime slurry preparation tank provided with the dispersing means are connected to the separator. Piping and A pump,
  • a slaked lime solution storage tank for storing treated water obtained by the separator
  • Means for returning the undissolved slurry containing undissolved material to the dispersing means are provided.
  • Insoluble substance concentration measuring means for measuring the concentration of the insoluble substance contained in the treated water obtained by the separator
  • the apparatus used in the method of the present invention has a slaked lime slurry preparation unit and an insoluble substance separation processing unit, the powerful and efficient separation processing that cannot be achieved by the conventional technology using both of them. It can be performed. As a result, a slaked lime solution substantially free of insoluble substances can be efficiently prepared, and can be used for reducing the corrosivity of purified water by diluting it. According to the method of the present invention, the separation treatment can be performed a plurality of times as necessary, so that the slaked lime recovery rate can be close to 100%.
  • FIG. 1 is a flowchart of an embodiment using an apparatus of the present invention. This shows an embodiment in which the insoluble substance separation treatment is performed once.
  • FIG. 2 is a flowchart of an embodiment using the apparatus of the present invention. This shows an embodiment in which the insoluble substance separation treatment is performed twice.
  • FIG. 3 is a flowchart of an embodiment using the apparatus of the present invention. This represents a mode in which carbonated water is injected into all or part of the system in FIG.
  • FIG. 4 is a flowchart of an embodiment using the apparatus of the present invention.
  • Whole system of Fig. 2 Or, in addition to injecting carbonated water into a part, it represents an aspect of using carbonated water for pH adjustment of purified water.
  • FIG. 5 is a flowchart of an embodiment using the apparatus of the present invention. This shows an embodiment in which the separation operation is performed a plurality of times using one separation apparatus.
  • FIG. 6 is a flowchart of an embodiment using the apparatus of the present invention. The mode which performs isolation
  • FIG. 7 is a flowchart of an embodiment using the apparatus of the present invention. This shows a mode in which a separation operation is performed using a separation device and a dispersion device.
  • FIG. 8 is a flowchart of an embodiment using the apparatus of the present invention. This shows a mode in which a separation operation is performed using a separation device, a flow path switching means, a dispersion device, and an insoluble substance concentration measurement means.
  • FIG. 9 is a flowchart of an embodiment using the apparatus of the present invention. It shows a mode in which a plug flow type dispersion device is used as a supply slaked lime slurry preparation tank, and a separation operation is performed using another separation device and a dispersion device.
  • FIG. 10 is a flowchart of an embodiment using the apparatus of the present invention.
  • the figure shows a mode in which a plug flow type dispersion device is used as a supply slaked lime slurry preparation tank, and a separation operation is performed using another separation device and a dispersion device.
  • FIG. 11 is a flowchart of an embodiment using the apparatus of the present invention.
  • the figure shows a mode in which a plug flow type dispersion device is used as a supply slaked lime slurry preparation tank, and a separation operation is performed using another separation device and a dispersion device.
  • FIG. 12 is a flowchart of an embodiment using the apparatus of the present invention. This figure shows a mode in which a plug flow type dispersion device is used as a supply slaked lime slurry preparation tank, and the other two separation devices and the dispersion device are used for separation operation.
  • 101 dilution water
  • 102 slaked lime
  • 103 supply slaked lime slurry preparation tank
  • 104 pump
  • 105 liquid cyclone
  • 106 treated water
  • 107 slurry containing insoluble substances
  • 108 slaked lime solution storage tank
  • 109 Dilution water
  • 110 To water purification process
  • 201 dilution water
  • 202 slaked lime
  • 203 supply slaked lime slurry preparation tank
  • 204 pump
  • 205 No. 1 liquid cyclone
  • 206 treated water
  • 207 slurry containing insoluble substances
  • 208 dilution water
  • 20 9 slurry receiving tank containing insoluble substances and slaked lime slurry preparation tank
  • 210 pump
  • 211 second liquid Body cyclone
  • 212 treated water
  • 213 slurry containing insoluble substances
  • 214 dilution water
  • 215 slaked lime solution storage tank
  • 216 go to water purification process
  • 303 Supply slaked lime slurry preparation tank
  • 304 Pump
  • 305 First hydrocyclone
  • 306 Treated water
  • 307 Slurry containing insoluble substance
  • 309 Slurry receiving tank containing insoluble substance and slaked lime slurry preparation tank
  • 310 Pump
  • 311 Second hydrocyclone
  • 312 Treated water
  • 313 Slurry containing insoluble substance
  • 315 Slaked lime solution storage tank
  • 316 Slurry tank containing insoluble substance
  • 3 17 Slaked lime solution storage tank 318: Aqueous solution storage tank after carbonated water flow
  • 319 Carbonated water
  • 320 Water purification process
  • 501 Diluted water
  • 502 Slaked lime
  • 503 Supply slaked lime slurry preparation tank
  • 504 First insoluble substance-containing slurry receiving tank / slaked lime slurry preparation tank
  • 505 Second insoluble substance-containing slurry receiving tank / slaked lime Slurry preparation tank
  • 506 Slurry tank containing insoluble substances
  • 507 Slaked lime solution storage tank
  • 508 Hydrocyclone
  • 509 Treated water
  • 510, 511 Diluted water
  • 512 To water purification process
  • 601 Supply slaked lime slurry
  • 602 Inflow slaked lime slurry
  • 603 Separation device
  • 604 Slurry containing insoluble material
  • 605 Dispersion device
  • 606 Treated water
  • 607 To water purification process
  • 608 Extracted slurry y
  • 701 Supply slurry
  • 702 Dispersing device
  • 703 Separation device
  • 704 Slurry containing insoluble substances
  • 705 Treated water
  • 706 To the water purification process
  • 707 Extracted slurry
  • 801 Supply slurry
  • 802 Dispersing device
  • 803 Separation device
  • 804 Slurry containing insoluble substance
  • 805 Channel switching means
  • 806 Treated water
  • 807 Mean concentration measuring means
  • 808 Water purification process 809: Extracted slurry
  • 901 Plug flow type dispersion device
  • 902 Dispersion device
  • 903 Separation device
  • 904 Slurry containing insoluble materials
  • 905 Inflow slaked lime slurry
  • 906 Treated water
  • 907 To the water purification process
  • 908 Extracted slurry y
  • 1001 Plug flow type dispersion device
  • 1002 Dispersion device
  • 1003 Separation device
  • 1004 Slurry containing insoluble substances
  • 1005 Treated water
  • 1006 To water purification process
  • 1007 Extraction slurry
  • 1101 Plug-type dispersion device
  • 1102 Dispersion device
  • 1103 Separation device
  • 1104 Slurry containing insoluble substances
  • 1105 Treated water
  • 1106 To water purification process
  • 1107 Extraction slurry
  • 1201 Plug-flow disperser
  • 1202 First separator
  • 1203 Slurry containing insoluble substances
  • 1204 Disperser
  • 1205 Second separator
  • 1206 Treated water
  • 1207 Treated water
  • 1208 Slurry containing insoluble substances
  • 1209 Slaked lime solution storage tank
  • 1210 To water purification process
  • the present invention particularly relates to a method for improving the quality of tap water by slaked lime injection, and in particular, a method for removing insoluble substances such as silicon dioxide and silicon contained in slaked lime injected for water quality improvement.
  • the apparatus used in the method of the present invention has a major feature in that a tank for preparing slaked lime slurry and a separation apparatus for separating insoluble substances are separated, which can be achieved by the prior art. It has many advantages.
  • the slaked lime used in the method of the present invention may be a commercially available commercial grade used for water supply.
  • slaked lime is previously dissolved in water to prepare slaked lime slurry with a concentration of 15% or less.
  • the concentration of slaked lime is preferably 0.15 to 15%, more preferably 10 to 14%. Since the capacity of slaked lime slurry increases when the concentration is too small, it should be adjusted to 12 to 13%. Is desirable.
  • the supplied slaked lime slurry prepared to such a concentration is supplied to a separation device based on the principle of separation by specific gravity difference and Z or particle size difference.
  • Separation equipment based on the difference in specific gravity and difference in Z or particle size means that the solid components contained in the slurry are separated by the difference in specific gravity and difference in Z or particle size while stirring the slaked lime slurry.
  • the slurry mainly containing small particle size slaked lime and the slurry containing relatively large particle size slaked lime and insoluble substances are separated.
  • a hydrocyclone is preferably used as a separation device based on the difference in specific gravity and separation based on Z or particle size.
  • Separation device based on separation from slaked lime slurry by specific gravity difference and Z or particle size difference
  • the insoluble substance to be separated by placing is mainly silicon dioxide.
  • components such as aluminum oxide, ferric oxide, and magnesium oxide can also be included.
  • Slurry containing large particle size slaked lime and an insoluble substance separated by a separation device based on the difference in specific gravity and Z or particle size (hereinafter referred to simply as “insoluble” in this specification).
  • a slaked lime slurry mainly containing small particle size slaked lime having a low insoluble substance concentration (hereinafter referred to as “slurry containing a soluble substance”) May be referred to as “small particle size slaked lime slurry”).
  • This is diluted with water to a slaked lime concentration of 0.15 to 15%, preferably 10 to 14% to prepare a slaked ash solution, which is poured directly into the purified water or into the purified water process.
  • a slaked lime concentration 0.15 to 15%, preferably 10 to 14% to prepare a slaked ash solution, which is poured directly into the purified water or into the purified water process.
  • an insoluble substance-containing slurry separated by a separation device based on the difference in specific gravity and Z or particle size is diluted to a slaked lime concentration of about 15% or less. Then, the insoluble substance and the large particle size slaked lime are further separated by a separation device based on the principle of separation based on the difference in specific gravity and Z or particle size, and the concentration of the insoluble material obtained thereby is extremely low. Small particle size slaked lime slurry can be diluted to the above concentration and poured into purified water.
  • slaked lime mainly large particle size slaked lime
  • the slurry is appropriately diluted to, for example, slaked lime concentration of 15% or less, and this force also removes insoluble substances again, and the resulting slaked lime slurry is used to effectively use slaked lime. can do.
  • the recovery rate of slaked lime can be almost 100%.
  • slaked lime particles having a large particle size When diluting an insoluble substance-containing slurry to a slaked lime concentration of about 15% or less, it is preferable to reduce the size of slaked lime particles having a large particle size by adding, for example, physical impact and Z or hydrochloric acid. In this manner, slaked lime can be easily dissolved, and insoluble substances can be efficiently separated by a subsequent separation apparatus.
  • the physical impact for miniaturizing slaked lime particles include ultrasonic treatment.
  • a dispersion means for sufficiently stirring the slurry containing insoluble substances and dispersing the slaked lime particles can be used.
  • carbonated water or hydrochloric acid is periodically or irregularly provided in all or part of piping, a pump, a separation device, and a tank for passing slaked lime slurry or slaked lime solution. Further, it may further include dissolving and removing the calcium carbonate scale on the inner wall of the pipe or the like.
  • a metal film mainly containing calcium carbonate is formed as described above.
  • a metal film is formed, thereby cutting off the contact between the water pipe wall and water, and effective in preventing corrosion of the water pipe.
  • Preparation of slaked lime solution by the method of the present invention If too much metal film is deposited inside the apparatus, inconveniences such as blockage of piping may occur. Therefore, carbonated water or hydrochloric acid is periodically or irregularly passed through all or part of the piping, pumps, separators and tanks for passing slaked lime slurry or slaked ash solution used in the method of the present invention. It is preferable to water and dissolve and remove the calcium carbonate scale on the inner wall of the pipe or the like. By vigorous processing, it is possible to effectively manufacture a slaked lime solution to reduce the corrosiveness of water, while preventing clogging of equipment and piping used, and extending their life. Become.
  • Carbonated water can be prepared in advance in a carbonated water preparation tank, or can be prepared immediately before water flow by injecting carbon dioxide into a water line.
  • Hydrochloric acid can be prepared in advance in a hydrochloric acid preparation tank, or it can be prepared immediately before passing water by injecting salt / hydrogen gas into the water line.
  • Carbonated water or hydrochloric acid is generally used for pH adjustment of purified water, and in the method of the present invention, it can be directly added to the water purification process to adjust the pH of purified water. Carbonated water or hydrochloric acid used in the above can also be used to adjust the pH of purified water. In this way, carbonated water or hydrochloric acid can be used effectively.
  • the screen used should have a pore size that can separate and remove strong coarse particles, for example 50 to: LOOO ⁇ m, preferably 100 to 150 ⁇ m. preferable.
  • a dispersing means can be used for crushing coarse particles contained in the slaked lime slurry and sufficiently dispersing them in the slurry. This is because if the slaked lime slurry contains too coarse particles, the outlet of the separation device based on the separation based on the difference in specific gravity and the difference in Z or particle size may be clogged.
  • a dispersion means that works on the supply slaked lime slurry preparation tank, or to use a dispersion apparatus as the supply slaked lime slurry preparation tank.
  • a dispersion apparatus As the supplied slaked lime slurry, it is preferable to add slaked lime to the water as described above, but if slaked lime powder is dropped onto the water surface and stirred and dispersed, it will be scattered into the slaked lime powder. As a result, the slaked lime that adheres to the equipment wall surface and scatters can cause a bad working environment around the equipment.
  • a part of the slaked lime is much shorter than the residence time obtained by dividing the total volume by the flow rate. Therefore, the slaked lime may not be given a sufficient shearing force, and the large slaked lime may be prepared by agglomerating the slaked lime particles.
  • a plug flow type dispersion device is preferably used as the dispersion means (dispersion device).
  • the plug flow type dispersing device can apply a shearing force to the slaked lime slurry, and can continuously prepare the slaked lime slurry by continuously supplying slaked lime powder and water.
  • a commercially available spiral pin mixer KABYTRON (also manufactured by Taiheiyo Machinery Co., Ltd.) can be used.
  • FIG. 1 is a flow configuration diagram showing an embodiment using the apparatus of the present invention.
  • the apparatus used in the present embodiment includes a supply slaked lime slurry preparation tank, a separation apparatus based on separation based on a difference in specific gravity and Z or particle size, and a slaked lime solution storage tank one by one. Some are connected by a pump.
  • the supplied slaked lime slurry with a concentration of 15% or less is preferably prepared using the purified water that has been poured into the lime slurry preparation tank and treated in the water purification process as 101: dilution water.
  • the stirring strength during preparation is 140 rpm and the dissolution time is about 10 minutes.
  • the supplied slaked lime slurry after stirring and dissolving is put into a separation device (for example, 105: hydrocyclone) that uses 104: pump as the principle of separation by specific gravity difference and Z or particle size difference.
  • the main insoluble substance in slaked ash, silicon dioxide and silicon dioxide has almost the same specific gravity as slaked lime, but the particle size is different from that of small slaked lime. is there.
  • 106 As the treated water, a small particle size slaked lime slurry with a low concentration of insoluble substances obtained by removing insoluble substances such as silicon dioxide and silicon dioxide from the supplied slaked lime slurry is obtained. 106: Low concentration of insoluble substance recovered as treated water! Dilute the small particle size slaked lime slurry appropriately in 108: Slaked lime solution storage tank, then add to the water purification process.
  • FIG. 2 is a flow configuration diagram for further improving the recovery rate of slaked lime.
  • the apparatus used in this embodiment includes two slaked lime slurry preparation tanks including a supply slaked lime slurry preparation tank, two separation apparatuses based on separation based on differences in specific gravity and Z or particle size, and storage of slaked lime solution. One tank is connected to each other by piping and pumps.
  • 204 Feed the slaked lime slurry after stirring and dissolution into the first separation device (for example, 205: hydrocyclone), which is based on the separation based on the difference in specific gravity and / or particle size.
  • 206 As the treated water, a small particle size slaked lime slurry having a low concentration of insoluble substances obtained by removing insoluble substances such as silicon dioxide and silicon dioxide from the supplied slaked lime slurry is obtained.
  • the discharged 207 slurry containing insoluble substances with water so that the concentration of slaked lime coexisting in the 209: slurry receiving tank containing slaked insoluble substances and slaked lime slurry preparation tank becomes 15% or less, for example.
  • 210 Feed into a second separator (for example, 211: hydrocyclone) that uses a pump to separate by specific gravity and Z or particle size.
  • Slurry receiving tank containing insoluble substance and slaked lime When diluted in a slurry preparation tank, physical impact (for example, ultrasonic treatment) is performed, or hydrochloric acid is added to add large slaked lime particles. It can be refined to improve slaked lime dissolution efficiency.
  • physical impact for example, ultrasonic treatment
  • hydrochloric acid is added to add large slaked lime particles. It can be refined to improve slaked lime dissolution efficiency.
  • FIG. 3 shows a conceptual diagram illustrating the above-mentioned aspect 4.
  • carbonated water or hydrochloric acid is periodically or irregularly passed through all or part of the piping, pumps, separators and tanks for passing slaked lime slurry or slaked lime solution. Force that further includes dissolving and removing the calcium carbonate scale on the inner walls of pipes, etc.
  • Figure 3 shows the case where carbonated water is used. In this case, in order to inject the slaked lime solution into the purified water even while the calcium carbonate scale is dissolved and removed, it is necessary to provide a storage tank 317 for securing this amount of slaked lime solution.
  • the part surrounded by the dotted line in the figure is a flow of the slaked lime injecting apparatus that performs the hydrocyclone treatment in two stages as shown in FIG.
  • Carbonated water can be injected into the beginning of this line (ie, 303: supply slaked lime slurry preparation tank), and carbonated water can be added to each pipe at any time.
  • Fig. 3 shows the case where carbonated water is injected into the slurry receiving tank containing 309: insoluble substance-containing slurry and slaked lime slurry, and 316: Insoluble substance-containing slurry receiving tank, and is injected into each pipe as needed. This is shown by the broken line 319.
  • the liquid after passing carbonated water is stored in 318 tanks.
  • Carbonated water can be prepared in advance in a carbonated water preparation tank or by injecting carbon dioxide gas into a water line, immediately before passing water.
  • Carbonated water or hydrochloric acid do not stop the injection of the slaked lime solution into the purified water.
  • Secure 317 Prepare a slaked lime solution storage tank.
  • FIG. 4 shows a conceptual diagram illustrating the fifth aspect.
  • the portion surrounded by the dotted line in the figure is, as an example, a slaked lime injection device that performs hydrocyclone treatment in two stages as shown in FIG. Fig. 4 includes periodically or irregularly passing carbonated water or hydrochloric acid through part or all of this device to dissolve and remove the calcium carbonate scale on the inner wall of the piping, etc. It shows a flow in which water or hydrochloric acid is also used to adjust the pH of purified water.
  • Figure 4 shows an example using carbonated water.
  • Carbonated water can be prepared in a carbonated water preparation tank in advance, or can be prepared immediately before passing water by injecting carbon dioxide into the water line.
  • FIG. 5 shows a flow in the case of performing three-stage processing with one cyclone.
  • the slaked lime slurry is also supplied to the 503: feed slaked lime slurry preparation tank 508: hydrocyclone and the insoluble substance-containing slurry is stored in the 504: first insoluble substance-containing slurry receiving tank / slaked lime slurry preparation tank.
  • the slurry containing insoluble substances contained in 504 is diluted to a slaked lime concentration of about 15% or less, and the diluted slurry containing insoluble substances is supplied from 504 to 508 again.
  • the separation process is performed again at 508, and then the 508 falling liquid line is switched so that the slurry containing the insoluble substance is stored in the 505: second slurry receiving tank containing the insoluble substance and the slaked lime slurry preparation tank.
  • the insoluble substance-containing slurry contained in 505 is diluted and the diluted insoluble substance-containing slurry is supplied from 505 to 508 again.
  • 509 All treated water obtained by repeated separation treatment in this way is stored in 507: Slaked lime solution storage tank. According to the method of this embodiment, the slaked lime solution concentration in 507 may not be stable.
  • the concentration of slaked lime solution in 507 is stabilized by temporarily storing the treated water obtained in each separation process in individual tanks and supplying the treated water to 507 while adjusting the concentration. You can also. Dilute to desired concentration in 507 and add to purified water.
  • the cyclone outlet may be blocked.
  • a screen not shown
  • FIG. 6 is a flow diagram using an apparatus that further includes a dispersing device for dispersing slaked lime having a large particle size in order to increase the recovery rate of slaked lime.
  • 601 Supply slaked ash slurry is prepared by an appropriate method
  • 603 Supply to the separation device.
  • 603 Separation operation is performed by the separation device and discharged
  • 604 Insoluble substance-containing slurry is supplied to 605: Dispersion device.
  • 604 Not good As described above, a large amount of slaked lime particles still remain in the slurry containing soluble substances
  • 603 An insoluble substance-containing slurry containing this large particle size slaked lime can be partially extracted from the separation apparatus as 608: extraction slurry.
  • 605 Stir the slurry containing insoluble substances including large sized slaked lime that has not been extracted in a disperser and thoroughly disperse the slaked lime slurry after the dispersion treatment.
  • 603 Perform the separation operation with the separation device.
  • the obtained 606 treated water which is a small particle size slaked lime slurry is appropriately diluted and then sent to the water purification process.
  • Examples of means for extracting a part of the slurry from the insoluble substance-containing slurry include using a valve, switching the flow path with a partition plate, and extracting with a pump. Slurry can be extracted continuously or intermittently. If the slurry containing insoluble substances is stored in one place such as a tank and pulled out, the slurry may be separated and deposited in the tank, and stirring or dilution may be required to remove it. It is desirable to extract it before receiving it in a tank. Preferably, the slurry containing the insoluble substance is allowed to flow down naturally from the separation device, and a part of the slurry is extracted by a method of switching the flow path of the flowing slurry.
  • 603 602: Separation apparatus inflow slaked lime slurry flow rate is Q1.
  • Q2 The smaller the flow rate Q2 of the slurry containing insoluble substances including the large particle size slaked lime that should be removed, the smaller the particle size slaked lime slurry is.
  • Q4 The treated water flow rate Q4 increases, and the recovery rate of slaked lime is improves.
  • Q2 is too small, insoluble substances that should be removed and large-diameter slaked lime are mixed in Q4, and a high-quality slaked lime solution cannot be obtained.
  • Q2 is too small, the particles that make up the slurry tend to settle in the flow path.
  • ItQ2 / Qli is preferably from 0.01 to 0.1, more preferably from 0.02 to 0.05.
  • the slurry containing the insoluble substance containing the large particle size slaked lime flowing out from the separator is mixed with the supplied slaked lime slurry.
  • the ratio Q3ZQ2 is increased. If the ratio Q3ZQ2 is too large in the range of 0.05-0.6, the recovery rate of slaked lime will decrease, and if it is too small, the concentration of large particle size slaked lime in the slaked lime slurry flowing into the separator will become excessive and removal of large particle size slaked lime will be removed. Deterioration of the rate or blockage of the separation device can occur.
  • FIG. 7 is a flow diagram using an apparatus further including a dispersing device for dispersing slaked lime having a large particle size in order to increase the recovery rate of slaked lime.
  • 701 Supply slaked ash slurry is prepared by an appropriate method
  • 702 Supply to the disperser.
  • the slaked lime slurry sufficiently dispersed by the dispersion operation is supplied to 703: separation device, and the separation operation is performed here and discharged.
  • 704 The slurry containing insoluble substances is supplied again to 702: dispersion device.
  • 704 Insoluble substance content As described above, many slaked lime particles having a large particle size remain in the slurry.
  • 703 Separation device Katsu et al.
  • Fig. 8 shows the value of the above-mentioned ratio Q3ZQ2 in the apparatus of Fig. 7 using 803: obtained by the separation device 807: means (807) for measuring the concentration of the insoluble substance in the treated water.
  • 801 Supply slaked lime slurry is prepared by an appropriate method
  • 802 Supply to the dispersing device
  • 803 Supply the slaked lime slurry fully dispersed by the dispersion operation to 803: Separation device, and discharge it after performing the separation operation here.
  • 804 Supply the insoluble material-containing slurry again to 802: Dispersion device .
  • 804 A large amount of slaked lime particles still remain in the slurry containing insoluble substances as described above.
  • 803 An insoluble substance-containing slurry containing the large particle size slaked lime can be partially extracted from the separation apparatus as 805: extraction slurry using the flow path switching means.
  • the undissolved substance-containing slurry containing large-sized slaked lime that has not been extracted again is stirred again in the disperser 802: Dispersed sufficiently, and the slaked lime slurry after the dispersion treatment is 801: Supply slaked lime slurry.
  • Mix and repeat 803 Separation operation is performed in the separator.
  • Obtained 806 The concentration of insoluble substances contained in the treated water, which is a small particle size slaked lime slurry, was measured by means of 807: Insoluble substance concentration measuring means.
  • the extraction flow rate (ie, the ratio Q3ZQ2) of the active substance-containing slurry can be controlled.
  • the obtained 806 treated water is appropriately diluted and then sent to the water purification process.
  • 807: Insoluble substance concentration measurement method using insoluble substance concentration measuring method is, for example, that a part of treated water which is a small particle size slaked lime slurry is derived for analysis and dissolved in hydrochloric acid or carbonic acid, and turbidity And Z or chromaticity optically.
  • the silicon dioxide particles When dissolving calcium hydroxide and calcium carbonate contained in slaked ash slurry, the silicon dioxide particles, which are insoluble, remain as turbidity and are detected as turbidity. The part is detected as chromaticity because it dissolves and has a brown color. In addition, it is also effective to use a spectrophotometric analysis after adding a reagent to develop a color, and it is also effective to use the slurry for non-destructive fluorescent X-ray analysis.
  • Fig. 9 is a flow chart showing an example of using a 901: plug flow type dispersing device as a supply slaked lime slurry preparation tank.
  • 901 Supplying slaked lime powder and water to the plug-type disperser to disperse the slaked lime slurry.
  • Supplied slaked lime slurry is supplied to another dispersing device (902) and subjected to dispersion treatment as necessary.
  • 903 The slaked lime slurry is supplied to the separating device, where it is separated and discharged.
  • 904 Slurry containing insoluble substances Is again supplied to the dispersing device.
  • 904 Insoluble In the slurry containing substance, a large amount of slaked lime particles still remain as described above.
  • 903 Separation equipment ⁇ et al. 908: Extracted slurry containing insoluble substances including large particle size slaked lime A part can be extracted as a slurry. The undissolved slurry containing undissolved large-sized slaked lime that has not been withdrawn is stirred again in the disperser 902 and thoroughly dispersed, and the slaked lime slurry after dispersion treatment is supplied from the plug flow type disperser 901. 903: Repeat the separation operation with the separator. The 906 treated water obtained as a small particle size slaked lime slurry is appropriately diluted and then sent to the water purification process.
  • FIG. 10 is a flow chart showing another example of using a 1001: plug flow type dispersing device as a supply slaked lime slurry preparation tank.
  • 1001 Supplying slaked lime powder and water to the plug-flow disperser to disperse the slaked lime slurry.
  • 1003 Supply slaked lime slurry to the separator, where 1004: Slurry containing insoluble substances discharged from the separation operation is supplied to the dispersion unit.
  • 1004 As described above, a large amount of slaked lime particles still remain in the slurry containing insoluble substances.
  • 1003 As for the separation device force, a slurry containing insoluble substances including this large particle size slaked lime can be partially extracted as 1007: Extraction slurry.
  • 1002 Dispersing equipment containing slurry that contains undissolved substances, including large sized slaked lime that has not been extracted! Then, stir and disperse thoroughly, mix the slaked lime slurry after dispersion treatment with 1001: feed slaked lime slurry supplied from the plug-flow disperser, and repeat 1003: separation operation in the separator.
  • 1005 treated water obtained as small particle size slaked lime slurry is appropriately diluted and then sent to the water purification process.
  • FIG. 11 is a flow diagram showing another example of using a plug flow type dispersing device as a supply slaked lime slurry preparation tank.
  • 1101 Supplying slaked lime powder and water to the plug-type disperser to disperse the slaked lime slurry.
  • 1103 Supply slaked lime slurry is supplied to the separator, where it is discharged after separation operation
  • 1104 Insoluble substance-containing slurry is supplied to 1102: Disperser.
  • 1104 As described above, a large amount of slaked lime particles still remain in the slurry containing insoluble substances.
  • 1103 The insolubilized material-containing slurry containing the large particle size slaked lime can be partially extracted as 1107: extraction slurry.
  • FIG. 12 is a flow diagram showing another example of using a plug flow type dispersion device as a supply slaked lime slurry preparation tank.
  • 1201 Supplying slaked lime powder and water to the plug-type disperser to disperse the slaked lime slurry.
  • the supplied slaked lime slurry is supplied to 1202: the first separation device, and the separation operation is performed here.
  • 1203 Slurry containing insoluble substances is supplied to 1204: Slaked lime micronization means. If necessary, diluting water is added, for example, physical impact and Z or hydrochloric acid is added to mainly reduce the size of the large particle size slaked lime, and then 1205: supplied to the second separator To do.
  • This example illustrates an embodiment in which the treatment for separating the insoluble material from the slaked lime slurry is performed once.
  • slaked lime manufactured by Ryoko Lime Industry Co., Ltd.
  • tap water slaked lime concentration 9.3%
  • This slaked lime slurry was supplied to a hydrocyclone (trade name: C124TWO INCH HYDROCYCLONE, manufacturing company name: MOZLEY) at a rate of 61.2 liters Z, and the liquid cyclone was operated for separation treatment.
  • Concentrated insoluble substances were discharged from the lower part of the hydrocyclone at 3.2 liters Z minutes, while treated water was obtained from the upper part of the liquid cyclones at 58 liters Z minutes.
  • Example 2 This example illustrates an embodiment in which the treatment for separating the insoluble material from the slaked lime slurry is performed twice.
  • a slaked lime slurry was prepared. This slaked lime slurry was supplied to the liquid cyclone at 65.2 liters / minute, and the liquid cyclone was operated to perform separation treatment.
  • Concentrated insoluble substances were discharged from the lower part of the hydrocyclone at 2.2 liters Z minutes, while treated water was obtained from the upper part of the hydrocyclone at 63 liters Z minutes.
  • the insoluble substance concentrated water thus obtained was diluted with water to a slaked lime concentration of 1.9%.
  • This diluted water was supplied to the second liquid cyclone at 65 liters Z, the liquid cyclone was operated, and separation processing was performed.
  • the insoluble substance concentrated water was discharged from the lower part of the second hydrocyclone at 2.2 liters Z minutes, while the treated water was obtained from the upper part of the liquid cyclone at 63 liters Z minutes.
  • the recovery rate of slaked lime by the second separation treatment is 16%.
  • the removal rate of silicon oxide was 3.8%.
  • the recovery rate of slaked lime in the entire system is 96%, and the removal rate of silicon dioxide is 99.8%.
  • Tables 2 and 3 show the results obtained by simulating the processing flow in Fig. 7 based on the processing performance described in Table 1.
  • the content of Si02 which is an insoluble substance contained in slaked lime, varies depending on the slaked lime used as a raw material.
  • Table 2 shows the result for 0.033% close to the lower limit
  • Table 3 shows the result for 0.22% close to the upper limit.
  • reducing the extraction ratio Q3 / Q2 increases the Si02 content of the slaked lime slurry flowing into the separator, and as a result, increases the Si02ZCa (OH) 2 ratio of the small particle size slaked lime slurry.
  • Si02 that can be a turbid component is surely From the viewpoint of suppressing the slag, it is preferable to make the Si02ZCa (OH) 2 ratio of the small particle size slaked lime slurry 0.02% or less. For this purpose, it is preferable to adjust the ratio Q3 / Q2 in the range of 0.05-0.6!
  • low-corrosive water can be prepared by efficiently preparing a slaked lime solution used for reforming highly corrosive water and injecting it into purified water.
  • the method of the present invention can be widely used in the field of improving the quality of purified water including tap water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

 本発明は、消石灰を使用して水道水の水質を改質する方法において、効率的に消石灰溶液を製造する方法を提供する。さらに、設置面積の少ない、低コスト、メンテナンス容易な、水道水への消石灰注入装置及びこれを用いた消石灰注入方法を提供する。本発明は、消石灰を使用して水道水の水質を改質する方法において、消石灰スラリを連続的に供給し、比重差及び/又は粒径の違いによる分離を原理とする分離装置を用いて消石灰スラリから不溶解性物質を除去し、不溶解性物質濃度が低い消石灰スラリを調製し、該消石灰スラリを希釈して浄水に注入することを特徴とする、前記方法、及びこの方法に使用する装置に関する。                                                                                

Description

消石灰注入装置
技術分野
[0001] 本発明は、水道管の腐食防止、すなわち水道水のランゲリア指数を改善するため に用いる消石灰溶液の調製方法及び調製装置に関する。
背景技術
[0002] 日本の水道水は、硬度が低ぐ pHの低い軟水であり腐食性を有する水である。腐 食性の水を使用し続けると、水道配管などの腐食が進行し赤水が発生し得る。水の 腐食性の判定視標としてランゲリア指数が用いられる。ランゲリア指数 (以下、 LIと称 することがある)は、 pH、総アルカリ度、カルシウム硬度などの関数であり、以下の式 で表される:
[0003] [数 1] ランゲリア指数 (L I ) = p H - p H s
= p H - 8 . 3 1 3 + 1 o g [ C a + + ] + 1 o g [ A ] — S
[0004] pH ;水の実際の pH値
pH;水中の炭酸カルシウムが溶解も析出もしない平衡状態にあるときの pH値
S
log[Ca++];カルシウムイオン濃度の対数
log[A];総アルカリ度の対数
S ;補正値
LI = 0ならば、その水は腐食の傾向も炭酸カルシウム析出の傾向も示さない。 LI>0 ならば、水中炭酸カルシウムが飽和状態であり、析出しやすぐよって水と接触する配 管内表面などに保護被膜を形成するので、水の腐食傾向が小さい。一方、 LI< 0な らば、水の腐食傾向が大きいことを意味する。上記式より、 LIを大きくするには、 pHを 上げるか、アルカリ度を上げる力、カルシウム硬度を上げるかすればよい。
[0005] 上述のように、日本国内で採取される水は、 pHの低い軟水であり、すなわち LIが負 で、絶対値が大きいとされている(例えば 4〜一 6程度)。このような水は上水道配 管の腐食を生じさせやすぐ給水先での赤水の発生等の問題を発生しうる。そこで、 この問題を解決するために従来から苛性ソーダ注入法、消石灰注入法などの pH調 整法が提案されて 、る。し力し苛性ソーダ注入法では PHの増カロと若干のアルカリ度 の増大が見られるものの、 LIの改善が充分ではない。
[0006] そこで LI改善効果が大き 、消石灰 (水酸ィ匕カルシウム)注入法により水質を改善す ることが広く行われている。消石灰は水のアルカリ度を増すので、腐食性低減には非 常に効果的である。さらに消石灰は原水中に含まれる遊離炭酸などと以下:
[0007] [数 2]
H20 + C02→H2C03 (炭酸の生成》
2 H 2 C 03 + C a (OH) 2→C a (HC03) 2 + 2 H20 (炭酸水素カルシウムの生 成)
HC03—十 OH—→C 03 2— + H20 (炭酸イオンの生成)
C a 2 + + C 03 2"→C a C03 (炭酸カルシウムの生成)
F e 2 + + C03 -→F e C03 <K酸第一鉄の生成)
[0008] のように反応し、炭酸カルシウムや炭酸第一鉄 (シダライト)を含む、薄 、酸化金属混 合皮膜を水道管壁に形成する。この酸化金属混合被膜が水道管壁と水との接触を 断つので、管の腐食防止を確実にすることができる。また、酸化金属混合被膜は、水 道水に添加される塩素による水道管壁金属の酸ィ匕を防ぐので、配管内での塩素の 消費が低減し、よって水道水への塩素注入量を低減することができる。
[0009] ところが、水道添加用の市販の消石灰には、二酸化珪素等の不溶解性物質が含ま れている。消石灰をそのまま水道水へ注入すると、水道水中へ二酸化珪素等の不溶 解性物質が移行することにより濁度上昇を引き起こすおそれがある。このため、消石 灰を水道水に注入する前には、このような不溶解性物質を除去する必要がある。従 来は、消石灰スラリを形成してカゝかる不溶解性物質を沈降させる、沈降分離法による 除去が一般的であった。しかし、沈降分離法によって不溶解性物質を除去する場合 には、不溶解性物質が沈降するように上昇流速を十分に低くする必要があるために 、分離槽の設置面積が大きくなり得る。
[0010] また、従来の沈降分離法は、 1つの槽で消石灰を水に溶解させつつ不溶解性物質 を沈降分離する、消石灰溶解と不溶解性物質分離を兼用するタイプの溶解槽を用い るので、不溶解性物質の分離を優先すると、消石灰が充分に溶解しない可能性があ る。更に従来法による消石灰の溶解は、消石灰溶解槽に粉末消石灰を回分的に投 入して溶解し、連続に投入するものではないため、消石灰を溶解槽に投入している 間は溶解槽を一時的に停止する必要があり、この間は消石灰溶液の生成も停止する 。しかし、通常、浄水には消石灰溶液を連続的に注入するので、消石灰溶液の生成 が停止している間に浄水に注入するための消石灰溶液を貯留しておく槽が必要であ つた。したがって、この方法では、機器点数の増力!]、装置占有面積が増大、維持管 理負荷の増加を招く場合がある。
[0011] また、スラリ状態で沈降分離させるのではなぐ飽和溶解度程度の濃度に調整して 力ゝら不溶解性物質を除去する方法も提案されている。しかし、消石灰は水に溶解し にくぐ飽和溶解度程度にまで溶解すると水量が多くなるため、沈降分離手段を適用 した場合は大型の沈降分離槽が必要となるおそれがある。したがって、かかる方法で は、設置面積、設備コストの増大を招く。
不溶解性物質をろ過する方法では、ろ過膜の目詰まりのためのメンテナンス費用が 嵩む場合がある。不溶解性物質を遠心分離する方法では、エネルギー消費量が多く 、設備費が嵩む場合がある、という問題があった。尚、本発明に関連する文献として、 以下のものがある:浄水技術ガイドライン 2000年度版、(財)水道技術研究センター 発行;水酸ィ匕カルシウム等注入法による赤水対策、「建築設備と配管工事」、 1999 年 3月号、 pp. 17〜19
発明の開示
発明が解決しょうとする課題
[0012] そこで本発明は、上記従来技術の問題点を解消し、溶解速度が速ぐ設置面積の 少ない、低コスト、メンテナンスの容易な飲料水への消石灰注入方法と装置を提供す ることを目的とする。 課題を解決するための手段
本発明の態様は、以下の通りである:
1. 消石灰を用いて水道水の水質を改良するために使用する装置であって、 少なくとも 1つ以上の、供給消石灰スラリ調製槽と、
少なくとも 1つの、比重差及び/又は粒径の違いによる分離を原理とする分離装置と 消石灰溶液貯留槽と
を含むことを特徴とする、前記装置。
2. 消石灰を用いて水道水の水質を改良するために使用する装置であって、 供給消石灰スラリ調製槽と、
供給消石灰スラリ調製槽からの供給消石灰スラリより、比重差及び/又は粒径の違 いにより不溶解性物質含有スラリを分離する第 1の分離装置と、
該供給消石灰スラリ調製槽と該第 1の分離装置とを接続する配管及びポンプと、 該第 1の分離装置から排出された不溶解性物質含有スラリを貯留する不溶解性物 質含有スラリ受槽兼消石灰スラリ調製槽と、
該不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽に希釈水を注入する手段と 希釈後の不溶解性物質含有スラリより、比重差及び/又は粒径の違いによりさら〖こ 不溶解性物質含有スラリを分離する第 2の分離装置と、
該不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽と、該第 2の分離装置とを接 続する配管及びポンプと、
該第 2の分離装置により得られた処理水を貯留する消石灰溶液貯留槽と、 該消石灰溶液貯留槽に希釈水を注入する手段と、
を含むことを特徴とする、前記装置。
3. 消石灰を用いて水道水の水質を改良するために使用する装置であって、 供給消石灰スラリ調製槽と
供給消石灰スラリ調製槽からの供給消石灰スラリより、比重差及び Z又は粒径の 違いにより不溶解性物質含有スラリを分離する、分離装置と、 該供給消石灰スラリ調製槽と該分離装置とを接続する配管及びポンプと、 該分離装置から排出された不溶解性物質含有スラリを貯留する、 2つ以上の不溶 解性物質含有スラリ受槽兼消石灰スラリ調製槽と、
該不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽に各々希釈水を注入する手 段と、
該各不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽から該分離装置に、希釈 後の不溶解性物質含有スラリを各々返送するための配管と、
該分離装置から排出された不溶解性物質含有スラリを最終的に貯留する不溶解性 物質含有スラリ受槽と、
該分離装置により得られた処理水を貯留する消石灰溶液貯留槽と
を含むことを特徴とする装置。
4. 消石灰スラリ又は消石灰溶液を通水する配管、ポンプ、及び分離装置並びに槽 の、全部又は一部に炭酸水又は塩酸を通水する手段を設けたことを特徴とする、請 求項 1〜3のいずれかに記載の装置。
5. 炭酸水又は塩酸を浄水処理工程に直接添加する手段をさらに含むことを特徴と する、請求項 4に記載の装置。
6.該分離装置により分離された不溶解性物質含有スラリを撹拌し、消石灰粒子を 分散させるための分散手段と、
該分離装置により分離された不溶解性物質含有スラリの一部を抜き出す抜き出し 手段と、
該分散手段から該分離装置に、分散処理後の不溶解性物質含有スラリを返送する 配管及びポンプと、
をさらに含むことを特徴とする、請求項 1に記載の装置
7. 消石灰を用いて水道水の水質を改良するために使用する装置であって、 消石灰を分散させるための分散手段を備えた供給消石灰スラリ調製槽と、 該分散手段を備えた供給消石灰スラリ調製槽からの供給消石灰スラリより、比重差 及び/又は粒径の違いにより不溶解性物質含有スラリを分離する分離装置と、 該分散手段を備えた供給消石灰スラリ調製槽と該分離装置とを接続する配管及び ポンプと、
該分離装置から排出された不溶解性物質含有スラリの一部を抜き出す抜き出し手 段と、
該分離装置により得られた処理水を貯留する消石灰溶液貯留槽と、
抜き出されなカゝつた不溶解性物質含有スラリを該分散手段に返送する手段と、 を含むことを特徴とする装置。
8. 該分離装置により得られた処理水に含まれる不溶解性物質の濃度を測定する 不溶解性物質濃度測定手段と、
該不溶解性物質濃度測定手段により得られた測定濃度に基づいて前記抜き出し 手段カゝら抜き出す不溶解性物質含有スラリの量を決定する手段と、
をさらに含むことを特徴とする請求項 6又は 7に記載の装置。
9.該分散手段を備えた供給消石灰スラリ調製槽が、栓流式分散装置である、請求 項 6〜8の!、ずれかに記載の装置。
発明の効果
[0015] 本発明の方法に使用する装置は、消石灰スラリ調製部と不溶解性物質分離処理部 が分かれて 、るため、これらを兼用する従来技術では達成できな力つた効率的な分 離処理を行うことができる。これにより、不溶解性物質をほぼ含まない消石灰溶液を 効率的に調製することができるので、これを希釈するなどして浄水の腐食性の低減に 用いることができる。本発明の方法は、必要に応じて分離処理を複数回行うことがで きるので、消石灰回収率をほぼ 100%に近づけることが可能である。
図面の簡単な説明
[0016] [図 1]図 1は、本発明の装置を利用した実施形態のフロー図である。不溶解性物質分 離処理を 1回行う態様を表したものである。
[図 2]図 2は、本発明の装置を利用した実施形態のフロー図である。不溶解性物質分 離処理を 2回行う態様を表したものである。
[図 3]図 3は、本発明の装置を利用した実施形態のフロー図である。図 2の系の全体 又は一部に炭酸水を注入する態様を表したものである。
[図 4]図 4は、本発明の装置を利用した実施形態のフロー図である。図 2の系の全体 又は一部に炭酸水を注入するほか、浄水の pH調整用にも炭酸水を用いる態様を表 したものである。
[図 5]図 5は、本発明の装置を利用した実施形態のフロー図である。 1つの分離装置 を用いて複数回分離操作を行う態様を表したものである。
[図 6]図 6は、本発明の装置を利用した実施形態のフロー図である。分離装置と分散 装置とを用いて分離操作を行う態様を表したものである。
[図 7]図 7は、本発明の装置を利用した実施形態のフロー図である。分離装置と、分 散装置とを用いて分離操作を行う態様を表したものである。
[図 8]図 8は、本発明の装置を利用した実施形態のフロー図である。分離装置と、流 路切り替え手段と、分散装置と、不溶解性物質濃度測定手段とを用いて分離操作を 行う態様を表したものである。
[図 9]図 9は、本発明の装置を利用した実施形態のフロー図である。供給消石灰スラリ 調製槽として栓流式分散装置を用い、その他分離装置と、分散装置とを用いて分離 操作を行う態様を表したものである。
[図 10]図 10は、本発明の装置を利用した実施形態のフロー図である。供給消石灰ス ラリ調製槽として栓流式分散装置を用い、その他分離装置と、分散装置とを用いて分 離操作を行う態様を表したものである。
[図 11]図 11は、本発明の装置を利用した実施形態のフロー図である。供給消石灰ス ラリ調製槽として栓流式分散装置を用い、その他分離装置と、分散装置とを用いて分 離操作を行う態様を表したものである。
[図 12]図 12は、本発明の装置を利用した実施形態のフロー図である。供給消石灰ス ラリ調製槽として栓流式分散装置を用い、その他 2つの分離装置と、分散装置とを用 V、て分離操作を行う態様を表したものである。
符号の説明
101 :希釈水、 102 :消石灰、 103 :供給消石灰スラリ調製槽、 104 :ポンプ、 105 :液 体サイクロン、 106 :処理水、 107 :不溶解性物質含有スラリ、 108 :消石灰溶液貯留 槽、 109 :希釈水、 110 :浄水工程へ
201 :希釈水、 202 :消石灰、 203 :供給消石灰スラリ調製槽、 204 :ポンプ、 205 :第 1の液体サイクロン、 206:処理水、 207:不溶解性物質含有スラリ、 208:希釈水、 20 9:不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽、 210:ポンプ、 211:第 2の液 体サイクロン、 212:処理水、 213:不溶解性物質含有スラリ、 214:希釈水、 215:消 石灰溶液貯留槽、 216:浄水工程へ
303:供給消石灰スラリ調製槽、 304:ポンプ、 305:第 1の液体サイクロン、 306:処 理水、 307:不溶解性物質含有スラリ、 309:不溶解性物質含有スラリ受槽兼消石灰 スラリ調製槽、 310:ポンプ、 311:第 2の液体サイクロン、 312:処理水、 313:不溶解 性物質含有スラリ、 315:消石灰溶液貯留槽、 316:不溶解性物質含有スラリ受槽、 3 17:消石灰溶液貯留槽、 318:炭酸水通水後の水溶液貯留槽、 319:炭酸水、 320: 浄水工程へ
418:炭酸水通水後の水溶液貯留槽、 420、 421:浄水工程へ
501:希釈水、 502:消石灰、 503:供給消石灰スラリ調製槽、 504:第 1の不溶解性 物質含有スラリ受槽兼消石灰スラリ調製槽、 505:第 2の不溶解性物質含有スラリ受 槽兼消石灰スラリ調製槽、 506:不溶解性物質含有スラリ受槽、 507:消石灰溶液貯 留槽、 508:液体サイクロン、 509:処理水、 510、 511:希釈水、 512:浄水工程へ 601:供給消石灰スラリ、 602:流入消石灰スラリ、 603:分離装置、 604:不溶解性物 質含有スラリ、 605:分散装置、 606:処理水、 607:浄水工程へ、 608:抜き出しスラ y
701:供給スラリ、 702:分散装置、 703:分離装置、 704:不溶解性物質含有スラリ、 705:処理水、 706:浄水工程へ、 707:抜き出しスラリ
801:供給スラリ、 802:分散装置、 803:分離装置、 804:不溶解性物質含有スラリ、 805:流路切り替え手段、 806:処理水、 807:不溶解性物質濃度測定手段、 808: 浄水工程へ、 809:抜き出しスラリ
901:栓流式分散装置、 902:分散装置、 903:分離装置、 904:不溶解性物質含有 スラリ、 905:流入消石灰スラリ、 906:処理水、 907:浄水工程へ、 908:抜き出しスラ y
1001:栓流式分散装置、 1002:分散装置、 1003:分離装置、 1004:不溶解性物質 含有スラリ、 1005:処理水、 1006:浄水工程へ、 1007:抜き出しスラリ 1101 :栓流式分散装置、 1102 :分散装置、 1103 :分離装置、 1104 :不溶解性物質 含有スラリ、 1105 :処理水、 1106 :浄水工程へ、 1107 :抜き出しスラリ
1201 :栓流式分散装置、 1202 :第 1の分離装置、 1203 :不溶解性物質含有スラリ、 1204 :分散装置、 1205 :第 2の分離装置、 1206 :処理水、 1207 :処理水、 1208 : 不溶解性物質含有スラリ、 1209 :消石灰溶液貯留槽、 1210 :浄水工程へ 発明の詳細な説明
[0018] 本発明を詳細に説明する。本発明は、特に消石灰注入法により水道水の水質を改 質する方法に関し、特に水質の改質のために注入する消石灰に含まれる二酸ィ匕珪 素などの不溶解性物質を除去する方法に特徴がある。本発明の方法に用いる装置 は、消石灰スラリを調製するための槽と、不溶解性物質を分離するための分離装置と が分かれていることに大きな特徴があり、これにより従来技術では達成し得な力つた 多くの利点を有する。
[0019] 本発明の方法に使用する消石灰は、水道添加用に使用される市販の一般的なェ 業用グレードのものであってよい。供給消石灰スラリ調製槽において消石灰を予め水 に溶解し、濃度 15%以下の消石灰スラリを調製する。消石灰の濃度は、好ましくは 0 . 15〜15%、さらに好ましくは 10〜14%である力 あまり濃度を小さくすると消石灰 スラリの容量が大きくなることから、 12〜13%となるように調製することが望ましい。
[0020] このような濃度に調製した供給消石灰スラリを、比重差及び Z又は粒径の違いによ る分離を原理とする分離装置に供給する。比重差及び Z又は粒径の違いによる分離 を原理とする分離装置とは、消石灰スラリを撹拌する間に、スラリ中に含まれる固体成 分が比重差及び Z又は粒径の違いにより分離してくることを利用して、成分を分離す ることができる装置のことである。例えば、本発明では、消石灰に含まれる不溶解性 物質の一つである二酸化珪素は、比重は消石灰のそれとほぼ同じである力 粒径の 比較的小さい小粒径消石灰とは粒径が異なるため、スラリを撹拌する間に小粒径消 石灰を主として含むスラリと、比較的粒径の大き ヽ大粒径消石灰及び不溶解性物質 を含むスラリとが分離してくることとなる。比重差及び Z又は粒径の違いによる分離を 原理とする分離装置として好適に用いられるものは例えば液体サイクロンである。
[0021] 消石灰スラリから、比重差及び Z又は粒径の違いによる分離を原理とする分離装 置により分離される不溶解性物質とは、主に二酸ィ匕珪素である。その他、酸化アルミ ユウム、酸化第二鉄、酸化マグネシウム等の成分も含まれうる。
[0022] 比重差及び Z又は粒径の違いによる分離を原理とする分離装置により分離された 大粒径消石灰及び不溶解性物質を含有するスラリ(以下、本明細書においては、単 に「不溶解性物質含有スラリ」と称することがある。)を、該分離装置から排出すると、 不溶解性物質濃度が低い小粒径消石灰を主として含有する消石灰スラリ(以下、本 明細書においては、単に「小粒径消石灰スラリ」と称することがある。)が残る。これを 、消石灰濃度 0. 15〜15%、好ましくは 10〜14%の濃度にまで水で希釈して消石 灰溶液を調製し、浄水に直接又は浄水工程に注入する。このようにして水道水の腐 食性を低減させ、水質を改善することができる。
[0023] 本発明の別の態様では、比重差及び Z又は粒径の違いによる分離を原理とする分 離装置により分離された不溶解性物質含有スラリを、消石灰濃度 15%以下程度に希 釈して、これからさらに比重差及び Z又は粒径の違いによる分離を原理とする分離 装置により不溶解性物質及び大粒径消石灰を分離し、これにより得られた不溶解性 物質の濃度が極めて低い小粒径消石灰スラリを上記の濃度にまで希釈して、浄水に 注入することができる。比重差及び Z又は粒径の違いによる分離を原理とする分離 装置を一度用いて排出された不溶解性物質含有スラリには、大粒径消石灰を主とす る消石灰がまだ比較的高い割合で含まれているため、このスラリを例えば消石灰濃 度 15%以下などに適宜希釈して、ここ力も再度不溶解性物質を除去し、得られる消 石灰スラリを利用することにより、消石灰を有効に利用することができる。このように分 離処理を 2回以上行うことにより、消石灰の回収率をほぼ 100%にすることができる。 不溶解性物質含有スラリを、消石灰濃度 15%以下程度に希釈する際には、例えば 物理的衝撃及び Z又は塩酸を加えることにより大粒径の消石灰粒子を微小化するこ とが好ましい。このようにして消石灰の溶解を容易にし、また、引き続き行う分離装置 による不溶解性物質の分離を効率的に行うことができる。消石灰粒子を微小化する ための物理的衝撃は、例えば超音波処理などが挙げられる。あるいは、不溶解性物 質含有スラリを充分に撹拌し、消石灰粒子を分散させる分散手段を用いることもでき る。 [0024] 本発明のさらに別の態様では、消石灰スラリ又は消石灰溶液を通水する配管、ボン プ、分離装置及び槽の、全部又は一部に定期的に又は不定期的に炭酸水又は塩 酸を通水し、配管等の内壁の炭酸カルシウムスケールを溶解除去することをさらに含 むことができる。消石灰溶液を浄水に注入すると、上述の通り主に炭酸カルシウムを 含む金属被膜が形成する。本発明の方法により製造される消石灰溶液を浄水に注 入すると、金属皮膜が形成されることにより水道管壁と水との接触を断ち、水道管の 腐食防止に効果を発揮するのであるが、本発明の方法により消石灰溶液を調製する 装置内部にかかる金属皮膜があまりに多く堆積しすぎると、配管が閉塞するなどの不 都合なことが起こりうる。したがって本発明の方法で使用する、消石灰スラリ又は消石 灰溶液を通水する配管、ポンプ、分離装置及び槽の、全部又は一部に定期的に又 は不定期的に炭酸水又は塩酸を通水し、配管等の内壁の炭酸カルシウムスケール を溶解除去することが好ましい。力かる処理を行うことにより、水の腐食性を低減させ るための消石灰溶液を効果的に製造しつつ、使用する装置及び配管等の閉塞等を 防止し、これらの寿命を延ばすことが可能となる。炭酸水は、炭酸水調製槽にて予め 調製しておくか、あるいは水ラインに炭酸ガスを注入することにより、通水直前に調製 することができる。塩酸は塩酸調製槽にて予め調製しておくか、あるいは水ラインに 塩ィ匕水素ガスを注入することにより、通水直前に調製することができる。
[0025] 炭酸水又は塩酸は、一般に浄水の pH調整に用いられ、本発明の方法においても 浄水処理工程に直接添加して浄水の pH調整を行うことができる力 上述の炭酸カル シゥムスケールの溶解除去に使用した炭酸水又は塩酸も浄水の pH調整に使用する ことができる。このようにして炭酸水又は塩酸を有効に利用することが可能となる。
[0026] 本発明のもう一つの態様では、比重差及び Z又は粒径の違いによる分離を原理と する分離装置を用いて消石灰スラリから二酸ィ匕珪素を含む不溶解性物質を除去する 前に、消石灰スラリ中に含まれる粗大粒子を除去するスクリーンに消石灰スラリを通 過させることをさらに含む。消石灰スラリ中に粗大粒子が含まれると、比重差及び/ 又は粒径の違いによる分離を原理とする分離装置の出口が閉塞するおそれがあるか らである。したがって、用いられるスクリーンは、力かる粗大粒子を分離除去すること ができる孔径、例えば 50〜: LOOO μ m、好ましくは 100〜150 μ mのものであることが 好ましい。
[0027] 本発明のもう一つの態様では、比重差及び Z又は粒径の違いによる分離を原理と する分離装置を用いて消石灰スラリから二酸ィ匕珪素を含む不溶解性物質を除去する 前に、消石灰スラリ中に含まれる粗大粒子を破砕してスラリ中に充分に分散させるた めに、分散手段を用いることができる。消石灰スラリにあまりにも粗大な粒子が含まれ ると、比重差及び Z又は粒径の違いによる分離を原理とする分離装置の出口が閉塞 するおそれがあるからである。好ましくは、供給消石灰スラリ調製槽に力かる分散手 段を設けるか、あるいは供給消石灰スラリ調製槽として分散装置を用いることが好まし い。供給消石灰スラリを調製するには、先記の通り水に消石灰を添加するのが好まし いが、消石灰粉末を水面に落下させて撹拌、分散させる操作を行うと、消石灰粉末 カ调囲に飛散して装置壁面に付着し、飛散した消石灰によって装置周辺の作業環 境の悪ィ匕を招きうる。このような不都合を避けるために消石灰粉末を水に分散させる 操作を完全混合型の撹拌槽で行うと、一部の消石灰は総容積を流量で除して求まる 滞留時間に比べて非常に短い時間で流出するため、消石灰に充分なせん断力を与 えることができず、カゝかる消石灰粒子同士が凝集して大粒径消石灰が調製される場 合がある。このような事態を回避するために分散手段 (分散装置)として、例えば、栓 流式分散装置を用いることが好ましい。栓流式分散装置は、消石灰スラリにせん断力 を与えることができ、かつ消石灰粉末及び水を連続的に供給することにより連続的に 消石灰スラリを調製することが可能となる。栓流式分散装置として、市販のスパイラル ピンミキサゃキヤビトロン ( 、ずれも太平洋機械工株式会社製)を用いることができる。 発明を実施するための最良の形態
[0028] 本発明の装置を利用した水道水の水質の改質方法を、本発明の装置とともに詳細 に説明するが、本発明の態様が、以下の説明に記載されるもののみに制限されること を意図したものではない。
[0029] 図 1は、本発明の装置を利用した一実施形態を示すフロー構成図である。本実施 形態で使用する装置は、供給消石灰スラリ調製槽と、比重差及び Z又は粒径の違い による分離を原理とする分離装置と、消石灰溶液貯留槽とをそれぞれ 1つずつ含み、 それぞれを配管ある 、はポンプで接続したものである。 102:消石灰を 103:供給消 石灰スラリ調製槽に注入し、浄水工程で処理された浄水を 101:希釈水として使用し て好ましくは濃度 15%以下の供給消石灰スラリを調製する。供給消石灰スラリの調製 量にもよるが、一般に調製時の撹拌強度は 140 rpm、溶解時間は 10分程度必要で ある。撹拌溶解後の供給消石灰スラリを 104:ポンプで比重差及び Z又は粒径の違 いによる分離を原理とする分離装置 (例えば 105:液体サイクロン)へ投入する。消石 灰中の主な不溶解性物質である二酸ィ匕珪素は消石灰と比重はほぼ同程度であるが 、小粒径消石灰とは粒径が異なるため液体サイクロンを用いて分離除去可能である。 106:処理水として、供給消石灰スラリから二酸ィ匕珪素等の不溶解性物質が除去され た不溶解性物質濃度が低 ヽ小粒径消石灰スラリが得られる。 106:処理水として回収 された不溶解性物質濃度が低!ヽ小粒径消石灰スラリを 108:消石灰溶液貯留槽で適 宜希釈した後、浄水工程へ添加する。
図 2は、消石灰の回収率をさらに向上させる場合のフロー構成図である。本実施形 態に使用する装置は、供給消石灰スラリ調製槽を含む消石灰スラリ調製槽と、比重 差及び Z又は粒径の違いによる分離を原理とする分離装置とをそれぞれ 2つ、さらに 消石灰溶液貯留槽を 1つ含み、それぞれを配管及びポンプで接続したものである。 まず、 202 :消石灰を 203 :供給消石灰スラリ調製槽に注入し、浄水工程で処理され た浄水を 201 :希釈水として使用して例えば濃度 15%以下の供給消石灰スラリを調 製する。撹拌溶解後の供給消石灰スラリを 204:ポンプで比重差及び/又は粒径の 違いによる分離を原理とする第 1の分離装置 (例えば 205:液体サイクロン)へ投入す る。 206 :処理水として、供給消石灰スラリから二酸ィ匕珪素等の不溶解性物質が除去 された不溶解性物質濃度が低い小粒径消石灰スラリが得られる。一方、排出される 2 07:不溶解性物質含有スラリを 209:不溶解性物質含有スラリ受槽兼消石灰スラリ調 製槽において共存する消石灰の濃度が例えば 15%以下になる様に水で希釈した後 , 210 :ポンプで比重差及び Z又は粒径の違いによる分離を原理とする第 2の分離 装置 (例えば 211 :液体サイクロン)へ投入する。 212 :処理水として回収された、不溶 解性物質濃度が低 ヽ小粒径消石灰スラリを 206:処理水と共に、 215 :消石灰溶液 貯留槽で適宜希釈した後、浄水工程へ添加する。このように二段で液体サイクロン処 理することにより、不溶解性物質を確実を分離することができ、よって消石灰の回収 率を向上することが可能である。なお、 209 :不溶解性物質含有スラリ受槽兼消石灰 スラリ調製槽で希釈する際、物理的衝撃 (例えば超音波処理)を行うことや、塩酸を添 加することにより、大粒径の消石灰粒子を微細化し、消石灰溶解効率の向上が可能 である。
[0031] 図 3に上記態様 4.を例示する概念図を示す。上記態様 4.の方法は、消石灰スラリ 又は消石灰溶液を通水する配管、ポンプ、分離装置及び槽の、全部又は一部に定 期的に又は不定期的に炭酸水又は塩酸を通水し、配管等の内壁の炭酸カルシウム スケールを溶解除去することをさらに含む力 図 3には、特に炭酸水を用いる場合を 記載する。この場合、炭酸カルシウムスケール溶解除去中にも消石灰溶液を浄水に 注入するためには、この分の消石灰溶液を確保するための貯留槽 317を設ける必要 がある。図中点線で囲まれる部分は、例として図 2に示すような 2段で液体サイクロン 処理を行う消石灰注入装置のフローである。このラインの最初 (すなわち 303:供給 消石灰スラリ調製槽)に炭酸水を注入することができ、随時各配管等に炭酸水を投入 することができる。図 3には、炭酸水を 309 :不溶解性物質含有スラリ受槽兼消石灰ス ラリ調製槽、 316 :不溶解性物質含有スラリ受槽に注入する場合を記載しており、また 随時各配管などに注入する場合を 319の破線にて表している。炭酸水を通水後の液 は、 318の槽に貯留する。炭酸水は、炭酸水調製槽にて予め調製しておくか、あるい は水ラインに炭酸ガスを注入することにより、通水直前に調製することができる。炭酸 水又は塩酸を注入して炭酸カルシウムスケール除去処理を行って 、る際にも、浄水 への消石灰溶液の注入を止めな 、ように、除去処理中に浄水に注入するための消 石灰溶液を確保する 317 :消石灰溶液貯留槽を用意する。
[0032] 図 4に上記態様 5.を例示する概念図を示す。図中点線で囲まれる部分は、例とし て、図 2に示すような、 2段で液体サイクロン処理を行う消石灰注入装置である。した 力 Sつて図 4はこの装置の一部又は全部に定期的に又は不定期的に炭酸水又は塩酸 を通水し、配管等の内壁の炭酸カルシウムスケールを溶解除去することを含み、他方 炭酸水又は塩酸を浄水の pH調整にも用いるフローを示したものである。図 4には特 に炭酸水を用いる例を記載する。炭酸水は、炭酸水調製槽にて予め調製しておくか 、あるいは水ラインに炭酸ガスを注入することにより、通水直前に調製することができ る。浄水の pH調整に炭酸水を用いる場合、通常は該炭酸水を浄水処理工程に直接 添加することができる。他方、上記態様 4.記載のように炭酸カルシウムスケールの溶 解除去を行う場合には、炭酸水の一部又は全部を炭酸カルシウムスケール溶解除去 処理に用い、 418 :炭酸水通水後の水溶液貯留槽に貯留された水も、浄水の pH調 整に用いることができる。
[0033] 図 5には、サイクロン一つで 3段処理を行う場合のフローを示す。まず、消石灰スラリ を 503 :供給消石灰スラリ調製槽カも 508 :液体サイクロンに供給し、不溶解性物質 含有スラリを 504 :第 1の不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽に貯め る。消石灰スラリ供給終了後、 504に含まれる不溶解性物質含有スラリを希釈して消 石灰濃度を 15%以下程度とし、希釈後の不溶解性物質含有スラリを 504から再度 5 08へ供給する。 508で再度分離処理を行い、次いで不溶解性物質含有スラリを 505 :第 2の不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽へ貯めるように、 508流 下液のラインを切り替える。 505に含まれる不溶解性物質含有スラリを希釈して希釈 後の不溶解性物質含有スラリを 505から再々度 508へ供給する。 508で 3段目の分 離処理を行!ヽ、次!ヽで不溶解性物質含有スラリを 506:不溶解性物質含有スラリ受 槽へ貯める。このように繰り返し分離処理を行って得られた 509:処理水は全て 507: 消石灰溶液貯留槽へ貯める。本態様の方法によると、 507中の消石灰溶液濃度が 安定しない場合がある。この対策として、各分離処理毎に得られる処理水をそれぞれ 個別の槽に一時的に貯め、濃度を調整しつつ 507に処理水を供給することにより、 5 07中の消石灰溶液濃度を安定にすることもできる。 507中で所望の濃度に希釈した 後、浄水へ添加する。
[0034] サイクロンは非定常的な粗大粒子が混入するとサイクロン出口が閉塞する可能性が ある。本発明ではすべての態様において、サイクロン前段にスクリーン(図示せず)を 設置することで、非定常的な粗大粒子の混入を防ぐことが可能である。
[0035] 図 6は、消石灰の回収率を高めるために大粒径の消石灰を分散させるための分散 装置をさらに含む装置を利用したフロー図である。適宜な方法により 601:供給消石 灰スラリを調製し、 603 :分離装置に供給する。 603 :分離装置により分離操作を行つ て排出される 604:不溶解性物質含有スラリを 605:分散装置に供給する。 604:不 溶解性物質含有スラリには先述の通り大粒径の消石灰粒子がまだ多く残存している
。 603:分離装置からはこの大粒径消石灰を含む不溶解性物質含有スラリを 608:抜 き出しスラリとして一部抜き出すことができる。抜き出されなカゝつた大粒径消石灰を含 む不溶解性物質含有スラリを 605 :分散装置において撹拌し、充分に分散させ、分 散処理後の消石灰スラリを 601 :供給消石灰スラリと混合して、繰り返し 603 :分離装 置にて分離操作を行う。得られた 606:小粒径消石灰スラリである処理水は適宜希釈 した後、浄水工程に送られる。尚、不溶解性物質含有スラリから一部のスラリを抜き出 す手段としては、バルブを用いたり、仕切り板などによる流路の切り替え、ポンプによ る抜き出しなどが挙げられる。スラリの抜き出しは連続的に抜出してもよぐまたは間 歇的に抜き出してもよい。不溶解性物質含有スラリを槽など一力所に貯留して力ゝら抜 き出すと、槽内でスラリが分離、沈積し、抜き出すために撹拌や希釈が必要となるお それがあるため、槽などに受ける前に抜き出してしまうのが望ましい。好ましいのは不 溶解性物質含有スラリを分離装置から自然流下させ、流下するスラリの流路を切り替 える方法によりスラリの一部を抜き出すことである。
[0036] ここで、 603 :分離装置への 602 :分離装置流入消石灰スラリ流量を Q1とする。除 去すべき大粒径消石灰を含む不溶解性物質含有スラリの流量 Q2が少な ヽほど、小 粒径消石灰スラリである 606 :処理水の流量 Q4が増加することになり、消石灰の回収 率は向上する。しかし、 Q2を少なくしすぎると本来除去すべき不溶解性物質や大粒 径消石灰が Q4に混入し、良質な消石灰溶液が得られない。また Q2を少なすぎると、 スラリを構成する粒子が流路に沈積しやすくなる。よって、消石灰回収率よりも大粒径 消石灰の除去率の向上を優先させると、 Q2ZQ 1の比を小さくしすぎるのは好ましく な ヽ。 itQ2/Qliま、 0. 01 -0. 1力好ましく、より好ましく ίま 0. 02— 0. 05である。
[0037] このような比 Q2ZQ1をとるよう分離操作を行う場合、消石灰回収率の向上よりも大 粒径消石灰の除去率の向上を優先することになるが、不溶解性物質含有スラリには 本来回収すべき小粒径消石灰も含まれてしまう。この本来回収すべき小粒径消石灰 を回収して消石灰回収率を向上させるには、大粒径消石灰を含む不溶解性物質含 有スラリを供給消石灰スラリと混合して、再び分離装置で処理すればよい。しかし、大 粒径消石灰を含む不溶解性物質含有スラリの全量を供給消石灰スラリと混合すると、 徐々に分離装置流入消石灰スラリ中の大粒径消石灰濃度が増加し、次第に大粒径 消石灰の除去率の悪ィ匕または分離装置の閉塞が生じうる。分離装置流入消石灰スラ リ中の大粒径消石灰濃度の増加を抑制するために、本発明では分離装置力 流出 する大粒径消石灰を含む不溶解性物質含有スラリを供給消石灰スラリと混合する前 に、大粒径消石灰を含む不溶解性物質含有スラリの一部を抜き出して残りのスラリを 供給消石灰スラリと混合する。供給消石灰スラリに含まれる不溶解性物質および大粒 径消石灰の量が少ない場合、不溶解性物質含有スラリ流量 Q2と、 Q2から抜出すス ラリ流量 Q3との比 Q3ZQ2を小さくしても分離装置流入消石灰スラリ中の大粒径消 石灰濃度の増加は緩やかである。一方、供給消石灰スラリに含まれる不溶解性物質 および大粒径消石灰の量が多い場合、比 Q3ZQ2を大きくしないと分離装置流入消 石灰スラリ中の大粒径消石灰濃度の増加を抑制できない。比 Q3ZQ2は 0.05 - 0.6 の範囲が好ましぐ大きすぎると消石灰の回収率を低下させることになり、小さすぎる と分離装置流入消石灰スラリ中の大粒径消石灰濃度が過剰となり大粒径消石灰の 除去率の悪化または分離装置の閉塞が生じうる。
[0038] 図 7は、消石灰の回収率を高めるために大粒径の消石灰を分散させるための分散 装置をさらに含む装置を利用したフロー図である。適宜な方法により 701:供給消石 灰スラリを調製し、 702 :分散装置に供給する。分散操作を行って充分に分散させた 消石灰スラリを 703:分離装置に供給し、ここで分離操作を行って排出される 704:不 溶解性物質含有スラリを再度 702:分散装置に供給する。 704:不溶解性物質含有 スラリには先述の通り大粒径の消石灰粒子がまだ多く残存している。 703 :分離装置 カゝらはこの大粒径消石灰を含む不溶解性物質含有スラリを 707 :抜き出しスラリとして 一部抜き出すことができる。抜き出されな力つた大粒径消石灰を含む不溶解性物質 含有スラリを再度 702 :分散装置において撹拌し、充分に分散させ、分散処理後の 消石灰スラリを 701 :供給消石灰スラリと混合して、繰り返し 703 :分離装置にて分離 操作を行う。得られた 705 :小粒径消石灰スラリである処理水は適宜希釈した後、浄 水工程に送られる。
[0039] 図 8は、図 7の装置において、 803 :分離装置により得られる 807 :処理水中の不 溶解性物質濃度を測定するための手段(807)を用いて、上述の比 Q3ZQ2の値を 制御するための具体的なフローを示す。適宜な方法により 801:供給消石灰スラリを 調製し、 802 :分散装置に供給する。分散操作を行って充分に分散させた消石灰ス ラリを 803:分離装置に供給し、ここで分離操作を行って排出される 804:不溶解性物 質含有スラリを再度 802:分散装置に供給する。 804:不溶解性物質含有スラリには 先述の通り大粒径の消石灰粒子がまだ多く残存して 、る。 803:分離装置からはこの 大粒径消石灰を含む不溶解性物質含有スラリを 805:流路切り替え手段を用いて 80 9 :抜き出しスラリとして一部抜き出すことができる。抜き出されな力つた大粒径消石灰 を含む不溶解性物質含有スラリを再度 802:分散装置にお!ヽて撹拌し、充分に分散 させ、分散処理後の消石灰スラリを 801 :供給消石灰スラリと混合して、繰り返し 803 : 分離装置にて分離操作を行う。得られた 806 :小粒径消石灰スラリである処理水に含 まれる不溶解性物質濃度を 807:不溶解性物質濃度測定手段により測定し、測定値 に基いて大粒径消石灰を含む不溶解性物質含有スラリの抜き出し流量 (すなわち比 Q3ZQ2)を制御することができる。得られた 806処理水は適宜希釈した後、浄水ェ 程に送られる。 807 :不溶解性物質濃度測定手段による不溶解性物質濃度の測定 方法は、例えば、小粒径消石灰スラリである処理水の一部を分析用に導出して塩酸 または炭酸で溶解し、濁度及び Zまたは色度を光学的に測定する方法がある。消石 灰スラリに含まれる水酸ィ匕カルシウムおよび炭酸カルシウムを溶解すると、不溶解性 物質である二酸ィ匕珪素粒子は濁質として残留するために濁度として検出され、鉄酸 化物の一部は溶解して褐色を呈するために色度として検出される。また、試薬を添加 して発色させた後に吸光光度分析に供することも有効であり、スラリを非破壊で蛍光 X線分析に供することも有効な方法である。
図 9は、供給消石灰スラリ調製槽として 901:栓流式分散装置を用いた例を表すフロ 一図である。 901:栓流式分散装置に消石灰粉末と水を供給して分散処理を行い、 供給消石灰スラリを作る。供給消石灰スラリを別の分散装置(902)に供給して必要に 応じて分散処理を行い、 903 :分離装置に供給し、ここで分離操作を行って排出され る 904:不溶解性物質含有スラリを再度 902:分散装置に供給する。 904:不溶解性 物質含有スラリには先述の通り大粒径の消石灰粒子がまだ多く残存している。 903 : 分離装置カゝらはこの大粒径消石灰を含む不溶解性物質含有スラリを 908 :抜き出し スラリとして一部抜き出すことができる。抜き出されな力つた大粒径消石灰を含む不溶 解性物質含有スラリを再度 902 :分散装置において撹拌し、充分に分散させ、分散 処理後の消石灰スラリを 901 :栓流式分散装置から供給される供給消石灰スラリと混 合して、繰り返し 903 :分離装置にて分離操作を行う。小粒径消石灰スラリとして得ら れた 906処理水は適宜希釈した後、浄水工程に送られる。
[0041] 図 10は、供給消石灰スラリ調製槽として、 1001:栓流式分散装置を用いた別の例 を表すフロー図である。 1001:栓流式分散装置に消石灰粉末と水を供給して分散処 理を行い、供給消石灰スラリを作る。供給消石灰スラリを 1003 :分離装置に供給し、 ここで分離操作を行って排出される 1004:不溶解性物質含有スラリを 1002:分散装 置に供給する。 1004:不溶解性物質含有スラリには先述の通り大粒径の消石灰粒 子がまだ多く残存して 、る。 1003:分離装置力もはこの大粒径消石灰を含む不溶解 性物質含有スラリを 1007 :抜き出しスラリとして一部抜き出すことができる。抜き出さ れなカゝつた大粒径消石灰を含む不溶解性物質含有スラリを 1002:分散装置にお!ヽ て撹拌し、充分に分散させ、分散処理後の消石灰スラリを 1001 :栓流式分散装置か ら供給される供給消石灰スラリと混合して、繰り返し 1003 :分離装置にて分離操作を 行う。小粒径消石灰スラリとして得られた 1005処理水は適宜希釈した後、浄水工程 に送られる。
[0042] 図 11は、供給消石灰スラリ調製槽として、 1101 :栓流式分散装置を用いた別の例 を表すフロー図である。 1101:栓流式分散装置に消石灰粉末と水を供給して分散処 理を行い、供給消石灰スラリを作る。供給消石灰スラリを 1103 :分離装置に供給し、 ここで分離操作を行って排出される 1104 :不溶解性物質含有スラリを 1102:分散装 置に供給する。 1104:不溶解性物質含有スラリには先述の通り大粒径の消石灰粒 子がまだ多く残存して 、る。 1103 :分離装置力もはこの大粒径消石灰を含む不溶解 性物質含有スラリを 1107 :抜き出しスラリとして一部抜き出すことができる。抜き出さ れなカゝつた大粒径消石灰を含む不溶解性物質含有スラリを 1102:分散装置にお!ヽ て撹拌し、充分に分散させ、分散処理後の消石灰スラリを水と混合した後に 1101 : 栓流式分散装置に再度供給して、分散処理を行い、これにより得た供給消石灰スラ リを再度 1103:分離装置に供給して分離操作を行う。小粒径消石灰スラリとして得ら れた 1105 :処理水は適宜希釈した後、浄水工程に送られる。
[0043] 図 12は、供給消石灰スラリ調製槽として、 1201:栓流式分散装置を用いた別の例 を表すフロー図である。 1201:栓流式分散装置に消石灰粉末と水を供給して分散処 理を行い、供給消石灰スラリを作る。供給消石灰スラリを 1202 :第 1の分離装置に供 給し、ここで分離操作を行って排出される 1203 :不溶解性物質含有スラリを 1204 : 消石灰微小化手段に供給する。ここで必要に応じて希釈水を添加し、例えば物理的 衝撃及び Z又は塩酸を加えるなどして、主に大粒径消石灰を微小化する処理を施し 、ついで 1205 :第 2の分離装置に供給する。ここで再度 1208 :不溶解性物質含有ス ラリを分離する。 1202 :第 1の分離装置力も得られた処理水と 1205 :第 2の分離装置 により得られた処理水(1206及び 1207)を 1209 :消石灰溶液貯留槽に貯留し、ここ で適宜希釈した後、浄水工程に送られる。
実施例
[0044] 以下、実施例を用いて本発明の方法及び装置をさらに詳しく説明するが、本発明 はこれらに限定されるものではない。
[実施例 1]
本実施例は、消石灰スラリから不溶解性物質を分離させる処理を 1回行う態様を例 示するものである。消石灰スラリ調製槽にて、水道水に消石灰 (菱光石灰工業株式会 社製)を溶解させて、消石灰濃度 9. 3%、二酸ィ匕珪素濃度 30mgZリットル (二酸ィ匕 珪素 Z消石灰 =0. 03%)の消石灰スラリを調製した。この消石灰スラリを、 61. 2リツ トル Z分で液体サイクロン(商品名: C124TWO INCH HYDROCYCLONE、製造会社 名: MOZLEY)に供給し、液体サイクロンを稼働させ、分離処理を行った。液体サイク ロン下部より不溶解性物質濃縮水を 3. 2リットル Z分で排出する一方、液体サイクロ ン上部より 58リットル Z分で処理水を得た。処理水に含まれる消石灰濃度は 7. 2%、 二酸ィ匕珪素濃度は 0. 90mgZリットル(二酸ィ匕珪素 Z消石灰 =0. 001%)であり、 消石灰の回収率は 73%であった。一方、不溶解性物質濃縮水中の消石灰濃度は 4 9%、二酸ィ匕珪素濃度は 550mgZリットル(二酸ィ匕珪素 Z消石灰 =0. 11%)であり 、二酸ィ匕珪素除去率は 97%であった。
[実施例 2] 本実施例は、消石灰スラリから不溶解性物質を分離させる処理を 2回行う態様を例 示するものである。実施例 1と同様に、消石灰調製槽にて水に消石灰を溶解させて、 消石灰濃度 9. 7%、二酸ィ匕珪素濃度 27mgZリットル (二酸ィ匕珪素 Z消石灰 =0. 0 3%)の消石灰スラリを調製した。この消石灰スラリを、 65. 2リットル/分で液体サイク ロンに供給し、液体サイクロンを稼働させ、分離処理を行った。液体サイクロン下部よ り不溶解性物質濃縮水を 2. 2リットル Z分で排出する一方、液体サイクロン上部より 6 3リットル Z分で処理水を得た。処理水に含まれる消石灰濃度は 8. 1%、二酸化珪 素濃度は 1. lmgZリットル(二酸ィ匕珪素 Z消石灰 =0. 001%)であり、消石灰の回 収率は 81%であった。一方、不溶解性物質濃縮水中の消石灰濃度は 55%、二酸ィ匕 珪素濃度は 770mgZリットル (二酸ィ匕珪素 Z消石灰 =0. 14%)であり、二酸化珪素 除去率は 96%であった。このようにして得られた不溶解性物質濃縮水を水で希釈し て消石灰濃度 1. 9%にした。この希釈水を 65リットル Z分で第 2の液体サイクロンに 供給し、当該液体サイクロンを稼働させ、分離処理を行った。第 2の液体サイクロン下 部より不溶解性物質濃縮水を 2. 2リットル Z分で排出する一方、当該液体サイクロン 上部より 63リットル Z分で処理水を得た。処理水に含まれる消石灰濃度は 1. 5%、 二酸化珪素濃度は 1. lmgZリットル (二酸ィ匕珪素 Z消石灰 =0. 007%)であり、第 2回目の分離処理による消石灰の回収率は 16%であった。一方、不溶解性物質濃 縮水中の消石灰濃度は 11%、二酸ィ匕珪素濃度は 727mgZリットル (二酸ィ匕珪素 Z 消石灰 =0. 67%)であり、第 2回目の分離処理による二酸ィ匕珪素除去率は 3. 8% であった。系全体での消石灰の回収率は 96%、二酸化珪素の除去率は 99. 8%で めつに。
実施例 1及び 2の操作により、不溶解性物質である二酸ィ匕珪素を効率的に除去し、 水道水の腐食性を低減させるのに適した消石灰溶液を得ることができた。分離処理 を 2回行うことにより、不溶解性物質をほぼ含まない消石灰溶液を得ることができ、か つ消石灰をほぼすベて回収することが可能となった。
[実施例 3]
図 1に記載の処理フローを種々の条件にて繰り返し、得られた処理性能を表 1に示 す。 [0046] [表 1] 表 1:
Figure imgf000024_0001
[0047] 表 1において、比 Q2/Q1が大きくなるに従い、消石灰の小粒径スラリへの移行率が 低下していることがわかる。消石灰回収率の向上よりも大粒径消石灰の除去率の向 上を優先して比 Q2/Q1が小さ過ぎないようにすることは重要である力 比 Q2/Q1が大 きいと消石灰の回収率が低下して処理効率が低下すると言える。一方、比 Q2/Q1が 小さ過ぎると大粒径消石灰を含む不溶解性物質含有スラリ濃度が高くなり、装置や 管路の閉塞を招く恐れがある。安定した処理を行うとともに処理効率を高めるには、 比 Q2/Q1を 0.02-0.05の範囲とするのが良いことがわかる。
以上のような表 1に記載の処理性能に基いて、図 7の処理フローをシミュレーションし て得られた結果を表 2及び表 3に示す。表 2及び表 3は、表 1から得られた結果に基い て、供給消石灰スラリ濃度 100 g/L、供給消石灰スラリ流量 Q1 = 58.2 L/分、大粒径 消石灰を含む不溶解性物質含有スラリ流量 Q2 = 1.8 L/分、比 Q2/Q1 = 0.031、二酸 化珪素 Si02の大粒径消石灰を含む不溶解性物質含有スラリへの移行率 95 %、小粒 径消石灰スラリ(処理水)への消石灰移行率 80 %として行ったシミュレーション結果で ある。
ここで、消石灰に含まれる不溶解性物質である Si02の含有率は、原料とする消石灰 によって幅がある。一般的値としては下限値に近い 0.033 %についての結果を表 2に、 上限値に近い 0.22 %についての結果を表 3に示している。どちらの場合も、抜出し比 Q3/Q2を小さくすると分離装置への流入消石灰スラリの Si02含有率が高くなり、その 結果、小粒径消石灰スラリの Si02ZCa(OH)2比を高めること〖こなる。小粒径消石灰 スラリを適宜希釈溶解して浄水工程へ添加する場合、濁質成分となりうる Si02を確実 に抑制する観点から、小粒径消石灰スラリの Si02ZCa(OH)2比を 0.02 %以下にする ことが好まし 、。このためには比 Q3/Q2を 0.05-0.6の範囲で調整することが好まし!/ヽ ことがわ力ゝる。
[表 2] 表 2 :
Figure imgf000025_0001
[0049] [表 3] 表 3
Figure imgf000025_0002
産業上の利用可能性
[0050] 本発明の方法により、腐食性の高い水の改質に使用する消石灰溶液を効率的に 調製し、これを浄水に注入することにより、腐食性の低い水を調製することができる。 本発明の方法は、広く水道水等を含む浄水の水質改善の分野において利用するこ とがでさる。

Claims

請求の範囲
消石灰を用いて水道水の水質を改良するために使用する装置であって、 少なくとも 1つ以上の、供給消石灰スラリ調製槽と、
少なくとも 1つの、比重差及び/又は粒径の違いによる分離を原理とする分離装置と 消石灰溶液貯留槽と
を含むことを特徴とする、前記装置。
消石灰を用いて水道水の水質を改良するために使用する装置であって、
供給消石灰スラリ調製槽と、
供給消石灰スラリ調製槽からの供給消石灰スラリより、比重差及び/又は粒径の違 いにより不溶解性物質含有スラリを分離する第 1の分離装置と、
該供給消石灰スラリ調製槽と該第 1の分離装置とを接続する配管及びポンプと、 該第 1の分離装置から排出された不溶解性物質含有スラリを貯留する不溶解性物 質含有スラリ受槽兼消石灰スラリ調製槽と、
該不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽に希釈水を注入する手段と 希釈後の不溶解性物質含有スラリより、比重差及び/又は粒径の違いによりさら〖こ 不溶解性物質含有スラリを分離する第 2の分離装置と、
該不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽と、該第 2の分離装置とを接 続する配管及びポンプと、
該第 2の分離装置により得られた処理水を貯留する消石灰溶液貯留槽と、 該消石灰溶液貯留槽に希釈水を注入する手段と、
を含むことを特徴とする、前記装置。
消石灰を用いて水道水の水質を改良するために使用する装置であって、
供給消石灰スラリ調製槽と
供給消石灰スラリ調製槽からの供給消石灰スラリより、比重差及び Z又は粒径の 違いにより不溶解性物質含有スラリを分離する、分離装置と、
該供給消石灰スラリ調製槽と該分離装置とを接続する配管及びポンプと、 該分離装置から排出された不溶解性物質含有スラリを貯留する、 2つ以上の不溶 解性物質含有スラリ受槽兼消石灰スラリ調製槽と、
該不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽に各々希釈水を注入する手 段と、
該各不溶解性物質含有スラリ受槽兼消石灰スラリ調製槽から該分離装置に、希釈 後の不溶解性物質含有スラリを各々返送するための配管と、
該分離装置から排出された不溶解性物質含有スラリを最終的に貯留する不溶解性 物質含有スラリ受槽と、
該分離装置により得られた処理水を貯留する消石灰溶液貯留槽と
を含むことを特徴とする装置。
[4] 消石灰スラリ又は消石灰溶液を通水する配管、ポンプ、及び分離装置並びに槽の、 全部又は一部に炭酸水又は塩酸を通水する手段を設けたことを特徴とする、請求項 1〜3の 、ずれかに記載の装置。
[5] 炭酸水又は塩酸を浄水処理工程に直接添加する手段をさらに含むことを特徴とする
、請求項 4に記載の装置。
[6] 該分離装置により分離された不溶解性物質含有スラリを撹拌し、消石灰粒子を分散 させるための分散手段と、
該分離装置により分離された不溶解性物質含有スラリの一部を抜き出す抜き出し 手段と、
該分散手段から該分離装置に、分散処理後の不溶解性物質含有スラリを返送する 配管及びポンプと、
をさらに含むことを特徴とする、請求項 1に記載の装置
[7] 消石灰を用いて水道水の水質を改良するために使用する装置であって、
消石灰を分散させるための分散手段を備えた供給消石灰スラリ調製槽と、 該分散手段を備えた供給消石灰スラリ調製槽からの供給消石灰スラリより、比重差 及び/又は粒径の違いにより不溶解性物質含有スラリを分離する分離装置と、 該分散手段を備えた供給消石灰スラリ調製槽と該分離装置とを接続する配管及び ポンプと、 該分離装置から排出された不溶解性物質含有スラリの一部を抜き出す抜き出し手 段と、
該分離装置により得られた処理水を貯留する消石灰溶液貯留槽と、
抜き出されなカゝつた不溶解性物質含有スラリを該分散手段に返送する手段と、 を含むことを特徴とする装置。
[8] 該分離装置により得られた処理水に含まれる不溶解性物質の濃度を測定する不溶 解性物質濃度測定手段と、
該不溶解性物質濃度測定手段により得られた測定濃度に基づいて前記抜き出し 手段カゝら抜き出す不溶解性物質含有スラリの量を決定する手段と、
をさらに含むことを特徴とする請求項 6又は 7に記載の装置。
[9] 該分散手段を備えた供給消石灰スラリ調製槽が、栓流式分散装置である、請求項 6
〜8の 、ずれかに記載の装置。
PCT/JP2006/303305 2005-02-23 2006-02-23 消石灰注入装置 WO2006090791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007504778A JP4951805B2 (ja) 2005-02-23 2006-02-23 消石灰注入装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-046937 2005-02-23
JP2005046937 2005-02-23

Publications (1)

Publication Number Publication Date
WO2006090791A1 true WO2006090791A1 (ja) 2006-08-31

Family

ID=36927429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303305 WO2006090791A1 (ja) 2005-02-23 2006-02-23 消石灰注入装置

Country Status (2)

Country Link
JP (1) JP4951805B2 (ja)
WO (1) WO2006090791A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147125A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
JP2019147126A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
JP2019147128A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
JP2019147127A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
WO2019167335A1 (ja) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 イオン除去システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153707A (en) * 1981-03-16 1982-09-22 Hitachi Ltd Apparatus for controlling precipitation basin
JPS58151430U (ja) * 1982-04-06 1983-10-11 三菱重工業株式会社 難溶性粒体の溶解装置
JPH0523675A (ja) * 1991-07-18 1993-02-02 Kureha Chem Ind Co Ltd 水道水の改質方法及び装置
JPH07284779A (ja) * 1994-04-15 1995-10-31 Kureha Chem Ind Co Ltd ランゲリア指数を改善する方法
JPH0952711A (ja) * 1995-08-08 1997-02-25 Japan Organo Co Ltd 消石灰水溶液の生成方法及びその装置
JPH11244678A (ja) * 1998-02-27 1999-09-14 Japan Organo Co Ltd 消石灰水溶液の生成方法及びその装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523768B2 (ja) * 1974-03-30 1980-06-25
JP4305037B2 (ja) * 2003-04-28 2009-07-29 鹿島北共同発電株式会社 石膏の製造方法
JP4513277B2 (ja) * 2003-05-23 2010-07-28 東レ株式会社 消石灰スラリーの製造方法
JP4403003B2 (ja) * 2004-04-02 2010-01-20 株式会社荏原製作所 低溶解度薬剤の溶解供給方法及び装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153707A (en) * 1981-03-16 1982-09-22 Hitachi Ltd Apparatus for controlling precipitation basin
JPS58151430U (ja) * 1982-04-06 1983-10-11 三菱重工業株式会社 難溶性粒体の溶解装置
JPH0523675A (ja) * 1991-07-18 1993-02-02 Kureha Chem Ind Co Ltd 水道水の改質方法及び装置
JPH07284779A (ja) * 1994-04-15 1995-10-31 Kureha Chem Ind Co Ltd ランゲリア指数を改善する方法
JPH0952711A (ja) * 1995-08-08 1997-02-25 Japan Organo Co Ltd 消石灰水溶液の生成方法及びその装置
JPH11244678A (ja) * 1998-02-27 1999-09-14 Japan Organo Co Ltd 消石灰水溶液の生成方法及びその装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147125A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
JP2019147126A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
JP2019147128A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
JP2019147127A (ja) * 2018-02-28 2019-09-05 パナソニックIpマネジメント株式会社 イオン除去システム
WO2019167335A1 (ja) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 イオン除去システム
JP7126113B2 (ja) 2018-02-28 2022-08-26 パナソニックIpマネジメント株式会社 イオン除去システム
US11939250B2 (en) 2018-02-28 2024-03-26 Panasonic Intellectual Property Management Co., Ltd. Ion removing system

Also Published As

Publication number Publication date
JP4951805B2 (ja) 2012-06-13
JPWO2006090791A1 (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4980793B2 (ja) シリコン回収方法及びシリコン回収装置
BR112015003530B1 (pt) Método para remoção de sulfato, cálcio e/ou outros metais solúveis a partir de água residual.
JP4951805B2 (ja) 消石灰注入装置
EP3539930B1 (en) Method for supplying activated carbon slurry
CN109851138A (zh) 一种高盐废水软化及浓缩装置及方法
JP2010207755A (ja) フッ素含有水の処理装置
CN212076660U (zh) 一种处理脱硫废水悬浮物的系统
JP2001113285A (ja) カルシウム除去装置
JP2007244995A (ja) 消化汚泥の処理装置
CN202823268U (zh) 一种白泥/电石渣制浆装置
WO2021245971A1 (ja) 晶析反応方法および晶析反応装置
JP2007244994A (ja) 消化汚泥の処理方法及び処理設備
JP5016895B2 (ja) インジウムの回収方法とその装置
JP4014679B2 (ja) 排水の処理方法
CN208545218U (zh) 一种提溴废液的净化装置
CN208345922U (zh) 含油污水三段高效复合处理系统
CN208218448U (zh) 一种喷涂废水气浮处理设备
TW527320B (en) Method for supplying hydrofluoric acid
JP2005239457A (ja) 消石灰水溶液の調製方法及び装置
CN109095522A (zh) 污水除臭净化剂及其制备方法与污水除臭方法
CN113082962B (zh) 一种二次混合镁法烟气脱硫工艺及装置
CN210261341U (zh) 一种炭黑生产废气脱硫系统的排水装置
JP4341960B2 (ja) カルシウム注入方法及び装置
CN113082963B (zh) 一种清液循环镁法烟气脱硫工艺及装置
CN113087106B (zh) 一种从酸液中除硅的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504778

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714445

Country of ref document: EP

Kind code of ref document: A1