WO2006090626A1 - Multitubular heat exchanger - Google Patents

Multitubular heat exchanger Download PDF

Info

Publication number
WO2006090626A1
WO2006090626A1 PCT/JP2006/302690 JP2006302690W WO2006090626A1 WO 2006090626 A1 WO2006090626 A1 WO 2006090626A1 JP 2006302690 W JP2006302690 W JP 2006302690W WO 2006090626 A1 WO2006090626 A1 WO 2006090626A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat transfer
transfer tube
opening
heat
Prior art date
Application number
PCT/JP2006/302690
Other languages
French (fr)
Japanese (ja)
Inventor
Takuya Kurisu
Takashi Nakano
Original Assignee
Izumi Food Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Izumi Food Machinery Co., Ltd. filed Critical Izumi Food Machinery Co., Ltd.
Publication of WO2006090626A1 publication Critical patent/WO2006090626A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/16Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage

Definitions

  • the present invention relates to a multitubular heat exchanger that is suitably used for heat exchange of a fluid such as a gas (including a mixed gas) or a liquid (including a solution or a dispersion), particularly a liquid. More specifically, the present invention relates to a shell 'and' tube type heat exchanger that can exchange heat between beverages.
  • a multi-tubular heat exchanger is known as an apparatus for efficiently performing heat exchange of fluids.
  • This multi-tube heat exchanger ⁇ has a structure in which a plurality of small-diameter heat transfer tubes called tubes are installed between two supports called tube plates in a large-diameter cylindrical can body called shell. For this reason, it is also called a shell 'and' tube heat exchanger.
  • a fluid to be heat-exchanged flows in the heat transfer tube, and a high-temperature or low-temperature heat medium or refrigerant (hereinafter simply referred to as a heat medium) flows in the can body.
  • the heat exchange is performed indirectly between the fluid and the heat medium via the tube wall of the heat transfer tube.
  • Such heat exchange is performed through a plurality of small-diameter heat transfer tubes.
  • the contact area with the heat medium is increased and the exchange efficiency is extremely excellent.
  • this kind of multi-tube heat exchange has been used as a means for heating or cooling beverages even during heat treatment of beverages for the purpose of sterilization and the like.
  • the adoption of the groove structure may not have the force to reduce the minimum gap, but the groove structure on the side not connected by welding may still be poorly cleaned.
  • this groove structure inevitably has a large opening diameter as the thickness of the tube plate increases, the insertion distance (pitch) between the heat transfer tubes must be increased, resulting in a unit surface of the tube plate.
  • the number of heat transfer tubes that occupy the product decreases, resulting in an inefficient device shape, and it is difficult to make the entire device compact.
  • welding distortion increases as the welding amount and welding heat input increase.
  • Patent Document 1 Japanese Patent Laid-Open No. 09-133492
  • the present invention has been made in view of the current situation as described above, and an object of the present invention is to reduce the voids in the can body as much as possible, and thus to have excellent cleanability in the can body. Therefore, it is to provide a multi-tubular heat exchange that satisfies the hygienic requirements and enables off-compassion.
  • the present invention is a multi-tubular heat exchanger comprising at least a can body, a tube plate, and a heat transfer tube, the can body being an outer cover of a hollow structure,
  • Each of the tube plates is attached to both ends, and there are a plurality of the heat transfer tubes, each of which has an opening formed in at least one tube plate.
  • the insertion portion of the heat transfer tube into the opening is a tube in which the two ends of the insertion portion respectively constitute the opening along the outer periphery of the heat transfer tube. It is characterized by being connected to the plate by welding.
  • the heat transfer tubes there are a plurality of the heat transfer tubes, and both end portions thereof are installed by being inserted into one of the openings formed in the tube plate, and the heat transfer tubes As for the insertion part of the above-mentioned opening, the two ends of the insertion part are respectively along the outer circumference of the heat transfer tube. It is preferable to be connected to the tube plate that constitutes the opening by welding.
  • the insertion portion of the heat transfer tube into the opening is welded at one of the two ends of the insertion portion from the inside of the heat transfer tube.
  • the opening is formed with a protrusion at the peripheral edge on the side where the heat transfer tube is installed, and is welded to the protrusion from the inside of the heat transfer tube along the outer periphery of the heat transfer tube. It can be a life.
  • a void is formed by the above, and a hole communicating with the outside is formed in the void.
  • This hole can be communicated with the outside so as to communicate with a plurality of the gaps, and can be opened to a space formed between the can body and the tube sheet so as to communicate with the plurality of the gaps. It is possible to communicate with the outside through the space through a detection hole formed in the can body.
  • the heat transfer tube may be expanded beyond the insertion portion of the heat transfer tube into the opening.
  • the beverage flows through both the inside of the can body and the inside of the heat transfer tube, so that heat can be exchanged between the beverages. Monkey.
  • the method for connecting the tube plate and the heat transfer tube of the present invention includes a step of inserting the heat transfer tube into the opening of the tube plate, and two ends of the insertion portion of the heat transfer tube into the opening. And a step of connecting the tube plate constituting the opening by welding along the outer periphery of the heat transfer tube.
  • the multitubular heat exchanger of the present invention has a configuration as described above, thereby reducing the voids in the can body as much as possible, and thus being excellent in cleanability in the can body. Satisfying the requirements and enabling compactness.
  • FIG. 1 is a schematic cross-sectional view of a multitubular heat exchanger according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing, in an enlarged manner, an insertion portion of a heat transfer tube into a tube plate opening.
  • FIG. 3 is a schematic cross-sectional view showing a further enlarged portion of the heat transfer tube inserted into the tube plate opening.
  • FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic cross-sectional view showing, in an enlarged manner, an insertion portion of a conventional multi-tube heat exchanger into a tube plate opening of a heat transfer tube.
  • 1 can body, 10 inner wall, 15 nozzle, 2, 21 tube plate, 25 opening, 26 protrusion, 27 first groove, 28 second groove, 29 inner wall, 3 heat transfer tube, 31 tube wall, 4 Welding, 41 welds, 45 gaps, 46 holes, 47 detection holes, 48 recesses, 49 spaces, 5 joints, 55 O-rings, 10 0 Multi-tube heat exchanger.
  • FIG. 1 A schematic cross-sectional view of the multi-tube heat exchanger of the present invention is shown in FIG.
  • a multi-tube heat exchanger 100 of the present invention basically includes a can body 1, tube sheets 2 and 21, and a heat transfer tube 3.
  • the can body 1 serves as a hollow outer cover, and the tube plates 2 and 21 are attached to both ends thereof.
  • the two tube plates 2 and 21 are attached so as to face each other in the case where there is no bent portion in the longitudinal direction of the can body 1.
  • there are a plurality of the heat transfer tubes 3, and both end portions of the heat transfer tubes 3 are respectively formed on the tube plates 2 and 21, and are installed by being inserted into one of the openings 25. .
  • the multi-tube heat exchanger 100 of the present invention has such a basic configuration, so that fluids having different temperatures flow in the can body 1 and the heat transfer tube 3, so that the tubes of the heat transfer tube 3 can flow. Heat is exchanged between these fluids indirectly through the wall 31.
  • the can body 1 is also referred to as a shell and serves as a shell of a hollow structure and serves as a main body of a multi-tube heat exchanger. Usually, it has a cylindrical shape with an outer diameter of 30 mm to 700 mm and a length of 2 m to 6 m.
  • the cross-sectional shape is not limited to the circular shape in this way, it can be a polygonal shape such as a quadrangle or a hexagon, or an elliptical shape. Not limited.
  • Such a can body 1 has two tube plates 2 and 21 to be described later attached to both ends thereof, and a plurality of heat transfer tubes 3 are supported.
  • the material of the can body 1 is not particularly limited, but is preferably stainless steel.
  • a nozzle 15 is usually formed, and a structure is provided in which fluid can be supplied into the can body 1 or fluid can be discharged from the can body 1.
  • two such nozzles 15 may be formed in the vicinity of both ends of the can body 1, one in each case. That is, of the two nozzles, the fluid is supplied into the can body 1 by one of the nozzles and the nozzle, and the fluid is discharged by the other nozzle.
  • each of such nozzles be disposed near both ends of the can body 1 and particularly close to the tube sheets 2 and 21.
  • the force with which the tube plates 2 and 21 are arranged further to the end side than the position where each nozzle is arranged in the longitudinal direction of the can body The space having a certain distance between each nozzle and these tube plates This is because the fluid flowing in the can body will stagnate in that part.
  • the can body 1 may be of an integral structure integrated with itself. For example, as shown in Fig. 1, a portion including one of the nozzles is divided into short tubes. It is also possible to make such a divided structure. In this way, by dividing the portion including one of the nozzles into short tubes, the tube sheet can be easily observed and cleaned, and dirt and defects can be effectively prevented. The target power is also favorable.
  • the part that is divided into the short tubes includes one of the nozzles as described above. If the joint 5 is formed between one of the nozzles and the tube plate, the can is accompanied by the formation of the joint 5. This is because an unnecessary space is created in the body, and the fluid in the can body is prevented from standing in this space.
  • a joint portion having a triangular groove having a ferrule structure is used for the joint portion 5 between the portion divided into a short tube and the can body as described above, and an O-ring 55 is used as a packing for the joint portion. It is preferable to use (ring-shaped sealing material made of an elastic body such as synthetic rubber).
  • the tube sheet of the present invention is attached to both ends of the can body 1, at least two tube sheets are arranged. That is, as shown in FIG. 1, two tube sheets 2 and 21 are attached to both ends of the can body 1, respectively.
  • This attachment method is not particularly limited. For example, it can be fixedly attached by the joint portion 5 like the tube plate 2 shown in FIG. 1, or can be attached in a movable state like the tube plate 21. .
  • a tube plate that is fixedly attached is called a fixed tube plate
  • a tube plate that is attached in a movable state is called an idle tube plate.
  • the two tube plates 2 and 21 may be fixed tube plates, or one of them may be a floating tube plate.
  • the fixed tube plate When the fixed tube plate is used, it can be integrated with the can body 1 by welding or the like, in addition to being fixed in a removable state by the joint 5 shown in FIG. However, in consideration of the cleaning properties in the can body 1, it is preferable to fix it in a removable state. In this regard, it is preferable to adopt a ferrule structure for the joint 5 as in the joint 5 of the can body 1.
  • the floating tube plate (tube plate 21) includes, for example, a first groove portion 27 and a second groove portion 28 along the outer periphery of each end portion in the thickness direction of the tube plate.
  • Such tube plates 2 and 21 have a plurality of openings 25, so that the heat transfer tubes 3 can be installed (supported) by inserting the heat transfer tubes 3 described later into the openings 25. It is what you have.
  • the outer shape of the tube plates 2 and 21 is substantially the same as the outer shape of the can body 1, and has a thickness of 20 to 100 mm.
  • the floating tube plate In this case, the outer diameter is almost the same as the inner diameter of the can body 1 (about 30 to 700mm), and its thickness is 20mn! ⁇ 100mm shape.
  • the material of the tube plates 2 and 21 is not particularly limited, but is preferably stainless steel.
  • the heat transfer tube 3 is also called a tube, and a plurality of the heat transfer tubes 3 exist in the can body 1.
  • the number is more preferably 4 to 120.
  • the heat transfer tube 3 has a cylindrical shape with an outer diameter of 10 mm to 40 mm, and the length thereof is substantially the same as the length of the can body 1.
  • the cross-sectional shape is not limited to a circular one, but can be a polygonal shape such as a rectangle or a hexagon, or an elliptical shape. Not limited.
  • the cross-sectional shape thereof must match the shape of the opening, and the shape of the opening is usually easy to process.
  • the heat transfer tube 3 has a circular shape
  • the cross-sectional shape of the heat transfer tube 3 is also preferably circular.
  • the material of the heat transfer tube 3 is not particularly limited, but is preferably stainless steel.
  • Such a heat transfer tube 3 has a plurality of forces as described above. Each end of each of the heat transfer tubes 3 is formed in one of the openings 25 formed in the two tube sheets 2 and 21 respectively. It is installed (supported) by being inserted.
  • the heat transfer tube 3 of the present invention is installed by inserting both end portions into one of the opening portions 25 formed in the two tube sheets 2 and 21. And the insertion part to the opening part 25 of the heat exchanger tube 3 is connected to the tube sheet which comprises an opening part along the outer periphery of the heat exchanger tube by welding 4 at the both ends of the insertion part.
  • this connection will be described in more detail with reference to FIG. 2 and FIG.
  • FIG. 2 is an enlarged schematic cross-sectional view showing a portion where the heat transfer tube 3 is inserted into the opening 25 of the tube plate 2
  • FIG. 3 is an enlarged schematic cross-sectional view thereof.
  • the tube wall 31 of the heat transfer tube 3 is opposed to the inner wall surface 29 of the tube plate constituting the opening 25, and two ends of the insertion portion (indicated by arrows A and B in FIG. 3).
  • arrows A and B in FIG. 3 Two ends of the insertion portion
  • both ends 2 Since the locations (arrows A and B) are connected by welding, the gap between the fluid flowing in the can body 1 and the fluid flowing in the heat transfer tube 3 (the gap generated between the tube plate 2 and the heat transfer tube 3) Intrusion can be prevented very effectively.
  • the weld 4 on the arrow A side prevents the intrusion of the fluid that flows in the heat transfer tube 3
  • the weld 4 on the arrow B side exhibits the effect for preventing the intrusion of the fluid flowing in the can body 1. .
  • any conventionally known welding method can be employed. Examples include gas welding, arc welding, electrical resistance welding, and electron beam welding. Further, in the welding, it is preferable that the metal constituting the tube plates 2 and 21 and the metal constituting the heat transfer tube 3 are integrally integrated at the welded portion 41. If desired, a third metal such as a welding rod can be used. Further, on the tube sheet 2 and 21 side in this welded portion, it is possible to improve the welding strength by adopting chamfering or a groove structure as necessary. However, this chamfering and groove structure does not need to be large as in the prior art, so the distance (pitch) between the heat transfer tubes is not increased, which contributes to the compactness of the entire apparatus. Furthermore, if the welding distortion increases without increasing the welding amount and welding heat input, V, inconvenience can be prevented.
  • the welding range of the welded portion 41 is not particularly limited as long as it is appropriately selected according to the outer diameter of the heat transfer tube 3, the thickness of the tube wall 31 of the heat transfer tube, the thickness of the tube plate, and the like. However, in terms of the distance in the length direction of the heat transfer tube, it can be in the range of 0.5 to 5. Omm, more preferably 0.7 to 3. Omm.
  • U and a welding method that is more preferable include a method in which any one of the two ends (arrows A and B) of the insertion portion is welded from the inside of the heat transfer tube.
  • the end portion on the side where the heat transfer tube 3 is installed (the arrow B side in FIG. 3) is welded from the inside of the heat transfer tube 3. This is because the side on which the heat transfer tube 3 is installed is the inner side of the can body 1 and it becomes difficult to weld from the outside.
  • a protrusion 26 is formed in the opening 25 at the peripheral edge on the side where the heat transfer tube 3 is installed, and the inner force of the heat transfer tube 3 at the protrusion 26 is the outer periphery of the heat transfer tube 3. It is particularly preferred to weld along. It is also a force that can weld the metal of the tube plate 2 and the metal of the heat transfer tube 3 so as to be united with a small amount of heat. That is, the above heat transfer Inserting the welding head into the tube 3 also with the arrow A side force in Fig. 3 and applying the welding torch from the inside of the heat transfer tube 3 on the arrow B side, the projection 26 and the heat transfer tube 3 are substantially completely separated. It can be welded and joined together.
  • the height h is preferably 2 mm to 10 mm, more preferably 4 mm to 6 mm, and the wall thickness t is 0.3 mn! It is preferable to set to ⁇ 3 mm, more preferably 0.5 mm ⁇ : Lmm.
  • the method of connecting the tube sheet and the heat transfer tube of the present invention includes a step of inserting the heat transfer tube into the opening of the tube plate, and a portion of the heat transfer tube inserted into the opening. Steps for connecting the two ends of the tube along the outer periphery of the heat transfer tube and the tube sheet constituting the opening by welding.
  • a tube expansion (settling) method can be adopted in addition to the above-described welding. That is, it is preferable that the heat transfer tube is expanded at a portion where the heat transfer tube is inserted into the opening. As a result, the connection strength between the tube plate and the heat transfer tube can be further improved, and the gap can be reduced.
  • one or more recesses 48 are formed on the inner wall surface 29 of the tube plate 2, whereby the connection by the above-mentioned tube expansion can be made stronger. It is thought that the force is not because a part of the tube wall 31 of the heat transfer tube 3 is likely to enter the recess 48 by expansion.
  • the gap (particularly between the tube plate and the heat transfer tube) generated in the can body 1 by welding the two ends of the insertion portion at the insertion portion of the heat transfer tube into the opening of the tube sheet.
  • the force that reduces as much as possible the air gap generated between the tube wall 31 of the heat transfer tube, the inner wall surface 29 of the tube plate 2 that forms the opening 25, and the insertion portion The gap 45 is formed by the welded portion 41 at the two ends (arrows A and B), and the hole 46 leading to the outside is formed in the gap 45, so that the following effects can be exhibited.
  • the tube plate is the fixed tube plate (tube plate 2) shown in FIG. 1 (that is, when the can body 1 is not disposed as an outer cover on the outer periphery of the tube plate 2)
  • the hole 46 has a plurality of the gaps.
  • the hole 46 is shown in FIG. 1 and FIG. 4 so as to finally communicate with the outside in two places.
  • the hole 46 is not limited to such a mode. It is also possible to communicate with the outside or at three or more locations.
  • the multitubular heat exchanger 100 of the present invention indirectly flows through the pipe wall 31 of the heat transfer tube 3 by flowing fluids having different temperatures through the can body 1 and the heat transfer tube 3. In addition, heat is exchanged between these fluids.
  • the direction of the fluid flowing in the can body 1 and the direction of the fluid flowing in the heat transfer tube 3 are preferably opposed to each other, but are made parallel.
  • the multitubular heat exchanger 100 of the present invention has the configuration as described above, so that a beverage is allowed to flow as a fluid both in the can body 1 and in the heat transfer tube 3. It is now possible to exchange heat between these beverages.
  • both the heating operation and the cooling operation are performed in comparison with the conventional case where a fluid other than a beverage serving as a heat medium flows through the can body 1 and the beverage subject to heat exchange flows only through the heat transfer tube.
  • the heat energy loss of the entire process has been dramatically reduced.
  • the beverage that flows in the heat transfer tube 3 and the beverage that flows in the can body 1 have an effective heat energy. If a plant that can be used is constructed, the plant itself can be made compact, and its industrial utility can be dramatically improved in applications such as heat sterilization of beverages. Of course, it is also possible to flow a heat medium other than beverage in the can body 1 as in the past, and this can be combined with the one that flows the beverage using the heat medium in the can body 1 as described above. It ’s all about building.
  • the reason why the beverage can flow not only in the heat transfer tube 3 but also in the can body 1 is that the multi-tube heat exchanger lOO of the present invention has the above-described configuration. In addition, the gaps in the can body 1 are reduced as much as possible to obtain excellent cleaning properties.
  • Beverages (including liquid foods) that are heat-exchanged using the multitubular heat exchanger 100 of the present invention can be applied to a wide range of beverages that are not particularly limited.
  • beverages that are not particularly limited.
  • milk, dairy drinks, fruit juice drinks, coffee, tea, green tea, carbonated drinks, alcohol, mineral water, energy drinks, dashi, sauce, koji soup, or formulating or extracting used in the manufacturing process of these drinks Water for use can be mentioned.
  • the fluid exchanged using the multi-tubular heat exchanger 100 of the present invention is not limited to drinks as described above, but various liquid medicines (such as eye drops) and various chemical products. Etc. liquids are included.
  • the fluid includes a gas that is not limited to a liquid.
  • the multi-tube heat exchanger 100 of the present invention includes the can body 1, the tube plates 2 and 21, and the heat transfer tube 3 as described above, an arbitrary configuration other than these can be added. Can do.
  • the heat transfer tube 3 may be further supported by an auxiliary support material or the like.
  • a multi-stage heat exchange system can also be constructed by connecting to a plurality of multi-tube heat exchangers via the nozzle 15 and the tube plates 2 and 21 and the like.
  • the multitubular heat exchanger 100 of the present invention can be used in combination with a plurality of multitubular heat exchangers 100 of the present invention, as well as a heating device, a cooling device, or a heating medium supply device. It is possible to use a refrigerant supply device or a combination of these with a pump.
  • the multi-tube heat exchanger lOO of the present invention can naturally be used in combination with other pipes.
  • the fluid flowing through the heat transfer tube 3 can be supplied or discharged by connecting a pipe having the same inner diameter as the can body 1 to the tube plates 2 and 21 side. Further, by connecting a pipe having the same inner diameter as the nozzle 15 to the nozzle 15, the fluid flowing in the can body 1 can be supplied or discharged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

A multitubular heat exchanger (100), comprising at least a can body (1), tube plates (2, 21), and heat exchanger tubes (3). The can body (1) forms an outer shell of hollow structure, and the tube plates (2, 21) are fitted to both end parts thereof. The heat exchanger tubes (3) are formed of multiple pieces of tubes, and installed so that one end part of each of the plurality of heat exchanger tubes is inserted into one of a plurality of opening parts (25) formed in at least one of the tube plates (2, 21). The insertion part of the heat exchanger tube (3) into the opening part (25) is characterized in that it is welded at both end two positions along the outer periphery of the heat exchange tube (3) to connect to the tube plates (2, 21) forming the opening part (25).

Description

明 細 書  Specification
多管式熱交換器  Multi-tube heat exchanger
技術分野  Technical field
[0001] 本発明は、気体 (混合気体を含む)や液体 (溶液や分散液を含む)等の流体、特に 液体の熱交換に好適に用いられる多管式熱交^^に関する。さらに詳細には、飲料 間で熱交換を行なうことが可能な、シェル 'アンド'チューブ型熱交^^に関する。 背景技術  The present invention relates to a multitubular heat exchanger that is suitably used for heat exchange of a fluid such as a gas (including a mixed gas) or a liquid (including a solution or a dispersion), particularly a liquid. More specifically, the present invention relates to a shell 'and' tube type heat exchanger that can exchange heat between beverages. Background art
[0002] 従来より、流体の熱交換を効率良く行なう装置として多管式熱交^^が知られてい る。この多管式熱交^^は、シェルと呼ばれる大径の円筒型缶胴内においてチュー ブと呼ばれる複数の小径の伝熱管が管板と呼ばれる 2枚の支持体間に架設された構 造となっており、このためシェル 'アンド'チューブ型熱交換器とも呼ばれる。  Conventionally, a multi-tubular heat exchanger is known as an apparatus for efficiently performing heat exchange of fluids. This multi-tube heat exchanger ^^ has a structure in which a plurality of small-diameter heat transfer tubes called tubes are installed between two supports called tube plates in a large-diameter cylindrical can body called shell. For this reason, it is also called a shell 'and' tube heat exchanger.
[0003] この多管式熱交換器は、熱交換される流体を該伝熱管内に流し、高温または低温 の熱媒または冷媒 (以下単に熱媒と記す)を該缶胴内に流すことにより、伝熱管の管 壁を介して間接的に該流体と該熱媒間で熱交換を行なうものであった。このようにか 力る熱交換は、複数本の小径の伝熱管を通して行なわれるため、結果的に熱媒との 接触面積が増大されたものとなり極めて交換効率に優れたものとなる。このため、殺 菌等を目的とする飲料の熱処理時においても、この種の多管式熱交 は飲料の 加熱または冷却手段として使用されてきた。  [0003] In this multi-tube heat exchanger, a fluid to be heat-exchanged flows in the heat transfer tube, and a high-temperature or low-temperature heat medium or refrigerant (hereinafter simply referred to as a heat medium) flows in the can body. The heat exchange is performed indirectly between the fluid and the heat medium via the tube wall of the heat transfer tube. Such heat exchange is performed through a plurality of small-diameter heat transfer tubes. As a result, the contact area with the heat medium is increased and the exchange efficiency is extremely excellent. For this reason, this kind of multi-tube heat exchange has been used as a means for heating or cooling beverages even during heat treatment of beverages for the purpose of sterilization and the like.
[0004] し力しながら、流体としてこのような飲料を使用する場合、この種の多管式熱交 は、缶胴内を十分に洗浄することが困難なことから、熱媒として缶胴内に飲料を流す ことは衛生的見地力 好ましくなぐ飲料以外の流体を熱媒として用いざるを得ない 状況であった。このため、飲料間で熱交換を行なうことができず熱交換にロスを生じ、 多管式熱交換器の高!、熱交換効率を十分に活かしきれな!/、状況にあった。  [0004] However, when such a beverage is used as a fluid, it is difficult to sufficiently clean the inside of the can body, so that the inside of the can body can be used as a heat medium. In other words, it was necessary to use a fluid other than beverages as a heat transfer medium. For this reason, heat exchange cannot be performed between beverages, resulting in a loss of heat exchange, and the high tube heat exchanger and heat exchange efficiency cannot be fully utilized!
[0005] このような問題を解決することを目的として、缶胴内における空隙を可能な限り少な くし、雑菌等の繁殖の温床となるそのような空隙の洗浄不良の問題を解消することに より衛生的に優れた多管式熱交 を提供する試みが種々なされている。たとえば 、図 5に示したように管板 2の伝熱管 3挿入部において、管板 2の両外表面側に開先 構造 (管板の開口径が管板の厚み方向外側に向かって大きくなる構造)を形成し、伝 熱管 3の外周に沿って 1箇所のみを外部カゝら溶接 4により接続した構造の多管式熱 交翻が提案されて 、る (特開平 09― 133492号公報 (特許文献 1) )。 [0005] For the purpose of solving such problems, by reducing the gaps in the can body as much as possible and eliminating the problem of poor cleaning of such gaps, which becomes a hotbed for breeding of germs and the like. Various attempts have been made to provide hygienic multi-tube heat exchange. For example, as shown in FIG. 5, in the heat transfer tube 3 insertion portion of the tube plate 2, a groove is formed on both outer surface sides of the tube plate 2. Forming a structure (structure in which the opening diameter of the tube sheet increases toward the outside in the thickness direction of the tube sheet), and a multi-tube with a structure in which only one location is connected by welding 4 from the outside along the outer periphery of the heat transfer tube 3 Formula heat exchange has been proposed (Japanese Patent Laid-Open No. 09-133492 (Patent Document 1)).
[0006] この構造によっては、開先構造の採用により極小な空隙は減少する力もしれないが 、溶接により接続されない側の開先構造は依然として洗浄不良になる可能性がある。 し力も、この開先構造は管板の厚みが厚くなれば必然的に大きな開口径となるため 伝熱管同士の挿入間距離 (ピッチ)も大きくならざるを得ず、その結果管板の単位面 積に占める伝熱管の挿入本数は減少し効率の悪い装置形状となるとともに装置全体 のコンパクト化も困難となる。さら〖こ、溶接量および溶接入熱が増加するとともに溶接 歪みも大きくなるという不都合を生じる。 [0006] Depending on this structure, the adoption of the groove structure may not have the force to reduce the minimum gap, but the groove structure on the side not connected by welding may still be poorly cleaned. However, since this groove structure inevitably has a large opening diameter as the thickness of the tube plate increases, the insertion distance (pitch) between the heat transfer tubes must be increased, resulting in a unit surface of the tube plate. The number of heat transfer tubes that occupy the product decreases, resulting in an inefficient device shape, and it is difficult to make the entire device compact. Furthermore, there is a disadvantage that welding distortion increases as the welding amount and welding heat input increase.
特許文献 1:特開平 09— 133492号公報  Patent Document 1: Japanese Patent Laid-Open No. 09-133492
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記のような現状に鑑みなされたものであって、その目的とするところは 、缶胴内の空隙を可能な限り減少させ、以つて缶胴内の洗浄性に優れることから衛 生的要求を満足するとともにコンパ外ィ匕が可能な多管式熱交 を提供することに ある。 [0007] The present invention has been made in view of the current situation as described above, and an object of the present invention is to reduce the voids in the can body as much as possible, and thus to have excellent cleanability in the can body. Therefore, it is to provide a multi-tubular heat exchange that satisfies the hygienic requirements and enables off-compassion.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、缶胴と、管板と、伝熱管とを少なくとも備えた多管式熱交換器であって、 該缶胴は、中空構造の外被となるものであって、その両端部に上記管板が各々取り 付けられており、該伝熱管は、複数本存在し、その各々のいずれか一の端部が少な くとも一の上記管板に複数形成されている開口部の一に挿入されることにより架設さ れており、該伝熱管の上記開口部への挿入部分は、その挿入部分の両端 2箇所が 各々伝熱管の外周に沿って上記開口部を構成する管板と溶接により接続されて ヽる ことを特徴とするものである。  [0008] The present invention is a multi-tubular heat exchanger comprising at least a can body, a tube plate, and a heat transfer tube, the can body being an outer cover of a hollow structure, Each of the tube plates is attached to both ends, and there are a plurality of the heat transfer tubes, each of which has an opening formed in at least one tube plate. The insertion portion of the heat transfer tube into the opening is a tube in which the two ends of the insertion portion respectively constitute the opening along the outer periphery of the heat transfer tube. It is characterized by being connected to the plate by welding.
[0009] ここで、上記伝熱管は、複数本存在し、その各々の両端部が上記管板に各々複数 形成されている開口部の一に挿入されることにより架設されており、該伝熱管の上記 開口部への挿入部分は、その挿入部分の両端 2箇所が各々伝熱管の外周に沿って 上記開口部を構成する管板と溶接により接続されて ヽることが好ま Uヽ。 [0009] Here, there are a plurality of the heat transfer tubes, and both end portions thereof are installed by being inserted into one of the openings formed in the tube plate, and the heat transfer tubes As for the insertion part of the above-mentioned opening, the two ends of the insertion part are respectively along the outer circumference of the heat transfer tube. It is preferable to be connected to the tube plate that constitutes the opening by welding.
[0010] また、上記伝熱管の上記開口部への挿入部分は、その挿入部分の両端 2箇所のう ちの 、ずれか 1箇所が上記伝熱管の内側より溶接されて 、ることが好ま 、。また、 上記開口部は、上記伝熱管が架設される側の周縁部において突起部が形成され、 その突起部にお!、て上記伝熱管の内側から上記伝熱管の外周に沿って溶接されて いるちのとすることがでさる。 [0010] Further, it is preferable that the insertion portion of the heat transfer tube into the opening is welded at one of the two ends of the insertion portion from the inside of the heat transfer tube. Further, the opening is formed with a protrusion at the peripheral edge on the side where the heat transfer tube is installed, and is welded to the protrusion from the inside of the heat transfer tube along the outer periphery of the heat transfer tube. It can be a life.
[0011] また、上記伝熱管の上記開口部への挿入部分において、上記伝熱管の管壁と、上 記開口部を構成する管板の内壁面と、上記挿入部分の両端 2箇所の溶接部とにより 空隙部が形成され、その空隙部において外部に通じる孔が形成されていることが好 ましい。この孔は、複数の該空隙部を連通するようにして外部と通ずることができ、ま た複数の上記空隙部を連通するようにして上記缶胴と管板との間に生じる空間まで 開孔され、その空間を介して上記缶胴に形成された検知孔により外部と通ずるように することちでさる。 [0011] In addition, in the insertion portion of the heat transfer tube into the opening, the tube wall of the heat transfer tube, the inner wall surface of the tube plate constituting the opening, and two welded portions at both ends of the insertion portion. It is preferable that a void is formed by the above, and a hole communicating with the outside is formed in the void. This hole can be communicated with the outside so as to communicate with a plurality of the gaps, and can be opened to a space formed between the can body and the tube sheet so as to communicate with the plurality of the gaps. It is possible to communicate with the outside through the space through a detection hole formed in the can body.
[0012] また、上記伝熱管の上記開口部への挿入部分にぉ 、て、上記伝熱管が拡管され ているものとすることができる。また、本発明の多管式熱交^^においては、上記缶 胴内と上記伝熱管内との双方を飲料が流れることにより、その飲料間で熱交換がされ るよう〖こすることがでさる。  [0012] Further, the heat transfer tube may be expanded beyond the insertion portion of the heat transfer tube into the opening. Further, in the multi-tube heat exchanger according to the present invention, the beverage flows through both the inside of the can body and the inside of the heat transfer tube, so that heat can be exchanged between the beverages. Monkey.
[0013] また、本発明の管板と伝熱管との接続方法は、該伝熱管を該管板の開口部へ挿入 するステップと、該伝熱管の該開口部への挿入部分の両端 2箇所を各々該伝熱管の 外周に沿って該開口部を構成する管板と溶接により接続するステップと、を備えるこ とがでさる。  [0013] In addition, the method for connecting the tube plate and the heat transfer tube of the present invention includes a step of inserting the heat transfer tube into the opening of the tube plate, and two ends of the insertion portion of the heat transfer tube into the opening. And a step of connecting the tube plate constituting the opening by welding along the outer periphery of the heat transfer tube.
発明の効果  The invention's effect
[0014] 本発明の多管式熱交換器は、上述の通りの構成を有することにより、缶胴内の空隙 を可能な限り減少させ、以つて缶胴内の洗浄性に優れることから衛生的要求を満足 するとともにコンパクトィ匕が可能となった。  [0014] The multitubular heat exchanger of the present invention has a configuration as described above, thereby reducing the voids in the can body as much as possible, and thus being excellent in cleanability in the can body. Satisfying the requirements and enabling compactness.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の多管式熱交換器の概略断面図である。 FIG. 1 is a schematic cross-sectional view of a multitubular heat exchanger according to the present invention.
[図 2]伝熱管の管板開口部への挿入部分を拡大して示した概略断面図である。 [図 3]伝熱管の管板開口部への挿入部分をさらに拡大して示した概略断面図である [図 4]図 1における IV— IV線概略断面図である。 FIG. 2 is a schematic cross-sectional view showing, in an enlarged manner, an insertion portion of a heat transfer tube into a tube plate opening. FIG. 3 is a schematic cross-sectional view showing a further enlarged portion of the heat transfer tube inserted into the tube plate opening. FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG.
[図 5]従来の多管式熱交換器の伝熱管の管板開口部への挿入部分を拡大して示し た概略断面図である。  FIG. 5 is a schematic cross-sectional view showing, in an enlarged manner, an insertion portion of a conventional multi-tube heat exchanger into a tube plate opening of a heat transfer tube.
符号の説明  Explanation of symbols
[0016] 1 缶胴、 10 内壁、 15 ノズル、 2, 21 管板、 25 開口部、 26 突起部、 27 第 1 溝部、 28 第 2溝部、 29 内壁面、 3 伝熱管、 31 管壁、 4 溶接、 41 溶接部、 45 空隙部、 46 孔、 47 検知孔、 48 凹部、 49 空間、 5 接合部、 55 Oリング、 10 0 多管式熱交換器。  [0016] 1 can body, 10 inner wall, 15 nozzle, 2, 21 tube plate, 25 opening, 26 protrusion, 27 first groove, 28 second groove, 29 inner wall, 3 heat transfer tube, 31 tube wall, 4 Welding, 41 welds, 45 gaps, 46 holes, 47 detection holes, 48 recesses, 49 spaces, 5 joints, 55 O-rings, 10 0 Multi-tube heat exchanger.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明についてさらに詳細に説明する。なお、以下の実施の形態の説明で は、図面を用いて説明している力 本願の図面において同一の参照符号を付したも のは、同一部分または相当部分を示している。 [0017] Hereinafter, the present invention will be described in more detail. In the following description of the embodiments, the force described with reference to the drawings The same reference numerals in the drawings of the present application indicate the same or corresponding parts.
[0018] <多管式熱交換器 > [0018] <Multi-tube heat exchanger>
本発明の多管式熱交換器の概略断面図を図 1に示す。図 1に示されるように、本発 明の多管式熱交換器 100は、缶胴 1と、管板 2、 21と、伝熱管 3とを基本的に備えた ものである。  A schematic cross-sectional view of the multi-tube heat exchanger of the present invention is shown in FIG. As shown in FIG. 1, a multi-tube heat exchanger 100 of the present invention basically includes a can body 1, tube sheets 2 and 21, and a heat transfer tube 3.
[0019] ここで、上記缶胴 1は、中空構造の外被となるものであって、その両端部に上記管 板 2、 21が各々取り付けられている。この 2枚の管板 2、 21は、上記缶胴 1の長手方 向にお ヽて屈曲部がな 、場合には、互いに対向するように取り付けられることになる 。また、上記伝熱管 3は、複数本存在し、その各々の両端部が上記管板 2、 21に各 々複数形成されて 、る開口部 25の一に挿入されることにより架設されて 、る。  [0019] Here, the can body 1 serves as a hollow outer cover, and the tube plates 2 and 21 are attached to both ends thereof. The two tube plates 2 and 21 are attached so as to face each other in the case where there is no bent portion in the longitudinal direction of the can body 1. In addition, there are a plurality of the heat transfer tubes 3, and both end portions of the heat transfer tubes 3 are respectively formed on the tube plates 2 and 21, and are installed by being inserted into one of the openings 25. .
[0020] 本発明の多管式熱交 100は、このような基本構成を有することにより、缶胴 1内 と伝熱管 3内とを互いに温度の異なる流体が流れることにより、伝熱管 3の管壁 31を 介して間接的にそれらの流体間で熱交換を行なうものである。  [0020] The multi-tube heat exchanger 100 of the present invention has such a basic configuration, so that fluids having different temperatures flow in the can body 1 and the heat transfer tube 3, so that the tubes of the heat transfer tube 3 can flow. Heat is exchanged between these fluids indirectly through the wall 31.
[0021] なお、ここでは各伝熱管の両端部が 2枚の両管板の各々に複数形成されている開 口部に挿入される態様を例として説明するが、本発明の態様はこれのみに限られる ものではなく、両管板のうちのいずれか一の管板の開口部に対して上記伝熱管のい ずれか一の端部のみが挿入され、他の端部はもう一方の管板に対して異なった接続 方法により接続されるような態様も含まれる。このような態様においても本発明の上記 効果は示される。 [0021] It should be noted that, here, a description will be given of an example in which both end portions of each heat transfer tube are inserted into openings formed in a plurality of both tube plates, but this is the only aspect of the present invention. Limited to Instead, only one end of one of the heat transfer tubes is inserted into the opening of one of the two tube plates, and the other end is inserted into the other tube plate. It is also included that the connection is made by different connection methods. Even in such an embodiment, the above-described effects of the present invention are exhibited.
[0022] く缶胴〉  [0022] Ku-can body>
上記缶胴 1は、シェルとも呼ばれるものであり、中空構造の外被となるものであって 多管式熱交換器の言わば本体となるものである。通常、その形状は、外径が 30mm 〜700mm、長さが 2m〜6mの円筒状の形状を有している。し力し、その断面形状は このように円形のもののみに限られるものではなぐ四角形や六角形等の多角形の形 状としたり、楕円形の形状とすることもでき、その断面形状は何等制限されない。  The can body 1 is also referred to as a shell and serves as a shell of a hollow structure and serves as a main body of a multi-tube heat exchanger. Usually, it has a cylindrical shape with an outer diameter of 30 mm to 700 mm and a length of 2 m to 6 m. However, the cross-sectional shape is not limited to the circular shape in this way, it can be a polygonal shape such as a quadrangle or a hexagon, or an elliptical shape. Not limited.
[0023] このような缶胴 1は、その両端部において後述の 2枚の管板 2、 21が取り付けられ、 複数本の伝熱管 3が支持されている。なお、缶胴 1の材質は、特に限定されるもので はな 、が好ましくはステンレス鋼である。  [0023] Such a can body 1 has two tube plates 2 and 21 to be described later attached to both ends thereof, and a plurality of heat transfer tubes 3 are supported. The material of the can body 1 is not particularly limited, but is preferably stainless steel.
[0024] 缶胴 1には、通常、ノズル 15が形成されており、上記缶胴 1内に流体を供給し、また は上記缶胴 1内から流体を排出できる構造となっている。このようなノズル 15は、たと えば図 1に示したように上記缶胴 1の両端付近に各々 1箇所ずつ計 2個形成されるも のとすることができる。すなわち、このように 2個のノズルのうち、その一のノス、ノレにより 缶胴 1内に流体が供給され、他の一のノズルによりその流体は排出されることになる。  In the can body 1, a nozzle 15 is usually formed, and a structure is provided in which fluid can be supplied into the can body 1 or fluid can be discharged from the can body 1. For example, as shown in FIG. 1, two such nozzles 15 may be formed in the vicinity of both ends of the can body 1, one in each case. That is, of the two nozzles, the fluid is supplied into the can body 1 by one of the nozzles and the nozzle, and the fluid is discharged by the other nozzle.
[0025] そして、このようなノズルの各々は、上記缶胴 1の両端付近であって、特に管板 2、 2 1の各々に近接させて配置させることが好ましい。缶胴の長手方向において各ノズル が配置される位置よりもさらに端側に管板 2、 21は配置されることになる力 各ノズル とこれらの管板との間に一定の距離をもった空間が形成されるとその部分に缶胴内を 流れる流体が淀むことになるからである。  [0025] It is preferable that each of such nozzles be disposed near both ends of the can body 1 and particularly close to the tube sheets 2 and 21. The force with which the tube plates 2 and 21 are arranged further to the end side than the position where each nozzle is arranged in the longitudinal direction of the can body The space having a certain distance between each nozzle and these tube plates This is because the fluid flowing in the can body will stagnate in that part.
[0026] また、上記缶胴 1は、それ自体が一体となった一体構造のものとすることができるが 、たとえば図 1に示したように上記ノズルの一を含む部分を短管状に分割するような 分割式の構造とすることもできる。このように上記ノズルの一を含む部分を短管状に 分割することにより、管板を容易に観察したり洗浄したりすることができ、汚れや不具 合を有効に防止することができる点、衛生的見地力もも好ましいものである。 [0027] なお、このように短管状に分割する部分がノズルの一を含むのは、仮にこのノズル の一と管板との間に接合部 5を形成するとこの接合部 5の形成に伴い缶胴内に不必 要な空間を生じることになり、この空間に缶胴内の流体が淀むことを防止するためで ある。 [0026] Further, the can body 1 may be of an integral structure integrated with itself. For example, as shown in Fig. 1, a portion including one of the nozzles is divided into short tubes. It is also possible to make such a divided structure. In this way, by dividing the portion including one of the nozzles into short tubes, the tube sheet can be easily observed and cleaned, and dirt and defects can be effectively prevented. The target power is also favorable. [0027] It should be noted that the part that is divided into the short tubes includes one of the nozzles as described above. If the joint 5 is formed between one of the nozzles and the tube plate, the can is accompanied by the formation of the joint 5. This is because an unnecessary space is created in the body, and the fluid in the can body is prevented from standing in this space.
[0028] 一方、上記のように短管状に分割する部分と缶胴との接合部 5には、へルール構造 の三角溝を有する継手部が用いられ、この継手部にはパッキンとして Oリング 55 (合 成ゴム等の弾性体でできたリング状の封止材)を用いることが好まし 、。  [0028] On the other hand, a joint portion having a triangular groove having a ferrule structure is used for the joint portion 5 between the portion divided into a short tube and the can body as described above, and an O-ring 55 is used as a packing for the joint portion. It is preferable to use (ring-shaped sealing material made of an elastic body such as synthetic rubber).
[0029] <管板 >  [0029] <Tube sheet>
本発明の管板は、上記缶胴 1の両端部に各々取り付けられることから、少なくとも 2 枚配置されるものである。すなわち、図 1に示されるように 2枚の管板 2、 21が、上記 缶胴 1の両端部に各々取り付けられる。この取り付け方法は特に限定されるものでは なぐたとえば図 1に示した管板 2のように接合部 5により固定して取り付けることがで きるとともに、管板 21のように可動状態として取り付けることもできる。通常、固定して 取り付けられる管板を固定管板と呼び、可動状態として取り付けられる管板を遊動管 板と呼ぶ。 2枚の管板 2、 21は、両者を固定管板としても良いし、いずれか一方を遊 動管板とすることもできる。なお、固定管板とする場合は、図 1に示した接合部 5により 取り外し可能な状態で固定する場合の他、溶接等により缶胴 1と一体化させることも できる。しかし、缶胴 1内の洗浄性等を考慮すると、取り外し可能な状態で固定するこ とが好ましい。この点、上記接合部 5には上記缶胴 1の接合部 5と同様にへルール構 造を採用することが好ましい。  Since the tube sheet of the present invention is attached to both ends of the can body 1, at least two tube sheets are arranged. That is, as shown in FIG. 1, two tube sheets 2 and 21 are attached to both ends of the can body 1, respectively. This attachment method is not particularly limited. For example, it can be fixedly attached by the joint portion 5 like the tube plate 2 shown in FIG. 1, or can be attached in a movable state like the tube plate 21. . Usually, a tube plate that is fixedly attached is called a fixed tube plate, and a tube plate that is attached in a movable state is called an idle tube plate. The two tube plates 2 and 21 may be fixed tube plates, or one of them may be a floating tube plate. When the fixed tube plate is used, it can be integrated with the can body 1 by welding or the like, in addition to being fixed in a removable state by the joint 5 shown in FIG. However, in consideration of the cleaning properties in the can body 1, it is preferable to fix it in a removable state. In this regard, it is preferable to adopt a ferrule structure for the joint 5 as in the joint 5 of the can body 1.
[0030] 上記遊動管板 (管板 21)は、たとえば管板の厚み方向の両端部の各々の外周に沿 つて第 1溝部 27と第 2溝部 28とを有するとともに、この第 1溝部 27と第 2溝部 28とに 各々 Oリング 55を挿入することによって、上記缶胴 1内の内壁 10と接触しながら任意 方向に移動可能な状態とすることができる。  [0030] The floating tube plate (tube plate 21) includes, for example, a first groove portion 27 and a second groove portion 28 along the outer periphery of each end portion in the thickness direction of the tube plate. By inserting the O-ring 55 into each of the second groove portions 28, the O-ring 55 can be moved in any direction while in contact with the inner wall 10 in the can body 1.
[0031] このような管板 2、 21は、複数の開口部 25を備えることにより、その開口部 25に後 述の伝熱管 3を挿入することによって伝熱管 3を架設 (支持)する作用を有するもので ある。このような管板 2、 21は、固定管板の場合はその外形が缶胴 1の外形とほぼ等 しくなるものであり、その厚みが 20mm〜 100mmの形状を有する。また、遊動管板 の場合は、その外径が缶胴 1の内径 (約 30〜700mm)とほぼ等しくなるものであり、 その厚みが 20mn!〜 100mmの形状を有する。また、管板 2、 21の材質は、特に限 定されるものではな 、が好ましくはステンレス鋼である。 [0031] Such tube plates 2 and 21 have a plurality of openings 25, so that the heat transfer tubes 3 can be installed (supported) by inserting the heat transfer tubes 3 described later into the openings 25. It is what you have. In the case of such a fixed tube plate, the outer shape of the tube plates 2 and 21 is substantially the same as the outer shape of the can body 1, and has a thickness of 20 to 100 mm. Also, the floating tube plate In this case, the outer diameter is almost the same as the inner diameter of the can body 1 (about 30 to 700mm), and its thickness is 20mn! ~ 100mm shape. The material of the tube plates 2 and 21 is not particularly limited, but is preferably stainless steel.
[0032] <伝熱管 >  [0032] <Heat transfer tube>
上記伝熱管 3は、チューブとも呼ばれるものであり、上記缶胴 1内に複数本存在す るものである。その本数は、より好ましくは 4〜 120本である。  The heat transfer tube 3 is also called a tube, and a plurality of the heat transfer tubes 3 exist in the can body 1. The number is more preferably 4 to 120.
[0033] このような伝熱管 3の形状は、外径が 10mm〜40mmの円筒状の形状を有しており 、その長さは上記缶胴 1の長さとほぼ同じである。また、その断面形状は缶胴 1と同様 、円形のもののみに限られるものではなぐ四角形や六角形等の多角形の形状とした り、楕円形の形状とすることもでき、その断面形状は制限されない。しかし、伝熱管 3 は上記管板 2、 21の開口部 25に挿入されるものであるため、その断面形状は該開口 部の形状と一致する必要があり、該開口部の形状が通常加工容易な円形を呈するこ とからこの伝熱管 3の断面形状も円形とすることが好ましい。なお、伝熱管 3の材質は 、特に限定されるものではないが好ましくはステンレス鋼である。  [0033] The heat transfer tube 3 has a cylindrical shape with an outer diameter of 10 mm to 40 mm, and the length thereof is substantially the same as the length of the can body 1. In addition, the cross-sectional shape is not limited to a circular one, but can be a polygonal shape such as a rectangle or a hexagon, or an elliptical shape. Not limited. However, since the heat transfer tube 3 is inserted into the opening 25 of the tube plates 2 and 21, the cross-sectional shape thereof must match the shape of the opening, and the shape of the opening is usually easy to process. Since the heat transfer tube 3 has a circular shape, the cross-sectional shape of the heat transfer tube 3 is also preferably circular. The material of the heat transfer tube 3 is not particularly limited, but is preferably stainless steel.
[0034] このような伝熱管 3は、上記の通り複数本存在するものである力 その各々の両端 部が上記 2枚の管板 2、 21に各々複数形成されている開口部 25の一に挿入されるこ とにより架設 (支持)されている。  [0034] Such a heat transfer tube 3 has a plurality of forces as described above. Each end of each of the heat transfer tubes 3 is formed in one of the openings 25 formed in the two tube sheets 2 and 21 respectively. It is installed (supported) by being inserted.
[0035] <管板 (開口部)と伝熱管との接続 >  [0035] <Connection between tube plate (opening) and heat transfer tube>
本発明の伝熱管 3は、上述の通り、その両端部が上記 2枚の管板 2、 21に各々複 数形成されている開口部 25の一に挿入されることにより架設されている。そして、伝 熱管 3のその開口部 25への挿入部分は、その挿入部分の両端 2箇所が各々伝熱管 の外周に沿って開口部を構成する管板と溶接 4により接続されている。以下、この接 続について図 2および図 3を参照してさらに詳細に説明する。  As described above, the heat transfer tube 3 of the present invention is installed by inserting both end portions into one of the opening portions 25 formed in the two tube sheets 2 and 21. And the insertion part to the opening part 25 of the heat exchanger tube 3 is connected to the tube sheet which comprises an opening part along the outer periphery of the heat exchanger tube by welding 4 at the both ends of the insertion part. Hereinafter, this connection will be described in more detail with reference to FIG. 2 and FIG.
[0036] 図 2は、管板 2の開口部 25への伝熱管 3の挿入部分を拡大して示した概略断面図 であり、図 3はそれをさらに拡大した概略断面図である。当該挿入部分において、伝 熱管 3の管壁 31は開口部 25を構成する管板の内壁面 29に対向し、その挿入部分 における両端 2箇所(図 3にお 、て矢印 A、 Bで示された箇所)が各々伝熱管 3の外 周に沿って開口部を構成する管板 2と溶接 4により接続されている。このように両端 2 箇所 (矢印 A、 B)が溶接により接続されたことにより、缶胴 1内を流れる流体と伝熱管 3内を流れる流体の空隙 (管板 2と伝熱管 3との間で生じる空隙)への浸入を極めて 有効に防止することができるようになった。すなわち、矢印 A側の溶接 4は伝熱管 3内 を流れることになる流体の浸入を防止し、矢印 B側の溶接 4は缶胴 1内を流れる流体 の浸入を防止するのに効果を発揮する。 FIG. 2 is an enlarged schematic cross-sectional view showing a portion where the heat transfer tube 3 is inserted into the opening 25 of the tube plate 2, and FIG. 3 is an enlarged schematic cross-sectional view thereof. In the insertion portion, the tube wall 31 of the heat transfer tube 3 is opposed to the inner wall surface 29 of the tube plate constituting the opening 25, and two ends of the insertion portion (indicated by arrows A and B in FIG. 3). Are connected to the tube plate 2 forming the opening along the outer circumference of the heat transfer tube 3 by welding 4. Thus both ends 2 Since the locations (arrows A and B) are connected by welding, the gap between the fluid flowing in the can body 1 and the fluid flowing in the heat transfer tube 3 (the gap generated between the tube plate 2 and the heat transfer tube 3) Intrusion can be prevented very effectively. In other words, the weld 4 on the arrow A side prevents the intrusion of the fluid that flows in the heat transfer tube 3, and the weld 4 on the arrow B side exhibits the effect for preventing the intrusion of the fluid flowing in the can body 1. .
[0037] ここで、当該溶接の方法としては、従来公知の溶接方法ならばいかなる方法でも採 用することができる。たとえば、ガス溶接、アーク溶接、電気抵抗溶接、電子ビーム溶 接などが挙げられる。また、当該溶接は、管板 2、 21を構成する金属と伝熱管 3を構 成する金属とが当該溶接部 41で渾然一体となることが好ましい。なお、所望により、 溶接棒等の第 3の金属を使用することもできる。また、この溶接部における管板 2、 21 側において、必要により面取りや開先構造を採用して溶接強度の向上を図ることもで きる。しかし、この面取りや開先構造は、従来のように大きくとる必要はなぐ以つて伝 熱管同士の挿入間距離 (ピッチ)も大きくならず装置全体のコンパクト化に資するもの となる。さらに、溶接量および溶接入熱が増加することもなく溶接歪みが大きくなると V、う不都合を防止することができる。  [0037] Here, as the welding method, any conventionally known welding method can be employed. Examples include gas welding, arc welding, electrical resistance welding, and electron beam welding. Further, in the welding, it is preferable that the metal constituting the tube plates 2 and 21 and the metal constituting the heat transfer tube 3 are integrally integrated at the welded portion 41. If desired, a third metal such as a welding rod can be used. Further, on the tube sheet 2 and 21 side in this welded portion, it is possible to improve the welding strength by adopting chamfering or a groove structure as necessary. However, this chamfering and groove structure does not need to be large as in the prior art, so the distance (pitch) between the heat transfer tubes is not increased, which contributes to the compactness of the entire apparatus. Furthermore, if the welding distortion increases without increasing the welding amount and welding heat input, V, inconvenience can be prevented.
[0038] また、上記溶接部 41の溶接範囲は、伝熱管 3の外径、伝熱管の管壁 31の厚み、管 板の厚み等に応じて適宜選択すれば良く特に制限されるものではないが、伝熱管の 長さ方向の距離で表すと 0. 5〜5. Omm、より好ましくは 0. 7〜3. Ommの範囲とす ることがでさる。  [0038] The welding range of the welded portion 41 is not particularly limited as long as it is appropriately selected according to the outer diameter of the heat transfer tube 3, the thickness of the tube wall 31 of the heat transfer tube, the thickness of the tube plate, and the like. However, in terms of the distance in the length direction of the heat transfer tube, it can be in the range of 0.5 to 5. Omm, more preferably 0.7 to 3. Omm.
[0039] そして、さらに好ま U、溶接方法としては、上記挿入部分の両端 2箇所 (矢印 A、 B) のうちのいずれか 1箇所を上記伝熱管の内側より溶接する方法が挙げられる。特に、 伝熱管 3が架設される側の端部(図 3における矢印 B側)が、伝熱管 3の内側より溶接 されていることが好ましい。伝熱管 3が架設される側は缶胴 1の内部側となるため、外 部からの溶接が困難となるからである。  [0039] Further, U and a welding method that is more preferable include a method in which any one of the two ends (arrows A and B) of the insertion portion is welded from the inside of the heat transfer tube. In particular, it is preferable that the end portion on the side where the heat transfer tube 3 is installed (the arrow B side in FIG. 3) is welded from the inside of the heat transfer tube 3. This is because the side on which the heat transfer tube 3 is installed is the inner side of the can body 1 and it becomes difficult to weld from the outside.
[0040] またこの場合、上記開口部 25において、伝熱管 3が架設される側の周縁部におい て突起部 26が形成され、その突起部 26において伝熱管 3の内側力 伝熱管 3の外 周に沿って溶接することが特に好ましい。少量の熱量で、管板 2の金属と伝熱管 3の 金属とを渾然一体となるように溶接することができる力もである。すなわち、上記伝熱 管 3内に溶接ヘッドを図 3の矢印 A側力も挿入し、矢印 B側において溶接トーチを伝 熱管 3の内側から当てることにより、突起部 26と伝熱管 3との両者が実質的に完全に 溶け合うようにして溶接接合させることができる。 [0040] In this case, a protrusion 26 is formed in the opening 25 at the peripheral edge on the side where the heat transfer tube 3 is installed, and the inner force of the heat transfer tube 3 at the protrusion 26 is the outer periphery of the heat transfer tube 3. It is particularly preferred to weld along. It is also a force that can weld the metal of the tube plate 2 and the metal of the heat transfer tube 3 so as to be united with a small amount of heat. That is, the above heat transfer Inserting the welding head into the tube 3 also with the arrow A side force in Fig. 3 and applying the welding torch from the inside of the heat transfer tube 3 on the arrow B side, the projection 26 and the heat transfer tube 3 are substantially completely separated. It can be welded and joined together.
[0041] ここで、この突起部 26の形状としては、その高さ hが、 2mm〜10mmとすることが好 ましぐさらに好ましくは 4mm〜6mmであり、その肉厚 tは 0. 3mn!〜 3mmとすること が好ましぐさらに好ましくは 0. 5mm〜: Lmmである。  [0041] Here, as the shape of the protrusion 26, the height h is preferably 2 mm to 10 mm, more preferably 4 mm to 6 mm, and the wall thickness t is 0.3 mn! It is preferable to set to ~ 3 mm, more preferably 0.5 mm ~: Lmm.
[0042] 上記力も明らかなように本発明の管板と伝熱管との接続方法は、該伝熱管を該管 板の開口部へ挿入するステップと、該伝熱管の該開口部への挿入部分の両端 2箇 所を各々該伝熱管の外周に沿って該開口部を構成する管板と溶接により接続するス テツプと、を備えるものである。なお、管板と伝熱管との接続方法は、上記のような溶 接による接続とともに、拡管 (セートル)法を採用することもできる。すなわち、上記伝 熱管の上記開口部への挿入部分において、上記伝熱管が拡管されていることが好ま しい。これにより、管板と伝熱管との接続強度をさらに向上させることができるとともに 、空隙の低減にも資するものとなる。  [0042] As is clear from the above force, the method of connecting the tube sheet and the heat transfer tube of the present invention includes a step of inserting the heat transfer tube into the opening of the tube plate, and a portion of the heat transfer tube inserted into the opening. Steps for connecting the two ends of the tube along the outer periphery of the heat transfer tube and the tube sheet constituting the opening by welding. As a method for connecting the tube plate and the heat transfer tube, a tube expansion (settling) method can be adopted in addition to the above-described welding. That is, it is preferable that the heat transfer tube is expanded at a portion where the heat transfer tube is inserted into the opening. As a result, the connection strength between the tube plate and the heat transfer tube can be further improved, and the gap can be reduced.
[0043] さらにこの場合、図 3に示したように管板 2の内壁面 29において、凹部 48を一乃至 複数形成することにより上記拡管による接続をより強固なものとすることができる。お そらぐ伝熱管 3の管壁 31の一部が拡管によりこの凹部 48に入り込むためではない 力と考えられる。  Furthermore, in this case, as shown in FIG. 3, one or more recesses 48 are formed on the inner wall surface 29 of the tube plate 2, whereby the connection by the above-mentioned tube expansion can be made stronger. It is thought that the force is not because a part of the tube wall 31 of the heat transfer tube 3 is likely to enter the recess 48 by expansion.
[0044] <空隙部、孔、検知孔 >  [0044] <Cavity, hole, detection hole>
本発明は、上述のように管板の開口部への伝熱管の挿入部分においてその挿入 部分の両端 2箇所が溶接されたことにより缶胴 1内に生じる空隙 (特に管板と伝熱管 との間に生じる空隙)を可能な限り低減させたものである力 図 3に示したように伝熱 管の管壁 31と、開口部 25を構成する管板 2の内壁面 29と、挿入部分の両端 2箇所( 矢印 A、 B)の溶接部 41とにより空隙部 45が形成され、その空隙部 45において外部 に通じる孔 46が形成されることにより、次のような効果を示すことができる。  In the present invention, as described above, the gap (particularly between the tube plate and the heat transfer tube) generated in the can body 1 by welding the two ends of the insertion portion at the insertion portion of the heat transfer tube into the opening of the tube sheet. The force that reduces as much as possible the air gap generated between the tube wall 31 of the heat transfer tube, the inner wall surface 29 of the tube plate 2 that forms the opening 25, and the insertion portion The gap 45 is formed by the welded portion 41 at the two ends (arrows A and B), and the hole 46 leading to the outside is formed in the gap 45, so that the following effects can be exhibited.
[0045] すなわち、この空隙部 45において図 3および図 4に示したように外部に通じる孔 46 を形成することにより、その孔 46を通して流体の漏れ (浸入)を検知することができ、 万一溶接 4が破損して缶胴 1内を流れる流体力ゝ伝熱管 3内を流れる流体のいずれか 力 の空隙部 45に浸入してもすぐに発見することが期待できる。したがって、管板が 上記図 1に示した遊動管板 (管板 21)である場合 (すなわち管板 21の外周に缶胴 1 が配置される場合)は、孔 46は図 4に示したように複数の当該空隙部 45を連通する ようにして缶胴 1と管板 21との間に生じる空間 49 (すなわち図 1における第 1溝部 27 に挿入されている Oリング 55と、第 2溝部 28に挿入されている Oリング 55と、管板 21 と、缶胴 1とにより囲まれた空間 49)まで開孔させ、その空間 49を介して缶胴 1に形成 された検知孔 47により外部と通ずるようにすることが好ましい。一方、管板が上記図 1 に示した固定管板 (管板 2)である場合 (すなわち管板 2の外周に缶胴 1が外被として 配置されない場合)は、孔 46は複数の当該空隙部 45のみを連通するようにして外部 (この場合、管板の最表面部の孔が上記検知孔 47と同様の作用を示す)と通ずるよう にすることが好ま 、(この態様は、図 4にお 、て缶胴 1が存在しな 、態様に相当するThat is, by forming a hole 46 that communicates with the outside as shown in FIGS. 3 and 4 in the gap 45, fluid leakage (intrusion) can be detected through the hole 46. Any of the fluids that flow in the heat transfer tube 3 that flows in the can body 1 when the weld 4 breaks It can be expected to be discovered immediately even if it enters the gap 45 of the force. Therefore, when the tube plate is the floating tube plate (tube plate 21) shown in FIG. 1 (that is, when the can body 1 is arranged on the outer periphery of the tube plate 21), the hole 46 is as shown in FIG. A space 49 formed between the can body 1 and the tube plate 21 so as to communicate with the plurality of gap portions 45 (that is, the O-ring 55 inserted in the first groove portion 27 in FIG. 1 and the second groove portion 28). Is opened to the space 49) surrounded by the O-ring 55, the tube plate 21, and the can body 1 inserted through the space 49, and the outside is connected to the outside by the detection hole 47 formed in the can body 1 through the space 49. It is preferable to let it pass. On the other hand, when the tube plate is the fixed tube plate (tube plate 2) shown in FIG. 1 (that is, when the can body 1 is not disposed as an outer cover on the outer periphery of the tube plate 2), the hole 46 has a plurality of the gaps. It is preferable to communicate only with the portion 45 so that it communicates with the outside (in this case, the hole on the outermost surface portion of the tube plate exhibits the same action as the detection hole 47) (this mode is shown in FIG. 4). In addition, there is no can body 1 and corresponds to the embodiment.
) o ) o
[0046] さらに、この空隙部 45および孔 46の作用により、缶胴 1内を流れる流体と伝熱管 3 内を流れる流体との混合を極めて有効に防止することもできる。缶胴 1内を流れる流 体の流体圧も伝熱管 3内を流れる流体の流体圧も力なり高圧 (大気圧よりも高い)とな る力 空隙部 45は孔 46により外部と通ずるため、その圧力は大気圧に等しぐ以つて 万一空隙部 45に浸入した流体はもう一方の流体と混合することなく(もう一方の流体 の方へ流れることなく)この空隙部 45と孔 46を通って外部に排出されることとなり、よ つて両流体の混合は防止されることになる。  [0046] Further, due to the action of the gap 45 and the hole 46, mixing of the fluid flowing in the can body 1 and the fluid flowing in the heat transfer tube 3 can be extremely effectively prevented. The fluid pressure of the fluid flowing in the can body 1 and the fluid pressure of the fluid flowing in the heat transfer tube 3 are also powerful, and the force is high (higher than atmospheric pressure). Since the pressure is equal to the atmospheric pressure, the fluid that has entered the gap 45 passes through the gap 45 and the hole 46 without mixing with the other fluid (without flowing toward the other fluid). As a result, both fluids are prevented from being mixed.
[0047] なお、孔 46は、図 1や図 4においては最終的に 2箇所において外部と通ずるように 示されている力 このような態様のみに限られるものではなぐ 1箇所のみにおいて外 部と通ずるようにしたり 3箇所以上で外部と通ずるようにすることも可能である。  [0047] It should be noted that the hole 46 is shown in FIG. 1 and FIG. 4 so as to finally communicate with the outside in two places. The hole 46 is not limited to such a mode. It is also possible to communicate with the outside or at three or more locations.
[0048] <熱交換方法 >  [0048] <Heat exchange method>
本発明の多管式熱交換器 100は、上述のように、缶胴 1内と伝熱管 3内とを互いに 温度の異なる流体が流れることにより、伝熱管 3の管壁 31を介して間接的にそれらの 流体間で熱交換を行なうものである。この場合、缶胴 1内を流れる流体の方向と、伝 熱管 3内を流れる流体の方向は、互いに対向させることが好ましいが、並行させること ちでさる。 [0049] そして、特に本発明の多管式熱交翻100は、上述の通りの構成を有することによ り、上記缶胴 1内と上記伝熱管 3内との双方において流体として飲料を流すことが可 能であるため、これらの飲料間での熱交換を行なうことができるようになった。このた め、従来のように缶胴 1内は熱媒たる飲料以外の流体を流し、伝熱管内にのみ熱交 換の対象となる飲料を流す場合に比べ、加熱操作と冷却操作の両者を含む飲料の 通常の処理工程において該工程全体の熱エネルギーの損失を飛躍的に低減させる ことに成功したものである。 As described above, the multitubular heat exchanger 100 of the present invention indirectly flows through the pipe wall 31 of the heat transfer tube 3 by flowing fluids having different temperatures through the can body 1 and the heat transfer tube 3. In addition, heat is exchanged between these fluids. In this case, the direction of the fluid flowing in the can body 1 and the direction of the fluid flowing in the heat transfer tube 3 are preferably opposed to each other, but are made parallel. [0049] In particular, the multitubular heat exchanger 100 of the present invention has the configuration as described above, so that a beverage is allowed to flow as a fluid both in the can body 1 and in the heat transfer tube 3. It is now possible to exchange heat between these beverages. For this reason, both the heating operation and the cooling operation are performed in comparison with the conventional case where a fluid other than a beverage serving as a heat medium flows through the can body 1 and the beverage subject to heat exchange flows only through the heat transfer tube. In the normal processing process for beverages containing it, the heat energy loss of the entire process has been dramatically reduced.
[0050] また、複数の本発明の多管式熱交 lOOを組み合せて用いることにより、伝熱管 3内を流れる飲料と缶胴 1内を流れる飲料とが保有して 、る熱エネルギーを有効に利 用するようなプラントを構築すれば、プラントそのものをコンパクトィ匕することができ、飲 料の加熱殺菌消毒等の用途においてその産業上の利用性を飛躍的に向上させるこ とができる。なお、缶胴 1内を従来のように飲料以外の熱媒を流すことも勿論可能で あり、これと上記のように缶胴 1内を熱媒として飲料を流すものとを組み合せてプラン 卜を構築することちでさる。  [0050] Also, by using a combination of a plurality of multi-tube heat exchangers lOO according to the present invention, the beverage that flows in the heat transfer tube 3 and the beverage that flows in the can body 1 have an effective heat energy. If a plant that can be used is constructed, the plant itself can be made compact, and its industrial utility can be dramatically improved in applications such as heat sterilization of beverages. Of course, it is also possible to flow a heat medium other than beverage in the can body 1 as in the past, and this can be combined with the one that flows the beverage using the heat medium in the can body 1 as described above. It ’s all about building.
[0051] このように伝熱管 3内だけでなく缶胴 1内にも飲料を流すことができるようになつたの は、本願発明の多管式熱交 lOOが上述の通りの構成を有するからに他ならず、 缶胴 1内の空隙を可能な限り低減させ優れた洗浄性が得られるようになったカゝらであ る。  [0051] The reason why the beverage can flow not only in the heat transfer tube 3 but also in the can body 1 is that the multi-tube heat exchanger lOO of the present invention has the above-described configuration. In addition, the gaps in the can body 1 are reduced as much as possible to obtain excellent cleaning properties.
[0052] なお、本発明の多管式熱交換器 100を用いて熱交換される飲料 (液状食品を含む )は、特に限定されるものではなぐ広範囲のものに適応することができる。たとえば、 牛乳、乳性飲料、果汁飲料、コーヒー、紅茶、緑茶、炭酸飲料、アルコール、ミネラル ウォーター、栄養ドリンク、だし、たれ、麵汁、あるいはこれらの飲料の製造過程で用 いられる調合用や抽出用の水等を挙げることができる。  [0052] Beverages (including liquid foods) that are heat-exchanged using the multitubular heat exchanger 100 of the present invention can be applied to a wide range of beverages that are not particularly limited. For example, milk, dairy drinks, fruit juice drinks, coffee, tea, green tea, carbonated drinks, alcohol, mineral water, energy drinks, dashi, sauce, koji soup, or formulating or extracting used in the manufacturing process of these drinks Water for use can be mentioned.
[0053] なお、本発明の多管式熱交翻100を用いて熱交換される流体は、このように飲 料のみに限られるものではなぐ各種液状医薬品(目薬等)をはじめ種々の化学品等 の液体が含まれる。また、この流体は、液体のみに限られるものではなぐ気体も含ま れる。  [0053] It should be noted that the fluid exchanged using the multi-tubular heat exchanger 100 of the present invention is not limited to drinks as described above, but various liquid medicines (such as eye drops) and various chemical products. Etc. liquids are included. In addition, the fluid includes a gas that is not limited to a liquid.
[0054] <その他 > 本発明の多管式熱交換器 100は、上記のように缶胴 1と、管板 2、 21と、伝熱管 3と を備えたものである限り、これら以外の任意の構成を付加することができる。たとえば 、上記伝熱管 3は、補助支持材等によりさらに支持されたものとすることもできる。また 、上記ノズル 15や管板 2、 21等を介して複数の多管式熱交^^と接続することにより 、多段の熱交換システムを構築することもできる。 [0054] <Others> As long as the multi-tube heat exchanger 100 of the present invention includes the can body 1, the tube plates 2 and 21, and the heat transfer tube 3 as described above, an arbitrary configuration other than these can be added. Can do. For example, the heat transfer tube 3 may be further supported by an auxiliary support material or the like. A multi-stage heat exchange system can also be constructed by connecting to a plurality of multi-tube heat exchangers via the nozzle 15 and the tube plates 2 and 21 and the like.
[0055] このように本発明の多管式熱交翻 100は、複数の本発明の多管式熱交翻 100 と組み合せて用いることができるとともに、加熱装置や冷却装置または熱媒供給装置 ゃ冷媒供給装置、あるいはこれらとポンプとを組み合せて用いることができる。  [0055] As described above, the multitubular heat exchanger 100 of the present invention can be used in combination with a plurality of multitubular heat exchangers 100 of the present invention, as well as a heating device, a cooling device, or a heating medium supply device. It is possible to use a refrigerant supply device or a combination of these with a pump.
[0056] また、本発明の多管式熱交 lOOは、これら以外の他の配管と組み合せて用い ることも当然可能である。たとえば、上記の缶胴 1と同一の内径を有する配管を上記 管板 2、 21側に接続することにより、上記伝熱管 3内を流れる流体を供給または排出 することができる。また、上記ノズル 15と同一の内径を有する配管を上記ノズル 15に 接続することにより、上記缶胴 1内を流れる流体を供給または排出することができる。  [0056] The multi-tube heat exchanger lOO of the present invention can naturally be used in combination with other pipes. For example, the fluid flowing through the heat transfer tube 3 can be supplied or discharged by connecting a pipe having the same inner diameter as the can body 1 to the tube plates 2 and 21 side. Further, by connecting a pipe having the same inner diameter as the nozzle 15 to the nozzle 15, the fluid flowing in the can body 1 can be supplied or discharged.
[0057] 以上のように本発明の実施の形態について説明を行なったが、上述の各実施の形 態の構成を適宜組み合わせることも当初から予定して 、る。  Although the embodiments of the present invention have been described as described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments.
[0058] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。  [0058] The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims

請求の範囲 The scope of the claims
[1] 缶胴(1)と、管板 (2, 21)と、伝熱管 (3)とを少なくとも備えた多管式熱交翻 (100 )であって、  [1] A multi-tube heat exchange (100) comprising at least a can body (1), a tube plate (2, 21), and a heat transfer tube (3),
前記缶胴(1)は、中空構造の外被となるものであって、その両端部に前記管板 (2, 21)が各々取り付けられており、  The can body (1) is a hollow outer cover, and the tube plates (2, 21) are attached to both ends thereof,
前記伝熱管(3)は、複数本存在し、その各々のいずれか一の端部が少なくとも一の 前記管板(2, 21)に複数形成されて!/、る開口部(25)の一に挿入されることにより架 設されており、  There are a plurality of the heat transfer tubes (3), and any one end of each of the heat transfer tubes (3) is formed on at least one tube plate (2, 21). It is installed by being inserted into
前記伝熱管(3)の前記開口部(25)への挿入部分は、その挿入部分の両端 2箇所 が各々前記伝熱管(3)の外周に沿って前記開口部(25)を構成する管板 (2, 21)と 溶接により接続されて 、ることを特徴とする多管式熱交翻 ( 100)。  The insertion portion of the heat transfer tube (3) into the opening (25) is a tube plate in which two ends of the insertion portion respectively constitute the opening (25) along the outer periphery of the heat transfer tube (3). Multi-tubular heat exchange (100), characterized by being connected to (2, 21) by welding.
[2] 前記伝熱管(3)は、複数本存在し、その各々の両端部が前記管板 (2, 21)に各々 複数形成されている前記開口部(25)の一に挿入されることにより架設されており、 前記伝熱管(3)の前記開口部(25)への挿入部分は、その挿入部分の両端 2箇所 が各々前記伝熱管(3)の外周に沿って前記開口部(25)を構成する管板 (2, 21)と 溶接により接続されていることを特徴とする請求項 1記載の多管式熱交 (100)。  [2] A plurality of the heat transfer tubes (3) are present, and both end portions thereof are inserted into the openings (25) formed in the tube plate (2, 21). The insertion portion of the heat transfer tube (3) into the opening (25) has two openings at both ends of the insertion portion along the outer periphery of the heat transfer tube (3). The multi-tubular heat exchanger (100) according to claim 1, wherein the heat exchanger (100) is connected to the tube plate (2, 21) constituting the steel plate by welding.
[3] 前記伝熱管(3)の前記開口部(25)への挿入部分は、その挿入部分の両端 2箇所 のうちのいずれか 1箇所が前記伝熱管(3)の内側より溶接されていることを特徴とす る請求項 1記載の多管式熱交 ( 100)。  [3] The insertion portion of the heat transfer tube (3) into the opening (25) is welded at either one of the two ends of the insertion portion from the inside of the heat transfer tube (3). The multi-tubular heat exchanger (100) according to claim 1, characterized in that:
[4] 前記開口部(25)は、前記伝熱管(3)が架設される側の周縁部にお 、て突起部(2 6)が形成され、その突起部(26)にお 、て前記伝熱管(3)の内側から前記伝熱管(3 )の外周に沿って溶接されて ヽることを特徴とする請求項 1記載の多管式熱交 ( 100)。  [4] The opening (25) is formed with a protrusion (26) at the peripheral edge on the side where the heat transfer tube (3) is installed, and the protrusion (26) The multi-tube heat exchanger (100) according to claim 1, wherein the heat exchanger tube (3) is welded from the inside of the heat transfer tube (3) along the outer periphery of the heat transfer tube (3).
[5] 前記伝熱管(3)の前記開口部(25)への挿入部分にお 1、て、前記伝熱管(3)の管 壁 (31)と、前記開口部(25)を構成する管板 (2, 21)の内壁面 (29)と、前記挿入部 分の両端 2箇所の溶接部 (41)とにより空隙部 (45)が形成され、その空隙部 (45)に おいて外部に通じる孔 (46)が形成されていることを特徴とする請求項 1記載の多管 式熱交 (100)。 [5] The tube wall (31) of the heat transfer tube (3) and the tube constituting the opening (25) at the insertion portion of the heat transfer tube (3) into the opening (25) A gap (45) is formed by the inner wall surface (29) of the plate (2, 21) and the two welds (41) at both ends of the insertion portion, and the gap (45) is formed outside. The multi-tubular heat exchanger (100) according to claim 1, wherein a hole (46) is formed.
[6] 前記孔 (46)は、複数の前記空隙部 (45)を連通するようにして外部と通ずることを 特徴とする請求項 5記載の多管式熱交換器( 100)。 6. The multi-tube heat exchanger (100) according to claim 5, wherein the hole (46) communicates with the outside so as to communicate with the plurality of gaps (45).
[7] 前記孔 (46)は、複数の前記空隙部 (45)を連通するようにして前記缶胴(1)と管板 [7] The hole (46) communicates the plurality of gaps (45) with the can body (1) and the tube sheet.
(2, 21)との間に生じる空間(49)まで開孔されており、その空間(49)を介して前記 缶胴(1)に形成された検知孔 (47)により外部と通ずることを特徴とする請求項 5記載 の多管式熱交換器(100)。  To the space (49) created between (2, 21) and the outside through the space (49) through the detection hole (47) formed in the can body (1). The multitubular heat exchanger (100) according to claim 5, characterized in that it is characterized in that
[8] 前記伝熱管(3)の前記開口部(25)への挿入部分にお 1、て、前記伝熱管(3)が拡 管されて!ヽることを特徴とする請求項 1記載の多管式熱交 ( 100)。 [8] The heat transfer tube (3) according to claim 1, wherein the heat transfer tube (3) is expanded at a portion where the heat transfer tube (3) is inserted into the opening (25). Multi-tube heat exchange (100).
[9] 前記缶胴(1)内と前記伝熱管(3)内との双方^料が流れることにより、その飲料 間で熱交換がされることを特徴とする請求項 1記載の多管式熱交 (100)。 [9] The multi-tube type according to claim 1, wherein heat is exchanged between the beverages by flowing the material both in the can body (1) and in the heat transfer tube (3). Heat exchange (100).
[10] 管板 (2, 21)と伝熱管(3)との接続方法であって、 [10] A method of connecting the tube plate (2, 21) and the heat transfer tube (3),
前記伝熱管(3)を前記管板 (2, 21)の開口部(25)へ挿入するステップと、 前記伝熱管(3)の前記開口部(25)への挿入部分の両端 2箇所を各々前記伝熱管 Inserting the heat transfer tube (3) into the opening (25) of the tube plate (2, 21); and two ends of the insertion portion of the heat transfer tube (3) into the opening (25). Heat transfer tube
(3)の外周に沿って前記開口部(25)を構成する管板 (2, 21)と溶接により接続する ステップと、 Connecting the tube sheet (2, 21) constituting the opening (25) along the outer periphery of (3) by welding;
を備えることを特徴とする管板 (2, 21)と伝熱管 (3)との接続方法。  A method of connecting the tube sheet (2, 21) and the heat transfer tube (3), characterized by comprising:
PCT/JP2006/302690 2005-02-23 2006-02-16 Multitubular heat exchanger WO2006090626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-047622 2005-02-23
JP2005047622A JP2006234232A (en) 2005-02-23 2005-02-23 Tubular heat exchanger

Publications (1)

Publication Number Publication Date
WO2006090626A1 true WO2006090626A1 (en) 2006-08-31

Family

ID=36927268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302690 WO2006090626A1 (en) 2005-02-23 2006-02-16 Multitubular heat exchanger

Country Status (3)

Country Link
JP (1) JP2006234232A (en)
TW (1) TW200702623A (en)
WO (1) WO2006090626A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564203A (en) * 2010-12-31 2012-07-11 中国石油化工集团公司 Tube side type heat exchanger with composite double-tube plate structure
JP2015518951A (en) * 2012-05-24 2015-07-06 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for adjusting the temperature of the first fluid using the second fluid
AU2014253133B2 (en) * 2013-04-11 2016-09-22 Spx Flow Technology Danmark A/S Hygienic heat exchanger

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517086B2 (en) * 2008-02-29 2013-08-27 Caterpillar Inc. Composite heat exchanger end structure
TWI391872B (en) * 2008-10-14 2013-04-01 Chung Shan Inst Of Science Multi - band image imaging method
JP2010230252A (en) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd Heat exchanger
NO334102B1 (en) * 2010-09-07 2013-12-09 Pleat As Heat Exchanger
KR101298703B1 (en) * 2012-01-12 2013-08-21 주식회사 동화엔텍 Method for joining the tube and the tube sheet in shell
KR200475744Y1 (en) * 2013-05-21 2014-12-30 주식회사 동화엔텍 Joint structure of the tube and the tube sheet in shell and tube exchanger
TWI571378B (en) * 2015-03-25 2017-02-21 The pipe joint structure and manufacturing method of heat exchanger
EP3334994B1 (en) * 2015-08-11 2020-07-01 Linde GmbH Method of connecting tubes of a tube bundle heat-exchanger with a tube base of the tube bundle heat-exchanger
JP2022081037A (en) * 2020-11-19 2022-05-31 株式会社スギノマシン Multitubular heat exchanger and wet atomizer
CN115164619A (en) * 2022-07-29 2022-10-11 浙江融科多家居有限公司 Heat exchanger capable of disassembling and assembling modules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195287A (en) * 1985-02-25 1986-08-29 Mitsui Eng & Shipbuild Co Ltd Pipe plate made of clad steel
JPS62158996A (en) * 1985-12-28 1987-07-14 Kawasaki Heavy Ind Ltd Shell and tube type heat exchanger
JPH04136693A (en) * 1990-09-28 1992-05-11 Hitachi Ltd Shell-and-tube type water side heat exchanger
JPH08285489A (en) * 1995-04-19 1996-11-01 Kawasaki Heavy Ind Ltd Heat exchanging method and heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195287A (en) * 1985-02-25 1986-08-29 Mitsui Eng & Shipbuild Co Ltd Pipe plate made of clad steel
JPS62158996A (en) * 1985-12-28 1987-07-14 Kawasaki Heavy Ind Ltd Shell and tube type heat exchanger
JPH04136693A (en) * 1990-09-28 1992-05-11 Hitachi Ltd Shell-and-tube type water side heat exchanger
JPH08285489A (en) * 1995-04-19 1996-11-01 Kawasaki Heavy Ind Ltd Heat exchanging method and heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564203A (en) * 2010-12-31 2012-07-11 中国石油化工集团公司 Tube side type heat exchanger with composite double-tube plate structure
CN102564203B (en) * 2010-12-31 2013-09-11 中国石油化工集团公司 Tube side type heat exchanger with composite double-tube plate structure
JP2015518951A (en) * 2012-05-24 2015-07-06 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for adjusting the temperature of the first fluid using the second fluid
US9695733B2 (en) 2012-05-24 2017-07-04 Mahle International Gmbh Heat exchanger for controlling the temperature of a first fluid using a second fluid
AU2014253133B2 (en) * 2013-04-11 2016-09-22 Spx Flow Technology Danmark A/S Hygienic heat exchanger
US10627169B2 (en) 2013-04-11 2020-04-21 Spx Flow Technology Danmark A/S Hygienic heat exchanger
US11885574B2 (en) 2013-04-11 2024-01-30 Spx Flow Technology Danmark A/S Hygienic heat exchanger

Also Published As

Publication number Publication date
TW200702623A (en) 2007-01-16
JP2006234232A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
WO2006090626A1 (en) Multitubular heat exchanger
US20110056653A1 (en) Shell-and-Tube Heat Exchanger
US6626235B1 (en) Multi-tube heat exchanger with annular spaces
US11885574B2 (en) Hygienic heat exchanger
JP2007057134A (en) Shell-and-tube heat exchanger
US20120193072A1 (en) Heat exchanger
CA2708055C (en) Heat exchanger for cooling reaction gas, including a tubular connection between a cooled tube and an uncooled tube
CN205607185U (en) Heat exchanger convenient to dismantle heat exchange tube
JP4141991B2 (en) Multi-tube heat exchanger
KR20100000435U (en) Floating Head Type Heat Exchanger
JP2017101840A (en) Triple pipe-type heat exchanger
CN109186287A (en) A kind of sanitation-grade ectonexine displaced type heat exchanger
JP3479733B2 (en) Multi-tube heat exchanger
CN201203368Y (en) Pipe-type heat exchanger
JPH08313177A (en) Multi-tube type heat exchanger
CN108645262B (en) Jacket type heat exchanger
US20080271877A1 (en) Apparatus for multi-tube heat exchanger with turbulence promoters
JP2011080678A (en) Heat exchanger
JP3922088B2 (en) Heat exchanger
JP2011133141A (en) Heating pipe and cooking machine
JP2017009265A (en) Multi-pipe type heat exchanger
CN214892758U (en) High-efficiency shell-and-tube heat exchanger
AU2010270298B2 (en) Heat exchanger
JP2007309562A (en) Heat exchanger
JP4552567B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713831

Country of ref document: EP

Kind code of ref document: A1