JPH08285489A - Heat exchanging method and heat exchanger - Google Patents
Heat exchanging method and heat exchangerInfo
- Publication number
- JPH08285489A JPH08285489A JP7117958A JP11795895A JPH08285489A JP H08285489 A JPH08285489 A JP H08285489A JP 7117958 A JP7117958 A JP 7117958A JP 11795895 A JP11795895 A JP 11795895A JP H08285489 A JPH08285489 A JP H08285489A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- gas
- heated
- tube sheet
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/002—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/16—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
- F28F9/18—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
- F28F9/182—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、流体間の熱交換を行な
う多管式(シェルアンドチューブ型)の熱交換方法及び
この方法を実施する熱交換器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shell-and-tube type heat exchange method for exchanging heat between fluids and a heat exchanger for implementing this method.
【0002】[0002]
【従来の技術】流体間の熱交換器、たとえば、スチレン
モノマー製造装置における脱水素反応器へ供給される低
温ガス(約100℃)の加熱を行うと同時に、脱水素反
応器を出た高温ガス(500〜600℃)の冷却を行う
多管式のガス−ガス熱交換器は、プロセスの要求する機
器配置上の都合から、管側流体のすぐ下流にあたる熱交
換器と直列一体形とする必要があり、また、管側、シェ
ル側の運転時における平均温度の差が大きいために、伝
熱管(チューブ)とシェルの熱膨張による伸び差を吸収
する必要がある。このため、この熱交換器は、従来よ
り、管シェル側より1パスで、かつ後部管板を遊動形と
した熱交換器、又は、伸縮継手を、シェル外部又はシェ
ル内部に設けた固定管板形熱交換器とすることが一般的
である。2. Description of the Related Art A low temperature gas (about 100 ° C.) supplied to a heat exchanger between fluids, for example, a dehydrogenation reactor in a styrene monomer production apparatus is heated, and at the same time, a high temperature gas leaving the dehydrogenation reactor is heated. The multi-tube gas-gas heat exchanger for cooling (500 to 600 ° C.) needs to be integrated in series with the heat exchanger immediately downstream of the fluid on the pipe side because of the equipment layout required for the process. In addition, since there is a large difference in average temperature between the tube side and the shell side during operation, it is necessary to absorb the difference in expansion due to thermal expansion between the heat transfer tube (tube) and the shell. Therefore, this heat exchanger is conventionally a heat exchanger with one pass from the tube shell side and the rear tube sheet being a floating type, or a fixed tube sheet provided with an expansion joint outside or inside the shell. It is common to use a form heat exchanger.
【0003】従来、上記の熱交換器においては、実開平
2−70868号公報に記載されているように、前部管
板では、図7に示すような伝熱管1と管板2との溶接取
付構造(以下、タイプDという)が採用されており、後
部管板では、図6に示すような拡管を併用した伝熱管1
と管板2との溶接取付構造(以下、タイプCという)が
採用されていた。すなわち、タイプDは、管板2の端部
開口3に伝熱管1の端部を挿入して溶接する構造であ
り、タイプCは、管板2の孔4に伝熱管1を伝熱管の先
端が管板2から突出するように挿入し、伝熱管の先端と
管板とを溶接し、溶接前または溶接後に伝熱管の管板へ
挿入された部分を拡管する構造である。5、6は溶接部
である。Conventionally, in the above heat exchanger, as described in Japanese Utility Model Laid-Open No. 2-70868, in the front tube sheet, the heat transfer tube 1 and the tube sheet 2 are welded as shown in FIG. A mounting structure (hereinafter referred to as type D) is adopted, and in the rear tube sheet, a heat transfer tube 1 that also uses expansion as shown in FIG.
A welded attachment structure (hereinafter referred to as type C) between the tube sheet 2 and the tube sheet 2 was adopted. That is, the type D has a structure in which the end portion of the heat transfer tube 1 is inserted into the end opening 3 of the tube sheet 2 and welded, and the type C has the heat transfer tube 1 in the hole 4 of the tube sheet 2 and the tip of the heat transfer tube. Is inserted so as to project from the tube sheet 2, the tip of the heat transfer tube and the tube sheet are welded, and the portion of the heat transfer tube inserted into the tube sheet is expanded before or after welding. Reference numerals 5 and 6 are welded portions.
【0004】上記のスチレンモノマー製造装置における
熱交換器では、ガスの性状と運転条件から、シェル側で
ガスの流れが滞留しがちな管板付近では、ガス中に含ま
れる炭素が炭素粒子として析出しやすい環境にある。図
6に示すタイプC及び図7に示すタイプDの溶接取付構
造では、伝熱管1と管板2との間の隙間を完全になくす
ことができず、微小範囲ながら隙間が残る。このため、
炭素の析出が起こった場合、炭素の微粒子がこの隙間に
侵入し、長時間の運転を経るうちに、伝熱管と管板の隙
間で成長、固化した炭素は伝熱管を内側へ圧迫、変形さ
せ(伝熱管のネッキング現象)、ついには伝熱管−管板
溶接部、又は伝熱管を損傷させ、管シェル間のガス洩れ
に至る。このような現象は、一般に前部管板で起こりや
すいことが知られているが、後部管板でも同様な現象が
起こりうるため、この炭素析出に起因する伝熱管−管板
溶接部又は伝熱管破損の問題を解決する必要があった。In the heat exchanger in the above-mentioned styrene monomer producing apparatus, carbon contained in the gas is deposited as carbon particles in the vicinity of the tube plate where the gas flow tends to stay on the shell side due to the nature of gas and operating conditions. It is in an easy environment. In the type C welded mounting structure shown in FIG. 6 and the type D welded structure shown in FIG. 7, the gap between the heat transfer tube 1 and the tube sheet 2 cannot be completely eliminated, and a gap remains in a minute range. For this reason,
When carbon precipitates, carbon particles intrude into this gap, and over a long period of operation, the carbon that grows and solidifies in the gap between the heat transfer tube and the tube sheet presses the heat transfer tube inward and deforms it. (Necking phenomenon of heat transfer tube), eventually the heat transfer tube-tube plate welded portion or the heat transfer tube is damaged, leading to gas leakage between the tube shells. It is known that such a phenomenon is generally likely to occur in the front tube sheet, but since a similar phenomenon can occur in the rear tube sheet, the heat transfer tube-tube sheet welded portion or heat transfer tube caused by the carbon precipitation is generated. Needed to fix the corruption issue.
【0005】この問題を解決するために、実開平2−7
0868号公報に記載されているように、つぎのような
溶接構造が提案されている。すなわち、図4及び図5に
示すように、管1側、シェル側とも1パスで、かつ、伝
熱管1とシェルとの熱膨張による伸び差を吸収できるよ
うに、後部管板を遊動形の構造、又は伸縮継手をシェル
外部もしくはシェル内部に設けた固定管板形の構造とし
た多管式熱交換器において、前部管板及び後部管板が、
伝熱管1と管板2との間の隙間がなくなるように、下記
のタイプA(図4参照)又は/及び下記のタイプB(図
5参照)の伝熱管と管板との溶接取付構造を有するもの
である。 (a) タイプAの伝熱管と管板との溶接取付構造は、
図4に示すように、管板2に伝熱管1の内径と等しい孔
13を設け、この孔の一端に伝熱管1の外径よりやや厚
い周縁部14を突出させ、この周縁部の内側を周回状に
切り欠いて伝熱管を挿入・当接するストッパ15を形成
し、このストッパ内に伝熱管の一端を挿入して伝熱管1
と管板2とを溶接してなる構造。なお、伝熱管1の中心
線の上側は溶接前の状態を示し、伝熱管1の中心線の下
側は、溶接後の状態を示している。16は溶接部、17
は溝である。 (b) タイプBの伝熱管と管板との溶接取付構造は、
図5に示すように、管板2にテーパ状の孔18及びこの
孔の小径部に連通する直管状の小径孔20を設け、この
小径孔内に、先端内側を周回状に切り欠いた伝熱管1を
切欠部24の長さ分だけ挿入して、小径孔20と伝熱管
先端部とを溶接してなる構造。なお、伝熱管1の中心線
の上側は溶接前の状態を示し、伝熱管1の中心線の下側
は溶接後の状態を示している。21、22、23は溶接
部、24は切欠部である。[0005] In order to solve this problem, the actual Kaihei 2-7
As described in Japanese Patent No. 0868, the following welding structure has been proposed. That is, as shown in FIGS. 4 and 5, the rear tube sheet is of a floating type so that the tube 1 side and the shell side each have one pass and the difference in expansion due to thermal expansion between the heat transfer tube 1 and the shell can be absorbed. In a multi-tube heat exchanger having a structure or a fixed tube plate type structure in which an expansion joint is provided outside or inside the shell, the front tube sheet and the rear tube sheet are
In order to eliminate the gap between the heat transfer tube 1 and the tube plate 2, a welding attachment structure of the following type A (see FIG. 4) or / and the following type B (see FIG. 5) heat transfer tube and tube sheet is used. I have. (A) The welded mounting structure between the type A heat transfer tube and the tube sheet is
As shown in FIG. 4, a hole 13 having the same inner diameter as that of the heat transfer tube 1 is provided in the tube sheet 2, and a peripheral edge 14 slightly thicker than the outer diameter of the heat transfer tube 1 is projected at one end of the hole, and the inside of the peripheral edge is The heat transfer tube 1 is formed by forming a stopper 15 into which the heat transfer tube is inserted and abutted by cutting out in a circular shape and inserting one end of the heat transfer tube into this stopper.
And tube plate 2 are welded together. The upper side of the center line of the heat transfer tube 1 shows the state before welding, and the lower side of the center line of the heat transfer tube 1 shows the state after welding. 16 is a welded part, 17
Is a groove. (B) The welded mounting structure between the type B heat transfer tube and the tube sheet is
As shown in FIG. 5, the tube sheet 2 is provided with a tapered hole 18 and a straight tubular small-diameter hole 20 communicating with the small-diameter portion of the hole. The structure in which the heat pipe 1 is inserted by the length of the notch 24 and the small diameter hole 20 and the tip of the heat transfer pipe are welded. The upper side of the center line of the heat transfer tube 1 shows the state before welding, and the lower side of the center line of the heat transfer tube 1 shows the state after welding. Reference numerals 21, 22, and 23 are welded portions, and 24 is a cutout portion.
【0006】また、特開平6−170532号公報に
は、ネッキング現象及びメタルダスティング現象(CO
2 及びCOを含むガス雰囲気にある金属が、組織変化を
起こした(ベントナイト組織になっている)溶接部を起
点とし、浸炭と高温酸化とを同時に受けて腐食する現
象)を防止するために、多管式のガス−ガス熱交換器に
おいて、チューブ及び管板としてフェライト系クロム・
モリブデン鋼を使用し、管板に設けた穴にチューブの先
端を挿入するとともに、シェル内のガスと接触する側の
管板表面上に全周的に裏波が形成されるよう、ニッケル
合金のフィラーを用いる溶接によってチューブ先端と管
板とを接合した構成が記載されている。Further, Japanese Patent Laid-Open No. 6-170532 discloses a necking phenomenon and a metal dusting phenomenon (CO
In order to prevent a metal in a gas atmosphere containing 2 and CO from being a starting point of a welded portion having a structural change (having a bentonite structure) and being corroded by simultaneous carburization and high temperature oxidation), In a multi-tube gas-gas heat exchanger, ferrite-based chromium as tubes and tube plates
Using molybdenum steel, insert the tip of the tube into the hole provided in the tube sheet, and use a nickel alloy of nickel alloy so that the back wave is formed all around the tube sheet surface on the side that comes into contact with the gas in the shell. It describes a configuration in which the tube tip and the tube sheet are joined by welding using a filler.
【0007】[0007]
【発明が解決しようとする課題】上記のように、実開平
2−70868号公報には、チューブのネッキングによ
る溶接部の損傷を防止するために、チューブと管板との
取付に図4に示すタイプA又は図5に示すタイプBの溶
接構造を有す熱交換器が記載されている。また、特開平
6−170532号公報には、チューブのネッキング及
びメタルラスティングによるチューブ溶接部の損傷を防
止するために、図5に示すタイプBの溶接構造に類似の
溶接構造を持ち、溶接棒にニッケル合金を使用すること
が記載されている。As described above, in Japanese Utility Model Laid-Open No. 2-70868, the attachment of the tube and the tube sheet is shown in FIG. 4 in order to prevent the welded portion from being damaged by the necking of the tube. A heat exchanger having a welded structure of type A or type B shown in FIG. 5 is described. Further, Japanese Patent Laid-Open No. 6-170532 discloses a welding rod having a welding structure similar to the type B welding structure shown in FIG. 5 in order to prevent the tube welded portion from being damaged by necking of the tube and metal lasting. The use of nickel alloys is described.
【0008】しかし、実開平2−70868号公報記載
の構成では、チューブのネッキングの問題は解決する
が、製作材料として高価なステンレス鋼を使用しなけれ
ばメタルダスティングの問題は解決しない。また、特開
平6−170532号公報記載の構成では、ネッキン
グ、メタルダスティングの問題の両方とも解決するが、
管板の溶接オーバレイや部分的なニッケル合金の使用に
より、十分に安価ではなく、かつ、異材の組合せにより
高温の異材溶接部に過大な熱応力が発生するという問題
が残る。本発明は上記の諸点に鑑みなされたもので、本
発明の目的は、メタルダスティング現象によるチューブ
溶接部及び前部管板の損傷を防止し、かつ、安価に製作
することができる熱交換方法及び熱交換器を提供するこ
とにある。However, the structure described in Japanese Utility Model Laid-Open No. 2-70868 solves the problem of tube necking, but does not solve the problem of metal dusting unless expensive stainless steel is used as a manufacturing material. Further, the configuration described in Japanese Patent Laid-Open No. 6-170532 solves both the problems of necking and metal dusting,
Due to the welding overlay of the tube sheet and the partial use of the nickel alloy, there remains a problem that it is not sufficiently inexpensive and that the dissimilar material combination causes excessive thermal stress in the dissimilar material welded portion. The present invention has been made in view of the above points, and an object of the present invention is to prevent damage to a tube welded portion and a front tube sheet due to a metal dusting phenomenon and to manufacture the heat exchange method at low cost. And to provide a heat exchanger.
【0009】[0009]
【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明の熱交換方法は、チューブ側に冷
却すべき流体を、シェル側に加熱すべき流体を流して熱
交換する方法において、前部管板近傍のチューブ入口管
部に、シェル出口の加熱された流体の温度より低い温度
のスチームを導入して、前部管板のシェル側表面及びチ
ューブと前部管板との溶接部を含むチューブ入口管部を
冷却するものである。また、本発明の他の熱交換方法
は、チューブ側に冷却すべきガスを、シェル側に加熱す
べきガスを流して熱交換する方法において、前部管板の
チューブ入口管部に短管を挿入して、該短管内に冷却す
べきガスを流すとともに、該短管と前記チューブ入口管
部との間の環状空間に、シェル出口の加熱されたガスの
温度より低い温度のスチームを導入して、前部管板のシ
ェル側表面及びチューブと前部管板との溶接部を含むチ
ューブ入口管部を冷却した後、冷却すべきガスに混合す
ることを特徴としている。さらに、本発明の他の熱交換
方法は、チューブ側に冷却すべきガスを、シェル側に加
熱すべきガスを流して熱交換する方法において、前部管
板のチューブ入口管部の後流側に該前部管板に略平行に
仕切板を設けて仕切室を形成し、この仕切室に、シェル
出口の加熱されたガスの温度より低い温度のスチームを
導入して、前部管板のシェル側表面及びチューブと前部
管板との溶接部を含むチューブ入口管部を冷却した後、
加熱されたガスに混合することを特徴としている。In order to achieve the above object, the heat exchange method of the present invention heat-exchanges by flowing a fluid to be cooled on the tube side and a fluid to be heated on the shell side. In the method, a steam having a temperature lower than the temperature of the heated fluid at the shell outlet is introduced into the tube inlet tube portion near the front tube sheet, and the shell side surface of the front tube sheet and the tube and the front tube sheet. The tube inlet pipe part including the welded part is cooled. Further, another heat exchange method of the present invention is a method of performing heat exchange by flowing gas to be cooled on the tube side and gas to be heated on the shell side, in which a short tube is provided at the tube inlet tube portion of the front tube sheet. The gas to be cooled is inserted into the short pipe, and steam having a temperature lower than the temperature of the heated gas at the shell outlet is introduced into the annular space between the short pipe and the tube inlet pipe portion. After cooling the shell side surface of the front tube sheet and the tube inlet tube section including the welded portion between the tube and the front tube sheet, the tube inlet tube section is mixed with the gas to be cooled. Further, another heat exchange method of the present invention is a method of performing heat exchange by flowing gas to be cooled on the tube side and gas to be heated on the shell side, in which the gas is to be exchanged on the rear side of the tube inlet tube of the front tube sheet. A partition plate is provided substantially parallel to the front tube sheet to form a partition chamber, and steam having a temperature lower than the temperature of the heated gas at the shell outlet is introduced into the partition chamber to remove the front tube sheet. After cooling the tube inlet tube section including the shell side surface and the welded section of the tube and the front tube sheet,
It is characterized by being mixed with a heated gas.
【0010】本発明の熱交換器は、チューブ側に冷却す
べき流体を、シェル側に加熱すべき流体を流して熱交換
する、チューブと管板とを溶接取付けした構造の熱交換
器において、前部管板近傍のチューブ入口管部に、該前
部管板と仕切板とによって囲まれた仕切室を設け、この
仕切室に冷却用スチーム導入管を接続したことを特徴と
している。また、本発明の他の熱交換器は、チューブ側
に冷却すべきガスを、シェル側に加熱すべきガスを流し
て熱交換する、チューブと管板とを溶接取付けした構造
の熱交換器において、前部管板の上流側にこの前部管板
と略平行に仕切板を設けて仕切室を形成し、この前部管
板のチューブ入口管部に先端が挿入されるように、チュ
ーブ内径より小さい外径の短管を前記仕切板に取り付
け、前記仕切室に冷却用スチーム導入管を接続したこと
を特徴としている。さらに、本発明の他の熱交換器は、
チューブ側に冷却すべきガスを、シェル側に加熱すべき
ガスを流して熱交換する、チューブと管板とを溶接取付
けした構造の熱交換器において、前部管板の下流側にこ
の前部管板と略平行に仕切板を設けて仕切室を形成し、
この仕切室に冷却用スチーム導入管を接続し、冷却後の
加熱されたスチームが加熱されたガスに混入するよう
に、前記仕切板の先端部と加熱されたガスが通過するシ
ェル内とが連通しするように構成されている。The heat exchanger of the present invention is a heat exchanger having a structure in which a tube and a tube plate are welded and attached, in which a fluid to be cooled is flowed to the tube side and a fluid to be heated is flowed to the shell side to exchange heat. A partition chamber surrounded by the front tube plate and a partition plate is provided in the tube inlet pipe section near the front tube plate, and a cooling steam introducing pipe is connected to the partition chamber. Further, another heat exchanger of the present invention is a heat exchanger having a structure in which a tube and a tube plate are welded and attached, in which the gas to be cooled on the tube side is exchanged with the gas to be heated on the shell side for heat exchange. , A partition plate is provided on the upstream side of the front tube sheet in a direction substantially parallel to the front tube sheet to form a partition chamber, and the inner diameter of the tube is inserted so that the tip is inserted into the tube inlet tube section of the front tube sheet. A short pipe having a smaller outer diameter is attached to the partition plate, and a cooling steam introducing pipe is connected to the partition chamber. Furthermore, another heat exchanger of the present invention is
In a heat exchanger having a structure in which a tube and a tube sheet are welded and attached, in which a gas to be cooled on the tube side and a gas to be heated are made to flow on the shell side to perform heat exchange, the front portion is provided on the downstream side of the front tube sheet. A partition plate is provided in parallel with the tube plate to form a partition chamber.
A cooling steam introduction pipe is connected to this partition chamber, and the tip of the partition plate and the inside of the shell through which the heated gas passes are connected so that the heated steam after cooling is mixed with the heated gas. Is configured to do.
【0011】チューブと前部管板(高温側管板)との溶
接構造としては、例えば、前述のタイプA(図4参
照)、タイプB(図5参照)、タイプC(図6参照)、
タイプD(図7参照)、これらに類似の溶接構造を挙げ
ることができる。上記の構成における作用を説明する
と、前部管板近傍のチューブ入口管部に、シェル出口の
加熱された流体の温度より低い温度のスチームを導入し
て、前部管板のシェル側表面及びチューブと前部管板と
の溶接部を含むチューブ入口管部を冷却し、冷却に使用
されたスチームはチューブ内の流体、又はシェル内の流
体に混合される。The welding structure of the tube and the front tube sheet (high temperature side tube sheet) is, for example, the above-mentioned type A (see FIG. 4), type B (see FIG. 5), type C (see FIG. 6),
Type D (see FIG. 7), welded structures similar to these can be mentioned. Explaining the operation in the above configuration, the steam at a temperature lower than the temperature of the heated fluid at the shell outlet is introduced into the tube inlet pipe portion near the front tube sheet, and the shell side surface of the front tube sheet and the tube. The tube inlet tube, including the weld between the tube and the front tube sheet, is cooled and the steam used for cooling is mixed with the fluid in the tube or the fluid in the shell.
【0012】[0012]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、適宜変更して実施することが可能なもので
ある。 実施例1 図1は本実施例における、チューブ側にスチームを吹き
込むようにした熱交換器を示し、図2は図1における要
部を拡大したものを示している。図1及び図2は、一例
として、スチレンモノマー製造装置の脱水素反応部にお
いて、脱水素反応器への供給ガスを予熱し、同時に脱水
素反応器を出た反応器ガスを冷却する多管式熱交換器を
示している。EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made as appropriate. Example 1 FIG. 1 shows a heat exchanger in which steam is blown into the tube side in this example, and FIG. 2 shows an enlarged main part in FIG. FIG. 1 and FIG. 2 show, as an example, a multitubular system in which a feed gas to the dehydrogenation reactor is preheated in the dehydrogenation reaction section of a styrene monomer production apparatus, and at the same time, the reactor gas leaving the dehydrogenation reactor is cooled. The heat exchanger is shown.
【0013】30はシェル(胴)、32は前部管板(高
温側管板)、34は後部管板(低温側管板)、36はチ
ャンネルで、前部管板32と後部管板34との間に、多
数のチューブ(伝熱管)38が水平方向に配設されてい
る。前部管板32には、多数のチューブ38に対応する
開口40及びこれらの開口に連通する短円筒42が設け
られており、これらの短円筒42とチューブ38の一端
とが、前述のタイプA〜D、又はこれらに類似した溶接
構造により接合されてチューブ入口管部44を形成して
いる。46はチューブ溶接部、48はバッフル、50は
供給ガス入口、52は供給ガス出口である。Reference numeral 30 is a shell (body), 32 is a front tube sheet (high temperature side tube sheet), 34 is a rear tube sheet (low temperature side tube sheet), and 36 is a channel, which is a front tube sheet 32 and a rear tube sheet 34. A large number of tubes (heat transfer tubes) 38 are arranged in the horizontal direction between and. The front tube sheet 32 is provided with openings 40 corresponding to a large number of tubes 38 and short cylinders 42 communicating with these openings, and these short cylinders 42 and one end of the tubes 38 are the above-mentioned type A. To D, or a welded structure similar thereto, to form the tube inlet tube portion 44. 46 is a tube weld, 48 is a baffle, 50 is a supply gas inlet, and 52 is a supply gas outlet.
【0014】前記管板32の上流側(チャンネル側)に
この前部管板32と略平行に仕切板54を設けて前部管
板32との間に仕切室56を形成し、この前部管板32
のチューブ入口管部44に先端が挿入されるように、チ
ューブ38の内径よりやや小さい外径を有する短管(フ
ェルール)58を前記仕切板54に、チューブ入口管部
44に対応して複数個取り付け、さらに仕切室56に冷
却用スチーム導入管60を接続している。62はスペー
サーである。なお、短管58は仕切板54から着脱可能
なように設けることが好ましい。A partition plate 54 is provided on the upstream side (channel side) of the tube plate 32 so as to be substantially parallel to the front tube plate 32, and a partition chamber 56 is formed between the partition plate 54 and the front tube plate 32. Tube sheet 32
A plurality of short tubes (ferrules) 58 having an outer diameter slightly smaller than the inner diameter of the tube 38 are provided in the partition plate 54 so as to be inserted into the tube inlet tube portion 44 of the tube 38. A steam introducing pipe 60 for cooling is attached to the partition chamber 56. 62 is a spacer. The short pipe 58 is preferably provided so as to be detachable from the partition plate 54.
【0015】上記の熱交換器において、前部管板面のチ
ューブ開口40は、仕切板54により反応器ガスに接す
ることはない。反応器ガスは短管58内に導かれてチュ
ーブ38内を流れ、かつ、仕切板54と前部管板32と
に囲まれた仕切室56内に低温スチームが導かれ、この
スチームは短管58の外面とチューブ38の内面との環
状空間64を通って、チューブ38内で反応器ガスと混
合される。反応器ガス中には、もともと多量のスチーム
が含まれているので、少量のスチームが混入しても悪影
響を与えることはない。本実施例においては、供給ガス
は例えば100℃で導入され、例えば580℃の反応器
ガスと熱交換して、例えば530℃の供給ガスに予熱さ
れる。この場合、スチームは冷却効果を高めるために、
400℃以下、望ましくは200〜300℃とするのが
好適である。In the above heat exchanger, the tube opening 40 on the front tube plate surface is not in contact with the reactor gas by the partition plate 54. The reactor gas is introduced into the short pipe 58 and flows in the tube 38, and low-temperature steam is introduced into the partition chamber 56 surrounded by the partition plate 54 and the front tube plate 32, and this steam is the short pipe. It is mixed with the reactor gas in the tube 38 through an annular space 64 between the outer surface of 58 and the inner surface of the tube 38. Since a large amount of steam is originally contained in the reactor gas, even if a small amount of steam is mixed, it does not have a bad influence. In this example, the feed gas is introduced at, for example, 100 ° C., exchanges heat with the reactor gas at, for example, 580 ° C. and is preheated to the feed gas at, for example, 530 ° C. In this case, the steam will increase the cooling effect,
The temperature is preferably 400 ° C or lower, and more preferably 200 to 300 ° C.
【0016】本実施例における熱交換器製作材料として
は、例えば、低合金鋼である21/4Cr−1Mo鋼が
使用される。また、前部管板(高温側管板)32側での
チューブと管板との取付は、前述のタイプA又はタイプ
Bの溶接構造とすることが好ましい。このように構成す
れば、チューブのネッキング現象をも防止することがで
きる。仕切板54及び短管58の製作材料としては、例
えば、304ステンレス鋼が用いられる。仕切板54は
複数に分割し、ボルト止めにてチャンネル36内で取り
付け、分解可能な構造とする。また、分割された部材は
マンホールから出し入れ可能な大きさとする。短管58
は仕切板54から着脱可能な構造とし、分解すれば管板
面の点検が容易に行なえるようにする。As a material for manufacturing the heat exchanger in this embodiment, for example, 21 / 4Cr-1Mo steel which is a low alloy steel is used. Further, it is preferable that the tube and the tube sheet are attached on the front tube sheet (high temperature side tube sheet) 32 side by the welding structure of type A or type B described above. With this structure, the necking phenomenon of the tube can be prevented. As a material for manufacturing the partition plate 54 and the short tube 58, 304 stainless steel is used, for example. The partition plate 54 is divided into a plurality of parts, and is attached inside the channel 36 by bolting so that the partition plate 54 can be disassembled. Further, the divided members are sized so that they can be inserted and removed from the manhole. Short pipe 58
Has a structure that can be detached from the partition plate 54 so that the surface of the tube plate can be easily inspected when disassembled.
【0017】メタルダスティング現象の一つのメカニズ
ムとして、供給ガス中のC成分が析出し、このCが金属
面に付着して金属が浸炭され、酸化との同時進行により
金属表面から腐食損傷していくものと考えられている。
メタルダスティングの起こる温度域は450〜800℃
であるが、この熱交換器の製作材料21/4Cr−1M
o鋼に対しては、実際に損傷を受けた熱交換器の調査結
果から、約550℃以上でメタルダスティングが最も起
こり易いと考えられている。21/4Cr−1Mo鋼で
製作された熱交換器で、仕切室も短管(フェルール)も
設けない場合、チューブ溶接部は反応器ガス(約580
℃)と出口側の供給ガス(約530℃)の中間温度とな
り、チューブの部位によっては550℃を超えるので、
メタルダスティングが起こりうる。一方、本実施例の熱
交換器では、チャンネル36内の仕切室56を通し、低
温スチーム(約400℃以下)を短管58の外面とチュ
ーブ38の内面との環状空間64に流すことにより、チ
ューブ溶接部は約500℃以下の十分に低い温度となる
ので、製作材料に高価なステンレス鋼を使用することな
くメタルダスティングを防止することができる。また、
仕切板54及び短管58の製作や取付けは容易であり、
材料も少量で済むので、これらの部品を取り付けない場
合に比較して、熱交換器製作費の増加はごく僅かであ
る。As one mechanism of the metal dusting phenomenon, the C component in the supply gas is deposited, and this C adheres to the metal surface to carburize the metal, resulting in corrosion damage from the metal surface due to simultaneous progress with oxidation. It is thought to go.
The temperature range where metal dusting occurs is 450 to 800 ° C.
However, the manufacturing material of this heat exchanger is 21 / 4Cr-1M.
For o steel, it is considered that metal dusting is most likely to occur at about 550 ° C. or higher, based on the results of investigations on a heat exchanger that was actually damaged. In a heat exchanger made of 21 / 4Cr-1Mo steel, if no partition chamber or short tube (ferrule) is provided, the tube weld will be the reactor gas (approximately 580
(° C) and the supply gas (about 530 ° C) on the outlet side, which exceeds 550 ° C depending on the part of the tube.
Metal dusting can occur. On the other hand, in the heat exchanger of the present embodiment, low-temperature steam (about 400 ° C. or less) is passed through the partition chamber 56 in the channel 36 to flow into the annular space 64 between the outer surface of the short tube 58 and the inner surface of the tube 38. Since the tube weld has a sufficiently low temperature of about 500 ° C. or lower, metal dusting can be prevented without using expensive stainless steel as a manufacturing material. Also,
The partition plate 54 and the short pipe 58 are easy to manufacture and attach,
Since only a small amount of material is required, the cost of manufacturing the heat exchanger is slightly increased as compared with the case where these parts are not attached.
【0018】実施例2 本実施例は、図3に示すように、シェル側に低温スチー
ムを吹き込む構造とすることにより、溶接部の温度を下
げてメタルダスティングによる溶接部の損傷を防止する
ものである。すなわち、前部管板(高温側管板)32の
下流側(図3における右側)にこの前部管板32と略平
行に仕切板(デフレクタープレート)66を設けて前部
管板32との間に仕切室68を形成し、この仕切室68
に冷却用スチーム導入管70を接続し、冷却後の加熱さ
れたスチームが、加熱された供給ガスに混入するよう
に、前記仕切板66の先端部(図3では下端部)と加熱
された供給ガスが通過するシェル内とが連通するように
構成されている。72は連通部である。供給ガス中に
は、もともと多量のスチームが含まれているので、少量
のスチームが混入しても悪影響を与えることはない。本
実施例の熱交換器においては、低温スチームによる溶接
部46の冷却以外に、仕切板66が設けられていること
により、前部管板32のシェル側表面及び溶接部46を
含むチューブ入口管部に浸炭性の供給ガスが接触しな
い。したがって、スチーム温度は500℃以下とすれば
十分である。他の構成及び作用は実施例1の場合と同様
である。Embodiment 2 In this embodiment, as shown in FIG. 3, low temperature steam is blown to the shell side to lower the temperature of the welded portion and prevent damage to the welded portion due to metal dusting. Is. That is, a partition plate (deflector plate) 66 is provided on the downstream side (right side in FIG. 3) of the front tube sheet (high temperature side tube sheet) 32 substantially parallel to the front tube sheet 32 and the front tube sheet 32. A partition chamber 68 is formed between these partition chambers 68
A cooling steam introducing pipe 70 is connected to the cooling steam introduction pipe 70, and the heated steam after cooling is mixed with the heated supply gas so that the leading end portion (lower end portion in FIG. 3) of the partition plate 66 and the heated supply gas are supplied. It is configured to communicate with the inside of the shell through which the gas passes. 72 is a communication part. Since a large amount of steam is originally contained in the supply gas, even if a small amount of steam is mixed, it does not have an adverse effect. In the heat exchanger of this embodiment, the partition plate 66 is provided in addition to the cooling of the welded portion 46 by the low temperature steam, so that the shell side surface of the front tube sheet 32 and the tube inlet pipe including the welded portion 46 are provided. The carburizing feed gas does not come into contact with the parts. Therefore, it is sufficient that the steam temperature is 500 ° C. or lower. Other configurations and operations are similar to those of the first embodiment.
【0019】[0019]
【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 前部管板(高温側管板)近傍のチューブ入口管
部に、シェル出口の加熱された流体の温度より低い温度
のスチームを導入して、前部管板のシェル側表面及びチ
ューブと前部管板との溶接部を含むチューブ入口管部を
冷却することにより、チューブ溶接部は低い温度となる
ので、製作材料に高価なステンレス鋼を使用することな
くメタルダスティングを防止又は軽減することができ
る。この場合、チューブ溶接部が約500℃以下になる
ように、冷却用スチームの温度を設定することにより、
メタルダスティングを確実に防止することができる。 (2) 仕切板や短管(フェルール)の製作や取付は容
易であり、材料も少量で済むので、これらの部品を取り
付けない場合に比べて、熱交換器の製作費はそれほど安
価にはならない。 (3) シェル側にスチームを吹き込むように構成する
場合は、前部管板のシェル側表面及びチューブ溶接部を
含むチューブ入口管部に加熱すべき流体が接触しないの
で、この加熱すべき流体が浸炭性のガスである場合は、
低温スチームによる前部管板のシェル側表面及びチュー
ブ溶接部を含むチューブ入口管部の冷却と相俟って、メ
タルダスティングをより確実に防止することができる。Since the present invention is configured as described above, it has the following effects. (1) Introduce steam at a temperature lower than the temperature of the heated fluid at the shell outlet into the tube inlet pipe section near the front tube sheet (high temperature side tube sheet), and the shell side surface of the front tube sheet and the tube. By cooling the tube inlet pipe part including the welded part between the front tube plate and the front tube plate, the temperature of the tube welded part becomes low, so metal dusting is prevented or reduced without using expensive stainless steel as a manufacturing material. can do. In this case, by setting the temperature of the cooling steam so that the tube weld will be about 500 ° C or less,
It is possible to reliably prevent metal dusting. (2) Partition plates and short tubes (ferrules) are easy to manufacture and install, and the material is small, so the cost of manufacturing heat exchangers is not so low compared to the case where these parts are not installed. . (3) When the steam is blown into the shell side, the fluid to be heated does not come into contact with the shell side surface of the front tube sheet and the tube inlet pipe portion including the tube welded portion. If it is a carburizing gas,
Metal dusting can be more reliably prevented in combination with the cooling of the shell side surface of the front tube sheet by the low temperature steam and the tube inlet tube section including the tube welded section.
【図1】本発明の熱交換器の一実施例を示す縦断面図で
ある。FIG. 1 is a vertical sectional view showing an embodiment of a heat exchanger of the present invention.
【図2】図1における要部の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part in FIG.
【図3】本発明の熱交換器の他の実施例を示す要部の縦
断面図である。FIG. 3 is a vertical cross-sectional view of the essential parts showing another embodiment of the heat exchanger of the present invention.
【図4】チューブと管板との溶接取付構造(タイプA)
の拡大断面図である。[Fig. 4] Welded mounting structure for tube and tube sheet (Type A)
FIG.
【図5】チューブと管板との溶接取付構造(タイプB)
の拡大断面図である。FIG. 5: Welded mounting structure for tube and tube sheet (Type B)
FIG.
【図6】チューブと管板との溶接取付構造(タイプC)
の拡大断面図である。[Fig. 6] Welding mounting structure for tube and tube sheet (Type C)
FIG.
【図7】チューブと管板との溶接取付構造(タイプD)
の拡大断面図である。FIG. 7: Welded mounting structure for tube and tube sheet (Type D)
FIG.
30 シェル(胴) 32 前部管板(高温側管板) 34 後部管板(低温側管板) 36 チャンネル 38 チューブ 40 開口 42 短円筒 44 チューブ入口管部 46 チューブ溶接部 48 バッフル 50 供給ガス入口 52 供給ガス出口 54 仕切板 56 仕切室 58 短管(フェルール) 60 スチーム導入管 62 スペーサ 64 環状空間 66 仕切板(デフレクタープレート) 68 仕切室 70 スチーム導入管 72 連通部 30 Shell (Body) 32 Front Tube Sheet (High Temperature Side Tube Sheet) 34 Rear Tube Sheet (Low Temperature Side Tube Sheet) 36 Channel 38 Tube 40 Open 42 Short Cylinder 44 Tube Inlet Tube 46 Tube Weld 48 Baffle 50 Supply Gas Inlet 52 Supply Gas Outlet 54 Partition Plate 56 Partition Chamber 58 Short Pipe (Ferrule) 60 Steam Introducing Pipe 62 Spacer 64 Annular Space 66 Partition Plate (Deflector Plate) 68 Partition Chamber 70 Steam Introducing Pipe 72 Communication Port
Claims (6)
側に加熱すべき流体を流して熱交換する方法において、
前部管板近傍のチューブ入口管部に、シェル出口の加熱
された流体の温度より低い温度のスチームを導入して、
前部管板のシェル側表面及びチューブと前部管板との溶
接部を含むチューブ入口管部を冷却することを特徴とす
る熱交換方法。1. A method for performing heat exchange by flowing a fluid to be cooled on a tube side and a fluid to be heated on a shell side,
Introducing steam at a temperature lower than the temperature of the heated fluid at the shell outlet into the tube inlet tube near the front tube sheet,
A heat exchange method, comprising cooling a shell-side surface of a front tube sheet and a tube inlet tube section including a welded portion between the tube and the front tube sheet.
側に加熱すべきガスを流して熱交換する方法において、
前部管板のチューブ入口管部に短管を挿入して、該短管
内に冷却すべきガスを流すとともに、該短管と前記チュ
ーブ入口管部との間の環状空間に、シェル出口の加熱さ
れたガスの温度より低い温度のスチームを導入して、前
部管板のシェル側表面及びチューブと前部管板との溶接
部を含むチューブ入口管部を冷却した後、冷却すべきガ
スに混合することを特徴とする熱交換方法。2. A method of heat exchange by flowing gas to be cooled on the tube side and gas to be heated on the shell side,
A short tube is inserted into the tube inlet tube section of the front tube sheet, and a gas to be cooled is caused to flow in the short tube, and the shell outlet is heated in an annular space between the short tube and the tube inlet tube section. After introducing steam at a temperature lower than the temperature of the generated gas to cool the shell side surface of the front tube sheet and the tube inlet tube section including the welded portion of the tube and the front tube sheet, A heat exchange method characterized by mixing.
側に加熱すべきガスを流して熱交換する方法において、
前部管板のチューブ入口管部の後流側に該前部管板に略
平行に仕切板を設けて仕切室を形成し、この仕切室に、
シェル出口の加熱されたガスの温度より低い温度のスチ
ームを導入して、前部管板のシェル側表面及びチューブ
と前部管板との溶接部を含むチューブ入口管部を冷却し
た後、加熱されたガスに混合することを特徴とする熱交
換方法。3. A method of heat exchange by flowing gas to be cooled on the tube side and gas to be heated on the shell side,
A partition chamber is formed on the downstream side of the tube inlet tube of the front tube sheet by providing a partition plate substantially parallel to the front tube sheet to form a partition chamber.
After introducing steam having a temperature lower than the temperature of the heated gas at the shell outlet to cool the shell side surface of the front tube sheet and the tube inlet tube section including the welded portion between the tube and the front tube sheet, heating is performed. A heat exchange method, characterized in that the heat exchange method comprises mixing the gas with the gas.
側に加熱すべき流体を流して熱交換する、チューブと管
板とを溶接取付けした構造の熱交換器において、前部管
板近傍のチューブ入口管部に、該前部管板と仕切板とに
よって囲まれた仕切室を設け、この仕切室に冷却用スチ
ーム導入管を接続したことを特徴とする熱交換器。4. A heat exchanger having a structure in which a tube and a tube plate are attached by welding, in which a fluid to be cooled on the tube side is caused to flow by flowing a fluid to be heated on the shell side, and the heat exchange is performed in the vicinity of the front tube plate. A heat exchanger characterized in that a partition chamber surrounded by the front tube plate and a partition plate is provided in the tube inlet pipe section, and a cooling steam introducing pipe is connected to the partition chamber.
側に加熱すべきガスを流して熱交換する、チューブと管
板とを溶接取付けした構造の熱交換器において、前部管
板の上流側にこの前部管板と略平行に仕切板を設けて仕
切室を形成し、この前部管板のチューブ入口管部に先端
が挿入されるように、チューブ内径より小さい外径の短
管を前記仕切板に取り付け、前記仕切室に冷却用スチー
ム導入管を接続したことを特徴とする熱交換器。5. A heat exchanger having a structure in which a tube and a tube sheet are attached by welding, in which a gas to be cooled on the tube side and a gas to be heated are flowed to the shell side to exchange heat, the upstream side of the front tube sheet. A partition plate is provided on this side to form a partition chamber substantially parallel to this front tube sheet, and a short tube with an outer diameter smaller than the tube inner diameter is inserted so that the tip is inserted into the tube inlet tube section of this front tube sheet. Is attached to the partition plate, and a steam introducing pipe for cooling is connected to the partition chamber.
側に加熱すべきガスを流して熱交換する、チューブと管
板とを溶接取付けした構造の熱交換器において、前部管
板の下流側にこの前部管板と略平行に仕切板を設けて仕
切室を形成し、この仕切室に冷却用スチーム導入管を接
続し、冷却後の加熱されたスチームが加熱されたガスに
混入するように、前記仕切板の先端部と加熱されたガス
が通過するシェル内とが連通していることを特徴とする
熱交換器。6. A heat exchanger having a structure in which a tube and a tube sheet are attached by welding, in which a gas to be cooled on the tube side and a gas to be heated are made to flow on the shell side to exchange heat, the downstream side of the front tube sheet. A partition plate is provided on the side substantially parallel to the front tube plate to form a partition chamber, and a cooling steam introducing pipe is connected to this partition chamber, and the heated steam after cooling is mixed with the heated gas. Thus, the heat exchanger characterized in that the tip of the partition plate and the inside of the shell through which the heated gas passes are in communication with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7117958A JP3020237B2 (en) | 1995-04-19 | 1995-04-19 | Heat exchange method and heat exchanger between dehydrogenation reactor inlet gas and dehydrogenation reactor effluent gas in styrene monomer production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7117958A JP3020237B2 (en) | 1995-04-19 | 1995-04-19 | Heat exchange method and heat exchanger between dehydrogenation reactor inlet gas and dehydrogenation reactor effluent gas in styrene monomer production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08285489A true JPH08285489A (en) | 1996-11-01 |
JP3020237B2 JP3020237B2 (en) | 2000-03-15 |
Family
ID=14724465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7117958A Expired - Fee Related JP3020237B2 (en) | 1995-04-19 | 1995-04-19 | Heat exchange method and heat exchanger between dehydrogenation reactor inlet gas and dehydrogenation reactor effluent gas in styrene monomer production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3020237B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006090626A1 (en) * | 2005-02-23 | 2006-08-31 | Izumi Food Machinery Co., Ltd. | Multitubular heat exchanger |
KR200448730Y1 (en) * | 2008-07-04 | 2010-05-11 | (주)일진에너지 | Floating Head Type Heat Exchanger |
JP2011501698A (en) * | 2007-09-18 | 2011-01-13 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Weld metal compositions for joining steel structures in the oil and gas industry |
CN104697367A (en) * | 2015-02-15 | 2015-06-10 | 中国计量学院 | Heat exchanging device for chemical industry |
CN104736958A (en) * | 2012-10-17 | 2015-06-24 | 利乐拉瓦尔集团及财务有限公司 | A tube holding element |
CN105115319A (en) * | 2015-09-28 | 2015-12-02 | 江阴中南重工有限公司 | Reaction water cooler |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549693A (en) * | 1978-10-04 | 1980-04-10 | Mitsubishi Heavy Ind Ltd | Multitubular heat exchanger |
JPS5563395A (en) * | 1978-11-01 | 1980-05-13 | Toyo Eng Corp | Heat exchanger |
JPH06273080A (en) * | 1993-03-24 | 1994-09-30 | Ishikawajima Harima Heavy Ind Co Ltd | Gas cooler |
-
1995
- 1995-04-19 JP JP7117958A patent/JP3020237B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549693A (en) * | 1978-10-04 | 1980-04-10 | Mitsubishi Heavy Ind Ltd | Multitubular heat exchanger |
JPS5563395A (en) * | 1978-11-01 | 1980-05-13 | Toyo Eng Corp | Heat exchanger |
JPH06273080A (en) * | 1993-03-24 | 1994-09-30 | Ishikawajima Harima Heavy Ind Co Ltd | Gas cooler |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006090626A1 (en) * | 2005-02-23 | 2006-08-31 | Izumi Food Machinery Co., Ltd. | Multitubular heat exchanger |
JP2011501698A (en) * | 2007-09-18 | 2011-01-13 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | Weld metal compositions for joining steel structures in the oil and gas industry |
KR200448730Y1 (en) * | 2008-07-04 | 2010-05-11 | (주)일진에너지 | Floating Head Type Heat Exchanger |
CN104736958A (en) * | 2012-10-17 | 2015-06-24 | 利乐拉瓦尔集团及财务有限公司 | A tube holding element |
EP2909558A1 (en) * | 2012-10-17 | 2015-08-26 | Tetra Laval Holdings & Finance SA | A tube holding element |
US20150267973A1 (en) * | 2012-10-17 | 2015-09-24 | Tetra Laval Holdings & Finance S.A. | Tube holding element |
CN104697367A (en) * | 2015-02-15 | 2015-06-10 | 中国计量学院 | Heat exchanging device for chemical industry |
CN105115319A (en) * | 2015-09-28 | 2015-12-02 | 江阴中南重工有限公司 | Reaction water cooler |
Also Published As
Publication number | Publication date |
---|---|
JP3020237B2 (en) | 2000-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0730213Y2 (en) | Heat exchanger | |
US20170074593A1 (en) | Tube bundle heat exchanger | |
CN106574825B (en) | Shell-and-tube heat exchanger | |
US10400714B2 (en) | Heat exchanger with annular coolant chamber | |
JPH0346759B2 (en) | ||
WO2005001368A2 (en) | Anti-corrosion protection for heat exchange tube sheet | |
JP2006010309A (en) | Heat exchange method, and heat exchanger | |
JPH08285489A (en) | Heat exchanging method and heat exchanger | |
EP0205205A1 (en) | Transfer-line cooler | |
US20040226694A1 (en) | Heat exchanger with removable core | |
JPH0961071A (en) | Heat exchanger | |
US4010797A (en) | Heat exchanger | |
JPH03113291A (en) | Heat exchager for cooling reaction gas | |
EP0074434A1 (en) | Heat exchanger and use thereof | |
JPH09257392A (en) | Heat exchanger | |
CN215063903U (en) | Novel phthalic anhydride gas cooler | |
JP3361010B2 (en) | Multi-tube heat exchanger | |
JP2021528624A (en) | Heat exchanger | |
CA3092394C (en) | Tube and tubesheet assembly with damage resistance and method for protecting tube and tubesheet assemblies from damage | |
CN219776434U (en) | Ferrite stainless steel air cooler | |
CN220304331U (en) | Heat exchanger | |
US20220074684A1 (en) | Tube and Tubesheet Assembly with Damage Resistance and Method for Protecting Tube and Tubesheet Assemblies from Damage | |
CN211823952U (en) | Heat exchange tube and heat exchanger | |
CN220982019U (en) | Tubular heat exchanger | |
JP3296257B2 (en) | Multi-tube heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |