WO2006090448A1 - Process for producing transparent conductive laminate, and touch panel - Google Patents

Process for producing transparent conductive laminate, and touch panel Download PDF

Info

Publication number
WO2006090448A1
WO2006090448A1 PCT/JP2005/002921 JP2005002921W WO2006090448A1 WO 2006090448 A1 WO2006090448 A1 WO 2006090448A1 JP 2005002921 W JP2005002921 W JP 2005002921W WO 2006090448 A1 WO2006090448 A1 WO 2006090448A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
group
transparent conductive
transparent
conductive laminate
Prior art date
Application number
PCT/JP2005/002921
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Akema
Katsutoshi Sawada
Hironobu Shinohara
Original Assignee
Jsr Corporation
Hs Planning Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation, Hs Planning Limited filed Critical Jsr Corporation
Priority to PCT/JP2005/002921 priority Critical patent/WO2006090448A1/en
Priority to JP2007504582A priority patent/JPWO2006090448A1/en
Publication of WO2006090448A1 publication Critical patent/WO2006090448A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Definitions

  • the present invention relates to a method for producing a transparent conductive laminate in which a transparent conductive thin film is provided on a film substrate. More specifically, the present invention relates to a method for producing a transparent conductive laminate in which a transparent conductive film is formed on a transparent film under specific conditions.
  • Transparent and conductive thin films in the visible light range include transparent electrodes for liquid crystal displays, electroluminescence displays, plasma displays, and touch panels, as well as antistatic and electromagnetic shielding for transparent devices. It is used for such purposes.
  • a transparent conductive thin film is known to have an indium oxide thin film formed on glass. Since the base material is glass, it is inferior in flexibility and workability and heavy. It was not preferable because it was easy to break. Therefore, in recent years, various plastic films such as polyethylene terephthalate, polyethersulfone, polycarbonate, norbornene-based resin are used as the base material due to the advantages of lightweight and excellent impact resistance in addition to flexibility and workability. A transparent conductive thin film was used.
  • Japanese Patent Publication No. 2667680 discloses that a conductive thin film is formed in advance on one surface of a transparent plastic substrate having a specific thickness by sputtering or the like. Later, a transparent conductive laminate has been proposed in which a transparent substrate is bonded to the other surface via a transparent adhesive having specific characteristics. In this method, the pressure-sensitive adhesive acts as a cushion, and although the abrasion resistance of the transparent conductive thin film can be greatly improved, the adhesion between the film and the transparent conductive film is essentially insufficient. The lack of durability has not been solved, and there have been problems such as a decrease in transparency and an increase in work processes due to the bonding with the film.
  • the present invention has been made in view of the above-mentioned problems, and improves the scratch resistance and the spot characteristics of the transparent conductive thin film formed on the film substrate, and has excellent productivity.
  • the object is to provide a method for producing a conductive laminate.
  • the method for producing a transparent conductive laminate of the present invention is characterized in that a transparent conductive film is formed on a transparent film while maintaining the temperature of the film at 160 ° C or higher. According to this method, it is possible to produce a transparent conductive laminate excellent in scratch resistance and hit point characteristics with high productivity.
  • a transparent conductive laminate having excellent scratch resistance and spot characteristics is produced. Can be manufactured well.
  • the film base material used in the present invention is transparent and does not change in quality such as deformation or discoloration of the base material in the process of forming a transparent conductive film at a temperature of 160 ° C or higher.
  • Various plastic films can be used. Specific examples include polyimide, polyether sulfone, polyether ether ketone, polycarbonate, polyamide, polyacryl, acetyl cellulose, polyarylate, polysulfone, and norbornene resin.
  • a transparent electrode of a display such as a liquid crystal display
  • optical properties such as transparency and non-rotatory properties, low water absorption, heat resistance, physical properties such as mechanical strength, and price.
  • film base materials are selected, each film base material has a long From the standpoint of overall strength, polycarbonate, polyethersulfone and norbornene resins are preferred.
  • quality of image quality and dimensional stability at high temperature and high humidity have been emphasized. From this viewpoint, transparency, light dispersibility (refractive index is the wavelength dependence of birefringence), and non-optical rotation.
  • a norbornene-based resin that is far superior to other polymers in optical properties such as heat resistance and low water absorption is particularly preferable.
  • the norbornene-based resin includes a polymer obtained by subjecting a monomer having a norbornene structure and other polymerizable monomer added as necessary to ring-opening polymerization or addition polymerization.
  • a cyclic olefin-added copolymer containing at least one repeating unit derived from the cyclic olefin represented by the following formula (1) is preferable.
  • a 1 to A 4 each independently represents a hydrogen atom, a halogen atom, an aralkyl group having 1 to 20 carbon atoms, an alkenyl group, a cycloalkyl group, an aryleno group, or a halogenated hydrocarbon group.
  • These substituents are further alkylene groups having 1 to 10 carbon atoms or oxygen They may be linked via a linking group having 1 to 10 carbon atoms including atoms.
  • a 1 and A 2 or A 1 and A 4 may be bonded to each other to form an alkylene group, an arylene group, an acid anhydride, or a rataton.
  • m is 0 or 1.
  • the cyclic olefin-based addition polymer optionally contains a repeating unit of a substituted cyclic olefin having an alkyl group, it is possible to improve the molding force properties such as controlling the glass transition temperature of the obtained cyclic olefin-based polymer. Flexibility can be imparted to the film base.
  • the cyclic olefin-based addition polymer includes a repeating unit having a hydrolyzable silyl group or a substituent containing an oxetanyl group, a compound that generates an acid by heating or light irradiation (hereinafter, referred to as the following).
  • a cross-linked structure is formed by the action of “thermal acid generator” and “photo acid generator”, respectively, and the chemical resistance or mechanical strength of the obtained film substrate can be improved.
  • the hydrolyzable silyl group forms a siloxane bond through a hydrolysis Z-condensation reaction with an acid catalyst and water or water vapor supplied as appropriate, thereby enabling cross-linking between the silyl groups.
  • R 1 , R 2 , R 3 represents a substituent selected from an alkoxy group, an aryloxy group, and a halogen atom; It is an alkyl group.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • Y represents a hydrocarbon of an aliphatic diol, alicyclic diol or aromatic diol having 2 to 20 carbon atoms. Indicates a residue.
  • the ratio of the strong crosslinkable repeating units in the whole repeating units is usually 30 mol% or less, preferably 20 monole%, more preferably 15 mol% or less. If it exceeds 30 mol%, the water absorption of the film substrate may increase, or the shrinkage during crosslinking may be large, which may be inappropriate for the intended use.
  • the thermal acid generator a compound capable of generating an acid at 50 ° C or higher is preferably used, and as the photoacid generator, g-line, h-line, i-line, ultraviolet ray, far-ultraviolet ray, A compound that generates Bronsted acid or Lewis acid by irradiation with X-ray, electron beam or the like is used. These can be selected from known substances as appropriate. May be.
  • the thermal acid generator and the photoacid generator can be used in the range of 0.001 to 10 parts by weight, preferably 0.01 to 5.0 parts by weight per 100 parts by weight of the cyclic olefin-based addition polymer. . If the amount is less than 001 parts by weight, the effect of crosslinking cannot be sufficiently obtained. If the amount exceeds 10 parts by weight, the mechanical strength, electrical properties and transparency of the film substrate may be impaired.
  • the glass transition temperature of the resin constituting these film substrates is at least 180 ° C or higher, preferably 200 ° C or higher, more preferably 230 ° C or higher, and particularly preferably 250 to 400 ° C.
  • the glass transition temperature is 180 ° C. or lower, the film substrate may become unpractical due to deformation or shrinkage during film formation of the transparent conductive film.
  • the film substrate of the present invention preferably has a retardation of 15 ⁇ or less and a total light transmittance of 90% or more at a film thickness of 100 ⁇ m. If the retardation is more than 15 awakens, it will be difficult to use the inner type touch panel with circular polarizing film on the upper substrate. Also, if the total light transmittance is less than 90%, there will be inconveniences such as darkening the panel screen.
  • additives that are usually mixed in the film such as antioxidants, mold release agents, ultraviolet absorbers, lubricants, and coloring agents, as necessary, and further for crosslinking reaction.
  • additives and the like can be added for various purposes.
  • the method for producing the film substrate is not particularly limited, and can use known melt extrusion methods, solution casting methods, coating methods, and the like. From the viewpoint of film surface smoothness, the solution casting method Film base manufactured by Nya coating method is preferred. If necessary, film production In the process, the crosslinking reaction can be performed by heat, light, water vapor or the like.
  • the thickness of the film substrate is preferably about 2 to 400 ⁇ m. If it is thinner than 2 ⁇ m, the mechanical strength of the base material itself is insufficient, and it becomes difficult to perform continuous operations such as applying a pressure-sensitive adhesive layer in the form of a roll or performing a hard coating process described later. From this point of view, a thickness of 10 zm or more is preferred, and a thickness of 20 zm or more is particularly preferred. If it is 400 zm or more, it will be scratched if it is rolled, and if continuous work is difficult, it will not be able to be used because force, glue, or wrinkles will remain. From such a viewpoint, the preferable thickness is 300 ⁇ m or less, and particularly preferably 250 ⁇ m or less.
  • This film base material is preliminarily subjected to etching treatment or undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and the like, and a conductive thin film provided thereon It is also possible to enhance the adhesion of various coating agents and thin films formed on the surface of the film in order to function as needed. In addition, before providing the conductive thin film, etc., it may be removed and cleaned by washing with a solvent, water, acid, alkali or the like, or ultrasonic cleaning, if necessary.
  • the film bases used in the present invention can be used by bonding the film bases to each other or different film bases with an adhesive or an adhesive.
  • This bonding can be carried out by providing a pressure-sensitive adhesive layer or an adhesive layer on one side of the transparent film substrate and bonding the other film substrate to this.
  • This laminating can be carried out by appropriately selecting a known method, but it is advantageous in terms of productivity to carry out the film continuously in a roll shape.
  • the pressure-sensitive adhesive layer and the adhesive layer are not particularly limited as long as they have transparency.
  • a transparent conductive thin film is formed on one outer surface of the film substrate.
  • conventional techniques such as vacuum deposition, sputtering, and ion plating can be used. From the viewpoint, thin film formation by sputtering is preferable.
  • the thin film materials used are not particularly limited, for example, metal oxides such as indium oxide containing tin oxide and tin oxide containing antimony, as well as gold, silver, platinum, palladium, copper, anoleminium, nickel Chrome, titanium, cobalt, tin Or these alloys are preferably used.
  • the thickness of this conductive thin film needs to be 30 A or more, and if it is thinner than this, it is difficult to form a continuous film having good conductivity with a surface resistance of 1000 ⁇ / mouth or less. On the other hand, if the thickness is too large, the transparency is lowered. Therefore, a suitable thickness is about 50 2000 A.
  • the temperature at which the transparent conductive film is formed it is important to control the temperature at which the transparent conductive film is formed.
  • Conventional film sputtering has been performed at temperatures below 100 ° C.
  • the sputtering temperature greatly affects the adhesion between the film substrate and the transparent conductive film.
  • a transparent conductive laminate having excellent durability can be obtained.
  • film formation at 180 ° C or higher is more preferable, and film formation at 200 ° C or higher is particularly preferable.
  • This dielectric thin film should have a refractive index smaller than that of the conductive thin film, usually 1.3-2.0, preferably 1 ⁇ 3-1.6.
  • the dielectric film thickness should be 100A or more, preferably 100 to 3000A, and preferably 200 to 1500A. If the film is thin, it is difficult to obtain a continuous film, and if the transparency is small, the effect of improving the scratch resistance is small. If the film is thick, the conductivity is deteriorated and the cracks are likely to occur.
  • the dielectric can be formed by a known method such as a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.
  • the film substrate is prone to scratches during the formation of the transparent conductive thin film, the subsequent processing or assembly of the device, and in the laminate, the surface opposite to the surface on which the conductive thin film is formed is bare.
  • the hard coat treatment can be performed on both sides or one side of the film before or after the transparent conductive film is formed. It is particularly preferable to perform the hard coat treatment on the outer surface on the opposite side of the conductive thin film in the laminate.
  • the hard coat treatment layer is preferably a cured film made of a curable resin such as melanin resin, urethane resin, alkyd resin, acrylic resin, or silicon resin.
  • a curable resin such as melanin resin, urethane resin, alkyd resin, acrylic resin, or silicon resin.
  • an acrylic resin is preferably used because it can enhance the adhesion of the conductive thin film and has an effect as a base agent before forming the conductive film.
  • a composition obtained by adding various additives such as an antistatic agent and a polymerization initiator to the above-described curable resin as necessary is usually diluted with a solvent.
  • the solid content is 20 to 80% by weight, and this is applied to one side of a transparent film substrate by a general solution coating method such as gravure coater, reverse coater, spray coater, slot orifice coater or screen printing.
  • a general solution coating method such as gravure coater, reverse coater, spray coater, slot orifice coater or screen printing.
  • the adhesion between the transparent film and the hard coat treatment layer is achieved by subjecting the adherend surface to easy adhesion such as corona discharge, ultraviolet irradiation, plasma treatment, sputter etching treatment, and primer treatment. Can be increased.
  • an antiglare treatment agent coated on the outer surface of the film is preferably used.
  • the anti-glare treatment agent is preferably a cured film obtained by dispersing and binding silica particles to the hard coat agent described above.
  • the silica particles used here are amorphous and porous, and a typical example is silica gel.
  • the average particle size is usually 30 xm or less, preferably about 2 to 15 zm, and the blending ratio is such that the silica particles are 0.1 to 1 10 parts by weight with respect to 100 parts by weight of the resin. Is preferred.
  • the antiglare treatment agent can be applied to the film and hardened in exactly the same manner as the hard coat treatment described above. Anti-glare treatment agent It also serves as an anti-glare effect and also provides a scratch prevention effect.
  • a transparent conductive laminate provided with an antireflection layer will be described.
  • a transparent conductive thin film is used in a display device, and when light is reflected on the surface, the image becomes unclear, and in some cases, the image is difficult to see.
  • a transparent conductive laminate having a high light transmittance, excellent scratch resistance on the surface of the base material, and also having an antireflection function capable of preventing light reflection on the surface of the base material is more preferable in practical use. It is.
  • the antireflection layer is formed on the outer surface where the conductive thin film is not formed.
  • This antireflection layer includes a single layer structure having a refractive index different from that of the film substrate or a multilayer structure of two or more layers.
  • a material having a refractive index smaller than that of the film substrate is selected.
  • P is a force that uses a material structure with a different refractive index between the P-contact layers.
  • the outermost layer has a refractive index smaller than the refractive index of the lower layer adjacent to the multilayer structure of three or more layers. It is advisable to use a suitable material structure.
  • a material for constituting such an antireflection layer for example, CaF
  • This antireflection layer can be formed by a thin film formation technique similar to that of the conductive layer.
  • the thickness is selected so that the total thickness of the antireflection layer is generally about 500 to 5000 A. This layer also increases the hardness of the surface, thus improving the scratch resistance.
  • this transparent conductive laminate is used in a display device, fingerprints and dirt are generated on the surface during processing and use, and there is a problem in visibility as a whole thin film product such as feeling glare. There was a case.
  • a transparent conductive laminate having a water-repellent and antifouling treatment layer on the outer surface of the laminate is preferred depending on the application.
  • the water repellent and antifouling treatment layer can be formed on the outer surface of the film in the same manner as the hard coat formation. Examples of the material for forming such a water-repellent and antifouling treatment layer include dimethylpolysiloxane containing a hydroxyl group or a bur group and methyl.
  • a silicon-containing compound comprising a combination with a hydrodiene polysiloxane, a fluorine resin such as polytetrafluoroethylene or polychloroethylene, molybdenum sulfide or the like is used alone or as a compound.
  • a fluorine resin such as polytetrafluoroethylene or polychloroethylene, molybdenum sulfide or the like
  • it may be dispersed and bonded to the curable resin such as the hard coat agent described above and provided as a hardened film layer on the substrate surface.
  • the silica particles can be dispersed for the purpose of improving anti-glare effect and scratch resistance.
  • the formation of the water-repellent and antifouling layer is not particularly limited, and a coating method, a spray method, a vacuum deposition method, a sputtering method, an ion plating method, a baking method, or the like can be used depending on the material used.
  • the thickness of the treatment layer is not particularly limited, but is usually about 100 A 50 xm. If it is thin, it is difficult to obtain a continuous film, and if the water-repellent effect is poor, cracks are likely to occur.
  • the above functionalization treatment can be carried out in combination of two or more, and it is particularly efficient when a hard coat agent, an antiglare treatment and a water repellent or antifouling treatment agent are used in combination. .
  • the copolymer solution was diluted by adding 480 g of cyclohexane, 660 ml of water and 48 mmol of lactic acid were added thereto, and the mixture was sufficiently stirred and mixed, and then the copolymer solution and the aqueous phase were allowed to stand and be separated.
  • the aqueous phase containing the reaction product of the catalyst component was removed, and the copolymer solution was put into 4 L of isopropyl alcohol to solidify the copolymer, thereby removing unreacted monomers and catalyst residues.
  • the coagulated copolymer was dried to obtain 75 g of cyclic olefin-based addition polymer A (hereinafter also referred to as “copolymer A”).
  • the number average molecular weight of the copolymer converted to polystyrene was 89,000, the weight average molecular weight was 187,000, and Mw / Mn was 2.1.
  • the copolymer AlOg was dissolved in 35.5 g of cyclohexane, and pentaerythrityl tetrakis [3— (3,5-di-tert-butyl-4-hydroxyphenyl) propione as an antioxidant. 1.0 parts with respect to 100 parts of the copolymer and 0.5 parts of tributyl phosphite as a crosslinking catalyst with respect to 100 parts of the copolymer.
  • the copolymer solution was cast, and the resulting film was dried at 150 ° C. for 2 hours and further dried at 200 ° C. for 1 hour under vacuum. Furthermore, this film was heat-treated under steam at 150 ° C for 4 hours. Then, it was dried at 200 ° C for 1 hour under vacuum to produce a crosslinked film ⁇ having a thickness of 100 ⁇ m.
  • the film A obtained had the following characteristics: total light transmittance: 91%, glass transition temperature: 375 ° C, retardation: 5 mm.
  • ITO film An indium-tin oxide (ITO) film was formed on a sheet having a length of 200 mm, a width of 200 mm, and a thickness of 100 ⁇ m obtained by the same operation as described above using a sputter machine under the following conditions.
  • Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
  • Example 2 Using the same film A as in Example 1 as the film base, ITO film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 250 ° C.
  • Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
  • a Teijin Pure Ace (R) WR (aromatic polycarbonate) film having a thickness of 100 ⁇ m was used as a film substrate.
  • the properties of this film were a total light transmittance of 90%, a glass transition temperature of 210 ° C., and a retardation of 20 nm.
  • IT ⁇ film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 180 ° C.
  • Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
  • copolymer B cyclic olefin-based copolymer B (hereinafter also referred to as “copolymer B”). ) was obtained.
  • copolymer B the proportion of repeating units derived from 5-butylbicyclo [2.2.1] hepta-2-ene is 39 mol%, the number average molecular weight is 42,000, and the weight average molecular weight is 175,000. Met.
  • copolymer B 100 parts by weight was dissolved in a mixed solution consisting of 280 parts by weight of toluene and 70 parts by weight of cyclohexane, and pentaerythrityl tetrakis [3- (3,5_di-t-butyl) as an antioxidant.
  • _4-hydroxyphenyl) propionate and tris (2,4-di-t_butylphenyl) phosphite were each added by 0.6 parts by weight.
  • the obtained copolymer solution was filtered through a membrane filter having a pore size of 10 zm, and then cast at 25 ° C.
  • the resulting film was dried at 160 ° C for 2 hours to prepare a film B having a thickness of 100 zm.
  • the resulting film B has a total light transmittance of 93%, a glass transition temperature of 345 ° C, and a retardation of 5 nm.
  • ITO film formation was carried out in the same manner as in Example 2.
  • Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
  • a JSR Arton (R) (norbornene-based) film having a thickness of 100 ⁇ m was used as a film substrate.
  • the characteristics of this film were total light transmittance: 90%, glass transition temperature: 170 ° C., and retardation: 3 nm.
  • IT ⁇ film formation was carried out in the same manner as in Example 1 except that this film was used and the substrate temperature was changed to 130 ° C.
  • Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
  • PET film polyethylene terephthalate film
  • the substrate temperature was changed to 50 ° C, and the same method as in Example 1 was used.
  • Membrane was performed.
  • an acrylic transparent adhesive layer (modulated with butyl acrylate) with an elastic modulus adjusted to 1.2 x 10 6 dyn / cm 2
  • a copolymer of acrylic acid and vinyl acetate with a 100: 2: 5 copolymer (100 parts by weight and 1 part by weight of an isocyanate cross-linking agent) is formed to a thickness of about 20 ⁇ .
  • Total light transmittance '' Conforms to ASTM—DIOOS and measured with a film with a thickness of 100 ⁇ m.
  • the glass transition temperature of the film substrate was measured at the peak temperature.
  • the dynamic viscoelasticity was measured using Leovibron DDV-01FP (Orientec), the measurement frequency was 10 ⁇ , and the heating rate was 4
  • ⁇ , ⁇ , ⁇ are the coordinates orthogonal to the three-dimensional refractive index of the film
  • Each index of refraction when taken in the system X, y, z, d is the film path length.
  • the method for measuring the characteristics of the produced transparent conductive laminate is as follows.
  • the transparent conductive laminate is formed by sputtering the conductive thin film while maintaining the film substrate at a temperature of 160 ° C. or higher. Since the strength of the film is increased when the conductive thin film is formed by wrapping, a transparent conductive laminate having excellent scratch resistance and spot characteristics can be obtained.
  • a transparent conductive laminate having excellent scratch resistance when a conductive thin film is formed by sputtering at 230 ° C or higher, preferably 250 ° C or higher, using a norbornene-based resin as a film substrate, a transparent conductive laminate having excellent scratch resistance can be obtained.

Abstract

A transparent conductive laminate with a film base that excels in scuff resistance of conductive thin film as well as transparency and excels in dotting performance for application to touch panel; and a touch panel making use of this transparent conductive laminate in at least one of the electrodes thereof. The transparent conductive laminate excelling in not only scuff resistance and dotting performance but also productivity is provided by forming a transparent conductive layer on a specified transparent film under at least ≥ 160°C temperature conditions.

Description

明 細 書  Specification
透明導電性積層体の製造方法およびタツチパネル  Method for manufacturing transparent conductive laminate and touch panel
技術分野  Technical field
[0001] 本発明は、フィルム基材上に透明な導電性薄膜を設けてなる透明導電性積層体の 製造方法に関する。さらに詳しくは、透明フィルム上に特定の条件で透明導電膜を 形成する透明導電積層体の製造方法に関する。  The present invention relates to a method for producing a transparent conductive laminate in which a transparent conductive thin film is provided on a film substrate. More specifically, the present invention relates to a method for producing a transparent conductive laminate in which a transparent conductive film is formed on a transparent film under specific conditions.
背景技術  Background art
[0002] 可視光領域で透明であり、かつ導電性を有する薄膜は、液晶ディスプレー、エレク トロルミネッセンスディスプレー、プラズマディスプレーなどのディスプレーやタツチパ ネルなどにおける透明電極のほか、透明デバイスの帯電防止や電磁波遮断などの 目的で使用されている。従来、このような透明導電性薄膜として、ガラス上に酸化イン ジゥム系の薄膜を形成したものが知られている力 基材がガラスであるために、可撓 性、加工性に劣り、重いこと、割れ易いこと等で好ましくなかった。このため近年、可 橈性、加工性に加え、耐衝撃性に優れ軽量である利点から、ポリエチレンテレフタレ ート、ポリエーテルサルフォン、ポリカーボネート、ノルボルネン系樹脂等の各種のプ ラスチックフィルムを基材とした透明導電性薄膜が用いられるようになった。  [0002] Transparent and conductive thin films in the visible light range include transparent electrodes for liquid crystal displays, electroluminescence displays, plasma displays, and touch panels, as well as antistatic and electromagnetic shielding for transparent devices. It is used for such purposes. Conventionally, such a transparent conductive thin film is known to have an indium oxide thin film formed on glass. Since the base material is glass, it is inferior in flexibility and workability and heavy. It was not preferable because it was easy to break. Therefore, in recent years, various plastic films such as polyethylene terephthalate, polyethersulfone, polycarbonate, norbornene-based resin are used as the base material due to the advantages of lightweight and excellent impact resistance in addition to flexibility and workability. A transparent conductive thin film was used.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] このようなフィルム基材を用いて製造された従来の透明導電性薄膜は、耐摩擦性に 劣り、使用中に傷がついて、電気抵抗が増大したり、断線を生じる問題があった。特 に、タツチパネル用の導電性薄膜では、スぺーサーを介して対向させた一対の薄膜 同士がその一方の基材側からの押圧打点で強く接触するものであるために、これに 抗しうる良好な耐久特性つまり打点特性を有していることが望まれるが、従来の透明 導電性薄膜ではこのような特性に劣り、タツチパネルとしての寿命が短くなるという問 題があった。 [0003] Conventional transparent conductive thin films produced using such a film base material have poor friction resistance, and there are problems that scratches occur during use, resulting in increased electrical resistance or disconnection. . In particular, in a conductive thin film for a touch panel, a pair of thin films opposed to each other via a spacer come into strong contact with each other at a pressing point from the one side of the substrate. Although it is desired to have good durability characteristics, that is, hitting characteristics, the conventional transparent conductive thin film is inferior to such characteristics and has a problem that the life of the touch panel is shortened.
[0004] この問題の解決のために、特許公報第 2667680号には、特定厚みの透明フィノレ ム基材の、一方の面上にあらかじめ導電性薄膜をスパッタリング等により形成させた 後に、他方の面に特定の特性を有する透明粘着剤を介して透明基材を貼りあわせた 透明導電性積層体が提案されている。この方法では、粘着剤がクッションの役目を果 たし、透明導電性薄膜の耐磨耗性は大幅に改善できるものの、本質的にフィルムと 透明導電膜間の接着が不十分なことに起因する耐久性の不足は解決されておらず 、さらにフィルムと貼り合わせによる透明度の低下、作業工程の増加などの問題があ つた。 [0004] In order to solve this problem, Japanese Patent Publication No. 2667680 discloses that a conductive thin film is formed in advance on one surface of a transparent plastic substrate having a specific thickness by sputtering or the like. Later, a transparent conductive laminate has been proposed in which a transparent substrate is bonded to the other surface via a transparent adhesive having specific characteristics. In this method, the pressure-sensitive adhesive acts as a cushion, and although the abrasion resistance of the transparent conductive thin film can be greatly improved, the adhesion between the film and the transparent conductive film is essentially insufficient. The lack of durability has not been solved, and there have been problems such as a decrease in transparency and an increase in work processes due to the bonding with the film.
[0005] 本発明は、上記課題を鑑みてなされたものであり、フィルム基材に形成される透明 導電性薄膜の耐擦傷性および打点特性を改良し、しかも生産性も優れてレ、る透明導 電性積層体の製造方法を提供することを目的としている。  [0005] The present invention has been made in view of the above-mentioned problems, and improves the scratch resistance and the spot characteristics of the transparent conductive thin film formed on the film substrate, and has excellent productivity. The object is to provide a method for producing a conductive laminate.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の透明導電性積層体の製造方法は、透明フィルム上に、該フィルムの温度 を 160°C以上に保って透明導電膜を形成することを特徴とする。この方法によれば、 耐擦傷性および打点特性に優れた透明導電性積層体を生産性よく製造することが できる。 [0006] The method for producing a transparent conductive laminate of the present invention is characterized in that a transparent conductive film is formed on a transparent film while maintaining the temperature of the film at 160 ° C or higher. According to this method, it is possible to produce a transparent conductive laminate excellent in scratch resistance and hit point characteristics with high productivity.
発明の効果  The invention's effect
[0007] 本発明によれば、透明フィルム上に少なくとも 160°C以上の温度条件で透明導電膜 を形成することにより、耐擦傷性および打点特性に優れた透明導電性積層体を生産 'ί生よく製造することができる。  [0007] According to the present invention, by forming a transparent conductive film on a transparent film under a temperature condition of at least 160 ° C, a transparent conductive laminate having excellent scratch resistance and spot characteristics is produced. Can be manufactured well.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明において使用されるフィルム基材としては、透明性を有し、かつ 160°C以上 の温度での透明導電膜製膜プロセスにおいて、基材の変形、変色等の品質変化が ない各種のプラスチックフィルムを使用できる。具体的には、ポリイミド、ポリエーテル サルフォン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアミド、ポリアクリル、 ァセチルセルロース、ポリアリレート、ポリスルフォン、ノルボルネン系樹脂等が挙げら れる。 [0008] The film base material used in the present invention is transparent and does not change in quality such as deformation or discoloration of the base material in the process of forming a transparent conductive film at a temperature of 160 ° C or higher. Various plastic films can be used. Specific examples include polyimide, polyether sulfone, polyether ether ketone, polycarbonate, polyamide, polyacryl, acetyl cellulose, polyarylate, polysulfone, and norbornene resin.
[0009] 液晶ディスプレーゃタツチパネル等のディスプレーの透明電極に用いる場合、透明 性や非旋光性等の光学特性、低吸水性、耐熱性、機械的強度等の物理特性、価格 等の様々な観点からフィルム基材が選ばれるため、それぞれのフィルム基材に一長 一短がある力 S、総合的な観点から見ると、ポリカーボネート、ポリエーテルサルフォン 、ノルボルネン系樹脂が好ましい。さらに近年画質の品質や高温高湿時の寸法安定 性が重要視されてきており、この観点から見ると、透明性、光の分散性 (屈折率ゃ複 屈折の波長依存性)や非旋光性等の光学特性、耐熱性、低吸水性が他のポリマー に比べてはるかに優れているノルボルネン系樹脂が特に好ましい。 [0009] When used for a transparent electrode of a display such as a liquid crystal display, from various viewpoints such as optical properties such as transparency and non-rotatory properties, low water absorption, heat resistance, physical properties such as mechanical strength, and price. Since film base materials are selected, each film base material has a long From the standpoint of overall strength, polycarbonate, polyethersulfone and norbornene resins are preferred. In recent years, quality of image quality and dimensional stability at high temperature and high humidity have been emphasized. From this viewpoint, transparency, light dispersibility (refractive index is the wavelength dependence of birefringence), and non-optical rotation. A norbornene-based resin that is far superior to other polymers in optical properties such as heat resistance and low water absorption is particularly preferable.
[0010] ノルボルネン系樹脂は、ノルボルネン構造を有するモノマーと必要に応じて加えら れた他の重合性モノマーとを、開環重合したり付カ卩重合したりして得られるポリマーが 含まれるものである力 とりわけ、下記式(1)で表される環状ォレフィンに由来する繰 り返し単位を少なくとも 1種含む環状ォレフィン付加共重合体が好ましい。  [0010] The norbornene-based resin includes a polymer obtained by subjecting a monomer having a norbornene structure and other polymerizable monomer added as necessary to ring-opening polymerization or addition polymerization. In particular, a cyclic olefin-added copolymer containing at least one repeating unit derived from the cyclic olefin represented by the following formula (1) is preferable.
[0011] [化 1] [0011] [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
[0012] 〔式(1)中、 A1— A4はそれぞれ独立に水素原子、ハロゲン原子、炭素数 1一 20のァ ノレキル基、アルケニル基、シクロアルキル基、ァリーノレ基、ハロゲン化炭化水素基、ェ ステル基、アルコキシ基、トリアルキルシリル基、加水分解性シリル基、ォキセタニル 基を含む置換基から選ばれた置換基であり、これらの置換基はさらに炭素数 1一 10 のアルキレン基あるいは酸素原子を含む炭素数 1一 10の連結基を介して連結されて いてもよい。また、 A1と A2または A1と A4は互いに結合してアルキレン基、ァリーレン基 、酸無水物、ラタトンを形成していてもよレ、。 mは 0または 1である。〕 [In the formula (1), A 1 to A 4 each independently represents a hydrogen atom, a halogen atom, an aralkyl group having 1 to 20 carbon atoms, an alkenyl group, a cycloalkyl group, an aryleno group, or a halogenated hydrocarbon group. , An ester group, an alkoxy group, a trialkylsilyl group, a hydrolyzable silyl group, and a substituent including an oxetanyl group. These substituents are further alkylene groups having 1 to 10 carbon atoms or oxygen They may be linked via a linking group having 1 to 10 carbon atoms including atoms. A 1 and A 2 or A 1 and A 4 may be bonded to each other to form an alkylene group, an arylene group, an acid anhydride, or a rataton. m is 0 or 1. ]
環状ォレフィン系付加重合体がアルキル基を有する置換環状ォレフィンの繰り返し 単位を任意に含むことにより、得られる環状ォレフィン系重合体のガラス転移温度を 制御するなど成形力卩ェ性を改良でき、かつ得られるフィルム基材に柔軟性を付与で きる。 [0013] また、環状ォレフィン系付加重合体が加水分解性シリル基あるいはォキセタニル基 を含む置換基を有する繰り返し単位を含む場合ならば、加熱あるいは光照射によつ て酸を発生する化合物(以下、それぞれ「熱酸発生剤」、「光酸発生剤」ともいう。)の 作用により架橋構造を形成し、得られたフィルム基材の耐薬品性あるいは機械的強 度を向上させることができる。ここで、加水分解性シリル基とは、酸触媒および適宜供 給される水あるいは水蒸気による加水分解 Z縮合反応を経てシロキサン結合を形成 し、その結果シリル基間の架橋を可能とするものであり、下記式(2)あるいは下記式( 3)で表されるものである。 When the cyclic olefin-based addition polymer optionally contains a repeating unit of a substituted cyclic olefin having an alkyl group, it is possible to improve the molding force properties such as controlling the glass transition temperature of the obtained cyclic olefin-based polymer. Flexibility can be imparted to the film base. [0013] Further, when the cyclic olefin-based addition polymer includes a repeating unit having a hydrolyzable silyl group or a substituent containing an oxetanyl group, a compound that generates an acid by heating or light irradiation (hereinafter, referred to as the following). A cross-linked structure is formed by the action of “thermal acid generator” and “photo acid generator”, respectively, and the chemical resistance or mechanical strength of the obtained film substrate can be improved. Here, the hydrolyzable silyl group forms a siloxane bond through a hydrolysis Z-condensation reaction with an acid catalyst and water or water vapor supplied as appropriate, thereby enabling cross-linking between the silyl groups. These are represented by the following formula (2) or the following formula (3).
[0014] [化 2] [0014] [Chemical 2]
- S i R a R 2R 3 ' · ■ ■式 (2) -S i R a R 2 R 3 '· Formula (2)
[0015] [式(2)中、 R1, R2, R3の少なくとも 1つはアルコキシ基、ァリロキシ基およびハロゲン 原子から選ばれた置換基を示し、それ以外は炭素数が 1一 3のアルキル基である。 ] [0016] [化 3] ハ [In the formula (2), at least one of R 1 , R 2 , R 3 represents a substituent selected from an alkoxy group, an aryloxy group, and a halogen atom; It is an alkyl group. ] [0016] [Chemical 3] C
R4 · · · ■式 (3 ) R 4 · · · ■ Formula (3)
[0017] [式(3)中、 R4は水素原子または炭素数 1一 3のアルキル基を示し、 Yは炭素数 2— 20の脂肪族ジオール、脂環族ジオールあるいは芳香族ジオールの炭化水素残基を 示す。 ] [In the formula (3), R 4 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Y represents a hydrocarbon of an aliphatic diol, alicyclic diol or aromatic diol having 2 to 20 carbon atoms. Indicates a residue. ]
力かる架橋可能な繰り返し単位の全繰り返し単位中の割合としては、通常、 30モル %以下、好ましくは 20モノレ%、さらに好ましくは 15モル%以下である。 30モル%を超 えると、フィルム基材の吸水性が増大したり、架橋時の収縮が大きいため目的とする 用途に不適切なものとなることがある。  The ratio of the strong crosslinkable repeating units in the whole repeating units is usually 30 mol% or less, preferably 20 monole%, more preferably 15 mol% or less. If it exceeds 30 mol%, the water absorption of the film substrate may increase, or the shrinkage during crosslinking may be large, which may be inappropriate for the intended use.
[0018] 前記熱酸発生剤としては、 50°C以上で酸が発生する化合物が好ましく用いられ、 また、前記光酸発生剤としては、 g線、 h線、 i線、紫外線、遠紫外線、 X線、電子線等 の光線照射によりブレンステッド酸またはルイス酸を生成する化合物が用いられる。こ れらは公知の物質を適宜選択してよぐ 1種単独で用いても 2種以上組み合わせて用 いてもよい。熱酸発生剤および光酸発生剤は、環状ォレフィン系付加重合体 100重 量部当たり、 0. 001— 10重量部、好ましくは 0. 01-5. 0重量部の範囲で用いるこ とができる。 0. 001重量部より少ない場合には架橋の効果が充分に得られず、 10重 量部を超えると、フィルム基材の機械的強度、電気特性、透明性が損なわれることが ある。 [0018] As the thermal acid generator, a compound capable of generating an acid at 50 ° C or higher is preferably used, and as the photoacid generator, g-line, h-line, i-line, ultraviolet ray, far-ultraviolet ray, A compound that generates Bronsted acid or Lewis acid by irradiation with X-ray, electron beam or the like is used. These can be selected from known substances as appropriate. May be. The thermal acid generator and the photoacid generator can be used in the range of 0.001 to 10 parts by weight, preferably 0.01 to 5.0 parts by weight per 100 parts by weight of the cyclic olefin-based addition polymer. . If the amount is less than 001 parts by weight, the effect of crosslinking cannot be sufficiently obtained. If the amount exceeds 10 parts by weight, the mechanical strength, electrical properties and transparency of the film substrate may be impaired.
[0019] これら環状ォレフィン系付加重合体を得るために用いる単量体として、重合に関与 しない不飽和結合を有するもの、例えばトリシクロ [5. 2. 1. 02'6]デカ—3, 8—ジェン( ジシクロペンタジェン)ゃェチリデンノルボルネンなどを用いた場合、フィルム基材が 高温下での劣化を受けやすくなる。このような問題は、これら環状ォレフィンを付加重 合した後に不飽和結合の 90モル%以上、好ましくは 95モル%以上、さらに好ましく は 99モル%以上を水素化することで回避できる。水素化反応は、公知の不均一系触 媒あるいは均一系触媒を適宜用レ、、通常、水素圧 1. 0 15MPaの範囲、温度 50— 250°Cの範囲で行うことができる。 [0019] As monomers used for obtaining these cyclic olefin-based addition polymers, those having an unsaturated bond not involved in polymerization, such as tricyclo [5. 2. 1. 0 2 ' 6 ] deca-3, 8 -When Jen (dicyclopentagen) ethylidene norbornene is used, the film base material is susceptible to deterioration at high temperatures. Such a problem can be avoided by hydrogenating 90 mol% or more, preferably 95 mol% or more, more preferably 99 mol% or more of the unsaturated bond after addition polymerization of these cyclic olefins. The hydrogenation reaction can be carried out using a known heterogeneous catalyst or homogeneous catalyst as appropriate, usually at a hydrogen pressure in the range of 1.015 MPa and a temperature in the range of 50-250 ° C.
[0020] これらフィルム基材を構成する樹脂のガラス転移温度は、少なくとも 180°C以上、好 ましくは 200°C以上、さらに好ましくは 230°C以上、特に好ましくは 250— 400°Cであ る。ガラス転移温度が 180°C以下では透明導電膜製膜の際に、フィルム基材が変形 、収縮等により実用に耐えないものとなってしまうことがある。  [0020] The glass transition temperature of the resin constituting these film substrates is at least 180 ° C or higher, preferably 200 ° C or higher, more preferably 230 ° C or higher, and particularly preferably 250 to 400 ° C. The When the glass transition temperature is 180 ° C. or lower, the film substrate may become unpractical due to deformation or shrinkage during film formation of the transparent conductive film.
さらに本発明のフィルム基材は、フィルム厚み 100 μ mでのリタ一デーシヨンが 15 醒以下、全光線透過率が 90%以上であることが好ましい。リタ一デーシヨンが 15醒 以上になると円偏光フィルムを用いたインナー型タツチパネルの上部基材などへの 使用が困難となる。また全光線透過率が 90%未満になるとパネル画面が暗くなるな どの不都合が生じる。  Furthermore, the film substrate of the present invention preferably has a retardation of 15 Å or less and a total light transmittance of 90% or more at a film thickness of 100 μm. If the retardation is more than 15 awakens, it will be difficult to use the inner type touch panel with circular polarizing film on the upper substrate. Also, if the total light transmittance is less than 90%, there will be inconveniences such as darkening the panel screen.
[0021] また、フィルム中には、必要に応じて酸化防止剤、離型剤、紫外線吸収剤、滑剤、 着色剤など通常フィルムの中に混入して用いられる添加剤、さらに架橋反応のため の助剤等を、種々の目的で添加することも可能である。フィルム基材を製造する方法 は、特に限定されることはなぐ公知の溶融押出し法、溶液キャスティング法、塗工法 等の方法を用いることができる力 フィルムの表面平滑性から見ると溶液キャスティン グ法ゃ塗工法で製造したフィルム基材が好ましレ、。また必要に応じてフィルム製造ェ 程の中で、熱、光、水蒸気等により架橋反応を行わせることもできる。 [0021] In addition, in the film, additives that are usually mixed in the film, such as antioxidants, mold release agents, ultraviolet absorbers, lubricants, and coloring agents, as necessary, and further for crosslinking reaction. Auxiliaries and the like can be added for various purposes. The method for producing the film substrate is not particularly limited, and can use known melt extrusion methods, solution casting methods, coating methods, and the like. From the viewpoint of film surface smoothness, the solution casting method Film base manufactured by Nya coating method is preferred. If necessary, film production In the process, the crosslinking reaction can be performed by heat, light, water vapor or the like.
[0022] 本発明ではフィルム基材の厚みは、 2— 400 μ m程度が好ましい。 2 μ mより薄いと 基材そのものの機械的強度が不足し、この基材をロール状にして粘着剤層を塗布し たり、後述するハードコーティング処理等の連続作業に困難が伴う。このような観点で 、 10 z m以上の厚みであることが好ましぐ 20 z m以上であることが特に好ましレ、。 4 00 z m以上になると、ロール状にすると卷癖がっき、連続作業が困難であるば力、りか 、卷癖が残存するため使用できないことになる。このような観点で、好ましい厚みは、 300 μ m以下であり、特に好ましくは 250 μ m以下である。  In the present invention, the thickness of the film substrate is preferably about 2 to 400 μm. If it is thinner than 2 μm, the mechanical strength of the base material itself is insufficient, and it becomes difficult to perform continuous operations such as applying a pressure-sensitive adhesive layer in the form of a roll or performing a hard coating process described later. From this point of view, a thickness of 10 zm or more is preferred, and a thickness of 20 zm or more is particularly preferred. If it is 400 zm or more, it will be scratched if it is rolled, and if continuous work is difficult, it will not be able to be used because force, glue, or wrinkles will remain. From such a viewpoint, the preferable thickness is 300 μm or less, and particularly preferably 250 μm or less.
[0023] このフィルム基材は、その表面に予めスパッタリング、コロナ放電、火炎、紫外線照 射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、この上に 設けられる導電性薄膜や粘着剤、あるいは必要に応じて機能化するためにフィルム 表面に形成される各種コート剤や薄膜の密着性を高めることもできる。また、導電性 薄膜等を設ける前に、必要に応じて溶剤や水、酸、アルカリ等による洗浄や超音波 洗浄などにより除塵、洗浄化しておくこともできる。  [0023] This film base material is preliminarily subjected to etching treatment or undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, and the like, and a conductive thin film provided thereon It is also possible to enhance the adhesion of various coating agents and thin films formed on the surface of the film in order to function as needed. In addition, before providing the conductive thin film, etc., it may be removed and cleaned by washing with a solvent, water, acid, alkali or the like, or ultrasonic cleaning, if necessary.
[0024] 本発明で使用するフィルム基材は、同フィルム基材同士、あるいは異種のフィルム 基材と粘着剤、接着剤を介して貼り合わせて使用することもできる。この貼り合わせは 、透明フィルム基材の一方に粘着剤層、あるいは接着剤層を設けておき、これに他 方のフィルム基材を貼り合わせることで実施できる。この貼り合わせは、公知の方法を 適宜選んで実施できるが、フィルムをロール状にして、連続的に行うのが生産性の面 で有利である。粘着剤層、接着剤層としては、透明性を有するものであれば、特に制 限されることはない。  [0024] The film bases used in the present invention can be used by bonding the film bases to each other or different film bases with an adhesive or an adhesive. This bonding can be carried out by providing a pressure-sensitive adhesive layer or an adhesive layer on one side of the transparent film substrate and bonding the other film substrate to this. This laminating can be carried out by appropriately selecting a known method, but it is advantageous in terms of productivity to carry out the film continuously in a roll shape. The pressure-sensitive adhesive layer and the adhesive layer are not particularly limited as long as they have transparency.
[0025] 本発明の透明導電性積層体を形成するため、フィルム基材の片方の外表面に透 明な導電性薄膜を形成する。導電性薄膜の形成方法としては、真空蒸着法、スパッ タリング法、イオンプレーティング法などの従来公知の技術をレ、ずれも使用できる力 膜の均一性や透明基材への薄膜の密着性の観点から、スパッタリング法での薄膜形 成が好ましい。また、用いる薄膜材料も特に制限されるものではなぐ例えば、酸化錫 を含有する酸化インジウム、アンチモンを含有する酸化錫などの金属酸化物のほか、 金、銀、白金、パラジウム、銅、ァノレミニゥム、ニッケル、クロム、チタン、コバルト、錫ま たはこれらの合金などが好ましく用いられる。この導電性薄膜の厚さは、 30 A以上と することが必要で、これより薄いと表面抵抗が、 1000 Ω /口以下となる良好な導電 性を有する連続被膜となり難い。一方、厚くしすぎると透明性の低下などをきたすた めに、好適な厚さとしては、 50 2000 A程度である。 [0025] In order to form the transparent conductive laminate of the present invention, a transparent conductive thin film is formed on one outer surface of the film substrate. As a method for forming a conductive thin film, conventional techniques such as vacuum deposition, sputtering, and ion plating can be used. From the viewpoint, thin film formation by sputtering is preferable. The thin film materials used are not particularly limited, for example, metal oxides such as indium oxide containing tin oxide and tin oxide containing antimony, as well as gold, silver, platinum, palladium, copper, anoleminium, nickel Chrome, titanium, cobalt, tin Or these alloys are preferably used. The thickness of this conductive thin film needs to be 30 A or more, and if it is thinner than this, it is difficult to form a continuous film having good conductivity with a surface resistance of 1000 Ω / mouth or less. On the other hand, if the thickness is too large, the transparency is lowered. Therefore, a suitable thickness is about 50 2000 A.
[0026] 本発明においては、透明導電膜を製膜する際の温度をコントロールすることが重要 である。従来フィルムへのスパッタリングでは 100°C以下の温度で実施されていた。フ イルム基材と透明導電膜の接着力にはスパッタリング温度が大きく影響する。 160°C 以上の温度で製膜した場合に、耐久性に優れた透明導電性積層体を得ることができ る。またより抵抗値を下げるためには 180°C以上での製膜がさらに好ましぐ 200°C以 上での製膜が特に好ましい。  In the present invention, it is important to control the temperature at which the transparent conductive film is formed. Conventional film sputtering has been performed at temperatures below 100 ° C. The sputtering temperature greatly affects the adhesion between the film substrate and the transparent conductive film. When a film is formed at a temperature of 160 ° C or higher, a transparent conductive laminate having excellent durability can be obtained. In order to further reduce the resistance value, film formation at 180 ° C or higher is more preferable, and film formation at 200 ° C or higher is particularly preferable.
[0027] このようにして製膜された導電性薄膜の上に透明な誘電体薄膜を形成すると、さら に透明性と耐擦傷性、打点特性が改善され、より好ましい透明導電性積層体が得ら れる。この誘電体薄膜は、導電性薄膜の屈折率より小さいもの、通常 1. 3— 2. 0、好 ましくは 1 · 3-1. 6の屈折率を有するものがよぐ例えば CaF、 MgF、 NaAlF、 Al [0027] When a transparent dielectric thin film is formed on the conductive thin film thus formed, the transparency, scratch resistance, and spot characteristics are further improved, and a more preferable transparent conductive laminate is obtained. It is This dielectric thin film should have a refractive index smaller than that of the conductive thin film, usually 1.3-2.0, preferably 1 · 3-1.6. For example, CaF, MgF, NaAlF, Al
O、 SiOx (x= l— 2)、 ThFなどが好ましぐこの中でも SiOxがもっとも好ましい。こ れらの材料は、 目的に従って、 2種以上を併用することもできる。誘電体の膜厚は、 1 00A以上とすること力 S好ましく、通常 100— 3000A、好適には 200— 1500A力 S好 ましい。薄いと連続被膜が得られ難く透明性ゃ耐擦傷性改善効果が小さぐ厚いと導 電性ゃ透明性が悪化しクラックが生じ易くなる。誘電体の形成方法としては、真空蒸 着法、スパッタリング法、イオンプレーティング法、塗工法など公知の方法で実施する こと力 Sできる。 Of these, Ox, SiOx (x = l-2), and ThF are preferred. SiOx is most preferred. These materials can be used in combination of two or more according to the purpose. The dielectric film thickness should be 100A or more, preferably 100 to 3000A, and preferably 200 to 1500A. If the film is thin, it is difficult to obtain a continuous film, and if the transparency is small, the effect of improving the scratch resistance is small. If the film is thick, the conductivity is deteriorated and the cracks are likely to occur. The dielectric can be formed by a known method such as a vacuum deposition method, a sputtering method, an ion plating method, or a coating method.
[0028] 次に、透明導電性積層体に、 目的に応じて各種機能を付与する場合があり、むしろ これら力 より好適な実施態様になる場合が多レ、。これについて以下説明を加える。 フィルム基材は透明導電性薄膜の形成やその後の加工あるいは装置組み立て時 に、傷が生じ易ぐまた積層体において、導電性薄膜を形成した面の反対側の面は 裸の状態にあるために、使用中に表面傷が生じ易ぐこれが原因で透明導電膜積層 体としての視認性が低下する問題があり、これを避けるためにフィルム基材にハード コート処理を施したものを用いるのが好ましい。 [0029] ハードコート処理は、透明導電膜製膜前、あるいは後にフィルムの両面或いは片面 に実施することができる。ハードコート処理を、積層体における導電薄膜の反対側の 外表面に実施することが特に好ましい。ハードコート処理層は、メラニン系樹脂、ウレ タン系樹脂、アルキド系樹脂、アクリル系樹脂、シリコン系樹脂等の硬化型樹脂から なる硬化被膜であることが好ましい。ハードコート処理層のうちアクリル系樹脂は、導 電薄膜の密着性を高めることもあり、導電膜形成前の下地剤としての効果も有するの でもつとも好適に用いられる。 [0028] Next, various functions may be imparted to the transparent conductive laminate depending on the purpose. This will be described below. The film substrate is prone to scratches during the formation of the transparent conductive thin film, the subsequent processing or assembly of the device, and in the laminate, the surface opposite to the surface on which the conductive thin film is formed is bare. In order to avoid this problem, it is preferable to use a film substrate that has been subjected to a hard coat treatment in order to avoid this problem. . [0029] The hard coat treatment can be performed on both sides or one side of the film before or after the transparent conductive film is formed. It is particularly preferable to perform the hard coat treatment on the outer surface on the opposite side of the conductive thin film in the laminate. The hard coat treatment layer is preferably a cured film made of a curable resin such as melanin resin, urethane resin, alkyd resin, acrylic resin, or silicon resin. Among the hard coat treatment layers, an acrylic resin is preferably used because it can enhance the adhesion of the conductive thin film and has an effect as a base agent before forming the conductive film.
[0030] このような硬化被膜の形成に際しては、上述の硬化型樹脂に必要に応じて帯電防 止剤、重合開始剤などの各種の添加物を加えてなる組成物を、通常溶剤で希釈して 固形分が 20 80重量%となるように調製し、これを透明フィルム基材の一面に、一 般的な溶液塗工手段であるグラビアコータ、リバースコータ、スプレーコータ、スロット オリフィスコータまたはスクリーン印刷などの手段により、乾燥硬化後の厚みが 1一 15 μ m程度となるように塗布した後、加熱乾燥後紫外線照射や電子線照射あるいは加 熱により硬化させることができる。このハードコート処理層の形成に先立ち、被着面に コロナ放電、紫外線照射、プラズマ処理、スパッタエッチング処理、プライマ処理など の易接着処理をすることで、透明フィルムとハードコート処理層との密着性を高めるこ とができる。  [0030] In forming such a cured film, a composition obtained by adding various additives such as an antistatic agent and a polymerization initiator to the above-described curable resin as necessary is usually diluted with a solvent. The solid content is 20 to 80% by weight, and this is applied to one side of a transparent film substrate by a general solution coating method such as gravure coater, reverse coater, spray coater, slot orifice coater or screen printing. By such means as described above, the coating can be applied so that the thickness after drying and curing is about 115 μm, and after curing by heating, it can be cured by ultraviolet irradiation, electron beam irradiation or heating. Prior to the formation of this hard coat treatment layer, the adhesion between the transparent film and the hard coat treatment layer is achieved by subjecting the adherend surface to easy adhesion such as corona discharge, ultraviolet irradiation, plasma treatment, sputter etching treatment, and primer treatment. Can be increased.
[0031] また、透明導電性積層体における、透明導電膜を形成した面と反対側の面が裸で あるために、眩しさを感じたり、表面に傷が生じるとこれらのことが原因で、透明導電 性薄膜を使用した製品において視認性に劣る問題があった。この問題を解決するた めに、防眩処理剤をフィルム外表面に塗工したものが好ましく使用される。  [0031] In addition, since the surface opposite to the surface on which the transparent conductive film is formed in the transparent conductive laminate is bare, when it feels dazzling or the surface is scratched, There was a problem of poor visibility in products using transparent conductive thin films. In order to solve this problem, an antiglare treatment agent coated on the outer surface of the film is preferably used.
防眩処理剤は、上述のハードコート剤にシリカ粒子を分散結着させてなる硬化膜が 好ましレ、。ここで用いるシリカ粒子は、非晶質で多孔性のものであり、代表例としてシ リカゲルを挙げることができる。平均粒子径としては、通常 30 x m以下、好ましくは 2 一 15 z m程度であり、配合割合は、樹脂 100重量部に対してシリカ粒子が、 0. 1一 1 0重量部となるようにするのが好ましい。シリカ粒子の量が少ないと、防眩効果が劣り 、多いと光透過率や被膜強度が低下する。防眩処理剤は、上述のハードコート処理 とまったく同様にフィルムに塗布し、硬ィ匕させること力できる。防眩処理剤は、ハードコ ート処理も兼ねており防眩効果のみでなぐ傷防止効果も与える。 The anti-glare treatment agent is preferably a cured film obtained by dispersing and binding silica particles to the hard coat agent described above. The silica particles used here are amorphous and porous, and a typical example is silica gel. The average particle size is usually 30 xm or less, preferably about 2 to 15 zm, and the blending ratio is such that the silica particles are 0.1 to 1 10 parts by weight with respect to 100 parts by weight of the resin. Is preferred. When the amount of silica particles is small, the antiglare effect is inferior. When the amount is large, the light transmittance and the film strength are lowered. The antiglare treatment agent can be applied to the film and hardened in exactly the same manner as the hard coat treatment described above. Anti-glare treatment agent It also serves as an anti-glare effect and also provides a scratch prevention effect.
[0032] 次に、反射防止層を設けた透明導電性積層体について説明する。透明導電性薄 膜は、ディスプレー装置に用いられ、表面で光が反射すると画像が不鮮明になり、場 合によっては画像が見え難くなることがあった。高い光線透過能を有し、基材表面の 耐擦傷性に優れ、その上基材表面での光の反射を防止しうる反射防止機能も備えた ものは、実用上更に好ましい透明導電性積層体である。  Next, a transparent conductive laminate provided with an antireflection layer will be described. A transparent conductive thin film is used in a display device, and when light is reflected on the surface, the image becomes unclear, and in some cases, the image is difficult to see. A transparent conductive laminate having a high light transmittance, excellent scratch resistance on the surface of the base material, and also having an antireflection function capable of preventing light reflection on the surface of the base material is more preferable in practical use. It is.
[0033] 反射防止層は、導電性薄膜形成後に、この導電性薄膜の形成されていない外表 面に形成される。この反射防止層は、フィルム基材とは異なる屈折率を有する単層構 造または 2層以上の多層構造が含まれる。単層構造では、フィルム基材に比べ小さ な屈折率を有する材料が選択される。反射防止効果をより優れたものとするために、 多層構造とする場合、フィルム基材に比べ大きな屈折率を有する材料層を設け、そ の上にこれより小さな屈折率を有する材料層を設けることが好ましぐ P 接層相互間 で屈折率の異なる材料構成が用いられる力 より好ましくは 3層以上の多層構造とし て最外層の屈折率がこれに隣接する下層の屈折率よりも小さくなるような材料構成と するのがよい。このような反射防止層を構成させるための材料としては、例えば CaF [0033] After the formation of the conductive thin film, the antireflection layer is formed on the outer surface where the conductive thin film is not formed. This antireflection layer includes a single layer structure having a refractive index different from that of the film substrate or a multilayer structure of two or more layers. In the single layer structure, a material having a refractive index smaller than that of the film substrate is selected. In order to improve the antireflection effect, in the case of a multilayer structure, a material layer having a larger refractive index than that of the film substrate is provided, and a material layer having a smaller refractive index is provided thereon. P is a force that uses a material structure with a different refractive index between the P-contact layers. More preferably, the outermost layer has a refractive index smaller than the refractive index of the lower layer adjacent to the multilayer structure of three or more layers. It is advisable to use a suitable material structure. As a material for constituting such an antireflection layer, for example, CaF
、 MgF、 NaAlF、 Al〇、 SiOx (x= l— 2)、 ThF、 ZrO、 Sb〇、 Nd O、 SnO、, MgF, NaAlF, Al〇, SiOx (x = l-2), ThF, ZrO, Sb〇, NdO, SnO,
TiO、 In Oなどの誘導体が挙げられる。その屈折率が前記関係を満たすように適宜 選択される。この反射防止層は、導電層と同じような薄膜形成技術により形成すること ができる。その厚みは、反射防止層としての全体厚が、一般に 500— 5000 A程度と なる範囲内で選択される。この層は、表面の硬度も高めるため、耐擦傷性も向上する Derivatives such as TiO and InO are mentioned. The refractive index is appropriately selected so as to satisfy the above relationship. This antireflection layer can be formed by a thin film formation technique similar to that of the conductive layer. The thickness is selected so that the total thickness of the antireflection layer is generally about 500 to 5000 A. This layer also increases the hardness of the surface, thus improving the scratch resistance.
[0034] また、この透明導電性積層体は、ディスプレー装置に用いられるために、加工時や 使用時にその表面に指紋や汚れが生じ、まぶしさを感じるなど薄膜製品全体として の視認性に問題が生じる場合があった。この問題を解決するために、積層体の外表 面に撥水および汚れ防止処理層を有する透明導電性積層体は用途によっては好ま しい。撥水および汚れ防止処理層は、ハードコート形成とまったく同じようにして、フィ ルム外表面に形成できる。このような撥水および汚れ防止処理層を形成するための 材料としては、例えば水酸基またはビュル基を含有するジメチルポリシロキサンとメチ ルハイドロジエンポリシロキサンとの組み合わせからなるシリコン含有化合物、ポリテト ラフルォロエチレン、ポリクロ口トリフルォロエチレンなどの弗素系樹脂のほ力、硫化モ リブデンなどが単独または化合物として用いられる。上記処理層の密着性や硬度向 上のため、既述したハードコート剤等の硬化型樹脂に分散結着させ、基材表面に硬 化膜層として設けてもよい。また、防眩効果ゃ耐擦傷性を高める目的で、上記シリカ 粒子を分散させることもできる。この撥水および汚れ防止層の形成は、特に限定され ず、用いる材料に応じて、塗工法、スプレー法、真空蒸着法、スパッタリング法、ィォ ンプレーティング法、焼き付け法などを用いることができる。処理層の厚みは特に限 定されないが、通常 100 A 50 x m程度が良レ、。薄いと連続膜が得られ難く撥水効 果が乏しぐ厚いとクラックが生じ易くなることがある。 [0034] Further, since this transparent conductive laminate is used in a display device, fingerprints and dirt are generated on the surface during processing and use, and there is a problem in visibility as a whole thin film product such as feeling glare. There was a case. In order to solve this problem, a transparent conductive laminate having a water-repellent and antifouling treatment layer on the outer surface of the laminate is preferred depending on the application. The water repellent and antifouling treatment layer can be formed on the outer surface of the film in the same manner as the hard coat formation. Examples of the material for forming such a water-repellent and antifouling treatment layer include dimethylpolysiloxane containing a hydroxyl group or a bur group and methyl. A silicon-containing compound comprising a combination with a hydrodiene polysiloxane, a fluorine resin such as polytetrafluoroethylene or polychloroethylene, molybdenum sulfide or the like is used alone or as a compound. In order to improve the adhesion and hardness of the treatment layer, it may be dispersed and bonded to the curable resin such as the hard coat agent described above and provided as a hardened film layer on the substrate surface. In addition, the silica particles can be dispersed for the purpose of improving anti-glare effect and scratch resistance. The formation of the water-repellent and antifouling layer is not particularly limited, and a coating method, a spray method, a vacuum deposition method, a sputtering method, an ion plating method, a baking method, or the like can be used depending on the material used. The thickness of the treatment layer is not particularly limited, but is usually about 100 A 50 xm. If it is thin, it is difficult to obtain a continuous film, and if the water-repellent effect is poor, cracks are likely to occur.
[0035] 上述の機能化処理は、 2種以上を組み合わせて実施することも可能であり、特にハ ードコート剤と防眩処理と撥水や汚れ防止処理剤とは組み合わせて使用すると効率 的である。 [0035] The above functionalization treatment can be carried out in combination of two or more, and it is particularly efficient when a hard coat agent, an antiglare treatment and a water repellent or antifouling treatment agent are used in combination. .
[実施例]  [Example]
以下に、この発明を実施例でより具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
実施例 1  Example 1
[0036] <ノルボルネン系樹脂の合成、フィルム基材の作製 >  [0036] <Synthesis of norbornene resin, production of film substrate>
単量体としてビシクロ [2. 2. 1]ヘプタ一 2_ェンを 700ミリモノレ、 endo—トリシクロ [5, 2, 1 , 02'6]デカ _8—ェン(endo/exo = 96/4)を 570ミリモノレ、 5_トリエトキシシリノレ ビシクロ [2. 2. 1]ヘプタ— 2—ェンを 30ミリモル、 1—へキセンを 5ミリモル、溶媒として シクロへキサン 400g、塩化メチレン 100gを 2Lのステンレス製反応器に窒素下で仕 込んだ。 Bicyclo [2. 2. 1] hepta-2-ene as a monomer is 700 millimonole, endo-tricyclo [5, 2, 1, 0 2 ' 6 ] deca _8-en (endo / exo = 96/4 ) 570 millimonole, 5_triethoxysilinorebicyclo [2. 2. 1] hepta-2-ene 30 mmol, 1-hexene 5 mmol, solvent 400 g cyclohexane, methylene chloride 100 g 2 L A stainless steel reactor was charged under nitrogen.
[0037] オクタン酸ニッケルのへキサン溶液とへキサフロロアンチモン酸を一 10°C、モル比 1  [0037] A solution of nickel octanoate in hexane and hexafluoroantimonic acid at 10 ° C, molar ratio 1
: 1で反応させ、副生するビス(へキサフロロアンチモン酸)ニッケル、 [Ni (SbF ) ]の 沈殿をろ過で除去し、トルエンで希釈した。得られたオクタン酸ニッケルのへキサフ口 口アンチモン酸変性体をニッケル原子として 0. 40ミリモル、三フッ化ホウ素ェチルェ ーテラート 1 · 2ミリモル、メチルアルモキサン 8· 0ミリモノレ、 1 , 5—シクロォクタジェン 0 . 4ミリモノレ、メチノレ卜リエ卜キシシラン 8. 0ミリモノレを、メチノレ卜リユ卜キシシラン、 1 , 5- シクロォクタジェン、メチルアルモキサン、三フッ化ホウ素ェチルエーテラート、ォクタ ン酸ニッケルのへキサフロロアンチモン酸変性体の順に仕込み、重合を開始した。 3 0°Cで 3時間重合を行い、メタノールを添加して重合を停止した。単量体の共重合体 への転化率は 92。/。であった。 : Reacted in 1, precipitate of bis (hexafluoroantimonate) nickel and [Ni (SbF)] byproduct was removed by filtration and diluted with toluene. The resulting hexaoctammonium-modified antimonic acid modification of nickel octanoate is 0.40 mmol, boron trifluoride etherate 1 · 2 mmol, methylalumoxane 8.0 · millimonole, 1,5-cycloocta Gen 0.4 millimonore, methinorelie oxysilane 8.0 millimonore, methinoreoxy xylan, 1, 5- Polymerization was started by charging cyclooctagen, methylalumoxane, boron trifluoride etherate, and nickel oxaloantimonic acid modified product of nickel octanoate in this order. Polymerization was carried out at 30 ° C. for 3 hours, and methanol was added to terminate the polymerization. Conversion of monomer to copolymer is 92. /. Met.
[0038] 共重合体溶液にシクロへキサン 480gを加えて希釈し、そこに水 660ml、乳酸 48ミ リモルを加え、充分に攪拌混合した後、共重合体溶液と水相を静置分離した。触媒 成分の反応物を含む水相を除去し、共重合体溶液を 4Lのイソプロピルアルコールに 入れて共重合体を凝固し、未反応単量体および触媒残さを除去した。凝固した共重 合体を乾燥し、環状ォレフィン系付加重合体 A (以下、「共重合体 A」ともいう。)を 75 g得た。 [0038] The copolymer solution was diluted by adding 480 g of cyclohexane, 660 ml of water and 48 mmol of lactic acid were added thereto, and the mixture was sufficiently stirred and mixed, and then the copolymer solution and the aqueous phase were allowed to stand and be separated. The aqueous phase containing the reaction product of the catalyst component was removed, and the copolymer solution was put into 4 L of isopropyl alcohol to solidify the copolymer, thereby removing unreacted monomers and catalyst residues. The coagulated copolymer was dried to obtain 75 g of cyclic olefin-based addition polymer A (hereinafter also referred to as “copolymer A”).
[0039] 共重合体 A中の 5_トリエトキシシリルビシクロ [2. 2. 1]ヘプター 2—ェンに由来する 繰り返し単位の割合は 2. 1モル0 /0、 endo—トリシクロ [5, 2, 1, 02'6]デカ— 8—ェンに 由来する繰り返し単位の割合は 35モル%であった。また、共重合体のポリスチレン換 算の数平均分子量は 89, 000、重量平均分子量は 187, 000、で、 Mw/Mnは 2. 1であった。 [0039] 5_ triethoxysilypropoxy ruby cycloalkyl in the copolymer A [2. 2.1] of the repeating unit derived from Heputa 2 E emissions is 2.1 mole 0/0, endo- tricyclo [5, 2 , 1, 0 2 ' 6 ] Deca-8-en, the proportion of repeating units was 35 mol%. The number average molecular weight of the copolymer converted to polystyrene was 89,000, the weight average molecular weight was 187,000, and Mw / Mn was 2.1.
[0040] 次に、共重合体 AlOgをシクロへキサン 35. 5gに溶解して、酸化防止剤としてペン タエリスリチルテトラキス [3— (3, 5—ジー t—ブチルー 4—ヒドロキシフエニル)プロビオネ ート]を共重合体 100部に対して 1. 0部、および架橋触媒として亜リン酸トリブチルを 共重合体 100部に対して 0. 5部それぞれ添加した。この共重合体溶液をキャストして 、生成したフィルムを 150°Cで 2時間乾燥、さらに真空下 200°Cで 1時間乾燥した。さ らにこのフィルムを 150°Cの水蒸気下で 4時間熱処理した。その後、真空下 200°Cで 1時間乾燥して、厚さ 100 μ mの架橋フィルム Αを作製した。  [0040] Next, the copolymer AlOg was dissolved in 35.5 g of cyclohexane, and pentaerythrityl tetrakis [3— (3,5-di-tert-butyl-4-hydroxyphenyl) propione as an antioxidant. 1.0 parts with respect to 100 parts of the copolymer and 0.5 parts of tributyl phosphite as a crosslinking catalyst with respect to 100 parts of the copolymer. The copolymer solution was cast, and the resulting film was dried at 150 ° C. for 2 hours and further dried at 200 ° C. for 1 hour under vacuum. Furthermore, this film was heat-treated under steam at 150 ° C for 4 hours. Then, it was dried at 200 ° C for 1 hour under vacuum to produce a crosslinked film Α having a thickness of 100 µm.
[0041] 得られたフィルム Aの特性は全光線透過率: 91%、ガラス転移温度: 375°C、リタ一 テーシヨン: 5匪でめった。  [0041] The film A obtained had the following characteristics: total light transmittance: 91%, glass transition temperature: 375 ° C, retardation: 5 mm.
<透明導電積層体の作成 >  <Creation of transparent conductive laminate>
上述と同様の操作により得られた縦 200mm、横 200mm、厚さ 100 μ mのシート上に スパッター機を用いて以下の条件でインジウム-スズ酸化物(ITO)膜を形成した。  An indium-tin oxide (ITO) film was formed on a sheet having a length of 200 mm, a width of 200 mm, and a thickness of 100 μm obtained by the same operation as described above using a sputter machine under the following conditions.
[0042] 基材温度: 200°C ターゲット: In O /SnO =90/10 (重量比)の合金 [0042] Substrate temperature: 200 ° C Target: In O / SnO = 90/10 (weight ratio) alloy
2 3 2  2 3 2
雰囲気:アルゴンガス流入下  Atmosphere: Under argon gas flow
スパッター速度: 80 A/min  Sputter speed: 80 A / min
スパッター圧力: 10— 3 torr Sputtering pressure: 10- 3 torr
この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表 - 1に示 す。  Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
実施例 2  Example 2
[0043] フィルム基材として、実施例 1と同じフィルム Aを用いて、基板温度を 250°Cに変更 した以外は実施例 1と同様の方法で ITO製膜を実施した。  [0043] Using the same film A as in Example 1 as the film base, ITO film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 250 ° C.
この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表 - 1に示 す。  Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
実施例 3  Example 3
[0044] フィルム基材として、厚さ 100 μ mの帝人ピュアエース (R)WR (芳香族系ポリカーボネ ート)フィルムを用いた。 このフィルムの特性は全光線透過率:90%、ガラス転移温 度: 210°C、リタ一デーシヨン: 20nmであった。本フィルムを用い、基板温度を 180°C に変更した以外は実施例 1と同様の方法で IT〇製膜を実施した。  [0044] A Teijin Pure Ace (R) WR (aromatic polycarbonate) film having a thickness of 100 µm was used as a film substrate. The properties of this film were a total light transmittance of 90%, a glass transition temperature of 210 ° C., and a retardation of 20 nm. Using this film, IT ○ film formation was carried out in the same manner as in Example 1 except that the substrate temperature was changed to 180 ° C.
この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表 - 1に示 す。  Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
実施例 4  Example 4
[0045] 充分に窒素で置換した 2Lのステンレス製反応器へ、脱水したトルエン 750gおよび シクロへキサン 200gを仕込み、 5—ブチルビシクロ [2. 2. 1]ヘプタ _2_ェンを 150g 、 75重量0 /0としたビシクロ [2. 2. 1]ヘプタ _2_ェンのトルエン溶液を 170g加えた。 エチレンを 20°Cにおける分圧で 0. 015MPaとなるまで導入した後、反応器のバル ブを閉じ 75°Cに昇温した。続いて 0. 005mol/lの酢酸パラジウムのトノレェン溶液を 1. lml、 0. 002mol/lのトリシクロへキシルホスフィンのトルエン溶液を 2. 75ml, 0 . OOlmol/1のトリフエニルカルべ二ゥムテトラキス(ペンタフルオロフェニノレ)ボレート のトルエン溶液を 5. 5mlカ卩ぇ重合を開始した。重合開始後 60分および 90分経過し た際に、上記ビシクロ [2. 2. 1]ヘプタ— 2—ェンのトノレェン溶液をそれぞれ 15g添加 し、重合を合計 4時間継続させた。全単量体の重合体への転化率は 99%であった。 得られた共重合体溶液をイソプロピルアルコール約 10Lへ注レ、で凝固し、真空下 80 °Cで 17時間乾燥して環状ォレフィン系共重合体 B (以下、「共重合体 B」ともいう。)を 得た。共重合体 Bにおける 5—ブチルビシクロ [2. 2. 1]ヘプタ— 2_ェンに由来する繰 り返し単位の割合は 39mol%、数平均分子量は 42, 000、重量平均分子量は 175, 000であった。 [0045] Into a 2L stainless steel reactor sufficiently purged with nitrogen, 750g of dehydrated toluene and 200g of cyclohexane were charged, and 150g, 75 weight of 5-butylbicyclo [2.2.1] hepta_2_en was added. 0/0, and bicyclo [2.2.1] was added 170g of toluene solution of hept _2_ E down. Ethylene was introduced until the partial pressure at 20 ° C reached 0.015 MPa, and then the reactor valve was closed and the temperature was raised to 75 ° C. Subsequently, 0.005 mol / l of palladium acetate in toluene solution was added in 1. lml, 0.002 mol / l of tricyclohexylphosphine in toluene was added in 2.75 ml, 0.001 mol / l of triphenylcarbtetrakis (penta Polymerization of 5.5 ml of fluorotoluene) borate in toluene was started. When 60 minutes and 90 minutes have elapsed after the start of polymerization, 15 g of each of the above tons of bicyclo [2.2.1] hepta-2-ene was added. The polymerization was continued for a total of 4 hours. Conversion of all monomers to polymer was 99%. The obtained copolymer solution is solidified by pouring into about 10 L of isopropyl alcohol, dried under vacuum at 80 ° C. for 17 hours, and then cyclic olefin-based copolymer B (hereinafter also referred to as “copolymer B”). ) Was obtained. In copolymer B, the proportion of repeating units derived from 5-butylbicyclo [2.2.1] hepta-2-ene is 39 mol%, the number average molecular weight is 42,000, and the weight average molecular weight is 175,000. Met.
[0046] 共重合体 B100重量部をトルエン 280重量部とシクロへキサン 70重量部からなる混 合溶液に溶解して、酸化防止剤としてペンタエリスリチルテトラキス [3—(3, 5_ジー t_ ブチル _4—ヒドロキシフエニル)プロピオネート]およびトリス(2, 4—ジ _t_ブチルフエ ニル)ホスファイトをそれぞれ 0. 6重量部添加した。得られた共重合体溶液を孔径 10 z mのメンブランフィルターで濾過した後、 25°Cでキャストし、生成したフィルムを 160 °Cで 2時間乾燥し、厚さ 100 z mのフィルム Bを作成した。得られたフィルム Bの特性 は、全光線透過率が 93%、ガラス転移温度が 345°C、リタ一デーシヨンが 5nmであ つに。  [0046] 100 parts by weight of copolymer B was dissolved in a mixed solution consisting of 280 parts by weight of toluene and 70 parts by weight of cyclohexane, and pentaerythrityl tetrakis [3- (3,5_di-t-butyl) as an antioxidant. _4-hydroxyphenyl) propionate] and tris (2,4-di-t_butylphenyl) phosphite were each added by 0.6 parts by weight. The obtained copolymer solution was filtered through a membrane filter having a pore size of 10 zm, and then cast at 25 ° C. The resulting film was dried at 160 ° C for 2 hours to prepare a film B having a thickness of 100 zm. The resulting film B has a total light transmittance of 93%, a glass transition temperature of 345 ° C, and a retardation of 5 nm.
[0047] 得られたフィルム Bを用レ、、実施例 2と同様の方法にて ITO製膜を実施した。この導 電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性を測定し表 - 1に示す。  [0047] Using the obtained film B, ITO film formation was carried out in the same manner as in Example 2. Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
比較例 1  Comparative Example 1
[0048] フィルム基材として、厚さ 100 μ mの JSRアートン (R) (ノルボルネン系)フィルムを用い た。 このフィルムの特性は全光線透過率: 90%、ガラス転移温度: 170°C、リターデ ーシヨン: 3nmであった。本フィルムを用レ、、基板温度を 130°Cに変更した以外は実 施例 1と同様の方法で IT〇製膜を実施した。  [0048] A JSR Arton (R) (norbornene-based) film having a thickness of 100 µm was used as a film substrate. The characteristics of this film were total light transmittance: 90%, glass transition temperature: 170 ° C., and retardation: 3 nm. IT ○ film formation was carried out in the same manner as in Example 1 except that this film was used and the substrate temperature was changed to 130 ° C.
この導電性薄膜の平均抵抗値、透過率、耐擦傷性、打点特性とを測定し表 - 1に示 す。  Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
比較例 2  Comparative Example 2
[0049] フィルム基材として厚さが 25 μ mのポリエチレンテレフタレートフィルム(以下 PETフ イルムという。)を用いて、基板温度を 50°Cに変更した以外は実施例 1と同様の方法 で ITO製膜を実施した。ついで上記 PETフィルムの他方の面に、弾性係数が 1. 2 X 10の 6乗 dyn/cm2に調整されたアクリル系の透明な粘着剤層(アクリル酸ブチルと アクリル酸と酢酸ビニルの重合比 100: 2: 5の共重合体 100重量部にイソシァネート 系架橋剤を 1重量部配合させたもの)を約 20 μ ΐηの厚さに形成し、この上に厚さが 1 00 / mの PETフィルムを貼りあわせた。この導電性薄膜の平均抵抗値、透過率、耐擦 傷性、打点特性とを測定し表一 1に示す。 [0049] Using a polyethylene terephthalate film (hereinafter referred to as PET film) having a thickness of 25 μm as the film substrate, the substrate temperature was changed to 50 ° C, and the same method as in Example 1 was used. Membrane was performed. Next, on the other side of the PET film, an acrylic transparent adhesive layer (modulated with butyl acrylate) with an elastic modulus adjusted to 1.2 x 10 6 dyn / cm 2 A copolymer of acrylic acid and vinyl acetate with a 100: 2: 5 copolymer (100 parts by weight and 1 part by weight of an isocyanate cross-linking agent) is formed to a thickness of about 20 μΐη. Laminated PET film with a length of 100 / m. Table 1 shows the measured average resistance, transmittance, scratch resistance, and spot characteristics of this conductive thin film.
[0050] フィルム基材の特性は以下のように実施した。 [0050] The characteristics of the film substrate were as follows.
全光線透過率' 'ASTM—DIOOSに準拠し、厚さが 100 μ mのフィルムで測定した ガラス転移温度 · ·動的粘弾性の tan δ (貯蔵弾性率 E'と損失弾性率 Ε"との比)ピー ク温度でフィルム基材のガラス転移温度を測定した。動的粘弾性の測定はレオバイ ブロン DDV— 01FP (オリエンテック製)を用レ、、測定周波数が 10Ηζ、昇温速度が 4 Total light transmittance '' Conforms to ASTM—DIOOS and measured with a film with a thickness of 100 μm. Glass transition temperature · Dynamic viscoelasticity tan δ (storage modulus E 'and loss modulus Ε) Ratio) The glass transition temperature of the film substrate was measured at the peak temperature.The dynamic viscoelasticity was measured using Leovibron DDV-01FP (Orientec), the measurement frequency was 10Ηζ, and the heating rate was 4
°C /分、加振モードが単一波形、加振振幅力 ¾.5 μ mのものを用いて得られる tan δ の温度分散のピーク温度で求めた。 It was determined at the peak temperature of the temperature dispersion of tan δ obtained using ° C / min, the excitation mode having a single waveform, and the excitation amplitude force ¾.5 μm.
[0051] リタ一デーシヨン' ·回転アナライザ一式自動エリプソメーター((株)溝尻光学工業所 製)を用いて楕円偏向解析法により、楕円偏向の位相差 Δを測定することで、以下の 式 (1)よりリタ一デーシヨン Reを計算した。なお、レーザー光の入射光角度を 0° とし、 リタ一デーシヨンを評価した。  [0051] Retardation '· By measuring the phase difference Δ of the elliptical deflection by the elliptical deflection analysis method using the rotation analyzer complete automatic ellipsometer (manufactured by Mizojiri Optical Co., Ltd.), the following formula (1 ) The return value Re was calculated. In addition, the incident light angle of the laser beam was set to 0 °, and the retardation was evaluated.
Δ =-k (n -n ) d=_k Re (1) Δ = -k (n -n) d = _k Re (1)
0 x y 0  0 x y 0
ただし、 k は波数( = 2 π /え)、 η , η , ηはフィルムの 3次元屈折率を直交する座標  Where k is the wave number (= 2π / e), η, η, η are the coordinates orthogonal to the three-dimensional refractive index of the film
0 z  0 z
系 X, y, zに取った際の各屈折率, dはフィルム光路長である。  Each index of refraction when taken in the system X, y, z, d is the film path length.
[0052] 作製した透明導電性積層体の特性の測定法は以下の通りである。 [0052] The method for measuring the characteristics of the produced transparent conductive laminate is as follows.
•平均抵抗値 · ·四端子法を用い、等間隔で 9点を測定し、平均値を計算して求めた。 •透過率 · ·分光透過率計を用い、 550nmの波長の、光の透過率を求めた。  • Average resistance value ·········································································································· • Transmittance ··· A spectral transmittance meter was used to determine the light transmittance at a wavelength of 550 nm.
'耐擦傷性 · ·ヘイドン表面性測定機を用レ、、荷重 90g/cm2のガーゼで、擦傷速度 3 0cm/分、擦傷回数 100回の条件で薄膜表面を擦った後に、抵抗値 (Rs)を測定し 、初期値 (Ro)に対する変化率を求めた。 'Scratch resistance ··· Using a Haydon surface measuring machine, with a gauze with a load of 90 g / cm 2 , rubbing the surface of the thin film at a scratch rate of 30 cm / min and a number of scratches of 100 times, the resistance value (Rs ) Was measured, and the rate of change relative to the initial value (Ro) was determined.
•打点特性 · · 2枚の透明導電性積層フィルムを厚さ 100 a mのスぺーサーを介して 導電性薄膜同士が向かい合うように対向配置し、硬度 40度のウレタンゴムからなる口 ッド (鍵先 7R)を用いて、荷重 90gで 100万回のセンター打点を行った後に、抵抗値 (Rd)を測定し、初期抵抗値 (Ro)に対する変化率を求めた。 • Dot characteristics ······································································································ Using 7R), the resistance value is measured after performing center hitting 1 million times with a load of 90g. (Rd) was measured, and the rate of change with respect to the initial resistance value (Ro) was determined.
[0053] [表 1] [0053] [Table 1]
表一  One table
Figure imgf000016_0001
Figure imgf000016_0001
[0054] 上記結果から明ら力、なように、本発明では、透明導電性積層体を、フィルム基材を 160°C以上の温度に保って導電性薄膜をスパッタリングにより形成しており、スパッタリ ングによる導電薄膜形成時にフィルムの強度が増しているために耐擦傷性、打点特 性も優れた透明導電性積層体が得られる。 As can be seen from the above results, in the present invention, the transparent conductive laminate is formed by sputtering the conductive thin film while maintaining the film substrate at a temperature of 160 ° C. or higher. Since the strength of the film is increased when the conductive thin film is formed by wrapping, a transparent conductive laminate having excellent scratch resistance and spot characteristics can be obtained.
特にフィルム基材としてノルボルネン系樹脂を用いて、 230°C以上好ましくは 250 °C以上で導電性薄膜をスパッタリングにより形成すると、耐擦傷性に優れた透明導電 性積層体が得られる。  In particular, when a conductive thin film is formed by sputtering at 230 ° C or higher, preferably 250 ° C or higher, using a norbornene-based resin as a film substrate, a transparent conductive laminate having excellent scratch resistance can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 透明フィルム上に、該フィルムの温度を 160°C以上に保って透明導電膜を形成す ることを特徴とする透明導電性積層体の製造方法。  [1] A method for producing a transparent conductive laminate, comprising forming a transparent conductive film on a transparent film while maintaining the temperature of the film at 160 ° C or higher.
[2] フィルムの温度を 200°C以上に保って透明導電膜を形成する請求項 1に記載の製 造方法。 [2] The production method according to claim 1, wherein the transparent conductive film is formed while maintaining the temperature of the film at 200 ° C or higher.
[3] 透明フィルム力 ガラス転移温度が 180°C以上であり、かつ実質的に非晶質な重合 体からなる請求項 1に記載の製造方法。  [3] Transparent film force The production method according to claim 1, comprising a substantially amorphous polymer having a glass transition temperature of 180 ° C or higher.
[4] 透明フィルム力 ガラス転移温度が 200°C以上であり、かつ実質的に非晶質な重合 体からなる請求項 1一 2のいずれかに記載の製造方法。 [4] Transparent film force The production method according to any one of claims 1 and 2, comprising a substantially amorphous polymer having a glass transition temperature of 200 ° C or higher.
[5] 透明フィルム力 フィルム厚み 100 μ mでのリタ一デーシヨンが 15nm以下であり、 全光線透過率が 90%以上である請求項 1一 4のいずれかに記載の製造方法。 [5] Transparent film strength The production method according to any one of claims 1 to 4, wherein the retardation at a film thickness of 100 μm is 15 nm or less and the total light transmittance is 90% or more.
[6] 透明フィルムが下記式(1)で表される繰り返し単位を少なくとも 1種含む重合体を含 有する組成物からなる請求項 1一 5のいずれかに記載の製造方法; [6] The production method according to any one of claims 1 to 5, wherein the transparent film comprises a composition containing a polymer containing at least one repeating unit represented by the following formula (1):
[化 4]  [Chemical 4]
Figure imgf000017_0001
Figure imgf000017_0001
〔式(1)中、 A1— A4はそれぞれ独立に水素原子、ハロゲン原子、炭素数 1一 20のァ ルキル基、アルケニル基、シクロアルキル基、ァリーノレ基、ハロゲン化炭化水素基、ェ ステル基、アルコキシ基、トリアルキルシリル基、加水分解性シリル基、ォキセタニル 基を含む置換基から選ばれた置換基であり、これらの置換基はさらに炭素数 1一 10 のアルキレン基あるいは酸素原子を含む炭素数 1一 10の連結基を介して連結されて いてもよレ、。また、 A1と A2または A1と A4は互いに結合してアルキレン基、ァリーレン基 、酸無水物、ラタトンを形成していてもよレ、。 mは 0または 1である。〕。 請求項 1一 6のレ、ずれかに記載の方法で得られた透明導電性積層体。 [In the formula (1), A 1 to A 4 are independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group, a cycloalkyl group, an aryleno group, a halogenated hydrocarbon group, an ester. Group, alkoxy group, trialkylsilyl group, hydrolyzable silyl group, substituent selected from oxetanyl group, and these substituents further include an alkylene group having 1 to 10 carbon atoms or an oxygen atom It may be linked via a linking group with 1 to 10 carbon atoms. A 1 and A 2 or A 1 and A 4 may be bonded to each other to form an alkylene group, an arylene group, an acid anhydride, or a rataton. m is 0 or 1. ]. A transparent conductive laminate obtained by the method according to claim 11.
請求項 7に記載の透明導電性積層体を少なくとも一方の電極として有するタツチパ ネノレ。  A touch panel having the transparent conductive laminate according to claim 7 as at least one electrode.
PCT/JP2005/002921 2005-02-23 2005-02-23 Process for producing transparent conductive laminate, and touch panel WO2006090448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/002921 WO2006090448A1 (en) 2005-02-23 2005-02-23 Process for producing transparent conductive laminate, and touch panel
JP2007504582A JPWO2006090448A1 (en) 2005-02-23 2005-02-23 Method for producing transparent conductive laminate and touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002921 WO2006090448A1 (en) 2005-02-23 2005-02-23 Process for producing transparent conductive laminate, and touch panel

Publications (1)

Publication Number Publication Date
WO2006090448A1 true WO2006090448A1 (en) 2006-08-31

Family

ID=36927099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002921 WO2006090448A1 (en) 2005-02-23 2005-02-23 Process for producing transparent conductive laminate, and touch panel

Country Status (2)

Country Link
JP (1) JPWO2006090448A1 (en)
WO (1) WO2006090448A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137290A (en) * 2007-11-15 2009-06-25 Jsr Corp Norbornene resin film having hard coat layer and manufacturing process of norbornene resin film having hard coat layer
JP2009187687A (en) * 2008-02-04 2009-08-20 Jsr Corp Method of manufacturing transparent conductive film, touch panel which has film obtained by the method, and display device which has the touch panel
JP2011243182A (en) * 2010-05-14 2011-12-01 Samsung Electro-Mechanics Co Ltd Touch panel manufacturing device
JP2014534527A (en) * 2011-10-25 2014-12-18 ユニピクセル ディスプレイズ,インコーポレーテッド Polarizing plate capacitive touch screen
JP2014535111A (en) * 2011-10-25 2014-12-25 ユニピクセル ディスプレイズ,インコーポレーテッド Method for manufacturing capacitive touch sensor circuit using unwinding and winding process to print conductive microscopic pattern on flexible dielectric substrate
JP2015503139A (en) * 2011-10-25 2015-01-29 ユニピクセル ディスプレイズ,インコーポレーテッド Method of manufacturing a resistive touch sensor circuit by flexographic printing
JPWO2014030382A1 (en) * 2012-08-24 2016-07-28 株式会社アルバック Deposition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2823931B2 (en) * 1990-03-26 1998-11-11 日本電信電話株式会社 Conductive transparent film and method for producing the same
JP3105571B2 (en) * 1991-04-24 2000-11-06 日本電信電話株式会社 Conductive film and method for producing the same
JP2004103292A (en) * 2002-09-05 2004-04-02 Fuji Photo Film Co Ltd Multi-layer film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137520A (en) * 1987-11-24 1989-05-30 Daicel Chem Ind Ltd Manufacture of crystalline transparent conductive laminate
JPH04223359A (en) * 1990-12-26 1992-08-13 Hitachi Ltd Semiconductor device
JP3942707B2 (en) * 1997-10-27 2007-07-11 藤森工業株式会社 Production method of transparent conductive sheet
JP4045405B2 (en) * 2000-12-22 2008-02-13 Jsr株式会社 Resin film and its use
JP4110752B2 (en) * 2001-06-28 2008-07-02 富士ゼロックス株式会社 A method of reducing the resistance of a transparent conductive film provided on a substrate.
JP2003141936A (en) * 2001-11-02 2003-05-16 Mitsubishi Gas Chem Co Inc Transparent conductive film
JP4223359B2 (en) * 2003-09-05 2009-02-12 Jsr株式会社 Method for producing transparent conductive laminate and touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2823931B2 (en) * 1990-03-26 1998-11-11 日本電信電話株式会社 Conductive transparent film and method for producing the same
JP3105571B2 (en) * 1991-04-24 2000-11-06 日本電信電話株式会社 Conductive film and method for producing the same
JP2004103292A (en) * 2002-09-05 2004-04-02 Fuji Photo Film Co Ltd Multi-layer film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137290A (en) * 2007-11-15 2009-06-25 Jsr Corp Norbornene resin film having hard coat layer and manufacturing process of norbornene resin film having hard coat layer
JP2009187687A (en) * 2008-02-04 2009-08-20 Jsr Corp Method of manufacturing transparent conductive film, touch panel which has film obtained by the method, and display device which has the touch panel
JP2011243182A (en) * 2010-05-14 2011-12-01 Samsung Electro-Mechanics Co Ltd Touch panel manufacturing device
JP2014534527A (en) * 2011-10-25 2014-12-18 ユニピクセル ディスプレイズ,インコーポレーテッド Polarizing plate capacitive touch screen
JP2014535111A (en) * 2011-10-25 2014-12-25 ユニピクセル ディスプレイズ,インコーポレーテッド Method for manufacturing capacitive touch sensor circuit using unwinding and winding process to print conductive microscopic pattern on flexible dielectric substrate
JP2015503139A (en) * 2011-10-25 2015-01-29 ユニピクセル ディスプレイズ,インコーポレーテッド Method of manufacturing a resistive touch sensor circuit by flexographic printing
JPWO2014030382A1 (en) * 2012-08-24 2016-07-28 株式会社アルバック Deposition method

Also Published As

Publication number Publication date
JPWO2006090448A1 (en) 2008-07-17

Similar Documents

Publication Publication Date Title
TWI500971B (en) Antiglare films comprising microstructured surface
KR101455580B1 (en) Fluoro(meth)acrylate Polymer Composition Suitable for Low Index Layer of Antireflective Film
EP2021423B1 (en) Process for obtaining a hard coated article having anti-fouling properties
TWI453767B (en) Transparent conductive laminates and touch panels
WO2006090448A1 (en) Process for producing transparent conductive laminate, and touch panel
KR101032287B1 (en) Film-forming composition, anti-reflection film, polarizing plate, image display apparatus, anti-pollution coating composition and anti-pollution article
TWI432327B (en) Flexible high refractive index hardcoat
KR102439384B1 (en) Optical polyester film and transparent conductive film
JPWO2003026881A1 (en) Hard coat film, base material on which hard coat film is laminated, and image display device provided with the same
SG185417A1 (en) Antireflective films comprising microstructured surface
KR20140124805A (en) Nanostructured materials and methods of making the same
TW200401116A (en) High refraction film, high refraction film-forming coating composition, anti-reflection film, protective film for polarizing plate, polarizing plate and image display device
JP4375335B2 (en) Curable surface modifier and curable surface modifying composition using the same
JP2009226932A (en) Conductive laminated film, polarizing plate, and touch panel
JP2015525387A (en) Transparent conductive film having hybrid undercoating layer, method for producing the same, and touch panel using the same
TW201400561A (en) Hard coating composition and composition for forming high refractive index anti-blocking layer
JP2002338720A (en) Hard coating, hard coat film and image display device
JP2007038447A (en) Reflection preventing laminate, optical member, and liquid crystal display element
JP5616036B2 (en) Laminate formed by laminating a substrate, an intermediate film, and a fine relief structure film
JP4223359B2 (en) Method for producing transparent conductive laminate and touch panel
JP4369092B2 (en) Transparent film substrate for display
TWI334492B (en) High refractive index layer, production process of curable coating composition, antireflection film, polarizing plate and image display device using thereof
JP2004331744A (en) Curable composition and article coated with cured product of the same
JP7373074B2 (en) Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article containing hard coat film
JP3983366B2 (en) Transparent conductive film substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007504582

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05719429

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5719429

Country of ref document: EP