WO2006088019A1 - 球状化処理後の冷間鍛造性に優れた熱間圧延線材、優れた冷間鍛造性を有する球状化焼鈍処理された鋼線、及びそれらの製造方法 - Google Patents

球状化処理後の冷間鍛造性に優れた熱間圧延線材、優れた冷間鍛造性を有する球状化焼鈍処理された鋼線、及びそれらの製造方法 Download PDF

Info

Publication number
WO2006088019A1
WO2006088019A1 PCT/JP2006/302539 JP2006302539W WO2006088019A1 WO 2006088019 A1 WO2006088019 A1 WO 2006088019A1 JP 2006302539 W JP2006302539 W JP 2006302539W WO 2006088019 A1 WO2006088019 A1 WO 2006088019A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel
spheroidizing
rolled
Prior art date
Application number
PCT/JP2006/302539
Other languages
English (en)
French (fr)
Inventor
Arata Iso
Seiki Nishida
Shingo Yamasaki
Osamu Kada
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005039498A external-priority patent/JP4669300B2/ja
Priority claimed from JP2005137344A external-priority patent/JP4669317B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Publication of WO2006088019A1 publication Critical patent/WO2006088019A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a spherical steel applied to a material before cold working when producing bolts, nuts, screws, gears, burn-in coils, and other mechanical parts by cold working such as cold forging.
  • Hot-rolled wire rods that can shorten the annealing time and have excellent cold workability after spheroidizing treatment, steel wires that have been subjected to spheroidizing annealing treatment that has excellent cold forgeability, and methods for producing the same It is.
  • Cold working is used in a wide range of fields because of its high productivity, excellent dimensional accuracy of products, and good yield of steel.
  • Steel materials used for such cold forging are subject to large local deformations, and therefore are required to have low tensile strength and high ductility (high cold forgeability). This is because if the cold workability (cold forgeability) of the steel material is poor, the occurrence of defective products due to material cracking, breakage of the tool dies, etc., resulting in poor economic efficiency.
  • spherical steel annealing is performed as one of the measures to improve cold forgeability (hereinafter, the steel material before spheroidizing annealing is called a hot-rolled wire, and spheroidizing treatment is performed.
  • the latter steel is called steel wire).
  • Spheroidizing annealing spheroidizes and uniformly disperses carbides in a hot-rolled wire, thereby improving cold workability, machinability, and wear resistance of the final product.
  • spherical annealing has generally required a processing time of 10 to 20 hours, and from the viewpoint of improving productivity and reducing energy costs, shortening of the time is required.
  • sphere In order to shorten the time required for forming annealing, it is a necessary condition to have excellent cold workability, which is a basic characteristic after spheroidizing treatment (annealing).
  • Patent Document 1 proposes a method for making the structure before spheroidizing treatment into a bainitic single structure. Has been. This technology promotes cementite spheroidization by making the structure before spheroidization into a bainitic single structure, and attempts to shorten the time.
  • Patent Document 2 discloses a means in which the pro-eutectoid ferrite fraction is 5 to 30% by volume, the remaining structure is mainly bainite, and the average lath spacing of bainite is 0.3 m or more. It is shown. Thereby, it is possible to improve the processing performance after the spheroidizing treatment and reduce the deformation resistance.
  • Patent Document 3 discloses a steel wire having the following characteristics. (1) The average particle diameter of ferrite in the region of 10 to 25% from the surface of the wire diameter is 2 to 5. (2) The long diameter is 3 m or less (long diameter Z short diameter) The cementite having a ratio of 3 or less is 70% or more with respect to the total cementite. (3) Furthermore, the ferrite and pearlite structures together are 80% by volume or more in total from the region.
  • Patent Document 2 realizes the structure by performing gradual cooling in the heat treatment after hot rolling, which leads to a decrease in productivity and an increase in cost.
  • bainite fraction becomes excessive, there is a problem that the deformation resistance at the time of cold working after spheroidizing treatment becomes high.
  • Patent Document 1 Japanese Patent Laid-Open No. 60-9832
  • Patent Document 2 JP 2001-89830 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-192148
  • the present invention has been made in view of the above points, and is a hot-rolled wire rod that realizes shortening of the spheroidizing annealing time, improvement of the processing performance after the spheroidizing treatment, and reduction of deformation resistance, It is an object of the present invention to provide a spheroidized steel wire having excellent cold forgeability that can improve the processing performance during forging, and a method for producing the same.
  • the present invention achieves the above object, and the gist thereof is as follows.
  • the hot-rolled wire rod excellent in cold forgeability after spheroidizing treatment of the present invention contains at least C% 0.005-0.6% by mass%, Fe and inevitable impurities, and 10% by volume of pseudo pearlite. above, bainite 75% by volume or less, ferrite 60% by volume or less, satisfies the (pseudo pearlite body volume 0/0 + bainite volume 0/0 + ferrite volume 0/0) ⁇ 90 vol 0/0 relationships,
  • the in the hot-rolled wire rod excellent in cold forgeability after the spheroidizing treatment further, by mass%, S i: 0.50% or less, Mn: 0.20 ⁇ : L 00%, A1: 0.01 ⁇ 0.06%, P: 0.02% or less, S: 0.02% or less, N: 0.01% or less.
  • Cr 1% or less
  • Mo 0.50% or less
  • Ni 10.00% or less
  • V 0.50% or less
  • B 0.0050% or less
  • Ti 0 It may contain one or more elements selected from the group power of less than 05%.
  • the method for producing a hot-rolled wire rod excellent in cold forgeability after spheroidizing treatment according to the present invention is at least 0.05% by mass%: Fe and unavoidable impurities.
  • the steel is rolled into a rolled material, the rolled material is scraped at 750 to 1000 ° C, and the upper temperature of 750 to 1000 ° C is increased from 400 to 550 ° C. 20 ° CZse up to the lower temperature limit of ° C c. Cooled at the above cooling rate, held at 400 to 550 ° C for 20 seconds or longer to complete the isothermal transformation, cooled to room temperature, and hot for excellent cold forgeability after the spheroidizing treatment Manufactures rolled wire.
  • the steel wire subjected to spheroidizing annealing having excellent cold forgeability according to the present invention contains at least C: 0.005-0.6% in mass%, Fe and inevitable impurities, and the standard distance between cementites. It has a structure in which the value obtained by dividing the deviation by the average value of the distance between the cementites is 0.50 or less.
  • the cementite contained therein may have a shape having an aspect ratio of 1.50 or less, which is a value obtained by dividing the major axis by the minor axis. .
  • the method for producing a steel wire subjected to spheroidizing annealing having excellent cold forgeability comprises hot pressing a steel containing Fe and inevitable impurities at least by C: 0.005-0.6%.
  • the steel is rolled into a rolled material, the rolled material is scraped at a temperature of 750 to 1000 ° C, and a maximum temperature of 750 to 1000 ° C and a lower temperature of 400 to 550 ° C. Is cooled at a cooling rate of 20 ° CZ sec. Or more, held at 400 to 550 ° C for 20 seconds or more to complete the isothermal transformation, and then cooled to room temperature to obtain a hot-rolled wire.
  • the hot-rolled wire is spheroidized and annealed to produce a steel wire that has been subjected to the spheroidizing annealing process having excellent cold forgeability.
  • the holding time of the spheroidizing annealing may be within 5 hours.
  • the steel contains, by mass%, Si: 0.50% or less, Mn: 0.20-: L 00%, A1: 0.01-0.06%, P: 0.02% or less, S: 0.02% or less, N: 0.01% or less
  • the group strength consisting of Cr: 1.50% or less, Mo: 0.50% or less, Ni: 100% or less, V: 0.50% or less, B: 0.0050% or less, Ti: 0.05% or less is also selected. These elements may be contained.
  • the hot-rolled wire rod is roughly drawn at a surface area reduction of 40% or less. After the spheroidizing annealing, the steel wire subjected to the spheroidizing annealing is reduced by 20% or less. Do one or both of the processes of finish drawing with surface area.
  • the hot-rolled wire rod of the present invention excellent cold forgeability can be obtained even if the spheroidizing annealing time is shortened. For this reason, the spheroidizing annealing time can be shortened, and the processing performance and the deformation resistance can be reduced after the spheroidizing treatment. Also, the volume percentage of pseudo pearlite, bainite, and ferrite is specified and set within the desired range, so that the tolerance of machining performance and deformation resistance can be obtained, and excellent cold forgeability is exhibited after spherical steel treatment. Hot rolled wire rod can be realized.
  • the method for producing a hot-rolled wire of the present invention it is possible to shorten the spherical annealing time by performing cutting and cooling at a desired temperature and conditions to complete the isothermal transformation, and It is possible to produce a hot-rolled wire rod that achieves improved processing performance and reduced deformation resistance after the spheroidizing treatment and exhibits excellent cold forgeability after the spheroidizing annealing treatment.
  • a spheroidized steel wire having excellent cold forgeability can be produced.
  • FIG. 1 is a drawing showing a test piece used for Sample Nos. 1-1-1-12.
  • FIG. 1 (a) is a side view
  • FIG. 1 (b) is a plan view
  • FIG. 1 (c) is an enlarged view for explaining a notch.
  • a steel material before spheroidizing annealing is called a hot-rolled wire
  • a steel material after spheroidizing treatment is called a steel wire.
  • the steel wire includes a steel wire in a spheroidized heat-treated state and a steel wire in a state after the spheroidizing treatment and further drawn.
  • the pseudo pearlite 10% by volume or more, bainite 75% by volume or less, ferrite 60% by volume or less, and ⁇ 90% by volume (pseudo pearlite volume 0/0 + bainite vol% + ferrite vol%) This proved to be effective for shortening the spheroidizing annealing time.
  • tissue are observed with a scanning electron microscope (SEM), and each area ratio is calculated
  • the obtained area ratio is treated as being equal to the volume ratio.
  • the pseudo pearlite fraction needs to be 10% by volume or more.
  • pseudo pearlite is transformed at low temperature and carbon is not sufficiently diffused, so that cementite is granular or shows a form in which it is interrupted, and ferrite and cementite are layered. For this reason, it differs from a general pearlite structure produced by transformation at a high temperature.
  • This pseudo pearlite is defined as follows according to the form of cementite contained.
  • the value obtained by dividing the major axis of the measured cementite by the minor axis is in the range of 1 to 20, and the average aspect ratio of the total number of cementite measured is 2 0.
  • the ratio at which the aspect ratio is 3.0 or less is the total number of cementite measured.
  • the pseudo pearlite contains a large amount of granular cementite. For this reason, when pseudo pearlite is contained in an amount of 10% by volume or more, cementite is rapidly spheroidized. In other words, spheroidization of cementite is promoted during annealing, and thus, even if the spheroidizing treatment is performed for a short time, excellent cache performance can be obtained in the subsequent cold working.
  • the hot-rolled wire rod according to the present embodiment may contain bainite and ferrite.
  • bainite In the bainite structure, cementite is uniformly dispersed, and the processing performance is improved in cold working after spheroidization.
  • bainite since bainite is a hard phase, if it is present in a large amount, deformation resistance becomes high. Therefore, bainite should be 75 vol% or less.
  • the content of ferrite is 60% by volume or less.
  • the ferrite fraction is high, the deformation resistance during cold working is reduced, but the dispersibility of the spherical cementite is deteriorated and the working performance is lowered. For this reason, the ferrite fraction should be 60% by volume or less.
  • the hot-rolled wire rod according to the present embodiment includes at least 0.005 to 0.60% of the same in mass%, Fe, and inevitable impurities.
  • mass 0 /. Si: 0.50% or less, Mn: 0.20 ⁇ : L 00%, A1: 0.01 ⁇ 0.06%, P: 0.02% or less, S: 0.02% or less, N: 0.1% or less may be contained.
  • the reasons for limiting the range of these elements are as follows.
  • C is defined by the strength required for products formed from the hot-rolled wire rod of this embodiment such as bolts and screws. If less than 0.005%, the required strength cannot be obtained, so the lower limit is 0.0. 05%. On the other hand, if it exceeds 0.60%, the cold workability and toughness after spheronization will decrease, so the upper limit is made 0.60%.
  • Si is added as a deoxidizer during steelmaking, and is added for the purpose of increasing the strength of the final product by solid solution hardening. However, if added in a large amount, the strength is increased significantly and the toughness is deteriorated. 50%.
  • Mn is added as an element that improves the hardenability of the steel material and improves the strength, but in order to exert its effect, it is necessary to contain 0.20% or more. On the other hand, if the addition amount is excessive, the cold forgeability will cause a decrease in toughness, so the upper limit is made 1.00%.
  • A1 0.01% to 0.06%
  • A1 has the effect of fixing N and suppressing dynamic strain aging during cold forging and reducing deformation resistance. In order to obtain this effect, it is necessary to contain at least 0.01%. However, the upper limit is set to 0.06% because excessive addition reduces toughness.
  • P and S are components inevitably contained.
  • P must be 0.02% or less in order to cause grain boundary segregation in the steel and cause central segregation to deteriorate toughness.
  • S is a harmful element in cold working, it must be 0.02% or less.
  • N 0.01% or less
  • N causes dynamic strain aging during cold forging, leading to an increase in deformation resistance and a reduction in processing performance. Therefore, N is set to 0.01% or less.
  • the basic chemical composition of the hot-rolled wire rod of the present embodiment is as described above. However, in addition to the above composition, Cr: l. 50% or less, Mo: 0.50% or less, Ni: l. 00% or less, V: 0.50% or less, B: One or more elements selected from the group consisting of 0.005% or less and Ti: 0.05% or less may be contained. In this case, advantages such as improved hardenability and strength of cold forging can be obtained.
  • Cr, Mo and Ni are effective elements for improving hardenability. However, excessive If it is present, ductility is deteriorated, so it is suppressed within the above range.
  • V may be added for the purpose of precipitation strengthening. However, if added in a large amount, the ductility deteriorates, so the above range is kept.
  • B is an element that improves hardenability, and may be added if necessary. However, if excessively contained, the toughness is degraded, so the upper limit is made 0.005%.
  • Ti is an element effective in reducing deformation resistance during cold forging due to the effect of suppressing dynamic aging by fixing solid solution N, so it may be added if necessary. However, if it is contained excessively, coarse TiN precipitates and cracks originating from this coarse TiN tend to occur, so the upper limit is made 0.05%.
  • a hot rolled wire is obtained by hot rolling the steel having In this hot rolling, the steel is rolled into a rolled material under conditions where the finishing temperature is in the range of the cutting temperature to 1200 ° C.
  • the steel may have any shape as long as it has the composition described above and the wire diameter (diameter) is 5 to 16 mm.
  • the rolled material is scraped at a milling temperature of 750 to 1000 ° C.
  • 750 ° C is the lower limit.
  • the temperature exceeds 1000 ° C, the oxide scale increases, and yield loss occurs in a supplier (customer) who processes and uses the hot-rolled wire rod of this embodiment into a specific product.
  • the upper limit is ° C.
  • the temperature range from the upper limit temperature of 750 to 1000 ° C to the lower limit temperature of 400 to 550 ° C is cooled at a cooling rate of 20 ° C Zsec. Hold for 20 seconds or more to complete isothermal transformation, cool to room temperature, and obtain hot-rolled wire.
  • the constant temperature holding temperature is set to 400 to 550 ° C.
  • the minimum temperature is 400 ° C.
  • the temperature exceeds 550 ° C the layered pearlite structure increases rapidly, requiring a long time for the spheroidizing annealing and reducing the processing performance. Therefore, the upper limit temperature is 550 ° C.
  • the holding time is 20 seconds or longer for the isothermal transformation to end.
  • the upper limit is not particularly specified, but it is desirable to set it within 150 seconds from the viewpoint of improving productivity.
  • the steel wire subjected to spheroidizing annealing having excellent cold forgeability includes at least C: 0.005-0.6% by mass%, Fe and inevitable impurities, and the distance between cementites.
  • the structure obtained by dividing the standard deviation by the average value of the distances between the cementites is 0.50 or less.
  • a value obtained by dividing the standard deviation of the cementite distance by the average value of the distance between the cementites (standard deviation / average value) of 0.50 or less means that the cementite is distributed at almost uniform intervals. Yes. When cementite is distributed at almost uniform intervals, stress is not concentrated and cracking is difficult, and as a result, processing performance during cold forging is improved.
  • the standard deviation and average value of the distance between cementites are calculated as follows. First, take a picture with a scanning electron microscope at a magnification of 5000x and a field of view of 20 ⁇ ⁇ ⁇ 20 ⁇ m.
  • the steel wire of this embodiment preferably has a cementite shape in which the aspect ratio, which is a value obtained by dividing the major axis of the cementite contained by the minor axis, is 1.50 or less.
  • the aspect ratio which is the value obtained by dividing the major axis by the minor axis
  • dislocation accumulation at the interface between ferrite and cementite is reduced during cold forging.
  • the aspect ratio exceeds 1.50, dislocations accumulate at the interface between ferrite and cementite, voids are generated, and cracks are likely to occur.
  • the aspect ratio is observed with a scanning electron microscope at a magnification of 5000x, taking a picture in the field of view of 20 m x 20 m, and for the cementite with a short side of 0.05 m or more, the major axis Z minor axis ratio Is measured by image analysis.
  • a measuring instrument for example, an image analysis apparatus (LUZEX III) manufactured by Reco Corporation can be used.
  • the steel wire of the present embodiment includes at least 0.05% by mass of steel components, and Fe and inevitable impurities.
  • Mass 0/0 Si 0. 50% or less, Mn: 0. 20 ⁇ : L 00 %, A1:. 0. 01 ⁇ 0 06%, P: 0. 0 2% or less, S: 0. 02%
  • N 0.01% or less may be contained. The reasons for limiting the range of these elements are as follows.
  • C is defined by the strength required for products that also form the hot-rolled wire rod of this embodiment, such as bolts and screws. If it is less than 0.005%, the required strength cannot be obtained, so the lower limit is made 0.05%. On the other hand, if it exceeds 0.60%, cold workability and toughness are lowered, so 0.60% is made the upper limit.
  • Si 0.50% or less
  • Si is added as a deoxidizer or added for the purpose of increasing the strength of the final product by solid solution hardening.If added in a large amount, the strength increases significantly and the toughness deteriorates, so the upper limit is set at 0.50%. To do.
  • Mn 0.20 ⁇ 1.00% Mn is added as an element for improving hardenability and improving the strength. In order to exert its effect, it is necessary to contain 0.20% or more. On the other hand, if the addition amount is excessive, the cold forgeability causes a decrease in toughness, so the upper limit is made 1.00%.
  • A1 0.01% to 0.06%
  • A1 has the effect of fixing N and suppressing dynamic strain aging during cold forging and reducing deformation resistance. In order to obtain this effect, it is necessary to contain at least 0.01%. However, the upper limit is set to 0.06% because excessive addition reduces toughness.
  • P and S are components inevitably contained.
  • P must be 0.02% or less in order to cause grain boundary segregation in the steel and cause central segregation to deteriorate toughness.
  • S is a harmful element in cold working, it must be 0.02% or less.
  • N 0.01% or less
  • N causes dynamic strain aging during cold forging, leading to an increase in deformation resistance and a reduction in processing performance. Therefore, N is set to 0.01% or less.
  • the steel wire of the present embodiment further includes, as a steel component, Cr: 1.50% or less, Mo: 0.50% or less, Ni: 100% or less, V: 0.50% or less, B : 0. 0050% or less, Ti: 0.05% or less It is possible to contain one or more elements selected from group power.
  • Cr, Mo and Ni are effective elements for improving hardenability. However, if it is excessively contained, ductility is deteriorated.
  • V may be added for the purpose of precipitation strengthening. However, if added in a large amount, the ductility deteriorates, so the above range is kept.
  • the upper limit is set to 0.0050% in order to deteriorate the toughness if excessively contained.
  • Ti is a solution resistance during cold forging due to the effect of suppressing dynamic strain aging by fixing solid solution N. Since it is an element effective for reduction, it may be added if necessary. However, if it is contained excessively, coarse TiN precipitates and cracks starting from this coarse TiN tend to occur, so the upper limit is made 0.05%.
  • a hot rolled wire is obtained by hot rolling the steel having In this hot rolling, the steel is rolled under the conditions that the finishing temperature is in the range of the scraping temperature to 1200 ° C to obtain a rolled material.
  • the steel may have any shape as long as it has the composition described above and the wire diameter (diameter) is 5 to 16 mm.
  • the rolled material is scraped at a milling temperature of 750 to 1000 ° C.
  • 750 ° C is the lower limit.
  • the temperature exceeds 1000 ° C, the oxide scale increases and yield loss occurs, so 1000 ° C is the upper limit.
  • the temperature range from the upper limit temperature of 750 to 1000 ° C to the lower limit temperature of 400 to 550 ° C is cooled at a cooling rate of 20 ° C Zsec. Hold for 20 seconds or more to complete isothermal transformation, cool to room temperature, and obtain hot-rolled wire.
  • the reason why the cooling rate is set to 20 ° C Zsec or more is to obtain a structure in which cementite such as pseudo-parlite and bainite is uniformly dispersed by the cooling after rolling.
  • cementite such as pseudo-parlite and bainite is uniformly dispersed by the cooling after rolling.
  • pseudo pearlite or bainitic structure is present after rolling (after cooling), the cementite can be distributed evenly after spheroidizing annealing.
  • the constant temperature holding temperature is set to 400 to 550 ° C for the following reason. Below 400 ° C, transformation takes a long time, and a large amount of bainite and martensite is generated in the cooled structure, resulting in high deformation resistance during cold forging, so 400 ° C is the lower limit. In addition, when the temperature exceeds 550 ° C, the layered pearlite structure increases rapidly, and it takes a long time for spheroidizing annealing and causes a reduction in processing performance. Therefore, 550 ° C is set as the upper limit temperature.
  • the constant temperature holding time is 20 seconds or more to complete the constant temperature transformation.
  • the upper limit is not particularly specified, but it is desirable to make it within 150 seconds from the viewpoint of improving productivity.
  • Spheroidizing annealing is performed on this hot-rolled wire.
  • the spheroidizing annealing is a process for maintaining the cementite in a spherical shape by holding it for a predetermined time immediately below the point A or at an ambient temperature in a two-phase region.
  • the annealing holding time can be shortened in the case of the structure after the wire rolling described above (after the cooling described above).
  • the holding time during spherical spherical annealing is preferably within 5 hours, and more preferably within 3 hours.
  • the spheroidizing annealing time can be shortened by the structure control of this embodiment.
  • the steel wire has excellent cold forgeability that achieves improved machining performance and reduced deformation resistance.
  • finish wire drawing may be performed with a surface area reduction of 20% or less. Finishing wire drawing is performed as necessary from the viewpoint of securing dimensions and strength. If it exceeds 20%, the strength of the final steel wire will increase and the deformation resistance during cold forging will increase, so a reduction in area of 20% or less is desirable.
  • the lower limit is not particularly limited, and it is 0% or more including the case where finish drawing is not performed.
  • the steel wire of the second embodiment is manufactured by subjecting the hot-rolled wire of the first embodiment to the above-described rough wire drawing, spheroidizing annealing, and finish wire drawing. You can also.
  • a preferable element of the present invention is as described in the first and second embodiments, and the balance component is substantially Fe.
  • the hot-rolled wire or steel wire is allowed to contain a trace amount of inevitable impurities. Needless to say, it is possible to actively contain other elements as long as they do not affect the function of the present invention.
  • C% in the formula, Si%, Mn% indicates C of the hot rolled wire rod in, Si, Mn content (mass 0/0), respectively.
  • the temperature was raised at CI C1 ° CZ time, held for 1 hour just below point A, and then air-cooled).
  • the processing performance is 0.5mn with the naked eye or a magnifying glass! ⁇ 1. When fine cracks of Omm were not observed, it was judged as “good”, and when fine cracks were observed, it was judged as “bad”.
  • Tables 2 to 4 show the results of determining the cold forgeability after rapid spherical annealing from these results. ⁇ [] [3 ⁇ 40063
  • Samples Nos. 1-5 and 1-11 have a holding temperature below 400 ° C, so a large amount of martensite is generated.
  • the deformation resistance during cold forging after spheroidizing treatment is low. high. Therefore, it is outside the range defined by the present invention.
  • Specimens No.l-17, 1 23, and 129 have a retention temperature of less than 400 ° C, so the bainite exceeds 75% by volume. High deformation resistance during forging. Therefore, it is outside the range defined by the present invention.
  • Sample No. 1-6, 1-12, 1-18, 1-24, 1-30 have a cooling power of 20. Since it is below CZsec., It becomes a two-phase structure of ferrite and pearlite, and spherical glaze is insufficient in a short time. For this reason, the processing performance at the time of cold forging after the spheroidizing treatment is low, and is outside the range specified in the present invention.
  • Samples No.l- 37 ⁇ 1- 41 is, Cr is (pearlite volume 0/0 + bainite volume 0/0 + ferrite volume 0/0 similar pseudo) because they exceed the range defined in the present invention ⁇ 90 volume 0/0 and become a ⁇ . This is due to the large amount of martensite.
  • Ceq sample using D steel
  • the deformation resistance during cold forging after spheroidization is high, which is outside the range specified in the present invention.
  • workability is also bad.
  • Sample No. l-42 contains Cr exceeding the range specified in the present invention, so that the bainite ratio exceeds 75% by volume.
  • the deformation resistance during cold forging is high, which is outside the range specified in the present invention.
  • the hot-rolled wire rod was roughly drawn at the area reduction shown in Table 6 and spheroidizing annealing (heating up to 150 ° CZ time just below point A, holding for 1 hour just below point A, then air cooling) After that, finish wire drawing was performed at the area reduction ratio shown in Table 6.
  • a cold uptake test is performed to measure deformation resistance and machining performance. It was.
  • a test piece 1 shown in Fig. 1 was used to perform a cold uptake test. As shown in FIG. 1 (a), the test piece 1 shown in FIG.
  • a hole 4 of 2mm diameter chamfered at is provided.
  • Ceq C% + lZ3Si% + lZ6Mn%.
  • C%, Si%, and Mn% in the formula indicate the contents (mass%) of C, Si, and Mn in the hot-rolled wire, respectively.
  • it was smaller than the standard deformation resistance value obtained by Ceq it was judged as “good”, and when the obtained result was larger than the standard deformation resistance value, it was evaluated as “bad”.
  • the processing performance is 0.5mn with the naked eye or a magnifying glass! ⁇ 1. When fine cracks of Omm were not observed, it was judged as “good”, and when fine cracks were observed, it was judged as “bad”.
  • Samples Nos. 2-17 to 2-19 which use steels of steel components I to IV, are preferable for samples Nos. .2—l to 2—3, 2—5 to 2—7 Compared with samples with a large amount of hard structure such as martensite and equivalent Ceq (samples using IV steel) compared to 2-9 to 2-11 and 2-13 to 2-15 In this case, the deformation resistance during cold forging is high.
  • steel wire of the present invention it is possible to achieve improvement in processing performance during cold forging and reduction in deformation resistance, and improvement in processing performance during cold forging.
  • the present invention can be used as a hot-rolled wire rod or steel wire when manufacturing bolts, nuts, screws, gears, burn-in coils, and other mechanical parts by cold working such as cold forging.
  • the manufacturing method of the present invention is beneficially applied in the cold forging manufacturing process. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 この熱間圧延線材は、Cを0.005~0.6質量%含み、擬似パーライトが10体積%以上、ベイナイトが75体積%以下、フェライトが60体積%以下、(擬似パーライト+ベイナイト+フェライト)の合計≧90体積%の関係を満足する。この熱間圧延線材の製造方法は、鋼を圧延し、750~1000°Cで捲取し、750~1000°Cの上限温度から400~550°Cの下限温度までを20°C/sec.以上の冷却速度で冷却し、400~550°Cにおいて20秒以上保持し、冷却する。この鋼線は、Cを0.005~0.6質量%含み、セメンタイト間距離の(標準偏差/平均値)が0.50以下の組織を有する。この鋼線の製造方法は、前記熱間圧延線材を球状化焼鈍する。

Description

明 細 書
球状化処理後の冷間鍛造性に優れた熱間圧延線材、優れた冷間鍛造性 を有する球状化焼鈍処理された鋼線、及びそれらの製造方法
技術分野
[0001] 本発明は、ボルト、ナット、ねじ、歯車、バーインコイル、その他の機械部品を冷間 鍛造などの冷間加工によって製造する際に、冷間加工前に素材に施される球状ィ匕 焼鈍時間を短縮でき、かつ、球状化処理後の冷間加工性に優れた熱間圧延線材、 優れた冷間鍛造性を有する球状化焼鈍処理された鋼線、及びそれらの製造方法に 関するものである。
本願は、 2005年 2月 16日に出願された日本国特許出願第 2005— 039498号お よび 2005年 5月 10日に出願された日本国特許出願第 2005— 137344号に対し優 先権を主張し、その内容をここに援用する。
背景技術
[0002] 冷間加工 (冷間鍛造)は、生産性が高く製品の寸法精度に優れ、鋼材の歩留が良 いことから幅広い分野で利用されている。このような冷間鍛造に供される鋼材は、局 部的に大きな変形を受けるため、引張強さが低く延性が高いこと (高い冷間鍛造性) が求められている。これは鋼材の冷間加工性 (冷間鍛造性)が悪い場合、材料割れ による不良品の発生や、工具ダイスの破損などが生じ、経済性が悪ィ匕するからである
[0003] こうしたことから、冷間鍛造性を向上させる方策の一つとして球状ィ匕焼鈍を実施して いる(以下、球状化焼鈍される前の鋼材を熱間圧延線材といい、球状化処理後の鋼 材を鋼線という)。
球状化焼鈍は、熱間圧延線材中の炭化物を球状化して微細かつ均一に分散させ 、これにより冷間加工性、被削性、および最終製品の耐磨耗性を向上させるものであ る。
[0004] し力しながら、球状ィ匕焼鈍は一般的に 10〜20時間の処理時間を要し、生産性の 向上やエネルギーコストの低減という観点から、短時間化が求められている。但し、球 状化焼鈍のための時間短縮を実施する場合、球状化処理 (焼鈍)後の基本特性であ る優れた冷間加工性を有することは必要条件である。
熱間圧延線材の球状化焼鈍の短時間化に関する技術はこれまでにも様々開発さ れており、例えば特許文献 1には、球状化処理前の組織をべイナイト単一組織にする 方法が提案されている。この技術は、球状化処理前の組織をべイナイト単一組織とす ることによって、セメンタイトの球状ィ匕を促進し、短時間化を図ろうとするものである。
[0005] 一方、初析フェライト分率が 5〜30体積%、残りの組織をべイナイト主体とし、かつ ベイナイトのラス間隔の平均値が 0. 3 m以上という手段が以下の特許文献 2に開 示されている。これにより、球状化処理後の加工性能の向上、及び変形抵抗の低減 が可能である。
[0006] また、冷間鍛造時の加工性能の向上と変形抵抗の低減に関する技術は、これまで にも様々提案されている(例えば、特許文献 3参照)。特許文献 3には、以下の特徴を 有する鋼線が開示されている。(1)線径の表面から 10〜25%の領域のフェライトの 平均粒径が 2〜5. であり、(2)長径が 3 m以下で (長径 Z短径)で示されるァ スぺタト比が 3以下のセメンタイトが、全セメンタイトに対して 70%以上であり、(3)さら に前記領域より内部にぉ 、てはフェライト及びパーライト組織が合わせて 80体積% 以上である。以上の要件を有することによって、熱間圧延ままで変形抵抗が低減され 、充分な変形能を有する鋼線が実現する。
[0007] し力しながら、特許文献 1に記載の技術によって、球状化焼鈍の短時間化は達成さ れるが、ベイナイト単一組織では、球状化処理後の冷間加工時の変形抵抗が高くな つてしま!、、工具ダイス寿命が低下すると 、う問題は依然として解消されな 、。
特許文献 2に記載の技術は、熱間圧延後の熱処理で徐冷を施すことによって当該 組織を実現するため、生産性の低下とコスト上昇を招いている。また、ベイナイト分率 が過剰となった場合は、球状化処理後の冷間加工時の変形抵抗が高くなつてしまう という問題もある。
特許文献 3に記載の技術では、表面から 25%以内の内面部位でフ ライト、パーラ イト組織が 80体積%以上を占めるため、セメンタイト不均一分散 (等間隔に配置され ていない)に起因する加工性能の低下が懸念される。また、熱間圧延工程で低温圧 延を実施し、その後徐冷処理を施すため、エネルギーコストの増加や生産性の低下 を招いている。
特許文献 1:特開昭 60— 9832号公報
特許文献 2:特開 2001— 89830号公報
特許文献 3 :特開 2000— 192148号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は上記の点に鑑みてなされたものであり、球状化焼鈍時間の短縮と球状ィ匕 処理後の加工性能の向上と変形抵抗の低減を実現する熱間圧延線材、冷間鍛造時 の加工性能の向上を図ることができ優れた冷間鍛造性を有する球状化焼鈍処理され た鋼線、及びそれらの製造方法を提供することを目的とする。
課題を解決するための手段
[0009] 本発明は上記目的を達成するものであって、その要旨とするところは次の通りであ る。
本発明の球状化処理後の冷間鍛造性に優れた熱間圧延線材は、少なくとも質量 %で C : 0. 005-0. 6%と、 Fe及び不可避不純物を含み、擬似パーライトが 10体積 %以上、ベイナイトが 75体積%以下、フェライトが 60体積%以下、(擬似パーライト体 積0 /0 +ベイナイト体積0 /0 +フェライト体積0 /0)≥ 90体積0 /0の関係を満足して 、る。 前記球状化処理後の冷間鍛造性に優れた熱間圧延線材では、更に、質量%で、 S i: 0. 50%以下、 Mn: 0. 20〜: L 00%、 A1: 0. 01〜0. 06%、 P : 0. 02%以下、 S : 0. 02%以下、 N : 0. 01%以下を含んでもよい。
更に、質量%で、 Cr: l. 5%以下、 Mo : 0. 50%以下、 Ni: l. 00%以下、 V: 0. 5 0%以下、 B: 0. 0050%以下、 Ti: 0. 05%以下よりなる群力 選ばれる 1種以上の 元素を含有してもよい。
[0010] 本発明の球状化処理後の冷間鍛造性に優れた熱間圧延線材の製造方法は、少な くとも質量%でじ:0. 005-0. 6%と、 Fe及び不可避不純物を含む鋼を熱間圧延し 、前記熱間圧延では、前記鋼を圧延して圧延材とし、前記圧延材を 750〜1000°C で捲取し、 750〜1000°Cの上限温度から 400〜550°Cの下限温度までを 20°CZse c.以上の冷却速度で冷却し、 400〜550°Cにおいて 20秒以上保持して恒温変態を 完了させた後、室温まで冷却し、前記球状化処理後の冷間鍛造性に優れた熱間圧 延線材を製造する。
[0011] 本発明の優れた冷間鍛造性を有する球状化焼鈍処理された鋼線は、少なくとも質 量%で C:0.005-0.6%と、 Fe及び不可避不純物を含み、セメンタイト間距離の標 準偏差を前記セメンタイト間距離の平均値で除した値が 0.50以下となる組織を有す る。
前記優れた冷間鍛造性を有する球状化焼鈍処理された鋼線では、含有されるセメ ンタイトが、長径を短径で除した値であるアスペクト比が 1.50以下である形状を有し てもよい。
質量0 /0で、 Si:0.50%以下、 Mn:0.20~1.00%、 A1:0.01〜0.06%, P:0. 02%以下、 S:0.02%以下、 N:0.01%以下を含み、更に、質量%で、 Cr:l.50 %以下、 Mo:0.50%以下、 Ni:l.00%以下、 V:0.50%以下、 B:0.0050%以 下、 Ti:0.05%以下よりなる群力も選ばれる 1種以上の元素を含有してもよい。
[0012] 本発明の優れた冷間鍛造性を有する球状化焼鈍処理された鋼線の製造方法は、 少なくとも質量%で C:0.005〜0.6%と、 Fe及び不可避不純物を含む鋼を熱間圧 延し、前記熱間圧延では、前記鋼を圧延して圧延材とし、前記圧延材を 750〜1000 °Cで捲取し、 750〜1000°Cの上限温度から 400〜550°Cの下限温度までを 20°CZ sec.以上の冷却速度で冷却し、 400〜550°Cにおいて 20秒以上保持して恒温変 態を完了させた後、室温まで冷却して熱間圧延線材とし、次いで、前記熱間圧延線 材を球状化焼鈍し、前記優れた冷間鍛造性を有する球状化焼鈍処理された鋼線を 製造する。
前記優れた冷間鍛造性を有する球状化焼鈍処理された鋼線の製造方法では、前 記球状化焼鈍の保定時間が 5時間以内でもよい。
前記鋼が、質量%で、 Si:0.50%以下、 Mn:0.20〜: L 00%、 A1:0.01〜0.0 6%、P:0.02%以下、 S:0.02%以下、 N:0.01%以下を含み、更に、 Cr: 1.50 %以下、 Mo:0.50%以下、 Ni:l.00%以下、 V:0.50%以下、 B:0.0050%以 下、 Ti:0.05%以下よりなる群力も選ばれる 1種以上の元素を含有してもよい。 前記球状化焼鈍の前に前記熱間圧延線材を 40%以下の減面率で粗伸線するェ 程、前記球状化焼鈍の後に、前記球状化焼鈍処理された鋼線を 20%以下の減面率 で仕上伸線する工程の 、ずれか一方又は両方を行ってもょ 、。
発明の効果
[0013] 本発明の熱間圧延線材によると、球状化焼鈍時間を短縮しても優れた冷間鍛造性 が得られる。このため、球状化焼鈍時間の短縮を可能とし、かつ、球状化処理後にお ける加工性能の向上と変形抵抗の低減を実現できる。また、擬似パーライトとべイナ イトとフェライトの体積%を規定して望まし 、範囲としたので、加工性能と変形抵抗の ノランスをとることができ、球状ィ匕処理後に優れた冷間鍛造性を発揮する熱間圧延 線材を実現できる。
[0014] 本発明の熱間圧延線材の製造方法によると、望ましい温度と条件で捲取,冷却を 行って恒温変態を完了させることにより、球状ィ匕焼鈍時間の短縮を可能とし、かつ、 球状化処理後における加工性能の向上と変形抵抗の低減を達成し、球状化焼鈍処 理後に優れた冷間鍛造性を発揮する熱間圧延線材を製造できる。
[0015] 本発明の球状化焼鈍処理された鋼線によると、冷間鍛造時にフェライトとセメンタイ トとの界面への転位集積は軽減され、応力が集中せず割れ難くなる。これにより冷間 鍛造時の加工性能の向上と変形抵抗の低減を達成することができ、冷間鍛造時の加 ェ性能の向上を図ることができる。
また、 Si、 Mn、 Al、 P、 S、 Nを上述した含有量含み、更に、 Cr、 Mo、 Ni、 V、 B、 Ti よりなる群力 選ばれる 1種以上の元素を上述した含有量含む場合、さらに焼入れ性 や冷間鍛造の強度を向上させることができる。
本発明の球状化焼鈍処理された鋼線の製造方法によると、優れた冷間鍛造性を有 する球状化焼鈍処理された鋼線を製造できる。
図面の簡単な説明
[0016] [図 1]図 1は、試料 No. 1— 1〜1 12に使用したテストピースを示す図面であり、図 1
(a)は側面図であり、図 1 (b)は平面図であり、図 1 (c)は切欠部を説明するための拡 大図である。
符号の説明 [0017] 1…テストピース、 2…切欠部、 4…孔、 a…中心角、 b…半径、 d…直径、 h…高さ、 R …曲率。
発明を実施するための最良の形態
[0018] 以下に本発明について最良の形態に基づいて詳細に説明する。なお、本明細書 では、球状化焼鈍される前の鋼材を熱間圧延線材といい、球状化処理後の鋼材を 鋼線という。鋼線には、球状化処理の熱処理された状態の鋼線と、球状化処理の後 にさらに伸線カ卩ェなどが施された状態の鋼線を含む。
(第 1の実施形態)
本発明者らが、熱間圧延線材の球状化焼鈍の時間の短縮、及び、球状化後にお ける加工性能の向上と変形抵抗の低減の両方を満足させるための最適な前組織を 検討した結果、本実施形態では、擬似パーライトが 10体積%以上、ベイナイトが 75 体積%以下、フェライトが 60体積%以下、(擬似パーライト体積0 /0 +ベイナイト体積 % +フェライト体積%)≥90体積%とすることが、球状化焼鈍時間の短縮に対して有 効であると判明した。
ここで、本明細書では、走査型電子顕微鏡 (SEM)により各相、各組織を観察して それぞれの面積割合を求める。得られた面積割合は、体積割合に等しいとして取り 扱う。
[0019] 本実施形態の熱間圧延線材では、擬似パーライト分率を 10体積%以上とする必要 がある。
ここで、擬似パーライトは、低温で変態し炭素の拡散が充分でないため、セメンタイ トが粒状もしくは途中で途切れた形態を示し、フェライトとセメンタイトが層状をなす。 このため、高温で変態して生成する一般的なパーライト組織とは異なる。この擬似パ 一ライトは、含有するセメンタイトの形態によって以下のように定義される。
走査型電子顕微鏡で 5000倍の倍率にてセメンタイトの観察を行 、、 100個以上の セメンタイトの長径、短径、セメンタイト間隔を測定する。
測定されたセメンタイトの長径を短径で除した値 (長径 Z短径の比、アスペクト比と もいう)は 1〜20の範囲であり、測定されたセメンタイト全体数のアスペクト比の平均値 は 2. 0である。アスペクト比が 3. 0以下となる比率は、測定されたセメンタイト全体数 の個数百分率 90%以上である。これらのセメンタイトは、最大で 1 μ m以内、平均で 0 . 05 mの間隔で隣接する。こうした領域を擬似パーライト組織と定義する。
[0020] 前記したように、擬似パーライトには粒状のセメンタイトが多く含まれる。このため、 擬似パーライトを 10体積%以上含む場合、セメンタイトが迅速に球状化される。すな わち、焼鈍においてセメンタイトの球状化が促進され、これにより球状化処理が短時 間であっても、その後の冷間加工にぉ 、て優れたカ卩ェ性能が得られる。
本実施形態の熱間圧延線材では、ベイナイトとフェライトを含んでいても良い。ペイ ナイト組織は、セメンタイトが均一に分散し、球状化処理後の冷間加工において加工 性能が高くなる。し力しながら、ベイナイトは硬質相であるため多量に存在すると、変 形抵抗が高くなつてしまう。よって、ベイナイトは 75体積%以下とする。
一方、フェライトは 60体積%以下とする。フェライト分率が高くなると、冷間加工時の 変形抵抗は低減されるが、球状セメンタイトの分散性が悪ィ匕して加工性能が低下す る。このため、フェライト分率は 60体積%以下とする。
[0021] 更に、本実施形態の熱間圧延線材では、(擬似パーライト体積% +ベイナイト体積 % +フェライト体積%)≥90体積%とする必要がある。
これは、高温で変態して生成する層状のパーライト組織が多く存在する場合、板状 の形態であるセメンタイトが迅速に球状化されず、球状化処理後の冷間加工にぉ ヽ て加工性能が低くなつてしまうからである。また、恒温変態が完了せず、硬質なマル テンサイトが多量に生成すると変形抵抗が高くなつてしまうことから、(擬似パーライト 体積0 /0 +ベイナイト体積0 /0 +フェライト体積%)≥90体積%とする必要がある。
[0022] 本実施形態の熱間圧延線材は、少なくとも質量%でじを 0. 005〜0. 60%と、 Fe 及び不可避不純物を含む。
Cに加えて、質量0 /。で、 Si: 0. 50%以下、 Mn: 0. 20〜: L 00%、 A1: 0. 01〜0. 06%、 P : 0. 02%以下、 S : 0. 02%以下、 N : 0. 01%以下を含有してもよい。これら 元素の範囲限定理由は下記の通りである。
[0023] C : 0. 005〜0. 60%
Cは、ボルト、ねじ等の本実施形態の熱間圧延線材から形成する商品に求められる 強度により規定される。 0. 005%未満では必要な強度が得られないため下限は 0. 0 05%とする。一方、 0. 60%を超えると球状化処理後の冷間加工性の低下、靭性の 低下が生じるため、 0. 60%を上限とする。
[0024] Si: 0. 50%以下
Siは、製鋼時の脱酸材として添加されたり、また固溶体硬化による最終製品の強度 増加目的に添加されるが、多量に添加すると強度アップが著しくなつて靭性の劣化を 招くため、上限を 0. 50%とする。
[0025] Mn: 0. 20〜: L00%
Mnは、鋼材の焼入れ性を高め強度を向上させる元素として添加されるが、その効 果を発揮させるためには 0. 20%以上含有させる必要がある。一方、添加量が過剰 になると、冷間鍛造性ゃ靭性の低下を招くため、上限は 1. 00%とする。
[0026] A1: 0. 01%〜0. 06%
A1は、 Nを固定して冷間鍛造中の動的歪時効を抑制し、変形抵抗を低減する効果 がある。この効果を得るためには、少なくとも 0. 01%含有させる必要がある。しかし、 過剰に含有させると靭性を低下させるため、上限は 0. 06%とする。
[0027] P: 0. 02%以下、 S: 0. 02%以下
Pと Sは、不可避的に含有される成分である。 Pは鋼中で粒界偏析ゃ中心偏析を起 こし靭性を劣化させるため、 0. 02%以下とする必要がある。 Sは冷間加工において 有害な元素であるため、 0. 02%以下とする必要がある。
[0028] N: 0. 01%以下
Nは、冷間鍛造中に動的歪時効を起こし変形抵抗の上昇と加工性能の低下を招く 。よって、 Nは 0. 01%以下とする。
[0029] 本実施形態の熱間圧延線材における基本的な化学成分組成は上記の通りである 。しかし、上記の組成の他に、更に、質量%で、 Cr: l. 50%以下、 Mo : 0. 50%以 下、 Ni: l. 00%以下、 V: 0. 50%以下、 B: 0. 005%以下、 Ti: 0. 05%以下よりな る群カゝら選ばれる 1種以上の元素を含有してもよい。この場合、焼入れ性の向上や、 冷間鍛造の強度向上といった利点が得られる。
[0030] Cr: l. 50%以下、 Mo : 0. 50%以下、 Ni: l. 00%以下
Cr、 Moおよび Niは、焼入れ性を高めることに有効な元素である。しかし、過剰に含 有させると延性の劣化を引き起こすため、上記範囲内に抑える。
[0031] V: 0. 50%以下
Vは、析出強化を目的として添加しても良い。しかし、多量に添加すると、延性の劣 化を引き起こすため、上記範囲内に抑える。
[0032] B: 0. 0050%以下、 Ti: 0. 05%以下
Bは焼き入れ性を向上させる元素であり、必要により添加しても良い。ただし、過剰 に含有させると、靭性を劣化させるため上限を 0. 005%とする。
Tiは固溶 Nの固定による動的時効抑制効果によって、冷間鍛造時の変形抵抗低 減に有効な元素であるため、必要により添加しても良い。但し、過剰に含有させると 粗大な TiNが析出し、この粗大な TiNを起点とする割れが生じやすくなることから、上 限を 0. 05%とする。
[0033] 本実施形態の熱間圧延線材の製造方法における各条件について以下に説明する 本実施形態の熱間圧延線材の製造方法では、上述した本実施形態の熱間圧延線 材と同一の組成を有する鋼を熱間圧延し熱間圧延線材とする。この熱間圧延では、 仕上げ温度が捲取り温度〜 1200°Cの範囲となる条件で鋼を圧延し圧延材とする。 鋼としては、上述した組成を有し線径 (直径)が 5〜16mmであればよぐ異形でもよ い。
その後、圧延材を 750〜1000°Cの捲取り温度で捲取る。ここで捲取圧延温度が、 750°C未満では、リング状に捲き取ることが困難となることから 750°Cを下限とする。 また、 1000°Cを超えると、酸化スケールが増大し、本実施形態の熱間圧延線材を具 体的な商品に加工して利用する業者など (需要家)での歩留ロスが生じるため 1000 °Cを上限とする。
[0034] 圧延材を捲取後、 750〜1000°Cの上限温度から 400〜550°Cの下限温度までの 温度領域を 20°CZsec.以上の冷却速度で冷却し、 400〜550°Cで 20秒以上保持 して恒温変態を完了させ、室温まで冷却し、熱間圧延線材を得る。
恒温保定温度を 400〜550°Cとしたのは以下の理由による。 400°C未満では変態 に長時間を要し、更に冷却後の組織に大量のベイナイトやマルテンサイトが生じる可 能性があるため、 400°Cを下限温度とする。また、 550°Cを超えると層状パーライト組 織が急増し、球状化焼鈍時間に長時間を要し、かつ加工性能の低下を招いてしまう ため 550°Cを上限温度とする。
保定時間は、恒温変態が終了するために 20秒以上とする。上限は特に規定するも のではないが、生産性向上の観点から、 150秒以内とすることが望ましい。
[0035] (第 2の実施形態)
本実施形態の優れた冷間鍛造性を有する球状化焼鈍処理された鋼線は、少なくと も質量%で C : 0. 005-0. 6%と、 Fe及び不可避不純物を含み、セメンタイト間距離 の標準偏差を前記セメンタイト間距離の平均値で除した値が 0. 50以下となる組織を 有する。
セメンタイト間距離の標準偏差を前記セメンタイト間距離の平均値で除した値 (標準 偏差/平均値)が 0. 50以下であるとは、セメンタイトがほぼ均一な間隔で分布してい ることを表している。セメンタイトがほぼ均一な間隔で分布していると、応力が集中せ ず割れ難くなり、その結果、冷間鍛造時の加工性能が向上する。
セメンタイト間距離の標準偏差を前記セメンタイト間距離の平均値で除した値 (標準 偏差/平均値)が 0. 50を越えると、セメンタイト間距離のばらつきが大きくなり、加工を 加えた場合に、フ ライトとセメンタイトとの界面への応力集中が大きくなりやすくなる 。これによりフェライトとセメンタイトとの界面へ転位集積によるボイドが発生し、これら ボイドが連結することによってマクロ割れが生じやすくなる。
[0036] セメンタイト間距離の標準偏差および平均値は、以下に示すように算出する。まず、 走査型電子顕微鏡で 5000倍の倍率で、 20 μ ηι Χ 20 μ mの視野範囲の写真撮影 を行う。
この写真にっ 、て、 6 m X 6 mを 1視野として重複箇所がな 、ように 9視野を選 択し、 1視野ごとにセメンタイト間距離を測定し、得られた測定値の平均値を 1視野ご との距離データ (個々値)とする。さらに、 9視野分の「1視野の距離データ (個々値)」 について、セメンタイト間距離の標準偏差とセメンタイト間距離の平均値とを算出する ここで、 1視野ごとのセメンタイト間距離の測定は、 1視野を縦 330等分、横 330等 分し、短径が 0. 05 μ m以上のセメンタイトを対象として、セメンタイト外郭間の距離を 縦、横について測定することによって行う。測定機器としては、例えば (株) -レコ社製 の画像解析装置 (LUZEX III)を用いることができる。
[0037] 本実施形態の鋼線は、含有するセメンタイトの長径を短径で除した値であるァスぺ タト比が 1. 50以下であるセメンタイト形状を有することが望ましい。長径を短径で除し た値であるアスペクト比が 1. 50以下である場合、冷間鍛造時にフェライトとセメンタイ トとの界面への転位集積は軽減される。一方、アスペクト比が 1. 50を越える場合、フ エライトとセメンタイトの界面に転位が集積してボイドが発生し、割れが生じやすくなつ てしまう。
アスペクト比の観察は、走査型電子顕微鏡で 5000倍の倍率で、 20 m X 20 m の視野範囲の写真撮影を行い、短辺が 0. 05 m以上のセメンタイトを対象として、 長径 Z短径比を画像解析にて測定することによって行う。測定機器としては、例えば (株) -レコ社製の画像解析装置 (LUZEX III)を用いることができる。
[0038] 本実施形態の鋼線は、鋼成分が少なくとも質量%でじを 0. 005-0. 60%と、 Fe 及び不可避不純物を含む。
質量0 /0で Si: 0. 50%以下、 Mn: 0. 20〜: L 00%、A1: 0. 01〜0. 06%、P : 0. 0 2%以下、 S : 0. 02%以下、 N: 0. 01%以下を含有してもよい。これら元素の範囲限 定理由は下記の通りである。
[0039] C : 0. 005〜0. 60%
Cは、ボルト、ねじ等の本実施形態の熱間圧延線材カも形成する商品に求められる 強度により規定される。 0. 005%未満では必要な強度が得られないため下限は 0. 0 05%とする。一方、 0. 60%を超えると冷間加工性の低下、靭性の低下が生じるため 、 0. 60%を上限とする。
[0040] Si: 0. 50%以下
Siは、脱酸材として添加されたり、また固溶体硬化による最終製品の強度増加目的 に添加される力 多量に添加すると強度増加が著しくなつて靭性の劣化を招くため、 上限を 0. 50%とする。
[0041] Mn: 0. 20~1.00% Mnは、焼入れ性を高め強度を向上させる元素として添加される力 その効果を発 揮させるためには 0. 20%以上含有させる必要がある。一方、添加量が過剰になると 、冷間鍛造性ゃ靭性の低下を招くため、上限は 1. 00%とする。
[0042] A1: 0. 01%〜0. 06%
A1は、 Nを固定して冷間鍛造中の動的歪時効を抑制し、変形抵抗を低減する効果 がある。この効果を得るためには、少なくとも 0. 01%含有させる必要がある。しかし、 過剰に含有させると靭性を低下させるため、上限は 0. 06%とする。
[0043] P: 0. 02%以下、 S: 0. 02%以下
Pと Sは、不可避的に含有される成分である。 Pは鋼中で粒界偏析ゃ中心偏析を起 こし靭性を劣化させるため、 0. 02%以下とする必要がある。 Sは冷間加工において 有害な元素であるため、 0. 02%以下とする必要がある。
[0044] N: 0. 01%以下
Nは、冷間鍛造中に動的歪時効を起こし変形抵抗の上昇と加工性能の低下を招く 。よって、 Nは 0. 01%以下とする。
[0045] 本実施形態の鋼線は、鋼成分として、更に、 Cr: 1. 50%以下、 Mo : 0. 50%以下 、Ni: l. 00%以下、 V: 0. 50%以下、 B: 0. 0050%以下、 Ti: 0. 05%以下よりなる 群力も選ばれる 1種以上の元素を含有してもよ 、。
[0046] Cr: l. 50%以下、 Mo : 0. 50%以下、 Ni: l. 00%以下
Cr、 Moおよび Niは、焼入れ性を高めることに有効な元素である。しかし、過剰に含 有させると延性の劣化を引き起こすため、上記範囲内に抑える。
[0047] V: 0. 50%以下
Vは、析出強化を目的として添加しても良い。しかし、多量に添加すると、延性の劣 化を引き起こすため、上記範囲内に抑える。
[0048] B: 0. 0050%以下
Bは焼入れ性を向上させる元素であり、必要により添加しても良い。但し、過剰に含 有させると靭性を劣化させるため上限を 0. 0050%とする。
[0049] Ti: 0. 05%以下
Tiは固溶 Nの固定による動的歪時効抑制効果によって、冷間鍛造時の変形抵抗 低減に有効な元素であるため、必要により添加しても良い。但し、過剰に含有させる と粗大な TiNが析出し、この粗大な TiNを起点とする割れが生じやすくなることから、 上限を 0. 05%とする。
[0050] 本実施形態の熱間圧延線材の製造方法における各条件について以下に説明する 本実施形態の熱間圧延線材の製造方法では、上述した本実施形態の熱間圧延線 材と同一の組成を有する鋼を熱間圧延し熱間圧延線材とする。この熱間圧延では、 仕上げ温度が捲取り温度〜 1200°Cの範囲となる条件でで鋼を圧延し圧延材とする 。鋼としては、上述した組成を有し線径 (直径)が 5〜16mmであればよぐ異形でもよ い。
その後、圧延材を 750〜1000°Cの捲取り温度で捲取る。ここで捲取圧延温度が 7 50°C未満では、リング状に捲き取ることが困難となることから 750°Cを下限とする。ま た 1000°Cを超えると、酸化スケールが増大し、歩留ロスが生じるため 1000°Cを上限 とする。
[0051] 圧延材を捲取後、 750〜1000°Cの上限温度から 400〜550°Cの下限温度までの 温度領域を 20°CZsec.以上の冷却速度で冷却し、 400〜550°Cで 20秒以上保持 して恒温変態を完了させ、室温まで冷却し、熱間圧延線材を得る。
冷却速度を 20°CZsec.以上としたのは、圧延後の上記冷却によって擬似パーライ トやべイナイトといったセメンタイトが均一に分散した組織を得るためである。圧延後( 上記冷却後)に擬似パーライトやべイナイト組織が存在した場合、球状化焼鈍後もセ メンタイトは均一な間隔で分布することが可能となる。
[0052] また、恒温保定温度を 400〜550°Cとしたのは以下の理由による。 400°C未満では 変態に長時間を要し、更に冷却後の組織に大量のベイナイトやマルテンサイトが生じ て冷間鍛造時の変形抵抗が高くなるため、 400°Cを下限とする。また、 550°Cを超え ると層状パーライト組織が急増し、球状化焼鈍時間に長時間を要し、かつ加工性能 の低下を招いてしまうため 550°Cを上限温度とする。
恒温保定時間は、恒温変態を終了させるために 20秒以上とする。上限は特に規定 するものではないが、生産性向上の観点から、 150秒以内とすることが望ましい。 [0053] この熱間圧延線材に対し、球状化焼鈍を実施する。
球状化焼鈍は、 A点直下、もしくは二相域の雰囲気温度にて所定時間の保持を行 い、セメンタイトの球状ィ匕を図る処理である。焼鈍保定時間の上限は特に規定するも のではないが、上述の線材圧延後(上述した冷却後)の組織である場合、焼鈍保定 時間の短縮が可能である。生産性向上、エネルギーコスト低減の観点から、球状ィ匕 焼鈍時の保定時間は望ましくは 5時間以内、更に望ましくは 3時間以内である。球状 化焼鈍時間の短縮は、本実施形態の組織制御によって可能となる。
以上により、加工性能の向上と変形抵抗の低減を達成する、優れた冷間鍛造性を 有する鋼線となる。
[0054] この球状ィ匕焼鈍の前に、 40%以下の減面率で粗伸線してもょ 、。粗伸線は、寸法 形状確保、強度確保、セメンタイト球状ィ匕促進という観点カゝら必要に応じて行なう。 4 0%を超えた場合、球状ィ匕焼鈍後の強度が高くなることにより最終鋼線の強度が上昇 し、冷間鍛造時の変形抵抗が高くなつてしまう。このため、減面率の上限は 40%とす る。下限は特に限定されず、粗伸線しない場合も含めると 0%以上である。
[0055] また、球状化焼鈍の後に、 20%以下の減面率で仕上伸線してもよい。仕上伸線に 関しても、寸法形状確保、強度確保という観点から必要に応じて行なう。 20%を超え ると最終鋼線の強度が上昇し、冷間鍛造時の変形抵抗が高くなつてしまうため減面 率 20%以下が望ましい。下限は特に限定されず、仕上伸線しない場合も含めると 0 %以上である。
[0056] この第 2の実施形態の鋼線は、第 1の実施形態の熱間圧延線材を、上述した粗伸 線、球状化焼鈍、および仕上伸線することによって製造されたものであるということも できる。
本発明の好ましい元素は上述の第 1, 2の実施形態の通りであり、残部成分は実質 的に Feである力 熱間圧延線材または鋼線中に、微量の不可避不純物の含有が許 容されるのは勿論のこと、本発明の作用に影響を与えない範囲で更に他の元素を積 極的に含有させることも可能である。
実施例
[0057] 以下、本実施形態を実施例によって更に詳細に説明するが、実施例は本発明を限 定する性質のものではなぐ前記の趣旨または後記の趣旨に特徴して適宜設計変更 することはいずれも本発明の技術的範囲に含まれるものである。
[0058] (実施例 1)
表 1に示す成分の鋼に、表 2〜4の冷却速度および恒温保定時間の条件で線材圧 延 (熱間圧延)を施すことによって、表 2〜4に示す組織を有する熱間圧延線材とした 。表 1において、鋼 A〜Eは、本願発明範囲内であるが、鋼 Fは、 Crと Niが本願範囲 よりも高い試料であり、鋼 Gは、 Crが高い試料である。
なお、表 1, 2中の Ceqは、 Ceq = C% + (l/3) Si% + (lZ6) Mn%である。ここ で、式中の C%, Si%, Mn%は、熱間圧延線材中の C, Si, Mnの含有量(質量0 /0) をそれぞれ示す。
[0059] この熱間圧延線材を A 点直下で迅速に球状化焼鈍 (A 点直下まで 150
CI C1 °CZ時 間で昇温し、 A 点直下で 1時間保持した後、空冷)した。
C1
球状ィ匕焼鈍後の熱間圧延線材カも切り出したテストピース(円筒の直径 dと高さ hの 比: hZd=l. 5)を使用して、冷間据込み性試験を実施し、変形抵抗、割れ (加工性 能)を測定した。冷間据込み性試験は、 JCFCS-1980の基準に則って実施した。
[0060] 変形抵抗は圧縮率 70%、歪速度 = 10S—1の条件で測定した。 Ceqにより求められ た基準変形抵抗値よりも小さ!ヽ場合は「良好」と判断し、得られた結果が基準変形抵 抗値よりも大き ヽ場合は「悪 ヽ」と判断した。
また、加工性能は、肉眼または拡大鏡を用いて、長さ 0. 5mn!〜 1. Ommの微細割 れが観察されなカゝつた場合「良好」と判断し、微細割れが観察された場合「悪 ヽ」と判 断した。
そして、加工性能と変形抵抗のいずれもが良好である場合を「Good」と判定した。加 工性能と変形抵抗の ヽずれかが悪!、場合を「Bad」と判定し、その判定理由を記載し た。なお、加工性能と変形抵抗のいずれもが良好であっても、保定時間が好ましい範 囲の 20秒以上、 150秒以内を満たしていない場合(試料 No.1— 9、 1 27)、「Bad」 と判定し、理由に「保定時間オーバー」と記載した。
それらの結果から、迅速球状ィヒ焼鈍後の冷間鍛造性を判定した結果を表 2〜4に 示す。
Figure imgf000017_0001
^〔〕〔¾0063
Figure imgf000018_0001
〔〕〔0062
Figure imgf000019_0001
Figure imgf000020_0001
[0065] 表 2, 3に示す試料 No.l— 2、 1— 8、 1— 14、 1— 20、 1— 26ίま、个亘温保定時 f¾力 S 不足して変態が完了しておらず、マルテンサイト等の硬質糸且織が大量に発生してい る。このため球状ィ匕処理後の冷間鍛造時の変形抵抗が高くなり、本発明で規定する 範囲外である。
試料 No.1— 5、 1— 11は、保定温度が 400°Cを下回るため、マルテンサイトが大量 に発生し、同一 Ceqで比較した場合、球状化処理後の冷間鍛造時の変形抵抗が高 い。よって、本発明で規定する範囲外である。
[0066] 試料 No.l— 17、 1 23、 1 29は、保定温度が 400°Cを下回るため、ベイナイト が 75体積%を上回り、同一の Ceqで比較した場合、球状化処理後の冷間鍛造時の 変形抵抗が高い。よって、本発明で規定する範囲外である。
試料 No.1— 6、 1— 12、 1— 18、 1— 24、 1— 30は、冷速力 20。CZsec.以下のた め、フェライトとパーライトの 2相組織となり短時間では球状ィ匕が不十分である。このた め、球状化処理後の冷間鍛造時の加工性能が低ぐ本発明で規定する範囲外であ る。
[0067] 試料 No.l— 31〜1— 36は、 Niが本発明で規定する範囲を超えて含まれるため、( 擬似パーライト体積0 /0 +ベイナイト体積0 /0 +フェライト体積0 /0)≥90体積%とならな い。これはマルテンサイトが多量に発生している力もである。同等の Ceqを有する試 料 (D鋼が用いられた試料)と比較した場合、球状化処理後の冷間鍛造時の変形抵 抗が高ぐ本発明で規定する範囲外である。また、加工性も悪い。
試料 No.l— 37〜1— 41は、 Crが本発明で規定する範囲を超えているために (擬 似パーライト体積0 /0 +ベイナイト体積0 /0 +フェライト体積0 /0)≥ 90体積0 /0とならな ヽ。 これはマルテンサイトが多量に発生して ヽるカゝらである。同等の Ceqを有する試料 (D 鋼が用いられた試料)と比較した場合、球状化処理後の冷間鍛造時の変形抵抗が高 ぐ本発明で規定する範囲外である。また、加工性も悪い。
[0068] 試料 No.l—42は、 Crが本発明で規定する範囲を超えて含まれるため、ベイナイト 率が 75体積%を上回る。同等の Ceqを有する試料 (C鋼が用いられた試料)と比較し た場合、冷間鍛造時の変形抵抗が高ぐ本発明で規定する範囲外である。
表 2, 3に示す上記以外の試料 No.1— 1、 1— 3、 1—4、 1— 7、 1— 9, 1— 10、 1— 13、 1— 15、 1— 16、 1— 19、 1— 21、 1— 22、 1— 25、 1— 27、 1— 28は、本発明 で規定する条件を満足する。迅速な球状化焼鈍時間後も、加工性能が高ぐ変形抵 抗が低!、と!/ヽぅ特性を有して!/、る。
[0069] (実施例 2)
表 5に示す鋼成分 I〜Vの鋼を以下の条件で熱間圧延して熱間圧延線材とした。鋼 を圧延した後、 750〜1000°Cで捲取した。次いで、 750〜1000°Cの上限温度から 400〜550°Cの下限温度までを 20〜100°CZsec.の速度で冷却し、表 6に示す恒 温保定温度にお!、て 20秒以上保持して恒温変態を完了させ、室温まで冷却し熱間 圧延線材を得た。
その後、熱間圧延線材を表 6に示す減面率で粗伸線し、球状化焼鈍 (A点直下ま で 150°CZ時間で昇温し、 A点直下で 1時間保持した後、空冷)を行い、その後、表 6に示す減面率で仕上伸線を行った。
[0070] [表 5]
Figure imgf000023_0001
[表 6]
Figure imgf000024_0002
Figure imgf000024_0003
Figure imgf000024_0004
Figure imgf000024_0001
試料 No. 2— 1〜2— 19について、直径力 〜5mmの円筒形であり、中心に直径 が 2mmであり開口部が角度 0 = 120° で面取りされた孔 4を有するテストピース(円 筒の直径 dと高さ hとの比: hZd=l. 5)を、仕上伸線後の鋼線力 切り出した。この テストピースを使用して冷間据込み性試験を実施し、変形抵抗、加工性能を測定し た。なお、割れの出難い試料 No. 2— 1〜2— 12については、図 1に示すテストピー ス 1を使用して冷間据込み性試験を実施した。図 1に示すテストピース 1は、図 1 (a) に示すように、直径 dが 4〜5mmの円筒形(円筒の直径 dと高さ hとの比: hZd= l. 5 )である。図 1 (a)および図 1 (b)に示すように、中心に開口部が角度 Θ = 120。 で面 取りされた直径 2mmの孔 4が設けられている。また、この側面には、図 1 (c)に示す半 径 b : 0. 8mm、中心角 a : 30° 、底部の曲率 R=0. 15mmの平面視扇型の切欠部 2 が設けられている。
[0073] 冷間据込み性試験は、 JCFCS— 1980の基準に則って実施した。その結果を表 6 に示す。
なお、表 5および表 6中の Ceq = C% + lZ3Si% + lZ6Mn%である。ここで、式 中の C%, Si%, Mn%は、熱間圧延線材中の C, Si, Mnの含有量 (質量%)をそれ ぞれ示す。
[0074] 変形抵抗は、圧縮率 70%、歪速度 = 10s_ 1の条件で測定し、得られた結果を表 6 に示す。 Ceqにより求められた基準変形抵抗値よりも小さい場合は「良好」と判断し、 得られた結果が基準変形抵抗値よりも大き ヽ場合は「悪 ヽ」と評価した。
また、加工性能は、肉眼または拡大鏡を用いて、長さ 0. 5mn!〜 1. Ommの微細割 れが観察されなカゝつた場合「良好」と判断し、微細割れが観察された場合「悪 ヽ」と判 断した。
そして、加工性能と変形抵抗のいずれもが良好である場合を「Good」と判定し、カロ ェ性能が良好で変形抵抗が悪 、場合を「Fair」と判定し、加工性能と変形抵抗の ヽ ずれもが悪い場合を「Bad」と判定し、「Fair」「Bad」と判定した場合には理由を記載し た。
[0075] 表 5および表 6より、セメンタイト間距離の標準偏差/平均値が 0. 50以下である試料 No.2— 2および、セメンタイト間距離の標準偏差/平均値が 0. 50以下であって、ァス ぺク卜比力 50以下である試料 No.2—1、 2— 3、 2— 5〜2— 7、 2— 9〜2— 11、 2 13〜2— 15、 2— 17〜2— 19では、「Good」または「Fair」となった。
また、 Crと Niが好まし 、範囲を越えて含まれて ヽる鋼成分 Vの鋼を用いた試料 No. 2— 17〜2—19は、鋼成分 I〜IVの鋼を用いた試料 No.2—l〜2— 3、 2— 5〜2— 7 、 2— 9〜2— 11、 2— 13〜2— 15と比較して、マルテンサイト等の硬質組織が多量 に発生し、同等の Ceqを有する試料 (IV鋼が用いられた試料)と比較した場合、冷間 鍛造時の変形抵抗が高い。
さらに、「000(1」または「1¾1"」となった試料?^0.2—1、 2— 3、 2— 5〜2— 7、 2— 9〜 2—11、 2— 13〜2— 15のうち、恒温保定温度、粗伸線減面率、仕上伸線減面率が 好ましい範囲である試料 No.2— 3、 2— 7、 2— 11、 2— 15は、「Good」となった。
[0076] すなわち、試料 No.2— 1、 2— 5、 2— 9、 2— 13は、恒温保定温度が 400°Cを下回 るため、マルテンサイト等の硬質組織が大量に発生し、同等の Ceqを有する試料と比 較した場合、冷間鍛造時の変形抵抗が高い。また、試料 No.2— 6、 2— 14は、粗伸 線での減面率力 0%を超えるため、同等 Ceqで比較した場合、冷間鍛造時の変形 抵抗が高い。試料 No.2— 10は、粗伸線での減面率力 0%を、仕上伸線での減面 率が 20%を超えるため、同等の Ceqを有する試料と比較した場合、冷間鍛造時の変 形抵抗が高い。
また、試料 No.2— 2は、セメンタイト間距離の標準偏差/平均値が 0. 50以下である 力 アスペクト比が好ましい範囲を越え、仕上伸線での減面率が 20%を超えるため、 同等 Ceqで比較した場合、冷間鍛造時の変形抵抗が高!ヽ。
[0077] 試料 No.2— 4、 2— 8、 2—12、 2— 16では、標準偏差の比率 (標準偏差/平均)が 0. 5を越え、アスペクト比が 1. 50を越えているため、冷間鍛造時の加工性能が悪く「 BadJとなった。
産業上の利用可能性
[0078] 本発明の熱間圧延線材では、球状化焼鈍時間を短縮しても優れた冷間鍛造性が 得られる。このため、球状ィ匕焼鈍時間の短縮ィ匕を可能とし、生産性の向上ゃェネル ギーコストの低減を実現できる。
本発明の鋼線では、冷間鍛造時の加工性能の向上と変形抵抗の低減を達成でき 、冷間鍛造時の加工性能の向上を図ることができる。
このため、本発明は、ボルト、ナット、ねじ、歯車、バーインコイル、その他の機械部 品を冷間鍛造などの冷間加工によって製造する際の熱間圧延線材ゃ鋼線として利 用可能である。また、本発明の製造方法は、冷間鍛造の製造工程にて有益に適用 可能である。

Claims

請求の範囲
[1] 少なくとも質量%でじ:0. 005-0. 6%と、 Fe及び不可避不純物を含み、擬似パ 一ライトが 10体積%以上、ベイナイトが 75体積%以下、フ ライトが 60体積%以下、 (擬似パーライト体積0 /0 +ベイナイト体積0 /0 +フ ライト体積0 /0)≥90体積0 /0の関係 を満足することを特徴とする球状化処理後の冷間鍛造性に優れた熱間圧延線材。
[2] 更に、質量0 /0で、 Si: 0. 50%以下、 Mn: 0. 20~1. 00%、 A1: 0. 01〜0. 06%,
P : 0. 02%以下、 S : 0. 02%以下、 N : 0. 01%以下を含むことを特徴とする請求項 1 に記載の球状化処理後の冷間鍛造性に優れた熱間圧延線材。
[3] 更に、質量%で、 Cr: l. 5%以下、 Mo : 0. 50%以下、 Ni: l. 00%以下、 V: 0. 5 0%以下、 B: 0. 0050%以下、 Ti: 0. 05%以下よりなる群力 選ばれる 1種以上の 元素を含有することを特徴とする請求項 1に記載の球状化処理後の冷間鍛造性に優 れた熱間圧延線材。
[4] 請求項 1に記載の球状化処理後の冷間鍛造性に優れた熱間圧延線材を製造する 方法であって、
少なくとも質量%でじ:0. 005-0. 6%と、 Fe及び不可避不純物を含む鋼を熱間 圧延し、
前記熱間圧延では、前記鋼を圧延して圧延材とし、
前記圧延材を 750〜1000°Cで捲取し、
750〜1000°Cの上限温度から 400〜550°Cの下限温度までを 20°CZsec.以上 の冷却速度で冷却し、 400〜550°Cにお 、て 20秒以上保持して恒温変態を完了さ せた後、室温まで冷却することを特徴とする球状化処理後の冷間鍛造性に優れた熱 間圧延線材の製造方法。
[5] 少なくとも質量%でじ:0. 005〜0. 6%と、 Fe及び不可避不純物を含み、セメンタ イト間距離の標準偏差を前記セメンタイト間距離の平均値で除した値が 0. 50以下と なる組織を有することを特徴とする優れた冷間鍛造性を有する球状化焼鈍処理され た鋼線。
[6] 含有されるセメンタイトが、長径を短径で除した値であるアスペクト比が 1. 50以下 である形状を有することを特徴とする請求項 5に記載の優れた冷間鍛造性を有する 球状化焼鈍処理された鋼線。
[7] 質量0 /0で、 Si:0.50%以下、 Mn:0.20〜: L 00%、 A1:0.01〜0.06%、 P:0.
02%以下、 S:0.02%以下、 N:0.01%以下を含み、
更に、質量%で、 Cr:l.50%以下、 Mo:0.50%以下、 Ni:l.00%以下、 V:0.
50%以下、 B:0.0050%以下、 Ti:0.05%以下よりなる群力 選ばれる 1種以上の 元素を含有することを特徴とする請求項 5に記載の優れた冷間鍛造性を有する球状 化焼鈍処理された鋼線。
[8] 請求項 5に記載の優れた冷間鍛造性を有する球状化焼鈍処理された鋼線の製造 方法であって、
少なくとも質量%でじ:0.005-0.6%と、 Fe及び不可避不純物を含む鋼を熱間 圧延し、
前記熱間圧延では、前記鋼を圧延して圧延材とし、
前記圧延材を 750〜1000°Cで捲取し、
750〜1000°Cの上限温度から 400〜550°Cの下限温度までを 20°CZsec.以上 の冷却速度で冷却し、 400〜550°Cにお 、て 20秒以上保持して恒温変態を完了さ せた後、室温まで冷却して熱間圧延線材とし、
次いで、前記熱間圧延線材を球状化焼鈍し、鋼線とすることを特徴とする優れた冷 間鍛造性を有する球状化焼鈍処理された鋼線の製造方法。
[9] 前記球状化焼鈍の保定時間が 5時間以内であることを特徴とする請求項 8に記載 の優れた冷間鍛造性を有する球状化焼鈍処理された鋼線の製造方法。
[10] 前記鋼が、質量0 /0で、 Si:0.50%以下、 Mn:0.20〜: L 00%、 A1:0.01〜0.0
6%、 P:0.02%以下、 S:0.02%以下、 N:0.01%以下を含み、
更に、 Cr:l.50%以下、 Mo:0.50%以下、 Ni:l.00%以下、 V:0.50%以下、
B:0.0050%以下、 Ti:0.05%以下よりなる群力 選ばれる 1種以上の元素を含有 することを特徴とする請求項 8に記載の優れた冷間鍛造性を有する球状化焼鈍処理 された鋼線の製造方法。
[11] 前記球状化焼鈍の前に前記熱間圧延線材を 40%以下の減面率で粗伸線するェ 程、前記球状化焼鈍の後に、前記球状化焼鈍処理された鋼線を 20%以下の減面率 で仕上伸線する工程のいずれか一方又は両方を行うことを特徴とする請求項 8に記 載の優れた冷間鍛造性を有する球状化焼鈍処理された鋼線の製造方法。
PCT/JP2006/302539 2005-02-16 2006-02-14 球状化処理後の冷間鍛造性に優れた熱間圧延線材、優れた冷間鍛造性を有する球状化焼鈍処理された鋼線、及びそれらの製造方法 WO2006088019A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-039498 2005-02-16
JP2005039498A JP4669300B2 (ja) 2005-02-16 2005-02-16 球状化処理後の冷間鍛造性に優れた鋼線材及びその製造方法
JP2005-137344 2005-05-10
JP2005137344A JP4669317B2 (ja) 2005-05-10 2005-05-10 冷間鍛造性に優れた鋼線及びその製造方法

Publications (1)

Publication Number Publication Date
WO2006088019A1 true WO2006088019A1 (ja) 2006-08-24

Family

ID=36916425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302539 WO2006088019A1 (ja) 2005-02-16 2006-02-14 球状化処理後の冷間鍛造性に優れた熱間圧延線材、優れた冷間鍛造性を有する球状化焼鈍処理された鋼線、及びそれらの製造方法

Country Status (3)

Country Link
KR (1) KR101033752B1 (ja)
TW (1) TWI318645B (ja)
WO (1) WO2006088019A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105428A (ja) * 2013-12-02 2015-06-08 株式会社神戸製鋼所 耐遅れ破壊性に優れたボルト用鋼線および高強度ボルト並びにそれらの製造方法
EP3279355A4 (en) * 2015-03-31 2018-09-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire for mechanical structural parts
WO2022167847A1 (en) 2021-02-02 2022-08-11 Tata Steel Limited A method for producing spheroidized or non-lamellar microstructure steels

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227512B (zh) * 2009-11-17 2013-10-23 新日铁住金株式会社 低温退火用钢线及其制造方法
TWI450975B (zh) * 2011-04-11 2014-09-01 China Steel Corp 柱狀化或球狀化鋼材波來鐵組織中雪明碳鐵之製程
ES2779403T3 (es) 2014-03-20 2020-08-17 Nippon Steel Corp Alambrón de acero maleable excelente y método para producir el mismo
KR101751530B1 (ko) * 2015-12-28 2017-06-27 주식회사 포스코 공구용 강판 및 그 제조방법
KR101977474B1 (ko) * 2017-08-09 2019-05-10 주식회사 포스코 표면 품질, 강도 및 연성이 우수한 도금강판
KR102153195B1 (ko) * 2018-12-18 2020-09-07 주식회사 포스코 연질화 열처리의 생략이 가능한 선재 및 그 제조방법
KR102391061B1 (ko) * 2020-08-20 2022-04-28 주식회사 포스코 냉간 가공성이 향상된 선재 및 그 제조방법
KR102492644B1 (ko) * 2020-12-18 2023-01-30 주식회사 포스코 지연파괴 저항성이 향상된 선재, 부품 및 그 제조방법
KR20230091619A (ko) * 2021-12-16 2023-06-23 주식회사 포스코 드릴링 특성이 우수한 냉간단조용 선재 및 스크류 부품의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215924A (ja) * 1988-02-24 1989-08-29 Kobe Steel Ltd 熱間圧延線俸鋼の製造方法
JPH05156369A (ja) * 1991-12-04 1993-06-22 Nippon Steel Corp スチールコードの製造方法
JPH08295932A (ja) * 1995-04-21 1996-11-12 Nippon Steel Corp 疲労特性の優れた高強度鋼線
JP2000119809A (ja) * 1998-10-13 2000-04-25 Kobe Steel Ltd 迅速球状化可能で冷間鍛造性の優れた鋼線材およびその製造方法
JP2000144306A (ja) * 1998-11-09 2000-05-26 Kobe Steel Ltd 冷間鍛造性に優れた中高炭素鋼

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737323B2 (ja) * 1999-09-17 2006-01-18 株式会社神戸製鋼所 球状化後の冷間鍛造性に優れた鋼線材・棒鋼およびその製造方法
KR100530065B1 (ko) * 2001-12-13 2005-11-22 주식회사 포스코 구상화 소둔 열처리 단축이 가능한 냉간압조용 강선재의제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215924A (ja) * 1988-02-24 1989-08-29 Kobe Steel Ltd 熱間圧延線俸鋼の製造方法
JPH05156369A (ja) * 1991-12-04 1993-06-22 Nippon Steel Corp スチールコードの製造方法
JPH08295932A (ja) * 1995-04-21 1996-11-12 Nippon Steel Corp 疲労特性の優れた高強度鋼線
JP2000119809A (ja) * 1998-10-13 2000-04-25 Kobe Steel Ltd 迅速球状化可能で冷間鍛造性の優れた鋼線材およびその製造方法
JP2000144306A (ja) * 1998-11-09 2000-05-26 Kobe Steel Ltd 冷間鍛造性に優れた中高炭素鋼

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105428A (ja) * 2013-12-02 2015-06-08 株式会社神戸製鋼所 耐遅れ破壊性に優れたボルト用鋼線および高強度ボルト並びにそれらの製造方法
WO2015083599A1 (ja) * 2013-12-02 2015-06-11 株式会社神戸製鋼所 ボルト用鋼線およびボルト、並びにそれらの製造方法
EP3078758A4 (en) * 2013-12-02 2017-06-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire for bolt, bolt, and production method therefor
EP3279355A4 (en) * 2015-03-31 2018-09-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire for mechanical structural parts
WO2022167847A1 (en) 2021-02-02 2022-08-11 Tata Steel Limited A method for producing spheroidized or non-lamellar microstructure steels

Also Published As

Publication number Publication date
TW200641144A (en) 2006-12-01
KR101033752B1 (ko) 2011-05-09
TWI318645B (en) 2009-12-21
KR20070086836A (ko) 2007-08-27

Similar Documents

Publication Publication Date Title
WO2006088019A1 (ja) 球状化処理後の冷間鍛造性に優れた熱間圧延線材、優れた冷間鍛造性を有する球状化焼鈍処理された鋼線、及びそれらの製造方法
JP4669300B2 (ja) 球状化処理後の冷間鍛造性に優れた鋼線材及びその製造方法
KR101599163B1 (ko) 비조질 기계 부품용 선재, 비조질 기계 부품용 강선 및 비조질 기계 부품과 그들의 제조 방법
JP5595358B2 (ja) 伸線性に優れた高強度ばね用鋼線材およびその製造方法、並びに高強度ばね
EP2843070B1 (en) Steel for mechanical structure for cold working, and method for manufacturing same
JP5357994B2 (ja) 冷間加工用機械構造用鋼およびその製造方法
JP5407178B2 (ja) 冷間加工性に優れた冷間鍛造用鋼線材およびその製造方法
EP1980635B1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
JP6528860B2 (ja) 非調質機械部品用鋼線及び非調質機械部品
US10570478B2 (en) Steel for mechanical structure for cold working, and method for producing same
US20180251876A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
WO2021090472A1 (ja) 高炭素冷延鋼板およびその製造方法並びに高炭素鋼製機械部品
JP4669317B2 (ja) 冷間鍛造性に優れた鋼線及びその製造方法
JP3527641B2 (ja) 冷間加工性に優れた鋼線材
CN108368583B (zh) 非调质机械部件用钢丝及非调质机械部件
JP5194454B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
WO2020230880A1 (ja) 鋼線、及び熱間圧延線材
JP4905031B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP6497146B2 (ja) 冷間加工性に優れた鋼線材
JPWO2020145259A1 (ja) 鋼板及びその製造方法
EP3128031A1 (en) High-strength steel material having excellent fatigue characteristics
JP2001081528A (ja) 冷間加工性と焼入れ性に優れた高炭素鋼帯およびその製造方法
KR20190012226A (ko) 선재, 강선 및 부품
JP2002155339A (ja) 深絞り性に優れた中・高炭素鋼
WO2017170439A1 (ja) 耐遅れ破壊特性に優れた鋼線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077015015

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001720.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713680

Country of ref document: EP

Kind code of ref document: A1