WO2006087938A1 - Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program - Google Patents

Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program Download PDF

Info

Publication number
WO2006087938A1
WO2006087938A1 PCT/JP2006/302057 JP2006302057W WO2006087938A1 WO 2006087938 A1 WO2006087938 A1 WO 2006087938A1 JP 2006302057 W JP2006302057 W JP 2006302057W WO 2006087938 A1 WO2006087938 A1 WO 2006087938A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat treatment
substrate
warpage
temperature correction
Prior art date
Application number
PCT/JP2006/302057
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuteru Yano
Shinichi Shinozuka
Hiroshi Tomita
Ryoichi Uemura
Masahide Tadokoro
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2006087938A1 publication Critical patent/WO2006087938A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece

Definitions

  • Heat treatment plate temperature setting method heat treatment plate temperature setting device, program, and computer-readable recording medium recording the program
  • the present invention relates to a temperature setting method for a heat treatment plate, a temperature setting device for a heat treatment plate, a program, and a computer-readable recording medium on which the program is recorded.
  • a resist coating process for applying a resist solution on a wafer to form a resist film for example, an exposure process for exposing the resist film to a predetermined pattern, Heat treatment (post-exposure baking) that promotes the chemical reaction, development processing that develops the exposed resist film, etc., are sequentially performed to form a predetermined resist pattern on the wafer.
  • Heat treatment post-exposure baking
  • Heat treatment such as the above-described post exposure baking is usually performed by a heat treatment apparatus.
  • the heat treatment equipment is equipped with a hot plate to place and heat the wafer.
  • a heater that generates heat by power supply is built into the hot plate, and the hot plate is adjusted to a predetermined temperature by the heat generated by the heater.
  • the heat treatment temperature in the above-described heat treatment greatly affects the line width of the resist pattern finally formed on the wafer. Therefore, in order to strictly control the temperature in the wafer surface during heating, the heat plate of the above-described heat treatment apparatus is divided into a plurality of regions, and an independent heater is built in each region. The temperature is adjusted.
  • Patent Document 1 Japanese Patent No. 3325833
  • the set temperature of each region of the conventional hot plate has been corrected so that the in-plane temperature of the wafer placed on the hot plate is uniform.
  • the line width of the resist pattern finally formed on the wafer may not be uniform on the wafer surface.
  • the present invention has been made in view of the points to be applied, and the temperature setting of a heat treatment plate such as a hot plate is set so that the line width of the resist pattern is uniformly formed in a substrate surface such as a wafer. Its purpose is to do.
  • the present invention provides a temperature setting method for a heat treatment plate on which a substrate is placed and heat treated, wherein the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate.
  • the heat treatment plate is divided into a plurality of regions, the temperature is set for each region, and the in-plane temperature of the substrate on the heat treatment plate is adjusted for each region of the heat treatment plate.
  • a temperature correction value is set, and the warpage amount and warpage shape of the substrate to be heat-treated are measured. Based on the measurement results of the warpage amount and warpage shape of the substrate, the line width of the resist pattern is formed uniformly within the substrate surface. As described above, the temperature correction value of each region is set.
  • the temperature correction value of each region of the heat treatment plate is set so that the line width of the resist pattern is uniform within the substrate surface based on the measurement result of the warpage of the substrate. As a result, the resist pattern formed through heat treatment on the heat-treated plate is uniformly formed on the substrate surface.
  • a temperature correction table that defines an optimum temperature correction value for each region corresponding to each warpage amount and warpage shape of the substrate is created, and the temperature is calculated based on the measurement results of the warpage amount and warpage shape of the substrate.
  • the temperature correction value for each area may be set by a correction table.
  • the temperature correction table may be created for each processing recipe determined by at least a combination of the heat treatment temperature and the type of resist solution.
  • the relational expression between the amount of warpage of the substrate and the optimum temperature correction value of each region is determined for each warpage shape of the substrate.
  • the temperature correction value for each region may be set by the relational expression based on the measurement result of the warpage amount and warpage shape of the substrate.
  • the warpage amount and warpage shape of the substrate may be measured, and the temperature correction value of each region may be set, and the warpage amount and warpage shape of the substrate may be measured during the heat treatment.
  • the temperature correction value for each area may be set.
  • the heat treatment may be a heat treatment performed after the exposure process and before the development process.
  • the present invention according to another aspect is a temperature setting device for a heat treatment plate on which a substrate is placed and heat treated, wherein the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate.
  • the heat treatment plate is divided into a plurality of regions, the temperature is set for each region, and a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set for each region of the heat treatment plate.
  • the temperature correction value of each region is set so that the line width of the resist pattern is uniformly formed in the substrate surface based on the warpage amount and warpage shape of the substrate to be heat-treated. .
  • the temperature correction value of each region of the heat treatment plate is set so that the line width of the resist pattern is uniform within the substrate surface based on the measurement result of the warp of the substrate. As a result, the resist pattern formed through heat treatment on the heat-treated plate is uniformly formed on the substrate surface.
  • the temperature setting device includes a temperature correction table that defines an optimum temperature correction value for each region corresponding to each warp amount and warp shape of the substrate, and based on the warp amount and warp shape of the substrate, Then, the temperature correction value of each region may be set by the temperature correction table.
  • the temperature correction table may be provided for each processing recipe determined by at least a combination of the heat treatment temperature and the type of resist solution.
  • the temperature setting device is provided with a relational expression between the warpage amount of the substrate and the optimum temperature correction value of each region for each warpage shape of the substrate, and the relationship is based on the warpage amount and the warpage shape of the substrate.
  • the temperature correction value for each region may be set by an equation. Note that the relational expression is determined for each processing recipe determined by a combination of at least the heat treatment temperature and the type of resist solution. May be provided.
  • a temperature correction value of each region may be set before the heat treatment. Further, a temperature correction value for each of the regions may be set during the heat treatment based on the amount of warp of the substrate during the heat treatment and the state of the warp shape.
  • the heat treatment may be a heat treatment performed after the exposure process and before the development process.
  • the present invention provides a program for use in a temperature setting apparatus for performing heat treatment of a substrate performed in a photolithography process for forming a resist pattern using a heat treatment plate, the heat treatment plate Is divided into a plurality of regions, and the temperature can be set for each region, and for each region of the heat treatment plate, a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set.
  • the program sets the temperature correction value for each region so that the line width of the resist pattern is uniformly formed in the substrate surface based on the warpage amount and warpage shape of the substrate to be thermally processed. This allows the computer to execute the function to be performed.
  • Such a program is recorded on, for example, a computer-readable recording medium such as a hard disk, a compact disk, a magneto-optical disk, a floppy disk, and the like.
  • a computer-readable recording medium such as a hard disk, a compact disk, a magneto-optical disk, a floppy disk, and the like.
  • the yield can be improved.
  • FIG. 1 is a plan view showing the outline of the configuration of a coating and developing treatment system.
  • FIG. 2 is a front view of the coating and developing treatment system of FIG. 1.
  • FIG. 3 is a rear view of the coating and developing treatment system of FIG. 1.
  • ⁇ 4 It is an explanatory view of a longitudinal section showing an outline of the configuration of the warpage measuring device.
  • FIG. 5 is an explanatory view of a longitudinal section showing an outline of the configuration of the PEB apparatus.
  • FIG. 6 is an explanatory diagram of a transverse section showing an outline of the configuration of the PEB device.
  • FIG. 7 is a plan view showing a configuration of a hot plate of the PEB apparatus.
  • FIG. 8 is a block diagram showing a configuration of a temperature setting device.
  • FIG. 9 is a table showing an example of a temperature correction table.
  • FIG. 10 is a table showing a temperature correction table for each processing recipe.
  • FIG. 11 is a flowchart showing a temperature correction value setting process.
  • FIG. 12 is an explanatory diagram showing a relational expression between the amount of warpage of the wafer and the optimum temperature correction value.
  • FIG. 13 is a graph showing a first correlation between the amount of wafer warpage and the wafer temperature during heat treatment.
  • FIG. 14 is a graph showing a second correlation between the wafer temperature during heat treatment and the temperature correction value.
  • FIG. 15 is a graph showing the in-plane temperature distribution of the wafer due to wafer warpage.
  • FIG. 16 is an explanatory view of a longitudinal section showing a configuration of a warpage measuring apparatus having two laser irradiation units.
  • FIG. 17 is an explanatory view of a longitudinal section showing a configuration of a warpage measuring apparatus provided with a laser displacement meter. Explanation of symbols
  • FIG. 1 is a plan view showing a schematic configuration of a coating and developing treatment system 1 provided with a temperature setting device for a heat treatment plate according to the present embodiment.
  • FIG. 2 is a front view of the coating and developing treatment system 1. Yes, Fig. 3 is a rear view of the coating development system 1.
  • the coating / development processing system 1 carries, for example, 25 wafers W in the cassette unit into / out of the external force coating / development processing system 1, and the wafer W with respect to the cassette C.
  • an interface unit 4 for transferring Ueno and W between the exposure station 3 and an exposure apparatus (not shown) provided adjacent to the processing station 3 are integrally connected.
  • the cassette station 2 is provided with a cassette mounting table 5.
  • the cassette mounting table 5 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1).
  • the cassette station 2 is provided with a wafer transfer body 7 that can move on the transfer path 6 in the X direction.
  • the wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and with respect to the wafers W in each cassette C arranged in the X direction. Can be selectively accessed.
  • the wafer carrier 7 is rotatable in the ⁇ direction around the Z-axis, and also with respect to a temperature control device 60 and a transition device 61 belonging to a third processing device group G3 on the processing station 3 side described later. Accessible.
  • the processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages.
  • cassette station 2 side force first processing device group G1 and second processing device group G2 are arranged in sequence.
  • the cassette station 2 side force 3rd processing device group G3, 4th processing device group G4 and 5th processing device group G5 are in order.
  • a first transfer device 10 is provided between the third processing device group G3 and the fourth processing device group G4.
  • the first transfer device 10 can selectively access the processing devices in the first processing device group G1, the third processing device group G3, and the fourth processing device group G4 to transfer the wafer W.
  • a second transfer device 11 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 11 can selectively access the processing devices in the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.
  • a liquid processing apparatus for supplying a predetermined liquid to the wafer W to perform processing for example, a resist coating apparatus for applying a resist solution to the wafer W 20.
  • the second processing unit group G2 includes a liquid processing unit.
  • a processing device, for example, a developing processing device 30 to 34 for supplying a developing solution to the wafer W and developing the wafer W is stacked in five stages in order.
  • chemical chambers 40 for supplying various processing liquids to the liquid processing units in the processing unit groups Gl and G2, 40, 41 are provided at the bottom of the first processing unit group G1 and the second processing unit group G2, chemical chambers 40 for supplying various processing liquids to the liquid processing units in the processing unit groups Gl and G2, 40, 41 are provided.
  • the third processing unit group G3 includes a temperature control unit 60, a transition unit 61 for transferring the wafer W, and the temperature of the wafer W under high-precision temperature control.
  • the high-precision temperature control devices 62 to 64 to adjust and the high-temperature heat processing devices 65 to 68 to heat-treat the wafer W at high temperature are also stacked in 9 steps in order.
  • a high-precision temperature control unit 70 pre-baking units 71 to 74 for heating the wafer W after the resist coating process, and the wafer W after the development process are heated.
  • Post-baking devices 75 to 79 to be processed are stacked in 10 steps in order of the lower force.
  • a plurality of heat treatment apparatuses for heat-treating the wafer W for example, high-accuracy temperature control apparatuses 80 to 83, and a plurality of post-exposure baking apparatuses (for processing the wafer W after exposure) ( (Hereinafter referred to as “PEB device”) 84-87, warp measuring devices 88, 89 for measuring the warpage of the wafer are stacked in 10 steps in order of the lower force.
  • PEB device warp measuring devices 88, 89 for measuring the warpage of the wafer
  • a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 10, for example, to hydrophobize the wafer W as shown in FIG.
  • Adhesion devices 90 and 91, and heating devices 92 and 93 that heat the wafer W are stacked in four steps in descending order.
  • a peripheral exposure device 94 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device 11.
  • the interface unit 4 is provided with a wafer transfer body 101 that moves on a transfer path 100 that extends in the X direction, and a buffer cassette 102.
  • the wafer transport body 101 can move in the Z direction and can also rotate in the ⁇ direction.
  • the wafer transport body 101 is connected to an exposure apparatus (not shown) adjacent to the interface unit 4, the notch cassette 102, and the fifth processing unit group G5.
  • the wafer W can be transferred by accessing it.
  • the warp measuring device 88 includes a plurality of support pins 110 for horizontally supporting the wafer W as shown in FIG.
  • the support pin 110 is configured to be movable up and down by a drive mechanism 111 including, for example, a cylinder. It is made.
  • a drive mechanism 111 including, for example, a cylinder. It is made.
  • Above the wafer W supported by the support pins 110 for example, two laser irradiation units 113 and 114 of a laser displacement meter 112 are provided above the wafer W supported by the support pins 110.
  • the first laser irradiation unit 113 is disposed above the central portion of the wafer W, and can irradiate the central portion of the wafer W with laser light and receive the reflected light.
  • the second laser irradiation unit 114 is arranged above the outer periphery of the wafer W, and can irradiate the outer periphery of the wafer W with laser light and receive the reflected light.
  • the light reception information of each laser irradiation unit 113, 114 is output to the measurement unit 115 of the laser displacement meter 112, and the measurement unit 115 calculates the height difference d between the center portion and the outer peripheral portion of the wafer W based on the light reception information.
  • the amount of warpage and warpage shape of the wafer W can be measured.
  • the height difference d is the amount of warp.
  • the warped shape is convex when the outer peripheral part of the wafer W is higher than the central part, and concave when the central part of the wafer W is higher than the outer peripheral part. Since the warpage measuring device 89 has the same configuration as the warpage measuring device 88, description thereof is omitted.
  • the wafer carrier 7 takes out the unprocessed wafer W from the cassette C force on the cassette mounting table 5 and transports it to the temperature control device 60 of the third processing unit group G3. Is done.
  • the wafer W transferred to the temperature control device 60 is adjusted to a predetermined temperature, and then transferred to the bottom coating device 23 by the first transfer device 10 to form an antireflection film.
  • the wafer W on which the antireflection film is formed is sequentially transferred by the first transfer device 10 to the heating device 92, the high-temperature heat treatment device 65, and the high-precision temperature control device 70, and is subjected to predetermined processing in each device. .
  • the wafer W is transferred to the resist coating device 20, and after a resist film is formed on the wafer W, it is transferred to the pre-baking device 71 by the first transfer device 10, and then the second transfer device. 11 is sequentially conveyed to the peripheral exposure device 94 and the high-precision temperature control device 83, and predetermined processing is performed in each device. Thereafter, UENO and W are transported to the exposure apparatus and exposed by the wafer transport body 101 of the interface unit 4! The wafer W that has been subjected to the exposure process is transferred to, for example, the warpage measuring device 88 by the wafer transfer body 101, and after the warpage is measured, it is transferred to the PEB device 84 and subjected to post-exposure baking.
  • the wafer W is transferred to the high-precision temperature control device 81 by the second transfer device 11 and the temperature is adjusted, and then transferred to the development processing device 30 where the resist film on the wafer W is developed. Thereafter, the wafer W is transferred to the post-baking device 75 by the second transfer device 11 and subjected to heat treatment. It is conveyed to the temperature control device 63 and the temperature is adjusted. Then, the wafer W is transferred to the transition device 61 by the first transfer device 10 and returned to the cassette C by the wafer transfer body 7 to complete a series of photolithography processes.
  • the PEB device 84 includes a heating unit 121 that heats the wafer W and a cooling unit 122 that cools the wafer W.
  • the heating unit 121 includes a cover body 130 that is located on the upper side and is movable up and down, and a hot plate that forms the processing chamber S together with the lid body 130 located on the lower side. With containment 131!
  • the lid 130 has a substantially conical shape that gradually increases toward the center, and an exhaust part 130a is provided at the top.
  • the atmosphere in the processing chamber S is uniformly exhausted from the exhaust part 130a.
  • a hot plate as a heat treatment plate for placing and heating the wafer W is mounted in the center of the hot plate receiving part 131.
  • the hot plate 140 has a substantially disk shape with a large thickness.
  • the hot plate 140 is divided into, for example, a circular hot plate region R and a hot plate region R to R that are circularly divided into four circular arcs around the center of the plate.
  • a heater 141 that generates heat by power feeding is individually incorporated.
  • Each hot plate area R ⁇ R It can be heated for each hot plate area R ⁇ R.
  • Each hot plate area R ⁇ R It can be heated for each hot plate area R ⁇ R.
  • the amount of heat generated by the heater 141 of 1 5 1 5 is adjusted by the temperature controller 142.
  • the temperature controller 142 adjusts the amount of heat generated by the heater 141 so that each of the hot plate regions R to R
  • the temperature of 15 can be controlled to a predetermined set temperature.
  • the temperature setting in the temperature control device 142 is performed by, for example, a temperature setting device 190 described later.
  • first raising / lowering pins 150 for raising and lowering the wafer W while supporting the downward force.
  • the first elevating pin 150 can be moved up and down by the elevating drive mechanism 151.
  • a through hole 152 that penetrates the hot plate 140 in the thickness direction is formed.
  • the first elevating pin 150 is able to protrude upward from the hot plate 140 by passing through the through-hole 152 by increasing the downward force of the hot plate 140.
  • the hot plate accommodating portion 131 accommodates the hot plate 140 and holds an outer peripheral portion of the hot plate 140.
  • a holding member 160 and a substantially cylindrical support ring 161 surrounding the outer periphery of the holding member 160 are provided.
  • the inside of the processing chamber S can be purged by injecting an inert gas from the outlet 161a.
  • a cylindrical case 162 serving as an outer periphery of the hot plate accommodating portion 131 is provided outside the support ring 161.
  • the cooling unit 122 adjacent to the heating unit 121 is provided with a cooling plate 170 on which, for example, the wafer W is placed and cooled.
  • the cooling plate 170 has, for example, a substantially rectangular flat plate shape as shown in FIG. 6, and the end surface on the heating unit 121 side is curved in an arc shape.
  • a cooling member 170a such as a Peltier element is built in the cooling plate 170, and the cooling plate 170 can be adjusted to a predetermined set temperature.
  • the cooling plate 170 is attached to a rail 171 extending toward the heating unit 121 side.
  • the cooling plate 170 can be moved on the rail 171 by the driving unit 172.
  • the cooling plate 170 can move to above the heating plate 140 on the heating unit 121 side.
  • the cooling plate 170 for example, two slits 173 along the X direction are formed as shown in FIG.
  • the slit 173 is formed so that the end surface force on the heating unit 121 side of the cooling plate 170 is also close to the center of the cooling plate 170.
  • the slit 173 prevents interference between the cooling plate 170 moved to the heating chamber 121 side and the first lifting pin 150 protruding on the heating plate 140.
  • a second lifting pin 174 is provided below the slit 173 in the cooling section 122.
  • the second raising / lowering pin 174 can be raised and lowered by the raising / lowering drive unit 175.
  • the second elevating pin 174 can also protrude downward from the cooling plate 170 through the slit 173 as the downward force of the cooling plate 170 rises.
  • loading / unloading ports 180 for loading / unloading the wafer W are formed on both side surfaces of the casing 120 with the cooling plate 170 interposed therebetween.
  • the wafer W is loaded from the loading / unloading port 180 and placed on the cooling plate 170. Subsequently, the cooling plate 170 is moved, and the wafer W is moved above the hot plate 140. The first lifting pins 150 place the wafer W on the hot plate 140 and heat the wafer W. Then, after a predetermined time has passed, the wafer W is again transferred from the hot plate 140 to the cooling plate 170 to be cooled, and from the cooling plate 170 to the loading / unloading port 180. At the same time, it is carried out of the PEB apparatus 84 and a series of heat treatments is completed.
  • the temperature setting device 190 is composed of, for example, a general-purpose computer equipped with a CPU, a memory, and the like, and is connected to the temperature control device 142 of the hot plate 140, for example, as shown in FIGS.
  • the temperature setting device 190 includes, for example, an arithmetic unit 200 that executes various programs as shown in FIG. 8, an input unit 201 that inputs various information for temperature setting, a temperature correction table M, and the like.
  • a data storage unit 202 that stores various information
  • a program storage unit 203 that stores various programs for temperature setting
  • a communication unit 204 that communicates with the temperature controller 142 to change the temperature setting of the heat plate 140.
  • the data storage unit 202 stores a plurality of temperature correction tables M created for each processing recipe.
  • the temperature correction table M includes the hot plate regions R to R of the hot plate 140 corresponding to the warpage amount and warpage shape of the wafer W.
  • the optimum temperature correction value of 15 is set for each warpage amount and warpage shape of the wafer w.
  • the warp shape of the wafer W is divided into two types: a convex shape that curves upward and a concave shape that curves downward.
  • the temperature correction table M is created for each processing recipe H determined by the combination of the heat treatment temperature and the type of resist solution. Therefore, if either the heat treatment temperature or the type of resist solution is different, the processing recipe H is different (HI, H2, H3, H4 shown in Fig. 10), and the temperature correction table M (see Fig. 10) for each processing recipe H. Ml, M2, M3, M4) are created.
  • the optimum temperature correction values in these temperature correction tables M are such that the line width of the finally formed resist pattern is uniform within the wafer surface for each warp amount and warp shape of each processing recipe H, for example. It is set to such a value.
  • These optimum temperature correction values are obtained by performing heat treatment with multiple temperature correction values on a wafer W whose warpage amount and warpage shape are known, for example, to form line widths. It is obtained by finding a uniform width in the wafer plane.
  • the program storage unit 203 stores the temperature of each hot plate region R to R based on the processing recipe H, the warpage amount and warpage shape, and the temperature correction table M input as shown in FIG.
  • this program P2 uses a predetermined approximate calculation method such as the least squares method to calculate the temperature correction corresponding to the input warpage amount from existing information on the warpage amount, warpage shape and optimum temperature correction value of the temperature correction table M, for example. The value can be calculated.
  • the program storage unit 203 stores a program P3 for changing the existing temperature setting of the temperature control device 142 based on, for example, the obtained temperature correction value.
  • the various programs for realizing the function of the temperature setting device 190 may be installed in the temperature setting device 190 using a computer-readable recording medium.
  • Figure 11 shows the flow of the temperature setting process.
  • the wafer W before the exposure processing is finished and before being carried into the PEB apparatus 84 is transported to the warpage measuring device 88 and the warpage of the wafer W is measured (see FIG. 11).
  • Process Ql the warpage measuring device 88, for example, as shown in FIG. 4, the wafer W is supported on the support pin 110, and the height difference d between the central portion and the outer peripheral portion of the wafer W is measured by the laser irradiation units 113 and 114. The amount of warpage is measured.
  • the warp shape of the wafer W is measured, and the warp shape is defined as a convex shape when the outer peripheral portion of the wafer W is higher than the central portion, and is concave when the central portion of the wafer W is higher than the outer peripheral portion. It is defined as a shape.
  • the measurement results of the warp amount and the warp shape measured by the warp measuring device 88 are output to the temperature setting device 190.
  • the temperature setting device 190 for example, when a processing recipe H is input, the temperature correction table M corresponding to the processing recipe H is selected, and the temperature correction table M and the input warpage amount and warpage shape of the wafer W are selected. , Temperature compensation for each hot plate area R ⁇ R
  • the value is obtained (Step Q2 in Figure 11). For example, if the temperature correction table M data contains an optimal temperature correction value that matches the input warpage amount and warpage shape, that value is selected. In addition, the data of the temperature correction table M matches the input warp amount and warp shape. If there is no optimum temperature correction value, the temperature correction value is calculated by the least square method, for example, using the existing information of the temperature correction table M and the amount of warpage input.
  • Information on the temperature correction value obtained by the temperature setting device 190 is output from the communication unit 204 to the temperature control device 142, and the temperature correction of each of the hot plate regions R to R of the hot plate 140 in the temperature control device 142 is performed.
  • the value setting is changed, and a new set temperature is set (step in Fig. 11).
  • the change of the temperature setting is completed before the wafer W is processed by the PEB apparatus 84.
  • the wafer W for which the warpage is measured by the warp measuring device 88 is transferred to the PEB device 84 and heat-treated at a new set temperature.
  • the warp of the wafer W is measured, and each hot plate region R in which the line width in the wafer surface is made uniform by the temperature correction table M based on the measurement result.
  • a temperature correction value of ⁇ R is obtained and set.
  • the line width of the resist pattern is uniformly formed on the wafer surface.
  • the temperature correction value of 5 is changed.
  • post etaspo jar baking is always performed at an appropriate in-plane temperature, so that the line width of the finally formed resist pattern is uniformly formed in the substrate surface.
  • the warpage of the wafer W is measured, and the measurement result of the warpage is reflected in the temperature setting of the PEB apparatus 84.
  • Wafer W can be heat-treated at temperature. As a result, the in-plane uniformity of the line width of each wafer can be reliably ensured.
  • the temperature correction values of the hot plate regions R to R are obtained from the temperature correction table M created in advance, but the warpage amount and the optimum temperature of the wafer W obtained in advance are obtained.
  • a temperature correction value of 5 may be obtained.
  • a relational expression N between the warpage amount of the wafer W and the optimum temperature correction value of each hot plate region R to R as shown in FIGS. 12 (a) and 12 (b) is obtained.
  • the relation N is convex It is obtained for each warped shape of a shape and a concave shape.
  • These relational expressions N can be obtained, for example, by an experiment conducted in advance to detect the optimum temperature measurement value in each processing recipe.
  • the relational expression N is stored in the program storage unit 203, for example.
  • the warpage amount and warpage shape of the wafer W measured by the warpage measuring device 88 are input to the temperature setting device 190.
  • the temperature setting device 190 selects the corresponding relational expression N based on the input processing recipe H and warpage shape. Then, the temperature correction value of each hot plate region R to R is calculated from the input warpage amount and the selected relational expression N. And the calculated temperature
  • temperature correction values for each hot plate area R to R are set so that the line width in the wafer surface is uniform.
  • a uniform resist pattern can be formed in the plane.
  • the temperature correction value is calculated by the relational expression N.
  • the temperature correction value may be calculated by using the first phase! 3 ⁇ 4 [and the second correlation K between the temperature of the wafer and the temperature correction value as shown in FIG.
  • the amount of warpage in the wafer surface first measured by the warpage measuring device 88 is changed to the in-plane temperature distribution during the heat treatment of the warped wafer W as shown in FIG. 15 by the first phase. Converted.
  • the temperature correction value ⁇ of each hot plate region R to R that makes the in-plane temperature distribution of the wafer W flattened is calculated from the in-plane temperature distribution of the wafer W and the second correlation K. .
  • the temperature correction table M and the relational expression N are set for each processing recipe H determined by the combination of the heat treatment temperature and the type of resist solution! It may be set for each processing recipe determined by the state.
  • the state of the wafer W includes, for example, the number of base films of the wafer W on which a resist pattern is formed, film quality, film thickness, Ueno, and the warp state of W. Therefore, the temperature correction table M and the relational expression N are the heat treatment temperature, the type of resist solution, the number of underlying films, film quality, film thickness, and wafer warpage. It may be set for each processing recipe determined by a combination with at least one of the above.
  • the wafer W is supported by the support pins 110, but the wafer W may be supported by, for example, a chuck.
  • the warp measuring device 88 described in the above embodiment has a force for measuring the warpage of the wafer W using the two laser irradiation sections 113 and 114. As shown in FIG. The warpage of the wafer W may be measured by using one laser irradiation unit 200 that irradiates and a laser displacement meter 202 having a measurement unit 201.
  • the warpage amount and warpage shape of the wafer W are measured. Measure.
  • the warpage of the wafer W can be measured with a warp measuring device 88 having a simpler configuration.
  • the drive mechanism 111 of the support pin 110 may be provided with a rotation function, and the supported weno and w may be rotated. In this way, for example, it is possible to detect the warpage of the entire outer periphery of the wafer W, and each hot plate region R corresponding to the warpage of each outer peripheral region within the wafer surface.
  • the warpage measuring apparatus 88 of the above embodiment measures the warpage of the wafer W using a laser displacement meter, but other displacement meters such as a capacitance type displacement meter are used. You can measure the warp.
  • the warpage of the wafer W was measured between the exposure processing and the post-exposure baking in the photolithography process of the coating and developing processing system 1.
  • the warpage of the wafer W may be measured during the heat treatment.
  • the PEB device 84 is provided with a laser displacement meter 210.
  • the first laser irradiation unit 211 is arranged above the center of the wafer W on the hot plate 140.
  • a second laser irradiation unit 222 is arranged above the outer peripheral portion of the wafer W on the hot plate 140.
  • the measurement unit 213 of the laser displacement meter 210 is disposed outside the casing 120.
  • the warpage of the wafer W is measured using the laser displacement meter 210.
  • This measurement may be performed, for example, once during the heat treatment, may be performed intermittently a plurality of times, or may be performed continuously.
  • the measurement result is immediately output to the temperature setting device 190.
  • the temperature correction value of each hot plate region R to R is obtained based on the measurement result of the warpage of the wafer w, and the temperature setting of the hot plate 140 is changed.
  • the temperature can be set in consideration of the warpage of the wafer w generated during the heat treatment.
  • the warpage of the wafer W may be measured at other timing before post-exposure baking, for example, during pre-baking or during exposure processing. Furthermore, the warpage of the wafer W may be measured before the processing in the coating and developing treatment system 1 is started.
  • the warp measuring device 88 for measuring the warpage of the wafer W is located in a place other than the fifth processing device group G5, which is the same as the PEB device 84, for example, another processing device group in the processing station 3, the cassette station 2, the interface unit 4 or the like. May be arranged.
  • the present invention is not limited to this example and can take various forms.
  • the temperature-set hot plate 140 is divided into five regions, but the number can be arbitrarily selected.
  • the above embodiment is an example of setting the temperature of the hot plate 140 of the PEB device 84, but other heat treatment devices such as a pre-baking device and a post-baking device equipped with a hot plate,
  • the present invention can also be applied to a cooling processing apparatus having a cooling plate on which the wafer W is placed and cooled.
  • the present invention can also be applied to the temperature setting of a heat treatment plate for heat treatment of other substrates such as FPD (Flat Panel Display) and photomask mask reticles other than wafers.
  • FPD Full Panel Display
  • the present invention is useful when setting the temperature of the heat treatment plate so that the line width of the resist pattern is uniformly formed in the substrate surface.

Abstract

A hot plate temperature is set so as to form the line width of a resist pattern uniformly in a wafer plane. The hot plate of a PEB device is divided into a plurality of hot plate regions, with temperature setting being possible for each hot plate region. A temperature correction value for regulating the in-plane temperature of a wafer to be mounted on the hot plate is set for each hot plate region of the hot plate. The temperature correction value of each hot plate region of the hot plate is set based on a temperature correction table indicating an optimum temperature correction value corresponding to each warpage quantity and warpage shape of a wafer to be heat treated. The temperature correction table defines, for each warpage quantity and warpage shape of a wafer, an optimum temperature correction value that makes uniform a line width to be finally formed in a wafer plane.

Description

明 細 書  Specification
熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及び プログラムを記録したコンピュータ読み取り可能な記録媒体  Heat treatment plate temperature setting method, heat treatment plate temperature setting device, program, and computer-readable recording medium recording the program
技術分野  Technical field
[0001] 本発明は,熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及び プログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 背景技術  The present invention relates to a temperature setting method for a heat treatment plate, a temperature setting device for a heat treatment plate, a program, and a computer-readable recording medium on which the program is recorded. Background art
[0002] 例えば半導体デバイスの製造におけるフォトリソグラフィー工程では,例えばウェハ 上にレジスト液を塗布しレジスト膜を形成するレジスト塗布処理,レジスト膜を所定の パターンに露光する露光処理,露光後にレジスト膜内の化学反応を促進させる加熱 処理 (ポストェクスポージャーべ一キング) ,露光されたレジスト膜を現像する現像処 理などが順次行われ,ウェハ上に所定のレジストパターンが形成される。  For example, in a photolithography process in the manufacture of semiconductor devices, for example, a resist coating process for applying a resist solution on a wafer to form a resist film, an exposure process for exposing the resist film to a predetermined pattern, Heat treatment (post-exposure baking) that promotes the chemical reaction, development processing that develops the exposed resist film, etc., are sequentially performed to form a predetermined resist pattern on the wafer.
[0003] 例えば上述のポストェクスポージャーべ一キングなどの加熱処理は,通常加熱処理 装置で行われている。加熱処理装置は,ウェハを載置して加熱する熱板を備えてい る。熱板には,例えば給電により発熱するヒータが内蔵されており,このヒータによる 発熱により熱板は所定温度に調整されている。  [0003] Heat treatment such as the above-described post exposure baking is usually performed by a heat treatment apparatus. The heat treatment equipment is equipped with a hot plate to place and heat the wafer. For example, a heater that generates heat by power supply is built into the hot plate, and the hot plate is adjusted to a predetermined temperature by the heat generated by the heater.
[0004] 上述の加熱処理における熱処理温度は,最終的にウェハ上に形成されるレジスト ノターンの線幅に大きな影響を与える。そこで,加熱時のウェハ面内の温度を厳格 に制御するために,上述の加熱処理装置の熱板は,複数の領域に分割され,各領 域毎に独立したヒータが内蔵され,各領域毎に温度調整されている。  [0004] The heat treatment temperature in the above-described heat treatment greatly affects the line width of the resist pattern finally formed on the wafer. Therefore, in order to strictly control the temperature in the wafer surface during heating, the heat plate of the above-described heat treatment apparatus is divided into a plurality of regions, and an independent heater is built in each region. The temperature is adjusted.
[0005] ところで,熱板上で処理されるウェハには,反りがあるものがある。反りのあるウェハ は,熱処理時に熱板の熱がウェハに均一に伝達されず,ウェハが部分的に適正な 温度で加熱されなくなる。かかる場合,最終的にウェハ上に形成されるレジストパタ 一ンの線幅がばらつくことになる。そこで,熱板の各領域の設定温度を,ウェハの反り に応じて温度補正することが提案されて 、る (特許文献 1参照。)。  Meanwhile, some wafers processed on a hot plate have warpage. In a warped wafer, the heat of the hot plate is not evenly transferred to the wafer during heat treatment, and the wafer is not partially heated at an appropriate temperature. In such a case, the line width of the resist pattern finally formed on the wafer will vary. Therefore, it has been proposed to correct the set temperature of each region of the hot plate according to the warpage of the wafer (see Patent Document 1).
特許文献 1 :日本国特許 3325833号公報  Patent Document 1: Japanese Patent No. 3325833
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] し力しながら,従来の熱板の各領域の設定温度は,熱板上に載置されるウェハの 面内温度が均一になるように温度補正されて 、たが,実際このように各領域の温度 設定を行った場合,最終的にウェハ上に形成されるレジストパターンの線幅がウェハ 面内で均一にならない場合があった。  However, the set temperature of each region of the conventional hot plate has been corrected so that the in-plane temperature of the wafer placed on the hot plate is uniform. When the temperature of each region is set, the line width of the resist pattern finally formed on the wafer may not be uniform on the wafer surface.
[0007] 本発明は,力かる点に鑑みてなされたものであり,レジストパターンの線幅がウェハ などの基板面内で均一に形成されるように,熱板などの熱処理板の温度設定を行う ことをその目的とする。  [0007] The present invention has been made in view of the points to be applied, and the temperature setting of a heat treatment plate such as a hot plate is set so that the line width of the resist pattern is uniformly formed in a substrate surface such as a wafer. Its purpose is to do.
課題を解決するための手段  Means for solving the problem
[0008] 上記目的を達成するために,本発明は,基板を載置して熱処理する熱処理板の温 度設定方法であって,前記熱処理は,基板上にレジストパターンを形成するフォトリソ グラフィー工程において行われるものであり,前記熱処理板は複数の領域に区画さ れて当該領域毎に温度設定され,さらに前記熱処理板の各領域毎に,熱処理板上 の基板の面内温度を調整するための温度補正値が設定され,熱処理される基板の 反り量と反り形状が測定され,当該基板の反り量と反り形状の測定結果に基づいて, 前記レジストパターンの線幅が基板面内で均一に形成されるように前記各領域の温 度補正値が設定される。  [0008] In order to achieve the above object, the present invention provides a temperature setting method for a heat treatment plate on which a substrate is placed and heat treated, wherein the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate. The heat treatment plate is divided into a plurality of regions, the temperature is set for each region, and the in-plane temperature of the substrate on the heat treatment plate is adjusted for each region of the heat treatment plate. A temperature correction value is set, and the warpage amount and warpage shape of the substrate to be heat-treated are measured. Based on the measurement results of the warpage amount and warpage shape of the substrate, the line width of the resist pattern is formed uniformly within the substrate surface. As described above, the temperature correction value of each region is set.
[0009] 本発明によれば,熱処理板の各領域の温度補正値が,基板の反りの測定結果に 基づいて,レジストパターンの線幅が基板面内で均一になるように設定される。この 結果,熱処理板における熱処理を通じて形成されたレジストパターンが基板面内に おいて均一に形成される。  [0009] According to the present invention, the temperature correction value of each region of the heat treatment plate is set so that the line width of the resist pattern is uniform within the substrate surface based on the measurement result of the warpage of the substrate. As a result, the resist pattern formed through heat treatment on the heat-treated plate is uniformly formed on the substrate surface.
[0010] 基板の各反り量,反り形状に対応する前記各領域の最適温度補正値を定めた温 度補正テーブルが作成され,前記基板の反り量と反り形状の測定結果に基づいて, 前記温度補正テーブルにより前記各領域の温度補正値が設定されるようにしてもよ い。  [0010] A temperature correction table that defines an optimum temperature correction value for each region corresponding to each warpage amount and warpage shape of the substrate is created, and the temperature is calculated based on the measurement results of the warpage amount and warpage shape of the substrate. The temperature correction value for each area may be set by a correction table.
[0011] 前記温度補正テーブルは,少なくとも熱処理温度とレジスト液の種類の組み合わせ により定まる処理レシピ毎に作成されてもよい。  [0011] The temperature correction table may be created for each processing recipe determined by at least a combination of the heat treatment temperature and the type of resist solution.
[0012] 基板の反り量と前記各領域の最適温度補正値との関係式が基板の各反り形状毎 に求められ,前記基板の反り量と反り形状の測定結果に基づいて,前記関係式によ り前記各領域の温度補正値が設定されるようにしてもょ 、。 [0012] The relational expression between the amount of warpage of the substrate and the optimum temperature correction value of each region is determined for each warpage shape of the substrate. The temperature correction value for each region may be set by the relational expression based on the measurement result of the warpage amount and warpage shape of the substrate.
[0013] 前記関係式は,少なくとも熱処理温度とレジスト液の種類の組み合わせにより定ま る処理レシピ毎に求められて!/、てもよ!/、。  [0013] The relational expression is obtained for each processing recipe determined by at least a combination of the heat treatment temperature and the type of resist solution! /, Or may be! /.
[0014] 前記熱処理の前に,基板の反り量と反り形状が測定され,前記各領域の温度補正 値が設定されてもよく,また,前記熱処理中に,基板の反り量と反り形状が測定され, 前記各領域の温度補正値が設定されてもょ 、。  [0014] Before the heat treatment, the warpage amount and warpage shape of the substrate may be measured, and the temperature correction value of each region may be set, and the warpage amount and warpage shape of the substrate may be measured during the heat treatment. The temperature correction value for each area may be set.
[0015] 前記熱処理は,露光処理後で現像処理前に行われる加熱処理であってもよい。  [0015] The heat treatment may be a heat treatment performed after the exposure process and before the development process.
[0016] 別の観点による本発明は,基板を載置して熱処理する熱処理板の温度設定装置 であって,前記熱処理は,基板上にレジストパターンを形成するフォトリソグラフィー 工程において行われるものであり,前記熱処理板は複数の領域に区画され,当該領 域毎に温度設定され,さらに前記熱処理板の各領域毎に,熱処理板上の基板の面 内温度を調整するための温度補正値が設定されており,前記各領域の温度補正値 は,熱処理される基板の反り量と反り形状に基づいて,前記レジストパターンの線幅 が基板面内で均一に形成されるように設定されて ヽる。  [0016] The present invention according to another aspect is a temperature setting device for a heat treatment plate on which a substrate is placed and heat treated, wherein the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate. The heat treatment plate is divided into a plurality of regions, the temperature is set for each region, and a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set for each region of the heat treatment plate. The temperature correction value of each region is set so that the line width of the resist pattern is uniformly formed in the substrate surface based on the warpage amount and warpage shape of the substrate to be heat-treated. .
[0017] 本発明によれば,熱処理板の各領域の温度補正値が,基板の反りの測定結果に 基づいて,レジストパターンの線幅が基板面内で均一になるように設定される。この 結果,熱処理板における熱処理を通じて形成されたレジストパターンが基板面内に おいて均一に形成される。  According to the present invention, the temperature correction value of each region of the heat treatment plate is set so that the line width of the resist pattern is uniform within the substrate surface based on the measurement result of the warp of the substrate. As a result, the resist pattern formed through heat treatment on the heat-treated plate is uniformly formed on the substrate surface.
[0018] 前記温度設定装置は,基板の各反り量,反り形状に対応する前記各領域の最適温 度補正値を定めた温度補正テーブルを備え,前記基板の反り量と反り形状に基づ 、 て,前記温度補正テーブルにより前記各領域の温度補正値が設定されるようにして もよい。また,前記温度補正テーブルは,少なくとも熱処理温度とレジスト液の種類の 組み合わせにより定まる処理レシピ毎に備えられていてもよい。  [0018] The temperature setting device includes a temperature correction table that defines an optimum temperature correction value for each region corresponding to each warp amount and warp shape of the substrate, and based on the warp amount and warp shape of the substrate, Then, the temperature correction value of each region may be set by the temperature correction table. The temperature correction table may be provided for each processing recipe determined by at least a combination of the heat treatment temperature and the type of resist solution.
[0019] 前記温度設定装置は,基板の反り量と前記各領域の最適温度補正値との関係式 を基板の各反り形状毎に備え,前記基板の反り量と反り形状に基づいて,前記関係 式により前記各領域の温度補正値が設定されるようにしてもよい。なお,前記関係式 は,少なくとも熱処理温度とレジスト液の種類の組み合わせにより定まる処理レシピ毎 に備えられていてもよい。 [0019] The temperature setting device is provided with a relational expression between the warpage amount of the substrate and the optimum temperature correction value of each region for each warpage shape of the substrate, and the relationship is based on the warpage amount and the warpage shape of the substrate. The temperature correction value for each region may be set by an equation. Note that the relational expression is determined for each processing recipe determined by a combination of at least the heat treatment temperature and the type of resist solution. May be provided.
[0020] 前記熱処理の前の基板の反り量と反り形状に基づいて,前記熱処理の前に前記各 領域の温度補正値が設定されてもよい。また,前記熱処理中の基板の反り量と反り 形状の状態に基づ 、て,前記熱処理中に前記各領域の温度補正値が設定されても よい。  [0020] Based on the warpage amount and warpage shape of the substrate before the heat treatment, a temperature correction value of each region may be set before the heat treatment. Further, a temperature correction value for each of the regions may be set during the heat treatment based on the amount of warp of the substrate during the heat treatment and the state of the warp shape.
[0021] 前記熱処理は,露光処理後で現像処理前に行われる加熱処理であってもよい。  [0021] The heat treatment may be a heat treatment performed after the exposure process and before the development process.
[0022] 別の観点によれば,本発明は,レジストパターンを形成するフォトリソグラフィー工程 において行われる基板の熱処理を熱処理板で行うための温度設定装置に使用され るプログラムであって,前記熱処理板は複数の領域に区画され,かつ当該領域毎に 温度設定可能なものであり,さらに前記熱処理板の各領域毎に,熱処理板上の基板 の面内温度を調整するための温度補正値が設定されており,前記プログラムは,熱 処理される基板の反り量と反り形状に基づいて,前記レジストパターンの線幅が基板 面内で均一に形成されるように前記各領域の温度補正値を設定する機能をコンビュ ータに実行させるものである。 [0022] According to another aspect, the present invention provides a program for use in a temperature setting apparatus for performing heat treatment of a substrate performed in a photolithography process for forming a resist pattern using a heat treatment plate, the heat treatment plate Is divided into a plurality of regions, and the temperature can be set for each region, and for each region of the heat treatment plate, a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set. The program sets the temperature correction value for each region so that the line width of the resist pattern is uniformly formed in the substrate surface based on the warpage amount and warpage shape of the substrate to be thermally processed. This allows the computer to execute the function to be performed.
[0023] このようなプログラムは,例えばコンピュータ読み取り可能な記録媒体,例えばハー ドディスク,コンパクトディスク,光磁気ディスク,フロッピーディスクなどに記録される。 発明の効果 Such a program is recorded on, for example, a computer-readable recording medium such as a hard disk, a compact disk, a magneto-optical disk, a floppy disk, and the like. The invention's effect
[0024] 本発明によれば,最終的に基板上に形成されるレジストパターンの線幅の基板面 内の均一性が確保されるので,歩留まりの向上が図られる。  [0024] According to the present invention, since the uniformity of the line width of the resist pattern finally formed on the substrate is ensured within the substrate surface, the yield can be improved.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]塗布現像処理システムの構成の概略を示す平面図である。 FIG. 1 is a plan view showing the outline of the configuration of a coating and developing treatment system.
[図 2]図 1の塗布現像処理システムの正面図である。  FIG. 2 is a front view of the coating and developing treatment system of FIG. 1.
[図 3]図 1の塗布現像処理システムの背面図である。  FIG. 3 is a rear view of the coating and developing treatment system of FIG. 1.
圆 4]反り測定装置の構成の概略を示す縦断面の説明図である。  圆 4] It is an explanatory view of a longitudinal section showing an outline of the configuration of the warpage measuring device.
[図 5]PEB装置の構成の概略を示す縦断面の説明図である。  FIG. 5 is an explanatory view of a longitudinal section showing an outline of the configuration of the PEB apparatus.
[図 6]PEB装置の構成の概略を示す横断面の説明図である。  FIG. 6 is an explanatory diagram of a transverse section showing an outline of the configuration of the PEB device.
[図 7]PEB装置の熱板の構成を示す平面図である。  FIG. 7 is a plan view showing a configuration of a hot plate of the PEB apparatus.
[図 8]温度設定装置の構成を示すブロック図である。 [図 9]温度補正テーブルの一例を示す表である。 FIG. 8 is a block diagram showing a configuration of a temperature setting device. FIG. 9 is a table showing an example of a temperature correction table.
[図 10]各処理レシピ毎の温度補正テーブルを示す表である。  FIG. 10 is a table showing a temperature correction table for each processing recipe.
[図 11]温度補正値の設定プロセスを示すフロー図である。  FIG. 11 is a flowchart showing a temperature correction value setting process.
[図 12]ウェハの反り量と最適温度補正値の関係式を示す説明図である。  FIG. 12 is an explanatory diagram showing a relational expression between the amount of warpage of the wafer and the optimum temperature correction value.
[図 13]ウェハの反り量と熱処理時のウェハ温度との第 1の相関を示すグラフである。  FIG. 13 is a graph showing a first correlation between the amount of wafer warpage and the wafer temperature during heat treatment.
[図 14]熱処理時のウェハ温度と温度補正値との第 2の相関を示すグラフである。  FIG. 14 is a graph showing a second correlation between the wafer temperature during heat treatment and the temperature correction value.
[図 15]ウェハの反りに起因するウェハの面内温度分布を示すグラフである。  FIG. 15 is a graph showing the in-plane temperature distribution of the wafer due to wafer warpage.
[図 16]—つのレーザ照射部を有する反り測定装置の構成を示す縦断面の説明図で ある。  FIG. 16 is an explanatory view of a longitudinal section showing a configuration of a warpage measuring apparatus having two laser irradiation units.
[図 17]レーザ変位計を備えた反り測定装置の構成を示す縦断面の説明図である。 符号の説明  FIG. 17 is an explanatory view of a longitudinal section showing a configuration of a warpage measuring apparatus provided with a laser displacement meter. Explanation of symbols
[0026] 1 塗布現像処理システム [0026] 1 Coating and developing treatment system
84 PEB装置  84 PEB equipment
140 熱板  140 Hot plate
R〜R  R ~ R
1 5 熱板領域  1 5 Hot plate area
142 温度制御装置  142 Temperature controller
190 温度設定装置  190 Temperature setting device
M 温度補正テーブル  M Temperature compensation table
W ウェハ  W wafer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下,本発明の好ましい実施の形態について説明する。図 1は,本実施の形態に かかる熱処理板の温度設定装置が備えられた塗布現像処理システム 1の構成の概 略を示す平面図であり,図 2は,塗布現像処理システム 1の正面図であり,図 3は,塗 布現像処理システム 1の背面図である。  [0027] Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a plan view showing a schematic configuration of a coating and developing treatment system 1 provided with a temperature setting device for a heat treatment plate according to the present embodiment. FIG. 2 is a front view of the coating and developing treatment system 1. Yes, Fig. 3 is a rear view of the coating development system 1.
[0028] 塗布現像処理システム 1は,図 1に示すように例えば 25枚のウェハ Wをカセット単 位で外部力 塗布現像処理システム 1に対して搬入出したり,カセット Cに対してゥェ ハ Wを搬入出したりするカセットステーション 2と,フォトリソグラフィー工程の中で枚葉 式に所定の処理を施す複数の各種処理装置を多段に配置している処理ステーショ ン 3と,この処理ステーション 3に隣接して設けられている図示しない露光装置との間 でウエノ、 Wの受け渡しをするインターフェイス部 4とを一体に接続した構成を有してい る。 [0028] As shown in Fig. 1, the coating / development processing system 1 carries, for example, 25 wafers W in the cassette unit into / out of the external force coating / development processing system 1, and the wafer W with respect to the cassette C. Cassette station 2 for loading and unloading, and a processing station in which a plurality of various processing apparatuses for performing predetermined processing in a single wafer process in a photolithography process are arranged in multiple stages. And an interface unit 4 for transferring Ueno and W between the exposure station 3 and an exposure apparatus (not shown) provided adjacent to the processing station 3 are integrally connected.
[0029] カセットステーション 2には,カセット載置台 5が設けられ,当該カセット載置台 5は, 複数のカセット Cを X方向(図 1中の上下方向)に一列に載置自在になっている。カセ ットステーション 2には,搬送路 6上を X方向に向力つて移動可能なウェハ搬送体 7が 設けられている。ウェハ搬送体 7は,カセット Cに収容されたウェハ Wのウェハ配列方 向(Z方向;鉛直方向)にも移動自在であり, X方向に配列された各カセット C内のゥェ ハ Wに対して選択的にアクセスできる。  The cassette station 2 is provided with a cassette mounting table 5. The cassette mounting table 5 can mount a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a wafer transfer body 7 that can move on the transfer path 6 in the X direction. The wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and with respect to the wafers W in each cassette C arranged in the X direction. Can be selectively accessed.
[0030] ウェハ搬送体 7は, Z軸周りの Θ方向に回転可能であり,後述する処理ステーション 3側の第 3の処理装置群 G3に属する温調装置 60やトランジシヨン装置 61に対しても アクセスできる。  [0030] The wafer carrier 7 is rotatable in the Θ direction around the Z-axis, and also with respect to a temperature control device 60 and a transition device 61 belonging to a third processing device group G3 on the processing station 3 side described later. Accessible.
[0031] カセットステーション 2に隣接する処理ステーション 3は,複数の処理装置が多段に 配置された,例えば 5つの処理装置群 G1〜G5を備えている。処理ステーション 3の X方向負方向(図 1中の下方向)側には,カセットステーション 2側力 第 1の処理装 置群 G1,第 2の処理装置群 G2が順に配置されている。処理ステーション 3の X方向 正方向(図 1中の上方向)側には,カセットステーション 2側力 第 3の処理装置群 G3 ,第 4の処理装置群 G4及び第 5の処理装置群 G5が順に配置されている。第 3の処 理装置群 G3と第 4の処理装置群 G4の間には,第 1の搬送装置 10が設けられて 、る 。第 1の搬送装置 10は,第 1の処理装置群 G1,第 3の処理装置群 G3及び第 4の処 理装置群 G4内の各処理装置に選択的にアクセスしてウェハ Wを搬送できる。第 4の 処理装置群 G4と第 5の処理装置群 G5の間には,第 2の搬送装置 11が設けられてい る。第 2の搬送装置 11は,第 2の処理装置群 G2,第 4の処理装置群 G4及び第 5の 処理装置群 G5内の各処理装置に選択的にアクセスしてウェハ Wを搬送できる。  [0031] The processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages. On the negative side in the X direction (downward in Fig. 1) of processing station 3, cassette station 2 side force first processing device group G1 and second processing device group G2 are arranged in sequence. In the X direction positive direction (upward in Fig. 1) side of the processing station 3, the cassette station 2 side force 3rd processing device group G3, 4th processing device group G4 and 5th processing device group G5 are in order. Has been placed. A first transfer device 10 is provided between the third processing device group G3 and the fourth processing device group G4. The first transfer device 10 can selectively access the processing devices in the first processing device group G1, the third processing device group G3, and the fourth processing device group G4 to transfer the wafer W. A second transfer device 11 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 11 can selectively access the processing devices in the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.
[0032] 図 2に示すように第 1の処理装置群 G1には,ウェハ Wに所定の液体を供給して処 理を行う液処理装置,例えばウェハ Wにレジスト液を塗布するレジスト塗布装置 20, 21, 22,露光処理時の光の反射を防止する反射防止膜を形成するボトムコーティン グ装置 23, 24が下力も順に 5段に重ねられている。第 2の処理装置群 G2には,液処 理装置,例えばウェハ Wに現像液を供給して現像処理する現像処理装置 30〜34 が下力も順に 5段に重ねられている。また,第 1の処理装置群 G1及び第 2の処理装 置群 G2の最下段には,各処理装置群 Gl, G2内の液処理装置に各種処理液を供 給するためのケミカル室 40, 41がそれぞれ設けられている。 As shown in FIG. 2, in the first processing unit group G 1, a liquid processing apparatus for supplying a predetermined liquid to the wafer W to perform processing, for example, a resist coating apparatus for applying a resist solution to the wafer W 20. , 21, 22, Bottom coating devices 23, 24 that form an antireflection film that prevents reflection of light during the exposure process are also stacked in five steps in order. The second processing unit group G2 includes a liquid processing unit. A processing device, for example, a developing processing device 30 to 34 for supplying a developing solution to the wafer W and developing the wafer W is stacked in five stages in order. Also, at the bottom of the first processing unit group G1 and the second processing unit group G2, chemical chambers 40 for supplying various processing liquids to the liquid processing units in the processing unit groups Gl and G2, 40, 41 are provided.
[0033] 例えば図 3に示すように第 3の処理装置群 G3には,温調装置 60,ウェハ Wの受け 渡しを行うためのトランジシヨン装置 61,精度の高い温度管理下でウェハ Wを温度調 節する高精度温調装置 62〜64及びウェハ Wを高温で加熱処理する高温度熱処理 装置 65〜68が下力も順に 9段に重ねられている。  [0033] For example, as shown in Fig. 3, the third processing unit group G3 includes a temperature control unit 60, a transition unit 61 for transferring the wafer W, and the temperature of the wafer W under high-precision temperature control. The high-precision temperature control devices 62 to 64 to adjust and the high-temperature heat processing devices 65 to 68 to heat-treat the wafer W at high temperature are also stacked in 9 steps in order.
[0034] 第 4の処理装置群 G4では,例えば高精度温調装置 70,レジスド塗布処理後のゥェ ハ Wを加熱処理するプリべ一キング装置 71〜74及び現像処理後のウェハ Wを加熱 処理するポストべ一キング装置 75〜79が下力も順に 10段に重ねられている。  In the fourth processing unit group G4, for example, a high-precision temperature control unit 70, pre-baking units 71 to 74 for heating the wafer W after the resist coating process, and the wafer W after the development process are heated. Post-baking devices 75 to 79 to be processed are stacked in 10 steps in order of the lower force.
[0035] 第 5の処理装置群 G5では,ウェハ Wを熱処理する複数の熱処理装置,例えば高 精度温調装置 80〜83,露光後のウェハ Wを加熱処理する複数のポストェクスポー ジャーべ一キング装置(以下「PEB装置」と 、う) 84-87,ウェハの反りを測定する反 り測定装置 88, 89が下力も順に 10段に重ねられている。  [0035] In the fifth processing apparatus group G5, a plurality of heat treatment apparatuses for heat-treating the wafer W, for example, high-accuracy temperature control apparatuses 80 to 83, and a plurality of post-exposure baking apparatuses (for processing the wafer W after exposure) ( (Hereinafter referred to as “PEB device”) 84-87, warp measuring devices 88, 89 for measuring the warpage of the wafer are stacked in 10 steps in order of the lower force.
[0036] 図 1に示すように第 1の搬送装置 10の X方向正方向側には,複数の処理装置が配 置されており,例えば図 3に示すようにウェハ Wを疎水化処理するためのアドヒージョ ン装置 90, 91,ウェハ Wを加熱する加熱装置 92, 93が下力 順に 4段に重ねられ ている。図 1に示すように第 2の搬送装置 11の X方向正方向側には,例えばウェハ W のエッジ部のみを選択的に露光する周辺露光装置 94が配置されている。  As shown in FIG. 1, a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 10, for example, to hydrophobize the wafer W as shown in FIG. Adhesion devices 90 and 91, and heating devices 92 and 93 that heat the wafer W are stacked in four steps in descending order. As shown in FIG. 1, a peripheral exposure device 94 that selectively exposes only the edge portion of the wafer W, for example, is disposed on the positive side in the X direction of the second transfer device 11.
[0037] インターフェイス部 4には,例えば図 1に示すように X方向に向けて延伸する搬送路 100上を移動するウェハ搬送体 101と,バッファカセット 102が設けられている。ゥェ ハ搬送体 101は, Z方向に移動可能でかつ Θ方向にも回転可能であり,インターフエ イス部 4に隣接した図示しない露光装置と,ノ ッファカセット 102及び第 5の処理装置 群 G5に対してアクセスしてウェハ Wを搬送できる。  For example, as shown in FIG. 1, the interface unit 4 is provided with a wafer transfer body 101 that moves on a transfer path 100 that extends in the X direction, and a buffer cassette 102. The wafer transport body 101 can move in the Z direction and can also rotate in the Θ direction. The wafer transport body 101 is connected to an exposure apparatus (not shown) adjacent to the interface unit 4, the notch cassette 102, and the fifth processing unit group G5. The wafer W can be transferred by accessing it.
[0038] 次に,上述の反り測定装置 88, 89の構成について説明する。例えば反り測定装置 88は,図 4に示すようにウェハ Wを水平に支持する複数の支持ピン 110を備えて ヽ る。支持ピン 110は,例えばシリンダなどを備えた駆動機構 111により昇降自在に構 成されている。支持ピン 110に支持されたウェハ Wの上方には,例えばレーザ変位 計 112の 2つのレーザ照射部 113, 114が設けられている。第 1のレーザ照射部 113 は,ウェハ Wの中央部の上方に配置され,ウェハ Wの中央部に対してレーザ光を照 射し,その反射光を受光できる。第 2のレーザ照射部 114は,ウェハ Wの外周部の上 方に配置され,ウェハ Wの外周部に対してレーザ光を照射し,その反射光を受光で きる。各レーザ照射部 113, 114の受光情報は,レーザ変位計 112の測定部 115に 出力され,測定部 115は,受光情報に基づいて,ウェハ Wの中心部と外周部との高 低差 dを算出し,ウェハ Wの反り量と反り形状を測定できる。なお,高低差 dがそのま ま反り量になる。また反り形状は,ウェハ Wの外周部が中心部よりも高い場合に凸形 状となり,ウェハ Wの中心部が外周部よりも高い場合に凹形状となる。反り測定装置 8 9は,反り測定装置 88と同様の構成を有するので,説明を省略する。 Next, the configuration of the above-described warp measuring devices 88 and 89 will be described. For example, the warp measuring device 88 includes a plurality of support pins 110 for horizontally supporting the wafer W as shown in FIG. The support pin 110 is configured to be movable up and down by a drive mechanism 111 including, for example, a cylinder. It is made. Above the wafer W supported by the support pins 110, for example, two laser irradiation units 113 and 114 of a laser displacement meter 112 are provided. The first laser irradiation unit 113 is disposed above the central portion of the wafer W, and can irradiate the central portion of the wafer W with laser light and receive the reflected light. The second laser irradiation unit 114 is arranged above the outer periphery of the wafer W, and can irradiate the outer periphery of the wafer W with laser light and receive the reflected light. The light reception information of each laser irradiation unit 113, 114 is output to the measurement unit 115 of the laser displacement meter 112, and the measurement unit 115 calculates the height difference d between the center portion and the outer peripheral portion of the wafer W based on the light reception information. The amount of warpage and warpage shape of the wafer W can be measured. The height difference d is the amount of warp. The warped shape is convex when the outer peripheral part of the wafer W is higher than the central part, and concave when the central part of the wafer W is higher than the outer peripheral part. Since the warpage measuring device 89 has the same configuration as the warpage measuring device 88, description thereof is omitted.
この塗布現像処理システム 1では,先ず,ウェハ搬送体 7によって,カセット載置台 5 上のカセット C力 未処理のウェハ Wがー枚取り出され,第 3の処理装置群 G3の温 調装置 60に搬送される。温調装置 60に搬送されたウェハ Wは,所定温度に温度調 節され,その後第 1の搬送装置 10によってボトムコーティング装置 23に搬送され,反 射防止膜が形成される。反射防止膜が形成されたウェハ Wは,第 1の搬送装置 10に よって加熱装置 92,高温度熱処理装置 65,高精度温調装置 70に順次搬送され,各 装置で所定の処理が施される。その後ウェハ Wは,レジスド塗布装置 20に搬送され ,ウェハ W上にレジスト膜が形成された後,第 1の搬送装置 10によってプリべ一キン グ装置 71に搬送され,続いて第 2の搬送装置 11によって周辺露光装置 94,高精度 温調装置 83に順次搬送されて,各装置において所定の処理が施される。その後,ゥ エノ、 Wは,インターフェイス部 4のウェハ搬送体 101によって図示しな!、露光装置に 搬送され,露光される。露光処理の終了したウェハ Wは,ウェハ搬送体 101によって 例えば反り測定装置 88に搬送され,反りが測定された後, PEB装置 84に搬送され, ポストェクスポージャーべ一キングが施される。次にウェハ Wは,第 2の搬送装置 11 によって高精度温調装置 81に搬送されて温度調節され,その後現像処理装置 30に 搬送され,ウェハ W上のレジスト膜が現像される。その後ウェハ Wは,第 2の搬送装 置 11によってポストべ一キング装置 75に搬送され,加熱処理が施された後,高精度 温調装置 63に搬送され温度調節される。そしてウェハ Wは,第 1の搬送装置 10によ つてトランジシヨン装置 61に搬送され,ウェハ搬送体 7によってカセット Cに戻されて 一連のフォトリソグラフィー工程が終了する。 In this coating and developing treatment system 1, first, the wafer carrier 7 takes out the unprocessed wafer W from the cassette C force on the cassette mounting table 5 and transports it to the temperature control device 60 of the third processing unit group G3. Is done. The wafer W transferred to the temperature control device 60 is adjusted to a predetermined temperature, and then transferred to the bottom coating device 23 by the first transfer device 10 to form an antireflection film. The wafer W on which the antireflection film is formed is sequentially transferred by the first transfer device 10 to the heating device 92, the high-temperature heat treatment device 65, and the high-precision temperature control device 70, and is subjected to predetermined processing in each device. . Thereafter, the wafer W is transferred to the resist coating device 20, and after a resist film is formed on the wafer W, it is transferred to the pre-baking device 71 by the first transfer device 10, and then the second transfer device. 11 is sequentially conveyed to the peripheral exposure device 94 and the high-precision temperature control device 83, and predetermined processing is performed in each device. Thereafter, UENO and W are transported to the exposure apparatus and exposed by the wafer transport body 101 of the interface unit 4! The wafer W that has been subjected to the exposure process is transferred to, for example, the warpage measuring device 88 by the wafer transfer body 101, and after the warpage is measured, it is transferred to the PEB device 84 and subjected to post-exposure baking. Next, the wafer W is transferred to the high-precision temperature control device 81 by the second transfer device 11 and the temperature is adjusted, and then transferred to the development processing device 30 where the resist film on the wafer W is developed. Thereafter, the wafer W is transferred to the post-baking device 75 by the second transfer device 11 and subjected to heat treatment. It is conveyed to the temperature control device 63 and the temperature is adjusted. Then, the wafer W is transferred to the transition device 61 by the first transfer device 10 and returned to the cassette C by the wafer transfer body 7 to complete a series of photolithography processes.
[0040] 次に,上述した PEB装置 84の構成について説明する。 PEB装置 84は,図 5及び 図 6〖こ示すよう〖こ筐体 120内〖こ,ウェハ Wを加熱処理する加熱部 121と,ウェハ Wを 冷却処理する冷却部 122を備えて 、る。  Next, the configuration of the PEB device 84 described above will be described. As shown in FIGS. 5 and 6, the PEB device 84 includes a heating unit 121 that heats the wafer W and a cooling unit 122 that cools the wafer W.
[0041] 加熱部 121は,図 5に示すように上側に位置して上下動自在な蓋体 130と,下側に 位置して蓋体 130と一体となって処理室 Sを形成する熱板収容部 131を備えて!/ヽる。 As shown in FIG. 5, the heating unit 121 includes a cover body 130 that is located on the upper side and is movable up and down, and a hot plate that forms the processing chamber S together with the lid body 130 located on the lower side. With containment 131!
[0042] 蓋体 130は,中心部に向力つて次第に高くなる略円錐状の形態を有し,頂上部に は,排気部 130aが設けられている。処理室 S内の雰囲気は,排気部 130aから均一 に排気される。 [0042] The lid 130 has a substantially conical shape that gradually increases toward the center, and an exhaust part 130a is provided at the top. The atmosphere in the processing chamber S is uniformly exhausted from the exhaust part 130a.
[0043] 熱板収容部 131の中央には,ウェハ Wを載置して加熱する熱処理板としての熱板 [0043] In the center of the hot plate receiving part 131, a hot plate as a heat treatment plate for placing and heating the wafer W is mounted.
140が設けられている。熱板 140は,厚みのある略円盤形状を有している。 140 is provided. The hot plate 140 has a substantially disk shape with a large thickness.
[0044] 熱板 140は,図 7に示すように複数,例えば 5つの熱板領域 R , R , R , R , Rに As shown in FIG. 7, a plurality of, for example, five hot plate regions R 1, R 2, R 3, R 4, R 5
1 2 3 4 5 区画されている。熱板 140は,例えば平面力も見て中心部に位置して円形の熱板領 域 Rと,その周囲を円弧状に 4等分した熱板領域 R〜Rに区画されている。  1 2 3 4 5 Comparted. The hot plate 140 is divided into, for example, a circular hot plate region R and a hot plate region R to R that are circularly divided into four circular arcs around the center of the plate.
1 2 5  1 2 5
[0045] 熱板 140の各熱板領域 R〜Rには,給電により発熱するヒータ 141が個別に内蔵  [0045] In each of the hot plate regions R to R of the hot plate 140, a heater 141 that generates heat by power feeding is individually incorporated.
1 5  1 5
され,各熱板領域 R〜R毎に加熱できる。各熱板領域 R〜R  It can be heated for each hot plate area R ~ R. Each hot plate area R ~ R
1 5 1 5のヒータ 141の発熱 量は,温度制御装置 142により調整されている。温度制御装置 142は,ヒータ 141の 発熱量を調整して,各熱板領域 R〜R  The amount of heat generated by the heater 141 of 1 5 1 5 is adjusted by the temperature controller 142. The temperature controller 142 adjusts the amount of heat generated by the heater 141 so that each of the hot plate regions R to R
1 5の温度を所定の設定温度に制御できる。温 度制御装置 142における温度設定は,例えば後述する温度設定装置 190により行 われる。  The temperature of 15 can be controlled to a predetermined set temperature. The temperature setting in the temperature control device 142 is performed by, for example, a temperature setting device 190 described later.
[0046] 図 5に示すように熱板 140の下方には,ウェハ Wを下方力も支持して昇降させるた めの第 1の昇降ピン 150が設けられている。第 1の昇降ピン 150は,昇降駆動機構 1 51により上下動できる。熱板 140の中央部付近には,熱板 140を厚み方向に貫通す る貫通孔 152が形成されている。第 1の昇降ピン 150は,熱板 140の下方力も上昇し て貫通孔 152を通過し,熱板 140の上方に突出できる。  As shown in FIG. 5, below the hot plate 140, there are provided first raising / lowering pins 150 for raising and lowering the wafer W while supporting the downward force. The first elevating pin 150 can be moved up and down by the elevating drive mechanism 151. In the vicinity of the center portion of the hot plate 140, a through hole 152 that penetrates the hot plate 140 in the thickness direction is formed. The first elevating pin 150 is able to protrude upward from the hot plate 140 by passing through the through-hole 152 by increasing the downward force of the hot plate 140.
[0047] 熱板収容部 131は,熱板 140を収容して熱板 140の外周部を保持する環状の保 持部材 160と,その保持部材 160の外周を囲む略筒状のサポートリング 161を有して いる。サポートリング 161の上面には,処理室 S内に向けて例えば不活性ガスを噴出 する吹き出し口 161aが形成されている。この吹き出し口 161aから不活性ガスを噴出 することにより,処理室 S内をパージすることができる。また,サポートリング 161の外 方には,熱板収容部 131の外周となる円筒状のケース 162が設けられている。 [0047] The hot plate accommodating portion 131 accommodates the hot plate 140 and holds an outer peripheral portion of the hot plate 140. A holding member 160 and a substantially cylindrical support ring 161 surrounding the outer periphery of the holding member 160 are provided. On the upper surface of the support ring 161, for example, an outlet 161a for injecting an inert gas into the processing chamber S is formed. The inside of the processing chamber S can be purged by injecting an inert gas from the outlet 161a. In addition, a cylindrical case 162 serving as an outer periphery of the hot plate accommodating portion 131 is provided outside the support ring 161.
[0048] 加熱部 121に隣接する冷却部 122には,例えばウェハ Wを載置して冷却する冷却 板 170が設けられている。冷却板 170は,例えば図 6に示すように略方形の平板形 状を有し,加熱部 121側の端面が円弧状に湾曲している。図 5に示すように冷却板 1 70の内部には,例えばペルチェ素子などの冷却部材 170aが内蔵されており,冷却 板 170を所定の設定温度に調整できる。  [0048] The cooling unit 122 adjacent to the heating unit 121 is provided with a cooling plate 170 on which, for example, the wafer W is placed and cooled. The cooling plate 170 has, for example, a substantially rectangular flat plate shape as shown in FIG. 6, and the end surface on the heating unit 121 side is curved in an arc shape. As shown in FIG. 5, a cooling member 170a such as a Peltier element is built in the cooling plate 170, and the cooling plate 170 can be adjusted to a predetermined set temperature.
[0049] 冷却板 170は,加熱部 121側に向かって延伸するレール 171に取付けられている 。冷却板 170は,駆動部 172によりレール 171上を移動できる。冷却板 170は,加熱 部 121側の熱板 140の上方まで移動できる。  The cooling plate 170 is attached to a rail 171 extending toward the heating unit 121 side. The cooling plate 170 can be moved on the rail 171 by the driving unit 172. The cooling plate 170 can move to above the heating plate 140 on the heating unit 121 side.
[0050] 冷却板 170には,例えば図 6に示すように X方向に沿った 2本のスリット 173が形成 されている。スリット 173は,冷却板 170の加熱部 121側の端面力も冷却板 170の中 央部付近まで形成されている。このスリット 173により,加熱室 121側に移動した冷却 板 170と熱板 140上に突出した第 1の昇降ピン 150との干渉が防止される。図 5に示 すように冷却部 122内のスリット 173の下方には,第 2の昇降ピン 174が設けられてい る。第 2の昇降ピン 174は,昇降駆動部 175によって昇降できる。第 2の昇降ピン 174 は,冷却板 170の下方力も上昇してスリット 173を通過し,冷却板 170の上方に突出 できる。  [0050] In the cooling plate 170, for example, two slits 173 along the X direction are formed as shown in FIG. The slit 173 is formed so that the end surface force on the heating unit 121 side of the cooling plate 170 is also close to the center of the cooling plate 170. The slit 173 prevents interference between the cooling plate 170 moved to the heating chamber 121 side and the first lifting pin 150 protruding on the heating plate 140. As shown in FIG. 5, a second lifting pin 174 is provided below the slit 173 in the cooling section 122. The second raising / lowering pin 174 can be raised and lowered by the raising / lowering drive unit 175. The second elevating pin 174 can also protrude downward from the cooling plate 170 through the slit 173 as the downward force of the cooling plate 170 rises.
[0051] 図 6に示すように冷却板 170を挟んだ筐体 120の両側面には,ウェハ Wを搬入出 するための搬入出口 180が形成されている。  [0051] As shown in FIG. 6, loading / unloading ports 180 for loading / unloading the wafer W are formed on both side surfaces of the casing 120 with the cooling plate 170 interposed therebetween.
[0052] 以上のように構成された PEB装置 84では,先ず,搬入出口 180からウェハ Wが搬 入され,冷却板 170上に載置される。続いて冷却板 170が移動して,ウェハ Wが熱 板 140の上方に移動される。第 1の昇降ピン 150によって,ウェハ Wが熱板 140上に 載置されて,ウェハ Wが加熱される。そして,所定時間経過後,ウェハ Wが再び熱板 140から冷却板 170に受け渡され冷却され,当該冷却板 170から搬入出口 180を通 じて PEB装置 84の外部に搬出されて一連の熱処理が終了する。 In the PEB apparatus 84 configured as described above, first, the wafer W is loaded from the loading / unloading port 180 and placed on the cooling plate 170. Subsequently, the cooling plate 170 is moved, and the wafer W is moved above the hot plate 140. The first lifting pins 150 place the wafer W on the hot plate 140 and heat the wafer W. Then, after a predetermined time has passed, the wafer W is again transferred from the hot plate 140 to the cooling plate 170 to be cooled, and from the cooling plate 170 to the loading / unloading port 180. At the same time, it is carried out of the PEB apparatus 84 and a series of heat treatments is completed.
[0053] 次に,上記 PEB装置 84の熱板 140の温度設定を行う温度設定装置 190の構成に ついて説明する。例えば温度設定装置 190は,例えば CPUやメモリなどを備えた汎 用コンピュータにより構成され,例えば図 5及び図 7に示すように熱板 140の温度制 御装置 142に接続されて 、る。 Next, the configuration of the temperature setting device 190 for setting the temperature of the hot plate 140 of the PEB device 84 will be described. For example, the temperature setting device 190 is composed of, for example, a general-purpose computer equipped with a CPU, a memory, and the like, and is connected to the temperature control device 142 of the hot plate 140, for example, as shown in FIGS.
[0054] 温度設定装置 190は,例えば図 8に示すように各種プログラムを実行する演算部 2 00と,例えば温度設定のための各種情報を入力する入力部 201と,温度補正テー ブル Mなどの各種情報を格納するデータ格納部 202と,温度設定のための各種プロ グラムを格納するプログラム格納部 203と,熱板 140の温度設定を変更するために温 度制御装置 142と通信する通信部 204などを備えている。 [0054] The temperature setting device 190 includes, for example, an arithmetic unit 200 that executes various programs as shown in FIG. 8, an input unit 201 that inputs various information for temperature setting, a temperature correction table M, and the like. A data storage unit 202 that stores various information, a program storage unit 203 that stores various programs for temperature setting, and a communication unit 204 that communicates with the temperature controller 142 to change the temperature setting of the heat plate 140. Etc.
[0055] 例えばデータ格納部 202には,処理レシピ毎に作成された複数の温度補正テープ ル Mが格納されている。温度補正テーブル Mは,例えば図 9に示すようにウェハ Wの 各反り量,反り形状に対応する,熱板 140の各熱板領域 R〜Rの For example, the data storage unit 202 stores a plurality of temperature correction tables M created for each processing recipe. For example, as shown in FIG. 9, the temperature correction table M includes the hot plate regions R to R of the hot plate 140 corresponding to the warpage amount and warpage shape of the wafer W.
1 5 最適温度補正値 を示す相関データである。つまり,温度補正テーブル Mにおける各熱板領域 R〜R  1 5 Correlation data indicating optimum temperature correction value. That is, each hot plate region R to R in the temperature correction table M
1 5 の最適温度補正値がウェハ wの反り量と反り形状毎に設定されて 、る。本実施の形 態において,ウェハ Wの反り形状は,上に凸に湾曲した凸形状と,下に凸に湾曲した 凹形状の 2種類に分けられている。  The optimum temperature correction value of 15 is set for each warpage amount and warpage shape of the wafer w. In this embodiment, the warp shape of the wafer W is divided into two types: a convex shape that curves upward and a concave shape that curves downward.
[0056] また,温度補正テーブル Mは,図 10に示すように熱処理温度とレジスト液の種類の 組み合わせにより定まる処理レシピ H毎に作成されている。したがって,熱処理温度 又はレジスト液の種類のいずれかが異なる場合,処理レシピ Hが異なり(図 10に示す HI, H2, H3, H4) ,当該各処理レシピ H毎に温度補正テーブル M (図 10に示す Ml, M2, M3, M4)が作成されている。  Further, as shown in FIG. 10, the temperature correction table M is created for each processing recipe H determined by the combination of the heat treatment temperature and the type of resist solution. Therefore, if either the heat treatment temperature or the type of resist solution is different, the processing recipe H is different (HI, H2, H3, H4 shown in Fig. 10), and the temperature correction table M (see Fig. 10) for each processing recipe H. Ml, M2, M3, M4) are created.
[0057] これらの温度補正テーブル Mにおける各最適温度補正値は,例えば各処理レシピ Hの各反り量及び反り形状について,最終的に形成されるレジストパターンの線幅が ウェハ面内で均一になるような値に定められている。これらの最適温度補正値は,予 め行われる実験により,例えば反り量と反り形状の把握しているウェハ Wに対し,複 数の温度補正値の設定で熱処理して線幅を形成し,線幅がウェハ面内で均一なるも のを見つけることにより求められる。 [0058] プログラム格納部 203には,例えば図 9に示すように入力された処理レシピ Hと,反 り量及び反り形状と,温度補正テーブル Mに基づいて,各熱板領域 R〜Rの温度 The optimum temperature correction values in these temperature correction tables M are such that the line width of the finally formed resist pattern is uniform within the wafer surface for each warp amount and warp shape of each processing recipe H, for example. It is set to such a value. These optimum temperature correction values are obtained by performing heat treatment with multiple temperature correction values on a wafer W whose warpage amount and warpage shape are known, for example, to form line widths. It is obtained by finding a uniform width in the wafer plane. [0058] The program storage unit 203 stores the temperature of each hot plate region R to R based on the processing recipe H, the warpage amount and warpage shape, and the temperature correction table M input as shown in FIG.
1 5 補正値を求めるプログラム P1が格納されている。また,プログラム格納部 203には, 入力された処理レシピ Hと,反り量及び反り形状と,温度補正テーブル Mのデータに 基づ 、て,温度補正テーブル Mに定められて 、な 、反り量の温度補正値を算出する プログラム P2が格納されている。例えばこのプログラム P2は,例えば温度補正テー ブル Mの反り量,反り形状及び最適温度補正値の既存の情報から,所定の近似計 算法,例えば最小二乗法を用いて入力反り量に対応する温度補正値を算出できる。  1 5 Stores program P1 for obtaining correction values. Further, the program storage unit 203 stores the warpage amount determined in the temperature correction table M based on the input processing recipe H, the warpage amount and warpage shape, and the data of the temperature correction table M. Stores program P2, which calculates temperature correction values. For example, this program P2 uses a predetermined approximate calculation method such as the least squares method to calculate the temperature correction corresponding to the input warpage amount from existing information on the warpage amount, warpage shape and optimum temperature correction value of the temperature correction table M, for example. The value can be calculated.
[0059] プログラム格納部 203には,例えば求められた温度補正値に基づいて,温度制御 装置 142の既存の温度設定を変更するプログラム P3が格納されている。なお,温度 設定装置 190の機能を実現するための各種プログラムは,コンピュータ読み取り可能 な記録媒体により温度設定装置 190にインストールされたものであってもよい。  [0059] The program storage unit 203 stores a program P3 for changing the existing temperature setting of the temperature control device 142 based on, for example, the obtained temperature correction value. The various programs for realizing the function of the temperature setting device 190 may be installed in the temperature setting device 190 using a computer-readable recording medium.
[0060] 次に,以上のように構成された温度設定装置 190による温度設定プロセスについて 説明する。図 11は,力かる温度設定プロセスのフローを示す。  Next, the temperature setting process by the temperature setting device 190 configured as described above will be described. Figure 11 shows the flow of the temperature setting process.
[0061] 先ず,例えば塗布現像処理システム 1において露光処理が終了し PEB装置 84に 搬入される前のウェハ Wが,反り測定装置 88に搬送され,ウェハ Wの反りが測定さ れる(図 11の工程 Ql)。反り測定装置 88では,例えば図 4に示すようにウェハ Wが 支持ピン 110上に支持され,レーザ照射部 113, 114によりウェハ Wの中心部と外周 部との高低差 dが測られ,ウェハ Wの反り量が測定される。これと同時にウェハ Wの 反り形状が測定され,反り形状は,ウェハ Wの外周部が中心部よりも高い場合に凸形 状と定められ,ウェハ Wの中心部が外周部よりも高い場合に凹形状と定められる。  First, for example, in the coating and developing treatment system 1, the wafer W before the exposure processing is finished and before being carried into the PEB apparatus 84 is transported to the warpage measuring device 88 and the warpage of the wafer W is measured (see FIG. 11). Process Ql). In the warpage measuring device 88, for example, as shown in FIG. 4, the wafer W is supported on the support pin 110, and the height difference d between the central portion and the outer peripheral portion of the wafer W is measured by the laser irradiation units 113 and 114. The amount of warpage is measured. At the same time, the warp shape of the wafer W is measured, and the warp shape is defined as a convex shape when the outer peripheral portion of the wafer W is higher than the central portion, and is concave when the central portion of the wafer W is higher than the outer peripheral portion. It is defined as a shape.
[0062] 反り測定装置 88で測定された反り量と反り形状の測定結果は,温度設定装置 190 に出力される。温度設定装置 190では,例えば処理レシピ Hの入力により,その処理 レシピ Hに対応する温度補正テーブル Mが選択され,当該温度補正テーブル Mと, 入力されたウェハ Wの反り量と反り形状に基づいて,各熱板領域 R〜Rの温度補正  The measurement results of the warp amount and the warp shape measured by the warp measuring device 88 are output to the temperature setting device 190. In the temperature setting device 190, for example, when a processing recipe H is input, the temperature correction table M corresponding to the processing recipe H is selected, and the temperature correction table M and the input warpage amount and warpage shape of the wafer W are selected. , Temperature compensation for each hot plate area R ~ R
1 5 値が求められる(図 11の工程 Q2)。例えば温度補正テーブル Mのデータに,入力さ れた反り量と反り形状に適合する最適温度補正値がある場合には,その値が選択さ れる。また,温度補正テーブル Mのデータに,入力された反り量と反り形状に適合す る最適温度補正値がな 、場合には,温度補正テーブル Mの既存の情報と入力され た反り量を用いて,例えば最小二乗法により温度補正値が算出される。 15 The value is obtained (Step Q2 in Figure 11). For example, if the temperature correction table M data contains an optimal temperature correction value that matches the input warpage amount and warpage shape, that value is selected. In addition, the data of the temperature correction table M matches the input warp amount and warp shape. If there is no optimum temperature correction value, the temperature correction value is calculated by the least square method, for example, using the existing information of the temperature correction table M and the amount of warpage input.
[0063] 温度設定装置 190において求められた温度補正値の情報は,通信部 204から温 度制御装置 142に出力され,温度制御装置 142における熱板 140の各熱板領域 R 〜Rの温度補正値の設定が変更され,新たな設定温度が設定される(図 11の工程[0063] Information on the temperature correction value obtained by the temperature setting device 190 is output from the communication unit 204 to the temperature control device 142, and the temperature correction of each of the hot plate regions R to R of the hot plate 140 in the temperature control device 142 is performed. The value setting is changed, and a new set temperature is set (step in Fig. 11).
5 Five
Q3)。  Q3).
[0064] 上記温度設定の変更は,ウェハ Wが PEB装置 84で処理される前に終了する。反り 測定装置 88において反りが測定されたウェハ Wは, PEB装置 84に搬送され,新た な設定温度で熱処理される。  The change of the temperature setting is completed before the wafer W is processed by the PEB apparatus 84. The wafer W for which the warpage is measured by the warp measuring device 88 is transferred to the PEB device 84 and heat-treated at a new set temperature.
[0065] 以上の実施の形態によれば,ウェハ Wの反りを測定し,その測定結果に基づいて, 温度補正テーブル Mにより,ウェハ面内の線幅が均一になるような各熱板領域 R〜 Rの温度補正値が求められ,設定される。この結果,塗布現像処理システム 1  [0065] According to the embodiment described above, the warp of the wafer W is measured, and each hot plate region R in which the line width in the wafer surface is made uniform by the temperature correction table M based on the measurement result. A temperature correction value of ~ R is obtained and set. As a result, coating and developing system 1
5 におけ るフォトリソグラフィー工程において,レジストパターンの線幅がウェハ面内において 均一に形成される。  In the photolithography process in Fig. 5, the line width of the resist pattern is uniformly formed on the wafer surface.
[0066] また,温度補正テーブル Mが処理レシピ H毎に作成されているので,レジストパタ 一ンの線幅に影響を与える熱処理温度とレジスト液の種類のいずれかが変更された 場合に,各熱板領域 R  [0066] In addition, since the temperature correction table M is created for each processing recipe H, when either the heat treatment temperature or the resist solution type that affects the line width of the resist pattern is changed, Plate area R
1〜R  1 ~ R
5の温度補正値が変更される。この結果,ポストエタスポ 一ジャーべ一キングが常に適正な面内温度で行われるので,最終的に形成されるレ ジストパターンの線幅が基板面内において均一に形成される。  The temperature correction value of 5 is changed. As a result, post etaspo jar baking is always performed at an appropriate in-plane temperature, so that the line width of the finally formed resist pattern is uniformly formed in the substrate surface.
[0067] PEB装置 84において熱処理が行われる前に,ウェハ Wの反りを測定し,当該反り の測定結果を PEB装置 84の温度設定に反映させるので,個々のウェハ Wの反りに 応じた最適な温度でウェハ Wを熱処理することができる。この結果,各ウェハの線幅 の面内均一性を確実に確保できる。  [0067] Before the heat treatment is performed in the PEB apparatus 84, the warpage of the wafer W is measured, and the measurement result of the warpage is reflected in the temperature setting of the PEB apparatus 84. Wafer W can be heat-treated at temperature. As a result, the in-plane uniformity of the line width of each wafer can be reliably ensured.
[0068] 以上の実施の形態では,予め作成されている温度補正テーブル Mにより各熱板領 域 R〜Rの温度補正値を求めていたが,予め求められたウェハ Wの反り量と最適温 [0068] In the above embodiment, the temperature correction values of the hot plate regions R to R are obtained from the temperature correction table M created in advance, but the warpage amount and the optimum temperature of the wafer W obtained in advance are obtained.
1 5 1 5
度補正値との関係式により各熱板領域 R  Heat plate area R
1〜R  1 ~ R
5の温度補正値を求めてもよい。かかる 場合,例えば各処理レシピ H毎に,図 12 (a) , (b)に示すようなウェハ Wの反り量と各 熱板領域 R〜Rの最適温度補正値との関係式 Nが求められる。関係式 Nは,凸形 状と凹形状の各反り形状毎に求められる。これらの関係式 Nは,例えば予め行われ た,各処理レシピにおける最適温度測定値を検出する実験などにより求められる。関 係式 Nは,例えばプログラム格納部 203に格納される。 A temperature correction value of 5 may be obtained. In such a case, for each processing recipe H, for example, a relational expression N between the warpage amount of the wafer W and the optimum temperature correction value of each hot plate region R to R as shown in FIGS. 12 (a) and 12 (b) is obtained. . The relation N is convex It is obtained for each warped shape of a shape and a concave shape. These relational expressions N can be obtained, for example, by an experiment conducted in advance to detect the optimum temperature measurement value in each processing recipe. The relational expression N is stored in the program storage unit 203, for example.
[0069] そして,各熱板領域 R〜Rの温度設定を行う際には,先ず,上記実施の形態と同 [0069] When setting the temperature of each of the hot plate regions R to R, first, the same as in the above embodiment.
1 5  1 5
様に反り測定装置 88により測定されたウェハ Wの反り量と反り形状が温度設定装置 190に入力される。温度設定装置 190では,入力された処理レシピ Hと反り形状に基 づいて,対応する関係式 Nが選択される。そして,入力された反り量と選択された関 係式 Nにより各熱板領域 R〜Rの温度補正値が算出される。そして,算出された温  Similarly, the warpage amount and warpage shape of the wafer W measured by the warpage measuring device 88 are input to the temperature setting device 190. The temperature setting device 190 selects the corresponding relational expression N based on the input processing recipe H and warpage shape. Then, the temperature correction value of each hot plate region R to R is calculated from the input warpage amount and the selected relational expression N. And the calculated temperature
1 5  1 5
度補正値に基づいて,温度制御装置 142における各熱板領域 R〜Rの温度設定  Temperature setting for each hot plate area R to R in temperature controller 142 based on degree correction value
1 5  1 5
が変更される。力かる例によっても,ウェハ面内の線幅が均一になるように各熱板領 域 R〜Rの温度補正値が設定されるので,塗布現像処理システム 1においてウェハ Is changed. Even with this example, temperature correction values for each hot plate area R to R are set so that the line width in the wafer surface is uniform.
1 5 1 5
面内で均一なレジストパターンを形成できる。  A uniform resist pattern can be formed in the plane.
[0070] 上記実施の形態では,関係式 Nによって温度補正値を算出していたが,例えば図 13に示すようなウェハ Wの反り量とその反ったウェハ Wの熱板処理時の温度との第 1の相! ¾ [と,図 14に示すような熱処理時のウエノ、 Wの温度と温度補正値との第 2の 相関 Kを用いて,温度補正値を算出してもよい。かかる場合,例えば先ず,反り測定 装置 88において測定されたウェハ面内の反り量が,第 1の相! ¾により,図 15に示す ようなその反ったウェハ Wの熱処理時の面内温度分布に変換される。そして,このゥ エノ、 Wの面内温度分布と第 2の相関 Kにより,ウェハ Wの面内温度分布が平坦にな るような各熱板領域 R〜Rの温度補正値 ΔΤが算出される。こうすることにより,ゥェ In the above embodiment, the temperature correction value is calculated by the relational expression N. For example, the warpage amount of the wafer W as shown in FIG. The temperature correction value may be calculated by using the first phase! ¾ [and the second correlation K between the temperature of the wafer and the temperature correction value as shown in FIG. In such a case, for example, the amount of warpage in the wafer surface first measured by the warpage measuring device 88 is changed to the in-plane temperature distribution during the heat treatment of the warped wafer W as shown in FIG. 15 by the first phase. Converted. Then, the temperature correction value ΔΤ of each hot plate region R to R that makes the in-plane temperature distribution of the wafer W flattened is calculated from the in-plane temperature distribution of the wafer W and the second correlation K. . By doing this,
1 5  1 5
ハの反りのよって生じる熱処理時の温度のばらつきが解消されるので,ウェハ面内に お 、て均一な線幅が形成される。  Because the temperature variation during heat treatment caused by warpage is eliminated, a uniform line width is formed in the wafer surface.
[0071] 以上の実施の形態では,温度補正テーブル Mや関係式 Nが,熱処理温度とレジス ト液の種類の組み合わせによって定まる処理レシピ H毎に設定されて!、たが,さらに ,ウェハ Wの状態によって定まる処理レシピ毎に設定されてもよい。ウェハ Wの状態 には,例えばレジストパターンが形成されるウェハ Wの下地膜の層数,膜質,膜厚, ウエノ、 Wの反り状態などが含まれる。したがって,温度補正テーブル Mや関係式 Nは ,熱処理温度及びレジスト液の種類と,下地膜の層数,膜質,膜厚,ウェハ反り状態 のうちの少なくとも一つ以上のいずれかとの組み合わせによって定まる処理レシピ毎 に設定されるようにしてもょ 、。 In the above embodiment, the temperature correction table M and the relational expression N are set for each processing recipe H determined by the combination of the heat treatment temperature and the type of resist solution! It may be set for each processing recipe determined by the state. The state of the wafer W includes, for example, the number of base films of the wafer W on which a resist pattern is formed, film quality, film thickness, Ueno, and the warp state of W. Therefore, the temperature correction table M and the relational expression N are the heat treatment temperature, the type of resist solution, the number of underlying films, film quality, film thickness, and wafer warpage. It may be set for each processing recipe determined by a combination with at least one of the above.
[0072] 以上の実施の形態で記載した反り測定装置 88では,支持ピン 110によってウェハ Wを支持していたが,例えばチャックによりウェハ Wを支持してもよい。また,以上の 実施の形態で記載した反り測定装置 88は, 2つのレーザ照射部 113, 114を用いて ウェハ Wの反りを計測していた力 図 16に示すようにウェハ Wの外周部にレーザを 照射する一つのレーザ照射部 200と,測定部 201を有するレーザ変位計 202を用い て,ウェハ Wの反りを計測してもよい。かかる場合,例えば予め基準となる平坦なゥェ ハ Wの高さを測定しておき,それを基準として処理ウェハ Wの外周部の高さを測定 することにより,ウェハ Wの反り量と反り形状を測定する。かかる場合,より簡単な構成 の反り測定装置 88でウェハ Wの反りを測定できる。  In the warp measuring device 88 described in the above embodiment, the wafer W is supported by the support pins 110, but the wafer W may be supported by, for example, a chuck. In addition, the warp measuring device 88 described in the above embodiment has a force for measuring the warpage of the wafer W using the two laser irradiation sections 113 and 114. As shown in FIG. The warpage of the wafer W may be measured by using one laser irradiation unit 200 that irradiates and a laser displacement meter 202 having a measurement unit 201. In such a case, for example, by measuring the height of the reference flat wafer W in advance and measuring the height of the outer periphery of the processed wafer W with reference to that height, the warpage amount and warpage shape of the wafer W are measured. Measure. In such a case, the warpage of the wafer W can be measured with a warp measuring device 88 having a simpler configuration.
[0073] 反り測定装置 88には,支持ピン 110の駆動機構 111に回転機能を設け,支持した ウエノ、 wを回転させるようにしてもよい。こうすることにより,例えばウェハ Wの外周部 の全周の反りを検出することができ,ウェハ面内の各外周部領域の反りに応じた各熱 板領域 R  In the warp measuring device 88, the drive mechanism 111 of the support pin 110 may be provided with a rotation function, and the supported weno and w may be rotated. In this way, for example, it is possible to detect the warpage of the entire outer periphery of the wafer W, and each hot plate region R corresponding to the warpage of each outer peripheral region within the wafer surface.
1〜R  1 ~ R
5の温度補正値を設定することができる。また,以上の実施の形態の反 り測定装置 88は,レーザ変位計を用いてウェハ Wの反りを計測していたが,その他 の変位計,例えば静電容量式変位計を用いてウェハ Wの反りを計測してもよ 、。  5 temperature correction values can be set. In addition, the warpage measuring apparatus 88 of the above embodiment measures the warpage of the wafer W using a laser displacement meter, but other displacement meters such as a capacitance type displacement meter are used. You can measure the warp.
[0074] 以上の実施の形態では,塗布現像処理システム 1のフォトリソグラフィー工程におい て,露光処理とポストェクスポージャーべ一キングとの間でウェハ Wの反りを測定して いたが, PEB装置 84における熱処理中にウェハ Wの反りを測定してもよい。かかる 場合,例えば図 17に示すように PEB装置 84には,レーザ変位計 210が設けられ, 例えば熱板 140上のウェハ Wの中心部の上方には,第 1のレーザ照射部 211が配 置され,熱板 140上のウェハ Wの外周部の上方には,第 2のレーザ照射部 222が配 置される。例えばレーザ変位計 210の測定部 213は,ケーシング 120の外側に配置 される。そして, PEB装置 84において,ウェハ Wが熱板 140上に載置され熱処理さ れている間に,レーザ変位計 210を用いてウェハ Wの反りが測定される。この測定は ,熱処理中に例えば一回行われてもよいし,複数回断続的に行われてもよいし,継 続的に行われてもよい。そして,その測定結果が直ちに温度設定装置 190に出力さ れ,上述の実施の形態と同様にそのウェハ wの反りの測定結果に基づいて,各熱板 領域 R〜Rの温度補正値が求められ,熱板 140の温度設定が変更される。かかるIn the above embodiment, the warpage of the wafer W was measured between the exposure processing and the post-exposure baking in the photolithography process of the coating and developing processing system 1. The warpage of the wafer W may be measured during the heat treatment. In such a case, for example, as shown in FIG. 17, the PEB device 84 is provided with a laser displacement meter 210. For example, the first laser irradiation unit 211 is arranged above the center of the wafer W on the hot plate 140. A second laser irradiation unit 222 is arranged above the outer peripheral portion of the wafer W on the hot plate 140. For example, the measurement unit 213 of the laser displacement meter 210 is disposed outside the casing 120. Then, in the PEB apparatus 84, while the wafer W is placed on the hot plate 140 and heat-treated, the warpage of the wafer W is measured using the laser displacement meter 210. This measurement may be performed, for example, once during the heat treatment, may be performed intermittently a plurality of times, or may be performed continuously. The measurement result is immediately output to the temperature setting device 190. Similarly to the above-described embodiment, the temperature correction value of each hot plate region R to R is obtained based on the measurement result of the warpage of the wafer w, and the temperature setting of the hot plate 140 is changed. Take
1 5 1 5
場合,熱処理時に生じるウェハ wの反りも考慮した温度設定を行うことができる。  In this case, the temperature can be set in consideration of the warpage of the wafer w generated during the heat treatment.
[0075] なおウェハ Wの反りの測定は,ポストェクスポージャーべ一キングが行われる前の 他のタイミング,例えばプリべ一キング中,露光処理中などに行われてもよい。さらに ,ウェハ Wの反りの測定は,塗布現像処理システム 1における処理が開始される前に 行われてもよい。また,ウェハ Wの反りを測定する反り測定装置 88は, PEB装置 84と 同じ第 5の処理装置群 G5以外の場所,例えば処理ステーション 3の他の処理装置群 や,カセットステーション 2,インターフェイス部 4に配置されていてもよい。 Note that the warpage of the wafer W may be measured at other timing before post-exposure baking, for example, during pre-baking or during exposure processing. Furthermore, the warpage of the wafer W may be measured before the processing in the coating and developing treatment system 1 is started. In addition, the warp measuring device 88 for measuring the warpage of the wafer W is located in a place other than the fifth processing device group G5, which is the same as the PEB device 84, for example, another processing device group in the processing station 3, the cassette station 2, the interface unit 4 or the like. May be arranged.
[0076] 以上,本発明の実施の形態の一例について説明したが,本発明はこの例に限らず 種々の態様を採りうるものである。例えば上記実施の形態において,温度設定された 熱板 140は, 5つの領域に分割されていたが,その数は任意に選択できる。また,上 記実施の形態は, PEB装置 84の熱板 140を温度設定する例であつたが,熱板を備 えたプリべ一キング装置やポストべ一キング装置などの他の加熱処理装置や,ゥェ ハ Wを載置して冷却する冷却板を備えた冷却処理装置にも本発明は適用できる。さ らに,本発明は,ウェハ以外の例えば FPD (フラットパネルディスプレイ),フォトマス ク用のマスクレチクルなどの他の基板を熱処理する熱処理板の温度設定にも適用で きる。 [0076] While an example of an embodiment of the present invention has been described above, the present invention is not limited to this example and can take various forms. For example, in the above embodiment, the temperature-set hot plate 140 is divided into five regions, but the number can be arbitrarily selected. The above embodiment is an example of setting the temperature of the hot plate 140 of the PEB device 84, but other heat treatment devices such as a pre-baking device and a post-baking device equipped with a hot plate, The present invention can also be applied to a cooling processing apparatus having a cooling plate on which the wafer W is placed and cooled. Furthermore, the present invention can also be applied to the temperature setting of a heat treatment plate for heat treatment of other substrates such as FPD (Flat Panel Display) and photomask mask reticles other than wafers.
産業上の利用可能性  Industrial applicability
[0077] 本発明は,レジストパターンの線幅が基板面内で均一に形成されるように,熱処理 板の温度設定を行う際に有用である。 The present invention is useful when setting the temperature of the heat treatment plate so that the line width of the resist pattern is uniformly formed in the substrate surface.

Claims

請求の範囲 The scope of the claims
[1] 基板を載置して熱処理する熱処理板の温度設定方法であって,  [1] A method for setting the temperature of a heat treatment plate on which a substrate is placed and heat treated,
前記熱処理は,基板上にレジストパターンを形成するフォトリソグラフィー工程におい て行われるものであり,  The heat treatment is performed in a photolithography process for forming a resist pattern on the substrate,
前記熱処理板は複数の領域に区画されて当該領域毎に温度設定され,  The heat treatment plate is partitioned into a plurality of regions, and the temperature is set for each region.
さらに前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整するため の温度補正値が設定され,  Furthermore, a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set for each region of the heat treatment plate,
熱処理される基板の反り量と反り形状が測定され,当該基板の反り量と反り形状の測 定結果に基づいて,前記レジストパターンの線幅が基板面内で均一に形成されるよう に前記各領域の温度補正値が設定される。  The warpage amount and warpage shape of the substrate to be heat-treated are measured, and each of the above-mentioned resist patterns is formed so that the line width of the resist pattern is uniformly formed within the substrate surface based on the measurement results of the warpage amount and warpage shape of the substrate. The temperature correction value for the area is set.
[2] 請求項 1に記載の熱処理板の温度設定方法にお!、て,  [2] The temperature setting method for the heat-treated plate according to claim 1!
基板の各反り量及び反り形状に対応する前記各領域の最適温度補正値を定めた温 度補正テーブルが作成され,  A temperature correction table defining the optimum temperature correction value for each area corresponding to each warpage amount and warpage shape of the board was created.
前記基板の反り量と反り形状の測定結果に基づ 、て,前記温度補正テーブルにより 前記各領域の温度補正値が設定される。  Based on the measurement result of the warpage amount and warpage shape of the substrate, the temperature correction value of each region is set by the temperature correction table.
[3] 請求項 2に記載の熱処理板の温度設定方法にお 、て, [3] In the temperature setting method for the heat-treated plate according to claim 2,
前記温度補正テーブルは,少なくとも熱処理温度とレジスト液の種類の組み合わせ により定まる処理レシピ毎に作成されている。  The temperature correction table is created for each processing recipe determined by at least the combination of the heat treatment temperature and the type of resist solution.
[4] 請求項 1に記載の熱処理板の温度設定方法にお!、て, [4] The temperature setting method for the heat-treated plate according to claim 1!
基板の反り量と前記各領域の最適温度補正値との関係式が基板の各反り形状毎に 求められ,  A relational expression between the amount of warpage of the substrate and the optimum temperature correction value for each region is obtained for each warpage shape of the substrate.
前記基板の反り量と反り形状の測定結果に基づいて,前記関係式により前記各領域 の温度補正値が設定される。  Based on the measurement result of the warpage amount and the warpage shape of the substrate, the temperature correction value of each region is set by the relational expression.
[5] 請求項 4に記載の熱処理板の温度設定方法にお 、て, [5] In the method for setting the temperature of the heat-treated plate according to claim 4,
前記関係式は,少なくとも熱処理温度とレジスト液の種類の組み合わせにより定まる 処理レシピ毎に求められている。  The relational expression is obtained for each processing recipe determined by at least the combination of the heat treatment temperature and the type of resist solution.
[6] 請求項 1に記載の熱処理板の温度設定方法にお!、て, [6] The temperature setting method for the heat-treated plate according to claim 1!
前記熱処理の前に,基板の反り量と反り形状が測定され,前記各領域の温度補正値 が設定される。 Before the heat treatment, the warpage amount and warpage shape of the substrate are measured, and the temperature correction value of each region is measured. Is set.
[7] 請求項 1に記載の熱処理板の温度設定方法にお!、て,  [7] The method for setting the temperature of the heat-treated plate according to claim 1!
前記熱処理中に,基板の反り量と反り形状が測定され,前記各領域の温度補正値が 設定される。  During the heat treatment, the warpage amount and warpage shape of the substrate are measured, and temperature correction values for the respective regions are set.
[8] 請求項 1に記載の熱処理板の温度設定方法にお!、て,  [8] The temperature setting method for the heat-treated plate according to claim 1!
前記熱処理は,露光処理後で現像処理前に行われる加熱処理である。  The heat treatment is a heat treatment performed after the exposure process and before the development process.
[9] 基板を載置して熱処理する熱処理板の温度設定装置であって,  [9] A temperature setting device for a heat treatment plate on which a substrate is placed and heat treated,
前記熱処理は,基板上にレジストパターンを形成するフォトリソグラフィー工程におい て行われるものであり,  The heat treatment is performed in a photolithography process for forming a resist pattern on the substrate,
前記熱処理板は複数の領域に区画され,当該領域毎に温度設定され,  The heat treatment plate is partitioned into a plurality of regions, and the temperature is set for each region,
さらに前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整するため の温度補正値が設定されており,  Furthermore, for each region of the heat treatment plate, a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set.
前記各領域の温度補正値は,熱処理される基板の反り量と反り形状に基づいて,前 記レジストパターンの線幅が基板面内で均一に形成されるように設定されている。  The temperature correction value of each region is set so that the line width of the resist pattern is uniformly formed in the substrate surface based on the warpage amount and warpage shape of the substrate to be heat-treated.
[10] 請求項 9に記載の熱処理板の温度設定装置において, [10] In the temperature setting device for a heat-treated plate according to claim 9,
基板の各反り量及び反り形状に対応する前記各領域の最適温度補正値を定めた温 度補正テーブルを備え,  A temperature correction table that defines the optimum temperature correction value for each region corresponding to each warpage amount and warpage shape of the substrate;
前記基板の反り量と反り形状に基づいて,前記温度補正テーブルにより前記各領域 の温度補正値が設定されて!、る。  Based on the warpage amount and warpage shape of the substrate, the temperature correction value of each region is set by the temperature correction table.
[11] 請求項 10に記載の熱処理板の温度設定装置において, [11] In the temperature setting device for a heat-treated plate according to claim 10,
前記温度補正テーブルは,少なくとも熱処理温度とレジスト液の種類の組み合わせ により定まる処理レシピ毎に備えられている。  The temperature correction table is provided for each processing recipe determined by at least the combination of the heat treatment temperature and the type of resist solution.
[12] 請求項 9に記載の熱処理板の温度設定装置において, [12] In the temperature setting device for a heat-treated plate according to claim 9,
基板の反り量と前記各領域の最適温度補正値との関係式を基板の各反り形状毎に 備え,  A relational expression between the amount of warpage of the substrate and the optimum temperature correction value for each region is provided for each warp shape of the substrate,
前記基板の反り量と反り形状に基づいて,前記関係式により前記各領域の温度補正 値が設定されている。  Based on the warpage amount and warpage shape of the substrate, the temperature correction value of each region is set by the relational expression.
[13] 請求項 12に記載の熱処理板の温度設定装置において, 前記関係式は,少なくとも熱処理温度とレジスト液の種類の組み合わせにより定まる 処理レシピ毎に備えられて 、る。 [13] In the temperature setting device for a heat-treated plate according to claim 12, The relational expression is provided for each processing recipe determined by a combination of at least the heat treatment temperature and the type of resist solution.
[14] 請求項 9に記載の熱処理板の温度設定装置において,  [14] In the temperature setting device for a heat-treated plate according to claim 9,
前記熱処理の前の基板の反り量と反り形状に基づいて,前記熱処理の前に前記各 領域の温度補正値が設定されることを特徴とする。  A temperature correction value for each of the regions is set before the heat treatment based on a warp amount and a warp shape of the substrate before the heat treatment.
[15] 請求項 9に記載の熱処理板の温度設定装置において, [15] In the temperature setting device for a heat-treated plate according to claim 9,
前記熱処理中の基板の反り量と反り形状に基づいて,前記熱処理中に前記各領域 の温度補正値が設定される。  Based on the warpage amount and warpage shape of the substrate during the heat treatment, temperature correction values for the respective regions are set during the heat treatment.
[16] 請求項 9に記載の熱処理板の温度設定装置において, [16] In the temperature setting device for a heat-treated plate according to claim 9,
前記熱処理は,露光処理後で現像処理前に行われる加熱処理である。  The heat treatment is a heat treatment performed after the exposure process and before the development process.
[17] レジストパターンを形成するフォトリソグラフィー工程において行われる基板の熱処理 を熱処理板で行うための温度設定装置に使用されるプログラムであって, 前記熱処理板は複数の領域に区画され,かつ当該領域毎に温度設定可能なもので あり,さらに前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整する ための温度補正値が設定されており, [17] A program for use in a temperature setting device for performing heat treatment of a substrate in a photolithography process for forming a resist pattern on a heat treatment plate, the heat treatment plate being partitioned into a plurality of regions, The temperature can be set for each area, and for each region of the heat treatment plate, a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set.
前記プログラムは,熱処理される基板の反り量と反り形状に基づいて,前記レジストパ ターンの線幅が基板面内で均一に形成されるように前記各領域の温度補正値を設 定する機能をコンピュータに実行させるものである。  The program has a function of setting a temperature correction value for each region so that the line width of the resist pattern is uniformly formed in the substrate surface based on the warpage amount and warpage shape of the substrate to be heat-treated. To be executed.
[18] レジストパターンを形成するフォトリソグラフィー工程にぉ 、て行われる基板の熱処理 を熱処理板で行うための温度設定装置に使用されるプログラムを記録したコンビユー タ読み取り可能な記録媒体であって, [18] A computer-readable recording medium recording a program used in a temperature setting device for performing heat treatment of a substrate by a heat treatment plate in a photolithography process for forming a resist pattern,
前記熱処理板は複数の領域に区画され,かつ当該領域毎に温度設定可能なもので あり,さらに前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整する ための温度補正値が設定されており,  The heat treatment plate is divided into a plurality of regions, and the temperature can be set for each region. Further, temperature correction is performed for adjusting the in-plane temperature of the substrate on the heat treatment plate for each region of the heat treatment plate. Value is set,
前記プログラムは,熱処理される基板の反り量と反り形状に基づいて,前記レジストパ ターンの線幅が基板面内で均一に形成されるように前記各領域の温度補正値を設 定する機能をコンピュータに実行させるものである。  The program has a function of setting a temperature correction value for each region so that the line width of the resist pattern is uniformly formed in the substrate surface based on the warpage amount and warpage shape of the substrate to be heat-treated. To be executed.
PCT/JP2006/302057 2005-02-15 2006-02-07 Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program WO2006087938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005038015A JP2006228820A (en) 2005-02-15 2005-02-15 Temperature setting method and temperature setting device for heat treatment plate, program, and computer-readable recording medium recorded with program
JP2005-038015 2005-02-15

Publications (1)

Publication Number Publication Date
WO2006087938A1 true WO2006087938A1 (en) 2006-08-24

Family

ID=36916346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302057 WO2006087938A1 (en) 2005-02-15 2006-02-07 Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program

Country Status (3)

Country Link
JP (1) JP2006228820A (en)
TW (1) TW200636866A (en)
WO (1) WO2006087938A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041525B2 (en) 2006-09-25 2011-10-18 Tokyo Electron Limited Substrate measuring method, computer-readable recording medium recording program thereon, and substrate measuring system
US8242417B2 (en) 2006-05-23 2012-08-14 Tokyo Electron Limited Temperature control method of heat processing plate, computer storage medium, and temperature control apparatus of heat processing plate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116354A (en) * 2006-11-06 2008-05-22 Nec Electronics Corp Warpage measurement system, film formation system, and warpage measurement method
JP4899879B2 (en) * 2007-01-17 2012-03-21 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
KR101299838B1 (en) * 2007-10-02 2013-08-23 도쿄엘렉트론가부시키가이샤 Temperature setting method of thermal processing plate, computer-readable recording medium, and temperature setting apparatus of thermal processing plate
JP5995892B2 (en) * 2014-03-14 2016-09-21 東京エレクトロン株式会社 Method for heat-treating a substrate, heat treatment apparatus and computer-readable recording medium
JP6745588B2 (en) * 2015-06-16 2020-08-26 株式会社ノリタケカンパニーリミテド Baking equipment
US11142823B2 (en) * 2016-06-27 2021-10-12 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, and storage medium
CN111785626A (en) * 2019-04-04 2020-10-16 长鑫存储技术有限公司 Heating method and heating device
US11860554B2 (en) 2019-05-01 2024-01-02 Asml Netherlands B.V. Object positioner, method for correcting the shape of an object, lithographic apparatus, object inspection apparatus, device manufacturing method
CN111900076A (en) * 2020-06-28 2020-11-06 中国科学院微电子研究所 Temperature control method for wafer baking
JP7449799B2 (en) * 2020-07-09 2024-03-14 東京エレクトロン株式会社 Temperature adjustment method and inspection device for mounting table

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329940A (en) * 1998-05-20 1999-11-30 Tokyo Electron Ltd Heat treatment system
JPH11329941A (en) * 1998-05-20 1999-11-30 Tokyo Electron Ltd Heat treatment system
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2001274069A (en) * 2000-03-27 2001-10-05 Toshiba Corp Resist pattern forming method and semiconductor manufacturing system
JP2002184682A (en) * 2000-12-19 2002-06-28 Tokyo Electron Ltd Method and device for heat treatment, and pattern formation method
JP2004235469A (en) * 2003-01-30 2004-08-19 Tokyo Electron Ltd Heat treatment method and heat treatment apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349018A (en) * 1999-06-08 2000-12-15 Nec Corp Bake furnace for photoresist
JP2003209050A (en) * 2002-01-17 2003-07-25 Tokyo Electron Ltd Substrate treatment method and substrate treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329940A (en) * 1998-05-20 1999-11-30 Tokyo Electron Ltd Heat treatment system
JPH11329941A (en) * 1998-05-20 1999-11-30 Tokyo Electron Ltd Heat treatment system
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2001274069A (en) * 2000-03-27 2001-10-05 Toshiba Corp Resist pattern forming method and semiconductor manufacturing system
JP2002184682A (en) * 2000-12-19 2002-06-28 Tokyo Electron Ltd Method and device for heat treatment, and pattern formation method
JP2004235469A (en) * 2003-01-30 2004-08-19 Tokyo Electron Ltd Heat treatment method and heat treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242417B2 (en) 2006-05-23 2012-08-14 Tokyo Electron Limited Temperature control method of heat processing plate, computer storage medium, and temperature control apparatus of heat processing plate
US8698052B2 (en) 2006-05-23 2014-04-15 Tokyo Electron Limited Temperature control method of heat processing plate, computer storage medium, and temperature control apparatus of heat processing plate
US8041525B2 (en) 2006-09-25 2011-10-18 Tokyo Electron Limited Substrate measuring method, computer-readable recording medium recording program thereon, and substrate measuring system

Also Published As

Publication number Publication date
JP2006228820A (en) 2006-08-31
TW200636866A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
WO2006087938A1 (en) Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program
JP4699283B2 (en) Heat treatment plate temperature control method, program, and heat treatment plate temperature control device
JP4509820B2 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting device, program, and computer-readable recording medium recording the program
KR100912295B1 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting apparatus, and computer readable recording medium wherein program is recorded
JP4891139B2 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting device, and computer-readable storage medium
KR20090091667A (en) Substrate processing method, computer-readable storage medium, and substrate processing system
KR101072282B1 (en) Substrate-processing apparatus, substrate-processing method, substrate-processing program, and computer-readable recording medium recorded with such program
KR20090096332A (en) Substrate processing method, computer storage medium, and substrate processing system
WO2006085527A1 (en) Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program
JP4970882B2 (en) Substrate measurement method, program, computer-readable recording medium storing the program, and substrate measurement system
KR101072330B1 (en) Substrate-processing apparatus, substrate-processing method, and computer-readable recording medium recorded with substrate-processing program
TWI401547B (en) A substrate processing method, and a substrate processing system
US7910863B2 (en) Temperature setting method of thermal processing plate, computer-readable recording medium recording program thereon, and temperature setting apparatus for thermal processing plate
JP4397836B2 (en) Method for setting processing conditions in photolithography process, apparatus for setting processing conditions in photolithography process, program, and recording medium capable of reading program
JP4664232B2 (en) Heat treatment plate temperature setting method, program, computer-readable recording medium storing the program, and heat treatment plate temperature setting device
JP4664233B2 (en) Heat treatment plate temperature setting method, program, computer-readable recording medium storing the program, and heat treatment plate temperature setting device
US7715952B2 (en) Temperature setting of thermal processing plate using zernike coefficients
JP4920317B2 (en) Substrate processing method, program, computer-readable recording medium, and substrate processing system
JP4969304B2 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting device, and computer-readable storage medium
JP2008300777A (en) Treatment method of substrate, treatment apparatus of substrate, and computer-readable storage medium
JP2005166999A (en) Processing method of substrate and method for reducing influence on processing of substrate by fluctuation of exposure quantity or focal position when substrate is exposed
KR101299838B1 (en) Temperature setting method of thermal processing plate, computer-readable recording medium, and temperature setting apparatus of thermal processing plate
KR101326984B1 (en) Temperature setting method of thermal processing plate, computer-readable recording medium recording program thereon, and temperature setting apparatus for thermal processing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713200

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713200

Country of ref document: EP