WO2006085527A1 - Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program - Google Patents

Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program Download PDF

Info

Publication number
WO2006085527A1
WO2006085527A1 PCT/JP2006/302060 JP2006302060W WO2006085527A1 WO 2006085527 A1 WO2006085527 A1 WO 2006085527A1 JP 2006302060 W JP2006302060 W JP 2006302060W WO 2006085527 A1 WO2006085527 A1 WO 2006085527A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat treatment
plate
line width
heat
Prior art date
Application number
PCT/JP2006/302060
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Shinozuka
Hiroshi Tomita
Ryoichi Uemura
Megumi Jyousaka
Kyoshige Katayama
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2006085527A1 publication Critical patent/WO2006085527A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67184Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • Heat treatment plate temperature setting method heat treatment plate temperature setting device, program, and computer-readable recording medium recording the program
  • the present invention relates to a temperature setting method for a heat treatment plate, a temperature setting device for a heat treatment plate, a program, and a computer-readable recording medium on which the program is recorded.
  • a resist coating process for applying a resist solution on a wafer to form a resist film for example, an exposure process for exposing the resist film to a predetermined pattern, Heat treatment (post-exposure baking) that promotes the chemical reaction, development processing that develops the exposed resist film, etc., are sequentially performed to form a predetermined resist pattern on the wafer.
  • Heat treatment post-exposure baking
  • heat treatment such as the above-mentioned post exposure baking is performed by a heat treatment apparatus.
  • the heat treatment apparatus includes a hot plate for placing and heating the wafer.
  • a heater that generates heat when power is supplied is built into the heat plate, and the heat plate is adjusted to a predetermined temperature by the heat generated by the heater.
  • the heat treatment temperature in the above-described heat treatment greatly affects the line width of the resist pattern finally formed on the wafer.
  • the heat plate of the heat treatment apparatus is divided into a plurality of regions, and an independent heater is built in each region. It has been adjusted.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-143850
  • the same temperature correction value is used even when the heat treatment temperature is the same and the type of resist solution is different. For this reason, in practice, the temperature adjustment in the wafer surface is not performed properly, and the line width of the resist pattern finally formed on the wafer may not be uniformly formed in the wafer surface.
  • the present invention has been made in view of the points to be applied, and the temperature setting of a heat treatment plate such as a hot plate is set so that the line width of a resist pattern is uniformly formed in a substrate surface such as a wafer. Its purpose is to do.
  • the present invention is a temperature setting method for a heat treatment plate on which a substrate is placed and heat treated, and the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate.
  • the heat treatment plate is divided into a plurality of regions and the temperature is set for each region.
  • a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set for each region of the heat treatment plate, and at least for each treatment recipe determined by the combination of the heat treatment temperature and the type of resist solution, The temperature correction value for each area is set.
  • the temperature correction value of each region of the heat treatment plate is set according to the treatment recipe determined by the heat treatment temperature and the type of the resist solution, and therefore the heat treatment temperature that affects the line width of the resist pattern.
  • the temperature correction value for each area is changed when the difference between the! As a result, since the heat treatment is always performed at an appropriate in-plane temperature, the line width of the finally formed resist pattern is uniformly formed in the substrate surface.
  • a plurality of heat treatment plates are used for the heat treatment in the photolithography process.
  • the average value of the line width of the resist pattern formed by heat treatment on each heat treatment plate within the substrate surface is calculated, and the line width average value in each heat treatment plate is common to each heat treatment plate.
  • the temperature correction value of each region in each heat treatment plate may be determined so as to approach the target line width value.
  • the average line width value of each heat treatment plate can be brought close to the common target line width value, so that variations in the line width of the resist pattern formed by heat treatment by each heat treatment plate can be reduced. . Therefore, even when heat treatment is performed by multiple heat treatment plates, the resist pattern is formed uniformly.
  • the line width difference between the average line width value and the target line width value in each heat treatment plate is converted into a temperature difference in heat treatment, and the existing temperature correction value is corrected by the converted temperature difference.
  • a temperature correction value for each region of each heat treatment plate may be calculated.
  • the converted temperature difference is ⁇
  • the average line width is A
  • the target line width is B
  • the resist sensitivity indicating the amount of line width variation per 1 ° C is H
  • the temperature correction value of each region of each heat treatment plate is calculated by allocating the converted temperature difference to the existing temperature correction value. You may make it.
  • the target line width value may be an average value of the average line width values for all the heat-treated plates.
  • the heat treatment may be a heat treatment performed after the exposure process and before the development process.
  • the present invention according to another aspect is a temperature setting device for a heat treatment plate on which a substrate is placed and heat treated, wherein the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate.
  • the heat treatment plate is divided into a plurality of regions and the temperature can be set for each region, and the in-plane temperature of the substrate on the heat treatment plate is adjusted for each region of the heat treatment plate. Therefore, a temperature correction value can be set.
  • the present invention has a function of setting a temperature correction value for each region in the heat treatment plate for each treatment recipe determined by at least a combination of the heat treatment temperature and the type of resist solution.
  • the temperature correction value of each region of the heat treatment plate is determined by the heat treatment temperature and the resist solution. Since it is set according to the processing recipe determined by the type, if the heat treatment temperature that affects the resist pattern line width and the difference in the type of resist solution are changed, the temperature correction value for each area will be changed. Be changed. As a result, the in-plane temperature of the substrate processed on the heat-treated plate is always properly adjusted, and the line width of the finally formed resist pattern is uniformly formed on the substrate surface.
  • the temperature setting device for the heat treatment plate a plurality of heat treatment plates are used for the heat treatment in the photolithography process, and a line width of a resist pattern formed by heat treatment on each heat treatment plate is used.
  • the average value in the substrate surface is calculated, and the temperature correction value for each region on each heat-treated plate is determined so that the line width average value on each heat-treated plate approaches the target line width value common to each heat-treated plate. It has a function.
  • the temperature setting device for the heat treatment plate converts a line width difference between the average line width value and the target line width value in each heat treatment plate into a heat treatment temperature difference, and the existing temperature difference is calculated based on the converted temperature difference.
  • a function for calculating the temperature correction value of each region of each heat treatment plate by modifying the temperature correction value may be provided.
  • the temperature setting device for the heat treatment plate has the conversion temperature difference as ⁇ , the line width average value as A, the target line width value as B, and the resist sensitivity indicating the line width variation per 1 ° C as H.
  • the target line width value may be an average value of the average line width values for all the heat-treated plates.
  • the heat treatment may be a heat treatment performed after the exposure process and before the development process.
  • the present invention is a program used for a temperature setting device for performing heat treatment of a substrate performed in a photolithography process for forming a resist pattern on a heat treatment plate,
  • the heat treatment plate is divided into a plurality of regions, and the temperature can be set for each region, and the temperature for adjusting the in-plane temperature of the substrate on the heat treatment plate for each region of the heat treatment plate.
  • the correction value can be set.
  • the program is determined by at least the combination of the heat treatment temperature and the type of resist solution.
  • the computer is caused to execute a function of setting a temperature correction value of each region in the heat treatment plate.
  • Such a program is recorded on, for example, a computer-readable recording medium such as a hard disk, a compact disk, a magneto-optical disk, and a floppy disk.
  • a computer-readable recording medium such as a hard disk, a compact disk, a magneto-optical disk, and a floppy disk.
  • FIG. 1 is a plan view showing an outline of the configuration of a coating and developing treatment system.
  • FIG. 2 is a front view of the coating and developing treatment system of FIG. 1.
  • FIG. 3 is a rear view of the coating and developing treatment system of FIG. 1.
  • FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of the PEB apparatus.
  • FIG. 5 is an explanatory diagram of a transverse section showing an outline of the configuration of the PEB device.
  • FIG. 6 is a plan view showing a configuration of a hot plate of the PEB apparatus.
  • FIG. 7 is a block diagram showing a configuration of a temperature setting device.
  • FIG. 8 is a table showing an example of a temperature correction table.
  • FIG. 9 is a flowchart showing a temperature correction value setting process.
  • FIG. 10 is an explanatory diagram showing the line width difference between the average line width and the average total line width.
  • FIG. 1 is a plan view showing a schematic configuration of a coating and developing treatment system 1 provided with a temperature setting device for a heat treatment plate according to the present embodiment.
  • FIG. 2 is a front view of the coating and developing treatment system 1. Yes, Fig. 3 is a rear view of the coating development system 1.
  • the coating / development processing system 1 carries, for example, 25 wafers W into / from an external force coating / development processing system 1 in cassette units, or wafer W to / from cassette C.
  • a cassette station 2 that carries in and out the process, a processing station 3 in which a plurality of various processing devices that perform predetermined processing in a single-stage manner in the photolithography process are arranged in multiple stages, and a processing station 3 that is adjacent to the processing station 3.
  • an interface unit 4 for transferring Ueno and W to and from an exposure apparatus (not shown) provided as a unit.
  • the cassette station 2 is provided with a cassette mounting table 5.
  • the cassette mounting table 5 is capable of mounting a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1).
  • the cassette station 2 is provided with a wafer transfer body 7 that can move on the transfer path 6 in the X direction.
  • the wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and with respect to the wafers W in each cassette C arranged in the X direction. Can be selectively accessed.
  • the wafer carrier 7 is rotatable in the ⁇ direction around the Z-axis, and also with respect to a temperature control device 60 and a transition device 61 belonging to a third processing device group G3 on the processing station 3 side described later. Accessible.
  • the processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages.
  • cassette station 2 side force first processing device group G1 and second processing device group G2 are arranged in sequence.
  • the cassette station 2 side force 3rd processing device group G3, 4th processing device group G4 and 5th processing device group G5 are in order.
  • a first transfer device 10 is provided between the third processing device group G3 and the fourth processing device group G4, a first transfer device 10 is provided. .
  • the first transfer device 10 can selectively access the processing devices in the first processing device group G1, the third processing device group G3, and the fourth processing device group G4 to transfer the wafer W.
  • a second transfer device 11 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 11 can selectively access the processing devices in the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.
  • the first processing unit group G 1 includes a liquid processing unit that supplies a predetermined liquid to the wafer W and performs processing, for example, a resist coating unit 20 that applies a resist solution to the wafer W. , 21, 22, Bottom coating devices 23, 24 that form an antireflection film that prevents reflection of light during the exposure process are also stacked in five steps in order.
  • liquid processing units for example, development processing units 30 to 34 for supplying a developing solution to the wafer W and performing development processing are also stacked in five stages in order.
  • chemical chambers 40 for supplying various processing liquids to the liquid processing units in the processing unit groups Gl and G2, 40, 41 are provided.
  • the third processing unit group G3 includes a temperature control unit 60, a transition unit 61 for transferring the wafer W, and the temperature of the wafer W under high-precision temperature control.
  • the high-precision temperature control devices 62 to 64 to adjust and the high-temperature heat processing devices 65 to 68 to heat-treat the wafer W at high temperature are also stacked in 9 steps in order.
  • a high-precision temperature control unit 70 pre-baking units 71 to 74 for heating the wafer W after the resist coating process, and the wafer W after the development process are heated.
  • Post-baking devices 75 to 79 to be processed are stacked in 10 steps in order of the lower force.
  • a plurality of heat treatment devices for heat-treating the wafer W for example, high-precision temperature control devices 80 to 83, and a plurality of post-exposure baking devices for heat-treating the exposed wafer W ( The following is referred to as “PEB device.”) 84 to 89 are piled up in 10 steps in descending order.
  • a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 10, and for example, to hydrophobize the wafer W as shown in FIG.
  • Adhesion devices 90 and 91, and heating devices 92 and 93 that heat the wafer W are stacked in four steps in descending order.
  • a wafer W A peripheral exposure device 94 that selectively exposes only the edge portion of this is disposed.
  • the interface unit 4 includes a conveyance path extending in the X direction.
  • a wafer transfer body 101 moving on 100 and a buffer cassette 102 are provided.
  • the wafer transport body 101 can move in the Z direction and can also rotate in the ⁇ direction.
  • the wafer transport body 101 is connected to an exposure apparatus (not shown) adjacent to the interface unit 4, the notch cassette 102, and the fifth processing unit group G5.
  • the wafer W can be transferred by accessing it.
  • the PEB apparatus 84 includes a heating unit 121 that heats the wafer W and a cooling unit 122 that cools the wafer W.
  • the heating unit 121 includes a lid 130 that is located on the upper side and is movable up and down, and a hot plate that forms the processing chamber S integrally with the lid 130 on the lower side. It has a storage part 131.
  • the lid 130 has a substantially conical shape that gradually increases toward the center, and an exhaust part 130a is provided at the top.
  • the atmosphere in the processing chamber S is uniformly exhausted from the exhaust part 130a.
  • a hot plate as a heat treatment plate for placing and heating the wafer W is provided.
  • the hot plate 140 has a substantially disk shape with a large thickness.
  • the hot plate 140 is divided into, for example, a circular hot plate region R and a hot plate region R to R that are circularly divided into four circular arcs around the center of the plate.
  • a heater 141 that generates heat by power feeding is individually incorporated.
  • the quantity is adjusted by the temperature controller 142.
  • the temperature controller 142 adjusts the amount of heat generated by the heater 141 so that each of the hot plate regions R to R
  • the temperature of 15 can be controlled to a predetermined set temperature.
  • the temperature setting in the temperature control device 142 is performed by, for example, a temperature setting device 190 described later.
  • first raising / lowering pins 150 for supporting the wafer W with a downward force and raising / lowering it.
  • the first elevating pin 150 can be moved up and down by the elevating drive mechanism 151. Near the center of the hot plate 140, the hot plate 140 penetrates in the thickness direction. The first elevating pin 150 can rise from below the hot plate 140, pass through the through hole 152, and protrude above the hot plate 140.
  • the hot plate accommodating portion 131 includes an annular holding member 160 that accommodates the hot plate 140 and holds the outer peripheral portion of the hot plate 140, and a substantially cylindrical support ring 161 that surrounds the outer periphery of the holding member 160. Have. On the upper surface of the support ring 161, for example, a blow-out port 161a for injecting an inert gas is formed toward the inside of the processing chamber S. By injecting the inert gas from the blow-out port 161a, the inside of the processing chamber S is formed. Can be purged. In addition, a cylindrical case 162 serving as an outer periphery of the hot plate accommodating portion 131 is provided outside the support ring 161.
  • a cooling plate 170 for mounting and cooling the wafer W is provided in the cooling unit 122 adjacent to the heating unit 121.
  • the cooling plate 170 has, for example, a substantially rectangular flat plate shape as shown in FIG. 5, and the end surface on the heating unit 121 side is curved in an arc shape.
  • a cooling member 170a such as a Peltier element is built in the cooling plate 170, and the cooling plate 170 can be adjusted to a predetermined set temperature.
  • the cooling plate 170 is attached to a rail 171 extending toward the heating unit 121 side.
  • the cooling plate 170 can be moved on the rail 171 by the driving unit 172.
  • the cooling plate 170 can move to above the heating plate 140 on the heating unit 121 side.
  • two slits 173 along the X direction are formed.
  • the slit 173 is formed so that the end surface force on the heating unit 121 side of the cooling plate 170 is also close to the center of the cooling plate 170.
  • the slit 173 prevents interference between the cooling plate 170 moved to the heating chamber 121 side and the first lifting pins 150 protruding on the heating plate 140.
  • a second lifting pin 174 is provided below the slit 173 in the cooling section 122.
  • the second raising / lowering pin 174 can be raised and lowered by the raising / lowering drive unit 175.
  • the second lifting pin 174 can rise from below the cooling plate 170, pass through the slit 173, and protrude above the cooling plate 170.
  • loading / unloading ports 180 for loading / unloading the wafer W are formed on both side surfaces of the casing 120 with the cooling plate 170 interposed therebetween.
  • a wafer W is loaded from the loading / unloading port 180 and placed on the cooling plate 170, the cooling plate 170 moves, and the wafer W is heated. Board 14 Moved up by 0. The first lifting pins 150 place the wafer W on the hot plate 140 and heat the wafer W. Then, after a predetermined time has passed, the wafer W is again transferred from the hot plate 140 to the cooling plate 170 and cooled, and is transferred from the cooling plate 170 to the outside of the PEB apparatus 84 through the loading / unloading port 180, and a series of heat treatments is completed.
  • the temperature setting device 190 for setting the temperature of the hot plate 140 of the PEB device 84 will be described.
  • the temperature setting device 190 is composed of, for example, a general-purpose computer equipped with a CPU, a memory, etc., and is connected to the temperature control device 142 of the hot plate 140 as shown in FIGS. 4 and 6, for example.
  • the temperature setting device 190 includes, for example, an arithmetic unit 200 that executes various programs as shown in FIG. 7, an input unit 201 that inputs various information for temperature setting, and various types of temperature correction tables.
  • a data storage unit 202 that stores information
  • a program storage unit 203 that stores various programs for temperature setting
  • a communication unit 204 that communicates with the temperature controller 142 to change the temperature setting of the heat plate 140, etc. It has.
  • the data storage unit 202 stores, for example, a temperature correction table M.
  • the temperature correction values of the hot plate regions R to R of the hot plate 140 are the heat treatment values.
  • the temperature compensation table M has processing recipes H (heating temperature T1, resist solution B1), processing recipe 1 (heating temperature T1, resist solution B2), processing recipes with different heating temperatures or resist solutions. If J (heating temperature T2, resist solution B1) and processing recipe K (heating temperature T2, resist solution B2) are present, the temperature correction value for each hot plate region R to R is determined for each of these processing recipes H to K. Is set. Each temperature correction
  • the value is obtained, for example, by wafer processing performed in advance in the coating and developing processing system 1, and is determined so that the line width of the resist pattern finally formed on the wafer w is uniform within the wafer surface. .
  • each of the hot plate areas R to R of the hot plate 140 is based on the temperature correction table M. Temperature correction value is derived, and based on the temperature correction value, the temperature control device 142 Program P is stored to change the existing temperature setting. Note that the program for realizing the functions of the temperature setting device 190 may be installed in the temperature setting device 190 by a computer-readable recording medium.
  • a temperature setting changing process by the temperature setting device 190 configured as described above will be described.
  • a new processing recipe is selected and input in the input unit 201.
  • each hot plate region R corresponding to the newly selected processing recipe from the temperature correction table M is programmed by program P.
  • a temperature correction value of 1 to R is derived.
  • new set temperatures for the hot plate regions R to R are derived. This new set temperature is calculated, for example, by adding the heating temperature and each temperature correction value in the selected processing recipe.
  • the information is output from the communication unit 204 to the temperature control device 142, and each hot plate region R of the hot plate 140 in the temperature control device 142 is output.
  • the temperature setting from 1 to R is changed.
  • the wafer W can always be heat-treated at the optimum in-plane temperature according to the processing recipe, and the wafer width within the resist pattern line width can be obtained. Uniformity can be ensured.
  • the temperature correction value is set for each processing recipe determined by the combination of the heat treatment temperature and the type of the resist solution, but the processing recipe determined by the state of Weno and W is further set.
  • a temperature correction value may be set every time.
  • the state of the wafer W includes, for example, the number of base films of the wafer W on which a resist pattern is formed, the film quality, the film thickness, the warp state of the wafer W, and the like. Therefore, the temperature correction value is set for each processing recipe determined by a combination of the heat treatment temperature and the type of resist solution and at least one of the number of undercoat layers, film quality, film thickness, and wafer warpage. You may make it do.
  • the temperature setting of the hot plate 140 in the PEB device 84 has been described, but the temperature setting of the hot plate of the other PEB devices 85 to 89 in which the same post-exposure baking is performed is the same. To be done.
  • the temperature setting of the hot plate in the other PEB devices 85 to 89 may be performed using the same temperature setting device 190 as that of the PEB device 84.
  • a plurality of wafers W are processed so as to pass through the PEB apparatuses 84 to 89, and the line width in the wafer surface of the resist pattern finally formed on each wafer W is determined. Measured (process Ql in Fig. 9).
  • This line width measurement is performed at a plurality of locations on the wafer W surface, for example, for each wafer region corresponding to each region of the hot plate 140.
  • This line width measurement is installed in the coating and developing treatment system 1! This may be done with a line width measuring device, or with a line width measuring device installed outside the coating and developing treatment system 1.
  • an average line width value A within the wafer surface is calculated for each of the PEB apparatuses 84 to 89. Also, from the average line width A of the PEB devices 84 to 89, the total average line width B (target line width value) of the average line widths A of all the PEB devices 84 to 89 is calculated (Fig. 9 steps Q2). Next, for each PEB device 84 to 89, the line width difference ⁇ CD between the average line width A and the total average line width B as shown in Fig. 10 is calculated, and the line width of each PEB device 84 to 89 is calculated. The difference A CD is converted into the temperature difference during heat treatment (process Q3 in Fig. 9).
  • a correction value is set (step Q4 in Fig. 9).
  • Steps Q2 to Q4 in the temperature correction value setting process may be realized, for example, by executing a program stored in the program storage unit 203 of the temperature setting device 190.
  • each line width average value A of the resist pattern processed by each PEB apparatus 84 to 89 is set to the same total line width average value B that is the target line width value. Since the temperature compensation values of PEB devices 84 to 89 are corrected and set, the line width between PEB devices 84 to 89 The difference is reduced.
  • the target line width value is set to the total line width average value B calculated from the line width average value A of each PEB device, but any other value may be set.
  • the target line width value may be requested, for example, in each processing recipe, and the line width dimension may be set.
  • the above embodiment is an example of changing the setting of the existing temperature correction value.
  • the temperature correction value may be set by the temperature correction value setting process.
  • the present invention is not limited to this example and can take various forms.
  • the temperature-set hot plate 140 is divided into five regions, but the number can be arbitrarily selected.
  • the above embodiment is an example of setting the temperature of the hot plate 140 of the PEB device 84, but other heat treatment devices such as a pre-baking device and a post-baking device equipped with a hot plate,
  • the present invention can also be applied to a cooling processing apparatus having a cooling plate on which the wafer W is placed and cooled.
  • the present invention can also be applied to the temperature setting of a heat treatment plate for heat treatment of other substrates such as FPD (Flat Panel Display) and photomask mask reticles other than wafers.
  • FPD Full Panel Display
  • the present invention is useful when setting the temperature of the heat treatment plate so that the line width of the resist pattern is uniformly formed in the substrate surface.

Abstract

A hot plate temperature is set so as to form the line width of a resist pattern uniformly in a wafer plane. The hot plate of a PEB device is divided into a plurality of hot plate regions, with temperature setting being possible for each hot plate region. A temperature correction value for regulating the in-plane temperature of a wafer to be mounted on the hot plate is set for each hot plate region of the hot plate. The temperature correction value of each hot plate region of the hot plate is set for each treating recipe determined by a heating temperature and the type of a resist liquid.

Description

明 細 書  Specification
熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及び プログラムを記録したコンピュータ読み取り可能な記録媒体  Heat treatment plate temperature setting method, heat treatment plate temperature setting device, program, and computer-readable recording medium recording the program
技術分野  Technical field
[0001] 本発明は,熱処理板の温度設定方法,熱処理板の温度設定装置,プログラム及び プログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 背景技術  The present invention relates to a temperature setting method for a heat treatment plate, a temperature setting device for a heat treatment plate, a program, and a computer-readable recording medium on which the program is recorded. Background art
[0002] 例えば半導体デバイスの製造におけるフォトリソグラフィー工程では,例えばウェハ 上にレジスト液を塗布しレジスト膜を形成するレジスト塗布処理,レジスト膜を所定の パターンに露光する露光処理,露光後にレジスト膜内の化学反応を促進させる加熱 処理 (ポストェクスポージャーべ一キング) ,露光されたレジスト膜を現像する現像処 理などが順次行われ,ウェハ上に所定のレジストパターンが形成される。  For example, in a photolithography process in the manufacture of semiconductor devices, for example, a resist coating process for applying a resist solution on a wafer to form a resist film, an exposure process for exposing the resist film to a predetermined pattern, Heat treatment (post-exposure baking) that promotes the chemical reaction, development processing that develops the exposed resist film, etc., are sequentially performed to form a predetermined resist pattern on the wafer.
[0003] 例えば上述のポストェクスポージャーべ一キングなどの加熱処理は,加熱処理装置 で行われている。加熱処理装置は,ウェハを載置して加熱する熱板を備えている。熱 板には,例えば給電により発熱するヒータが内蔵されており,このヒータによる発熱に より熱板を所定温度に調整している。  [0003] For example, heat treatment such as the above-mentioned post exposure baking is performed by a heat treatment apparatus. The heat treatment apparatus includes a hot plate for placing and heating the wafer. For example, a heater that generates heat when power is supplied is built into the heat plate, and the heat plate is adjusted to a predetermined temperature by the heat generated by the heater.
[0004] ところで,上述の加熱処理における熱処理温度は,最終的にウェハ上に形成され るレジストパターンの線幅に大きな影響を与える。このため,加熱時のウェハ面内の 温度を厳格に制御するために,加熱処理装置の熱板は,複数の領域に分割され,各 領域毎に独立したヒータが内蔵され,各領域毎に温度調整されている。  Incidentally, the heat treatment temperature in the above-described heat treatment greatly affects the line width of the resist pattern finally formed on the wafer. For this reason, in order to strictly control the temperature in the wafer surface during heating, the heat plate of the heat treatment apparatus is divided into a plurality of regions, and an independent heater is built in each region. It has been adjusted.
[0005] し力しながら,上記熱板の各領域の温度調整を,全て同じ設定温度で行うと,例え ば各領域の熱抵抗などの相違により,熱板上のウェハ面内の温度がばらつくことがあ る。このため,熱板の各領域には,ウェハの面内温度を微調整するための温度補正 値 (温度オフセット値)が設定され,熱板の各領域の設定温度には,熱処理温度を各 温度補正値で補正 (温度オフセット)したものが用いられて!/、る。  [0005] However, if the temperature of each region of the hot plate is adjusted at the same set temperature, the temperature in the wafer surface on the hot plate varies due to differences in the thermal resistance of each region, for example. Sometimes. For this reason, a temperature correction value (temperature offset value) for fine adjustment of the in-plane temperature of the wafer is set in each area of the hot plate, and the heat treatment temperature is set for each temperature in the set temperature of each area of the hot plate. Corrected by the correction value (temperature offset) is used!
[0006] 熱板上のウェハ面内の温度のばらつきは,その程度が熱板の加熱温度により左右 されるため,上記温度補正値は,各熱処理温度毎に 1対 1で定められていた (特許文 献 1参照。 ) oしたがって,加熱処理装置における熱処理温度が変更されたときに限り[0006] Since the degree of temperature variation in the wafer surface on the hot plate depends on the heating temperature of the hot plate, the above temperature correction value was determined on a one-to-one basis for each heat treatment temperature ( Patent text See Table 1. o Therefore, only when the heat treatment temperature in the heat treatment equipment is changed.
,温度補正値が変更されていた。 Therefore, the temperature correction value was changed.
特許文献 1 :日本国特開 2001— 143850号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-143850
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら,上述のように温度補正値が熱処理温度に対応して定められているとHowever, if the temperature correction value is determined in accordance with the heat treatment temperature as described above,
,例えば熱処理温度が同じであって,レジスト液の種類が異なるような場合にも,同じ 温度補正値が用いられる。このため,実際には,ウェハ面内の温度調整が適正に行 われず,最終的にウェハ上に形成されるレジストパターンの線幅がウェハ面内で均 一に形成されない場合があった。 For example, the same temperature correction value is used even when the heat treatment temperature is the same and the type of resist solution is different. For this reason, in practice, the temperature adjustment in the wafer surface is not performed properly, and the line width of the resist pattern finally formed on the wafer may not be uniformly formed in the wafer surface.
[0008] 本発明は,力かる点に鑑みてなされたものであり,レジストパターンの線幅がウェハ などの基板面内で均一に形成されるように,熱板などの熱処理板の温度設定を行う ことをその目的とする。 [0008] The present invention has been made in view of the points to be applied, and the temperature setting of a heat treatment plate such as a hot plate is set so that the line width of a resist pattern is uniformly formed in a substrate surface such as a wafer. Its purpose is to do.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するための本発明は,基板を載置して熱処理する熱処理板の温 度設定方法であって,前記熱処理は,基板上にレジストパターンを形成するフォトリソ グラフィー工程において行われるものであり,前記熱処理板は複数の領域に区画さ れて当該領域毎に温度設定される。さらに,前記熱処理板の各領域毎に,熱処理板 上の基板の面内温度を調整するための温度補正値が設定され,少なくとも熱処理温 度とレジスト液の種類の組み合わせにより定まる処理レシピ毎に,前記各領域の温度 補正値は設定される。 In order to achieve the above object, the present invention is a temperature setting method for a heat treatment plate on which a substrate is placed and heat treated, and the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate. The heat treatment plate is divided into a plurality of regions and the temperature is set for each region. Furthermore, a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set for each region of the heat treatment plate, and at least for each treatment recipe determined by the combination of the heat treatment temperature and the type of resist solution, The temperature correction value for each area is set.
[0010] 本発明によれば,熱処理板の各領域の温度補正値が,熱処理温度とレジスト液の 種類によって定まる処理レシピに応じて設定されるので,レジストパターンの線幅に 影響を与える熱処理温度とレジスト液の種類の!/ヽずれかが変更された場合に,各領 域の温度補正値が変更される。この結果,熱処理が常に適正な面内温度で行われる ので,最終的に形成されるレジストパターンの線幅が基板面内において均一に形成 される。  [0010] According to the present invention, the temperature correction value of each region of the heat treatment plate is set according to the treatment recipe determined by the heat treatment temperature and the type of the resist solution, and therefore the heat treatment temperature that affects the line width of the resist pattern. The temperature correction value for each area is changed when the difference between the! As a result, since the heat treatment is always performed at an appropriate in-plane temperature, the line width of the finally formed resist pattern is uniformly formed in the substrate surface.
[0011] 前記フォトリソグラフィー工程中の前記熱処理に,複数の熱処理板が用いられてお り,前記各熱処理板にぉ ヽて熱処理されて形成されたレジストパターンの線幅の基 板面内の平均値が算出され,当該各熱処理板における線幅平均値が,各熱処理板 に共通の目標線幅値に近づくように,前記各熱処理板における各領域の温度補正 値が定められてもよい。かかる場合,各熱処理板における線幅平均値が,共通の目 標線幅値に近づけられるので,各熱処理板によって熱処理されて形成されるレジスト パターンの線幅の熱処理板間のばらつきが低減される。したがって,熱処理が複数 の熱処理板によって行われる場合であっても,レジストパターンが均質に形成される [0011] A plurality of heat treatment plates are used for the heat treatment in the photolithography process. Thus, the average value of the line width of the resist pattern formed by heat treatment on each heat treatment plate within the substrate surface is calculated, and the line width average value in each heat treatment plate is common to each heat treatment plate. The temperature correction value of each region in each heat treatment plate may be determined so as to approach the target line width value. In such a case, the average line width value of each heat treatment plate can be brought close to the common target line width value, so that variations in the line width of the resist pattern formed by heat treatment by each heat treatment plate can be reduced. . Therefore, even when heat treatment is performed by multiple heat treatment plates, the resist pattern is formed uniformly.
[0012] 前記各熱処理板における線幅平均値と前記目標線幅値との線幅差が,熱処理の 温度差に換算され,当該換算温度差により既存の温度補正値が修正されることによ り,前記各熱処理板の各領域の温度補正値が算出されるようにしてもよい。 [0012] The line width difference between the average line width value and the target line width value in each heat treatment plate is converted into a temperature difference in heat treatment, and the existing temperature correction value is corrected by the converted temperature difference. Thus, a temperature correction value for each region of each heat treatment plate may be calculated.
[0013] また,前記換算温度差を ΔΤ,前記線幅平均値を A,前記目標線幅値 B, 1°Cあた りの線幅変動量を示すレジスト感度を Hとした場合,換算温度差 ΔΤは, ΔΤ=—(A Β) ΖΗで示される式により算出され,当該換算温度差を既存の温度補正値にカロ えることにより,前記各熱処理板の各領域の温度補正値が算出されるようにしてもよ い。  [0013] When the converted temperature difference is ΔΤ, the average line width is A, the target line width is B, and the resist sensitivity indicating the amount of line width variation per 1 ° C is H, the converted temperature The difference ΔΤ is calculated by the equation represented by ΔΤ =-(A Β) ,, and the temperature correction value of each region of each heat treatment plate is calculated by allocating the converted temperature difference to the existing temperature correction value. You may make it.
[0014] 前記目標線幅値は,総ての熱処理板につ!、ての前記線幅平均値の平均値であつ てもよい。  [0014] The target line width value may be an average value of the average line width values for all the heat-treated plates.
[0015] 前記熱処理は,露光処理後で現像処理前に行われる加熱処理であってもよい。  [0015] The heat treatment may be a heat treatment performed after the exposure process and before the development process.
[0016] 別の観点による本発明は,基板を載置して熱処理する熱処理板の温度設定装置 であって,前記熱処理は,基板上にレジストパターンを形成するフォトリソグラフィー 工程において行われるものであり,前記熱処理板は,複数の領域に区画されてかつ 当該領域毎に温度設定可能なものであり,さらに前記熱処理板の各領域毎に,熱処 理板上の基板の面内温度を調整するための温度補正値を設定可能なものである。 そして本発明にお 、ては,少なくとも熱処理温度とレジスト液の種類の組み合わせに より定まる処理レシピ毎に,前記熱処理板における各領域の温度補正値を設定する 機能を備えている。 [0016] The present invention according to another aspect is a temperature setting device for a heat treatment plate on which a substrate is placed and heat treated, wherein the heat treatment is performed in a photolithography process for forming a resist pattern on the substrate. The heat treatment plate is divided into a plurality of regions and the temperature can be set for each region, and the in-plane temperature of the substrate on the heat treatment plate is adjusted for each region of the heat treatment plate. Therefore, a temperature correction value can be set. The present invention has a function of setting a temperature correction value for each region in the heat treatment plate for each treatment recipe determined by at least a combination of the heat treatment temperature and the type of resist solution.
[0017] 本発明によれば,熱処理板の各領域の温度補正値が,熱処理温度とレジスト液の 種類によって定まる処理レシピに応じて設定されるので,レジストパターンの線幅に 影響を与える熱処理温度とレジスト液の種類の!/ヽずれかが変更された場合に,各領 域の温度補正値が変更される。この結果,熱処理板上で処理される基板の面内温度 の調整が常に適正に行われ,最終的に形成されるレジストパターンの線幅が基板面 内にお 、て均一に形成される。 [0017] According to the present invention, the temperature correction value of each region of the heat treatment plate is determined by the heat treatment temperature and the resist solution. Since it is set according to the processing recipe determined by the type, if the heat treatment temperature that affects the resist pattern line width and the difference in the type of resist solution are changed, the temperature correction value for each area will be changed. Be changed. As a result, the in-plane temperature of the substrate processed on the heat-treated plate is always properly adjusted, and the line width of the finally formed resist pattern is uniformly formed on the substrate surface.
[0018] 上記熱処理板の温度設定装置において,前記フォトリソグラフィー工程中の前記熱 処理に,複数の熱処理板が用いられており,前記各熱処理板において熱処理されて 形成されたレジストパターンの線幅の基板面内の平均値を算出し,当該各熱処理板 における線幅平均値が,各熱処理板に共通の目標線幅値に近づくように,前記各熱 処理板における各領域の温度補正値を定める機能を備えて 、てもよ 、。  [0018] In the temperature setting device for the heat treatment plate, a plurality of heat treatment plates are used for the heat treatment in the photolithography process, and a line width of a resist pattern formed by heat treatment on each heat treatment plate is used. The average value in the substrate surface is calculated, and the temperature correction value for each region on each heat-treated plate is determined so that the line width average value on each heat-treated plate approaches the target line width value common to each heat-treated plate. It has a function.
[0019] 前記熱処理板の温度設定装置は,前記各熱処理板における線幅平均値と前記目 標線幅値との線幅差を,熱処理の温度差に換算し,当該換算温度差により既存の温 度補正値を修正することにより,前記各熱処理板の各領域の温度補正値を算出する 機能を備えていてもよい。  [0019] The temperature setting device for the heat treatment plate converts a line width difference between the average line width value and the target line width value in each heat treatment plate into a heat treatment temperature difference, and the existing temperature difference is calculated based on the converted temperature difference. A function for calculating the temperature correction value of each region of each heat treatment plate by modifying the temperature correction value may be provided.
[0020] さらに前記熱処理板の温度設定装置は,前記換算温度差を ΔΤ,前記線幅平均値 を A,前記目標線幅値 B, 1°Cあたりの線幅変動量を示すレジスト感度を Hとした場合 に,前記換算温度差 ΔΤを, ΔΤ=— (Α—Β) /Ηで示される式により算出し,当該換 算温度差を既存の温度補正値に加えることにより,前記各熱処理板の各領域の温度 補正値を算出する機能を備えて!/、てもよ ヽ。  [0020] Further, the temperature setting device for the heat treatment plate has the conversion temperature difference as ΔΤ, the line width average value as A, the target line width value as B, and the resist sensitivity indicating the line width variation per 1 ° C as H. In this case, the converted temperature difference ΔΤ is calculated by the formula shown as ΔΤ = — (Α—Β) / Η, and the converted temperature difference is added to the existing temperature correction value to obtain the heat treatment plate. It has a function to calculate the temperature correction value for each area of! /.
[0021] 前記目標線幅値は,総ての熱処理板につ!、ての前記線幅平均値の平均値であつ てもよい。  [0021] The target line width value may be an average value of the average line width values for all the heat-treated plates.
[0022] 前記熱処理は,露光処理後で現像処理前に行われる加熱処理であってもよい。  [0022] The heat treatment may be a heat treatment performed after the exposure process and before the development process.
[0023] 別観点による本発明によれば,本発明は,レジストパターンを形成するフォトリソダラ フィー工程において行われる基板の熱処理を熱処理板で行うための温度設定装置 に使用されるプログラムであって,前記熱処理板は複数の領域に区画され,かつ当 該領域毎に温度設定可能なものであり,かつ前記熱処理板の各領域毎に,熱処理 板上の基板の面内温度を調整するための温度補正値を設定可能なものである。そし て前記プログラムは,少なくとも熱処理温度とレジスト液の種類の組み合わせにより定 まる処理レシピ毎に,前記熱処理板における各領域の温度補正値を設定する機能を コンピュータに実行させるものである。 [0023] According to the present invention from another aspect, the present invention is a program used for a temperature setting device for performing heat treatment of a substrate performed in a photolithography process for forming a resist pattern on a heat treatment plate, The heat treatment plate is divided into a plurality of regions, and the temperature can be set for each region, and the temperature for adjusting the in-plane temperature of the substrate on the heat treatment plate for each region of the heat treatment plate. The correction value can be set. The program is determined by at least the combination of the heat treatment temperature and the type of resist solution. For each processing recipe, the computer is caused to execute a function of setting a temperature correction value of each region in the heat treatment plate.
[0024] このようなプログラムは,例えばコンピュータ読み取り可能な記録媒体,例えばハー ドディスク,コンパクトディスク,光磁気ディスク,フロッピーディスクなどに記録される。 発明の効果  Such a program is recorded on, for example, a computer-readable recording medium such as a hard disk, a compact disk, a magneto-optical disk, and a floppy disk. The invention's effect
[0025] 本発明によれば,最終的に基板上に形成されるレジストパターンの線幅の基板面 内の均一性が確保されるので,歩留まりの向上が図られる。  [0025] According to the present invention, since the uniformity of the line width of the resist pattern finally formed on the substrate is ensured within the substrate surface, the yield can be improved.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]塗布現像処理システムの構成の概略を示す平面図である。 FIG. 1 is a plan view showing an outline of the configuration of a coating and developing treatment system.
[図 2]図 1の塗布現像処理システムの正面図である。  FIG. 2 is a front view of the coating and developing treatment system of FIG. 1.
[図 3]図 1の塗布現像処理システムの背面図である。  FIG. 3 is a rear view of the coating and developing treatment system of FIG. 1.
[図 4]PEB装置の構成の概略を示す縦断面の説明図である。  FIG. 4 is an explanatory view of a longitudinal section showing an outline of the configuration of the PEB apparatus.
[図 5]PEB装置の構成の概略を示す横断面の説明図である。  FIG. 5 is an explanatory diagram of a transverse section showing an outline of the configuration of the PEB device.
[図 6]PEB装置の熱板の構成を示す平面図である。  FIG. 6 is a plan view showing a configuration of a hot plate of the PEB apparatus.
[図 7]温度設定装置の構成を示すブロック図である。  FIG. 7 is a block diagram showing a configuration of a temperature setting device.
[図 8]温度補正テーブルの一例を示す表である。  FIG. 8 is a table showing an example of a temperature correction table.
[図 9]温度補正値の設定プロセスを示すフローチャートである。  FIG. 9 is a flowchart showing a temperature correction value setting process.
[図 10]線幅平均値と総線幅平均値の線幅差を示す説明図である。  FIG. 10 is an explanatory diagram showing the line width difference between the average line width and the average total line width.
符号の説明  Explanation of symbols
[0027] 1 塗布現像処理システム [0027] 1 Coating and developing treatment system
84 PEB装置  84 PEB equipment
141 ヒータ  141 Heater
140 熱板  140 Hot plate
R〜R  R ~ R
1 5 熱板領域  1 5 Hot plate area
142 温度制御装置  142 Temperature controller
190 温度設定装置  190 Temperature setting device
W ウェハ 発明を実施するための最良の形態 W wafer BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下,本発明の好ましい実施の形態について説明する。図 1は,本実施の形態に かかる熱処理板の温度設定装置が備えられた塗布現像処理システム 1の構成の概 略を示す平面図であり,図 2は,塗布現像処理システム 1の正面図であり,図 3は,塗 布現像処理システム 1の背面図である。  [0028] Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a plan view showing a schematic configuration of a coating and developing treatment system 1 provided with a temperature setting device for a heat treatment plate according to the present embodiment. FIG. 2 is a front view of the coating and developing treatment system 1. Yes, Fig. 3 is a rear view of the coating development system 1.
[0029] 塗布現像処理システム 1は,図 1に示すように例えば 25枚のウェハ Wをカセット単 位で外部力 塗布現像処理システム 1に対して搬入出したり,カセット Cに対してゥェ ハ Wを搬入出したりするカセットステーション 2と,フォトリソグラフィー工程の中で枚葉 式に所定の処理を施す複数の各種処理装置を多段に配置している処理ステーショ ン 3と,この処理ステーション 3に隣接して設けられている図示しない露光装置との間 でウエノ、 Wの受け渡しをするインターフェイス部 4とを一体に接続した構成を有してい る。  [0029] As shown in Fig. 1, the coating / development processing system 1 carries, for example, 25 wafers W into / from an external force coating / development processing system 1 in cassette units, or wafer W to / from cassette C. A cassette station 2 that carries in and out the process, a processing station 3 in which a plurality of various processing devices that perform predetermined processing in a single-stage manner in the photolithography process are arranged in multiple stages, and a processing station 3 that is adjacent to the processing station 3. And an interface unit 4 for transferring Ueno and W to and from an exposure apparatus (not shown) provided as a unit.
[0030] カセットステーション 2には,カセット載置台 5が設けられ,当該カセット載置台 5は, 複数のカセット Cを X方向(図 1中の上下方向)に一列に載置自在になっている。カセ ットステーション 2には,搬送路 6上を X方向に向力つて移動可能なウェハ搬送体 7が 設けられている。ウェハ搬送体 7は,カセット Cに収容されたウェハ Wのウェハ配列方 向(Z方向;鉛直方向)にも移動自在であり, X方向に配列された各カセット C内のゥェ ハ Wに対して選択的にアクセスできる。  [0030] The cassette station 2 is provided with a cassette mounting table 5. The cassette mounting table 5 is capable of mounting a plurality of cassettes C in a row in the X direction (vertical direction in FIG. 1). The cassette station 2 is provided with a wafer transfer body 7 that can move on the transfer path 6 in the X direction. The wafer carrier 7 is also movable in the wafer arrangement direction (Z direction; vertical direction) of the wafers W accommodated in the cassette C, and with respect to the wafers W in each cassette C arranged in the X direction. Can be selectively accessed.
[0031] ウェハ搬送体 7は, Z軸周りの Θ方向に回転可能であり,後述する処理ステーション 3側の第 3の処理装置群 G3に属する温調装置 60やトランジシヨン装置 61に対しても アクセスできる。  [0031] The wafer carrier 7 is rotatable in the Θ direction around the Z-axis, and also with respect to a temperature control device 60 and a transition device 61 belonging to a third processing device group G3 on the processing station 3 side described later. Accessible.
[0032] カセットステーション 2に隣接する処理ステーション 3は,複数の処理装置が多段に 配置された,例えば 5つの処理装置群 G1〜G5を備えている。処理ステーション 3の X方向負方向(図 1中の下方向)側には,カセットステーション 2側力 第 1の処理装 置群 G1,第 2の処理装置群 G2が順に配置されている。処理ステーション 3の X方向 正方向(図 1中の上方向)側には,カセットステーション 2側力 第 3の処理装置群 G3 ,第 4の処理装置群 G4及び第 5の処理装置群 G5が順に配置されている。第 3の処 理装置群 G3と第 4の処理装置群 G4の間には,第 1の搬送装置 10が設けられて 、る 。第 1の搬送装置 10は,第 1の処理装置群 G1,第 3の処理装置群 G3及び第 4の処 理装置群 G4内の各処理装置に選択的にアクセスしてウェハ Wを搬送できる。第 4の 処理装置群 G4と第 5の処理装置群 G5の間には,第 2の搬送装置 11が設けられてい る。第 2の搬送装置 11は,第 2の処理装置群 G2,第 4の処理装置群 G4及び第 5の 処理装置群 G5内の各処理装置に選択的にアクセスしてウェハ Wを搬送できる。 [0032] The processing station 3 adjacent to the cassette station 2 includes, for example, five processing device groups G1 to G5 in which a plurality of processing devices are arranged in multiple stages. On the negative side in the X direction (downward in Fig. 1) of processing station 3, cassette station 2 side force first processing device group G1 and second processing device group G2 are arranged in sequence. In the X direction positive direction (upward in Fig. 1) side of the processing station 3, the cassette station 2 side force 3rd processing device group G3, 4th processing device group G4 and 5th processing device group G5 are in order. Has been placed. Between the third processing device group G3 and the fourth processing device group G4, a first transfer device 10 is provided. . The first transfer device 10 can selectively access the processing devices in the first processing device group G1, the third processing device group G3, and the fourth processing device group G4 to transfer the wafer W. A second transfer device 11 is provided between the fourth processing device group G4 and the fifth processing device group G5. The second transfer device 11 can selectively access the processing devices in the second processing device group G2, the fourth processing device group G4, and the fifth processing device group G5 to transfer the wafer W.
[0033] 図 2に示すように第 1の処理装置群 G1には,ウェハ Wに所定の液体を供給して処 理を行う液処理装置,例えばウェハ Wにレジスト液を塗布するレジスト塗布装置 20, 21, 22,露光処理時の光の反射を防止する反射防止膜を形成するボトムコーティン グ装置 23, 24が下力も順に 5段に重ねられている。第 2の処理装置群 G2には,液処 理装置,例えばウェハ Wに現像液を供給して現像処理する現像処理装置 30〜34 が下力も順に 5段に重ねられている。また,第 1の処理装置群 G1及び第 2の処理装 置群 G2の最下段には,各処理装置群 Gl, G2内の液処理装置に各種処理液を供 給するためのケミカル室 40, 41がそれぞれ設けられている。  As shown in FIG. 2, the first processing unit group G 1 includes a liquid processing unit that supplies a predetermined liquid to the wafer W and performs processing, for example, a resist coating unit 20 that applies a resist solution to the wafer W. , 21, 22, Bottom coating devices 23, 24 that form an antireflection film that prevents reflection of light during the exposure process are also stacked in five steps in order. In the second processing unit group G2, liquid processing units, for example, development processing units 30 to 34 for supplying a developing solution to the wafer W and performing development processing are also stacked in five stages in order. Also, at the bottom of the first processing unit group G1 and the second processing unit group G2, chemical chambers 40 for supplying various processing liquids to the liquid processing units in the processing unit groups Gl and G2, 40, 41 are provided.
[0034] 例えば図 3に示すように第 3の処理装置群 G3には,温調装置 60,ウェハ Wの受け 渡しを行うためのトランジシヨン装置 61,精度の高い温度管理下でウェハ Wを温度調 節する高精度温調装置 62〜64及びウェハ Wを高温で加熱処理する高温度熱処理 装置 65〜68が下力も順に 9段に重ねられている。  [0034] For example, as shown in Fig. 3, the third processing unit group G3 includes a temperature control unit 60, a transition unit 61 for transferring the wafer W, and the temperature of the wafer W under high-precision temperature control. The high-precision temperature control devices 62 to 64 to adjust and the high-temperature heat processing devices 65 to 68 to heat-treat the wafer W at high temperature are also stacked in 9 steps in order.
[0035] 第 4の処理装置群 G4では,例えば高精度温調装置 70,レジスド塗布処理後のゥェ ハ Wを加熱処理するプリべ一キング装置 71〜74及び現像処理後のウェハ Wを加熱 処理するポストべ一キング装置 75〜79が下力も順に 10段に重ねられている。  [0035] In the fourth processing unit group G4, for example, a high-precision temperature control unit 70, pre-baking units 71 to 74 for heating the wafer W after the resist coating process, and the wafer W after the development process are heated. Post-baking devices 75 to 79 to be processed are stacked in 10 steps in order of the lower force.
[0036] 第 5の処理装置群 G5では,ウェハ Wを熱処理する複数の熱処理装置,例えば高 精度温調装置 80〜83,露光後のウェハ Wを加熱処理する複数のポストェクスポー ジャーべ一キング装置(以下「PEB装置」とする。 ) 84〜89が下力も順に 10段に重ね られている。  [0036] In the fifth processing unit group G5, a plurality of heat treatment devices for heat-treating the wafer W, for example, high-precision temperature control devices 80 to 83, and a plurality of post-exposure baking devices for heat-treating the exposed wafer W ( The following is referred to as “PEB device.”) 84 to 89 are piled up in 10 steps in descending order.
[0037] 図 1に示すように第 1の搬送装置 10の X方向正方向側には,複数の処理装置が配 置されており,例えば図 3に示すようにウェハ Wを疎水化処理するためのアドヒージョ ン装置 90, 91,ウェハ Wを加熱する加熱装置 92, 93が下力 順に 4段に重ねられ ている。図 1に示すように第 2の搬送装置 11の X方向正方向側には,例えばウェハ W のエッジ部のみを選択的に露光する周辺露光装置 94が配置されている。 As shown in FIG. 1, a plurality of processing devices are arranged on the positive side in the X direction of the first transfer device 10, and for example, to hydrophobize the wafer W as shown in FIG. Adhesion devices 90 and 91, and heating devices 92 and 93 that heat the wafer W are stacked in four steps in descending order. As shown in FIG. 1, on the positive side in the X direction of the second transfer device 11, for example, a wafer W A peripheral exposure device 94 that selectively exposes only the edge portion of this is disposed.
[0038] インターフェイス部 4には,例えば図 1に示すように X方向に向けて延伸する搬送路[0038] For example, as shown in Fig. 1, the interface unit 4 includes a conveyance path extending in the X direction.
100上を移動するウェハ搬送体 101と,バッファカセット 102が設けられている。ゥェ ハ搬送体 101は, Z方向に移動可能でかつ Θ方向にも回転可能であり,インターフエ イス部 4に隣接した図示しない露光装置と,ノ ッファカセット 102及び第 5の処理装置 群 G5に対してアクセスしてウェハ Wを搬送できる。 A wafer transfer body 101 moving on 100 and a buffer cassette 102 are provided. The wafer transport body 101 can move in the Z direction and can also rotate in the Θ direction. The wafer transport body 101 is connected to an exposure apparatus (not shown) adjacent to the interface unit 4, the notch cassette 102, and the fifth processing unit group G5. The wafer W can be transferred by accessing it.
[0039] 次に,上述した PEB装置 84の構成について説明する。 PEB装置 84は,図 4及び 図 5〖こ示すよう〖こ筐体 120内〖こ,ウェハ Wを加熱処理する加熱部 121と,ウェハ Wを 冷却処理する冷却部 122を有して 、る。 Next, the configuration of the PEB device 84 described above will be described. 4 and 5, the PEB apparatus 84 includes a heating unit 121 that heats the wafer W and a cooling unit 122 that cools the wafer W.
[0040] 加熱部 121は,図 4に示すように上側に位置して上下動自在な蓋体 130と,下側に 位置して蓋体 130と一体となって処理室 Sを形成する熱板収容部 131を有して ヽる。 As shown in FIG. 4, the heating unit 121 includes a lid 130 that is located on the upper side and is movable up and down, and a hot plate that forms the processing chamber S integrally with the lid 130 on the lower side. It has a storage part 131.
[0041] 蓋体 130は,中心部に向力つて次第に高くなる略円錐状の形態を有し,頂上部に は,排気部 130aが設けられている。処理室 S内の雰囲気は,排気部 130aから均一 に排気される。 [0041] The lid 130 has a substantially conical shape that gradually increases toward the center, and an exhaust part 130a is provided at the top. The atmosphere in the processing chamber S is uniformly exhausted from the exhaust part 130a.
[0042] 熱板収容部 131の中央には,ウェハ Wを載置して加熱する熱処理板としての熱板 [0042] In the center of the hot plate housing 131, a hot plate as a heat treatment plate for placing and heating the wafer W is provided.
140が設けられている。熱板 140は,厚みのある略円盤形状を有している。 140 is provided. The hot plate 140 has a substantially disk shape with a large thickness.
[0043] 熱板 140は,図 6に示すように複数,例えば 5つの熱板領域 R , R , R , R , Rに [0043] As shown in FIG. 6, a plurality of, for example, five hot plate regions R, R, R, R, R, R
1 2 3 4 5 区画されている。熱板 140は,例えば平面力も見て中心部に位置して円形の熱板領 域 Rと,その周囲を円弧状に 4等分した熱板領域 R〜Rに区画されている。  1 2 3 4 5 Comparted. The hot plate 140 is divided into, for example, a circular hot plate region R and a hot plate region R to R that are circularly divided into four circular arcs around the center of the plate.
1 2 5  1 2 5
[0044] 熱板 140の各熱板領域 R〜Rには,給電により発熱するヒータ 141が個別に内蔵  [0044] In each of the hot plate regions R to R of the hot plate 140, a heater 141 that generates heat by power feeding is individually incorporated.
1 5  1 5
され,各熱板領域 R〜R毎に加熱できる。各熱板領域 R〜Rのヒータ 141の発熱  It can be heated for each hot plate area R ~ R. Heat generation of heater 141 in each hot plate area R to R
1 5 1 5  1 5 1 5
量は,温度制御装置 142により調整されている。温度制御装置 142は,ヒータ 141の 発熱量を調整して,各熱板領域 R〜R  The quantity is adjusted by the temperature controller 142. The temperature controller 142 adjusts the amount of heat generated by the heater 141 so that each of the hot plate regions R to R
1 5の温度を所定の設定温度に制御できる。温 度制御装置 142における温度設定は,例えば後述する温度設定装置 190により行 われる。  The temperature of 15 can be controlled to a predetermined set temperature. The temperature setting in the temperature control device 142 is performed by, for example, a temperature setting device 190 described later.
[0045] 図 4に示すように熱板 140の下方には,ウェハ Wを下方力も支持し,昇降させるた めの第 1の昇降ピン 150が設けられている。第 1の昇降ピン 150は,昇降駆動機構 1 51により上下動できる。熱板 140の中央部付近には,熱板 140を厚み方向に貫通す る貫通孔 152が形成されており,第 1の昇降ピン 150は,熱板 140の下方から上昇し て貫通孔 152を通過し,熱板 140の上方に突出できる。 As shown in FIG. 4, below the hot plate 140, there are provided first raising / lowering pins 150 for supporting the wafer W with a downward force and raising / lowering it. The first elevating pin 150 can be moved up and down by the elevating drive mechanism 151. Near the center of the hot plate 140, the hot plate 140 penetrates in the thickness direction. The first elevating pin 150 can rise from below the hot plate 140, pass through the through hole 152, and protrude above the hot plate 140.
[0046] 熱板収容部 131は,熱板 140を収容して熱板 140の外周部を保持する環状の保 持部材 160と,その保持部材 160の外周を囲む略筒状のサポートリング 161を有して いる。サポートリング 161の上面には,処理室 S内に向けて例えば不活性ガスを噴出 する吹き出し口 161aが形成されており,この吹き出し口 161aから不活性ガスを噴出 することにより,処理室 S内をパージすることができる。また,サポートリング 161の外 方には,熱板収容部 131の外周となる円筒状のケース 162が設けられている。  [0046] The hot plate accommodating portion 131 includes an annular holding member 160 that accommodates the hot plate 140 and holds the outer peripheral portion of the hot plate 140, and a substantially cylindrical support ring 161 that surrounds the outer periphery of the holding member 160. Have. On the upper surface of the support ring 161, for example, a blow-out port 161a for injecting an inert gas is formed toward the inside of the processing chamber S. By injecting the inert gas from the blow-out port 161a, the inside of the processing chamber S is formed. Can be purged. In addition, a cylindrical case 162 serving as an outer periphery of the hot plate accommodating portion 131 is provided outside the support ring 161.
[0047] 加熱部 121に隣接する冷却部 122には,例えばウェハ Wを載置して冷却する冷却 板 170が設けられている。冷却板 170は,例えば図 5に示すように略方形の平板形 状を有し,加熱部 121側の端面が円弧状に湾曲している。図 4に示すように冷却板 1 70の内部には,例えばペルチェ素子などの冷却部材 170aが内蔵されており,冷却 板 170を所定の設定温度に調整できる。  [0047] In the cooling unit 122 adjacent to the heating unit 121, for example, a cooling plate 170 for mounting and cooling the wafer W is provided. The cooling plate 170 has, for example, a substantially rectangular flat plate shape as shown in FIG. 5, and the end surface on the heating unit 121 side is curved in an arc shape. As shown in FIG. 4, a cooling member 170a such as a Peltier element is built in the cooling plate 170, and the cooling plate 170 can be adjusted to a predetermined set temperature.
[0048] 冷却板 170は,加熱部 121側に向かって延伸するレール 171に取付けられている 。冷却板 170は,駆動部 172によりレール 171上を移動できる。冷却板 170は,加熱 部 121側の熱板 140の上方まで移動できる。  [0048] The cooling plate 170 is attached to a rail 171 extending toward the heating unit 121 side. The cooling plate 170 can be moved on the rail 171 by the driving unit 172. The cooling plate 170 can move to above the heating plate 140 on the heating unit 121 side.
[0049] 冷却板 170には,例えば図 5に示すように X方向に沿った 2本のスリット 173が形成 されている。スリット 173は,冷却板 170の加熱部 121側の端面力も冷却板 170の中 央部付近まで形成されている。このスリット 173により,加熱室 121側に移動した冷却 板 170と,熱板 140上に突出した第 1の昇降ピン 150との干渉が防止される。図 4に 示すように冷却部 122内のスリット 173の下方には,第 2の昇降ピン 174が設けられ ている。第 2の昇降ピン 174は,昇降駆動部 175によって昇降できる。第 2の昇降ピン 174は,冷却板 170の下方から上昇してスリット 173を通過し,冷却板 170の上方に 突出できる。  In the cooling plate 170, for example, as shown in FIG. 5, two slits 173 along the X direction are formed. The slit 173 is formed so that the end surface force on the heating unit 121 side of the cooling plate 170 is also close to the center of the cooling plate 170. The slit 173 prevents interference between the cooling plate 170 moved to the heating chamber 121 side and the first lifting pins 150 protruding on the heating plate 140. As shown in FIG. 4, a second lifting pin 174 is provided below the slit 173 in the cooling section 122. The second raising / lowering pin 174 can be raised and lowered by the raising / lowering drive unit 175. The second lifting pin 174 can rise from below the cooling plate 170, pass through the slit 173, and protrude above the cooling plate 170.
[0050] 図 5に示すように冷却板 170を挟んだ筐体 120の両側面には,ウェハ Wを搬入出 するための搬入出口 180が形成されている。  As shown in FIG. 5, loading / unloading ports 180 for loading / unloading the wafer W are formed on both side surfaces of the casing 120 with the cooling plate 170 interposed therebetween.
[0051] 以上のように構成された PEB装置 84では,先ず,搬入出口 180からウェハ Wが搬 入され,冷却板 170上に載置され,当該冷却板 170が移動して,ウェハ Wが熱板 14 0上に移動される。第 1の昇降ピン 150によって,ウェハ Wが熱板 140上に載置され て,ウェハ Wが加熱される。そして,所定時間経過後,ウェハ Wが再び熱板 140から 冷却板 170に受け渡され冷却され,当該冷却板 170から搬入出口 180を通じて PEB 装置 84の外部に搬出されて一連の熱処理が終了する。 [0051] In the PEB apparatus 84 configured as described above, first, a wafer W is loaded from the loading / unloading port 180 and placed on the cooling plate 170, the cooling plate 170 moves, and the wafer W is heated. Board 14 Moved up by 0. The first lifting pins 150 place the wafer W on the hot plate 140 and heat the wafer W. Then, after a predetermined time has passed, the wafer W is again transferred from the hot plate 140 to the cooling plate 170 and cooled, and is transferred from the cooling plate 170 to the outside of the PEB apparatus 84 through the loading / unloading port 180, and a series of heat treatments is completed.
[0052] 次に,上記 PEB装置 84の熱板 140の温度設定を行う温度設定装置 190の構成に ついて説明する。例えば温度設定装置 190は,例えば CPUやメモリなどを備えた汎 用コンピュータにより構成され,例えば図 4及び図 6に示すように熱板 140の温度制 御装置 142に接続されて 、る。  [0052] Next, the configuration of the temperature setting device 190 for setting the temperature of the hot plate 140 of the PEB device 84 will be described. For example, the temperature setting device 190 is composed of, for example, a general-purpose computer equipped with a CPU, a memory, etc., and is connected to the temperature control device 142 of the hot plate 140 as shown in FIGS. 4 and 6, for example.
[0053] 温度設定装置 190は,例えば図 7に示すように各種プログラムを実行する演算部 2 00と,例えば温度設定のための各種情報を入力する入力部 201と,温度補正テー ブルなどの各種情報を格納するデータ格納部 202と,温度設定のための各種プログ ラムを格納するプログラム格納部 203と,熱板 140の温度設定を変更するために温 度制御装置 142と通信する通信部 204などを備えている。  [0053] The temperature setting device 190 includes, for example, an arithmetic unit 200 that executes various programs as shown in FIG. 7, an input unit 201 that inputs various information for temperature setting, and various types of temperature correction tables. A data storage unit 202 that stores information, a program storage unit 203 that stores various programs for temperature setting, a communication unit 204 that communicates with the temperature controller 142 to change the temperature setting of the heat plate 140, etc. It has.
[0054] 例えばデータ格納部 202には,例えば温度補正テーブル Mが格納されている。温 度補正テーブル Mは,例えば熱板 140の各熱板領域 R〜Rの温度補正値が,熱処  For example, the data storage unit 202 stores, for example, a temperature correction table M. In the temperature correction table M, for example, the temperature correction values of the hot plate regions R to R of the hot plate 140 are the heat treatment values.
1 5  1 5
理温度とレジスト液の種類の組み合わせにより定まる処理レシピ毎に設定されている 。つまり,熱処理温度又はレジスト液の種類のいずれかが異なる処理レシピに対して は,異なる温度補正値が設定されている。例えば図 8に示すように,温度補正テープ ル Mは,加熱温度又はレジスト液が異なる処理レシピ H (加熱温度 T1,レジスト液 B1 ) ,処理レシピ 1 (加熱温度 T1,レジスト液 B2) ,処理レシピ J (加熱温度 T2,レジスト液 B1) ,処理レシピ K (加熱温度 T2,レジスト液 B2)がある場合,それらの各処理レシピ H〜K毎に,各熱板領域 R〜Rの温度補正値が設定されている。この各温度補正  It is set for each processing recipe determined by the combination of the processing temperature and the type of resist solution. In other words, different temperature correction values are set for processing recipes that differ in either the heat treatment temperature or the type of resist solution. For example, as shown in Fig. 8, the temperature compensation table M has processing recipes H (heating temperature T1, resist solution B1), processing recipe 1 (heating temperature T1, resist solution B2), processing recipes with different heating temperatures or resist solutions. If J (heating temperature T2, resist solution B1) and processing recipe K (heating temperature T2, resist solution B2) are present, the temperature correction value for each hot plate region R to R is determined for each of these processing recipes H to K. Is set. Each temperature correction
1 5  1 5
値は,例えば塗布現像処理システム 1にお 、て予め行われたウェハ処理により求め られ,ウェハ w上に最終的に形成されるレジストパターンの線幅がウェハ面内で均一 になるように定められる。  The value is obtained, for example, by wafer processing performed in advance in the coating and developing processing system 1, and is determined so that the line width of the resist pattern finally formed on the wafer w is uniform within the wafer surface. .
[0055] プログラム格納部 203には,例えば塗布現像処理システム 1においてウェハ Wの処 理レシピが変更された際に,温度補正テーブル Mに基づいて,熱板 140の各熱板領 域 R〜Rの温度補正値を導出し,当該温度補正値に基づいて,温度制御装置 142 の既存の温度設定を変更するプログラム Pが格納されている。なお,温度設定装置 1 90の機能を実現するためのプログラムは,コンピュータ読み取り可能な記録媒体によ り温度設定装置 190にインストールされたものであってもよい。 [0055] In the program storage unit 203, for example, when the processing recipe of the wafer W is changed in the coating and developing processing system 1, each of the hot plate areas R to R of the hot plate 140 is based on the temperature correction table M. Temperature correction value is derived, and based on the temperature correction value, the temperature control device 142 Program P is stored to change the existing temperature setting. Note that the program for realizing the functions of the temperature setting device 190 may be installed in the temperature setting device 190 by a computer-readable recording medium.
[0056] 次に,以上のように構成された温度設定装置 190による温度設定の変更プロセス について説明する。先ず,例えば入力部 201において新たな処理レシピが選択され 入力される。次にプログラム Pにより,温度補正テーブル Mから,新たに選択された処 理レシピに対応する各熱板領域 R Next, a temperature setting changing process by the temperature setting device 190 configured as described above will be described. First, for example, a new processing recipe is selected and input in the input unit 201. Next, each hot plate region R corresponding to the newly selected processing recipe from the temperature correction table M is programmed by program P.
1〜Rの温度補正値が導出される。そして,各熱板 5  A temperature correction value of 1 to R is derived. And each hot plate 5
領域 R〜Rの新たな温度補正値から各熱板領域 R〜Rの新たな設定温度が導出 される。この新たな設定温度は,例えば選択された処理レシピにおける加熱温度と各 温度補正値とを加算することにより算出される。そして,新たな設定温度が導出される と,その情報が通信部 204から温度制御装置 142に出力され,温度制御装置 142に おける熱板 140の各熱板領域 R  From the new temperature correction values for the regions R to R, new set temperatures for the hot plate regions R to R are derived. This new set temperature is calculated, for example, by adding the heating temperature and each temperature correction value in the selected processing recipe. When a new set temperature is derived, the information is output from the communication unit 204 to the temperature control device 142, and each hot plate region R of the hot plate 140 in the temperature control device 142 is output.
1〜Rの温度設定が変更される。  The temperature setting from 1 to R is changed.
5  Five
[0057] 以上の実施の形態によれば,熱板 140の各熱板領域 R  [0057] According to the above embodiment, each hot plate region R of hot plate 140
1〜Rの温度補正値が,加 5  Temperature compensation values from 1 to R are
熱温度及びレジスト液により定まる処理レシピ毎に設定されているので,常に,処理 レシピに応じた最適な面内温度でウェハ Wを熱処理することができ,レジストパター ンの線幅のウェハ面内の均一性を確保できる。  Since it is set for each processing recipe determined by the heat temperature and the resist solution, the wafer W can always be heat-treated at the optimum in-plane temperature according to the processing recipe, and the wafer width within the resist pattern line width can be obtained. Uniformity can be ensured.
[0058] 以上の実施の形態では,熱処理温度とレジスト液の種類の組み合わせによって定 まる処理レシピ毎に温度補正値が設定されていたが,さらに,ウエノ、 Wの状態によつ て定まる処理レシピ毎に温度補正値が設定されてもよい。ウェハ Wの状態には,例え ばレジストパターンが形成されるウェハ Wの下地膜の層数,膜質,膜厚,ウェハ Wの 反り状態などが含まれる。したがって,温度補正値は,熱処理温度及びレジスト液の 種類と,下地膜の層数,膜質,膜厚,ウェハ反り状態のうちの少なくとも一つ以上の いずれかとの組み合わせによって定まる処理レシピ毎に設定されるようにしてもよい。  In the above embodiment, the temperature correction value is set for each processing recipe determined by the combination of the heat treatment temperature and the type of the resist solution, but the processing recipe determined by the state of Weno and W is further set. A temperature correction value may be set every time. The state of the wafer W includes, for example, the number of base films of the wafer W on which a resist pattern is formed, the film quality, the film thickness, the warp state of the wafer W, and the like. Therefore, the temperature correction value is set for each processing recipe determined by a combination of the heat treatment temperature and the type of resist solution and at least one of the number of undercoat layers, film quality, film thickness, and wafer warpage. You may make it do.
[0059] 以上の実施の形態では, PEB装置 84における熱板 140の温度設定について説明 したが,同じポストェクスポージャーべ一キングが行われる他の PEB装置 85〜89の 熱板の温度設定も同様に行われる。例えばこの他の PEB装置 85〜89における熱板 の温度設定は, PEB装置 84と同じ温度設定装置 190を用いて行ってもよい。  [0059] In the above embodiment, the temperature setting of the hot plate 140 in the PEB device 84 has been described, but the temperature setting of the hot plate of the other PEB devices 85 to 89 in which the same post-exposure baking is performed is the same. To be done. For example, the temperature setting of the hot plate in the other PEB devices 85 to 89 may be performed using the same temperature setting device 190 as that of the PEB device 84.
[0060] ところで,上記実施の形態のように,ポストェクスポージャーべ一キングが複数の PE B装置 84〜89を用いて行われる場合,各々の PEB装置 84〜89の熱処理を経て形 成されるレジストパターンの線幅の差を低減する必要がある。以下,この PEB装置 84 〜89間における線幅差が低減されるように,上記実施の形態における温度補正テー ブル Mの各温度補正値を設定する方法について説明する。図 9は,かかる温度補正 値の設定方法のフローを示す。 [0060] By the way, as in the above embodiment, post exposure baking is performed by a plurality of PEs. When using the B equipment 84-89, it is necessary to reduce the difference in the line width of the resist pattern formed through the heat treatment of each PEB equipment 84-89. Hereinafter, a method for setting each temperature correction value of the temperature correction table M in the above-described embodiment so as to reduce the line width difference between the PEB devices 84 to 89 will be described. Figure 9 shows the flow of how to set such temperature compensation values.
[0061] 先ず,塗布現像処理システム 1において複数枚のウェハ Wが各 PEB装置 84〜89 を通るように処理され,各ウェハ Wに最終的に形成されたレジストパターンのウェハ 面内の線幅が測定される(図 9の工程 Ql)。この線幅測定は,ウェハ W面内の複数 個所,例えば熱板 140の各領域に対応するウェハ領域毎に行われる。なお,この線 幅測定は,塗布現像処理システム 1内に搭載されて!ヽる線幅測定装置で行われても ょ ヽし,塗布現像処理システム 1の外部に設置された線幅測定装置で行われてもよ い。 First, in the coating and developing treatment system 1, a plurality of wafers W are processed so as to pass through the PEB apparatuses 84 to 89, and the line width in the wafer surface of the resist pattern finally formed on each wafer W is determined. Measured (process Ql in Fig. 9). This line width measurement is performed at a plurality of locations on the wafer W surface, for example, for each wafer region corresponding to each region of the hot plate 140. This line width measurement is installed in the coating and developing treatment system 1! This may be done with a line width measuring device, or with a line width measuring device installed outside the coating and developing treatment system 1.
[0062] 続いて,前記線幅測定の結果に基づいて,各 PEB装置 84〜89毎に,ウェハ面内 の線幅平均値 Aが算出される。また,この各 PEB装置 84〜89の線幅平均値 Aから, 総ての PEB装置 84〜89の線幅平均値 Aの総線幅平均値 B (目標線幅値)が算出さ れる(図 9の工程 Q2)。次に,各 PEB装置 84〜89毎に,図 10に示すような線幅平均 値 Aと総線幅平均値 Bとの線幅差 Δ CDが算出され,各 PEB装置 84〜89の線幅差 A CDが,熱処理時の温度差に換算される(図 9の工程 Q3)。この換算温度差 ΔΤは ,例えば 1°Cあたりの線幅変動量を示すレジスト感度を Hとした場合, ΔΤ=—( Δ C D) ZHにより算出される。そして,各 PEB装置 84〜89毎に,換算温度差 ΔΤを,熱 板 140の各熱板領域 R〜Rの既存の温度補正値に加算することにより,新しい温度  Subsequently, based on the result of the line width measurement, an average line width value A within the wafer surface is calculated for each of the PEB apparatuses 84 to 89. Also, from the average line width A of the PEB devices 84 to 89, the total average line width B (target line width value) of the average line widths A of all the PEB devices 84 to 89 is calculated (Fig. 9 steps Q2). Next, for each PEB device 84 to 89, the line width difference Δ CD between the average line width A and the total average line width B as shown in Fig. 10 is calculated, and the line width of each PEB device 84 to 89 is calculated. The difference A CD is converted into the temperature difference during heat treatment (process Q3 in Fig. 9). This converted temperature difference ΔΤ is calculated by ΔΤ = — (ΔC D) ZH, where H is the resist sensitivity indicating the amount of line width variation per 1 ° C, for example. Then, for each PEB device 84 to 89, the converted temperature difference ΔΤ is added to the existing temperature correction value for each hot plate region R to R of the hot plate 140 to obtain a new temperature.
1 5  1 5
補正値が設定される(図 9の工程 Q4)。  A correction value is set (step Q4 in Fig. 9).
[0063] なお,温度補正値の設定プロセスにおける工程 Q2〜工程 Q4は,例えば温度設定 装置 190のプログラム格納部 203に格納されたプログラムを実行することにより実現 されてちょい。 [0063] Steps Q2 to Q4 in the temperature correction value setting process may be realized, for example, by executing a program stored in the program storage unit 203 of the temperature setting device 190.
[0064] 上記実施の形態によれば,各 PEB装置 84〜89で処理されたレジストパターンの線 幅平均値 Aが, 目標線幅値である同じ総線幅平均値 Bになるように,各 PEB装置 84 〜89の温度補正値が修正され設定されるので, PEB装置 84〜89間における線幅 の差が低減される。 [0064] According to the above embodiment, each line width average value A of the resist pattern processed by each PEB apparatus 84 to 89 is set to the same total line width average value B that is the target line width value. Since the temperature compensation values of PEB devices 84 to 89 are corrected and set, the line width between PEB devices 84 to 89 The difference is reduced.
[0065] 上記例において, 目標線幅値は,各 PEB装置の線幅平均値 Aから算出された総 線幅平均値 Bに設定されていたが,他の任意の値を設定してもよい。例えばこの目 標線幅値は,例えば各処理レシピにお 、て要求されて 、る線幅寸法が設定されても よい。  [0065] In the above example, the target line width value is set to the total line width average value B calculated from the line width average value A of each PEB device, but any other value may be set. . For example, the target line width value may be requested, for example, in each processing recipe, and the line width dimension may be set.
[0066] 以上の実施の形態は,既存の温度補正値の設定を変更する例であつたが,温度補 正値が未設定の状態で,初めて温度補正値を設定するときにも,上述の温度補正値 の設定プロセスにより,温度補正値を設定してもよい。  The above embodiment is an example of changing the setting of the existing temperature correction value. However, when the temperature correction value is set for the first time in a state where the temperature correction value is not set, the above-described embodiment is used. The temperature correction value may be set by the temperature correction value setting process.
[0067] 以上,本発明の実施の形態の一例について説明したが,本発明はこの例に限らず 種々の態様を採りうるものである。例えば上記実施の形態において,温度設定された 熱板 140は, 5つの領域に分割されていたが,その数は任意に選択できる。また,上 記実施の形態は, PEB装置 84の熱板 140を温度設定する例であつたが,熱板を備 えたプリべ一キング装置やポストべ一キング装置などの他の加熱処理装置や,ゥェ ハ Wを載置して冷却する冷却板を備えた冷却処理装置にも本発明は適用できる。さ らに,本発明は,ウェハ以外の例えば FPD (フラットパネルディスプレイ),フォトマス ク用のマスクレチクルなどの他の基板を熱処理する熱処理板の温度設定にも適用で きる。  As described above, the example of the embodiment of the present invention has been described, but the present invention is not limited to this example and can take various forms. For example, in the above embodiment, the temperature-set hot plate 140 is divided into five regions, but the number can be arbitrarily selected. The above embodiment is an example of setting the temperature of the hot plate 140 of the PEB device 84, but other heat treatment devices such as a pre-baking device and a post-baking device equipped with a hot plate, The present invention can also be applied to a cooling processing apparatus having a cooling plate on which the wafer W is placed and cooled. Furthermore, the present invention can also be applied to the temperature setting of a heat treatment plate for heat treatment of other substrates such as FPD (Flat Panel Display) and photomask mask reticles other than wafers.
産業上の利用可能性  Industrial applicability
[0068] 本発明は,レジストパターンの線幅が基板面内で均一に形成されるように,熱処理 板の温度設定を行う際に有用である。 The present invention is useful when setting the temperature of the heat treatment plate so that the line width of the resist pattern is uniformly formed in the substrate surface.

Claims

請求の範囲 The scope of the claims
[1] 基板を載置して熱処理する熱処理板の温度設定方法であって,  [1] A method for setting the temperature of a heat treatment plate on which a substrate is placed and heat treated,
前記熱処理は,基板上にレジストパターンを形成するフォトリソグラフィー工程におい て行われるものであり,  The heat treatment is performed in a photolithography process for forming a resist pattern on the substrate,
前記熱処理板は,複数の領域に区画されて当該領域毎に温度設定され, さらに前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整するため の温度補正値が設定され,  The heat treatment plate is divided into a plurality of regions, the temperature is set for each region, and a temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate is set for each region of the heat treatment plate. ,
少なくとも熱処理温度とレジスト液の種類の組み合わせにより定まる処理レシピ毎に, 前記各領域の温度補正値が設定される。  A temperature correction value for each region is set for each processing recipe determined by a combination of at least the heat treatment temperature and the type of resist solution.
[2] 請求項 1に記載の熱処理板の温度設定方法にお!、て,  [2] The temperature setting method for the heat-treated plate according to claim 1!
前記フォトリソグラフィー工程中の前記熱処理に,複数の熱処理板が用いられており 前記各熱処理板において熱処理されて形成されたレジストパターンの線幅の基板面 内の平均値が算出され,当該各熱処理板における線幅平均値が各熱処理板に共通 の目標線幅値に近づくように,前記各熱処理板における各領域の温度補正値が定 められる。  A plurality of heat treatment plates are used for the heat treatment in the photolithography process, and an average value in a substrate plane of a line width of a resist pattern formed by heat treatment on each heat treatment plate is calculated, and each heat treatment plate is calculated. The temperature correction value for each region in each heat-treated plate is determined so that the average line width value at is close to the target line width value common to each heat-treated plate.
[3] 請求項 2に記載の熱処理板の温度設定方法にお 、て,  [3] In the temperature setting method for the heat-treated plate according to claim 2,
前記各熱処理板における線幅平均値と前記目標線幅値との線幅差が,熱処理の温 度差に換算され,当該換算温度差により既存の温度補正値が修正されることによつ て,前記各熱処理板の各領域の温度補正値が算出される。  The line width difference between the average line width value and the target line width value in each heat treatment plate is converted into a temperature difference in heat treatment, and the existing temperature correction value is corrected by the converted temperature difference. The temperature correction value of each region of each heat treatment plate is calculated.
[4] 請求項 3に記載の熱処理板の温度設定方法にお 、て, [4] In the temperature setting method for the heat-treated plate according to claim 3,
前記換算温度差を ΔΤ,前記線幅平均値を A,前記目標線幅値 B, 1°Cあたりの線幅 変動量を示すレジスト感度を Hとした場合,  When the converted temperature difference is ΔΤ, the average line width is A, the target line width is B, and the resist sensitivity indicating the amount of line width variation per 1 ° C is H,
換算温度差 ΔΤは, ΔΤ=— (Α—Β) /Η で示される式により算出され, 当該換算温度差を既存の温度補正値に加えることにより,前記各熱処理板の各領域 の温度補正値が算出される。  The converted temperature difference ΔΤ is calculated by the following formula: ΔΤ = — (Α—Α) / Η, and by adding the converted temperature difference to the existing temperature correction value, the temperature correction value of each region of each heat treatment plate Is calculated.
[5] 請求項 2に記載の熱処理板の温度設定方法にお 、て, [5] In the method for setting the temperature of the heat-treated plate according to claim 2,
前記目標線幅値は,総ての熱処理板につ!、ての前記線幅平均値の平均値である。 The target line width value is an average value of the average line width values for all the heat-treated plates.
[6] 請求項 1に記載の熱処理板の温度設定方法にお!、て, [6] The temperature setting method for the heat-treated plate according to claim 1!
前記熱処理は,露光処理後で現像処理前に行われる加熱処理である。  The heat treatment is a heat treatment performed after the exposure process and before the development process.
[7] 基板を載置して熱処理する熱処理板の温度設定装置であって,  [7] A temperature setting device for a heat treatment plate on which a substrate is placed and heat treated,
前記熱処理は,基板上にレジストパターンを形成するフォトリソグラフィー工程におい て行われるものであり,  The heat treatment is performed in a photolithography process for forming a resist pattern on the substrate.
前記熱処理板は,複数の領域に区画されて当該領域毎に温度設定可能なものであ り,かつ前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整するた めの温度補正値を設定可能なものであり,  The heat treatment plate is divided into a plurality of regions, and the temperature can be set for each region, and the in-plane temperature of the substrate on the heat treatment plate is adjusted for each region of the heat treatment plate. Temperature compensation value can be set,
少なくとも熱処理温度とレジスト液の種類の組み合わせにより定まる処理レシピ毎に, 前記熱処理板における各領域の温度補正値を設定する機能を備えている。  A function of setting a temperature correction value for each region of the heat treatment plate is provided for each treatment recipe determined by a combination of at least the heat treatment temperature and the type of resist solution.
[8] 請求項 7に記載の熱処理板の温度設定装置にお 、て, [8] In the temperature setting device for a heat-treated plate according to claim 7,
前記フォトリソグラフィー工程中の前記熱処理に,複数の熱処理板が用いられており 前記各熱処理板において熱処理されて形成されたレジストパターンの線幅の基板面 内の平均値を算出し,当該各熱処理板における線幅平均値が,各熱処理板に共通 の目標線幅値に近づくように,前記各熱処理板における各領域の温度補正値を定 める機能を備えている。  A plurality of heat treatment plates are used for the heat treatment in the photolithography process, and an average value in a substrate plane of a line width of a resist pattern formed by heat treatment in each heat treatment plate is calculated, and each heat treatment plate is calculated. A function to determine the temperature correction value for each region in each heat-treated plate is provided so that the average line width value at the temperature approaches the target line width value common to each heat-treated plate.
[9] 請求項 8に記載の熱処理板の温度設定装置にお 、て,  [9] In the heat setting plate temperature setting device according to claim 8,
前記各熱処理板における線幅平均値と前記目標線幅値との線幅差を,熱処理の温 度差に換算し,当該換算温度差によって既存の温度補正値を修正することにより, 前記各熱処理板の各領域の温度補正値を算出する機能を備えている。  By converting the line width difference between the average line width value and the target line width value in each heat treatment plate into a temperature difference in heat treatment, and correcting the existing temperature correction value by the converted temperature difference, A function for calculating a temperature correction value for each region of the plate is provided.
[10] 請求項 9に記載の熱処理板の温度設定装置において,  [10] In the temperature setting device for a heat-treated plate according to claim 9,
前記換算温度差を ΔΤ,前記線幅平均値を A,前記目標線幅値 B, 1°Cあたりの線幅 変動量を示すレジスト感度を Hとした場合,  When the converted temperature difference is ΔΤ, the average line width is A, the target line width is B, and the resist sensitivity indicating the amount of line width variation per 1 ° C is H,
前記換算温度差 ΔΤを, ΔΤ=—(A— B) ZH で示される式により算出し,当該換 算温度差を既存の温度補正値に加えることにより,前記各熱処理板の各領域の温度 補正値を算出する機能を備えている。  The calculated temperature difference ΔΤ is calculated by the equation expressed as ΔΤ = — (A−B) ZH, and the converted temperature difference is added to the existing temperature correction value, thereby correcting the temperature of each region of each heat treatment plate. It has a function to calculate values.
[11] 請求項 8に記載の熱処理板の温度設定装置において, 前記目標線幅値は,総ての熱処理板につ!、ての前記線幅平均値の平均値である。 [11] In the temperature setting device for a heat-treated plate according to claim 8, The target line width value is an average value of the average line width values for all the heat-treated plates.
[12] 請求項 7に記載の熱処理板の温度設定装置において,  [12] In the temperature setting device for a heat-treated plate according to claim 7,
前記熱処理は,露光処理後で現像処理前に行われる加熱処理である。  The heat treatment is a heat treatment performed after the exposure process and before the development process.
[13] レジストパターンを形成するフォトリソグラフィー工程にぉ 、て行われる基板の熱処理 を熱処理板で行うための温度設定装置に使用されるプログラムであって, 前記熱処理板は複数の領域に区画され,かつ当該領域毎に温度設定可能なもので あり,かつ前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整する ための温度補正値を設定可能なものであり,  [13] A program for use in a temperature setting device for performing heat treatment of a substrate performed by a heat treatment plate in a photolithography process for forming a resist pattern, the heat treatment plate being partitioned into a plurality of regions, In addition, the temperature can be set for each region, and the temperature correction value for adjusting the in-plane temperature of the substrate on the heat treatment plate can be set for each region of the heat treatment plate.
前記プログラムは,少なくとも熱処理温度とレジスト液の種類の組み合わせにより定ま る処理レシピ毎に,前記熱処理板における各領域の温度補正値を設定する機能をコ ンピュータに実行させるものである。  The program causes a computer to execute a function of setting a temperature correction value for each region of the heat treatment plate for each treatment recipe determined by a combination of at least the heat treatment temperature and the type of resist solution.
[14] レジストパターンを形成するフォトリソグラフィー工程にぉ 、て行われる基板の熱処理 を熱処理板で行うための温度設定装置に使用されるプログラムを記録した,コンビュ ータ読み取り可能な記録媒体であって, [14] A computer-readable recording medium recording a program used in a temperature setting device for performing heat treatment of a substrate using a heat treatment plate in a photolithography process for forming a resist pattern. ,
前記熱処理板は複数の領域に区画され,かつ当該領域毎に温度設定可能なもので あり,かつ前記熱処理板の各領域毎に,熱処理板上の基板の面内温度を調整する ための温度補正値を設定可能なものであり,  The heat treatment plate is divided into a plurality of regions, and the temperature can be set for each region, and the temperature correction for adjusting the in-plane temperature of the substrate on the heat treatment plate for each region of the heat treatment plate Value can be set,
前記プログラムは,少なくとも熱処理温度とレジスト液の種類の組み合わせにより定ま る処理レシピ毎に,前記熱処理板における各領域の温度補正値を設定する機能をコ ンピュータに実行させるものである。  The program causes a computer to execute a function of setting a temperature correction value for each region of the heat treatment plate for each treatment recipe determined by a combination of at least the heat treatment temperature and the type of resist solution.
PCT/JP2006/302060 2005-02-14 2006-02-07 Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program WO2006085527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005035933A JP2006222354A (en) 2005-02-14 2005-02-14 Method for setting temperature of heat treatment plate, equipment for setting temperature of heat treatment, program, and program-recorded computer-readable recording medium
JP2005-035933 2005-02-14

Publications (1)

Publication Number Publication Date
WO2006085527A1 true WO2006085527A1 (en) 2006-08-17

Family

ID=36793099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302060 WO2006085527A1 (en) 2005-02-14 2006-02-07 Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program

Country Status (3)

Country Link
JP (1) JP2006222354A (en)
TW (1) TW200633566A (en)
WO (1) WO2006085527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957828B2 (en) 2007-04-20 2011-06-07 Tokyo Electron Limited Temperature setting method for thermal processing plate, temperature setting apparatus for thermal processing plate, and computer-readable storage medium
US8041525B2 (en) 2006-09-25 2011-10-18 Tokyo Electron Limited Substrate measuring method, computer-readable recording medium recording program thereon, and substrate measuring system
US8135487B2 (en) 2007-04-20 2012-03-13 Tokyo Electron Limited Temperature setting method and apparatus for a thermal processing plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065082B2 (en) * 2008-02-25 2012-10-31 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing system
JP5162314B2 (en) * 2008-04-25 2013-03-13 東京エレクトロン株式会社 Substrate processing method, program, computer storage medium, and substrate processing system
JP5208800B2 (en) * 2009-02-17 2013-06-12 東京エレクトロン株式会社 Substrate processing system and substrate transfer method
JP5174098B2 (en) * 2010-08-09 2013-04-03 東京エレクトロン株式会社 Heat treatment method, recording medium recording program for executing heat treatment method, and heat treatment apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349018A (en) * 1999-06-08 2000-12-15 Nec Corp Bake furnace for photoresist
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2002184682A (en) * 2000-12-19 2002-06-28 Tokyo Electron Ltd Method and device for heat treatment, and pattern formation method
JP2003209050A (en) * 2002-01-17 2003-07-25 Tokyo Electron Ltd Substrate treatment method and substrate treatment apparatus
JP2004235469A (en) * 2003-01-30 2004-08-19 Tokyo Electron Ltd Heat treatment method and heat treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349018A (en) * 1999-06-08 2000-12-15 Nec Corp Bake furnace for photoresist
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2002184682A (en) * 2000-12-19 2002-06-28 Tokyo Electron Ltd Method and device for heat treatment, and pattern formation method
JP2003209050A (en) * 2002-01-17 2003-07-25 Tokyo Electron Ltd Substrate treatment method and substrate treatment apparatus
JP2004235469A (en) * 2003-01-30 2004-08-19 Tokyo Electron Ltd Heat treatment method and heat treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041525B2 (en) 2006-09-25 2011-10-18 Tokyo Electron Limited Substrate measuring method, computer-readable recording medium recording program thereon, and substrate measuring system
US7957828B2 (en) 2007-04-20 2011-06-07 Tokyo Electron Limited Temperature setting method for thermal processing plate, temperature setting apparatus for thermal processing plate, and computer-readable storage medium
US8135487B2 (en) 2007-04-20 2012-03-13 Tokyo Electron Limited Temperature setting method and apparatus for a thermal processing plate

Also Published As

Publication number Publication date
JP2006222354A (en) 2006-08-24
TW200633566A (en) 2006-09-16

Similar Documents

Publication Publication Date Title
JP4699283B2 (en) Heat treatment plate temperature control method, program, and heat treatment plate temperature control device
JP4509820B2 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting device, program, and computer-readable recording medium recording the program
JP4891139B2 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting device, and computer-readable storage medium
WO2006087938A1 (en) Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program
TWI743267B (en) Thermal treatment apparatus, thermal treatment method, and computer storage medium
WO2006085527A1 (en) Temperature setting method for heat treating plate, temperature setting device for heat treating plate, program and computer-readable recording medium recording program
US20120031892A1 (en) Heat Treatment Method, Recording Medium Having Recorded Program for Executing Heat Treatment Method, and Heat Treatment Apparatus
KR101072282B1 (en) Substrate-processing apparatus, substrate-processing method, substrate-processing program, and computer-readable recording medium recorded with such program
JP4970882B2 (en) Substrate measurement method, program, computer-readable recording medium storing the program, and substrate measurement system
US7910863B2 (en) Temperature setting method of thermal processing plate, computer-readable recording medium recording program thereon, and temperature setting apparatus for thermal processing plate
JP2006237262A (en) Heat treatment apparatus
JP4664232B2 (en) Heat treatment plate temperature setting method, program, computer-readable recording medium storing the program, and heat treatment plate temperature setting device
TWI401547B (en) A substrate processing method, and a substrate processing system
JP4664233B2 (en) Heat treatment plate temperature setting method, program, computer-readable recording medium storing the program, and heat treatment plate temperature setting device
US7715952B2 (en) Temperature setting of thermal processing plate using zernike coefficients
JP4969304B2 (en) Heat treatment plate temperature setting method, heat treatment plate temperature setting device, and computer-readable storage medium
JP4920317B2 (en) Substrate processing method, program, computer-readable recording medium, and substrate processing system
JP2008300777A (en) Treatment method of substrate, treatment apparatus of substrate, and computer-readable storage medium
WO2013190812A1 (en) Method for production of semiconductor device, semiconductor device, and production system for semiconductor device
WO2010150584A1 (en) Substrate treatment method, computer recording medium, and substrate treatment system
WO2011099221A1 (en) Substrate processing method
JP2005166999A (en) Processing method of substrate and method for reducing influence on processing of substrate by fluctuation of exposure quantity or focal position when substrate is exposed
KR101326984B1 (en) Temperature setting method of thermal processing plate, computer-readable recording medium recording program thereon, and temperature setting apparatus for thermal processing plate
KR20200021679A (en) Appparatus and Method for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713203

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713203

Country of ref document: EP