WO2006087931A1 - 繊維強化複合材料及びその製造方法 - Google Patents
繊維強化複合材料及びその製造方法 Download PDFInfo
- Publication number
- WO2006087931A1 WO2006087931A1 PCT/JP2006/301989 JP2006301989W WO2006087931A1 WO 2006087931 A1 WO2006087931 A1 WO 2006087931A1 JP 2006301989 W JP2006301989 W JP 2006301989W WO 2006087931 A1 WO2006087931 A1 WO 2006087931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- reinforced composite
- composite material
- producing
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/06—Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/245—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/045—Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
Definitions
- Fiber-reinforced composite material and method for producing the same
- the present invention relates to a fiber reinforced composite material comprising a fiber assembly and a matrix material impregnated in the fiber assembly, and a method for producing the same.
- a glass fiber reinforced resin in which a glass fiber is impregnated with rosin is known. Normally, this glass fiber reinforced resin is opaque, but a method of obtaining a transparent glass fiber reinforced resin by matching the refractive index of glass fiber with the refractive index of matrix resin is disclosed in Patent Document 1. And Patent Document 2.
- Patent Documents 3 and 4 disclose molding materials formed into various shapes such as three-dimensional shapes.
- Bacterial cellulose disclosed in Patent Documents 3 and 4 consists of a single fiber having a fiber diameter of 4 nm, and the fiber diameter is much smaller than the wavelength of visible light, so that refraction of visible light hardly occurs.
- Patent Documents 3 and 4 when bacterial cellulose is used as a composite material with rosin, bacterial cellulose is disaggregated and used. In this way, when a mechanical shear force is applied to a product produced by nocteria using a grinder, etc. In this way, bacterial cellulose adheres to each other and forms a bundle with a large fiber diameter that causes refraction and scattering of visible light. As a result, those using such disaggregated cellulose are inferior in transparency.
- Patent Document 1 Japanese Patent Laid-Open No. 9-207234
- Patent Document 2 JP-A-7-156279
- Patent Document 3 Japanese Patent Application Laid-Open No. 62-36467
- Patent Document 4 JP-A-8-49188
- the present invention is a fiber reinforced composite material comprising a fiber assembly and a matrix material impregnated in the fiber assembly, the fiber content can be sufficiently reduced, and a desired
- An object of the present invention is to provide a fiber-reinforced composite material that can be adjusted to an arbitrary fiber content and a method for producing the same.
- the fiber-reinforced composite material of the present invention is produced by this method.
- FIG. 1 is a graph showing the linear transmittance of the fiber-reinforced composite material obtained in Example 1.
- FIG. 2 is a graph showing the linear transmittance of the fiber-reinforced composite material obtained in Example 2.
- the fiber content in a fiber reinforced composite material comprising a fiber assembly and a matrix material impregnated in the fiber assembly can be sufficiently reduced. Moreover, the fiber content of the fiber reinforced composite material can be easily adjusted to a desired arbitrary value. [0012] That is, when removing water contained in a water-containing fiber assembly such as water-containing bacterial cellulose or water-containing Nano MFC and drying it, freeze-drying is employed, and the operation mechanism as described below is employed. Aggregation can be prevented, and a dry fiber aggregate maintaining a low fiber content equivalent to that of a hydrous fiber aggregate such as hydrous bacterial cellulose or hydrous Nano MFC can be obtained.
- a water-containing fiber assembly such as water-containing bacterial cellulose or water-containing Nano MFC
- freeze-drying is employed, and the operation mechanism as described below is employed. Aggregation can be prevented, and a dry fiber aggregate maintaining a low fiber content equivalent to that of a hydrous fiber aggregate such as hydrous bacterial cellulose or hydrous Nano MFC can be obtained.
- Freeze drying is a method of drying by directly sublimating moisture (solid ice) in a frozen state in a vacuum apparatus equipped with a freezing means.
- a fiber-reinforced composite material having a low fiber content can be obtained by impregnating the dried fiber aggregate with the impregnating liquid and curing it. Further, by cold pressing before freeze-drying the water-containing fiber assembly, the fiber content of the dry fiber assembly can be arbitrarily adjusted, and using this dry fiber assembly, any desired fibers can be adjusted. A fiber-reinforced composite material with a content rate can be produced. In addition, the fiber content of the fiber-reinforced composite material obtained can also be adjusted by cold pressing the fiber assembly after impregnation with the liquid for impregnation. Fiber reinforced composite materials can be manufactured.
- the fiber-reinforced composite material provided by the present invention has the following excellent properties [1] to [5], and shika-masu is a low-hygroscopic and inexpensive fiber with a low fiber content.
- the specific gravity can be lower than that of the glass fiber reinforced resin, it can be reduced in weight by being used as an alternative material in the application field of the glass fiber reinforced resin.
- biodegradable cellulose fiber As the fiber, when it is discarded, it can be processed only according to the processing method of the matrix material, and it is also useful for disposal or recycling.
- the fiber-reinforced composite material of the present invention reinforced with cellulose fibers is that ⁇ instrument linear thermal expansion coefficient shown in the Examples below is greatly changed Nag 10 "5 K _ It can be a fiber reinforced composite material with low linear thermal expansion coefficient of 1 order.
- fibers having an average fiber diameter of 4 to 200 nm are preferably used.
- the fibers may consist of single fibers that are not spaced apart and are sufficiently spaced so that the matrix material enters between them.
- the average fiber diameter is the average diameter of a single fiber.
- the fiber according to the present invention may be a single thread formed by a plurality of (or a large number of) single fibers gathered in a bundle.
- the average fiber diameter is defined as the average diameter of a single yarn.
- Bacterial cellulose consists of the latter yarn.
- the average fiber diameter of the fibers exceeds 200 nm, the wavelength approaches the wavelength of visible light, and refraction of visible light tends to occur at the interface with the matrix material, resulting in a decrease in transparency.
- the upper limit of the average fiber diameter of the fibers used is 200 nm. Fibers having an average fiber diameter of less than 4 nm are difficult to produce. For example, since the single fiber diameter of bacterial cellulose described below suitable as a fiber is about 4 nm, the lower limit of the average fiber diameter of the fibers used in the present invention is 4 nm. .
- the average fiber diameter of the fibers used in the present invention is preferably 4 to: LOOnm, more preferably 4 to 60 nm.
- the average fiber diameter of the fiber is in the range of 200 nm to 200 nm
- fibers having a fiber diameter outside the range of 4 to 200 nm may be contained, but the ratio is 30% by weight or less.
- the fiber diameter of all the fibers is 200 nm or less, particularly lOOnm or less, particularly 60 nm or less.
- the average length of the fibers is preferably lOOnm or more. If the average length of the fibers is shorter than lOOnm, the strength of the fiber-reinforced composite material having a low reinforcing effect may be insufficient.
- the fibers may contain fibers having a fiber length of less than lOOnm, but the proportion is preferably 30% by weight or less.
- Cellulose fibers are cellulose microfibrils constituting the basic skeleton of plant cell walls or the like, or aggregates of unit fibers usually having a fiber diameter of about 4 nm.
- the cellulose fiber preferably has a crystal structure of 40% or more in order to obtain high strength and low thermal expansion.
- Cellulose fibers may be separated from plants, but bacterial cellulose produced by bacterial cellulose is preferred, and in particular, the product from bacteria is treated with alkali to dissolve and remove the bacteria. It is preferable to use the product obtained without disaggregation.
- the organisms that can produce cellulose on the earth are not limited to the plant kingdom, but the ascidians in the animal kingdom, various algae, oomycetes, slime molds, etc. in the protozoan kingdom. It is distributed in a part of soil bacteria. At present, no ability to produce cellulose has been confirmed in the fungal kingdom (fungi).
- fungi fungal kingdom
- acetic acid bacteria Acetopactor (Ace tobacter)
- Acetobacter ace ti Acetobacter subsp.
- Acetobacter xylinum etc.
- the powers listed are not limited to these. It should be noted that two or more organisms producing nocteria cellulose may be used.
- the obtained product contains bacteria and cellulose fibers (bacterial cellulose) that are produced by the bacteria and connected to the bacteria
- the product is taken out from the medium, washed with water, or treated with alkali. By removing the bacteria, water-containing bacterial cellulose that does not contain bacteria can be obtained.
- Examples of the medium include an agar-like solid medium and a liquid medium (culture solution).
- Examples of the culture solution include coconut milk (total nitrogen content 0.7 wt%, lipid 28 wt%) 7 wt% , containing 8 wt% sucrose, culture medium and adjusted to pH 3.0 with acetic acid, glucose 2%, Bacto yeast E click Stra 0.5 wt 0/0, Bacto peptone 0.5 wt 0/0
- Examples of the culture method include the following methods. Acetic acid bacteria such as Acetobacter xylinum FF-88 are inoculated into the coconut milk culture solution. For example, if freeze-dried 88, freeze-dried 88 is statically cultured at 30 ° C for 5 days for primary culture. Obtain a liquid. After removing the gel content of the obtained primary culture solution, the liquid portion was added to the same culture solution as above at a rate of 5% by weight, followed by stationary culture at 30 ° C. for 10 days to obtain the secondary culture solution. obtain. This secondary culture contains about 1% by weight of cellulose fibers.
- Acetic acid bacteria such as Acetobacter xylinum FF-88 are inoculated into the coconut milk culture solution. For example, if freeze-dried 88, freeze-dried 88 is statically cultured at 30 ° C for 5 days for primary culture. Obtain a liquid. After removing the gel content of the obtained primary culture solution, the liquid portion was added to the same culture solution as above at
- a culture solution glucose 2 weight 0/0, Bacto yeast E click Stra 0.5 wt 0/0, Bacto peptone 0.5 wt 0/0, hydrogen phosphate disodium 0.27 weight 0/0, Kuen acid 0.115 wt%, the heptahydrate 0.1 wt% magnesium sulfate, and a method of using a pH 5.
- the SH medium is added to the strain of acetic acid bacteria stored in a freeze-dried state, followed by static culture for 1 week (25-30 ° C). The ability of bacterial cellulose to form on the surface of the culture medium.
- the bacterial cell mouth can be obtained by repeating the process of “adding part of the existing culture medium to the new culture medium and performing static culture for about 7 to 30 days”.
- the bacterial cellulose produced in this way is taken out of the culture solution, and the bacteria remaining in the bacterial cellulose are removed.
- Examples of the method include washing with water or alkali treatment.
- Examples of the alkali treatment for dissolving and removing nocteria include a method in which bacterial cellulose taken out from the culture solution is poured into an alkaline aqueous solution of about 0.01 to 10% by weight for 1 hour or more. When the alkali treatment is performed, the bacterial cellulose is taken out from the alkali treatment solution, sufficiently washed with water, and the alkali treatment solution is removed.
- hydrated bacterial cellulose is usually a water content from 95 to 99.9 weight 0/0, a fiber content of from 0.1 to 5 vol%, average fiber diameter of the three-dimensional intersection structure of a single fiber of about 50nm
- a fiber assembly (hereinafter, bacterial cellulose having a three-dimensional cross structure may be referred to as a “three-dimensional cross-bacterial cellulose structure”) is impregnated with water.
- This "three-dimensional cross-bacterial cellulose structure” means "Bacterial cellulose has a three-dimensional cross-structure, so that it can be handled as a single structure although it is bulky! / It is formed by culturing bacteria producing cellulose fibers in a culture solution as described above.
- the three-dimensional cross-bacterial cellulose structure is cultured in an appropriate shape, that is, a film shape, a plate shape, a block shape, a predetermined shape (for example, a lens shape), etc., It is formed. Therefore, a three-dimensional cross-bacterial cellulose structure having an arbitrary shape can be obtained according to the purpose.
- fibers other than bacterial cellulose treatment using beating and crushing, high-temperature and high-pressure steam treatment, phosphate, etc. on seagrass, sea squirt sac, plant cell walls, etc. It is also possible to use cellulose fibers that have been treated.
- the above-described processing such as beating and crushing is performed by directly applying force to the plant cell wall and seagrass or squirt sac from which the ligne and the like have been removed to separate the fibers.
- This is a treatment method to obtain cellulose fiber.
- a microfibrillated cell in which pulp or the like is processed with a high-pressure homogenizer to be microfibrillated to an average fiber diameter of about 0.1 to 10 ⁇ m.
- Loose fiber MFC
- Nano MFC as aqueous suspension of about 0.01 to 1 weight 0/0, by which is filtered, sheeted.
- the grinding and pulverization treatment can be performed using, for example, a grinder "Pure Fine Mill” manufactured by Kurita Machine Seisakusho.
- This grinder is a stone mill that pulverizes the raw material into ultrafine particles by impact, centrifugal force, and shearing force generated when the raw material passes through the gap between the upper and lower two grinders. Grinding, atomization, dispersion, emulsification, and fibrillation can be performed simultaneously. In addition, grinding or ablation treatment can also be performed using a super-fine grinding machine “Super Masukoguchi Idaichi” manufactured by Masuko Sangyo Co., Ltd. The Super Masco Mouth Idar is a grinder that enables ultra-fine grains that feel like melting beyond the mere grinding area.
- Super Masco Idaichi is a mortar type consisting of two top and bottom non-porous grindstones whose spacing can be adjusted freely. This is an ultrafine grinding machine with the upper grindstone fixed and the lower grindstone rotating at high speed. The raw material thrown into the hopper is fed into the gap between the upper and lower grinding stones by centrifugal force, and the raw material is gradually crushed and micronized by the strong compression, shearing, rolling friction force, etc. generated there.
- the high-temperature and high-pressure steam treatment is a treatment method for obtaining cellulose fibers by dissociating fibers by exposing a plant cell wall or seaweed or sea squirt capsules from which lignin and the like have been removed to high-temperature and high-pressure steam.
- the treatment with phosphate or the like means that the surface of seagrass, sea squirt sac, plant cell wall, etc. is sterilized with phosphate to weaken the binding force between cellulose fibers, and then refiner treatment.
- These cellulose fibers may be obtained by mixing two or more of those obtained from different plant isotopes, or those subjected to different treatments.
- the water-containing Nano MFC obtained in this way usually has a single-fiber sub-network structure with an average fiber diameter of about lOOnm (excluding a complete (clean) network structure like the bacterial cellulose described above, However, this is a state in which water is impregnated in a fiber assembly of a structure that locally forms a network.
- the water-containing fiber aggregate obtained as described above is dried by freeze drying.
- the fiber assembly only the above-mentioned water-containing bacterial cellulose may be used, or only water-containing Nano MFC may be used, or these may be used in combination.
- This freeze-drying may be carried out in accordance with a conventional method using a normal freeze dryer.
- a freeze dryer use a freeze dryer “FDU-506” manufactured by Tokyo Rika Co., Ltd. Can do.
- the processing conditions for freeze drying are not particularly limited. The temperature is 107 to 1 Pa below the freezing point temperature of the solvent contained in the fiber assembly, and the time is about 1 to 2 days depending on the amount of processing.
- the water-containing fiber assembly Prior to this freeze drying, can be cold-pressed to remove a part of the water contained in the fiber assembly and adjust the fiber content.
- the degree of this press is designed so that a fiber-reinforced composite material having a desired fiber content can be obtained with the press after impregnation of the liquid material for impregnation into the dry fiber assembly described later.
- the thickness of the water-containing fiber aggregate is about 1/2 to 1/20 of the thickness before pressing by pressing.
- the pressure and holding time at the time of cold pressing are appropriately determined depending on the degree of pressing in the range of 0.01-: LOOMPa, 0.1-30 minutes.
- the pressing temperature is preferably about 0 to 60 ° C, but is usually performed at room temperature.
- the water-containing fiber assembly whose thickness is reduced by this press treatment is substantially maintained even when freeze-dried.
- this press is not necessarily required, and the hydrous fiber aggregate may be subjected to freeze drying as it is.
- the dried fiber aggregate obtained in the drying step is impregnated with a liquid for impregnation.
- Examples of the method of impregnating the dry fiber aggregate with the liquid for impregnation include a method of immersing the dry fiber aggregate in the liquid for impregnation and holding it under reduced pressure or pressurized conditions. Power It is not limited to this. In particular, it is preferable to repeat the depressurization condition and the pressurization condition alternately. As a result, the liquid material for impregnation can be smoothly infiltrated into the dry fiber aggregate to obtain a fiber aggregate impregnated with the liquid for impregnation.
- the decompression condition is not particularly limited, but is from 0.133 kPa (lmmHg) to 93.3 kPa.
- the treatment temperature in the impregnation step under reduced pressure is preferably 0 ° C or higher, more preferably 10 ° C or higher. When this temperature is lower than 0 ° C., the infiltration of the liquid material for impregnation into the fiber assembly may be insufficient, and voids may remain between the fibers.
- the upper limit of the temperature is preferably the boiling point of the solvent (boiling point under the reduced pressure) when a solvent is used for the impregnating liquid, for example. If the temperature is higher than this temperature, the volatilization of the solvent becomes intense and tends to cause bubbles to remain.
- the pressurizing condition is preferably 1. l to 10 MPa. If the pressurization condition is lower than 1. IMPa, the infiltration of the liquid material for impregnation into the fiber assembly may be insufficient, and voids may remain between the fibers. On the other hand, the pressurization condition may be higher than lOMPa, but the pressurization equipment tends to be excessive.
- the treatment temperature in the impregnation step under pressure is preferably 0 to 300 ° C, more preferably 10 to 100 ° C. If this temperature is lower than 0 ° C., the impregnation liquid may not be sufficiently penetrated into the fiber assembly, and voids may remain between the fibers. On the other hand, if it is higher than 300 ° C, the impregnating liquid may be denatured.
- a plurality of dry fiber aggregates may be laminated and immersed in the impregnating liquid material. Further, a plurality of fiber assemblies containing the impregnating liquid material after impregnating the dry fiber assembly with the impregnating liquid material may be laminated and used for the subsequent curing step.
- Matrix materials and impregnating liquids that can be employed in the present invention are as follows.
- the matrix material of the fiber-reinforced composite material of the present invention is a material that becomes a base material of the fiber-reinforced composite material of the present invention, and is particularly capable of producing a fiber-reinforced composite material that satisfies the following suitable physical properties.
- One type such as an organic polymer, an inorganic polymer, a hybrid polymer of an organic polymer and an inorganic polymer can be used alone, or two or more types can be used in combination.
- the following are examples of the matrix material suitable for the present invention.
- the matrix material used in the present invention is not limited to the following.
- Examples of the inorganic polymer of the matrix material include ceramics such as glass, silicate material, and titanate material, and these can be formed by, for example, dehydration condensation reaction of alcoholate.
- Organic polymers include natural polymers and synthetic polymers.
- Examples of natural polymers include regenerated cellulose polymers such as cellophane and triacetyl cellulose.
- Examples of the synthetic polymer include a bull resin, a polycondensation resin, a polyaddition resin, an addition condensation resin, a ring-opening polymerization resin, and the like.
- bull-based resin examples include general-purpose resins such as polyolefin, salt-based resin-based resin, vinyl acetate-based resin, fluorine-based resin, (meth) acrylic-based resin, and vinyl polymerization.
- general-purpose resins such as polyolefin, salt-based resin-based resin, vinyl acetate-based resin, fluorine-based resin, (meth) acrylic-based resin, and vinyl polymerization.
- engineering plastics and super engineering plastics These may be homopolymers or copolymers of each monomer that is constituted in each resin.
- polystyrene examples include homopolymers or copolymers such as ethylene, propylene, styrene, butadiene, butene, isoprene, black-opened plane, isobutylene, and isoprene, or cyclic polyolefins having a norbornene skeleton. It is done.
- salt-bulb-based resin examples include homopolymers or copolymers such as bull chloride and vinylidene chloride.
- the above-mentioned acetic acid bure-based resin is a reaction of formaldehyde n-butyraldehyde with poly (vinyl acetate) which is a homopolymer of butyl acetate, poly (butyric alcohol) which is a hydrolyzate of poly (vinyl acetate), and vinyl acetate.
- poly (vinyl acetate) which is a homopolymer of butyl acetate
- poly (butyric alcohol) which is a hydrolyzate of poly (vinyl acetate)
- vinyl acetate examples thereof include polybutacetal and polybutyl alcohol which are reacted with butyraldehyde and the like.
- fluororesins examples include homopolymers or copolymers of tetrachloroethylene, hexafluoropropylene, chlorotrifluoroethylene, pyridene fluoride, fluorinated bur, perfluoroalkyl butyl ether, and the like.
- Examples of the (meth) acrylic resin include (meth) acrylic acid, (meth) acrylonitrile, (meth) Homopolymers or copolymers such as acrylic acid esters and (meth) acrylamides may be mentioned.
- (meth) acryl means “acryl and Z or metatalyl”.
- examples of (meth) acrylic acid include acrylic acid and methacrylic acid.
- examples of (meth) acrylonitrile include acrylonitrile or meta-tallow-tolyl.
- Examples of (meth) acrylic acid esters include (meth) acrylic acid alkyl esters, (meth) acrylic acid-based monomers having a cycloalkyl group, and (meth) acrylic acid alkoxyalkyl esters.
- Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and cyclo (meth) acrylate.
- examples of the (meth) acrylic acid-based monomer having a cycloalkyl group include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate.
- examples of the (meth) acrylic acid alkoxyalkyl ester include (meth) acrylic acid 2-methoxyethyl, (meth) acrylic acid 2-ethoxyethyl, (meth) acrylic acid 2-butoxychetyl and the like.
- (Meth) acrylamides include (meth) acrylamide, N-methyl (meth) acrylamide, N ethyl (meth) acrylamide, N, N dimethyl (meth) acrylamide, N, N dimethyl (meth) acrylamide, N Examples include N-substituted (meth) acrylamides such as —isopropyl (meth) acrylamide and N-toctyl (meth) acrylamide.
- Examples of the polycondensed resin include amide resin and polycarbonate.
- Examples of the amide-based resin include aliphatic amide-based resins such as 6, 6 nylon, 6 nylon, 11 nylon, 12 nylon, 4, 6 nylon, 6, 10 nylon, 6, 12 nylon, Examples thereof include aromatic diamines such as phenylenediamine and aromatic dicarboxylic acids such as salt terephthaloyl chloride and isophthaloyl chloride, or aromatic polyamides having derivatives thereof.
- the polycarbonate is a reaction product of bisphenol A or its derivative bisphenol and phosgene or phenyl dicarbonate.
- polyaddition-based resin examples include ester-based resin, U polymer, liquid crystal polymer, polyether ketone, polyether ether ketone, unsaturated polyester, alkyd resin, polyimide-based resin, polysulfone, and polyester.
- ester-based resin U polymer
- liquid crystal polymer polyether ketone
- polyether ether ketone unsaturated polyester
- alkyd resin polyimide-based resin
- polysulfone polysulfone
- polyester polyester.
- rensulfide polyethersulfone, etc. It is done.
- Examples of the ester-based resin include aromatic polyesters, aliphatic polyesters, and unsaturated polyesters.
- the aromatic polyester include copolymers of diols described later such as ethylene glycol, propylene glycol, 1,4 butanediol and aromatic dicarboxylic acids such as terephthalic acid.
- Examples of the aliphatic polyester include copolymers of diols described later and aliphatic dicarboxylic acids such as succinic acid and valeric acid, and homopolymers or copolymers of hydroxycarboxylic acids such as glycolic acid and lactic acid. Diols, aliphatic dicarboxylic acids, and copolymers of the above hydroxycarboxylic acids.
- the unsaturated polyester include diols described later, unsaturated dicarboxylic acids such as anhydrous maleic acid, and copolymers with a butyl monomer such as styrene as necessary.
- U polymer examples include bisphenol A and its derivatives, bisphenols, copolymers of terephthalic acid and isophthalic acid.
- the liquid crystal polymer is a copolymer of p-hydroxybenzoic acid and terephthalic acid, p, p'dioxydiphenol, p-hydroxy-6-naphthoic acid, polyterephthalate ethylene, or the like.
- polyetherketone examples include homopolymers and copolymers such as 4,4, -difluorobenzophenone and 4,4,1 dihydrate benzophenone.
- polyether ether ketone examples include copolymers of 4,4'-difluorobenzophenone and hydroquinone.
- alkyd resin examples include higher fatty acids such as stearic acid and valmic acid, dibasic acids such as phthalic anhydride, and polyols such as glycerin.
- polysulfone examples include copolymers such as 4,4'-dichlorodiphenylsulfone and bisphenol A.
- Examples of the above polyphenylene sulfide include copolymers of p-dichlorobenzene and sodium sulfide.
- polyether sulfone there are 4-black mouth 1,4 hydroxy diphenyl sulfone These polymers are mentioned.
- polyimide-based resin examples include pyromellitic acid type polyimides that are copolymers of anhydrous polymellitic acid 4,4'-diaminodiphenyl ether, anhydrous salt-trimellitic acid p-phenylenediamine, etc.
- pyromellitic acid type polyimides that are copolymers of anhydrous polymellitic acid 4,4'-diaminodiphenyl ether, anhydrous salt-trimellitic acid p-phenylenediamine, etc.
- a biphenyl type composed of trimellitic acid type polyimide, biphenyltetracarboxylic acid, 4,4,1-diaminodiphenyl ether, p-phenolic diamine, etc.
- Examples include polyimide, benzophenone tetracarboxylic acid, benzophenone type polyimide made of 4,4′-diaminodiphenyl ether, bismaleimide type 4, bismaleimide type polyimide having 4,4,1 diaminodiphenylmethane and the like.
- Examples of the polyaddition type resin include urethane resin.
- the urethane resin is a copolymer of diisocyanates and diols.
- diisocyanates include dicyclohexylmethane diisocyanate, 1,6 hexane methane diisocyanate, isophorone diisocyanate, 1,3 cyclohexylene diisocyanate, 1,4-cyclohexylene diisocyanate. 2, 4 Tolylene diisocyanate, 2, 6 Tolylene diisocyanate, 4, 4'-Diphenylmethane diisocyanate, 2, 4 'Diphenylmethane diisocyanate, 2, 2, -Diphenylmethane diisocyanate.
- diols examples include ethylene glycol, propylene glycol, 1,3 propanediol, 1,3 butanediol, 1,4 butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1, 6 Hexanediol, neopentyl glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene dalycol, dipropylene glycol, tripropylene glycol, cyclohexane dimethanol, etc. All, polyether diol, polycarbonate diol, etc. are mentioned.
- addition condensation type resin examples include phenol resin, urea resin, melamine resin and the like.
- phenolic resin examples include homopolymers or copolymers such as phenol, cresol, resorcinol, phenolic glycol, bisphenol A, and bisphenol F.
- urea resin and melamine resin are copolymers of formaldehyde, urea, melamine and the like.
- Examples of the ring-opening polymerization resin include polyalkylene oxides, polyacetals, and epoxy resins.
- Examples of the polyalkylene oxide include homopolymers or copolymers such as ethylene oxide and propylene oxide.
- Examples of the polyacetal include copolymers of trioxane, formaldehyde, ethylene oxide, and the like.
- the above epoxy resin is an aliphatic epoxy resin composed of a polyhydric alcohol such as ethylene glycol and epichlorohydrin, an aliphatic epoxy resin composed of bisphenol A and epichlorohydrin, etc. Is mentioned.
- a highly durable fiber-reinforced composite material that is particularly amorphous, has a high glass transition temperature (Tg), and has a synthetic polymer excellent in transparency.
- Tg glass transition temperature
- the degree of amorphousness is preferably 10% or less, particularly 5% or less, and the Tg is 110 ° C or more, particularly 120 ° C. In particular, those having a temperature of 130 ° C or higher are preferred.
- Tg is less than 110 ° C, there is a problem in durability in applications such as transparent parts and optical parts, such as deformation when contacted with boiling water.
- Tg is obtained by DSC measurement, and the crystallinity is obtained by the density method that calculates the crystallinity from the density of the amorphous and crystalline parts.
- the transparent matrix resin include acrylic resin, methallyl resin, epoxy resin, urethane resin, phenol resin, melamine resin, novolac resin, urea resin, guanamine resin, alkyd Resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, silicone resin, furan resin, ketone resin, xylene resin, thermosetting polyimide, styrylpyridine resin, triazine resin
- thermosetting resin such as fat, and among these, highly transparent acrylic resin and methacrylic resin are particularly preferable.
- These matrix materials may be used singly or in combination of two or more.
- Liquid materials for impregnation include fluid matrix material, fluid matrix material raw material, fluidized material obtained by fluidizing matrix material, and fluid obtained by fluidizing matrix material raw material.
- One kind or two or more kinds selected from a compound, a solution of a matrix material, and a solution solution of a raw material of the matrix material can be used.
- the fluid matrix material refers to a material in which the matrix material itself is fluid.
- the raw material for the fluid matrix material include polymerization intermediates such as prepolymer oligomers.
- Examples of the fluidized material obtained by fluidizing the matrix material include a material in which a thermoplastic matrix material is heated and melted.
- Examples of the fluidized product obtained by fluidizing the raw material of the matrix material include, for example, a polymer intermediate such as a prepolymer and an oligomer in a state in which these are heated and melted.
- Examples of the matrix material solution and the matrix material raw material solution include solutions in which the matrix material and the matrix material raw material are dissolved in a solvent or the like. When this solvent is removed by evaporation in the subsequent process, it will not cause decomposition of the matrix material or the raw material of the matrix material.
- a solvent having a boiling point below the temperature of! / ⁇ is preferred.
- a curing method suitable for the liquid for impregnation should be employed.
- the liquid for impregnation is a fluid matrix material
- a crosslinking reaction, a chain extension reaction and the like can be mentioned.
- the liquid for impregnation is a raw material of the fluid matrix material (for example, monomer and Z or oligomer)
- polymerization reaction, crosslinking reaction, chain extension reaction, and the like can be mentioned.
- the raw material is an energy ray curable resin monomer such as ultraviolet ray or electron beam and Z or oligomer
- the ultraviolet ray or electron beam is irradiated during the curing step.
- liquid for impregnation is a fluidized product obtained by fluidizing a matrix material
- cooling or the like can be mentioned.
- the liquid for impregnation is a fluidized product obtained by fluidizing the raw material of the matrix material, a combination of cooling and the like, a polymerization reaction, a crosslinking reaction, a chain extension reaction, and the like can be given.
- the liquid for impregnation is a solution of a matrix material
- examples thereof include removal of the solvent in the solution by evaporation or air drying.
- the liquid for impregnation is a raw material solution of the matrix material
- the combination of removal of the solvent in the solution and the like, polymerization reaction, crosslinking reaction, chain extension reaction and the like can be mentioned.
- the above-mentioned evaporation removal includes evaporation removal under reduced pressure as well as evaporation removal under normal pressure.
- the fiber assembly containing the impregnating liquid material Prior to curing of the impregnating liquid material, it is preferable that the fiber assembly containing the impregnating liquid material is cold-pressed and molded. That is, since the dry fiber aggregate obtained by freeze drying often has a rough surface, after impregnating the dry fiber aggregate that has undergone such freeze drying with the liquid for impregnation, the dry fiber aggregate is cold pressed. It is preferable to arrange the shape.
- the degree of this cold press is appropriately determined according to the fiber content of the target fiber-reinforced composite material, but in general, the thickness of the dry fiber assembly is reduced by the press before the press. It is preferable to be about 1Z2 to 1Z20.
- the pressure and holding time at the time of cold pressing are appropriately determined according to the degree of pressing in the range of 0.1 to: LOOMPa, 1 to 10 minutes, but the pressing temperature is about 0 to 60 ° C, usually It is preferable to set it to room temperature. However, when pressing at lOMPa or higher, the fiber assembly may be destroyed, so press at a lower speed.
- the fibers may be those that have been chemically modified to enhance functionality.
- the chemical modification etherification, esterification, isocyanato group, etc. can be used for acetyl group, methacryloyl group, propanol group, butanol group, iso-butanol group, pentanoyl group, hexanol group, heptanol group, otanoyl group, Nonanoyl group, decanoyl group, undecanol group, dodecanol group, myristoyl group, normitoyl group, stearoyl group, bivaloyl group, 2-methacryloyloxychetyl isocyanate group, methyl group, ethyl group, propyl group , Iso-propyl group, butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, hexyl
- a dry fiber aggregate obtained by freeze drying is immersed in acetic anhydride and heated to acetylate as necessary.
- the acetylene soot can reduce water absorption and improve heat resistance without reducing light transmittance.
- the impregnated liquid material may be impregnated into the fiber assembly after acetylation.
- the water-containing fiber aggregate is replaced with an organic solvent to prepare a content solvent fiber aggregate, and then the organic solvent of the content solvent fiber aggregate is replaced with acetic anhydride.
- a method of acetylating by heating can also be mentioned.
- the acetic anhydride of the obtained acetylated anhydrous acetic acid fiber aggregate is sequentially replaced with ethanol and t-butyl alcohol, and then freeze-dried.
- the water in the water-containing fiber aggregate when freeze drying is performed, the water in the water-containing fiber aggregate is weak in cohesion when sublimating from the ice state to water vapor, so that aggregation of the fibers is prevented.
- t-butyl alcohol In terms of cohesive strength during drying, t-butyl alcohol is smaller, so it is effective in preventing aggregation of fibers.
- a low-aggregating solvent such as t-butyl alcohol
- subject the fiber aggregate containing t-butyl alcohol to freeze-drying This is preferable for obtaining a dry fiber aggregate.
- the method for replacing the water in the water-containing fiber assembly with another solvent is not particularly limited, but the water-containing fiber assembly is immersed in the solvent and left for a predetermined time in the water-containing fiber assembly.
- a method of leaching the water in the solvent side and replacing the solvent containing the leached water as appropriate to replace the water in the fiber assembly with the solvent can be mentioned.
- the temperature condition for this immersion replacement is preferably about 0 to 60 ° C., usually at room temperature, in order to prevent volatilization of the solvent.
- the fibers constituting the fiber assembly as described above may be used alone or in combination of two or more. In other words, fibers that have been chemically modified and fibers that have not been chemically modified may be used in combination.
- Fibers that have been subjected to different chemical modifications may be used in combination.
- bacterial cellulose and plant-derived fibers may be used.
- Nano MFC may be used in combination.
- two or more different strains may be used at the time of culture, which may be used in combination with those obtained from different strains.
- the fiber-reinforced composite material produced by the method of the present invention can have any fiber content within a wide range of 0.1 to 70% by volume or 0.1 to 70% by weight.
- the fiber content in the fiber-reinforced composite material is too small, the effect of improving the bending strength and bending elastic modulus or reducing the linear thermal expansion coefficient by the fiber tends to be insufficient. Adhesion between fibers due to or filling of spaces between fibers may not be sufficient, and strength, transparency, and surface flatness may be reduced. Also preferred in terms of hygroscopicity and cost as described above. Absent. Therefore, the fiber content of the fiber-reinforced composite material obtained by the present invention is preferably 10% by weight or more, particularly 20 to 70% by weight.
- the fiber-reinforced composite material of the present invention has a visible light transmittance of 50 ⁇ m thickness for light having a wavelength of 400 to 700 nm of 60% or more, particularly 65% or more, particularly 70% or more, particularly 80% or more, especially 90%.
- the above highly transparent material is preferable. If the fiber reinforced composite material has a 50 m thick visible light transmittance of less than 60%, it becomes translucent or opaque, and the object of the present invention cannot be achieved, and window materials, displays, and housings for mobile objects such as automobiles, trains, and ships. It may be difficult to use in applications that require transparency, such as buildings and various optical components.
- the m-thick visible light transmittance of light having a wavelength of 400 to 700 nm is the entire wavelength range when the fiber reinforced composite material according to the present invention is irradiated with light having a wavelength of 400 to 700 nm in the thickness direction.
- the fiber-reinforced composite material of the present invention preferably has a linear thermal expansion coefficient of 0.05 X 10 _5 to 5 X 10 _5 K _1 , more preferably 0.2 ⁇ 10 _5 to 2 ⁇ 10 _5. _1_1, particularly preferably 0.3 X 10 _5 to 1 X 10 _5 _ _1 .
- the linear thermal expansion coefficient of the fiber reinforced composite material may be smaller than 0.05 X 10 "5 ⁇ _1 , but it may be difficult to realize in consideration of the linear thermal expansion coefficient of cellulose fibers and the like.
- the coefficient is greater than 5 ⁇ 10 _5 ⁇ _1 , fiber reinforcement effect is not manifested, and deflection and distortion occur in the window material depending on the ambient temperature due to the difference in linear thermal expansion coefficient from glass and metal materials.
- the optical performance may cause problems such as imaging performance and refractive index deviation.
- the fiber-reinforced composite material of the present invention has a flexural strength of preferably 30 MPa or more, more preferably lOOMPa or more. If the bending strength is less than 30 MPa, sufficient strength cannot be obtained, which may affect the use of structural materials and other applications where force is applied. With regard to the upper limit of bending strength, it is expected that high bending strength of about 1 GPa and even about 1.5 GPa will be realized by improving the orientation of force fibers, which is usually about 600 MPa.
- the fiber-reinforced composite material according to the present invention has a flexural modulus force of preferably 0.1 to LOOGPa, and more preferably 1 to 40 GPa. If the flexural modulus is less than 0.1 lGPa, sufficient strength cannot be obtained, which may affect the use of structural materials and other applications where force is applied. On the other hand, anything larger than lOOGPa is difficult to realize.
- the fiber-reinforced composite material of the present invention preferably has a thermal conductivity of 0.5 WZmK or more, more preferably 1. OWZmK (equivalent to the thermal conductivity of quartz glass) or more, more preferably 1. IW / m K or more. With such a large thermal conductivity force, heat transfer can be promoted to make a member with excellent heat dissipation.
- the thermal conductivity of the fiber reinforced composite material of the present invention increases as the fiber content increases, and therefore can be easily adjusted to a desired value by adjusting the fiber content.
- the specific gravity of the fiber-reinforced composite material of the present invention is preferably 1.0 to 2.5. More specifically, as a matrix material, a silica material such as glass, an organic polymer other than an inorganic polymer such as a titanate compound or alumina, or a porous material is used even if it is an inorganic polymer.
- the specific gravity of the fiber reinforced composite material of the present invention is preferably 1.0 to 1.8. 1. 5 is more preferable 1. 3 to 1.4 is more preferable.
- the specific gravity of matrix materials other than glass is generally less than 1.6, and the specific gravity of cellulose fibers is around 1.5, so if you try to make the specific gravity smaller than 1.0, the content of cellulose fibers, etc. There is a tendency for strength improvement by cellulose fiber and the like to be insufficient. On the other hand, if the specific gravity is greater than 1.8
- the resulting fiber reinforced composite material has a large weight, which makes it disadvantageous to use it for light weight purposes compared to glass fiber reinforced materials.
- the specific gravity of the fiber-reinforced composite material of the present invention is 1 5 to 2.5 force S is preferable, and 1.8 to 2.2 is more preferable.
- the specific gravity of glass is generally 2.5 or more, and the specific gravity of cellulose fibers is around 1.5, so if you try to make the specific gravity greater than 2.5, the content of cellulose fibers, etc. will decrease. In addition, the strength improvement due to cellulose fibers and the like tends to be insufficient. On the other hand, if the specific gravity is less than 1.5, there may be insufficient filling of the gaps between the fibers.
- the coefficient of linear thermal expansion is a coefficient of linear thermal expansion when the fiber reinforced composite material is heated from 50 ° C to 150 ° C, and measured under the conditions specified in ASTM D 696. This is the value.
- Bending strength and flexural modulus are values measured according to the method specified in JIS K 7203.
- the thermal conductivity of the fiber reinforced composite material is a value measured according to the optical alternating current method (in-plane direction).
- the specific gravity of the fiber reinforced composite material shall be determined by measuring the mass per unit volume at 20 ° C, obtaining the density, and converting it from the density of water (1.04 gZcm 3 (20 ° C)). Can do.
- the fiber-reinforced composite material of the present invention is excellent in transparency and the like, and has various excellent functionalities by compounding fibers and matrix materials, so that it can be used in the fields of optics, structural materials, building materials, etc. It can be suitably used for various applications.
- the transparent substrate made of the fiber-reinforced composite material of the present invention can be used as a highly transparent organic EL light emitting device or a transparent substrate used for a light receiving device such as an image sensor or a solar cell.
- a transparent substrate of the present invention performance improvement (optical characteristics, reduction of current consumption, extension of use time, etc.) of electronic equipment (digital camera, scanner, etc.) can be expected.
- An optical fiber can also be formed using the fiber-reinforced composite material of the present invention.
- Heating temperature 20 ⁇ 150 ° C
- a measurement sample (thickness 50 ⁇ m) was measured at a position 22 cm away from the integrating sphere opening. By placing the sample at this position, the diffuse transmitted light is removed and only the linear transmitted light reaches the light receiving part inside the integrating sphere.
- Light source tungsten lamp, deuterium lamp
- the weight of the manufactured fiber reinforced composite material and the weight strength of the fiber assembly used for manufacturing the fiber reinforced composite material were also determined.
- a culture solution was added to a strain of acetic acid bacteria in a freeze-dried storage state, followed by stationary culture for 1 week (25-30 ° C).
- stationary culture for 1 week (25-30 ° C).
- those having a relatively large thickness were selected, and a small amount of the culture solution of the strain was taken and added to a new culture solution.
- this culture solution was put into a large incubator and cultured at 25-30 ° C for 7-30 days.
- the culture medium glucose 2 weight 0/0, Bacto yeast E click Stra 0.5 wt 0/0, Bacto peptone 0.5 wt%, disodium hydrogen phosphate 0.27 wt%, Kuen acid 0.115 wt% , Magnesium sulfate heptahydrate 0.1% by weight, adjusted to pH 5.0 with hydrochloric acid (SH medium)
- the bacterial cellulose produced in this manner is taken out from the culture solution, boiled in a 2% by weight aqueous alkali solution for 2 hours, and then the bacterial cellulose is taken out from the alkaline treatment solution, washed thoroughly with water, Then, the bacteria in the bacterial cellulose were dissolved and removed to obtain hydrous bacteria cellulose having a thickness of 1 cm, a fiber content of 1% by volume, and a water content of 99% by volume.
- the water-containing bacterial cellulose was sandwiched between metal mesh sheets and cold-pressed to a thickness of 0.5 cm at room temperature to remove water.
- the cold-pressed water-containing bacterial cellulose was frozen in a freezer (15 ° C), then placed in a freeze-dryer container and cooled again in the freezer for about 30 minutes.
- the container is then placed in a freeze dryer (freeze dryer “FDU-506” manufactured by Tokyo Rika Co., Ltd.) Dry bacterial cellulose was obtained by lyophilization for 2 days at 0 ° C or lower, 8 Pa (pressure inside the container when the normal pressure was 101.3 KPa (sufficiently said to be in a vacuum)).
- the thickness of the dried bacterial cellulose obtained remained at about 0.5 cm, and almost no change was made in the thickness.
- TCD DMA manufactured by Mitsubishi Chemical Co., Ltd.
- TCD DMA monomer solution of UV-curable acrylic resin
- 5-: LOM Pa a reduced pressure condition of 0.09 MPa
- the dry bacterial cellulose was sufficiently impregnated with the monomer solution by carrying out the reduced pressure'pressure treatment for 3 days, in which the pressure conditions were alternately repeated for 5 to 6 hours each.
- Bacterial cellulose impregnated with monomer solution is sandwiched between glass slides, molded by cold pressing at 2 MPa for 3 minutes, and then sandwiched between glass slides and irradiated with UV light (8 minutes, 20 jZcm 2 ) to cure the resin. It was. Further, a fiber reinforced composite material was produced by post-curing at 160 ° C. for 2 hours in a nitrogen atmosphere.
- Table 1 shows the thickness, fiber content, linear thermal expansion coefficient, and average linear transmittance of the obtained fiber-reinforced composite material. The linear transmittance was as shown in FIG.
- a fiber-reinforced composite material was produced in the same manner as in Example 1 except that the cold press condition of the hydrous bacterial cellulose was changed to 0.2 cm.
- Table 1 shows the thickness, fiber content, linear thermal expansion coefficient, and average linear transmittance of the obtained fiber-reinforced composite material. The linear transmittance was as shown in FIG.
- Microfibrillar cellulose MFC (high-pressure homogenizer treatment, microfibrillated softwood kraft pulp (NBKP), average fiber diameter 1 ⁇ m) is thoroughly stirred in water, and 1% strength by weight water Prepare 7 kg of the suspension and use a grinder (“Pure Fine Mill KMG1-10” manufactured by Kurita Kikai Co., Ltd.) to remove the central force between the discs rotating at 1200 rpm with the water suspension almost in contact. 30 passes (30pass) to pass through I
- Nano MFC average fiber diameter 60 nm obtained by the grinder treatment was prepared into a 0.2 wt% aqueous suspension, and then filtered through a glass filter to form a film.
- Example 1 The hydrous bacterial cellulose produced in the same manner as in Example 1 was dehydrated by hot pressing at 2MPa and 130 ° C for 3 minutes to completely remove the water to produce dry bacterial cellulose, which was then used as the dry battery cellulose.
- a fiber-reinforced composite material was produced in the same manner as in Example 1 except that the impregnation treatment was performed in the same manner as in Example 1.
- Table 1 shows the thickness, fiber content, linear thermal expansion coefficient, and average linear transmittance (average of linear transmittance at wavelengths of 400 ⁇ ! To 800 ⁇ m) of the obtained fiber-reinforced composite material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
マトリクス材料を形成し得る含浸用液状物を、繊維集合体に含浸させ、次いで該含浸用液状物を硬化させることにより繊維強化複合材料を製造するに当たり、繊維強化複合材料の繊維含有率を十分に少なく、また、所望の任意の繊維含有率に調整する。含水繊維集合体をフリーズドライにより乾燥し、この乾燥繊維集合体に含浸用液状物を含浸させた後、含浸用液状物を硬化させる。
Description
明 細 書
繊維強化複合材料及びその製造方法
発明の分野
[0001] 本発明は、繊維集合体と、該繊維集合体に含浸されたマトリクス材料とを備える繊 維強化複合材料及びその製造方法に関する。
発明の背景
[0002] 繊維強化複合材料として、ガラス繊維に榭脂を含浸させたガラス繊維強化樹脂が 知られている。通常、このガラス繊維強化榭脂は不透明なものであるが、ガラス繊維 の屈折率とマトリクス榭脂の屈折率とを一致させて、透明なガラス繊維強化榭脂を得 る方法が、特許文献 1や特許文献 2に開示されている。
[0003] 一方、バクテリアの中には、セルロース繊維を生産するものがあることは知られてお り、バクテリアにより産生されたセルロース繊維(以下「バクテリアセルロース」と称す。 )をシート状、糸状、立体状などの各種の形状に成形してなる成形材料が特許文献 3 , 4に開示されている。
[0004] 特許文献 1, 2等に開示される従来のガラス繊維強化榭脂は、使用条件によっては 不透明となる場合がある。即ち、物質の屈折率は温度依存性を有しているため、特 許文献 1, 2等に開示されるガラス繊維強化榭脂は、ある温度条件では透明であって も、その温度条件と異なる条件においては、半透明ないし不透明となる。また、屈折 率は、物質ごとに波長依存性を有しており、可視光波長のうち特定波長において繊 維とマトリクス榭脂との屈折率を合わせても、可視帯域全域にお!ヽては屈折率がずれ る領域が存在する可能性があり、この領域においては、やはり透明性を得ることがで きない。
[0005] 特許文献 3, 4に開示されるバクテリアセルロースは、繊維径 4nmの単繊維よりなり 、可視光の波長に比べて繊維径は格段に小さいため、可視光の屈折が生じにくい。 しかし、特許文献 3, 4では、バクテリアセルロースを榭脂との複合材料とする場合、バ クテリアセルロースを離解して用いている。このように、ノ クテリアにより産生された産 生物にグラインダー等により機械的剪断力を付与して離解した場合には、離解過程
でバクテリアセルロース同士が互いに密着し、可視光の屈折、散乱が生じるような繊 維径の太い束状となり、その結果、このような離解セルロースを使用したものは透明 性に劣るものとなる。
[0006] このように、従来においては、温度条件や波長域によらず、常に高い透明性を保持 する繊維強化複合材料は提供されて ヽなかった。
特許文献 1:特開平 9— 207234号公報
特許文献 2 :特開平 7— 156279号公報
特許文献 3:特開昭 62— 36467号公報
特許文献 4 :特開平 8— 49188号公報
発明の概要
[0007] 本発明は、繊維集合体と、この繊維集合体に含浸されたマトリクス材料とを備える繊 維強化複合材料であって、繊維含有率を十分に少なくすることができ、また、所望の 任意の繊維含有率に調整することができる繊維強化複合材料及びその製造方法を 提供することを目的とする。
[0008] 繊維集合体と、該繊維集合体に含浸されたマトリクス材料とを備える本発明の繊維 強化複合材料を製造する方法は、水を含む繊維の集合体 (以下「含水繊維集合体( water-containing fiber sheet)」と称す。)を製造する工程と、該含水繊維集合体をフリ ーズドライすることにより乾燥繊維集合体を得る乾燥工程と、該乾燥工程で得られた 乾燥繊維集合体に、硬化することにより前記マトリクス材料となる含浸用液状物を含 浸させる含浸工程と、その後、該含浸用液状物を硬化させる硬化工程とを有する。
[0009] 本発明の繊維強化複合材料は、この方法によって製造される。
図面の簡単な説明
[0010] [図 1]実施例 1で得られた繊維強化複合材料の直線透過率を示すグラフである。
[図 2]実施例 2で得られた繊維強化複合材料の直線透過率を示すグラフである。 発明の好ましレ、形態の詳細な説明
[0011] 本発明によれば、繊維集合体と、この繊維集合体に含浸されたマトリクス材料とを備 える繊維強化複合材料における繊維含有率を十分に少なくすることができる。また、 繊維強化複合材料の繊維含有率を所望の任意の値に容易に調整することができる
[0012] 即ち、含水バクテリアセルロース又は含水 Nano MFC等の含水繊維集合体に含 まれる水を除去して乾燥させるに当たり、フリーズドライを採用することにより、以下の ような作用機構で、繊維同士の凝集を防止して、含水バクテリアセルロース又は含水 Nano MFC等の含水繊維集合体と同等の低繊維含有率を維持した乾燥繊維集合 体を得ることができる。
[0013] フリーズドライ (凍結乾燥)は、冷凍手段を備えた真空装置で凍結状態のまま水分( 固体の氷)を直接昇華させて乾燥する方法である。
[0014] フリーズドライであれば、氷が昇華する際に生じる凝集力が弱いため、繊維同士が 凝集することがない。そのため、フリーズドライにより得られる乾燥繊維集合体は体積 収縮せず、乾燥前の含水繊維集合体とほぼ同等の繊維含有率の低!、状態を維持す る。
[0015] 従って、乾燥繊維集合体に含浸用液状物を含浸させて硬化させることにより、繊維 含有率の低い繊維強化複合材料を得ることができる。また、含水繊維集合体のフリー ズドライの前にコ一ルドプレスすることにより、乾燥繊維集合体の繊維含有率を任意 に調整することができ、この乾燥繊維集合体を用いて、所望の任意の繊維含有率の 繊維強化複合材料を製造することができる。また、含浸用液状物含浸後の繊維集合 体をコールドプレスすることによつても、得られる繊維強化複合材料の繊維含有量を 調整することができ、これにより、所望の任意の繊維含有率の繊維強化複合材料を 製造することができる。
[0016] 本発明により提供される繊維強化複合材料は、次の [1]〜[5]の優れた特性を有し、 しカゝも、繊維含有率を抑えて低吸湿性で安価な繊維強化複合材料とすることもできる
[1] 可視光の波長(380〜800nm)より小さい平均繊維径を有する繊維を用いた 場合には、可視光がマトリックスと繊維との界面で殆ど屈折しない。そのため、全可視 光領域において、また材料の屈折率に関わりなぐ繊維とマトリクス材料との界面での 可視光の散乱ロスが殆ど発生しない。このため、全可視光波長域において、温度に 関わりなぐ 50 m厚可視光透過率 60%以上の高い透明性を有する。
[2] ガラス繊維強化榭脂並の低い線熱膨張係数とすることができるため、雰囲気温 度によって歪みや変形、形状精度低下が問題となりにくぐ光学機能が向上し、光学 材料として有用である。また、たわみ、歪みや変形等が少ないので、構造材料として も有用である。
[3] ガラス繊維強化樹脂より低い比重とすることができるため、ガラス繊維強化榭脂 の応用分野において、その代替材料として用いることにより、軽量ィ匕を図ることができ る。
[4] 低い誘電率を有するものとすることができるため、通信用光ファイバ一等に有 用であり、高速伝送が可能である。
[5] 繊維として生分解性のセルロース繊維を用いることにより、廃棄する際に、マト リクス材料の処理法のみに従って処理することができ、廃棄処分ないしはリサイクル にも有禾 ljである。
[0017] 繊維含有率を低減させても、セルロース繊維で補強された本発明の繊維強化複合 材料は、後述の実施例に示す如ぐ線熱膨張率が大きく変化することはなぐ 10"5K _1オーダーの低線熱膨張率の繊維強化複合材料とすることができる。
[0018] 以下に本発明の繊維強化複合材料及びその製造方法について、製造手順に従つ て詳細に説明する。
[0019] [含水繊維集合体の製造]
まず、本発明に係る含水繊維集合体に好適な繊維につ 1ヽて説明する。
[0020] 本発明では、繊維として、好ましくは平均繊維径 4〜200nmのものを用いる。この 繊維は、単繊維が、引き揃えられることなぐ且つ相互間にマトリクス材料が入り込む ように十分に離隔して存在するものより成ってもよい。この場合、平均繊維径は単繊 維の平均径となる。また、本発明に係る繊維は、複数 (多数であってもよい)本の単繊 維が束状に集合して 1本の糸条を構成しているものであってもよぐこの場合、平均繊 維径は 1本の糸条の径の平均値として定義される。バクテリアセルロースは、後者の 糸条よりなるものである。
[0021] 繊維の平均繊維径が 200nmを超えると、可視光の波長に近づき、マトリクス材料と の界面で可視光の屈折が生じ易くなり、透明性が低下することとなるため、本発明で
用いる繊維の平均繊維径の上限は 200nmとする。平均繊維径 4nm未満の繊維は 製造が困難であり、例えば繊維として好適な後述のバクテリアセルロースの単繊維径 は 4nm程度であることから、本発明で用いる繊維の平均繊維径の下限は 4nmとする 。本発明で用いる繊維の平均繊維径は、好ましくは 4〜: LOOnmであり、より好ましくは 4〜60nmである。
[0022] 繊維の平均繊維径カ 〜200nmの範囲内であれば、繊維中に 4〜200nmの範囲 外の繊維径のものが含まれていても良いが、その割合は 30重量%以下であることが 好ましぐ望ましくは、すべての繊維の繊維径が 200nm以下、特に lOOnm以下、とり わけ 60nm以下であることが望まし 、。
[0023] 繊維の平均長さは lOOnm以上が好ましい。繊維の平均長さが lOOnmより短いと、 補強効果が低ぐ繊維強化複合材料の強度が不十分となるおそれがある。繊維中に は繊維長さ lOOnm未満のものが含まれていても良いが、その割合は 30重量%以下 であることが好ましい。
[0024] 繊維としてセルロース繊維を用いると、後述するように、得られる繊維強化複合材料 の線熱膨張係数をより小さくすることができるので好ましい。
[0025] セルロース繊維とは、植物細胞壁の基本骨格等を構成するセルロースのミクロフィ ブリル又はこれの構成繊維を ヽ、通常繊維径 4nm程度の単位繊維の集合体であ る。このセルロース繊維は、結晶構造を 40%以上含有するものが、高い強度と低い 熱膨張を得る上で好ましい。
[0026] セルロース繊維は、植物から分離されるものであってもよ 、が、バクテリアセルロー スによって産生されるバクテリアセルロースが好適であり、特にバクテリアからの産生 物をアルカリ処理してバクテリアを溶解除去して得られるものを離解処理することなく 用いるのが好適である。
[0027] 以下に含水バクテリアセルロースの製造方法にっ 、て説明する。
地球上においてセルロースを生産し得る生物は、植物界は言うに及ばず、動物界 ではホヤ類、原生生物界では、各種藻類、卵菌類、粘菌類など、またモネラ界では藍 藻及び酢酸菌、土壌細菌の一部に分布している。現在のところ、菌界 (真菌類)には セルロース生産能は確認されていない。このうち酢酸菌としては、ァセトパクター(Ace
tobacter)属等が挙げられ、より具体的には、ァセトパクターァセチ(Acetobacter ace ti)、ァセトパクターサブスピーシーズ (Acetobacter subsp.)、ァセトパクターキシリナ ム(Acetobacter xylinum)等が挙げられる力 これらに限定されるものではない。なお 、ノ クテリアセルロースを生産する生物は 2種以上を用いても良 、。
[0028] このようなバクテリアを培養することにより、ノ クテリア力もセルロースが産生される。
得られた産生物は、バクテリアとこのバクテリア力 産生されて該バクテリアに連なつ ているセルロース繊維(バクテリアセルロース)とを含むものであるため、この産生物を 培地から取り出し、それを水洗、又はアルカリ処理などしてバクテリアを除去すること により、バクテリアを含まない含水バクテリアセルロースを得ることができる。
[0029] 培地としては、寒天状の固体培地や液体培地 (培養液)が挙げられ、培養液として は、例えば、ココナッツミルク (全窒素分 0. 7重量%,脂質 28重量%) 7重量%、ショ 糖 8重量%を含有し、酢酸で pHを 3. 0に調整した培養液や、グルコース 2重量%、 バクトイーストェクストラ 0. 5重量0 /0、バクトペプトン 0. 5重量0 /0、リン酸水素ニナトリウ ム 0. 27重量%、タエン酸 0. 115重量%、硫酸マグネシウム七水和物 0. 1重量%と し、塩酸により pH5. 0に調整した水溶液 (SH培地)等が挙げられる。
[0030] 培養方法としては、例えば、次の方法が挙げられる。ココナッツミルク培養液に、ァ セトパクター キシリナム(Acetobacter xylinum) FF— 88等の酢酸菌を植菌し、例え ばフリーズドライ— 88であれば、 30°Cで 5日間、静置培養を行って一次培養液を得 る。得られた一次培養液のゲル分を取り除いた後、液体部分を、上記と同様の培養 液に 5重量%の割合で加え、 30°C、 10日間静置培養して、二次培養液を得る。この 二次培養液には、約 1重量%のセルロース繊維が含有されている。
[0031] 他の培養方法として、培養液として、グルコース 2重量0 /0、バクトイーストェクストラ 0 . 5重量0 /0、バクトペプトン 0. 5重量0 /0、リン酸水素ニナトリウム 0. 27重量0 /0、クェン 酸 0. 115重量%、硫酸マグネシウム七水和物 0. 1重量%とし、塩酸により pH5. 0に 調整した水溶液 (SH培養液)を用いる方法が挙げられる。この場合、凍結乾燥保存 状態の酢酸菌の菌株に SH培養液を加え、 1週間静置培養する(25〜30°C)。培養 液表面にバクテリアセルロースが生成する力 これらのうち、厚さが比較的厚いものを 選択し、その株の培養液を少量分取して新しい培養液に加える。そして、この培養液
を大型培養器に入れ、 25〜30°Cで 7〜30日間の静地培養を行う。バクテリアセル口 ースは、このように、「既存の培養液の一部を新しい培養液に加え、約 7〜30日間静 置培養を行う」ことの繰りかえしにより得られる。
[0032] 菌がセルロースを作りにく 、などの不具合が生じた場合は、以下の手順を行う。即 ち、培養液に寒天を加えて作成した寒天培地上に、菌培養中の培養液を少量撒き、 1週間ほど放置してコロニーを作成させる。それぞれのコロニーを観察して、比較的セ ルロースをよく作るようなコロニーを寒天培地から取り出し、新しい培養液に投入し、 培養を行う。
[0033] このようにして産出させたバクテリアセルロースを培養液中から取り出し、バクテリア セルロース中に残存するバクテリアを除去する。その方法として、水洗またはアルカリ 処理などが挙げられる。ノ クテリアを溶解除去するためのアルカリ処理としては、培養 液から取り出したバクテリアセルロースを 0. 01〜10重量%程度のアルカリ水溶液に 1時間以上注加する方法が挙げられる。そして、アルカリ処理した場合は、アルカリ処 理液からバクテリアセルロースを取り出し、十分水洗し、アルカリ処理液を除去する。
[0034] 含水バクテリアセルロースは、通常、含水率 95〜99. 9重量0 /0、繊維含有率 0. 1〜 5体積%であり、平均繊維径が 50nm程度の単繊維の三次元交差構造の繊維集合 体 (以下、三次元交差構造をとるバクテリアセルロースを「三次元交差バクテリアセル ロース構造体」と称す場合がある。 )に水が含浸された状態のものである。
[0035] この「三次元交差バクテリアセルロース構造体」とは「バクテリアセルロースが三次元 的な交差構造をとることにより嵩高 (スカスカ)の状態ではあるが一つの構造体として 扱えるようになって!/、る物体」を意味し、セルロース繊維を産生するバクテリアを前述 の如ぐ培養液で培養することにより形成される。
[0036] 即ち、バクテリアがセルロースを産生 出)しながらランダムに動き回ることによりセ ルロースが複雑に(三次元的に)交差している構造となった状態を云う。この複雑な 交差はバクテリアが分裂してセルロースが分岐を生ずることにより更に複雑ィ匕した交 差状態となる。
[0037] 三次元交差バクテリアセルロース構造体は適当な形状、即ちフィルム状、板状、ブ ロック状、所定の形状 (例えばレンズ状)等の形状で培養すれば、その形状に従って
形成される。従って、目的に応じ任意の形状の三次元交差バクテリアセルロース構造 体を得ることができる。
[0038] 含水バクテリアセルロースの製造にあたっては、前述したようにバクテリアを除去す るためのアルカリ処理や水等での洗浄処理が行われる力 これらの処理によっては 三次元交差したバクテリアセルロースはその三次元交差が解除されることはな 、。ま た、後述の如ぐ含水バクテリアセルロース中の水を媒介液と置換する工程や、その 前後でのプレス工程を経ても、この三次元交差状態はそのまま維持される。
[0039] 本発明にお 、て、バクテリアセルロース以外の繊維として、海草やホヤの被嚢、植 物細胞壁等に、叩解'粉砕等の処理、高温高圧水蒸気処理、リン酸塩等を用いた処 理等を施したセルロース繊維を用いても良 、。
[0040] この場合、上記叩解 ·粉砕等の処理は、リグ-ン等を除去した植物細胞壁や海草や ホヤの被嚢に、直接、力を加え、叩解や粉砕を行って繊維をバラバラにし、セルロー ス繊維を得る処理法である。
[0041] より具体的には、後述の実施例に示すように、パルプ等を高圧ホモジナイザーで処 理して平均繊維径 0. 1〜10 μ m程度にミクロフイブリル化したミクロフイブリル化セル ロース繊維(MFC)を 0. 1〜3重量%程度の水懸濁液とし、更にグラインダー等で繰 り返し磨砕ないし融砕処理して平均繊維径 10〜 1 OOnm程度のナノオーダーの MF C (Nano MFC)を得ることができる。この Nano MFCを 0. 01〜1重量0 /0程度の 水懸濁液とし、これを濾過することにより、シート化する。
[0042] 上記磨砕な ヽし融砕処理は、例えば、栗田機械製作所製グラインダー「ピュアファ インミル」等を用いて行うことができる。
[0043] このグラインダーは、上下 2枚のグラインダーの間隙を原料が通過するときに発生す る衝撃、遠心力、剪断力により、原料を超微粒子に粉砕する石臼式粉砕機であり、剪 断、磨砕、微粒化、分散、乳化、フィブリルィ匕を同時に行うことができるものである。ま た、磨砕ないし融砕処理は、増幸産業 (株)製超微粒磨砕機「スーパーマスコ口イダ 一」を用いて行うこともできる。スーパーマスコ口イダーは、単なる粉砕の域を越えた 融けるように感じるほどの超微粒ィ匕を可能にした磨砕機である。スーパーマスコ口イダ 一は、間隔を自由に調整できる上下 2枚の無気孔砥石によって構成された石臼形式
の超微粒磨砕機であり、上部砥石は固定で、下部砥石が高速回転する。ホッパーに 投入された原料は遠心力によって上下砥石の間隙に送り込まれ、そこで生じる強大 な圧縮、剪断、転がり摩擦力などにより、原料は次第にすり潰され、超微粒化される。
[0044] 上記高温高圧水蒸気処理は、リグニン等を除去した植物細胞壁や海草やホヤの被 嚢を高温高圧水蒸気に曝すことによって繊維をバラバラにし、セルロース繊維を得る 処理法である。
[0045] リン酸塩等を用いた処理とは、海草やホヤの被嚢、植物細胞壁等の表面をリン酸ェ ステルイ匕することにより、セルロース繊維間の結合力を弱め、次いで、リファイナー処 理を行うことにより、繊維をバラバラにし、セルロース繊維を得る処理法である。例え ば、リグ-ン等を除去した植物細胞壁や、海草やホヤの被嚢を 50重量%の尿素と 32 重量%のリン酸を含む溶液に浸漬し、 60°Cで溶液をセルロース繊維間に十分に染 み込ませた後、 180°Cで加熱してリン酸ィ匕を進める。これを水洗した後、 3重量%の 塩酸水溶液中、 60°Cで 2時間、加水分解処理をして、再度水洗を行う。その後、 3重 量%の炭酸ナトリウム水溶液中において、室温で 20分間程処理することで、リン酸化 を完了させる。そして、この処理物をリファイナ一で解繊することにより、セルロース繊 維が得られる。
[0046] これらのセルロース繊維は、異なる植物等力 得られるもの、或 、は異なる処理を 施したものを 2種以上混合して用いても良 、。
[0047] このようにして得られる含水 Nano MFCは、通常、平均繊維径が lOOnm程度の 単繊維のサブネットワーク構造 (前述のバクテリアセルロースのような完全な (綺麗な) ネットワーク構造は取って 、な 、が、局所的にネットワークを形成して 、る構造)の繊 維集合体に水が含浸された状態のものである。
[0048] [乾燥工程]
本発明では、上述のようにして得られた含水繊維集合体をフリーズドライすること〖こ より乾燥する。ここで、繊維集合体としては、前述の含水バクテリアセルロースのみを 用いても含水 Nano MFCのみを用いても良ぐこれらを併用しても良い。
[0049] このフリーズドライは、通常の凍結乾燥機を用いて常法に従って行えば良ぐ例え ば凍結乾燥機としては (株)東京理化製凍結乾燥機「FDU— 506」等を使用すること
ができる。なお、フリーズドライの処理条件には特に制限はなぐ繊維集合体に含ま れている溶媒の凝固点温度以下、 107〜lPaで、時間は処理量にもよるが 1〜2日 程度である。
[0050] このフリーズドライに先立ち、含水繊維集合体をコールドプレスして、繊維集合体中 に含まれる水分の一部を除去し、繊維含有率を調整することができる。
[0051] このプレスの程度は、後述の乾燥繊維集合体への含浸用液状物の含浸後のプレス とで、目的とする繊維含有率の繊維強化複合材料が得られるように設計されるが、一 般的には、プレスにより、含水繊維集合体の厚さがプレス前の厚さの 1/2〜1/20 程度となるようにすることが好ましい。このコールドプレス時の圧力、保持時間は、 0. 01〜: LOOMPa、 0. 1〜30分間の範囲でプレスの程度に応じて適宜決定される。た だし lOMPa以上でプレスする場合は、繊維集合体が破壊される場合があるので、プ レススピードを遅くする等してプレスする。プレス温度は、 0〜60°C程度とすることが 好ましいが、通常は室温で行われる。このプレス処理により厚さが薄くなつた含水繊 維集合体は、フリーズドライを行っても、ほぼその厚さが維持される。ただし、このプレ スは必ずしも必要とされず、含水繊維集合体をそのままフリーズドライに供しても良い
[0052] [含浸工程]
乾燥工程で得られた乾燥繊維集合体に含浸用液状物を含浸させる。
[0053] 乾燥繊維集合体に含浸用液状物を含浸させる方法としては、乾燥繊維集合体を含 浸用液状物中に浸漬して減圧条件下又は加圧条件下に保持する方法が例示される 力 これに限定されない。特に、減圧条件と加圧条件とを交互に繰り返し行うことが好 ましい。これにより、乾燥繊維集合体中に含浸用液状物を円滑に浸入させて、含浸 用液状物が含浸された繊維集合体を得ることができる。
[0054] この減圧条件については特に制限はないが、 0. 133kPa (lmmHg)〜93. 3kPa
(700mmHg)が好ましい。減圧条件が 93. 3kPa (700mmHg)より大きいと、繊維 集合体への含浸用液状物の浸入が不十分となり、繊維集合体の繊維間に空隙が残 存する場合が生じることがある。一方、減圧条件は 0. 133kPa (lmmHg)より低くて もよいが、減圧設備が過大となりすぎる傾向がある。
[0055] 減圧条件下における含浸工程の処理温度は、 0°C以上が好ましぐ 10°C以上がよ り好ましい。この温度が 0°Cより低いと、繊維集合体への含浸用液状物の浸入が不十 分となり、繊維間に空隙が残存する場合が生じることがある。なお、温度の上限は、 例えば含浸用液状物に溶媒を用いた場合、その溶媒の沸点(当該減圧条件下での 沸点)が好ましい。この温度より高くなると、溶媒の揮散が激しくなり、力えって、気泡 が残存しやすくなる傾向がある。
[0056] 加圧条件としては、 1. l〜10MPaが好ましい。加圧条件が 1. IMPaより低いと、 繊維集合体への含浸用液状物の浸入が不十分となり、繊維間に空隙が残存する場 合が生じることがある。一方、加圧条件は lOMPaより高くてもよいが、加圧設備が過 大となりすぎる傾向がある。
[0057] 加圧条件下における含浸工程の処理温度は、 0〜300°Cが好ましぐ 10〜100°C がより好ましい。この温度が 0°Cより低いと、繊維集合体への含浸用液状物の浸入が 不十分となり、繊維間に空隙が残存する場合が生じることがある。一方、 300°Cより高 いと、含浸用液状物が変性するおそれがある。
[0058] 含浸用液状物の含浸工程で減圧条件と加圧条件とを交互に繰り返し行う場合、各 々の条件に 2〜12時間程度保持し、これを各々 1〜5回程度繰り返すことが好ましい
[0059] この含浸用液状物の含浸を行うに際しては、乾燥繊維集合体を複数枚積層して含 浸用液状物中に浸漬しても良い。また、乾燥繊維集合体への含浸用液状物の含浸 を行った後の含浸用液状物を含む繊維集合体を複数枚積層して後の硬化工程に供 しても良い。
[0060] 本発明で採用し得るマトリクス材料及び含浸用液状物は以下の通りである。
[0061] 〈マトリクス材料〉
本発明の繊維強化複合材料のマトリクス材料は、本発明の繊維強化複合材料の母 材となる材料であり、後述の好適な物性を満たす繊維強化複合材料を製造すること 力できるものであれば特に制限はなぐ有機高分子、無機高分子、有機高分子と無 機高分子とのハイブリッド高分子等の 1種を単独で、或いは 2種以上を混合して用い ることがでさる。
[0062] 以下に本発明に好適なマトリクス材料を例示する力 本発明で用いるマトリクス材料 は何ら以下のものに限定されるものではない。
[0063] マトリクス材料の無機高分子としては、ガラス、シリケート材料、チタネート材料など のセラミックス等が挙げられ、これらは例えばアルコラートの脱水縮合反応により形成 することができる。また、有機高分子としては、天然高分子や合成高分子が挙げられ る。
[0064] 天然高分子としては、再生セルロース系高分子、例えばセロハン、トリァセチルセル ロース等が挙げられる。
[0065] 合成高分子としては、ビュル系榭脂、重縮合系榭脂、重付加系榭脂、付加縮合系 榭脂、開環重合系榭脂等が挙げられる。
[0066] 上記ビュル系榭脂としては、ポリオレフイン、塩ィ匕ビュル系榭脂、酢酸ビニル系榭脂 、フッ素榭脂、(メタ)アクリル系榭脂等の汎用榭脂や、ビニル重合によって得られるェ ンジニアリングプラスチック、スーパーエンジニアリングプラスチック等が挙げられる。 これらは、各榭脂内において、構成される各単量体の単独重合体や共重合体であつ ても良い。
[0067] 上記ポリオレフインとしては、エチレン、プロピレン、スチレン、ブタジエン、ブテン、ィ ソプレン、クロ口プレン、イソブチレン、イソプレン等の単独重合体又は共重合体、ある いはノルボルネン骨格を有する環状ポリオレフイン等が挙げられる。
[0068] 上記塩ィ匕ビュル系榭脂としては、塩化ビュル、塩化ビ-リデン等の単独重合体又 は共重合体が挙げられる。
[0069] 上記酢酸ビュル系榭脂とは、酢酸ビュルの単独重合体であるポリ酢酸ビュル、ポリ 酢酸ビュルの加水分解体であるポリビュルアルコール、酢酸ビニルに、ホルムアルデ ヒドゃ n—ブチルアルデヒドを反応させたポリビュルァセタール、ポリビュルアルコー ルゃブチルアルデヒド等を反応させたポリビニルブチラール等が挙げられる。
[0070] 上記フッ素榭脂としては、テトラクロロエチレン、へキフロロプロピレン、クロロトリフロ 口エチレン、フッ化ピリ-デン、フッ化ビュル、ペルフルォロアルキルビュルエーテル 等の単独重合体又は共重合体が挙げられる。
[0071] 上記 (メタ)アクリル系榭脂としては、 (メタ)アクリル酸、 (メタ)アクリロニトリル、 (メタ)
アクリル酸エステル、(メタ)アクリルアミド類等の単独重合体又は共重合体が挙げら れる。なお、この明細書において、「(メタ)アクリル」とは、「アクリル及び Z又はメタタリ ル」を意味する。ここで、(メタ)アクリル酸としては、アクリル酸又はメタクリル酸が挙げ られる。また、(メタ)アクリロニトリルとしては、アクリロニトリル又はメタタリ口-トリルが挙 げられる。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸アルキルエステル、シク 口アルキル基を有する(メタ)アクリル酸系単量体、(メタ)アクリル酸アルコキシアルキ ルエステル等が挙げられる。 (メタ)アクリル酸アルキルエステルとしては、(メタ)アタリ ル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸 2— ェチルへキシル、(メタ)アクリル酸シクロへキシル、(メタ)アクリル酸ベンジル、(メタ) アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ヒドロキシェチル等 が挙げられる。シクロアルキル基を有する (メタ)アクリル酸系単量体としては、(メタ) アクリル酸シクロへキシル、イソボルニル (メタ)アタリレート等が挙げられる。 (メタ)ァク リル酸アルコキシアルキルエステルとしては、(メタ)アクリル酸 2—メトキシェチル、(メ タ)アクリル酸 2—エトキシェチル、(メタ)アクリル酸 2—ブトキシェチル等が挙げられ る。(メタ)アクリルアミド類としては、(メタ)アクリルアミド、 N—メチル (メタ)アクリルアミ ド、 N ェチル (メタ)アクリルアミド、 N, N ジメチル (メタ)アクリルアミド、 N, N ジ ェチル (メタ)アクリルアミド、 N—イソプロピル (メタ)アクリルアミド、 N— t ォクチル( メタ)アクリルアミド等の N置換 (メタ)アクリルアミド等が挙げられる。
[0072] 上記重縮合系榭脂としては、アミド系榭脂やポリカーボネート等が挙げられる。
[0073] 上記アミド系榭脂としては、 6, 6 ナイロン、 6 ナイロン、 11 ナイロン、 12 ナイ ロン、 4, 6 ナイロン、 6, 10 ナイロン、 6, 12 ナイロン等の脂肪族アミド系榭脂や 、フエ-レンジァミン等の芳香族ジァミンと塩ィ匕テレフタロイルゃ塩化イソフタロイル等 の芳香族ジカルボン酸又はその誘導体力 なる芳香族ポリアミド等が挙げられる。
[0074] 上記ポリカーボネートとは、ビスフエノール Aやその誘導体であるビスフエノール類と 、ホスゲン又はフエニルジカーボネートとの反応物を!、う。
[0075] 上記重付加系榭脂としては、エステル系榭脂、 Uポリマー、液晶ポリマー、ポリエー テルケトン類、ポリエーテルエーテルケトン、不飽和ポリエステル、アルキド榭脂、ポリ イミド系榭脂、ポリスルホン、ポリフエ-レンスルフイド、ポリエーテルスルホン等が挙げ
られる。
[0076] 上記エステル系榭脂としては、芳香族ポリエステル、脂肪族ポリエステル、不飽和ポ リエステル等が挙げられる。上記芳香族ポリエステルとしては、エチレングリコール、 プロピレングリコール、 1, 4 ブタンジオール等の後述するジオール類とテレフタル 酸等の芳香族ジカルボン酸との共重合体が挙げられる。上記脂肪族ポリエステルとし ては、後述するジオール類とコハク酸、吉草酸等の脂肪族ジカルボン酸との共重合 体や、グリコール酸や乳酸等のヒドロキシカルボン酸の単独重合体又は共重合体、 上述するジオール類、上記脂肪族ジカルボン酸及び上記ヒドロキシカルボン酸の共 重合体等が挙げられる。上記不飽和ポリエステルとしては、後述するジオール類、無 水マレイン酸等の不飽和ジカルボン酸、及び必要に応じてスチレン等のビュル単量 体との共重合体が挙げられる。
[0077] 上記 Uポリマーとしては、ビスフエノール Aやその誘導体であるビスフエノール類、テ レフタル酸及びイソフタル酸等力 なる共重合体が挙げられる。
[0078] 上記液晶ポリマーとしては、 p ヒドロキシ安息香酸と、テレフタル酸、 p, p' ジォ キシジフエノール、 p ヒドロキシー6—ナフトェ酸、ポリテレフタル酸エチレン等との共 重合体をいう。
[0079] 上記ポリエーテルケトンとしては、 4, 4,ージフルォロベンゾフヱノンや 4, 4,一ジヒド 口べンゾフ ノン等の単独重合体や共重合体が挙げられる。
[0080] 上記ポリエーテルエーテルケトンとしては、 4, 4'ージフルォロベンゾフヱノンとハイ ドロキノン等の共重合体が挙げられる。
[0081] 上記アルキド榭脂としては、ステアリン酸、バルチミン酸等の高級脂肪酸と無水フタ ル酸等の二塩基酸、及びグリセリン等のポリオール等力 なる共重合体が挙げられる
[0082] 上記ポリスルホンとしては、 4, 4'ージクロロジフエ-ルスルホンやビスフエノール A 等の共重合体が挙げられる。
[0083] 上記ポリフエ-ルレンスルフイドとしては、 p ジクロロベンゼンや硫化ナトリウム等の 共重合体が挙げられる。
[0084] 上記ポリエーテルスルホンとしては、 4—クロ口一 4,一ヒドロキシジフエ-ルスルホン
の重合体が挙げられる。
[0085] 上記ポリイミド系榭脂としては、無水ポリメリト酸ゃ 4, 4'ージアミノジフエニルエーテ ル等の共重合体であるピロメリト酸型ポリイミド、無水塩ィ匕トリメリト酸ゃ p フエ-レン ジァミン等の芳香族ジァミンや、後述するジイソシァネート化合物等からなる共重合 体であるトリメリト酸型ポリイミド、ビフエ-ルテトラカルボン酸、 4, 4,一ジアミノジフエ- ルエーテル、 p フエ-レンジァミン等からなるビフエ-ル型ポリイミド、ベンゾフエノン テトラカルボン酸や 4, 4'ージアミノジフエ-ルエーテル等からなるベンゾフエノン型ポ リイミド、ビスマレイイミドゃ 4, 4,一ジアミノジフエ-ルメタン等力もなるビスマレイイミド 型ポリイミド等が挙げられる。
[0086] 上記重付加系榭脂としては、ウレタン榭脂等が挙げられる。
[0087] 上記ウレタン榭脂は、ジイソシァネート類とジオール類との共重合体である。上記ジ イソシァネート類としては、ジシクロへキシルメタンジイソシァネート、 1, 6 へキサメ チレンジイソシァネート、イソホロンジイソシァネート、 1, 3 シクロへキシレンジイソシ ァネート、 1, 4ーシクロへキシレンジイソシァネート、 2, 4 トリレンジイソシァネート、 2, 6 トリレンジイソシァネート、 4, 4'ージフエ-ルメタンジイソシァネート、 2, 4' ジフエ-ルメタンジイソシァネート、 2, 2,ージフエ-ルメタンジイソシァネート等が挙 げられる。また、上記ジオール類としては、エチレングリコール、プロピレングリコール 、 1, 3 プロパンジオール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 1, 5— ペンタンジオール、 3—メチルー 1, 5 ペンタンジオール、 1, 6 へキサンジオール 、ネオペンチルグリコール、ジエチレングリコール、トリメチレングリコール、トリエチレン グリコール、テトラエチレンダリコール、ジプロピレングリコール、トリプロピレングリコー ル、シクロへキサンジメタノール等の比較的低分子量のジオールや、ポリエステルジ オール、ポリエーテルジオール、ポリカーボネートジオール等が挙げられる。
[0088] 上記付加縮合系榭脂としては、フエノール榭脂、尿素樹脂、メラミン榭脂等が挙げら れる。
[0089] 上記フエノール榭脂としては、フエノール、クレゾール、レゾルシノール、フエ-ルフ 工ノール、ビスフ ノール A、ビスフエノール F等の単独重合体又は共重合体が挙げら れる。
[0090] 上記尿素樹脂やメラミン榭脂は、ホルムアルデヒドや尿素、メラミン等の共重合体で ある。
[0091] 上記開環重合系榭脂としては、ポリアルキレンォキシド、ポリアセタール、エポキシ 榭脂等が挙げられる。上記ポリアルキレンォキシドとしては、エチレンォキシド、プロピ レンォキシド等の単独重合体又は共重合体が挙げられる。上記ポリアセタールとして は、トリオキサン、ホルムアルデヒド、エチレンォキシド等の共重合体が挙げられる。上 記エポキシ榭脂とは、エチレングリコール等の多価アルコールとェピクロロヒドリンとか らなる脂肪族系エポキシ榭脂、ビスフエノール Aとェピクロロヒドリンとからなる脂肪族 系エポキシ榭脂等が挙げられる。
[0092] 本発明にお 、ては、このようなマトリクス材料のうち、特に非晶質でガラス転移温度( Tg)の高 、合成高分子が透明性に優れた高耐久性の繊維強化複合材料を得る上 で好ましぐこのうち、非晶質の程度としては、結晶化度で 10%以下、特に 5%以下 であるものが好ましぐまた、 Tgは 110°C以上、特に 120°C以上、とりわけ 130°C以上 のものが好ましい。 Tgが 110°C未満のものでは、例えば沸騰水に接触した場合に変 形するなど、透明部品、光学部品等としての用途において、耐久性に問題が発生す る。なお、 Tgは DSC法による測定で求められ、結晶化度は、非晶質部と結晶質部の 密度から結晶化度を算定する密度法により求められる。
[0093] 好ま ヽ透明マトリクス榭脂としては、アクリル榭脂、メタタリル榭脂、エポキシ榭脂、 ウレタン榭月旨、フエノール榭脂、メラミン榭脂、ノボラック榭脂、ユリア榭脂、グアナミン 榭脂、アルキド榭脂、不飽和ポリエステル榭脂、ビニルエステル榭脂、ジァリルフタレ ート榭脂、シリコーン榭脂、フラン榭脂、ケトン樹脂、キシレン榭脂、熱硬化型ポリイミ ド、スチリルピリジン系榭脂、トリアジン系榭脂等の熱硬化榭脂が挙げられ、これらの 中でも特に透明性の高 ヽアクリル榭脂、メタクリル樹脂が好ま 、。
[0094] これらのマトリクス材料は、 1種単独で用いても良ぐ 2種以上を混合して用いても良 い。
[0095] 〈含浸用液状物〉
含浸用液状物としては、流動状のマトリクス材料、流動状のマトリクス材料の原料、 マトリクス材料を流動化させた流動化物、マトリクス材料の原料を流動化させた流動
化物、マトリクス材料の溶液、及びマトリクス材料の原料の溶液カゝら選ばれる 1種又は 2種以上を用いることができる。
[0096] 上記流動状のマトリクス材料としては、マトリクス材料そのものが流動状であるもの等 をいう。また、上記流動状のマトリクス材料の原料としては、例えば、プレボリマーゃォ リゴマー等の重合中間体等が挙げられる。
[0097] 上記マトリクス材料を流動化させた流動化物としては、例えば、熱可塑性のマトリク ス材料を加熱溶融させた状態のもの等が挙げられる。
[0098] 上記マトリクス材料の原料を流動化させた流動化物としては、例えば、プレボリマー やオリゴマー等の重合中間体が固形状の場合、これらを加熱溶融させた状態のもの 等が挙げられる。
[0099] 上記マトリクス材料の溶液やマトリクス材料の原料の溶液とは、マトリクス材料やマト リクス材料の原料を溶媒等に溶解させた溶液が挙げられる。この溶媒は、溶解対象 のマトリクス材料やマトリクス材料の原料に合わせて適宜決定される力 後工程でこれ を除去するに当たり、蒸発除去する場合、上記マトリクス材料やマトリクス材料の原料 の分解を生じさせな!/ヽ程度の温度以下の沸点を有する溶媒が好まし ヽ。
[0100] [硬化工程]
繊維集合体に含浸させた含浸用液状物を硬化させるには、含浸用液状物にふさわ しい硬化方法が採用されるべきである。例えば、含浸用液状物が流動状のマトリクス 材料の場合は、架橋反応、鎖延長反応等が挙げられる。含浸用液状物が流動状の マトリクス材料の原料 (例えばモノマー及び Z又はオリゴマー)の場合は、重合反応、 架橋反応、鎖延長反応等が挙げられる。原料が紫外線、電子線などのエネルギー線 硬化性榭脂のモノマー及び Z又はオリゴマーの場合、硬化工程にぉ 、て紫外線又 は電子線が照射される。
[0101] 含浸用液状物がマトリクス材料を流動化させた流動化物の場合は、冷却等が挙げ られる。また、含浸用液状物がマトリクス材料の原料を流動化させた流動化物の場合 は、冷却等と、重合反応、架橋反応、鎖延長反応等の組合せが挙げられる。
[0102] 含浸用液状物がマトリクス材料の溶液の場合は、溶液中の溶媒の蒸発や風乾等に よる除去等が挙げられる。更に、含浸用液状物がマトリクス材料の原料の溶液の場合
は、溶液中の溶媒の除去等と、重合反応、架橋反応、鎖延長反応等との組合せが挙 げられる。なお、上記蒸発除去には、常圧下における蒸発除去だけでなぐ減圧下に おける蒸発除去も含まれる。
[0103] この含浸用液状物の硬化を行うに先立ち、含浸用液状物を含む繊維集合体をコー ルドプレスして成形することが好ましい。即ち、フリーズドライにより得られた乾燥繊維 集合体は表面が荒れている場合が多いため、このようなフリーズドライを経た乾燥繊 維集合体に含浸用液状物を含浸させた後は、コールドプレスにより形を整えることが 好ましい。
[0104] このコールドプレスの程度は、 目的とする繊維強化複合材料の繊維含有率に応じ て適宜決定されるが、一般的には、プレスにより、乾燥繊維集合体の厚さがプレス前 の厚さの 1Z2〜1Z20程度となるようにすることが好ましい。このコールドプレス時の 圧力、保持時間は、 0. 1〜: LOOMPa、 1〜10分間の範囲でプレスの程度に応じて適 宜決定されるが、プレス温度は 0〜60°C程度、通常は室温とすることが好ましい。た だし lOMPa以上でプレスする場合は、繊維集合体が破壊される場合があるので、プ レススピードを遅くする等してプレスする。
[0105] [その他の工程]
く化学修飾〉
本発明においては、繊維は、化学修飾を行って機能性を高めたものであっても良 い。ここで、化学修飾としてはエーテル化、エステル化、イソシアナ一トイ匕等によって ァセチル基、メタクリロイル基、プロパノィル基、ブタノィル基、 iso—ブタノィル基、ぺ ンタノィル基、へキサノィル基、ヘプタノィル基、オタタノィル基、ノナノィル基、デカノ ィル基、ゥンデカノィル基、ドデカノィル基、ミリストイル基、ノルミトイル基、ステアロイ ル基、ビバロイル基、 2—メタクリロイルォキシェチルイソシァノィル基、メチル基、ェチ ル基、プロピル基、 iso—プロピル基、ブチル基、 tert—ブチル基、ペンチル基、へキ シル基、ヘプチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、 ゥンデシル基、ドデシル基、ミリスチル基、パルミチル基、ステアリル基等を付加させる こと等が挙げられる。化学修飾の方法としては、例えば、フリーズドライにより得られた 乾燥繊維集合体を無水酢酸中に浸漬し、必要に応じて加熱してァセチル化する方
法が挙げられ、ァセチルイ匕により、光線透過率を低下させることなぐ吸水性の低下、 耐熱性の向上を図ることができる。この場合には、ァセチル化後の繊維集合体に含 浸用液状物を含浸させれば良い。また、化学修飾方法としては、含水繊維集合体を 有機溶媒で置換し、含有機溶媒繊維集合体を作成し、その後、この含有機溶媒繊維 集合体の有機溶媒を無水酢酸に置換し、必要に応じて加熱してァセチル化する方 法も挙げられる。この場合、得られたァセチル化含無水酢酸繊維集合体の無水酢酸 をエタノール、 t ブチルアルコールで順次置換し、その後フリーズドライすれば良い
[0106] <フリーズドライに先立つ溶媒置換 >
本発明では、フリーズドライを行う場合、含水繊維集合体中の水が、氷の状態から 水蒸気へと昇華する際の凝集力が弱いために、繊維同士の凝集が防止されるが、こ の凍結乾燥時の凝集力の点では、 t ブチルアルコールの方がより小さぐ従って、 繊維同士の凝集防止には有効である。このため、フリーズドライに先立ち、含水繊維 集合体中の水を t ブチルアルコール等の低凝集性溶媒に置換し、 t ブチルアル コールを含む繊維集合体を凍結乾燥に供することも、凝集の少な!ヽ乾燥繊維集合体 を得る上で好ましい。また、水と上記低凝集性溶媒とは比較的相溶性が低ぐ含水繊 維集合体中の水を t—ブチルアルコールのような低凝集性溶媒と直接置換することが 困難であるため、水と低凝集性溶媒とを置換するに先立ち、水と低凝集性溶媒との 双方に相溶性を有する溶媒、例えば、低凝集性溶媒として t ブチルアルコールを 用いる場合にはエタノール等の相溶性溶媒を用い、含水繊維集合体中の水を、この ような相溶性溶媒と置換し、その後、このような相溶性溶媒を低凝集性溶媒と置換す るようにしても良い。
[0107] 含水繊維集合体中の水を他の溶媒と置換する方法としては特に制限はないが、含 水繊維集合体を溶媒中に浸潰して所定の時間放置することにより含水繊維集合体 中の水を溶媒側へ浸出させ、浸出した水を含む溶媒を適宜交換することにより繊維 集合体中の水を溶媒と置換する方法が挙げられる。この浸漬置換の温度条件は、溶 媒の揮散を防止するために、 0〜60°C程度とすることが好ましぐ通常は室温で行わ れる。
[0108] 前述の如ぐ繊維集合体を構成する繊維は 1種を単独で用いても良ぐ 2種以上を 併用しても良い。即ち、化学修飾してある繊維とィ匕学修飾してない繊維とを併用して も良ぐ異なる化学修飾を施した繊維を混合して用いても良ぐまた、バクテリアセル ロースと植物由来の Nano MFCとを併用しても良い。また、バクテリアセルロースに ついても、異なる菌株カゝら得られたものを併用しても良ぐ培養時に異なる菌株を 2種 以上用いても良い。
[0109] [繊維強化複合材料]
本発明の方法により製造される繊維強化複合材料は、 0. 1〜70体積%ないしは 0 . 1〜70重量%の幅広い範囲で任意の繊維含有率のものとすることができる。ただし 、繊維強化複合材料中の繊維の含有率が少な過ぎると繊維による曲げ強度及び曲 げ弾性率向上、又は線熱膨張係数低減の効果が不十分となる傾向があり、多過ぎる と、マトリクス材料による繊維間の接着、又は繊維間の空間の充填が十分でなくなり、 強度や透明性、表面の平坦性が低下するおそれがあり、また、前述の如ぐ吸湿性、 コスト等の面においても好ましくない。従って、本発明により得られる繊維強化複合材 料の繊維含有率は 10重量%以上、特に 20〜70重量%であることが好ましい。
[0110] 本発明の繊維強化複合材料は、波長 400〜700nmの光の 50 μ m厚可視光透過 率が 60%以上、特に 65%以上、特に 70%以上、特に 80%以上、とりわけ 90%以上 の高透明性材料であることが好ましい。繊維強化複合材料の 50 m厚可視光透過 率が 60%未満では、半透明又は不透明となり、本発明の目的を達成し得ず、自動車 、電車、船舶等の移動体の窓材料、ディスプレイ、住宅、建築物、各種光学部品等、 透明性が要求される用途への使用が困難となる場合がある。
[0111] 波長 400〜700nmの光の m厚可視光透過率とは、本発明に係る繊維強化 複合材料に対して、厚さ方向に波長 400〜700nmの光を照射した時の全波長域に おける光線透過率 (直線光線透過率 =平行光線透過率。以下「直線透過率」と称す 場合がある。)の平均値を 50 /z m厚に換算した値である。この光線透過率は、空気を レファレンスとして、光源とディテクターを被測定基板 (試料基板)を介して、かつ基板 に対して垂直となるように配置し、直線透過光(平行光線)を測定することにより求め ることがでさる。
[0112] 本発明の繊維強化複合材料は、線熱膨張係数が、好ましくは 0. 05 X 10_5〜5 X 10_5K_1であり、より好ましくは 0. 2 Χ 10_5〜2 Χ 10_5Κ_1であり、特に好ましくは 0. 3 X 10_5〜1 X 10_5Κ_ 1である。繊維強化複合材料の線熱膨張係数は 0. 05 X 10" 5κ_1より小さくてもよいが、セルロース繊維等の線熱膨張係数を考えると、実現が難 しい場合がある。一方、線熱膨張係数が 5 Χ 10_5Κ_1より大きいと、繊維補強効果が 発現しておらず、ガラスや金属材料との線熱膨張係数との違いから、雰囲気温度に より、窓材でたわみや歪みが発生したり、光学部品で結像性能や屈折率が狂う等の 問題が発生したりする場合がある。
[0113] 本発明の繊維強化複合材料は、曲げ強度が、好ましくは 30MPa以上であり、より 好ましくは lOOMPa以上である。曲げ強度が 30MPaより小さいと、十分な強度が得 られず、構造材料等、力の加わる用途への使用に影響を与えることがある。曲げ強度 の上限については、通常 600MPa程度である力 繊維の配向を調整するなどの改 良手法により、 lGPa、更には 1. 5GPa程度の高い曲げ強度を実現することも期待さ れる。
[0114] 本発明に係る繊維強化複合材料は、曲げ弾性率力 好ましくは 0. 1〜: LOOGPaで あり、より好ましくは l〜40GPaである。曲げ弾性率が 0. lGPaより小さいと、十分な 強度が得られず、構造材料等、力の加わる用途への使用に影響を与えることがある。 一方、 lOOGPaより大きいものは実現が困難である。
[0115] 本発明の繊維強化複合材料は、熱伝導率が好ましくは 0. 5WZmK以上、より好ま しくは 1. OWZmK (石英ガラスの熱伝導率と同等)以上、更に好ましくは 1. IW/m K以上である。熱伝導率力このように大きいことにより、熱移動を促進して放熱性に優 れた部材とすることができる。なお、本発明の繊維強化複合材料の熱伝導率は、繊 維含有率が多い程高ぐ従って、繊維含有率の調整により所望の値に容易に調整す ることがでさる。
[0116] 本発明の繊維強化複合材料の比重は、 1. 0〜2. 5であることが好ましい。より具体 的には、マトリクス材料としてガラス等のシリケ一トイ匕合物や、チタネート化合物、アル ミナ等の無機高分子以外の有機高分子や、無機高分子であっても多孔質材料を用 いる場合は、本発明の繊維強化複合材料の比重は、 1. 0〜1. 8が好ましぐ 1. 2〜
1. 5がより好ましぐ 1. 3〜1. 4が更に好ましい。ガラス以外のマトリクス材料の比重 は 1. 6未満が一般的であり、かつ、セルロース繊維の比重が 1. 5付近であるので、 比重を 1. 0より小さくしょうとすると、セルロース繊維等の含有率が低下し、セルロー ス繊維等による強度向上が不十分となる傾向がある。一方、比重が 1. 8より大きいと
、得られる繊維強化複合材料の重量が大きくなり、ガラス繊維強化材料と比較して、 軽量ィ匕をめざす用途に使用することが不利となる。
[0117] マトリクス材料としてガラス等のシリケ一トイ匕合物や、チタネート化合物、アルミナ等 の無機高分子 (多孔質材料を除く)を用いる場合は、本発明の繊維強化複合材料の 比重は、 1. 5〜2. 5力 S好ましく、 1. 8〜2. 2がより好ましい。ガラスの比重は 2. 5以 上が一般的であり、かつ、セルロース繊維の比重が 1. 5付近であるので、比重を 2. 5 より大きくしょうとすると、セルロース繊維等の含有率が低下し、セルロース繊維等に よる強度向上が不十分となる傾向がある。一方、比重が 1. 5より小さくなると、繊維間 の空隙の充填が不十分になる可能性がある。
[0118] 本発明において、線熱膨張係数は、繊維強化複合材料を 50°Cから 150°Cに昇温 させた際の線熱膨張係数であり、 ASTM D 696に規定された条件下で測定され た値である。曲げ強度及び曲げ弾性率は、 JIS K 7203に規定された方法に従つ て測定した値である。また、繊維強化複合材料の熱伝導率は、光交流法 (面内方向) に従って測定した値である。また、繊維強化複合材料の比重は、 20°Cにおいて、単 位体積当たりの質量を測定して密度を求め、水の密度(1. 004gZcm3 (20°C) )とか ら換算して求めることができる。
[0119] 本発明の繊維強化複合材料は、透明性等に優れ、更に繊維とマトリクス材料との複 合化で様々な優れた機能性を有するため、光学分野、構造材料分野、建材分野等 の種々の用途に好適に使用することができる。
[0120] また、本発明の繊維強化複合材料よりなる透明基板は透明性が高ぐ有機 EL発光 素子、あるいはイメージセンサや太陽電池等の受光素子に用いる透明基板に用いる ことができる。本発明の透明基板を用いることにより、電子機器 (デジカメ、スキャナ等 )の性能向上 (光学特性、消費電流の低減、使用時間の延長等)が期待できるように なる。また、本発明の繊維強化複合材料を用いて光ファイバを形成することもできる。
実施例
[0121] 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明 はその要旨を超えない限り、以下の実施例により限定されるものではない。なお、繊 維強化複合材料の各種物性等の測定方法は次の通りである。
[0122] [線熱膨張係数の測定]
窒素雰囲気下にて 60°Cで 2時間加熱して、榭脂のポストキュアを行ったサンプルに ついて、セイコーインスツルメンッ製「TMA/SS6100」を用い、 ASTM D 696に 規定された方法に従って下記の測定条件で測定した。
〈測定条件〉
昇温速度: 5。CZmin
雰囲気: N中
2
加熱温度: 20〜150°C
荷直: 3g
測定回数: 3回
試料お: 4 X 15mm
試料厚さ:試料により異なる
モード:引っ張りモード
[0123] [直線透過率の測定]
<測定装置 >
日立ハイテクノロジーズ社製「UV— 4100形分光光度計」(固体試料測定システム) を使用。
<測定条件 >
6mm X 6mmの光源マスク使用
測定サンプル (厚さ 50 μ m)を積分球開口より 22cm離れた位置にぉ 、て測光した 。サンプルをこの位置に置くことで、拡散透過光は除去され、積分球内部の受光部に 直線透過光のみが届く。
リファレンスサンプルなし。リファレンス (試料と空気との屈折率差によって生じる反 射。フレネル反射が生じる場合は、直線透過率 100%ということはあり得ない。)がな
、ため、フレネル反射による透過率のロスが生じて!/、る。
スキャンスピード: 300nm/min
光源:タングステンランプ、重水素ランプ
光源切り替え: 340nm
[0124] [繊維含有率の測定]
製造された繊維強化複合材料の重量と、この繊維強化複合材料の製造に供した繊 維集合体の重量力も求めた。
[0125] 実施例 1
〈含水バクテリアセルロースの製造〉
まず、凍結乾燥保存状態の酢酸菌の菌株に培養液を加え、 1週間静置培養した (2 5〜30°C)。培養液表面に生成したバクテリアセルロースのうち、厚さが比較的厚いも のを選択し、その株の培養液を少量分取して新しい培養液に加えた。そして、この培 養液を大型培養器に入れ、 25〜30°Cで 7〜30日間の静地培養を行った。培養液に は、グルコース 2重量0 /0、バクトイーストェクストラ 0. 5重量0 /0、バクトペプトン 0. 5重量 %、リン酸水素ニナトリウム 0. 27重量%、クェン酸 0. 115重量%、硫酸マグネシウム 七水和物 0. 1重量%とし、塩酸により pH5. 0に調整した水溶液 (SH培地)を用いた
[0126] このようにして産出させたバクテリアセルロースを培養液中から取り出し、 2重量%の アルカリ水溶液で 2時間煮沸し、その後、アルカリ処理液からバクテリアセルロースを 取り出し、十分水洗し、アルカリ処理液を除去し、バクテリアセルロース中のバクテリア を溶解除去して、厚さ lcm、繊維含有率 1体積%、水含有率 99体積%の含水バクテ リアセルロースを得た。
この含水バクテリアセルロースを、金属メッシュシートではさみ、室温にてそれを厚さ 0. 5cmまでコールドプレスして水を除去した。
[0127] 〈フリーズドライによる乾燥〉
コールドプレスした含水バクテリアセルロースを、冷凍庫(一 5°C)で凍結させた後、 凍結乾燥機の容器の中へ入れて、 30分ほど容器ごと再び冷凍庫で冷やした。
その後、この容器を凍結乾燥機 ( (株)東京理化製 凍結乾燥機「FDU— 506」 )に
取り付け、 0°C以下、 8Pa (常圧を 101. 3KPaとしたときの容器内の圧力(十分、真空 状態といえる。;))で 2日間凍結乾燥を行うことにより乾燥バクテリアセルロースを得た。 得られた乾燥バクテリアセルロースの厚さは 0. 5cm程度のままであり、殆ど厚さに変 化はな力つた。
[0128] 〈含浸用液状物の含浸〉
乾燥バクテリアセルロースを、紫外線硬化型アクリル榭脂のモノマー液である TCD DMA (三菱ィ匕学 (株)社製)に浸漬し、室温にて 0. 09MPaの減圧条件と、 5〜: LOM Paの加圧条件とを各々 5〜6時間ずつ交互に繰り返す減圧'加圧処理を 3日間行うこ とにより、乾燥バクテリアセルロース中にモノマー液を十分に含浸させた。
[0129] 〈硬化〉
モノマー液を含浸させたバクテリアセルロースをスライドガラスではさみ、 2MPaで 3 分間コールドプレスして成形した後、スライドガラスで挟んで紫外線を照射して (8分 間、 20jZcm2)、榭脂を硬化させた。更に、窒素雰囲気下、 160°Cで 2時間ポストキ ユアして繊維強化複合材料を製造した。
[0130] 得られた繊維強化複合材料の厚さ、繊維含有率、線熱膨張係数、及び平均直線 透過率は表 1に示す通りであった。また、直線透過率は図 1に示す通りであった。
[0131] 実施例 2
含水バクテリアセルロースのコールドプレス条件を 0. 2cmまでとしたこと以外は、実 施例 1と同様にして繊維強化複合材料を製造した。得られた繊維強化複合材料の厚 さ、繊維含有率、線熱膨張係数、及び平均直線透過率は表 1に示す通りであった。 また、直線透過率は図 2に示す通りであった。
[0132] 実施例 3
〈含水 Nano MFCの製造〉
ミクロフイブリルィ匕セルロース: MFC (高圧ホモジナイザー処理で、針葉樹クラフトパ ルプ (NBKP)をミクロフイブリルィ匕したもの、平均繊維径 1 μ m)を水に十分に撹拌し 、 1重量%濃度の水懸濁液を 7kg調製し、グラインダー (栗田機械作成所製「ピュアフ ァインミル KMG1— 10」)にて、この水懸濁液を、ほぼ接触させた状態の 1200rpm で回転するディスク間を、中央力も外に向力つて通過させる操作を 30回(30pass)行
つた o
[0133] グラインダー処理により得られた Nano MFC (平均繊維径 60nm)を、 0. 2重量% 水懸濁液に調製後、ガラスフィルターで濾過して製膜した。
[0134] この含水 Nano MFCを含水バクテリアセルロースの代りに用い、榭脂含浸後(樹 脂硬化前)に 0. IMPaで 2分間コールドプレスしたこと以外は、実施例 1と同様にして 繊維強化複合材料を製造した。得られた繊維強化複合材料の厚さ、繊維含有率、線 熱膨張係数、及び平均直線透過率は表 1に示す通りであった。
[0135] 比較例 1
実施例 1と同様にして製造した含水バクテリアセルロースを 2MPa、 130°Cで 3分間 ホットプレスして脱水し、水を完全に除去して乾燥バクテリアセルロースを製造し、こ の乾燥バタテリァセルロースを用 、て実施例 1と同様にして含浸処理を行つたこと以 外は実施例 1と同様にして繊維強化複合材料を製造した。得られた繊維強化複合材 料の厚さ、繊維含有率、線熱膨張係数及び平均直線透過率 (波長 400ηπ!〜 800η mにおける直線透過率の平均)は表 1に示す通りであった。
[0136] [表 1]
[0137] 表 1より明らかなように、本発明によれば、繊維含有率の低い繊維強化複合材料を 製造することができる。これに対して、比較例 1では、脱水時のホットプレスによりパク テリアセルロースの厚さが著しく小さくなり、繊維含有率の高い繊維強化複合材料し か製造することはできない。
[0138] また、本発明によれば、フリーズドライ前の含水繊維集合体のコールドプレスの程 度や、含浸用液状物含浸後のコールドプレスの程度を調整することにより、様々な繊
維含有率の繊維強化複合材料を製造することができる。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 2月 7日付で出願された日本特許出願 (特願 2005— 30 668)に基づいており、その全体が引用により援用される。
Claims
[1] 繊維集合体と、該繊維集合体に含浸されたマトリクス材料とを備える繊維強化複合 材料を製造する方法であって、
水を含む繊維の集合体 (以下「含水繊維集合体」と称す。 )を製造する工程と、 該含水繊維集合体をフリーズドライすることにより乾燥繊維集合体を得る乾燥工程 と、
該乾燥工程で得られた乾燥繊維集合体に、硬化することにより前記マトリクス材料と なる含浸用液状物を含浸させる含浸工程と、
その後、該含浸用液状物を硬化させる硬化工程と
を備えてなる繊維強化複合材料の製造方法。
[2] 請求項 1にお 、て、前記含水繊維集合体をコールドプレスした後、フリーズドライす ることを特徴とする繊維強化複合材料の製造方法。
[3] 請求項 1にお 、て、前記含水繊維集合体に含まれる水を、水以外の液体に置換し た後、フリーズドライすることを特徴とする繊維強化複合材料の製造方法。
[4] 請求項 1にお!ヽて、前記乾燥繊維集合体を減圧条件又は加圧条件下で前記含浸 用液状物中に浸漬することにより、該乾燥繊維集合体に該含浸用液状物を含浸させ ることを特徴とする繊維強化複合材料の製造方法。
[5] 請求項 4において、減圧条件下での含浸と加圧条件下での含浸とを交互に行うこと を特徴とする繊維強化複合材料の製造方法。
[6] 請求項 1にお!ヽて、前記繊維集合体に含浸用液状物を含浸させた後、該繊維集合 体をコールドプレスし、その後、該含浸用液状物を硬化させることを特徴とする繊維 強化複合材料の製造方法。
[7] 請求項 1において、繊維含有率が 10重量%以上であることを特徴とする繊維強化 複合材料の製造方法。
[8] 請求項 1にお 、て、前記繊維集合体は平均繊維径カ 〜200nmの繊維の集合体 であることを特徴とする繊維強化複合材料の製造方法。
[9] 請求項 8にお 、て、前記繊維がセルロース繊維であることを特徴とする繊維強化複 合材料の製造方法。
[10] 請求項 9において、前記セルロース繊維がバクテリアセルロースであることを特徴と する繊維強化複合材料の製造方法。
[11] 請求項 9において、前記セルロース繊維が植物繊維力 分離されたものであること を特徴とする繊維強化複合材料の製造方法。
[12] 請求項 11にお 、て、前記セルロース繊維がミクロフイブリルィ匕セルロース繊維を更 に磨砕処理してなることを特徴とする繊維強化複合材料の製造方法。
[13] 請求項 1にお 、て、前記マトリクス材料が合成高分子であることを特徴とする繊維強 化複合材料の製造方法。
[14] 請求項 13において、合成高分子がビュル系榭脂、重縮合系榭脂、重付加系榭脂
、付加縮合系榭脂及び開環重合系榭脂の少なくとも 1種であることを特徴とする繊維 強化複合材料の製造方法。
[15] 請求項 1にお 、て、含浸用液状物がエネルギー線硬化樹脂のモノマー及びオリゴ マーの少なくとも一方であり、前記硬化工程においてエネルギー線が照射されること を特徴とする繊維強化複合材料の製造方法。
[16] 請求項 15において、エネルギー線が紫外線であることを特徴とする繊維強化複合 材料の製造方法。
[17] 請求項 1に記載の繊維強化複合材料の製造方法により製造されたことを特徴とする 繊維強化複合材料。
[18] 請求項 17に記載の繊維強化複合材料力もなる透明基板を用いることを特徴とする 有機 EL発光素子。
[19] 請求項 17に記載の繊維強化複合材料力もなる透明基板を用いることを特徴とする 受光素子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-030668 | 2005-02-07 | ||
JP2005030668 | 2005-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006087931A1 true WO2006087931A1 (ja) | 2006-08-24 |
Family
ID=36916339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/301989 WO2006087931A1 (ja) | 2005-02-07 | 2006-02-06 | 繊維強化複合材料及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200635987A (ja) |
WO (1) | WO2006087931A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107221586B (zh) * | 2017-05-25 | 2019-09-20 | 青岛海信电器股份有限公司 | 柔性基板及制备方法、qled器件、柔性显示设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005060680A (ja) * | 2003-07-31 | 2005-03-10 | Kyoto Univ | 繊維強化複合材料及びその製造方法並びに配線基板 |
JP2005068371A (ja) * | 2003-08-27 | 2005-03-17 | Kobe Steel Ltd | 耐熱性に優れた繊維強化熱可塑性樹脂成形体およびその製法 |
JP2006036926A (ja) * | 2004-07-27 | 2006-02-09 | Kyoto Univ | 繊維強化複合材料 |
-
2006
- 2006-02-06 WO PCT/JP2006/301989 patent/WO2006087931A1/ja not_active Application Discontinuation
- 2006-02-07 TW TW095104029A patent/TW200635987A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005060680A (ja) * | 2003-07-31 | 2005-03-10 | Kyoto Univ | 繊維強化複合材料及びその製造方法並びに配線基板 |
JP2005068371A (ja) * | 2003-08-27 | 2005-03-17 | Kobe Steel Ltd | 耐熱性に優れた繊維強化熱可塑性樹脂成形体およびその製法 |
JP2006036926A (ja) * | 2004-07-27 | 2006-02-09 | Kyoto Univ | 繊維強化複合材料 |
Non-Patent Citations (1)
Title |
---|
YANO H. ET AL.: "Bacteria Nanofiber Network de Hokyo shita Tomei. Teinetsu Bocho. Flexible Film", NIPPON GAKUJUTSU KAIGI ZAIRYO KENKYU RENGO KOENKAI KOEN RONBUNSHU, vol. 48TH, 20 October 2004 (2004-10-20), pages 92 - 93, XP003007776 * |
Also Published As
Publication number | Publication date |
---|---|
TW200635987A (en) | 2006-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4766484B2 (ja) | 繊維強化複合材料及びその製造方法並びに繊維強化複合材料製造用前駆体 | |
JP5283050B2 (ja) | 繊維強化複合材料 | |
JP4721186B2 (ja) | 繊維強化複合材料及びその製造方法 | |
TWI391427B (zh) | 纖維強化複合材料及其製造方法與用途,以及纖維素纖維集合體 | |
JP5240597B2 (ja) | 封止剤 | |
JP5099618B2 (ja) | 繊維複合材料及びその製造方法 | |
WO2007049666A1 (ja) | 繊維強化複合樹脂組成物並びに接着剤及び封止剤 | |
WO2008010462A1 (fr) | feuille de nanofibre, son processus de fabrication, et matériau composite renforcé de fibre | |
Nogi et al. | Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry | |
Lee et al. | Red algae fibre/poly (butylene succinate) biocomposites: the effect of fibre content on their mechanical and thermal properties | |
JP5170193B2 (ja) | 繊維強化複合材料及びその製造方法並びに配線基板 | |
JP2006036926A (ja) | 繊維強化複合材料 | |
JP4724814B2 (ja) | 繊維強化複合材料及びその製造方法並びに配線基板 | |
JP4743749B2 (ja) | 低熱膨張性光導波路フィルム | |
JP4428521B2 (ja) | 透明積層体 | |
WO2006082964A1 (ja) | 繊維強化複合材料及びその製造方法並びに繊維強化複合材料製造用前駆体 | |
JP4919264B2 (ja) | 繊維樹脂複合材料 | |
WO2006087931A1 (ja) | 繊維強化複合材料及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06713132 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6713132 Country of ref document: EP |