WO2006087839A1 - 高密度ポリマーブラシ被覆中空微粒子、その製造方法および高密度ポリマーブラシ被覆中空微粒子の応用 - Google Patents

高密度ポリマーブラシ被覆中空微粒子、その製造方法および高密度ポリマーブラシ被覆中空微粒子の応用 Download PDF

Info

Publication number
WO2006087839A1
WO2006087839A1 PCT/JP2005/016047 JP2005016047W WO2006087839A1 WO 2006087839 A1 WO2006087839 A1 WO 2006087839A1 JP 2005016047 W JP2005016047 W JP 2005016047W WO 2006087839 A1 WO2006087839 A1 WO 2006087839A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
hollow
chemical
group
polymer
Prior art date
Application number
PCT/JP2005/016047
Other languages
English (en)
French (fr)
Inventor
Kohji Ohno
Yoshinobu Tsujii
Takeshi Fukuda
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to US10/594,144 priority Critical patent/US20080057310A1/en
Priority to CA002561517A priority patent/CA2561517A1/en
Priority to JP2006517536A priority patent/JPWO2006087839A1/ja
Publication of WO2006087839A1 publication Critical patent/WO2006087839A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • High-density polymer brush-coated hollow microparticles production method thereof, and application of high-density polymer brush-coated hollow microparticles
  • the present invention relates to a hollow fine particle comprising a hollow portion and a high-density polymer brush layer enclosing the hollow portion, and a method for producing the same. Furthermore, the present invention relates to an array control method and application thereof.
  • the fine particle polymer can exhibit properties such as spheroidization (monodispersion), deforming, porosity (hollowing), complexation, surface reactivity, etc. Taking advantage of these advantages, it has been applied to a wide range of fields such as cosmetic additives, diagnostic carrier particles, pharmaceutical medicine, liquid crystal spacer information display materials, and plastic additives.
  • hollow polymer fine particles include a method in which a foaming agent is contained in a resin particle and the foaming agent is fired later, a volatile substance is encapsulated in the polymer, and the volatile substance is later added. It has been produced by a method of gasifying and expanding, a method of melting a polymer and injecting a gas such as air into the polymer.
  • Patent Document 1 a dispersion is prepared by coexisting an oily substance with a monomer component consisting of a hydrophilic monomer, a crosslinkable monomer, and other monomers, and the monomer is polymerized to obtain a resin particle.
  • a method for producing hollow particles by removing a substance is disclosed.
  • simply preparing a dispersion of each monomer and oily substance makes it difficult to control the hollow structure, resulting in poor efficiency.
  • Patent Document 2 discloses hollow polymer fine particles having a shell formed of a crosslinkable polymer, and a method for producing the same. According to this method, hollow polymer fine particles having a high porosity can be obtained. However, there is a problem that it cannot be used for applications where the shell is thin and the strength of the particles is required, and further, there is no disclosure of a method for controlling the particle strength or aligning the particles regularly.
  • the composite fine particles in which such high-density graft chains are bonded to the surface of the fine particles can control the arrangement of the fine particles using the steric repulsion force of the high-density graft chains as a driving force, and form a colloid crystal.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-125127
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-190038
  • Patent Document 3 Japanese Patent Application No. 2004-139213
  • An object of the present invention is to impair the characteristics of the preceding high-density polymer particles that the particle size distribution is narrow and the dispersion stability of the composite particles formed by bonding high-density graft chains to the surface of the particles is excellent. It is an object of the present invention to provide a hollow fine particle having a high-density polymer brush layer and a hollow portion force.
  • the present inventors have found that the properties of the preceding high-density polymer particle can be improved by eluting only the fine particles from the composite fine particles in which the high-density graft chains are bonded to the surface of the fine particles and making them hollow.
  • the above problem was solved by confirming that hollow microparticles could be obtained while maintaining the same.
  • the present invention provides the following.
  • Hollow fine particles comprising a hollow portion and a high-density polymer brush layer enclosing the hollow portion.
  • a chain density of the polymer chain constituting the polymer brush layer is 0.4 to 1. Double stranded Znm 2, the hollow fine particles according to item (1).
  • the polymer chain constituting the polymer brush layer is a block copolymer of at least one crosslinkable monomer and a noncrosslinkable monomer having a crosslinkable functional group,
  • Blocking force of the crosslinkable monomer The crosslinkable monomer block located in the innermost side of the polymer brush layer and in any polymer chain and the crosslinkable monomer block in a separate polymer chain are formed by the crosslinkable functional group.
  • the crosslinkable monomer in the polymer chain constituting the polymer brush layer is selected from the group forces of acrylic acid, methacrylic acid, or epoxy alkylene group, amino alkylene group, oxeta-alkylene group, and cinnamoyl alkylene group. Atallate or metatalylate having a functional group,
  • any of the items (1) to (3), wherein the non-crosslinkable monomer in the polymer chain constituting the polymer brush layer is selected from the group consisting of an acrylic acid derivative, a methacrylic acid derivative, a styrene derivative, butyl acetate and acrylonitrile.
  • the degree of polymerization of the crosslinkable monomer block in the polymer brush layer is 10: LOOOO, and the degree of polymerization of the non-crosslinkable monomer block in the polymer brush layer is 10-10000. 5.
  • Hollow fine particles comprising a hollow portion and a high-density polymer brush layer enclosing the hollow portion, and the polymer chain constituting the polymer brush layer is:
  • R is a hydrogen atom or a C1-C6 alkyl group, and R is represented by the following formula:
  • R is a hydrogen atom or a C1-C6 alkyl group, and a is an integer of 1-3]
  • a crosslinkable functional group represented by: n is 10 to: LOOOO),
  • R is a hydrogen atom or an alkyl group of CI to C6, R is a hydrogen atom, C1 to C
  • Crosslinkable monomer block in any polymer chain and the crosslinkability in a separate polymer chain Hollow fine particles in which a monomer block is crosslinked through a bond formed by a reaction between the crosslinkable functional groups.
  • R is a hydrogen atom or a C1-C6 alkyl group
  • R is a hydrogen atom
  • n is 10 to: LOOOO
  • a crosslinkable monomer block represented by
  • R is a hydrogen atom or an alkyl group of CI to C6, R is a hydrogen atom, C1 to C
  • crosslinkable monomer block in any polymer chain and the crosslinkable monomer block in a separate polymer chain form a bond formed by a reaction between the crosslinkable functional group and a polyfunctional compound.
  • the multifunctional compound is:
  • the polyfunctional compound is:
  • Hollow microparticles represented by a formula selected from the group consisting of: wherein p and q are as defined above.
  • a hollow fine particle comprising a hollow part and a high-density polymer brush layer enclosing the hollow part.
  • n is an integer of 3 to 10
  • R to R independently represent a C1 to C3 alkyl group.
  • R and R independently represent a methyl group or an ethyl group, and X represents a halogen atom
  • the crosslinkable monomer is acrylic acid, methacrylic acid, or an acrylate or a metatalylate having a functional group that is selected from an epoxy alkylene group, an amino alkylene group, an oxetal alkylene group, and a cinnamoyl alkylene group.
  • non-crosslinkable monomer is selected from the group power of acrylic acid derivative, methacrylic acid derivative, styrene derivative, butyl acetate and acrylonitrile force.
  • step d) the composite fine particles in which the block copolymer is bonded to the fine particle surface are opened. Items (by light or heat treatment in the presence or absence of initiator,
  • the step d) is performed by adding a polyfunctional compound capable of reacting with the crosslinkable functional group in the crosslinkable monomer block, and any of the items (10) to (13) The method according to item 1.
  • arbitrary hollow fine particles can be obtained by selecting the particle shape and size. Furthermore, by controlling the degree of cross-linking of the cross-linkable polymer in the inner layer, it becomes possible to control the shape maintenance characteristics (rigid or flexible) of the hollow part, and when carrying or incorporating reagents and drugs into the hollow part.
  • the sustained release rate Z uptake rate can be controlled.
  • the particle size can be arbitrarily designed by controlling the film thickness of the outer high-density graft chain.
  • FIG. 1 shows an example of a method for synthesizing hollow fine particles of the present invention. Specifically, a polymer monomer chain (block copolymer of PMMA and PEMO, PMMA block on the outside, PEMO block on the inside) is bonded to the surface of the silica fine particle to form a crosslinkable monomer block (PEMO A method for obtaining a hollow fine particle having a PMMA brush layer by obtaining a crosslinked gel layer by a crosslinking reaction of (block) and removing silica fine particles by HF is shown.
  • a polymer monomer chain block copolymer of PMMA and PEMO, PMMA block on the outside, PEMO block on the inside
  • PEMO crosslinkable monomer block
  • FIG. 2 A synthesis method and a synthesis mechanism of composite fine particles in which the polymer graft chains in FIG. 1 are bonded to the surface of silica fine particles are shown. In the center of Fig. 2, fixed to SiO
  • ARP atom transfer radical polymerization
  • X is Br or C1
  • L is a ligand
  • M is a monomer.
  • ATRP An example in which a crosslinkable monomer block is formed on the inside and a non-crosslinkable monomer block is formed on the outside is shown in the right figure. The right figure also shows the free polymer.
  • FIG. 3 shows an example of a crosslinkable monomer (3-ethyl-3-methacryloyloxymethyloxetane (EMO)) constituting the crosslinkable monomer block of FIG. 1 and a crosslinking reaction mechanism.
  • EMO crosslinkable monomer
  • the methacryloyl group has radical polymerization ability
  • the oxetane ring has ring-opening polymerization ability.
  • FIG. 4 Infrared particles grafted with block copolymer (PEMO-b-PMMA) according to the method of the present invention before BF treatment (solid line), after BF treatment (dashed line), and after HF treatment (dotted line)
  • FIG. 5 shows a transmission electron micrograph of a water surface monomolecular film of hollow fine particles of the present invention.
  • the length of the arrow in the figure is 2 ⁇ m.
  • the “hollow fine particles” mean a structure composed of a hollow portion defined below and a high-density polymer brush layer enclosing the hollow portion.
  • high density is a high density of polymer chains that is unmatched in the past, and grafting when polymer chains are densely packed before steric repulsion occurs between polymer chains. It means the density of the chain.
  • the polymer chain takes a form that is substantially stretched in a direction perpendicular to the surface. For example, assuming a state in which polymethyl methacrylate chains extend straight in the direction perpendicular to the surface force as graft chains, a high density of 0.4 chain Znm 2 or more is achieved.
  • polymer chain means a molecular chain having a chain length of 2 or more formed by extending from the surface of a fine particle by a polymerization reaction
  • polymer chain or “polymer graft chain”.
  • chain density means the number of polymer chains aligned on the surface per unit area (nm 2 ).
  • chain density the density at the end on the hollow portion side of each polymer chain forming the polymer brush layer.
  • the "polymer brush layer” refers to an arbitrary high height in which individual polymer chains are oriented and aligned at high density with respect to the surface of "fine particles” or “hollow portions” defined below. This means a structure in which a molecular chain and a separate polymer chain are cross-linked (for example, see Fig. 1).
  • the “polymer chain” as used herein may be a homopolymer of a crosslinkable monomer, or may be a copolymer of a crosslinkable monomer and a non-crosslinkable monomer.
  • crosslinking refers to a chemical reaction between crosslinkable functional groups contained in a polymer chain or a crosslinkable functional group and a polyfunctional compound between adjacent polymer chains. It means a state bonded by chemical reaction, or its chemical reaction. “Bonding” as used herein has such a binding constant that individual polymer chains are not loosened when only the composite fine particle force fine particles with the polymer brush layer bound on the surface of the fine particles are eluted.
  • the "polyfunctional compound” means a crosslinking function of at least two or more polymer chains having a crosslinkable functional group and contained in the polymer chain.
  • a symmetrical product that has at least two functional groups that can chemically react with functional groups (typically free carboxyl groups, activated carboxyl groups, free amino groups, hydroxyl groups, or epoxy groups) in one molecule. Or an asymmetric organic compound is meant.
  • the combination of “crosslinkable functional group” and “polyfunctional compound” can be appropriately selected within the range that can be imagined by those skilled in the art.
  • the “crosslinkable monomer” means a monomer having a functional group capable of crosslinking in addition to a polymerizing group in the side chain.
  • a polymer in which a polymerizable group contained in a crosslinkable monomer is overlapped and a crosslinkable functional group remains unreacted is referred to as a “crosslinkable polymer”.
  • the “block copolymer” means a polymer including a polymer chain obtained by homopolymerizing a first monomer and a polymer chain obtained by homopolymerizing a second monomer.
  • P EMO b Describe as PMMAJ.
  • crosslinkable monomer block means a polymer block obtained by polymerizing a crosslinkable monomer.
  • non-crosslinkable monomer means a monomer having a polymerization group and having no crosslinkable functional group.
  • a polymer of non-crosslinkable monomers is referred to as a “non-crosslinkable polymer”.
  • non-crosslinkable monomer block means a polymer block obtained by polymerizing a non-crosslinkable monomer.
  • hollow part means a space enclosed by a polymer brush layer in the hollow fine particles defined above.
  • gas, liquid solution, dispersion, etc.
  • liquid solution, dispersion, etc.
  • gas, liquid solution, dispersion, etc.
  • a simple substance or mixture of man-made or biological material which can be in a gel, semi-solid or solid state.
  • fine particles means those in a bare state before the polymer brush layer defined above is bonded to the surface thereof, and is used separately from the “hollow fine particles” defined above. Can be done.
  • microparticle may be used interchangeably with the term “ ⁇ -shaped microparticle”.
  • the fine particles used in the present invention have a particle size of 50 nm to: m, are monodispersed, and can be eluted with a solvent that does not adversely affect (decompose, cut, etc.) the polymer brush layer. Any real particle can be used.
  • silicates such as silica; noble metals such as Au (gold), Ag (silver), Pt (platinum), Pd (palladium); Ti, Zr, Ta, Sn, Zn, Cu, Transition metals such as V, Sb, In, Hf, Y, Ce, Sc, La, Eu, Ni ⁇ Co, Fe, etc., inorganic substances such as oxides or nitrides thereof; or those that are organic substances However, it is not limited to these.
  • composite fine particles means that the "polymer brush layer” defined above is formed by bonding to the surface of the fine particles, and is defined above in this specification. Used in distinction from “fine particles” and “hollow particles”.
  • living radical polymerization refers to a polymerization reaction that has no chain transfer reaction and termination reaction, or is negligibly small, and has a polymerization activity at the end of the resulting polymer even after the completion of the polymerization reaction.
  • the polymerization reaction can be started again when the monomer is added.
  • living radical polymerization is characterized by the ability to synthesize polymers with an arbitrary average molecular weight by adjusting the concentration ratio of monomer and polymerization initiator, and the molecular weight distribution of the resulting polymer is extremely narrow. And that it can be applied to block copolymers.
  • living radical polymerization is abbreviated as “LRP”.
  • LRP living radical polymerization
  • Examples of radically polymerizable monomers constituting the graft chain include MMA (methyl methacrylate), styrene, vinyl acetate and the like.
  • a representative example of the living radical polymerization used in the present invention is atom transfer radical polymerization (ATRP) (see Fig. 2).
  • ATRP atom transfer radical polymerization
  • a silica fine particle substrate surface is immersed in a solvent, and a free initiator (for example, p-toluenesulfuryl chloride (abbreviation: TsCl) or ethyl 2-bromoisobutyrate (abbreviation: EBIB) that is not fixed on the fine particle surface.
  • TsCl p-toluenesulfuryl chloride
  • EBIB ethyl 2-bromoisobutyrate
  • Etc. in the presence or absence of copper halide (Cu'x) Z ligand (L) complex using methyl methacrylate (MMA)!
  • St styrene
  • ATRP atom transfer radical
  • Monomer is added to the growing radical (P) that is reversibly generated by extracting the high molecular weight halogen (P—X) by the Ci XZL complex, and the reversible activation is inactive with sufficient frequency.
  • the molecular weight distribution is regulated by the conversion.
  • the present invention in order to avoid coupling of hollow fine particles that may occur during living radical polymerization, there is a method for reducing the charged concentration of fine particles having an immobilization initiator immobilized on the surface as much as possible. Be taken. For this reason, if the initiator in this system is insufficient and graft polymerization from the surface of the fine particles does not proceed at a high density, a free initiator as shown above is polymerized separately from the fixed initiator. In this case, it is preferable to coexist (see Fig. 2).
  • the ratio of the fixed initiator concentration to the total initiator concentration present in the system is preferably 1-50%, more preferably 1-20%, most preferably 10%.
  • living radical polymerization conditions is appropriately selected by those skilled in the art to ensure that living radical polymerization based on a polymerization initiating group provided on the surface of fine particles proceeds reliably and well. It means adopting polymerization conditions.
  • the “polymerization initiating group” means a substance that is added in a small amount to a monomer and plays a role of initiating a polymerization reaction, and is not particularly limited as long as it plays such a role.
  • “hollowing” or “hollowing treatment” refers to removing only fine particles such as composite fine particle force bonded to the surface of fine particles without adversely affecting the polymer brush layer ( For example, it means a process step of elution or elution).
  • the present invention provides hollow fine particles comprising a hollow portion and a high-density polymer brush layer enclosing the hollow portion.
  • individual polymer chains are oriented and aligned at a high density with respect to the surface of the hollow portion, and the crosslinkable functional group contained in any one polymer chain crosslinks other polymer chains.
  • the high-density polymer brush layer has a structure formed by cross-linking with the functional group. Therefore, the polymer brush structure has a merit that the particle strength is much higher than the conventional hollow fine particles. Have.
  • the chain density of the polymer chains constituting the polymer brush layer is preferably 0.4 to 1.2 double strands / nm 2 , more preferably 0.7 to 1.2 double strands / nm 2 . More preferred is 0.8 to 1.2 double-stranded Znm 2 , still more preferred is 0.9 to 1.2 double-stranded Znm 2 , and most preferred is 1.0 to 1.2 double-stranded Znm 2 .
  • the chain density of the polymer chain is less than 0.4 chain Znm 2 , it takes a sparse brush structure, so that there is no steric repulsive force between adjacent polymer chains, so that the polymer chain is almost stretched. Cannot be produced, and the particle strength is weak.
  • At least a portion of the polymer chains comprising the polymer brush layer are crosslinked.
  • 10% or more of the total number of polymer chains constituting the polymer brush layer More preferably 50% or more polymer chains are cross-linked, more preferably 80% or more polymer chains are cross-linked, and more preferably 90% or more polymer chains are cross-linked. . Particularly preferably, substantially all polymer chains are crosslinked. It is preferable that there is an average of one or more cross-linked sites in one polymer chain, more preferably an average of 1.5 or more, and even more preferably an average of 2 or more.
  • the polymer chain constituting the polymer brush layer is a block copolymer of at least one crosslinking monomer and a non-crosslinking monomer, and the blocking force of the crosslinking monomer is the polymer.
  • a crosslinkable monomer block in any polymer chain and the crosslinkable monomer block in a separate polymer chain are bonded to the bond formed by the reaction between the crosslinkable functional groups or the crosslinkable functional group.
  • the polymer chain and the polymer chain are crosslinked via a force that is directly crosslinked or via a crosslinking agent.
  • the inner layer that serves as a scaffold for the polymer brush layer is strengthened by the cross-linking reaction described above (see, for example, FIG. 1), the entire polymer brush layer becomes stable. Therefore, the strength of the hollow fine particles of the present invention can be controlled by controlling the ratio of the crosslinked monomer units to the total number of monomer units of the polymer chains constituting the polymer brush layer of the hollow fine particles.
  • the proportion occupied by the crosslinked monomer units is preferably 5 to 50%, more preferably 10 to 45%, particularly preferably. 15-40%.
  • the proportion occupied by the crosslinked monomer units is preferably 5 to 50%, more preferably 10 to 45%, particularly preferably. 15-40%.
  • a polymer chain is composed of 100 monomers in total, it is preferable that 5 to 50 monomers are crosslinked, and 10 to 45 monomers are crosslinked. It is particularly preferred that 15 to 40 monomers are cross
  • the brush can stand on the outer side (that is, where the distance to the adjacent chain is far) It is possible to improve the maintenance of the particle diameter, the stability of the structure of the entire polymer brush, and the dispersibility.
  • the cross-linking reaction stabilizes the particle shape and makes it easy to improve the particle rigidity. Further, since the rigidity of the particles is improved, it becomes easy to remove the soot-type fine particles (for example, silica) that existed in the hollow portion during the production. For this reason, it has become possible to form a polymer brush in the form of hollow fine particles. That is, when crosslinking is not performed, the polymer chains tend to be separated when removing the internal fine particles, and it is extremely difficult to form hollow fine particles. Although it is difficult to maintain the hollow shape, extremely stable hollow fine particles can be easily obtained by carrying out the crosslinking reaction.
  • soot-type fine particles for example, silica
  • the shape maintaining characteristic (rigid or flexible) of the hollow portion can be controlled by controlling the degree of crosslinking of the crosslinkable polymer in the inner layer.
  • the controlled release rate Z uptake rate can be controlled.
  • the particle size can be arbitrarily designed by controlling the film thickness of the non-crosslinkable polymer of the outer layer.
  • Preferred crosslinkable monomers used in the present invention include acrylic acid, methacrylic acid, or an epoxyalkylene group, an aminoalkylene group, an oxetalalkylene group, and a cinnamoylalkylene group. Powers including, but not limited to, talates or metatalates.
  • the “alkyl group” in the above-mentioned epoxy alkylene group, amino alkylene group, oxetal alkylene group and cinnamoyl alkylene group means a C1-C6 linear or branched divalent alkylene group, particularly Preferred examples include methylene (one CH—) and ethylene (one CH—).
  • Preferable non-crosslinkable monomers used in the present invention include, but are not limited to, acrylic acid derivatives, methacrylic acid derivatives, styrene derivatives, butyl acetate and acrylonitrile.
  • the hollow fine particles can be synthesized relatively easily using any of the crosslinkable monomers and non-crosslinkable monomers listed above, and is suitable for industrial mass production. Have advantages.
  • the molecular weight distribution index of each block of the polymer chain in the hollow fine particles of the present invention is preferably It is 1 to 1.50, more preferably 1 to 1.30. Such ideal or near monodisperse hollow fine particles can be easily obtained by the method for producing hollow fine particles of the present invention.
  • the preferred degree of polymerization of the crosslinkable monomer block constituting the hollow fine particle polymer brush layer of the present invention is 10 to LOOOO, more preferably 100 to 5000.
  • the preferable degree of polymerization of the non-crosslinkable monomer block is 10 to 10,000, more preferably 100 to 5,000.
  • the particle size of the hollow fine particles, the film thickness of the polymer brush layer, and the chain density of the polymer chain can be freely controlled.
  • the size of the fine particles is 50 ⁇ ! It is preferably ⁇ 1 ⁇ m.
  • the particle size of the saddle-shaped fine particles is less than 50 nm, the density of the polymer chains in the polymer brush layer becomes low because of the influence of the particle curvature when graft polymerization is performed from the fine particle surface.
  • the particle size of the saddle-shaped fine particles exceeds 1 ⁇ m, the dispersion of the composite fine particles or the hollow fine particles in the solvent is not easy and is not preferable.
  • the present invention is a hollow fine particle comprising a hollow part and a high-density polymer brush layer enclosing the hollow part, wherein the polymer chain constituting the polymer brush layer comprises:
  • R is a hydrogen atom or a C1-C6 alkyl group, more preferably R is a hydrogen atom or a methyl group, and R is the following formula: [0083] [Chemical 28]
  • R is a hydrogen atom or a C1-C6 alkyl group, more preferably R is hydrogen
  • n 10: LOOOO) Block
  • R is a hydrogen atom or a C1-C6 alkyl group, more preferably R is hydrogen
  • R is a hydrogen atom, C1-C12 alkyl group
  • R is a hydrogen atom
  • m is 10 ⁇ : LOOOO
  • a hollow microparticle in which the crosslinkable monomer block in any polymer chain and the crosslinkable monomer block in a separate polymer chain are cross-linked through a reaction between the crosslinkable functional groups.
  • the present invention provides a hollow fine particle comprising a hollow portion and a high-density polymer brush layer enclosing the hollow portion, wherein the polymer constituting the polymer brush layer
  • the mer chain is i) located inside the polymer brush layer and has the following formula:
  • R is a hydrogen atom or a C1-C6 alkyl group, more preferably R is a hydrogen atom or a methyl group, R is a hydrogen atom or the following formula:
  • R is a hydrogen atom or a C1-C6 alkyl group, more preferably R is hydrogen
  • R is hydrogen atom, C1-C12 alkyl group or phenyl
  • a group, more preferably R is a hydrogen atom, m is 10 ⁇ : LOOOO)
  • crosslinkable monomer block in any polymer chain and the crosslinkable monomer block in a separate polymer chain are cross-linked via a reaction between the crosslinkable functional group and a multifunctional compound.
  • the multifunctional compound is:
  • the polyfunctional compound is:
  • a hollow microparticle represented by a formula selected from the group consisting of: wherein p and q are as defined above.
  • alkyl group means a monovalent group generated by loss of one hydrogen atom, such as an aliphatic hydrocarbon (alkane) force such as methane, ethane, and propane. Generally, CH n 2n Represented by one (where n is a positive integer). Alkyl groups can be straight or branched
  • the "phenol group” is a C6 aromatic carbocyclic group, which is a functional group in which one H is deleted from benzene.
  • the present invention provides the following steps:
  • a fine particle having a polymerization initiating group on the surface and a crosslinkable monomer were brought into contact under living radical polymerization conditions, and a high-density crosslinkable polymer brush layer was bonded to the fine particle surface.
  • step a) comprises the following formula:
  • immobilizing initiator having a R 1 3_Rei ⁇ R 22, silica, ⁇ fine particles of a metal oxide or metal sulfide ( ⁇ microparticles Siri force, particularly preferred) and, the compound and an microparticles Under reacting conditions
  • the spacer chain length n is an integer of 3 to 10 and the force S is preferable, and an integer of 4 to 8 is more preferable, and 6 is most preferable.
  • R is particularly preferably a methyl group or an ethyl group, preferably a C1-C3 alkyl group. R is a methyl group
  • silica fine particles are preferably used as the fine particles for fixing the anchoring initiator in terms of facilitating the hollowing treatment.
  • a polar solvent is used to disperse fine particles well.
  • Chlorosilane-based initiation which is a conventional fixed initiator The agent could not use a polar solvent because of its low solubility, and high-density graft polymerization was impossible.
  • high density graft polymerization can be achieved by using the above alkoxysilane-based fixed initiator that has a good compatibility with the polar solvent that favorably disperses the silica fine particles to overcome this problem. Can be achieved.
  • the polymerization initiation group-containing silane coupling agent can be synthesized based on the method described in Patent Document 3.
  • the fine particles having a polymerization initiating group on the surface thus obtained are brought into contact with the crosslinkable monomers listed above under living radical polymerization conditions, whereby a high-density crosslinkable polymer brush layer is formed on the surface of the fine particles.
  • Bound composite particles can be obtained (step b)).
  • the kind of the crosslinkable monomer to be brought into contact with the fine particles having a polymerization initiating group on the surface may be single or plural, but in order to obtain monodispersity of the crosslinkable polymer brush layer. Is preferably alone.
  • the crosslinking reaction performed in the step d) may be any conventionally known crosslinking reaction.
  • the energy required to perform this bridge reaction can be given by any method. For example, light, heat, electron beam, electromagnetic wave and the like are exemplified.
  • step d) in the production method of the present invention the composite fine particles in which the block copolymer is bonded to the surface of the fine particles are subjected to light or heat treatment in the presence or absence of an initiator. Is done by. When an acrylate or metatalylate having an oxetanyl alkylene group is used as the crosslinkable monomer, light or heat treatment is performed in the presence of an initiator. When an acrylate or metatalylate having a cinnamoylalkylene group is used as a crosslinking monomer, light or heat treatment is performed in the absence of an initiator.
  • the step d) in the production method of the present invention adds a polyfunctional compound capable of reacting with a crosslinkable functional group in the crosslinkable monomer block. Therefore it is done.
  • the eluent used in the hollowing treatment (for example, step e)) in the present invention is an aqueous solution of hydrogen fluoride, and the hydrogen fluoride concentration can be appropriately selected by those skilled in the art.
  • an intermediate product obtained in each of the above steps is obtained by removing impurities (unreacted raw materials, by-products, solvents, etc.) from the reaction solution by a method commonly used in the art (for example, extraction, distillation, washing, concentration, precipitation, filtration, drying, etc.). ), followeded by post-treatment methods commonly used in the art (for example, adsorption, elution, distillation, precipitation, precipitation, chromatography, etc.) can be isolated by appropriate combination.
  • the hollow microparticles obtained by the present invention can be confirmed by transferring the water surface film of the hollow microparticles to a transmission electron microscope (abbreviation: TEM) grit and TEM observation.
  • Figure 3. Are 388000 and 194000, respectively). This confirmed that the hollow fine particles of the present invention formed a single particle film without agglomerating in two dimensions.
  • the number average molecular weights of the PEMO block and PMMA block of the block copolymer grafted on the silica fine particle surface were 388000 and 194000, respectively, and the molecular weight distribution index was 1.21, 1.40, respectively.
  • Fine particles before BF treatment, fine particles after BF treatment, after HF treatment Fig. 4 shows the infrared absorption spectrum of these fine particles.
  • hollow microparticles can be obtained while maintaining the properties of the preceding high-density polymer particles that the particle size distribution is narrow and the dispersion stability is excellent.
  • arbitrary hollow fine particles can be obtained by selecting the particle shape and size.
  • by controlling the degree of cross-linking of the cross-linkable polymer in the inner layer it becomes possible to control the shape maintaining characteristics (rigid or flexible) of the hollow part, and when carrying or incorporating reagents and drugs in the hollow part, The sustained release rate Z uptake rate can also be controlled.
  • the particle size can be arbitrarily designed by controlling the film thickness of the outer high-density graft chain.
  • the hollow microparticles provided by the present invention have applicability in the fields or products listed below:
  • Fine particles for example, biodegradable particles whose function is based on polymer materials
  • Fine particles whose function is controlled on the surface for example, affinity particles, adsorbents, scatterers, catalysts, etc.
  • Fine particles whose functions can be controlled by inclusions (quantum dots, phosphors, pigments, dyes, drugs, magnetic substances, CMP (chemical mechanical polishing) abrasives, microreactors, thermal insulation, etc.)
  • Fine particles photonic crystal, diffraction grating, light modulator Child, electron vapor, waveguide material, etc.
  • Fine particles that exhibit dynamic functions (particle pumps, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Cosmetics (AREA)

Abstract

 本発明の課題は、高密度グラフト鎖が微粒子表面に結合してなる複合微粒子の、粒径分布が狭く、かつ分散安定性に優れるという先行する高密度ポリマー粒子の特性を損なうことなく中空化する方法、およびその方法により、高密度ポリマーブラシ層および中空部からなる中空微粒子を提供することにある。  本発明は、高密度グラフト鎖が微粒子表面に結合してなる複合微粒子から微粒子のみを溶出して中空化する方法、ならびにその方法により中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微粒子を提供する。

Description

明 細 書
高密度ポリマーブラシ被覆中空微粒子、その製造方法および高密度ポリ マーブラシ被覆中空微粒子の応用
技術分野
[0001] 本発明は、中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微 粒子およびその製造方法に関する。さらには、本発明は、その配列制御方法および 応用に関する。
背景技術
[0002] 微粒子ポリマーは、その形状が真球化 (単分散化)、異形化、多孔性(中空化)、複 合化、表面反応性付与等の特性を発揮し得ることから、サブミクロンサイズのメリットを 活かし、化粧品の添加剤、診断薬担体粒子、医薬'医学、液晶スぺーサ一等情報表 示材料、プラスチック用添加剤等、幅広い分野に応用されている。
[0003] 従来、中空ポリマー微粒子は、榭脂粒子に発泡剤を含有させておき、後にこの発 砲剤を発砲させる方法、ポリマー中に揮発性物質を封入しておき、後にこの揮発性 物質をガス化膨張させる方法、ポリマーを溶融させ、これに空気等の気体を注入させ る方法等により製造されてきた。
[0004] ところが、これらの方法では、所定の中空粒子を安定的に製造するのが困難であつ た。一方、特許文献 1には、親水性モノマー、架橋性モノマー、その他モノマーからな るモノマー成分に油性物質を共存せしめて分散液を調製し、モノマーを重合させて 榭脂粒子を得、次に油性物質を除去して中空粒子を製造する方法が開示されてい る。しかしながら、単純に各モノマーと油性物質の分散液を調製しただけでは中空構 造の制御が非常に困難であり、効率が悪いという問題があった。
[0005] このような問題点を解決するべぐ中空微粒子の製造方法に関しさらなる研究が行 われ、例えば、交互吸着法、ジビニルモノマーの共重合などを用い、铸型となる微粒 子表面を有機または無機物質により被覆し、次いで、铸型微粒子を除去することによ り中空微粒子を合成する方法も提案された。中空構造の制御性はいくらか向上した ものの、生産性の向上、微粒子分散性の向上、微粒子への機能付与など少なくとも いずれかが不十分であり、検討課題が多く残されるものであった。
[0006] さらに、特許文献 2には、架橋性ポリマーによりシェルが形成された中空高分子微 粒子およびその製造方法が開示されている。この方法によれば、空隙率の高い中空 高分子微粒子が得られるというものである。しかし、シェルが薄く粒子の強度が必要 な用途には使用できないという問題があり、さらに粒子強度を制御したり、規則的に 整列させる方法にっ 、て何ら開示されては ヽな 、。
[0007] なお、本発明者らは、無機粒子 (SiO )表面にグラフト重合により架橋性ポリマーを
2
結合させ、次いで、リビングラジカル重合により、グラフト鎖が粒子表面から垂直方向 に伸びてブラシ状形態の高密度ポリマー粒子の製造に成功し出願を行った (特許文 献 3)。このような高密度グラフト鎖が微粒子表面に結合してなる複合微粒子は、高密 度グラフト鎖による立体反発力を駆動力とした微粒子の配列制御が可能であり、コロ イド結晶を形成する。
特許文献 1:特開平 5— 125127号公報
特許文献 2:特開 2004— 190038号公報
特許文献 3:特願 2004— 139213号
発明の開示
発明が解決しょうとする課題
[0008] 本発明の課題は、高密度グラフト鎖が微粒子表面に結合してなる複合微粒子の、 粒径分布が狭ぐかつ分散安定性に優れるという先行する高密度ポリマー粒子の特 性を損なうことなく中空化する方法、およびその方法により、高密度ポリマーブラシ層 および中空部力もなる中空微粒子を提供することにある。
課題を解決するための手段
[0009] 本発明者らは鋭意検討した結果、高密度グラフト鎖が微粒子表面に結合してなる 複合微粒子から微粒子のみを溶出して中空化することにより、先行する高密度ポリマ 一粒子の特性を維持したまま、中空微粒子が得られることを確認できたことにより、上 記課題を解決した。
[0010] 従って、本発明は以下を提供する。
(1)中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微粒子。 (2)上記ポリマーブラシ層を構成するポリマー鎖の鎖密度は、 0. 4〜1. 2本鎖 Znm 2である、項目(1)に記載の中空微粒子。
(3)上記ポリマーブラシ層を構成するポリマー鎖は、架橋性官能基を有する少なくと も 1種の架橋性モノマーと非架橋性モノマーとのブロック共重合体であり、
該架橋性モノマーのブロック力 該ポリマーブラシ層の最も内側に位置し、かつ 任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基間の反応により形成される結合または該架橋 性官能基と多官能性化合物との反応により形成される結合、を介して架橋されている 、項目(1)または(2)に記載の中空微粒子。
(4)上記ポリマーブラシ層を構成するポリマー鎖における架橋性モノマーは、アクリル 酸、メタクリル酸、またはエポキシアルキレン基、アミノアルキレン基、ォキセタ -ルァ ルキレン基およびシンナモイルアルキレン基力 なる群力 選択される官能基を有す るアタリレートもしくはメタタリレートであり、
上記ポリマーブラシ層を構成するポリマー鎖における非架橋性モノマーは、アクリル 酸誘導体、メタクリル酸誘導体、スチレン誘導体、酢酸ビュルおよびアクリロニトリルか らなる群力 選択される、項目(1)〜(3)のいずれか 1項に記載の中空微粒子。
(5)上記ポリマーブラシ層を構成するポリマー鎖の各ブロックの分子量分布指数は、 1〜1. 50である、項目(1)〜(4)のいずれか 1項に記載の中空微粒子。
(6)上記ポリマーブラシ層における架橋性モノマーブロックの重合度は 10〜: LOOOO であり、上記ポリマーブラシ層における非架橋性モノマーブロックの重合度は 10〜1 0000である、項目(1)〜(5)のいずれ力 1項に記載の中空微粒子。
(7)上記中空微粒子は、 60nm〜5 mの粒径を有する、項目(1)〜(6)のいずれか 1項に記載の中空微粒子。
(8)中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微粒子で あって、該ポリマーブラシ層を構成するポリマー鎖は、
i)該ポリマーブラシ層の内側に位置し、以下の式:
[化 1]
Figure imgf000006_0001
(式中、 Rは水素原子または C1〜C6のアルキル基であり、 Rは、以下の式:
1 3
[0012] [化 2]
Figure imgf000006_0002
または
[0013] [化 3]
Figure imgf000006_0003
[式中、 Rは水素原子または C1〜C6のアルキル基であり、 aは 1〜3の整数である]
5
で表される架橋性官能基であり、 nは 10〜: LOOOOである)で表される架橋性モノマ ブロックと、
ii)該ポリマーブラシ層の外側に位置し、以下の式:
[化 4]
Figure imgf000006_0004
(式中、 Rは水素原子または CI〜C6のアルキル基であり、 Rは水素原子、 C1〜C
2 4
12のアルキル基またはフエ-ル基であり、 mは 10〜: LOOOOである)で表される非架 橋性モノマーブロックとの、ブロック共重合体であり、
任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基間の反応により形成される結合を介して架橋 されている、中空微粒子。
(9)中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微粒子で あって、該ポリマーブラシ層を構成するポリマー鎖は、
i)該ポリマーブラシ層の内側に位置し、以下の式:
[0015] [化 5]
Figure imgf000007_0001
(式中、 Rは水素原子または C1〜C6のアルキル基であり、 Rは、水素原子、または
1 3
以下の式:
[0016] [化 6]
Figure imgf000007_0002
ちしくは
[0017] [化 7]
H2N (CH2)|
[0018] [式中、 aは 1〜3の整数である]で表される架橋性官能基であり、 nは 10〜: LOOOOで ある)で表される架橋性モノマーブロックと、
ii)該ポリマーブラシ層の外側に位置し、以下の式:
[0019] [化 8]
Figure imgf000007_0003
(式中、 Rは水素原子または CI〜C6のアルキル基であり、 Rは水素原子、 C1〜C
2 4
12のアルキル基またはフエ-ル基であり、 mは 10〜: LOOOOである)で表される非架 橋性モノマーブロックとの、ブロック共重合体であり、
任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基と多官能性ィ匕合物との間の反応により形成さ れる結合を介して架橋されており、
Rが水素原子である場合には、該多官能性ィ匕合物は、以下:
3
[0020] [化 9]
H2N (CH2)P NH2
[0021] [化 10]
Figure imgf000008_0001
、および
[0022] [化 11]
Figure imgf000008_0002
(式中、 pは 1〜6の整数であり、 qは 1〜3の整数である)力 なる群力 選択される式 で表され;
R力 以下の式:
3
[0023] [化 12]
Figure imgf000009_0001
で表される架橋性官能基である場合には、該多官能性ィ匕合物は、以下:
[0024] [化 13]
H2N (CH2)P NH2
[0025] [化 14]
Figure imgf000009_0002
[0026] [化 15]
Figure imgf000009_0003
[0027] [化 16] HO (CH2)P OH
[0028] [化 17]
Figure imgf000010_0001
、および
[0029] [化 18]
Figure imgf000010_0002
(式中、 pおよび qは上で定義した通りである)力もなる群力も選択される式で表され; R力 以下の式:
[0030] [化 19]
H2N (CH2)g で表される架橋性官能基である場合には、該多官能性ィ匕合物は、以下:
[0031] [化 20]
Figure imgf000010_0003
[0032] [化 21]
Figure imgf000011_0001
[0034] [化 23]
HOOC (CH2)P COOH
[0035] [化 24]
Figure imgf000012_0001
、および
[化 25]
Figure imgf000012_0002
(式中、 pおよび qは上で定義した通りである)からなる群から選択される式で表される 、中空微粒子。
(10)以下の工程:
a)重合開始基を微粒子表面に結合させる工程;
b)表面に重合開始基を有する微粒子と、架橋性モノマーとを、リビングラジカル重 合条件下で接触させて、高密度の架橋性ポリマーブラシ層が微粒子表面に結合した 複合微粒子を得る工程;
c)該複合微粒子の架橋性ポリマーブラシと、非架橋性モノマーとを、リビングラジカ ル重合条件下で接触させて、ブロック共重合体が微粒子表面に結合した複合微粒 子を得る工程;
d)該ブロック共重合体が微粒子表面に結合した複合微粒子を、架橋反応条件下 に供する工程;および e)該微粒子のみを溶出しかつ該ブロック共重合体に影響を及ぼさな!/、条件下で、 該ブロック共重合体が微粒子表面に結合した複合微粒子と、溶出剤とを接触させて 、該微粒子のみを溶出する工程、
を包含する、中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微 粒子を製造する方法。
(11)上記工程 a)は、
以下の式:
[化 26]
R 21
Figure imgf000013_0001
R120— Si— (CH2 )n ~ O—— C—— C ~ X R 1 3〇 〇 R 22
(式中、 nは 3〜10の整数であり、 R 〜R は独立して C1〜C3のアルキル基を表し
11 13
、 R および R は独立してメチル基またはェチル基を表し、 Xはハロゲン原子を表す
21 22
)
を有する化合物と、
シリカ、金属酸ィ匕物または金属硫ィ匕物の微粒子とを、
該化合物と該微粒子とが反応する条件下で、接触させることによって行われる、項 目(10)に記載の方法。
(12)
前記架橋性モノマーは、アクリル酸、メタクリル酸、またはエポキシアルキレン基、ァ ミノアルキレン基、ォキセタ-ルアルキレン基およびシンナモイルアルキレン基からな る群力も選択される官能基を有するアタリレートもしくはメタタリレートであり、
前記非架橋性モノマーは、アクリル酸誘導体、メタクリル酸誘導体、スチレン誘導体 、酢酸ビュルおよびアクリロニトリル力 なる群力 選択される、項目(10)または(11) に記載の方法。
(13)上記工程 d)は、ブロック共重合体が微粒子表面に結合した複合微粒子を、開 始剤の存在下または非存在下で、光または熱処理することによって行われる、項目(
10)〜(12)のいずれか 1項に記載の方法。
(14)上記工程 d)は、上記架橋性モノマーブロック中の架橋性官能基と反応し得る多 官能性ィ匕合物を添加することによって行われる、項目(10)〜(13)のいずれ力 1項に 記載の方法。
(15)上記溶出剤力 フッ化水素の水溶液である、項目(10)〜(14)のいずれか 1項 に記載の方法。
発明の効果
[0038] 本発明の中空微粒子の製造方法によれば、粒径分布が狭ぐかつ分散安定性に 優れるという、先行する高密度ポリマー粒子の特性を維持したまま、中空微粒子を得 ることがでさる。
[0039] また、粒子形状、サイズの選択により任意の中空微粒子を得ることができる。さらに 内層の架橋性ポリマーの架橋度等を制御することにより、中空部の形状維持特性 (剛 直または柔軟)の制御が可能となり、また中空部に試薬および薬剤を担持または取り 込みをさせる場合に、その徐放速度 Z取り込み速度の制御も可能となる。
[0040] さらに、外側の高密度グラフト鎖の膜厚を制御することにより、粒子サイズを任意に 設計することができる。
図面の簡単な説明
[0041] [図 1]本発明の中空微粒子の合成法の 1例を示す。具体的には、高分子グラフト鎖( PMMAと PEMOとのブロック共重合体、外側が PMMAブロック、内側が PEMOブ ロック)がシリカ微粒子表面に結合してなる複合微粒子から、架橋性モノマーブロック (PEMOブロック)の架橋反応により架橋ゲル層を得、そして HFによるシリカ微粒子 の除去を経て、 PMMAブラシ層を有する中空微粒子を得る方法を示す。
[図 2]図 1における高分子グラフト鎖がシリカ微粒子表面に結合してなる複合微粒子 の合成法およびその合成メカニズムを示す。図 2の中央図においては、 SiOに固定
2 された固定ィ匕開始剤 (BHE)が示される。中央図には、遊離開始剤 (EBIB)も示され る。次いで、原子移動ラジカル重合 (ATRP)法が示される。図 2中の ATRPの反応 式において、 Xは Brまたは C1であり、 Lはリガンドであり、 Mはモノマーである。 ATRP 法により内側に架橋性モノマーブロック、外側に非架橋性モノマーブロックが形成さ れた例が右図に示される。また、右図には、フリーポリマーも示される。
[図 3]図 1の架橋性モノマーブロックを構成する架橋性モノマーの一例(3—ェチルー 3—メタクリロイルォキシメチルォキセタン (EMO) )および架橋反応メカニズムを示す 。 EMOの構造式において、メタクリロイル基がラジカル重合能を有し、ォキセタン環 が開環重合能を有する。
[図 4]本発明の方法に従いブロック共重合体(PEMO— b— PMMA)をグラフトした 微粒子の、 BF処理前(実線)、 BF処理後 (破線)、および HF処理後(点線)の赤外
3 3
吸収スペクトル (波数 (cm—1)に対する吸光度)を示す。
[図 5]本発明の中空微粒子の水面単分子膜の透過型電子顕微鏡写真を示す。図中 の矢印の長さが 2 μ mである。
発明を実施するための最良の形態
[0042] 以下、本発明を説明する。本明細書の全体にわたり、単数形の表現は、特に言及 しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書 において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味 で用いられることが理解されるべきである。
[0043] (用語)
以下に本明細書において特に使用される用語の定義を列挙する。
[0044] 本明細書において「中空微粒子」とは、以下で定義する中空部と該中空部を内包 する高密度ポリマーブラシ層とから構成される構造体を意味する。
[0045] 本明細書において「高密度」とは、従来に比をみないレベルの高い高分子鎖密度 であり、高分子鎖間で立体反発が生じるまでに高分子鎖が密集した場合のグラフト鎖 の密度を意味する。この場合高分子鎖は、表面に垂直な方向にほぼ伸びきつた形態 をとる。例えば、グラフト鎖としてポリメタクリル酸メチル鎖が表面力も垂直な方向に真 つ直ぐ伸びきつた状態を想定した場合、 0. 4本鎖 Znm2以上の高密度が達成される
[0046] 本明細書において「ポリマー鎖」とは、微粒子表面から重合反応によって伸長して 形成された鎖長が 2以上の分子鎖を意味し、「高分子鎖」または「高分子グラフト鎖」と 互換可能に使用され得る。
[0047] 本明細書において「鎖密度」または「密度」とは、単位面積 (nm2)あたりの表面上に 整列した高分子鎖の本数を意味する。本発明の中空微粒子については、ポリマーブ ラシ層を形成するそれぞれのポリマー鎖の中空部側の末端における密度を「鎖密度 」と記載する。
[0048] 本明細書において「ポリマーブラシ層」とは、以下で定義する「微粒子」または「中空 部」の表面に対して個々の高分子鎖が高密度で配向かつ整列し、任意のある高分子 鎖と、別個の高分子鎖とが架橋してなる構造を意味する (例えば、図 1参照)。ここで いう「高分子鎖」とは、架橋性モノマーの単独重合体であってもよいし、架橋性モノマ 一と非架橋性モノマーとの共重合体であってもよ 、。
[0049] 本明細書において「架橋」とは、隣接する高分子鎖間で、高分子鎖に含まれる架橋 性官能基間の化学反応または架橋性官能基と多官能性ィ匕合物との化学反応により 結合した状態、またはその化学反応を意味する。ここでいう「結合」は、ポリマーブラシ 層が微粒子表面上に結合した複合微粒子力 微粒子のみを溶出する際に、個々の 高分子鎖がばらばらにほどけない程度の結合定数を有する。
[0050] 本明細書において「多官能性ィ匕合物」とは、架橋性官能基を有する少なくとも二鎖 以上の高分子鎖の橋架けの役割を担い、かつ高分子鎖に含まれる架橋性官能基と 化学反応し得る官能基 (代表的には、遊離カルボキシル基、活性化されたカルボキ シル基、遊離アミノ基、水酸基、またはエポキシ基)を、 1分子内に少なくとも 2個以上 有する、対称または非対称の有機化合物を意味する。本発明において、「架橋性官 能基」と「多官能性ィ匕合物」との組み合わせは、当業者の想像できる範囲内で適宜選 択され得る。
[0051] 本明細書において「架橋性モノマー」とは、重合基のほかに架橋可能な官能基を側 鎖に有するモノマーを意味する。これに対し、架橋性モノマーに含まれる重合基が重 合し、架橋可能な官能基が未反応のまま残ったポリマーを「架橋性ポリマー」という。 本明細書において「ブロック共重合体」とは、第 1のモノマーが単独重合して得られ るポリマー鎖と、第 2のモノマーが単独重合して得られるポリマー鎖とを含むポリマー を意味する。本明細書中では、例えば、 PEMOと PMMAとのブロック共重合体を「P EMO b— PMMAJのように記載する。
[0052] 本明細書にぉ 、て「架橋性モノマーブロック」とは、架橋性モノマーが重合してなる ポリマーブロックを意味する。
[0053] 本明細書において「非架橋性モノマー」とは、重合基を有し、架橋可能な官能基を 一切有さないモノマーを意味する。これに対し、非架橋性モノマーの重合体を「非架 橋性ポリマー」という。
[0054] 本明細書にぉ 、て「非架橋性モノマーブロック」とは、非架橋性モノマーが重合して なるポリマーブロックを意味する。
[0055] 本明細書において「中空部」とは、上で定義した中空微粒子において、ポリマーブ ラシ層によって内包された空間を意味し、この中空部には、気体、液体 (溶液、分散 液など)、ゲル、半固体または固体の状態を取り得る人工または生体物質の単体また は混合物が充填され得る。
[0056] 本明細書において「微粒子」とは、その表面に上で定義したポリマーブラシ層が結 合する前のベアな状態のものを意味し、上で定義した「中空微粒子」と区別して使用 され得る。本明細書において、「微粒子」との用語は、「铸型微粒子」との用語と互換 可能に使用され得る。本発明で使用される微粒子として、 50nm〜: mの粒径をも ち、単分散型で、しかもポリマーブラシ層に悪影響 (分解、切断など)を及ぼさない溶 出剤により溶出することができる中実粒子であれば何でもよい。代表的には、シリカ 等のケィ素酸ィ匕物; Au (金)、 Ag (銀)、 Pt (白金)、 Pd (パラジウム)等の貴金属; Ti、 Zr、 Ta、 Sn、 Zn、 Cu、 V、 Sb、 In, Hf、 Y、 Ce、 Sc、 La、 Eu、 Niゝ Co、 Fe等の遷移 金属、それらの酸ィ匕物または窒化物等の無機物質;あるいは有機物質であるものが 挙げられるが、これらに限定されない。
[0057] 本明細書にお!、て「複合微粒子」とは、上で定義した「ポリマーブラシ層」が微粒子 表面に結合して形成されるものを意味し、本明細書では上で定義した「微粒子」およ び「中空微粒子」と区別して使用される。
[0058] 本明細書にぉ 、て「リビングラジカル重合」とは、連鎖移動反応および停止反応の ない、または無視できるほど小さい重合反応では、重合反応終了後でも生成重合体 の末端に重合活性を保持しており、モノマーを加えると再び重合反応を開始させるこ とができるような重合を意味する。リビングラジカル重合の特徴としては、モノマーと重 合開始剤の濃度比を調節することにより任意の平均分子量をもつ重合体の合成がで きること、また、生成する重合体の分子量分布が極めて狭いこと、ブロック共重合体へ 応用できること、などが挙げられる。本明細書中では、リビングラジカル重合は「LRP」 と略して使用される。また、グラフト鎖を構成するラジカル重合可能なモノマーとして、 例えば、 MMA (メチルメタタリレート)、スチレン、酢酸ビニル等が例示される。
[0059] 本発明で用いられるリビングラジカル重合の代表例として、原子移動ラジカル重合( ATRP)が挙げられる(図 2参照)。例えばシリカ微粒子の基体表面を溶媒中に浸し、 微粒子表面に固定されていない、遊離開始剤(例えば、 p—トルエンスルホユルクロラ イド(略称: TsCl)またはェチル 2—ブロモイソブチレート(略称: EBIB)等)の存在下 または非存在下で、ハロゲン化銅 (Cu'x) Zリガンド (L)錯体を用いてメタクリル酸メ チル(MMA)ある!/、はスチレン(St)等の原子移動ラジカル重合 (ATRP)させる。高 分子末端ハロゲン (P—X)を Ci XZL錯体が引き抜くことにより可逆的に生成する成 長ラジカル (P)にモノマーが付加して進行し、十分な頻度での可逆的活性化'不活 性化により分子量分布が規制される。
[0060] 本発明にお 、て、リビングラジカル重合の際に起こり得る中空微粒子同士のカップ リングを回避するために、固定化開始剤を表面に固定化した微粒子の仕込み濃度を 極力低くする方法がとられる。そのため、この系中の開始剤が足りず、微粒子表面か らのグラフト重合が高密度で進行しない場合には、固定ィ匕開始剤とは別に、上で例 示したような遊離開始剤を重合の際に共存させることが好ましい(図 2参照)。系中に 存在する全開始剤濃度に対する固定ィ匕開始剤濃度の割合は、好ましくは 1〜50%、 より好ましくは 1〜20%、最も好ましくは 10%である。
[0061] 本明細書において「リビングラジカル重合条件下」とは、微粒子の表面上に設けた 重合開始基を基点とするリビングラジカル重合が確実にかつ良好に進行するために 当業者が適宜選択した重合条件を採用することを意味する。
[0062] 本明細書において「重合開始基」とは、モノマーに少量添加され重合反応の開始の 役割を果たす物質を意味し、そのような役割を果たすものであれば、特に限定されな い。 [0063] 本明細書において「中空化」または「中空化処理」とは、ポリマーブラシ層に悪影響 を及ぼすことなぐポリマーブラシ層が微粒子表面上に結合した複合微粒子力ゝら微粒 子のみを除去 (例えば、溶出または溶離)する処理工程を意味する。
[0064] (好ま 、実施形態の説明)
以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本 発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に 限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参 酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。
[0065] 1つの局面において、本発明は、中空部と該中空部を内包する高密度ポリマーブラ シ層とからなる中空微粒子を提供する。このように、中空微粒子は中空部の表面に対 して個々の高分子鎖が高密度で配向かつ整列し、任意のある高分子鎖に含まれる 架橋性官能基が他の高分子鎖の架橋性官能基と架橋してなる構造を有する高密度 ポリマーブラシ層を含んで 、るため、ポリマーブラシ構造をとつて!/ヽな 、従来の中空 微粒子に比べ、はるかに粒子強度が高いという利点を有する。
[0066] 上記ポリマーブラシ層を構成するポリマー鎖の鎖密度は、好ましくは 0. 4〜1. 2本 鎖/ nm2であり、より好ましくは 0. 7〜1. 2本鎖/ nm2、さらに好ましくは 0. 8〜1. 2 本鎖 Znm2、よりさらに好ましくは 0. 9〜1. 2本鎖 Znm2であり、最も好ましくは 1. 0 〜1. 2本鎖 Znm2である。ポリマー鎖の鎖密度が 0. 4本鎖 Znm2を下回る場合には 、疎なブラシ構造をとるため、隣接する高分子鎖間に立体反発力が生じないためほ ぼ伸びきつた形態をとることができず、また粒子強度が弱いという欠点を有する。しか も中空部への試薬または薬剤の担持または取込みへの応用には向 、て ヽな 、。ま た、ポリマー鎖の鎖密度が 1. 2本鎖 Znm2を超える場合には、鎖密度が過密である ため、中空粒子の安定性に乏しい。
[0067] また、このように、球面に高密度のポリマー鎖をブラシ状に形成したことにより、以下 に説明する架橋反応を行うことが容易になるという利点もある。
[0068] 1つの好ましい実施形態においては、ポリマーブラシ層を構成するポリマー鎖の少 なくとも一部が、架橋される。
[0069] 好ましくは、ポリマーブラシ層を構成するポリマー鎖の総数のうちの 10%以上のポリ マー鎖が架橋され、より好ましくは、 50%以上のポリマー鎖が架橋され、さらに好まし くは、 80%以上のポリマー鎖が架橋され、いっそう好ましくは、 90%以上のポリマー 鎖が架橋される。特に好ましくは、実質的にすべてのポリマー鎖が架橋される。 1つの ポリマー鎖に平均して 1箇所以上架橋している箇所が存在することが好ましぐより好 ましくは平均 1. 5箇所以上であり、さらに好ましくは、平均 2箇所以上である。
[0070] より好ましい実施形態において、ポリマーブラシ層を構成するポリマー鎖は、少なく とも 1種の架橋性モノマーと非架橋性モノマーとのブロック共重合体であり、該架橋性 モノマーのブロック力 該ポリマーブラシ層の最も内側に位置している。さらに、任意 のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性モノマ 一ブロックとが、該架橋性官能基間の反応により形成される結合または該架橋性官 能基と多官能性化合物 (すなわち、架橋剤)との反応により形成される結合、を介して 架橋されている。すなわち、ポリマー鎖とポリマー鎖とが直接的に架橋されている力、 または架橋剤を介して架橋されている。このように、ポリマーブラシ層の足場となる内 層が上で説明した架橋反応により強化されるため(例えば、図 1参照)、ポリマーブラ シ層全体が安定となる。従って、中空微粒子のポリマーブラシ層を構成する高分子 鎖のモノマー単位の総数に対する、架橋したモノマー単位の占める割合を制御する ことにより、本発明の中空微粒子の強度を制御することができる。本発明の中空微粒 子を構成する高分子鎖のモノマー単位の総数のうちの、架橋したモノマー単位の占 める割合は、好ましくは 5〜50%、より好ましくは 10〜45%、特に好ましくは 15〜40 %である。例えば、合わせて 100個のモノマー力もポリマー鎖が構成される場合には 、そのうちの 5〜50個のモノマーが架橋されていることが好ましぐ 10〜45個のモノ マーが架橋されていることがより好ましぐ 15〜40個のモノマーが架橋されていること が特に好ましい。
[0071] この実施形態のように、内側 (すなわち、隣接する鎖との距離が近い場所)において 架橋を行えば、外側 (すなわち、隣接する鎖との距離が遠い場所)においてもブラシ が立った状態を維持し易ぐ粒子径およびポリマーブラシ全体の構造の安定性、分 散性の維持'向上を図ることができる。
[0072] 特に、上述したとおりに鎖密度が高い場合には、鎖と鎖との間の距離がより近いた め、その架橋反応により、粒子形状が安定化され、粒子の剛性を向上させることが容 易になる。そして、粒子の剛性が向上することより、その製造の際に中空部に存在し ていた铸型微粒子 (例えば、シリカ)を除去することが容易になる。このため、中空微 粒子の形態のポリマーブラシを形成することが可能になった。すなわち、架橋を行わ ない場合には、内部の微粒子を除去する際にポリマー鎖どうしがばらばらになりやす く、中空微粒子を成形することはきわめて困難であり、また、成形できた場合にも、そ の中空形状を維持することは困難であるが、上記架橋反応を行えば、きわめて安定 な中空微粒子を容易に得ることが可能である。
[0073] さらに、本発明によれば、内層の架橋性ポリマーの架橋度等を制御することにより、 中空部の形状維持特性 (剛直または柔軟)の制御が可能となると 、う利点を有する。 また中空部に試薬および薬剤を担持または取り込みをさせる場合に、その徐放速度 Z取り込み速度の制御も可能となる。さらに、外層の非架橋性ポリマーの膜厚を制御 することにより、粒子サイズを任意に設計することができる。
[0074] 本発明で使用する好ましい架橋性モノマーには、アクリル酸、メタクリル酸、または エポキシアルキレン基、アミノアルキレン基、ォキセタ-ルアルキレン基およびシンナ モイルアルキレン基力 なる群力 選択される官能基を有するアタリレートもしくはメタ タリレートなどが挙げられる力 これらに限定されない。上記エポキシアルキレン基、 アミノアルキレン基、ォキセタ-ルアルキレン基およびシンナモイルアルキレン基にお ける「アルキル基」とは、 C1〜C6の直鎖または分枝鎖の二価のアルキレン基を意味 し、特に好ましい例として、メチレン(一CH ―)およびエチレン(一CH CH ―)など
2 2 2 が挙げられる。
[0075] 本発明で使用する好ましい非架橋性モノマーには、アクリル酸誘導体、メタクリル酸 誘導体、スチレン誘導体、酢酸ビュルおよびアクリロニトリルなどが挙げられる力 こ れらに限定されない。
[0076] 上に挙げた、いずれの架橋性モノマーおよびいずれの非架橋性モノマーを使用し ても、比較的容易に中空微粒子を合成することができ、工業的な大量生産に適して いるとの利点を有する。
[0077] 本発明の中空微粒子におけるポリマー鎖の各ブロックの分子量分布指数は、好ま しくは 1〜1. 50であり、より好ましくは 1〜1. 30である。このような理想のまたはそれ に近い単分散型の中空微粒子は、本発明の中空微粒子の製造方法により、容易に 得ることができる。
[0078] 本発明の中空微粒子のポリマーブラシ層を構成する架橋性モノマーブロックの好ま しい重合度は 10〜: LOOOOであり、さらに好ましくは 100〜5000である。非架橋性モ ノマーブロックの好ましい重合度は 10〜10000であり、さらに好ましくは 100〜5000 である。
[0079] 本発明の中空微粒子の製造方法によれば、 60ηπ!〜 5 μ mの粒径の範囲内で、中 空微粒子の粒径、ポリマーブラシ層の膜厚およびポリマー鎖の鎖密度を自在に制御 することができる。
[0080] また、中空微粒子の製造の初期段階として、铸型となる微粒子の表面から高密度 でグラフト重合させるためには、その铸型微粒子の粒径は 50ηπ!〜 1 μ mであること が好ましい。铸型微粒子の粒径が 50nmを下回ると、微粒子表面からグラフト重合さ せる際に粒子の曲率の影響を受けるために、ポリマーブラシ層における高分子鎖の 密度が低くなる。铸型微粒子の粒径が 1 μ mを上回ると、溶媒中での複合微粒子ま たは中空微粒子の分散が容易ではなく好ましくない。
[0081] 1つの好ましい実施形態において、本発明は、中空部と該中空部を内包する高密 度ポリマーブラシ層とからなる中空微粒子であって、該ポリマーブラシ層を構成する ポリマー鎖は、
i)該ポリマーブラシ層の内側に位置し、以下の式:
[0082] [化 27]
Figure imgf000022_0001
(式中、 Rは水素原子または C1〜C6のアルキル基であり、より好ましくは Rは水素 原子またはメチル基であり、 Rは、以下の式: [0083] [化 28]
Figure imgf000023_0001
または
[0084] [化 29]
0
-CH : : CH - -C - -(CH2)e
[式中、 Rは水素原子または C1〜C6のアルキル基であり、より好ましくは Rは水素
5 5 原子、メチル基またはェチル基であり、 aは 1〜3の整数である]で表される架橋性官 能基であり、 nは 10〜: LOOOOである)で表される架橋性モノマーブロックと、
ii)該ポリマーブラシ層の外側に位置し、以下の式:
[0085] [化 30]
Figure imgf000023_0002
(式中、 Rは水素原子または C1〜C6のアルキル基であり、より好ましくは Rは水素
2 2 原子またはメチル基であり、 Rは水素原子、 C1〜C12のアルキル基、またはフエ-
4
ル基であり、より好ましくは Rは水素原子であり、 mは 10〜: LOOOOである)で表される
4
非架橋性モノマーブロックとの、ブロック共重合体であり、
任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基間の反応を介して架橋されている、中空微粒 子を提供する。
[0086] 別の好ましい実施形態において、本発明は、中空部と該中空部を内包する高密度 ポリマーブラシ層とからなる中空微粒子であって、該ポリマーブラシ層を構成するポリ マー鎖は、 i)該ポリマーブラシ層の内側に位置し、以下の式:
[0087] [化 31]
Figure imgf000024_0001
(式中、 Rは水素原子または C1〜C6のアルキル基であり、より好ましくは Rは水素 原子またはメチル基であり、 Rは、水素原子、または以下の式:
[0088] [化 32]
Figure imgf000024_0002
ちしくは
[0089] [化 33]
Η2Ν (CH2)|
[式中、 aは 1〜3の整数である]で表される架橋性官能基であり、 nは 10〜: LOOOOで ある)で表される架橋性モノマーブロックと、
ii)該ポリマーブラシ層の外側に位置し、以下の式:
[0090] [化 34]
Figure imgf000024_0003
(式中、 Rは水素原子または C1〜C6のアルキル基であり、より好ましくは Rは水素
2 2 原子またはメチル基であり、 Rは水素原子、 C1〜C 12のアルキル基またはフエ-ル
4
基であり、より好ましくは Rは水素原子であり、 mは 10〜: LOOOOである)で表される非
4
架橋性モノマーブロックとの、ブロック共重合体であり、 任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基と多官能性ィ匕合物との間の反応を介して架橋 されており、
Rが水素原子である場合には、該多官能性ィ匕合物は、以下:
3
[化 35]
H2N (CH2)P NH2
[0092] [化 36]
Figure imgf000025_0001
、および
[0093] [化 37]
Figure imgf000025_0002
(式中、 pは 1〜6の整数であり、 qは 1〜3の整数である)力 なる群力 選択される式 で表され;
R 1S 以下の式:
[0094] [化 38]
Figure imgf000026_0001
で表される架橋性官能基である場合には、該多官能性ィ匕合物は、以下:
[0095] [化 39]
H2N (CH2)P NH2
[0096] [化 40]
Figure imgf000026_0002
[0097] [化 41]
Figure imgf000026_0003
[0098] [化 42]
HO—— (CH2),
[0099] [化 43]
Figure imgf000027_0001
、および
[0100] [化 44]
Figure imgf000027_0002
(式中、 pおよび qは上で定義した通りである)力もなる群力も選択される式で表され; R力 以下の式:
3
[0101] [化 45]
H2N (CH2)a で表される架橋性官能基である場合には、該多官能性ィ匕合物は、以下:
[0102] [化 46]
Figure imgf000027_0003
[0103] [化 47] [oe ] [9010]
HOOO d(3HO) OOOH
[6f^ [SO 10]
Figure imgf000028_0001
L 09l0/S00Zd /lDd 93 6C8.80/900Z OAV
Figure imgf000029_0001
、および
[0107] [化 51]
Figure imgf000029_0002
(式中、 pおよび qは上で定義した通りである)からなる群から選択される式で表される 、中空微粒子を提供する。
[0108] 本明細書において「アルキル基」とは、メタン、ェタン、プロパンのような脂肪族炭化 水素(アルカン)力も水素原子が一つ失われて生ずる 1価の基をいい、一般に C H n 2n 一で表される(ここで、 nは正の整数である)。アルキル基は、直鎖または分枝鎖で
+ 1
あり得る。
[0109] 本明細書中において「フエ-ル基」とは、 C6芳香族系炭素環基であり、ベンゼンか ら Hを 1個欠失した官能基である。
[0110] 別の局面において、本発明は、以下の工程:
a)重合開始基を微粒子表面に結合させる工程;
b)表面に重合開始基を有する微粒子と、架橋性モノマーとを、リビングラジカル重 合条件下で接触させて、高密度の架橋性ポリマーブラシ層が微粒子表面に結合した 複合微粒子を得る工程;
C)該複合微粒子の架橋性ポリマーブラシと、非架橋性モノマーとを、リビングラジカ ル重合条件下で接触させて、ブロック共重合体が微粒子表面に結合した複合微粒 子を得る工程;
d)該ブロック共重合体が微粒子表面に結合した複合微粒子を、架橋反応条件下 に供する工程;および
e)該微粒子のみを溶出しかつ該ブロック共重合体に影響を及ぼさな!/、条件下で、 該ブロック共重合体が微粒子表面に結合した複合微粒子と、溶出剤とを接触させて 、該微粒子のみを溶出する工程、
を包含する、中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微 粒子を製造する方法、を提供する。
[0111] 好ましい実施形態において、工程 a)は、以下の式:
[0112] [化 52]
Figure imgf000030_0001
R1 20— Si— (CH2 )n ~ O—— C—— C ~ X
R 1 3〇 〇 R 22 を有する固定化開始剤と、シリカ、金属酸化物または金属硫化物の铸型微粒子 (シリ 力の铸型微粒子が、特に好ましい)とを、該化合物と該微粒子とが反応する条件下で
、接触させることによって行われる。式中、スぺーサー鎖長 nは 3〜10の整数であるこ と力 S好ましく、 4〜8の整数がより好ましぐ 6が最も好ましい。 Rは C1〜C3のアルキ ル基であることが好ましぐメチル基またはェチル基が特に好ましい。 Rはメチル基ま
2
たはェチル基であることが好ましい。 Xはハロゲン原子が好ましぐ特に Brが好ましい 本発明において、固定ィ匕開始剤を固定するための微粒子として、中空化処理を容 易にするという点でシリカ微粒子が好んで用いられるが、シリカ微粒子を良好に分散 させるために極性溶媒が用いられる。従来の固定ィ匕開始剤であるクロロシラン系開始 剤は、溶解度が低いとの理由で極性溶媒を用いることができず、高密度のグラフト重 合は不可能であった。本発明によれば、この問題を克服するべぐシリカ微粒子を良 好に分散させる極性溶媒との相性が良い上記のアルコキシシラン系の固定ィ匕開始剤 を使用することで、高密度のグラフト重合を達成することができる。
[0114] 上記の重合開始基含有シランカップリング剤は、特許文献 3に記載された方法に基 づいて、合成することができる。このようにして得られる表面に重合開始基を有する微 粒子と、上に挙げた架橋性モノマーとを、リビングラジカル重合条件下で接触させる ことにより、高密度の架橋性ポリマーブラシ層が微粒子表面に結合した複合微粒子を 得ることができる(工程 b) )。ここで、表面に重合開始基を有する微粒子と接触させる 架橋性モノマーの種類は、単独であってもよいし、複数であってもよいが、架橋性ポリ マーブラシ層の単分散性を得るためには、単独であることが好ましい。
[0115] 工程 d)にお 、て行う架橋反応は、従来公知の任意の架橋反応であり得る。この架 橋反応を行うために必要なエネルギーは、任意の方法で与えることが可能である。例 えば、光、熱、電子線、電磁波などが例示される。
[0116] 好ましい実施形態において、本発明の上記製造方法における工程 d)は、ブロック 共重合体が微粒子表面に結合した複合微粒子を、開始剤の存在下または非存在下 で、光または熱処理することによって行われる。架橋性モノマーとして、ォキセタニル アルキレン基を有するアタリレートまたはメタタリレートを使用する場合には、開始剤の 存在下で光または熱処理が行われる。架橋性モノマーとして、シンナモイルアルキレ ン基を有するアタリレートまたはメタタリレートを使用する場合には、開始剤の非存在 下で、光または熱処理が行われる。
[0117] 別の好ましい実施形態において、本発明の上記製造方法における工程 d)は、前記 架橋性モノマーブロック中の架橋性官能基と反応し得る多官能性ィヒ合物を添加する こと〖こよって行われる。
[0118] 本発明における中空化処理 (例えば、工程 e) )で用いる溶出剤は、フッ化水素の水 溶液であり、そのフッ化水素濃度は、当業者により適宜選択され得る。
[0119] 本発明の中空微粒子の製造方法において、上記の各工程で得られる中間生成物 または最終生成物は、反応液から夾雑物 (未反応原料、副生成物、溶媒など)を、当 該分野で慣用される方法 (例えば、抽出、蒸留、洗浄、濃縮、沈澱、濾過、乾燥など) によって除去した後に、当該分野で慣用される後処理方法 (例えば、吸着、溶離、蒸 留、沈澱、析出、クロマトグラフィーなど)を適宜組み合わせて処理して単離し得る。
[0120] 本発明によって得られた中空微粒子は、この中空微粒子の水面膜を透過型電子顕 微鏡 (略称: TEM)用グリットに移しとり TEM観察することによって確認することができ る。図 3は、本発明の中空微粒子の水面単分子膜の TEM写真 (シリカ粒子の平均粒 径は 740nmであり、中空微粒子のポリマーブラシ層を構成する PEMOブロックおよ び PMMAブロックの数平均分子量はそれぞれ、 388000, 194000である)を示す。 これより、本発明の中空微粒子が、二次元において凝集することなく単粒子膜を形成 していることが確認できた。
[0121] 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、そ の全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援 用される。
[0122] 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきた力 本発 明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求 の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、 本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に 基づいて等価な範囲を実施することができることが理解される。本明細書において引 用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載さ れているのと同様にその内容が本明細書に対する参考として援用されるべきであるこ とが理解される。
実施例
[0123] (実施例 1:シリカ微粒子表面への開始基の導入)
シリカ微粒子(日本触媒製、平均粒径 740nm)のエタノール分散液(7. 7wt%, 30 mL)を 28%アンモニア水溶液(13. 9g)とエタノール(200mL)の混合液中へ加え た。その混合液を 40度で 2時間攪拌した後、エタノール(10mL)に溶解した 6— (2 ーブロモー 2—メチルプロピオ-ルォキシ)へキシルトリエトキシシラン(2g)を滴下し、 40度で 18時間攪拌した。その後、シリカ微粒子を遠心分離機により回収し、エタノー ル、ァ-ソールにより洗浄した後、ァ-ソール中で保存した。
[0124] (実施例 2:中空微粒子の調製)
中空微粒子の合成は、以下の手順で行った (図 1)。実施例 1で調製した重合開始 基を有するシリカ微粒子のァ-ソール分散液 (4g)に 3—ェチルー 3—メタクリロイル ォキシメチルォキセタン (EMO, 10g)、遊離開始剤であるェチル 2—ブロモイソブチ レート (EBIB, 3. 5mg)を混合し、溶存気体をアルゴンで置換した。この混合液に、 予めァルゴン置換した01 (1) 1:(131118)74, 4,—ジノ-ルー 2, 2,—ジピリジル(d Nbipy, 74mg)錯体のァ-ソール溶液(6g)をグローブボックス内でカ卩え、密閉後、 恒温振盪槽中 60度で 24時間重合した。得られたポリ(EMO) (PEMO)をグラフトし たシリカ微粒子 (PEMO-SiP)をアセトンで洗浄し、遊離開始剤から成長したフリー ポリマーを除去した。次に、 PEMO— SiP (0. 4g)にメタクリル酸メチル(MMA, 40g ;)、 EBIB (13mg)を混合し、溶存気体をアルゴンで置換した。この混合液に、予め了 ルゴン置換した Cu (I) Br (66mg) /dNbipy (545mg)錯体をグローブボックス内で 加え、密閉後、恒温振盪槽中 70度で 10時間重合した。グラフトイ匕シリカ微粒子をァ セトンで洗浄し、遊離開始剤力 成長したフリーポリマーを除去することにより、 PEM Oとポリ(MMA) (PMMA)からなるブロック共重合体(PEMO— b— PMMA)をグラ フトしたシリカ微粒子を合成した。ブロック共重合体グラフトイ匕シリカ微粒子 (0. 2g)を ジクロロメタン(10g)に分散させ、溶存気体をアルゴンで置換した。この分散液をグロ ーブボックスに移し、開環反応開始剤である BF -OEt (0. lg)をカ卩え、室温で 18時
3 2
間攪拌した。微粒子はトルエンで洗浄し、トルエン分散液として回収した。このトルェ ン分散液(0. 4wt%, 50g)に、水で希釈したフッ化水素(HF) (10wt%, 50g)と相 間移動触媒であるトリ— n—ォクチルメチルアンモ -ゥムクロライド (0. 5g)を加えて 1 5時間激しく攪拌しシリカ微粒子を溶出した。トルエン相を炭酸水素ナトリウム水溶液 、次いで水で洗浄した後、遠心分離機により中空微粒子を回収した。
[0125] シリカ微粒子表面にグラフトしたブロック共重合体の PEMOブロックおよび PMMA ブロックの数平均分子量はそれぞれ 388000, 194000、分子量分布指数はそれぞ れ 1. 21, 1. 40であった。 BF処理前の微粒子、 BF処理後の微粒子、 HF処理後 の微粒子の赤外吸収スペクトルを図 4に示す。 BF処理後にはォキセタン環由来の
3
ピーク(990cm_ 1)が減少しており、ォキセタンの開環反応により PEMOブロックの架 橋反応が進行したことがわかる。 HF処理後には Si— O由来のピーク(l lOOcnT1) が消滅しており、シリカ微粒子が溶出したことがわかる。 HF処理後の微粒子の透過 型電子顕微鏡像を図 5に示す。微粒子の中心部分の色が薄くなつており、中空の形 状を確認できる。架橋前の微粒子と中空微粒子の動的光散乱測定の結果、粒径お よびその標準偏差がほぼ同じ値であることから、中空微粒子を調製する過程におい て、微粒子は凝集することなく高い分散性を保持していることがわかる。この理由とし て、高密度ポリマーブラシ特有の高伸張性により PEMOブロックと PMMAブロックが 分離し、 PMMAブロックが微粒子間の架橋を妨げる保護層として働 、たためと考え られる。
産業上の利用可能性
[0126] 本発明の中空微粒子の製造方法によれば、粒径分布が狭ぐかつ分散安定性に 優れるという、先行する高密度ポリマー粒子の特性を維持したまま、中空微粒子を得 ることができる。また、粒子形状、サイズの選択により任意の中空微粒子を得ることが できる。さらに内層の架橋性ポリマーの架橋度等を制御することにより、中空部の形 状維持特性 (剛直または柔軟)の制御が可能となり、また中空部に試薬および薬剤を 担持または取り込みをさせる場合に、その徐放速度 Z取り込み速度の制御も可能と なる。さらに、外側の高密度グラフト鎖の膜厚を制御することにより、粒子サイズを任 意に設計することができる。
[0127] 本発明により提供される中空微粒子は、以下に列挙する分野または製品としての 利用可能性を有する:
1)高分子の材質が機能の拠り所となる微粒子 (例えば、生分解性粒子など)
2)表面で機能を制御する微粒子 (例えば、ァフィ二ティー粒子、吸着体、散乱体、 触媒など)
3)内包物により機能を制御できる微粒子 (量子ドット、蛍光体、顔料、染料、薬物、 磁性体、 CMP (化学機械研磨)研磨剤、マイクロリアクタ、断熱材など)
4)配列の規則性で機能を発揮する微粒子 (フォトニック結晶、回折格子、光変調素 子、電子べーパ、導波路用材料など)
5)動的機能を発揮する微粒子 (粒子ポンプなど)。

Claims

請求の範囲
[1] 中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微粒子。
[2] 前記ポリマーブラシ層を構成するポリマー鎖の鎖密度は、 0. 4〜1. 2本鎖 Znm2 である、請求項 1に記載の中空微粒子。
[3] 前記ポリマーブラシ層を構成するポリマー鎖は、架橋性官能基を有する少なくとも 1 種の架橋性モノマーと非架橋性モノマーとのブロック共重合体であり、
該架橋性モノマーのブロック力 該ポリマーブラシ層の最も内側に位置し、かつ 任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基間の反応により形成される結合または該架橋 性官能基と多官能性化合物との反応により形成される結合、を介して架橋されている 、請求項 1に記載の中空微粒子。
[4] 前記架橋性モノマーは、アクリル酸、メタクリル酸、またはエポキシアルキレン基、ァ ミノアルキレン基、ォキセタ-ルアルキレン基およびシンナモイルアルキレン基からな る群力も選択される官能基を有するアタリレートもしくはメタタリレートであり、
前記非架橋性モノマーは、アクリル酸誘導体、メタクリル酸誘導体、スチレン誘導体 、酢酸ビュルおよびアクリロニトリル力 なる群力 選択される、請求項 3に記載の中 空微粒子。
[5] 前記ポリマー鎖の各ブロックの分子量分布指数は、 1〜1. 50である、請求項 2に記 載の中空微粒子。
[6] 前記架橋性モノマーブロックの重合度は 10〜: LOOOOであり、前記非架橋性モノマ 一ブロックの重合度は 10〜: L 0000である、請求項 3に記載の中空微粒子。
[7] 前記中空微粒子は、 60ηπ!〜 5 μ mの粒径を有する、請求項 1に記載の中空微粒 子。
[8] 中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微粒子であつ て、該ポリマーブラシ層を構成するポリマー鎖は、
i)該ポリマーブラシ層の内側に位置し、以下の式:
[化 53]
Figure imgf000037_0001
(式中、 Rは水素原子または C1〜C6のアルキル基であり、 Rは、以下の式:
1 3
[化 54]
Figure imgf000037_0002
または
[化 55]
Figure imgf000037_0003
[式中、 Rは水素原子または C1〜C6のアルキル基であり、 aは 1〜3の整数である]
5
で表される架橋性官能基であり、 nは 10〜: LOOOOである)で表される架橋性モノマー ブロックと、
ii)該ポリマーブラシ層の外側に位置し、以下の式:
[化 56]
Figure imgf000037_0004
(式中、 Rは水素原子または CI〜C6のアルキル基であり、 Rは水素原子、 C1〜C
2 4
12のアルキル基またはフエ-ル基であり、 mは 10〜: LOOOOである)で表される非架 橋性モノマーブロックとの、ブロック共重合体であり、
任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基間の反応により形成される結合を介して架橋 されている、中空微粒子。
中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微粒子であつ て、該ポリマーブラシ層を構成するポリマー鎖は、
i)該ポリマーブラシ層の内側に位置し、以下の式:
[化 57]
Figure imgf000038_0001
(式中、 Rは水素原子または C1〜C6のアルキル基であり、 Rは、水素原子、または
1 3
以下の式:
[化 58]
Figure imgf000038_0002
ちしくは
[化 59]
H2N (CH2)|
[式中、 aは 1〜3の整数である]で表される架橋性官能基であり、 nは 10〜: LOOOOで ある)で表される架橋性モノマーブロックと、
ii)該ポリマーブラシ層の外側に位置し、以下の式:
[化 60]
Figure imgf000038_0003
(式中、 Rは水素原子または CI〜C6のアルキル基であり、 Rは水素原子、 C1〜C
2 4
12のアルキル基またはフエ-ル基であり、 mは 10〜: LOOOOである)で表される非架 橋性モノマーブロックとの、ブロック共重合体であり、
任意のポリマー鎖中の架橋性モノマーブロックと、別個のポリマー鎖中の該架橋性 モノマーブロックとが、該架橋性官能基と多官能性ィ匕合物との間の反応により形成さ れる結合を介して架橋されており、
Rが水素原子である場合には、該多官能性ィ匕合物は、以下:
3
[化 61]
H2N (CH2)P NH2
[化 62]
Figure imgf000039_0001
、および
[化 63]
Figure imgf000039_0002
(式中、 pは 1〜6の整数であり、 qは 1〜3の整数である)力 なる群力 選択される式 で表され;
R力 以下の式:
3
[化 64]
Figure imgf000040_0001
で表される架橋性官能基である場合には、該多官能性ィ匕合物は、以下: [化 65]
H2N (CH2)P NH2
[化 66]
Figure imgf000040_0002
[化 67]
Figure imgf000040_0003
[化 68] HO (CH2)P OH
[化 69]
Figure imgf000041_0001
、および
[化 70]
Figure imgf000041_0002
(式中、 pおよび qは上で定義した通りである)力もなる群力も選択される式で表され; R力 以下の式:
3
[化 71]
H2N (CH2)g く で表される架橋性官能基である場合には、該多官能性ィ匕合物は、以下:
[化 72]
Figure imgf000041_0003
[化 73]
Figure imgf000042_0001
(CH2)P COOH
Figure imgf000043_0001
、および
[化 77]
Figure imgf000043_0002
(式中、 pおよび qは上で定義した通りである)からなる群から選択される式で表される 、中空微粒子。
以下の工程:
a)重合開始基を微粒子表面に結合させる工程;
b)表面に重合開始基を有する微粒子と、架橋性モノマーとを、リビングラジカル重 合条件下で接触させて、高密度の架橋性ポリマーブラシ層が微粒子表面に結合した 複合微粒子を得る工程;
c)該複合微粒子の架橋性ポリマーブラシと、非架橋性モノマーとを、リビングラジカ ル重合条件下で接触させて、ブロック共重合体が微粒子表面に結合した複合微粒 子を得る工程;
d)該ブロック共重合体が微粒子表面に結合した複合微粒子を、架橋反応条件下 に供する工程;および e)該微粒子のみを溶出しかつ該ブロック共重合体に影響を及ぼさな!/、条件下で、 該ブロック共重合体が微粒子表面に結合した複合微粒子と、溶出剤とを接触させて 、該微粒子のみを溶出する工程、
を包含する、中空部と該中空部を内包する高密度ポリマーブラシ層とからなる中空微 粒子を製造する方法。
[11] 前記工程 a)は、
以下の式:
[化 78]
R 21
Figure imgf000044_0001
R120— Si— (CH2 )n ~ O—— C—— C ~ X R 1 3〇 〇 R 22
(式中、 nは 3〜10の整数であり、 R 〜R は独立して C1〜C3のアルキル基を表し
11 13
、 R および R は独立してメチル基またはェチル基を表し、 Xはハロゲン原子を表す
21 22
)
を有する化合物と、
シリカ、金属酸ィ匕物または金属硫ィ匕物の微粒子とを、
該化合物と該微粒子とが反応する条件下で、接触させることによって行われる、請 求項 10に記載の方法。
[12] 前記架橋性モノマーは、アクリル酸、メタクリル酸、またはエポキシアルキレン基、ァ ミノアルキレン基、ォキセタ-ルアルキレン基およびシンナモイルアルキレン基からな る群力も選択される官能基を有するアタリレートもしくはメタタリレートであり、 前記非架橋性モノマーは、アクリル酸誘導体、メタクリル酸誘導体、スチレン誘導体 、酢酸ビュルおよびアクリロニトリル力 なる群力 選択される、請求項 11に記載の方 法。
[13] 前記工程 d)は、ブロック共重合体が微粒子表面に結合した複合微粒子を、開始剤 の存在下または非存在下で、光または熱処理することによって行われる、請求項 10 に記載の方法。
前記工程 d)は、前記架橋性モノマーブロック中の架橋性官能基と反応し得る多官 能性ィ匕合物を添加することによって行われる、請求項 10に記載の方法。
前記溶出剤が、フッ化水素の水溶液である、請求項 10に記載の方法。
PCT/JP2005/016047 2005-02-15 2005-09-01 高密度ポリマーブラシ被覆中空微粒子、その製造方法および高密度ポリマーブラシ被覆中空微粒子の応用 WO2006087839A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/594,144 US20080057310A1 (en) 2005-02-15 2005-09-01 High-Density Polymer Brush-Coated Hollow Microparticles, Processes For Producing The Same And Applications Of High-Density Polymer Brush-Coated Hollow Microparticles
CA002561517A CA2561517A1 (en) 2005-02-15 2005-09-01 High-density polymer brush-coated hollow micropartcles,processes for producing the same and applications of high-density polymer brush-coated hollow microparticles
JP2006517536A JPWO2006087839A1 (ja) 2005-02-15 2005-09-01 高密度ポリマーブラシ被覆中空微粒子、その製造方法および高密度ポリマーブラシ被覆中空微粒子の応用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005038474 2005-02-15
JP2005-038474 2005-02-15

Publications (1)

Publication Number Publication Date
WO2006087839A1 true WO2006087839A1 (ja) 2006-08-24

Family

ID=36916253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016047 WO2006087839A1 (ja) 2005-02-15 2005-09-01 高密度ポリマーブラシ被覆中空微粒子、その製造方法および高密度ポリマーブラシ被覆中空微粒子の応用

Country Status (4)

Country Link
US (1) US20080057310A1 (ja)
JP (1) JPWO2006087839A1 (ja)
CA (1) CA2561517A1 (ja)
WO (1) WO2006087839A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049113A1 (ja) 2009-10-21 2011-04-28 国立大学法人京都大学 ポリマー複合微粒子を用いた高分子固体電解質を用いた電気化学デバイス
JP2012131928A (ja) * 2010-12-22 2012-07-12 Asahi Kasei Chemicals Corp 成膜性を有する有機−無機複合体及びその製造方法
KR20180020875A (ko) * 2016-08-18 2018-02-28 엘지디스플레이 주식회사 액정 표시 소자 및 액정 표시 소자의 제조 방법
WO2021065621A1 (ja) 2019-09-30 2021-04-08 日清紡ホールディングス株式会社 複合材料
JP2021094502A (ja) * 2019-12-13 2021-06-24 株式会社日本触媒 中空樹脂粒子及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897546B2 (en) * 2008-04-21 2011-03-01 Nalco Company Composition and method for recovering hydrocarbon fluids from a subterranean reservoir
CN102282222B (zh) * 2009-12-01 2014-07-16 星铂联制造公司 聚合物包覆的铝微粒
US9410020B2 (en) * 2012-01-27 2016-08-09 Carnegie Mellon University Processable self-organizing nanoparticle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145971A (ja) * 2000-11-13 2002-05-22 Japan Science & Technology Corp ナノ構造機能体
JP2003327641A (ja) * 2002-05-08 2003-11-19 Japan Science & Technology Corp 高分子グラフト微粒子の秩序構造体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093774A (en) * 1997-09-26 2000-07-25 Reichhold Chemicals, Inc. Low gloss powder coating composition
JP4814413B2 (ja) * 2000-03-16 2011-11-16 関西ペイント株式会社 硬化性組成物およびその被膜形成方法
US6720007B2 (en) * 2000-10-25 2004-04-13 Tufts University Polymeric microspheres
JP4281531B2 (ja) * 2003-11-26 2009-06-17 Jsr株式会社 中空重合体粒子およびその水性分散体並びに製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145971A (ja) * 2000-11-13 2002-05-22 Japan Science & Technology Corp ナノ構造機能体
JP2003327641A (ja) * 2002-05-08 2003-11-19 Japan Science & Technology Corp 高分子グラフト微粒子の秩序構造体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049113A1 (ja) 2009-10-21 2011-04-28 国立大学法人京都大学 ポリマー複合微粒子を用いた高分子固体電解質を用いた電気化学デバイス
JP2012131928A (ja) * 2010-12-22 2012-07-12 Asahi Kasei Chemicals Corp 成膜性を有する有機−無機複合体及びその製造方法
KR20180020875A (ko) * 2016-08-18 2018-02-28 엘지디스플레이 주식회사 액정 표시 소자 및 액정 표시 소자의 제조 방법
KR101978796B1 (ko) 2016-08-18 2019-08-28 엘지디스플레이 주식회사 액정 표시 소자 및 액정 표시 소자의 제조 방법
WO2021065621A1 (ja) 2019-09-30 2021-04-08 日清紡ホールディングス株式会社 複合材料
US11739284B2 (en) 2019-09-30 2023-08-29 Nisshinbo Holdings Inc. Composite material
JP2021094502A (ja) * 2019-12-13 2021-06-24 株式会社日本触媒 中空樹脂粒子及びその製造方法
JP7464385B2 (ja) 2019-12-13 2024-04-09 株式会社日本触媒 中空樹脂粒子及びその製造方法

Also Published As

Publication number Publication date
JPWO2006087839A1 (ja) 2008-07-03
US20080057310A1 (en) 2008-03-06
CA2561517A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
WO2006087839A1 (ja) 高密度ポリマーブラシ被覆中空微粒子、その製造方法および高密度ポリマーブラシ被覆中空微粒子の応用
JP4982748B2 (ja) 高分子グラフト微粒子によるコロイド結晶の製造方法
Safaie et al. Janus nanoparticle synthesis: Overview, recent developments, and applications
TWI426087B (zh) 利用有機硼烷胺複合物之聚合物顆粒及膠囊化組合物
Wu et al. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles
US9475922B2 (en) Nanoparticles with multiple attached polymer assemblies and use thereof in polymer composites
Nebhani et al. Orthogonal transformations on solid substrates: efficient avenues to surface modification
Beija et al. RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids
JP2005503460A (ja) コア−シェル粒子からなる成形体
Tang et al. Surface functionalization of chitosan nanospheres via surface-initiated AGET ATRP mediated by iron catalyst in the presence of limited amounts of air
EP1500670A1 (en) Crosslinked polymer, fine polymer particle, and process for producing these
Wan et al. Polymerization-induced hierarchical self-assembly: from monomer to complex colloidal molecules and beyond
JP4128027B2 (ja) 高分子グラフト微粒子の秩序構造体
Marquez et al. Different methods for surface modification of hydrophilic particulates with polymers
CN114085341B (zh) 高分子单链/纳米颗粒复合Janus材料及其制备方法
JPH11313670A (ja) 磁性担体、その製造方法及びこれを用いた核酸抽出方法
JP4392491B2 (ja) 複数種の官能基を持つ異方性高分子微粒子とその製造方法
JP4086188B2 (ja) 架橋ポリマー、ポリマー微粒子およびそれらの製造方法
KR101905800B1 (ko) 고분자-나노실리카 복합체 및 그의 제조방법
JP6991527B2 (ja) シリカ含有微粒子の製造方法、基材の表面に対するコーティング施工方法、及びゾルゲル反応用触媒
CN113563684B (zh) 一种双亲性单链Janus复合纳米颗粒及其制备方法和应用
CN114057961B (zh) 一种聚合物双链/无机纳米颗粒复合Janus材料及其制备方法
CN114057962B (zh) 聚合物双链/无机纳米颗粒不对称复合物及其制备方法
Nandivada et al. Click Chemistry: Versatility and Control in the Hands of Materials Scientists JL gratefully acknowledges support from the NSF in form of a CAREER grant (DMR-0449462).
Chen Surface modification with polymers using living radical polymerisation and click chemistry

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006517536

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10594144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2561517

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10594144

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05781365

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5781365

Country of ref document: EP