WO2006085475A1 - 冷凍サイクル装置 - Google Patents
冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2006085475A1 WO2006085475A1 PCT/JP2006/301804 JP2006301804W WO2006085475A1 WO 2006085475 A1 WO2006085475 A1 WO 2006085475A1 JP 2006301804 W JP2006301804 W JP 2006301804W WO 2006085475 A1 WO2006085475 A1 WO 2006085475A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- refrigeration cycle
- expander
- generator
- refrigerant
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/06—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/14—Power generation using energy from the expansion of the refrigerant
- F25B2400/141—Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/17—Control issues by controlling the pressure of the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2102—Temperatures at the outlet of the gas cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
- F25B2700/21171—Temperatures of an evaporator of the fluid cooled by the evaporator
- F25B2700/21173—Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
Definitions
- the present invention relates to a refrigeration cycle apparatus that forms a refrigeration cycle, and more particularly to a technique for improving the efficiency of a vapor compression refrigeration apparatus that uses a supercritical refrigerant.
- FIG. 8 shows a conventional general vapor compression refrigeration apparatus.
- the vapor compression refrigeration apparatus of FIG. 8 includes a compressor 101, a radiator 102, an expansion valve 103, and an evaporator 104. These elements are connected by piping, and the refrigerant circulates as indicated by the white arrows in the figure.
- the operation principle of the vapor compression refrigeration apparatus is as follows.
- the pressure and temperature of the refrigerant vapor is increased by the compressor 101.
- the refrigerant vapor then enters the radiator 102 where it is cooled.
- the high-pressure refrigerant is reduced to the evaporation pressure by the expansion valve 103, vaporizes in the evaporator 104, and absorbs heat from the periphery of the evaporator 104.
- the refrigerant vapor returns to the compressor 101 through the outlet of the evaporator 104.
- this refrigerant for example, carbon dioxide having a low global warming potential without destroying the ozone layer may be used.
- a vapor compression refrigeration system using carbon dioxide as a refrigerant has an equivalent refrigeration capacity with a lower coefficient of performance (C ⁇ P) than that of a refrigerant using chlorofluorocarbon as a refrigerant. Therefore, more electric power is required than a refrigeration system using chlorofluorocarbon as a refrigerant.
- C ⁇ P coefficient of performance
- many fossil fuels are required as energy, and even if the global warming potential of the refrigerant itself is small, a large amount of carbon dioxide is emitted as a result. Therefore, several proposals have been made to improve the COP of the vapor compression refrigeration system.
- the high-pressure side pressure of the refrigeration cycle at which the highest COP is obtained depends on the operating conditions. Determined. Therefore, in order to set the high-pressure side pressure of the refrigeration cycle so that COP is maximized, the opening of the expansion valve provided in the refrigerant circuit and the opening of the control valve that changes the amount of refrigerant bypassing the expander are adjusted. It is adjusting.
- the pressure of the refrigerant is detected by a pressure sensor and the temperature of the refrigerant is detected by a temperature sensor, and the opening degree of the expansion valve and the control valve is adjusted based on the obtained detection values. Is going.
- FIG. 9 shows an example of a refrigeration system that employs such technology.
- the compressed refrigerant is cooled by the radiator 202 by the compressor 201 driven by the prime mover 205. Thereafter, the refrigerant expands when passing through the expander 204 to which the expansion ratio control means 203 is attached, and drives the compressor 201 via the main shaft 213.
- the refrigerant expanded in the expander 204 absorbs heat from the outside in the evaporator 206 and vaporizes, and then returns to the compressor 201 again.
- the compressor 201 is auxiliary driven by the expansion force of the refrigerant by using the expander 204, the total amount of energy used is reduced, thereby improving the COP. ing.
- the refrigerant expands isentropically, but isentropically expanded by using the expander (in the figure). Dotted line display). By using the power recovered by the expander, overall efficiency can be improved.
- FIG 11 shows an example of a refrigeration system that employs such technology.
- the compressed refrigerant is cooled by the radiator 402 by the compressor 401 driven by the prime mover 405, and then passes through the expander 403 to which the generator 404 is attached.
- the generator 404 generates electric power
- the evaporator 404 absorbs heat from the outside and vaporizes, and then returns to the compressor 401 again. Electricity is generated by rotating the generator 404 with the expansion force of the refrigerant, and the total amount of energy used is reduced by effectively using the electric power, thereby improving the COP.
- the technique for optimizing the refrigeration cycle is also applied to the refrigeration apparatus shown in FIG. 9 and FIG.
- the refrigerant state at the outlet side of the radiator 202 is detected by the temperature sensor 211 and the pressure sensor 212.
- the computing means 210 controls the expansion ratio control means 203.
- the refrigerant state at the outlet side of the heater 402 is detected by the pressure sensor 410 and the temperature sensor 411, and the optimum pressure value is calculated by the calculation means 409 based on information from the pressure sensor 410 and the temperature sensor 411.
- the rotational speed control means 412 controls the rotational speed of the generator 404. In this way, the pressure on the high-pressure side of the refrigeration cycle is optimized and C0P is improved.
- the high pressure side pressure of the refrigeration cycle at which the COP is the highest is set to a certain value.
- the high-pressure side pressure of the refrigeration cycle In order to maintain the maximum efficiency, it is necessary to control the high-pressure side pressure of the refrigeration cycle.
- the high-pressure side pressure In order to control the high-pressure side pressure of the refrigeration cycle, it is thought that the high-pressure side pressure is measured with a pressure sensor and feedback is sent to the controller that controls the rotation speed of the compressor and expander.
- the invention disclosed in this document is directed to a refrigeration apparatus that expands a refrigerant with an expansion valve, or a type refrigeration apparatus in which an expander and a compressor are connected by a shaft.
- a refrigerating machine with a separate expander and compressor produces regenerative power.
- the handling of the expander is a problem, and it is doubtful whether the technology disclosed in the above document can be applied exactly.
- the effects of variations in the amount of refrigerant and various losses are very large. Therefore, there is a problem that it is difficult to increase the pressure estimation accuracy with the table method disclosed in the above document.
- an object of the present invention is to enable refrigeration cycle efficiency to be maximized in a refrigeration cycle apparatus without using a pressure sensor.
- an object of the present invention is to provide a technique suitable for a refrigeration cycle apparatus of a type that separates an expander and a compressor and recovers the expansion force of the refrigerant in the form of electric power.
- a radiator that cools the refrigerant compressed by the compressor
- An expander that expands the refrigerant that has passed through the radiator
- a generator connected to the expander to generate electricity by the expansion force of the refrigerant
- a generator current detecting means for detecting a generator current that is a current flowing through the generator; an evaporation temperature detecting means for detecting an evaporation temperature of the refrigerant in the evaporator;
- Generator rotational speed identifying means for identifying the rotational speed of the generator
- a radiator outlet temperature detecting means for detecting the outlet temperature of the radiator
- a refrigeration cycle comprising: an expander control means for controlling the rotation speed of the expander via the generator so as to maximize the refrigeration cycle efficiency based on the generator current, the evaporation temperature, the rotation speed, and the outlet temperature. Providing equipment.
- the present invention provides:
- a radiator that cools the refrigerant compressed by the compressor
- Motor current detection means for detecting a motor current that is a current flowing through the motor; Evaporating temperature detecting means for detecting the evaporating temperature of the refrigerant in the evaporator, motor rotational speed identifying means for identifying the rotational speed of the motor,
- a radiator outlet temperature detecting means for detecting the outlet temperature of the radiator
- An expansion mechanism control means for controlling the expansion mechanism so as to maximize the refrigeration cycle efficiency based on the motor current, the evaporation temperature, the rotation speed, and the outlet temperature;
- a refrigeration cycle apparatus is provided.
- the present invention provides:
- a radiator that cools the refrigerant compressed by the compressor
- An expander that expands the refrigerant that has passed through the radiator
- a generator connected to the expander to generate electricity by the expansion force of the refrigerant
- a generator current detecting means for detecting a generator current that is a current flowing through the generator; an evaporation temperature detecting means for detecting an evaporation temperature of the refrigerant in the evaporator;
- Generator rotational speed identifying means for identifying the rotational speed of the generator
- a radiator outlet temperature detecting means for detecting the outlet temperature of the radiator
- Refrigeration cycle apparatus comprising: compressor control means for controlling the rotation speed of the compressor via a motor so as to maximize the refrigeration cycle efficiency based on the generator current, the evaporation temperature, the rotation speed, and the outlet temperature. I will provide a.
- the present invention provides a refrigeration cycle apparatus of a type that has a function of recovering the expansion force of refrigerant in the form of electric power and that separates the expander and the compressor.
- the current flowing through the generator connected to the expander or the current flowing through the motor that drives the compressor is detected, and based on the detected current, the expander (expansion mechanism) or Controls the speed of the compressor.
- the expander expansion mechanism
- FIG. 1 is a block diagram showing a refrigeration cycle apparatus according to a first embodiment of the present invention.
- FIG. 2 is a block diagram showing an electrical connection relationship between the inverter and the converter.
- FIG. 3 is a graph showing an example of the relationship between the radiator outlet pressure, the radiator outlet temperature, and the refrigeration cycle efficiency.
- FIG. 4 is a flowchart showing a procedure for optimum pressure control by a converter.
- FIG. 5 is a flow chart showing a procedure of limit pressure control by an inverter and a converter.
- FIG. 6 is a block diagram showing a refrigeration cycle apparatus according to a second embodiment or a third embodiment of the present invention.
- FIG. 7 is a block diagram showing a refrigeration cycle apparatus according to a fourth embodiment of the present invention.
- FIG. 8 is a block diagram showing a conventional vapor compression refrigeration apparatus.
- FIG. 9 is a block diagram showing a conventional refrigeration air conditioner using an expander.
- FIG. 10 is a Mollier diagram showing the state of the CO refrigerant in the refrigeration cycle.
- FIG. 11 is a block diagram showing another conventional refrigeration air conditioner using an expander. BEST MODE FOR CARRYING OUT THE INVENTION
- a refrigeration cycle apparatus 500 shown in FIG. 1 includes a compressor 501 that compresses a refrigerant, a motor 505 that drives the compressor 501, a radiator 502 that cools the refrigerant compressed by the compressor 501, and a heat radiator 502.
- An expander 503 that expands the refrigerant that has passed through, an electric generator 507 that generates power by operating the expander 503, an evaporator 504 that evaporates the refrigerant, and a pipe 515 that circulates the refrigerant between the above-described elements. .
- These elements form a refrigeration cycle.
- the type of refrigerant used is not particularly limited, and examples thereof include carbon dioxide in which the high-pressure side pressure of the refrigeration cycle is equal to or higher than the critical pressure. Since carbon dioxide does not destroy the ozone layer and has a low global warming potential, it is suitable as a refrigerant that replaces CFCs.
- the compressor 501 and the motor 505 are connected by a common shaft 520 and rotate synchronously. .
- the expander 503 and the generator 507 are connected by a common shaft 521 and rotate synchronously.
- the compressor 501 and the expander 503 are, for example, a rotary type (rotary piston type, swing type).
- the motor 505 (and the generator 507) is, for example, a DC brushless motor or an induction motor.
- the refrigeration cycle apparatus 500 uses an inverter 506 as compressor control means for controlling the rotational speed of the compressor 501 via the motor 505, and the rotational speed of the expander 503 via the generator 507. And a converter 508 as an expander control means for controlling.
- the inverter 506 is configured as an inverter unit including a control system such as a microcomputer that controls the driving of the motor 505.
- converter 508 is configured as a converter unit including a control system such as a microcomputer that controls driving of generator 507.
- the inverter 506 and the converter 508 are electrically connected.
- AC power from the AC power source 801 is converted into DC power by the rectifier circuit 802 and the smoothing capacitor 803, and the motor 505 passes through the inverter 506 having the switching element group 804. To be supplied.
- the AC power from the generator 507 is converted into DC power by the converter 508 having the switching element group 805 and supplied to the motor 505 via the inverter 506.
- the refrigeration cycle apparatus 500 includes a generator current sensor 509 (generator current detector) that detects a generator current that is a current flowing through the generator 507, and an evaporator 504.
- a first temperature sensor 510 evaporation temperature detector
- a microcomputer 511 pressure estimation means for estimating the high-pressure side pressure of the refrigeration cycle
- a radiator 502 an expander 503
- the second temperature sensor 513 heat radiator outlet temperature detector
- the microcomputer 512 that calculates the optimum pressure value that maximizes the refrigeration cycle efficiency (optimum pressure) Calculation means.
- Signals from the temperature sensors 510 and 513 are binarized by an A / D conversion circuit (not shown) and input to the microcomputers 511 and 512. Similarly, from generator current sensor 509 The signal is binarized by an A / D conversion circuit (not shown) and input to the microcomputer 511 and the converter 508. Further, the microcomputer 511 acquires information related to the rotational speed of the converter 508 power generator 507. The microcomputer 511 estimates the low-pressure side pressure of the refrigeration cycle from the evaporation temperature obtained from the first temperature sensor 510, and based on the generator current, the low-pressure side pressure, and the rotational speed of the generator 507, the high-pressure of the refrigeration cycle. Estimate the side pressure.
- the refrigerant On the low-pressure side of the refrigeration cycle, the refrigerant is in a gas-liquid two-phase flow, so there is a one-to-one correspondence between evaporation temperature and pressure.
- a table in which the evaporation temperature and the pressure are associated is stored in a memory, and the low-pressure side pressure is found from the evaporation temperature by referring to this table.
- the generator current sensor 509 is configured to individually detect at least two phase currents of the u phase, the V phase, and the w phase.
- a similar current sensor is also provided as a motor current sensor 909 on the compressor 501 side as shown in FIG.
- the microcomputer 512 estimates (calculates) an optimum high-pressure side pressure that maximizes the refrigeration cycle efficiency from the radiator outlet temperature detected by the second temperature sensor 513. As shown in Fig. 3, the high-pressure side pressure that maximizes the refrigeration cycle efficiency is determined according to the radiator outlet temperature. Therefore, high pressure side pressure is required to maximize the refrigeration cycle efficiency.
- the rotation speed of the expander 503 is controlled by the converter 508 via the generator 507 so that the refrigeration cycle efficiency is maximized using the high-pressure side pressure estimated by the microcomputer 512. To do.
- the functions to be realized by the two microcomputers 511 and 512 that is, the function for estimating the high-pressure side pressure of the refrigeration cycle and the function for calculating the optimum pressure value that maximizes the refrigeration cycle efficiency.
- the corresponding program module is stored in a storage device included in the microcomputers 5 11 and 512.
- the microcomputers 511 and 512 implement each function by calling and executing each program as necessary.
- one of the two microcomputers 511 and 512 can be used as the other. Further, one or both of these can be shared by a microcomputer included in the converter 508, for example.
- the compressed high-pressure refrigerant is cooled by a radiator 502 by a compressor 501 that is axially coupled to a motor 505 driven by an inverter 506, and then a generator to which a converter 508 is electrically connected. It passes through the expander 503 connected to the shaft 507. At this time, the refrigerant expands in the expander 503 to a low pressure, absorbs heat from the outside in the evaporator 504 and vaporizes, and then returns to the compressor 501 again.
- Converter 508 controls the drive of generator 507 in synchronization with the magnetic pole position, using the current value detected by generator current sensor 509. Since the AC frequency output from the converter 508 to the generator 507 corresponds to the rotational speed of the generator 507, the information on the rotational speed of the generator 507 is always held in the converter 508. That is, converter 508 serves as a generator rotation speed identification means for constantly identifying the rotation speed of generator 507. For the same reason, the inverter 506 serves as a motor rotational speed identification means that always identifies the rotational speed of the motor 505.
- the rotational speed may be detected and identified using a detector such as an encoder.
- the microcomputer 511 obtains information on the rotational speed of the generator 507 from the converter 508 and uses it for the process of estimating the high-pressure side pressure.
- the rotation speed control of the generator 507 by the converter 508 is performed so as to approach (preferably match) the optimum pressure value calculated by the estimated pressure value force microphone computer 512 estimated by the microcomputer 511.
- the microcomputer 511 as the pressure estimation means is based on the generator current detected by the generator current sensor 509, the evaporation temperature detected by the first temperature sensor 510, and the rotation speed of the generator 507 acquired from the converter 508. Estimate the high pressure side pressure.
- the process for estimating the high-pressure side pressure of the refrigeration cycle is that the torque applied to the shaft 521 of the generator 507 is proportional to the generator current, the high-pressure side pressure and the low-pressure side pressure of the refrigeration cycle, and the number of rotations of the generator 507. It is based on the calculation using what is decided according to. Hands like this According to the method, the pressure on the high-pressure side of the refrigeration cycle can be estimated fairly accurately without using a pressure sensor. By using the high-pressure side pressure thus determined, the refrigeration cycle efficiency can be maximized more accurately.
- the expander torque Texp applied to the shaft 521 of the expander 503 is determined by the generator current Iexp of the generator 507 detected by the generator current sensor 509 and the torque constant Kt inherent to the generator 507. Using the relational expression of (Equation 1).
- the “generator current Iexp” used here corresponds to 3 1/2 times the effective value of the phase current.
- the low-pressure side pressure Ps of the refrigeration cycle is equal to the evaporation pressure from the evaporation temperature of the evaporator 504 using the relationship between the saturation temperature and the pressure as described above. It can be obtained as Further, the suction volume Vexp of the expander 507 is a design value.
- the adiabatic coefficient k is the ratio of the constant pressure specific heat Cp and the constant volume specific heat Cv of the refrigerant.
- the rotation speed f of the generator 507 is information that the converter 508 has. Therefore, the high-pressure side pressure Pd of the refrigeration cycle is obtained from (Equation 1) and (Equation 2).
- the Tonolek Texp force applied to the shaft 521 of the expander 507 by the expansion force of the refrigerant is proportional to the generator current Iexp, the high pressure side pressure Pd and the low pressure side pressure Ps of the refrigeration cycle, and the expander 507
- the high-pressure side pressure Pd can be estimated by a calculation using the suction volume Vexp, the heat insulation coefficient K, and the rotational speed f of the expander 507.
- FIG. 3 is a graph showing an example of the relationship between the radiator outlet pressure, the radiator outlet temperature, and the refrigeration cycle efficiency.
- the microcomputer 512 includes a value of the radiator outlet temperature detected by the second temperature sensor 513 provided on the outlet side of the radiator 502 and an estimated pressure value of the high-pressure side pressure estimated by the microcomputer 511 (that is, the radiator outlet Pressure), and the optimum pressure that maximizes the refrigeration cycle efficiency according to the data of the optimum efficiency pressure line as shown in Fig. 3. Calculate the value.
- FIG. 4 is a flowchart showing the procedure for optimum pressure control by converter 508, and shows the procedure for controlling the expander rotational speed that maximizes the refrigeration cycle efficiency in converter 508.
- step 101 converter 508 reads the estimated pressure value (high-pressure side pressure of the refrigeration cycle) estimated by microcomputer 511 as pressure estimating means.
- step 102 the optimum pressure value that maximizes the refrigeration cycle efficiency calculated by the microcomputer 512 as the optimum pressure calculating means is read.
- step 103 it is determined whether the current estimated pressure value is greater than the optimum pressure value vj. If the estimated pressure value is larger than the optimum pressure value, the rotational speed of the expander 503 is increased at step 104 so as to decrease the estimated pressure value. As a result, the pressure difference between the inlet and outlet in the expander 503 is reduced, and as a result, the high-pressure side pressure in the refrigeration cycle decreases.
- the rotational speed of the expander 503 is reduced in step 105 so as to increase the estimated pressure value.
- the pressure difference between the inlet and the outlet in the expander 503 is increased, and as a result, the high-pressure side pressure in the refrigeration cycle increases.
- the outlet pressure of the radiator 502 that is, the high-pressure side pressure of the refrigeration cycle is controlled to a pressure that maximizes the refrigeration cycle efficiency.
- the converter 508 may execute the process shown in FIG. In the process shown in the flowchart of FIG. 5, when the estimated pressure value estimated by the microcomputer 511 exceeds a predetermined limit pressure value, the rotational speed of the expander 503 is set via the generator 5007 according to the estimated pressure value. This is a process to control the estimated pressure value below the limit pressure value by operating.
- step 201 converter 508 reads the estimated pressure value (high-pressure side pressure of the refrigeration cycle) estimated by microcomputer 511 as pressure estimating means.
- step 202 it is determined whether the current estimated pressure value is larger or smaller than a predetermined threshold pressure value. When the estimated pressure value is smaller than the limit pressure value, the control is terminated.
- step 203 converter 508 performs control to increase the rotation speed of expander 503 so as to decrease the high-pressure side pressure.
- the inverter 506 may perform control to reduce the rotational speed of the compressor 501.
- the process of increasing or decreasing the rotational speed of the compressor 501 and Z or the expander 503 is performed.
- the pressure approaches the optimum pressure value that maximizes refrigeration cycle efficiency. Even without an expensive pressure sensor, while maintaining the refrigeration cycle efficiency at a high efficiency, the high-pressure side pressure can be limited to below the limit pressure, and as a result, a highly efficient and highly reliable refrigeration cycle apparatus can be realized.
- step 203 is performed only as one of the rotational speed control of the compressor 501 by the inverter 506 and the rotational speed control of the expander 503 by the converter 508. is there.
- the AC voltage from the AC power source 801 is rectified to a DC voltage by the rectifier circuit 802.
- the DC voltage is smoothed by the smoothing capacitor 803 and then converted into a three-phase AC voltage by the inverter 502, and the motor 505 is driven by this AC voltage.
- the compressor 501 fulfills a compression function by driving the motor 505.
- Inverter 506 includes switching element group 804 for converting DC voltage to AC, and uses information such as motor current detected by motor current sensor 909 (motor current detector).
- the switching element group 804 is turned on / off by a PWM (Pulse Width Modulation) method so as to realize a predetermined AC frequency.
- PWM Pulse Width Modulation
- a generator 507 installed for recovering power by the expander 503 includes a converter 508 for converting the three-phase AC power generated by the generator 507 into DC. Is connected.
- the converter 508 converts the alternating current power generated by the generator 507 into direct current, and uses information such as the generator current detected by the generator current sensor 509 to PWM the internally configured switching element group 805.
- the generator 507 is rotated at the set target rotational speed by switching in accordance with the method. By controlling the rotational speed of the generator 507 by the converter 508, it is possible to control the rotational speed of the expander 503 via the generator 507. In the system in which the expander 503 connected to the generator 507 is connected to the shaft. And the expander 503 is driven at an optimum rotational speed.
- the refrigeration cycle apparatus 600 shown in FIG. 6 estimates the high-pressure side pressure of the refrigeration cycle using the motor current detected by the motor current sensor 909, and the rotational speed of the expander 503 based on the estimated high-pressure side pressure.
- the microcomputer 514 serves as pressure estimation means for estimating the high-pressure side pressure of the refrigeration cycle based on the motor current, the evaporation temperature of the refrigerant, and the rotation speed of the motor 505.
- the rotational speed control of the generator 507 by the computer 508 is performed so that the estimated pressure value estimated by the microcomputer 514 approaches (preferably matches) the optimum pressure value calculated by the microcomputer 512.
- Other configurations and operations are the same as those in the first embodiment, and a detailed description thereof will be omitted.
- the microcomputer 514 uses information on the current flowing through the motor 505 (motor current) detected by the motor current sensor 909, the evaporation temperature detected by the first temperature sensor 510, and the rotation speed of the motor 500, Estimate the high pressure side of the refrigeration cycle.
- motor current motor current
- evaporation temperature detected by the first temperature sensor 510
- rotation speed of the motor 500 Estimate the high pressure side of the refrigeration cycle.
- the compressor torque Tcomp applied to the shaft 520 of the compressor 501 is obtained from the relational expression (Expression 3) using the motor current Icomp detected by the motor current sensor 909 and the torque constant Km unique to the motor 505.
- Tcomp Km X Icomp (Equation 3)
- the low-pressure side pressure Ps of the refrigeration cycle can be obtained as the evaporation pressure from the evaporation temperature of the evaporator 504 as described above.
- the suction volume Vcomp of the compressor 501 is a design value.
- the thermal insulation coefficient k is also known as described above.
- the inverter 506 controls driving in synchronization with the magnetic pole position of the motor 505 using the current value detected by the motor current sensor 909.
- the AC frequency force output from the inverter 506 to the motor 505 corresponds to the rotational speed of the motor, so that the information on the rotational speed of the motor is always held in the inverter 506. Therefore, the high-pressure side pressure Pd of the refrigeration cycle can be obtained from (Equation 3) and (Equation 4).
- the motor 505 may be an induction machine.
- the torque Tcomp applied to the shaft 520 of the compressor 501 by driving the motor 505 is proportional to the motor current Icomp, and the high-pressure side pressure Pd and low-pressure side pressure Ps of the refrigeration cycle, and the compressor 501
- the high-pressure side pressure Pd can be estimated by a calculation using what is determined according to the suction volume Vcomp, the heat insulation coefficient K, and the rotational speed f of the motor 505.
- Converter 508 then expands expander via generator 507 so that the estimated pressure value estimated by microcomputer 514 approaches (preferably matches) the optimum pressure value calculated by microcomputer 512.
- the number of rotations of 503 is controlled. Such control is the same as in the first embodiment.
- the converter 508 may execute the processing shown in FIG. That is, when the estimated pressure value estimated by the microcomputer 511 exceeds a predetermined limit pressure value, the estimated pressure value is estimated by manipulating the rotation speed of the expander 503 via the generator 507 according to the estimated pressure value. Control the pressure value below the limit pressure value.
- the rotational speed of the compressor 501 can be controlled via the data 505. Since the specific description has been given in the first embodiment, it will not be repeated here.
- the configuration of the refrigeration cycle apparatus 700 of the third embodiment is basically the same as that of the refrigeration cycle apparatus 600 of the second embodiment.
- a feature of the refrigeration cycle apparatus 700 is that it performs control that combines the control of the first embodiment and the control of the second embodiment.
- the microcomputer 516 of the refrigeration cycle apparatus 700 first estimates the high-pressure side pressure of the refrigeration cycle based on the generator current flowing through the generator 507, the refrigerant evaporation temperature, and the rotational speed of the generator 507. This is the same as in the first embodiment. In other words, the microcomputer 516 is proportional to the generator current, and the torque applied to the shaft 521 of the expander 503 is proportional to the generator current.
- the high-pressure side pressure is estimated by a calculation that uses the determination.
- the inverter 506 serving as the compressor control means is connected to the compressor 501 so that the pressure value estimated by the microcomputer 516 approaches (preferably matches) the optimum pressure value that maximizes the refrigeration cycle efficiency. Control the number of revolutions. This is the same as in the second embodiment. Even with the refrigeration cycle apparatus 700 having such a configuration, it is possible to control (optimize) the refrigeration cycle without using a pressure sensor. Cost reduction can be realized.
- the processing shown in FIG. 5 may be executed by the inverter 506. That is, when the estimated pressure value estimated by the microcomputer 516 exceeds a predetermined limit pressure value, the inverter 506 operates the rotational speed of the compressor 501 via the motor 505 according to the estimated pressure value. The estimated pressure value is controlled below the limit pressure value.
- the first embodiment is used.
- the present embodiment has been described with the configuration in which the rotation speed of the expander 507 is controlled by the converter 508 or the rotation speed of the compressor 501 is controlled by the inverter 506, but the generator 507 and / or Even when the current flowing through the motor 505 is directly controlled, the same effects as those of the first and second embodiments can be obtained.
- a refrigeration cycle apparatus 800 shown in FIG. 7 uses an expansion valve 802 as an expansion mechanism instead of an expander.
- the opening of the expansion valve 802 is variable, and the opening is controlled by a microcomputer 804 serving as an expansion mechanism control unit.
- a microcomputer 514 as pressure estimation means estimates the high-pressure side pressure of the refrigeration cycle based on the motor current, the evaporation temperature of the refrigerant, and the rotation speed of the motor 505, and passes it to the microcomputer 804.
- the microcomputer 804 controls the opening degree of the expansion valve 802 so that the acquired estimated pressure value approaches the optimum pressure value that maximizes the refrigeration cycle efficiency.
- the procedure for estimating the high-pressure side pressure has already been explained. Note that it is desirable that the three microcomputers 512, 514, and 804 shown in FIG.
- the limit pressure control already described in the previous embodiment may be performed. That is, when the estimated pressure value by the microcomputer 514 exceeds a predetermined limit pressure value, the opening of the expansion valve 802 is increased according to the estimated pressure value so that the estimated pressure value is less than the limit pressure value.
- Such a refrigeration cycle apparatus 800 can also obtain the same benefits as those of the first, second, and third embodiments without a pressure sensor.
- the refrigeration cycle apparatus according to the present invention is highly efficient, highly reliable, and low in cost. It can employ
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
本発明の冷凍サイクル装置500は、冷媒を圧縮する圧縮機501と、圧縮機501で圧縮された冷媒を冷却する放熱器502と、放熱器502を通過した冷媒を膨張させる膨張機503と、膨張機503で膨張した冷媒を蒸発させる蒸発器504と、膨張機503に接続されて冷媒の膨張力により発電する発電機507と、発電機507に流れる電流である発電機電流を検出する発電機電流センサ509と、蒸発器504における冷媒の蒸発温度を検出する第1温度センサ510と、発電機507の回転数を検出するコンバータ508と、放熱器502の出口温度を検出する第2温度センサ513とを備えている。コンバータ508は、発電機電流、冷媒の蒸発温度、発電機507回転数及び放熱器502の出口温度に基づき、冷凍サイクル効率を最大化するように、発電機507を介して膨張機503の回転数を制御する。
Description
明 細 書
冷凍サイクル装置
技術分野
[0001] 本発明は、冷凍サイクルを形成する冷凍サイクル装置に関し、特に超臨界冷媒を 用いた蒸気圧縮式冷凍装置の効率を向上させる技術に関する。
背景技術
[0002] 従来の一般的な蒸気圧縮式冷凍装置を、図 8に示す。図 8の蒸気圧縮式冷凍装置 は、圧縮機 101、放熱器 102、膨張弁 103、及び蒸発器 104から構成される。これら の要素は配管により連結され、冷媒が図示の白抜き矢印のように循環する。
[0003] 上記蒸気圧縮式冷凍装置の運転原理は次のとおりである。冷媒蒸気の圧力及び 温度は圧縮機 101によって増大される。次いで、その冷媒蒸気が放熱器 102に入り 、そこで冷却される。この後、高圧冷媒は膨張弁 103により蒸発圧力に絞られ、蒸発 器 104において気化し、蒸発器 104の周囲から熱を吸収する。そして、蒸発器 104 の出口を通って冷媒蒸気は圧縮機 101に戻る。この冷媒には、例えば、オゾン層を 破壊せず地球温暖化係数の小さい二酸化炭素が用いられることがある。
[0004] ただ、二酸化炭素を冷媒とする蒸気圧縮式冷凍装置は、フロンを冷媒とする冷凍 装置に比べ、エネルギー効率を示す成績係数(C〇P : coefficient of performance)が 低ぐ同等の冷凍能力を考えた場合、フロンを冷媒とする冷凍装置より多くの電力が 必要になる。そのため、多くの化石燃料がエネルギーとして必要になり、冷媒自体の 地球温暖化係数が小さくても、結果的に多くの二酸化炭素が排出される。そこで、蒸 気圧縮式冷凍装置の C〇Pを向上させるために、レ、くつかの提案がなされている。
[0005] 一つの提案として、冷凍装置の運転状況に応じて冷凍サイクルを最適化する技術 がある。冷凍サイクルの高圧側圧力が冷媒の臨界圧力以上となる冷凍装置では、特 開 2000— 234814号公報に開示されているように、最も高い COPの得られる冷凍 サイクルの高圧側圧力が運転状態に応じて定まる。そこで、 COPが最高となるように 冷凍サイクルの高圧側圧力を設定するために、冷媒回路に設けられた膨張弁の開 度や、膨張機をバイパスする冷媒量を変更する調節弁の開度を調節している。その
際、この冷凍装置では、放熱器の出口において、冷媒の圧力を圧力センサで、冷媒 の温度を温度センサでそれぞれ検出し、得られた検出値に基づいて膨張弁や調節 弁の開度調節を行っている。
[0006] 他の一つの提案として、冷媒の膨張力を圧縮機の動力として直接利用する技術が ある。そのような技術を採用した冷凍装置の例を、図 9に示す。この冷凍装置におい て、原動機 205によって駆動される圧縮機 201により、圧縮された冷媒が放熱器 202 で冷却される。その後、冷媒は、膨張比制御手段 203が取り付けられた膨張機 204 を通過する際に膨張し、主軸 213を介して圧縮機 201を駆動する。膨張機 204内で 膨張した冷媒は、蒸発器 206内で外部より吸熱して気化した後、再び圧縮機 201へ 戻る。このような構成の冷凍装置では、膨張機 204を使用することにより、冷媒の膨張 力で圧縮機 201を補助駆動するため、総合的に使用されるエネルギー量は低減され 、それにより COPを向上させている。
[0007] すなわち、図 10のモリエル線図に示すように、膨張弁を膨張手段として用いた場合 には、冷媒は等ェンタルピー膨張するが、膨張機を用いることにより等エントロピー膨 張する(図中の点線表示)。膨張機で回収された動力を利用することで、総合効率を 向上させることができる。
[0008] また、冷媒の膨張力を電力の形で回収する技術もある。そのような技術を採用した 冷凍装置の例を、図 11に示す。この冷凍装置では、原動機 405によって駆動される 圧縮機 401により、圧縮された冷媒が放熱器 402で冷却され、その後、発電機 404 が取り付けられた膨張機 403を通過する際に、膨張機 403内で膨張して発電機 404 で電力を発生させ、蒸発器 406内で外部より吸熱して気化した後、再び圧縮機 401 へ戻る。冷媒の膨張力で発電機 404を回転させることにより電力を発生し、その電力 を有効利用することにより総合的に使用されるエネルギー量は低減され、それにより COPを向上させている。
[0009] また、冷凍サイクルを最適化する技術は、図 9や図 11に示す冷凍装置にも適用さ れる。図 9の冷凍装置では、放熱器 202の出口側の冷媒状態を温度センサ 211及び 圧力センサ 212で検出している。温度センサ 211と圧力センサ 212からの信号を元 に、演算手段 210は、膨張比制御手段 203を制御する。図 11の冷凍装置では、放
熱器 402の出口側の冷媒状態を圧力センサ 410及び温度センサ 411で検出し、そ れら圧力センサ 410と温度センサ 411からの情報を元に、演算手段 409において最 適圧力値を演算する。そして演算手段 409からの信号に基づいて、回転数制御手段 412は、発電機 404の回転数を制御する。このようにすれば、冷凍サイクルの高圧側 圧力が最適化されて C〇Pが向上する。
発明の開示
[0010] 既に説明したように、冷凍サイクルの高圧側圧力が冷媒の臨界圧力以上となる冷 凍サイクル装置では、 COPが最も高くなる冷凍サイクルの高圧側圧力がある値に定 まるため、システムの効率を最高に保っためには、冷凍サイクルの高圧側圧力を制 御する必要がある。冷凍サイクルの高圧側圧力を制御するには、その高圧側圧力を 圧力センサで測定して、圧縮機や膨張機の回転数を制御するコントローラにフィード バックをかければょレ、と考えられる。
[0011] ところ力 s、冷凍サイクルの高圧側圧力を圧力センサで測定することが、技術的側面 及び経済的側面の両側面で難しい。例えば、二酸化炭素を冷媒に用いた冷凍サイ クルの高圧側圧力は数 MPaと大きぐこうした圧力範囲で使用できる小型の圧力セン サは非常に高価である。また、圧力センサを配管に備え付ける場合には、冷媒漏洩 の可能性があり、システムの信頼性が低くなつてしまう問題もある。こうした問題がある ので、冷凍サイクルの高圧側圧力を知るために圧力センサを使用することが、必ずし も適切であるとはいえない。
[0012] 確かに、圧力センサを使用せずに冷凍サイクルの高圧側圧力を見出す方法が無い わけではない。例えば、特開 2004— 3692号公報に記載されている冷凍装置では、 モータの消費電力と、蒸発器における冷媒の蒸発温度と、冷凍サイクルの高圧側圧 力との相関関係を予めシミュレーションや実験で調べてテーブル化(データベース化 )しておき、そのテーブルを参照することで冷凍サイクルの高圧側圧力を推定してい る。
[0013] ただし、この文献に開示されている発明は、冷媒を膨張弁で膨張させる冷凍装置、 あるいは膨張機と圧縮機とをシャフトで連結した型式の冷凍装置を対象としている。 膨張機と圧縮機とを分離した型式の冷凍装置(図 11参照)では、回生電力を作り出
す膨張機の取り扱いが問題となり、上記文献に開示された技術をそっくり適用できる 力どうかは疑わしい。さらに、現実の冷凍装置では、冷媒量のバラツキや各種損失の 影響が非常に大きいので、上記文献に開示されているテーブル方式では圧力推定 精度を高めにくいとレ、う問題もある。
[0014] 上記のような問題に鑑み、本発明は、冷凍サイクル装置において、圧力センサを使 用せずとも、冷凍サイクル効率を最大化できるようにすることを目的とする。特に、膨 張機と圧縮機とを分離し、冷媒の膨張力を電力の形で回収する型式の冷凍サイクル 装置に好適な技術を提供することを目的とする。
[0015] すなわち、本発明は、
冷媒を圧縮する圧縮機と、
圧縮機で圧縮された冷媒を冷却する放熱器と、
放熱器を通過した冷媒を膨張させる膨張機と、
膨張機で膨張した冷媒を蒸発させる蒸発器と、
膨張機に接続されて冷媒の膨張力により発電する発電機と、
発電機に流れる電流である発電機電流を検出する発電機電流検出手段と、 蒸発器における冷媒の蒸発温度を検出する蒸発温度検出手段と、
発電機の回転数を識別する発電機回転数識別手段と、
放熱器の出口温度を検出する放熱器出口温度検出手段と、
発電機電流、蒸発温度、回転数及び出口温度に基づき、冷凍サイクル効率を最大 化するように、発電機を介して膨張機の回転数を制御する膨張機制御手段と、 を備えた、冷凍サイクル装置を提供する。
[0016] また、他の側面において本発明は、
冷媒を圧縮する圧縮機と、
圧縮機を駆動するモータと、
圧縮機で圧縮された冷媒を冷却する放熱器と、
放熱器を通過した冷媒を膨張させる膨張機構と、
膨張機構で膨張した冷媒を蒸発させる蒸発器と、
モータに流れる電流であるモータ電流を検出するモータ電流検出手段と、
蒸発器における冷媒の蒸発温度を検出する蒸発温度検出手段と、 モータの回転数を識別するモータ回転数識別手段と、
放熱器の出口温度を検出する放熱器出口温度検出手段と、
モータ電流、蒸発温度、回転数及び出口温度に基づき、冷凍サイクル効率を最大 化するように、膨張機構を制御する膨張機構制御手段と、
を備えた、冷凍サイクル装置を提供する。
[0017] また、他の側面において本発明は、
冷媒を圧縮する圧縮機と、
圧縮機を駆動するモータと、
圧縮機で圧縮された冷媒を冷却する放熱器と、
放熱器を通過した冷媒を膨張させる膨張機と、
膨張機で膨張した冷媒を蒸発させる蒸発器と、
膨張機に接続されて冷媒の膨張力により発電する発電機と、
発電機に流れる電流である発電機電流を検出する発電機電流検出手段と、 蒸発器における冷媒の蒸発温度を検出する蒸発温度検出手段と、
発電機の回転数を識別する発電機回転数識別手段と、
放熱器の出口温度を検出する放熱器出口温度検出手段と、
発電機電流、蒸発温度、回転数及び出口温度に基づき、冷凍サイクル効率を最大 化するように、モータを介して圧縮機の回転数を制御する圧縮機制御手段と、 を備えた、冷凍サイクル装置を提供する。
[0018] 上記本発明は、冷媒の膨張力を電力の形で回収する機能を有し、かつ膨張機と圧 縮機とが分離してレ、る型式の冷凍サイクル装置を提供する。膨張機に接続された発 電機を流れる電流、又は圧縮機を駆動するモータに流れる電流を検出し、検出した 電流に基づいて、冷凍サイクル効率を最大化するように、膨張機 (膨張機構)又は圧 縮機の回転数を制御する。このようにすれば、冷凍サイクルの高圧側圧力を測定す るのに圧力センサが不要となり、低コストで、冷媒漏洩の可能性が低い、高信頼性の 冷凍サイクル装置を実現できる。
図面の簡単な説明
[0019] [図 1]図 1は、本発明による第 1実施形態の冷凍サイクル装置を示すブロック図である
[図 2]図 2は、インバータとコンバータの電気的接続関係を示すブロック図である。
[図 3]図 3は、放熱器出口圧力、放熱器出口温度及び冷凍サイクル効率の関係の一 例を示す図である。
[図 4]図 4は、コンバータによる最適圧力制御の手順を示すフローチャートである。
[図 5]図 5は、インバータ及びコンバータによる限界圧力制御の手順を示すフローチヤ ートである。
[図 6]図 6は、本発明による第 2実施形態又は第 3実施形態の冷凍サイクル装置を示 すブロック図である。
[図 7]図 7は、本発明による第 4実施形態の冷凍サイクル装置を示すブロック図である
[図 8]図 8は、従来の蒸気圧縮式冷凍装置を示すブロック図である。
[図 9]図 9は、膨張機を用いた従来の冷凍空調装置を示すブロック図である。
[図 10]図 10は、冷凍サイクルにおける CO冷媒の状態を表すモリエル線図である。
[図 11]図 11は、膨張機を用いた従来の別の冷凍空調装置を示すブロック図である。 発明を実施するための最良の形態
[0020] (第 1実施形態)
以下、本発明の第 1実施形態について図面を参照しながら説明する。
図 1に示す冷凍サイクル装置 500は、冷媒を圧縮する圧縮機 501と、圧縮機 501を 駆動するモータ 505と、圧縮機 501で圧縮された冷媒を冷却する放熱器 502と、放 熱器 502を通過した冷媒を膨張させる膨張機 503と、膨張機 503の作動により発電 する発電機 507と、冷媒を蒸発させる蒸発器 504と、以上の各要素間に冷媒を循環 させる配管 515とを備えている。これらの要素は、冷凍サイクルを形成する。使用する 冷媒の種類は特に限定されないが、例えば、冷凍サイクルの高圧側圧力が臨界圧 力以上となる二酸化炭素を挙げることができる。二酸化炭素は、オゾン層を破壊せず 地球温暖化係数が小さいためフロンに替わる冷媒として好適である。
[0021] 圧縮機 501とモータ 505とは、共通のシャフト 520で連結されており、同期回転する
。同様に、膨張機 503と発電機 507とは、共通のシャフト 521で連結されており、同期 回転する。圧縮機 501及び膨張機 503は、例えば、ロータリ型(回転ピストン型、スィ ング型)である。モータ 505 (及び発電機 507)は、例えば、 DCブラシレスモータや誘 導モータである。
[0022] また、冷凍サイクル装置 500は、モータ 505を介して圧縮機 501の回転数を制御す る圧縮機制御手段としてのインバータ 506と、発電機 507を介して膨張機 503の回 転数を制御する膨張機制御手段としてのコンバータ 508とを備えてレ、る。これらの要 素は、回転駆動系を形成する。インバータ 506は、モータ 505の駆動を制御するマイ クロコンピュータ等の制御系を含むインバータュニットとして構成されている。同様に 、コンバータ 508は、発電機 507の駆動を制御するマイクロコンピュータ等の制御系 を含むコンバータユニットとして構成されている。
[0023] 図 2に示すように、インバータ 506とコンバータ 508とは、電気的に接続されている。
インバータ 506及びコンバータ 508を含む図 2の電気回路において、交流電源 801 からの交流電力は、整流回路 802及び平滑コンデンサ 803で直流電力に変換され、 スイッチング素子群 804を有するインバータ 506を介してモータ 505に供給される。こ れと並行して、発電機 507からの交流電力は、スイッチング素子群 805を有するコン バータ 508で直流電力に変換され、インバータ 506を介してモータ 505に供給される
[0024] さらに、冷凍サイクル装置 500は、発電機 507に流れる電流である発電機電流を検 出する発電機電流センサ 509 (発電機電流検出器)と、蒸発器 504内に配置されて 蒸発器 504における冷媒の蒸発温度を検出する第 1温度センサ 510 (蒸発温度検出 器)と、冷凍サイクルの高圧側圧力を推定するマイクロコンピュータ 511 (圧力推定手 段)と、放熱器 502と膨張機 503との間に配置されて放熱器 502の出口温度を検出 する第 2温度センサ 513 (放熱器出口温度検出器)と、冷凍サイクル効率を最大にす る最適圧力値を算出するマイクロコンピュータ 512 (最適圧力算出手段)とを備えてい る。これらの要素は、制御系を形成する。
[0025] 各温度センサ 510, 513からの信号は、図示しない A/D変換回路で 2値化されて マイクロコンピュータ 511, 512に入力される。同様に、発電機電流センサ 509からの
信号は、図示しない A/D変換回路で 2値化されてマイクロコンピュータ 511及びコン バータ 508に入力される。さらに、マイクロコンピュータ 511は、コンバータ 508力 発 電機 507の回転数に関する情報を取得する。そして、マイクロコンピュータ 511は、第 1温度センサ 510より得られる蒸発温度から冷凍サイクルの低圧側圧力を推定すると ともに、発電機電流、低圧側圧力及び発電機 507の回転数に基づき、冷凍サイクル の高圧側圧力を推定する。冷凍サイクルの低圧側においては、冷媒が気液 2相流の 状態であるため、蒸発温度と圧力とが 1対 1で対応している。例えば、蒸発温度と圧 力とを対応付けたテーブルをメモリに格納しておき、このテーブルを参照することで、 蒸発温度から低圧側圧力を見出すという方法を採用できる。
[0026] なお、発電機電流センサ 509は、 u相、 V相及び w相のうちの少なくとも 2相の相電 流を個別に検出する構成になっている。同様の電流センサは、図 2に示すように、圧 縮機 501側にも、モータ電流センサ 909として設けられている。
[0027] 一方、マイクロコンピュータ 512は、第 2温度センサ 513が検出する放熱器出口温 度から、冷凍サイクル効率を最大にする最適な高圧側圧力を推定 (算出)する。図 3 に示すように、冷凍サイクル効率が最大になる高圧側圧力は、放熱器出口温度に対 応して定まる。そのため、冷凍サイクル効率の最大化には、高圧側圧力が必要となる 。本実施形態の冷凍サイクル装置 500においては、マイクロコンピュータ 512が推定 した高圧側圧力を用い、冷凍サイクル効率が最大となるように、発電機 507を介して 膨張機 503の回転数をコンバータ 508で制御する。
[0028] なお、 2つのマイクロコンピュータ 511, 512が実現するべき各機能、すなわち、冷 凍サイクルの高圧側圧力を推定する機能や、冷凍サイクル効率を最大にする最適圧 力値を算出する機能に対応するプログラムモジュールは、当該マイクロコンピュータ 5 11 , 512が備える記憶装置に格納されている。マイクロコンピュータ 511 , 512は、各 プログラムを必要に応じて呼び出して実行することにより、各機能を実現する。また、 2つのマイクロコンピュータ 511 , 512は、一方を他方に兼用させることができる。さら に、これらの一方又は両方を、例えば、コンバータ 508に含まれるマイクロコンピュー タに兼用させることができる。
[0029] 次に、冷凍サイクル装置 500の動作について説明する。
図 1に示すように、インバータ 506により駆動されるモータ 505と軸結合された圧縮 機 501により、圧縮された高圧の冷媒は放熱器 502で冷却され、その後、コンバータ 508が電気接続された発電機 507と軸接続された膨張機 503を通過する。このとき 冷媒は膨張機 503内で膨張して低圧となり、蒸発器 504内で外部より吸熱して気化 した後、再び圧縮機 501へ戻る。
[0030] コンバータ 508は、発電機電流センサ 509により検出される電流値を使用して、磁 極位置に同期させて発電機 507の駆動を制御する。コンバータ 508から発電機 507 に出力される交流の周波数は、発電機 507の回転数に対応するため、発電機 507の 回転数の情報はコンバータ 508において常に保有される情報となっている。つまり、 コンバータ 508は、発電機 507の回転数を常時識別する発電機回転数識別手段とし ての役割を担う。同様の理由により、インバータ 506は、モータ 505の回転数を常時 識別するモータ回転数識別手段としての役割を担う。なお、モータ 505や発電機 50 7が同期機でなく誘導機である場合、インバータ 506やコンバータ 508は、例えば、 各相の卷線の誘起電圧値からモータ 505や発電機 507の回転数を推定するように 構成することができる。もちろん、エンコーダ等の検出器を用いて回転数を検出及び 識別するようにしてもよい。
[0031] 一方、マイクロコンピュータ 511は、コンバータ 508より発電機 507の回転数に関す る情報を得て、高圧側圧力を推定する処理に利用する。コンバータ 508による発電 機 507の回転数制御は、マイクロコンピュータ 511により推定した推定圧力値力 マ イク口コンピュータ 512により算出した最適圧力値に近づくように (好ましくは一致する ように)実施される。
[0032] 次に、マイクロコンピュータ 511が実行する処理について説明する。
圧力推定手段としてのマイクロコンピュータ 511は、発電機電流センサ 509が検出 する発電機電流、第 1温度センサ 510が検出する蒸発温度及びコンバータ 508から 取得する発電機 507の回転数に基づいて、冷凍サイクルの高圧側圧力を推定する。 冷凍サイクルの高圧側圧力を推定する処理は、発電機 507のシャフト 521に加わるト ルクが、発電機電流に比例するとともに、冷凍サイクルの高圧側圧力及び低圧側圧 力と、発電機 507の回転数とに応じて定まることを利用した演算による。このような手
法によれば、圧力センサを用いなくとも、冷凍サイクルの高圧側圧力を相当正確に推 定することが可能である。こうして求めた高圧側圧力を用いれば、冷凍サイクル効率 の最大化を一層正確に行えるようになる。
[0033] 具体的に、膨張機 503のシャフト 521に加わる膨張機トルク Texpは、発電機電流 センサ 509により検出した発電機 507の発電機電流 Iexpと、発電機 507に固有のト ルク定数 Ktとを用いて、(式 1)の関係式から求められる。
Texp = Kt X Iexp- - - (式 1)
[0034] ここで用いる"発電機電流 Iexp"は、相電流実効値の 31/2倍に対応する。
[0035] 一方、冷凍サイクルの低圧側圧力 Psと、膨張機トルク Texpと、膨張機 503の吸入 容積 Vexpと、断熱係数 kと、冷凍サイクルの高圧側圧力 Pdと、発電機 507の回転数 fとの間には、 (式 2)の関係式が成り立つ。
Texp = k/ (k— 1) X Ps XVexp X { (Pd/Ps) (k_1)A- 1 }/ (2 π f) · · · (式 2)
[0036] 冷凍サイクルの低圧側圧力 Psは、冷媒が気液 2相流の状態であるため、前述した ように、飽和温度と圧力との関係を用いて、蒸発器 504の蒸発温度より蒸発圧力とし て求めることができる。また、膨張機 507の吸入容積 Vexpは設計値である。断熱係 数 kは、冷媒の定圧比熱 Cpと定積比熱 Cvの比である。発電機 507の回転数 fは、コ ンバータ 508が持っている情報である。したがって、(式 1)及び(式 2)から、冷凍サイ クルの高圧側圧力 Pdが求まる。
[0037] このように、冷媒の膨張力によって膨張機 507のシャフト 521に加わるトノレク Texp 力 発電機電流 Iexpに比例するとともに、冷凍サイクルの高圧側圧力 Pd及び低圧側 圧力 Psと、膨張機 507の吸入容積 Vexpと、断熱係数 Kと、膨張機 507の回転数 f に応じて定まることを利用した演算により、高圧側圧力 Pdを推定することができる。
[0038] 次に、マイクロコンピュータ 512が実行する処理について説明する。図 3は、放熱器 出口圧力、放熱器出口温度及び冷凍サイクル効率の関係の一例を示す図である。 マイクロコンピュータ 512は、放熱器 502の出口側に設けられた第 2温度センサ 513 により検出した放熱器出口温度の値と、マイクロコンピュータ 511により推定した高圧 側圧力の推定圧力値 (すなわち、放熱器出口圧力に相当する値)とから、図 3に示す ような最適効率圧力線のデータに従って、冷凍サイクル効率を最大にする最適圧力
値を算出する。
[0039] 次に、コンバータ 508による最適圧力制御について説明する。
図 4は、コンバータ 508による最適圧力制御の手順を示すフローチャートであり、コ ンバータ 508における冷凍サイクル効率を最大にする膨張機回転数の制御手順を 示している。
[0040] まず、ステップ 101において、コンバータ 508は、圧力推定手段としてのマイクロコ ンピュータ 511が推定した推定圧力値 (冷凍サイクルの高圧側圧力)を読み込む。次 に、ステップ 102において、最適圧力算出手段としてのマイクロコンピュータ 512が算 出した、冷凍サイクル効率を最大にする最適圧力値を読み込む。
[0041] 次に、現在の推定圧力値が、最適圧力値より大力 vj、かをステップ 103にて判定する 。推定圧力値が最適圧力値よりも大きい場合には、推定圧力値を下げるように、ステ ップ 104にて膨張機 503の回転数が増加される。それにより、膨張機 503における入 口と出口の圧力差が低減され、結果として冷凍サイクルにおける高圧側圧力が低下 していく。
[0042] 一方、推定圧力値が最適圧力値よりも小さい場合には、推定圧力値を上げるように 、ステップ 105にて膨張機 503の回転数が低減される。それにより、膨張機 503にお ける入口と出口の圧力差が増加され、結果として冷凍サイクルにおける高圧側圧力 が上昇していく。これらの処理が実行されることにより、放熱器 502の出口圧力、すな わち冷凍サイクルの高圧側圧力は、冷凍サイクル効率を最大にするような圧力に制 御される。
[0043] (第 1実施形態の変形例)
図 4に示す処理に代えて、図 5に示す処理をコンバータ 508が実行する構成として もよレ、。図 5のフローチャートに示す処理は、マイクロコンピュータ 511により推定した 推定圧力値が所定の限界圧力値を超えた場合、その推定圧力値に応じて発電機 5 07を介して膨張機 503の回転数を操作することにより、推定圧力値を限界圧力値以 下に制御するための処理である。
[0044] まず、ステップ 201において、コンバータ 508は、圧力推定手段としてのマイクロコ ンピュータ 511が推定した推定圧力値 (冷凍サイクルの高圧側圧力)を読み込む。次
に、現在の推定圧力値が、予め決めた所定の限界圧力値より大か小かを、ステップ 2 02にて判定する。推定圧力値が限界圧力値よりも小さい場合は、制御終了に進む。
[0045] 一方、推定圧力値が限界圧力値よりも大きい場合には、ステップ 203にて、高圧側 圧力を下げるように、コンバータ 508は膨張機 503の回転数を増加する制御を行う。 コンバータ 508による膨張機 503の回転数制御に代えて、又はこれとともにインバー タ 506が圧縮機 501の回転数を低減する制御を行うようにしてもよレ、。こうした回転数 制御により、圧縮機 501における入口と出口の圧力差、及び膨張機 503における入 口と出口の圧力差が低減され、結果として冷凍サイクルにおける高圧側圧力が低下 していく。このようにすれば、推定圧力値が予め定めた限界圧力値を超えた場合に は、圧縮機 501及び Z又は膨張機 503の回転数を増減する処理が実施されるので、 冷凍サイクルの高圧側圧力が冷凍サイクル効率を最大にする最適圧力値に近づく。 高価な圧力センサなしでも冷凍サイクル効率を高効率に保ちながら、高圧側圧力を 限界圧力以下に制限することができ、ひいては高効率で信頼性の高い冷凍サイクル 装置が実現される。
[0046] もちろん、上記ステップ 203を、インバータ 506による圧縮機 501の回転数制御と、 コンバータ 508による膨張機 503の回転数制御との、一方のみ行うステップとしても、 同様の限定圧力制御が可能である。
[0047] 次に、インバータ 506及びコンバータ 508の動作について説明する。
図 2に示すように、交流電源 801からの交流電圧は、整流回路 802で直流電圧に 整流される。直流電圧は、平滑コンデンサ 803により平滑化されたあと、インバータ 5 06により 3相の交流電圧に変換され、この交流電圧によりモータ 505が駆動される。 そして、モータ 505の駆動により圧縮機 501が圧縮機能を果たす。
[0048] インバータ 506は、直流電圧を交流に変換するためのスイッチング素子群 804など から構成されており、モータ電流センサ 909 (モータ電流検出器)により検出されたモ ータ電流などの情報を用いて、所定の交流周波数を実現するように、 PWM (Pulse Width Modulation)方式でスイッチング素子群 804をオンオフする。
[0049] 一方、膨張機 503により動力を回収するために設置された発電機 507には、その 発電機 507により発電される 3相交流電力を直流に変換するためのコンバータ 508
が接続されている。コンバータ 508は、発電機 507により発電される交流電力を直流 に変換するとともに、発電機電流センサ 509により検出された発電機電流等の情報を 用いて、内部に構成されたスイッチング素子群 805を PWM方式でスイッチングする ことにより、設定した目標回転数で発電機 507を回転させる。コンバータ 508による発 電機 507の回転数制御によって、発電機 507を介して膨張機 503の回転数を制御 することが可能となり、発電機 507に軸接続された膨張機 503が置かれたシステムに おいて、膨張機 503を最適な回転数で駆動する。
[0050] また、コンバータ 508からの直流出力は、整流回路 802とインバータ 506との間の 直流電力ラインに接続されているので、コンバータ 508から回生された電力は、イン バータ 506を経てモータ 505の駆動エネルギーとして消費される。
[0051] (第 2実施形態)
以下、本発明の第 2実施形態について図面を参照しながら説明する。
図 6に示す冷凍サイクル装置 600は、モータ電流センサ 909が検出するモータ電 流を用いて、冷凍サイクルの高圧側圧力を推定し、その推定した高圧側圧力に基づ いて膨張機 503の回転数を制御するように構成されている。具体的には、マイクロコ ンピュータ 514が、モータ電流、冷媒の蒸発温度及びモータ 505の回転数に基づい て、冷凍サイクルの高圧側圧力を推定する圧力推定手段としての役割を担う。コンパ ータ 508による発電機 507の回転数制御は、マイクロコンピュータ 514により推定した 推定圧力値が、マイクロコンピュータ 512により算出した最適圧力値に近づくように( 好ましくは一致するように)実施される。他の構成や動作は第 1実施形態と同じであり 、その詳細説明を省略する。
[0052] マイクロコンピュータ 514は、モータ電流センサ 909により検出したモータ 505を流 れる電流(モータ電流)、第 1温度センサ 510により検出した蒸発温度、及びモータ 5 05の回転数の情報を用いて、冷凍サイクルの高圧側圧力を推定する。第 1実施形態 で既に説明したように、まず、圧縮機トルクがモータ電流に比例することを利用する。 圧縮機 501のシャフト 520に加わる圧縮機トルク Tcompは、モータ電流センサ 909 により検出したモータ電流 Icompと、モータ 505に固有のトルク定数 Kmとを用いて、 (式 3)の関係式から求められる。
Tcomp = Km X Icomp · · · (式 3)
[0053] 一方、冷凍サイクルの低圧側圧力 Psと、圧縮機トルク Tcompと、圧縮機 501の設 計値である吸入容積値 Vcompと、断熱係数 kと、高圧側圧力 Pdと、モータ 505の回 転数 fとの間には、 (式 4)の関係式が成り立つ。
Tcomp = k/ (k- l) X Ps X Vcomp X { (Pd/Ps) (W)A- 1 } / (2 π f) . · · ( 式 4)
[0054] 冷凍サイクルの低圧側圧力 Psは、前述したように、蒸発器 504の蒸発温度より蒸発 圧力として求めることができる。圧縮機 501の吸入容積 Vcompは設計値である。断 熱係数 kも前述したように既知である。また、インバータ 506は、モータ電流センサ 90 9により検出される電流値を使用してモータ 505の磁極位置に同期させて駆動を制 御している。インバータ 506からモータ 505に出力される交流の周波数力 モータの 回転数に対応するため、モータの回転数の情報はインバータ 506において常に保有 される情報となっている。したがって、(式 3)及び(式 4)から、冷凍サイクルの高圧側 圧力 Pdが求まる。なお、前述したように、モータ 505は誘導機であってもよい。
[0055] このように、モータ 505の駆動によって圧縮機 501のシャフト 520に加わるトルク Tc ompが、モータ電流 Icompに比例するとともに、冷凍サイクルの高圧側圧力 Pd及び 低圧側圧力 Psと、圧縮機 501の吸入容積 Vcompと、断熱係数 Kと、モータ 505の回 転数 fとに応じて定まることを利用した演算により、高圧側圧力 Pdを推定することがで きる。
[0056] そして、コンバータ 508は、マイクロコンピュータ 514により推定した推定圧力値が、 マイクロコンピュータ 512が算出した最適圧力値に近づくように(好ましくは一致する ように)、発電機 507を介して膨張機 503の回転数を制御する。こうした制御について は、第 1実施形態と同様である。
[0057] (第 2実施形態の変形例)
第 1実施形態と同様に、図 5に示す処理をコンバータ 508が実行する構成としても よい。すなわち、マイクロコンピュータ 511により推定した推定圧力値が所定の限界圧 力値を超えた場合、その推定圧力値に応じて発電機 507を介して膨張機 503の回 転数を操作することにより、推定圧力値を限界圧力値以下に制御する。もちろん、モ
ータ 505を介して圧縮機 501の回転数を操作することもできる。具体的な説明は、第 1実施形態で行ったので、ここでは繰り返さない。
[0058] (第 3実施形態)
第 3実施形態の冷凍サイクル装置 700の構成は、基本的には第 2実施形態の冷凍 サイクル装置 600と同様である。冷凍サイクル装置 700の特徴は、第 1実施形態の制 御と、第 2実施形態の制御とを合体させたような制御を行う点にある。
[0059] 冷凍サイクル装置 700のマイクロコンピュータ 516は、まず、発電機 507を流れる発 電機電流、冷媒の蒸発温度及び発電機 507の回転数に基づいて、冷凍サイクルの 高圧側圧力を推定する。この点については、第 1実施形態と同様である。すなわち、 マイクロコンピュータ 516は、冷媒の膨張力によって膨張機 503のシャフト 521に加わ るトノレクが、発電機電流に比例するとともに、冷凍サイクルの高圧側圧力及び低圧側 圧力と、回転数とに応じて定まることを利用した演算により、高圧側圧力を推定する。
[0060] 一方、圧縮機制御手段としてのインバータ 506は、マイクロコンピュータ 516による 推定圧力値が冷凍サイクル効率を最大にする最適圧力値に近づくように (好ましくは 一致するように)、圧縮機 501の回転数を制御する。この点については、第 2実施形 態と同様である。このような構成の冷凍サイクル装置 700によっても、圧力センサなし で冷凍サイクルを制御する(最適化する)ことが可能であり、冷凍サイクルの高効率化 と高信頼性化、及び冷凍サイクル装置の低コスト化を実現することができる。
[0061] なお、図 5に示す処理は、インバータ 506が実行する構成としてもよレ、。すなわち、 マイクロコンピュータ 516により推定した推定圧力値が所定の限界圧力値を超えた場 合、インバータ 506は、その推定圧力値に応じてモータ 505を介して圧縮機 501の 回転数を操作することにより、推定圧力値を限界圧力値以下に制御する。具体的な 説明は、第 1実施形態を援用する。
[0062] 以上、本実施形態では、コンバータ 508により膨張機 507の回転数を制御する構 成、又はインバータ 506により圧縮機 501の回転数を制御する構成で説明したが、 発電機 507及び/又はモータ 505に流れる電流を直接制御する構成としても、第 1 及び第 2実施形態と同様の作用効果が得られる。
[0063] (第 4実施形態)
これまで説明してきた構成は、動力回収を行わない冷凍サイクル装置、すなわち、 膨張機の代わりに膨張弁を用いた冷凍サイクル装置にも好適に採用できる。図 7に 示す冷凍サイクル装置 800は、膨張機構として、膨張機の代わりに膨張弁 802を用 レ、ている。膨張弁 802は、開度が可変であり、膨張機構制御手段としてのマイクロコ ンピュータ 804によって開度が制御される。圧力推定手段としてのマイクロコンピュー タ 514は、モータ電流、冷媒の蒸発温度及びモータ 505の回転数に基づいて、冷凍 サイクルの高圧側圧力を推定し、マイクロコンピュータ 804に渡す。マイクロコンピュ ータ 804は、取得した推定圧力値が冷凍サイクル効率を最大にする最適圧力値に近 づくように、膨張弁 802の開度を制御する。高圧側圧力を推定する手順等は、既に 説明した通りである。なお、図 7中に示す 3つのマイクロコンピュータ 512, 514, 804 は、 1つに集約することが望ましい。
[0064] さらに、冷凍サイクル装置 800において、先の実施形態で既に説明した限界圧力 制御を行うようにしてもよレ、。すなわち、マイクロコンピュータ 514による推定圧力値が 所定の限界圧力値を超えた場合には、その推定圧力値が限界圧力値以下となるよう に、推定圧力値に応じて膨張弁 802の開度を増加する制御を実施する。このような 冷凍サイクル装置 800によっても、圧力センサなしで、第 1、第 2及び第 3実施形態と 同様の利益を得ることができる。
産業上の利用可能性
[0065] 本発明にかかる冷凍サイクル装置は、高効率、高信頼性、且つ低コストであり、冷 凍装置、冷暖房装置、給湯装置、洗濯乾燥機、食器乾燥機、浴室乾燥機、ゴミ処理 装置等に好適に採用できる。
Claims
[1] 冷媒を圧縮する圧縮機と、
前記圧縮機で圧縮された前記冷媒を冷却する放熱器と、
前記放熱器を通過した前記冷媒を膨張させる膨張機と、
前記膨張機で膨張した前記冷媒を蒸発させる蒸発器と、
前記膨張機に接続されて前記冷媒の膨張力により発電する発電機と、 前記発電機に流れる電流である発電機電流を検出する発電機電流検出手段と、 前記蒸発器における前記冷媒の蒸発温度を検出する蒸発温度検出手段と、 前記発電機の回転数を検出する発電機回転数検出手段と、
前記放熱器の出口温度を検出する放熱器出口温度検出手段と、
前記発電機電流、前記蒸発温度、前記回転数及び前記出口温度に基づき、冷凍 サイクル効率を最大化するように、前記発電機を介して前記膨張機の回転数を制御 する膨張機制御手段と、
を備えた、冷凍サイクル装置。
[2] 前記発電機電流、前記蒸発温度及び前記回転数に基づいて、冷凍サイクルの高 圧側圧力を推定する圧力推定手段をさらに備え、
前記膨張機制御手段は、前記圧力推定手段による推定圧力値が冷凍サイクル効 率を最大にする最適圧力値に近づくように、前記膨張機の回転数を制御する、請求 項 1記載の冷凍サイクル装置。
[3] 前記圧力推定手段は、前記冷媒の膨張力によって前記膨張機のシャフトに加わる トルクが、前記発電機電流に比例するとともに、冷凍サイクルの高圧側圧力及び低圧 側圧力と、前記回転数とに応じて定まることを利用した演算により、前記高圧側圧力 を推定する、請求項 2記載の冷凍サイクル装置。
[4] 前記発電機電流、前記蒸発温度及び前記回転数に基づいて、冷凍サイクルの高 圧側圧力を推定する圧力推定手段をさらに備え、
前記膨張機制御手段は、前記圧力推定手段による推定圧力値が所定の限界圧力 値を超えた場合には、前記推定圧力値が前記限界圧力値以下となるように、前記推 定圧力値に応じて前記膨張機の回転数を制御する、請求項 1記載の冷凍サイクル装
置。
[5] 前記膨張機制御手段は、前記推定圧力値が前記限界圧力値を超えた場合には、 前記膨張機の回転数を増加する制御を実施する、請求項 4記載の冷凍サイクル装置
[6] 冷媒を圧縮する圧縮機と、
前記圧縮機を駆動するモータと、
前記圧縮機で圧縮された前記冷媒を冷却する放熱器と、
前記放熱器を通過した前記冷媒を膨張させる膨張機構と、
前記膨張機構で膨張した前記冷媒を蒸発させる蒸発器と、
前記モータに流れる電流であるモータ電流を検出するモータ電流検出手段と、 前記蒸発器における前記冷媒の蒸発温度を検出する蒸発温度検出手段と、 前記モータの回転数を検出するモータ回転数検出手段と、
前記放熱器の出口温度を検出する放熱器出口温度検出手段と、
前記モータ電流、前記蒸発温度、前記回転数及び前記出口温度に基づき、冷凍 サイクル効率を最大化するように、前記膨張機構を制御する膨張機構制御手段と、 を備えた、冷凍サイクル装置。
[7] 前記モータ電流、前記蒸発温度及び前記回転数に基づいて、冷凍サイクルの高圧 側圧力を推定する圧力推定手段をさらに備え、
前記膨張機構が、膨張機であり、
前記膨張機構制御手段は、前記圧力推定手段による推定圧力値が冷凍サイクル 効率を最大にする最適圧力値に近づくように、前記膨張機の回転数を制御する、請 求項 6記載の冷凍サイクル装置。
[8] 前記モータ電流、前記蒸発温度及び前記回転数に基づいて、冷凍サイクルの高圧 側圧力を推定する圧力推定手段をさらに備え、
前記膨張機構が、膨張弁であり、
前記膨張機構制御手段は、前記圧力推定手段による推定圧力値が冷凍サイクル 効率を最大にする最適圧力値に近づくように、前記膨張弁の開度を制御する、請求 項 6記載の冷凍サイクル装置。
[9] 前記圧力推定手段は、前記モータの駆動によって前記圧縮機のシャフトに加わるト ルクが、前記モータ電流に比例するとともに、冷凍サイクルの高圧側圧力及び低圧 側圧力と、前記回転数とに応じて定まることを利用した演算により、前記高圧側圧力 を推定する、請求項 7記載の冷凍サイクル装置。
[10] 前記モータ電流、前記蒸発温度及び前記回転数に基づいて、冷凍サイクルの高圧 側圧力を推定する圧力推定手段をさらに備え、
前記膨張機構が、膨張機または膨張弁であり、
前記膨張機構制御手段は、前記圧力推定手段による推定圧力値が所定の限界圧 力値を超えた場合には、前記推定圧力値が前記限界圧力値以下となるように、前記 推定圧力値に応じて前記膨張機の回転数または前記膨張弁の開度を制御する、請 求項 6記載の冷凍サイクル装置。
[11] 前記膨張機構制御手段は、前記推定圧力値が前記限界圧力値を超えた場合には 、前記膨張機の回転数を増加する、または前記膨張弁の開度を増加する制御を実 施する、請求項 10記載の冷凍サイクル装置。
[12] 冷媒を圧縮する圧縮機と、
前記圧縮機を駆動するモータと、
前記圧縮機で圧縮された前記冷媒を冷却する放熱器と、
前記放熱器を通過した前記冷媒を膨張させる膨張機と、
前記膨張機で膨張した前記冷媒を蒸発させる蒸発器と、
前記膨張機に接続されて前記冷媒の膨張力により発電する発電機と、 前記発電機に流れる電流である発電機電流を検出する発電機電流検出手段と、 前記蒸発器における前記冷媒の蒸発温度を検出する蒸発温度検出手段と、 前記発電機の回転数を検出する発電機回転数検出手段と、
前記放熱器の出口温度を検出する放熱器出口温度検出手段と、
前記発電機電流、前記蒸発温度、前記回転数及び前記出口温度に基づき、冷凍 サイクル効率を最大化するように、前記モータを介して前記圧縮機の回転数を制御 する圧縮機制御手段と、
を備えた、冷凍サイクル装置。
[13] 前記発電機電流、前記蒸発温度及び前記回転数に基づいて、冷凍サイクルの高 圧側圧力を推定する圧力推定手段をさらに備え、
前記圧縮機制御手段は、前記圧力推定手段による推定圧力値が冷凍サイクル効 率を最大にする最適圧力値に近づくように、前記圧縮機の回転数を制御する、請求 項 12記載の冷凍サイクル装置。
[14] 前記圧力推定手段は、前記冷媒の膨張力によって前記膨張機のシャフトに加わる トルクが、前記発電機電流に比例するとともに、冷凍サイクルの高圧側圧力及び低圧 側圧力と、前記回転数とに応じて定まることを利用した演算により、前記高圧側圧力 を推定する、請求項 13記載の冷凍サイクル装置。
[15] 前記発電機電流、前記蒸発温度及び前記回転数に基づいて、冷凍サイクルの高 圧側圧力を推定する圧力推定手段をさらに備え、
前記圧縮機制御手段は、前記圧力推定手段による推定圧力値が所定の限界圧力 値を超えた場合には、前記推定圧力値が前記限界圧力値以下となるように、前記推 定圧力値に応じて前記圧縮機の回転数を制御する、請求項 12記載の冷凍サイクル 装置。
[16] 前記圧縮機制御手段は、前記推定圧力値が前記限界圧力値を超えた場合には、 前記圧縮機の回転数を増加する制御を実施する、請求項 15記載の冷凍サイクル装 置。
[17] 前記冷媒が二酸化炭素である、請求項 1、請求項 6又は請求項 12に記載の冷凍サ イタル装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005035226A JP2008106946A (ja) | 2005-02-10 | 2005-02-10 | 冷凍サイクル装置 |
JP2005-035226 | 2005-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006085475A1 true WO2006085475A1 (ja) | 2006-08-17 |
Family
ID=36793050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/301804 WO2006085475A1 (ja) | 2005-02-10 | 2006-02-02 | 冷凍サイクル装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2008106946A (ja) |
WO (1) | WO2006085475A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036204A (ja) * | 2003-11-21 | 2012-02-23 | Zymogenetics Inc | 抗il−20抗体および結合パートナーならびに炎症において用いる方法 |
BE1019372A3 (nl) * | 2010-06-11 | 2012-06-05 | Schutter Rotterdam B V | Koelsysteem met laag energieverbruik. |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2340404B1 (en) * | 2008-10-01 | 2019-06-12 | Carrier Corporation | High-side pressure control for transcritical refrigeration system |
FR2945835B1 (fr) * | 2009-05-25 | 2016-01-22 | Commissariat Energie Atomique | Microsystemes de transformation de pressions et de compression, capteur, roue, puce, micromoteur, pile incorporant ce microsysteme et procede de fabrication de ce microsysteme |
JP6331278B2 (ja) * | 2013-07-18 | 2018-05-30 | ダイキン工業株式会社 | 冷凍装置 |
JP6233783B2 (ja) | 2013-09-20 | 2017-11-22 | パナソニックIpマネジメント株式会社 | 発電制御装置、発電装置及びランキンサイクル装置の制御方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11230626A (ja) * | 1998-02-12 | 1999-08-27 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置 |
JP2000234814A (ja) * | 1999-02-17 | 2000-08-29 | Aisin Seiki Co Ltd | 蒸気圧縮式冷凍装置 |
JP2001165513A (ja) * | 1999-12-03 | 2001-06-22 | Aisin Seiki Co Ltd | 冷凍空調機 |
-
2005
- 2005-02-10 JP JP2005035226A patent/JP2008106946A/ja not_active Withdrawn
-
2006
- 2006-02-02 WO PCT/JP2006/301804 patent/WO2006085475A1/ja not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11230626A (ja) * | 1998-02-12 | 1999-08-27 | Matsushita Electric Ind Co Ltd | 冷凍サイクル装置 |
JP2000234814A (ja) * | 1999-02-17 | 2000-08-29 | Aisin Seiki Co Ltd | 蒸気圧縮式冷凍装置 |
JP2001165513A (ja) * | 1999-12-03 | 2001-06-22 | Aisin Seiki Co Ltd | 冷凍空調機 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012036204A (ja) * | 2003-11-21 | 2012-02-23 | Zymogenetics Inc | 抗il−20抗体および結合パートナーならびに炎症において用いる方法 |
BE1019372A3 (nl) * | 2010-06-11 | 2012-06-05 | Schutter Rotterdam B V | Koelsysteem met laag energieverbruik. |
Also Published As
Publication number | Publication date |
---|---|
JP2008106946A (ja) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7669430B2 (en) | Heat pump apparatus | |
US20070101735A1 (en) | Heat pump apparatus using expander | |
EP1429450B1 (en) | Motor control apparatus | |
JP4023249B2 (ja) | 圧縮機内部状態推定装置及び空気調和装置 | |
JP4416486B2 (ja) | モータ制御装置 | |
WO2006085475A1 (ja) | 冷凍サイクル装置 | |
US11454436B2 (en) | Refrigerator having variable speed compressor and control method thereof | |
JP3943124B2 (ja) | ヒートポンプ応用機器 | |
JP2008038912A (ja) | 圧縮機内部状態推定装置及び空気調和装置 | |
KR101955249B1 (ko) | 압축기 및 압축기 제어 방법 | |
JP6286669B2 (ja) | インバータ制御装置 | |
JP2008275209A (ja) | 膨張機を用いた冷凍サイクル装置 | |
JP4670825B2 (ja) | 圧縮機内部状態推定装置及び空気調和装置 | |
KR101936261B1 (ko) | 전동기 제어 장치 및 그 동작 방법 | |
JP2006250449A (ja) | 空気調和機 | |
KR102402836B1 (ko) | 공기조화기 및 그 동작 방법 | |
JP2007155155A (ja) | 膨張機を用いた冷凍サイクル装置 | |
JP2007057141A (ja) | 冷凍サイクル装置 | |
JP2008164267A (ja) | 膨張機を用いた冷凍サイクル装置 | |
KR20140145231A (ko) | 냉장고 및 그 제어방법 | |
JP2003003963A (ja) | 圧縮機の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06712947 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6712947 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |