WO2006085372A1 - Method for manufacturing inlet for electronic tag - Google Patents

Method for manufacturing inlet for electronic tag Download PDF

Info

Publication number
WO2006085372A1
WO2006085372A1 PCT/JP2005/002003 JP2005002003W WO2006085372A1 WO 2006085372 A1 WO2006085372 A1 WO 2006085372A1 JP 2005002003 W JP2005002003 W JP 2005002003W WO 2006085372 A1 WO2006085372 A1 WO 2006085372A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
inlet
communication
distance
measurement
Prior art date
Application number
PCT/JP2005/002003
Other languages
French (fr)
Japanese (ja)
Inventor
Toshimichi Masuta
Hisao Yamagata
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to JP2007502515A priority Critical patent/JPWO2006085372A1/en
Priority to PCT/JP2005/002003 priority patent/WO2006085372A1/en
Priority to TW094139167A priority patent/TW200637200A/en
Publication of WO2006085372A1 publication Critical patent/WO2006085372A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations

Definitions

  • the present invention relates to an electronic tag inlet manufacturing technique, and more particularly to a technique effective when applied to a process of measuring the communication distance characteristic of an electronic tag.
  • Patent Document 1 discloses that each IC label of an IC roll label conveyed along a predetermined direction without damaging an IC chip or an antenna has a desired communication distance.
  • the communication inspection device that can properly perform the communication inspection is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-287800 describes an IC product inspection apparatus capable of quickly processing an inspection of a single piece of RF-ID media such as an IC card. It is disclosed.
  • Patent Document 3 discloses a technique for measuring the communication distance of an IC card using a reader / writer connected to a notebook computer. According to the report, it was confirmed that it was possible to communicate with a distance force of 90 mm.
  • Patent Document 4 discloses that the noise radio wave from the outside is blocked and the antenna under test (EUT) and the antenna on the measuring device side are in the air.
  • This is a wireless communication characteristic test apparatus that can simulate the transmission and reception of radio waves and can change the distance between both antennas in a pseudo manner.
  • Patent Document 5 Japanese Patent Laid-Open No. 11-72518
  • a communication device is connected via a coaxial cable or a waveguide instead of an antenna to reduce the spatial distance attenuation.
  • a technique for performing characteristic measurement and evaluation test by inserting a variable attenuator or a fixed attenuator in the middle of a coaxial cable or waveguide is disclosed.
  • Patent Document 6 (corresponding US Patent Publication USP5, 644, 245)) describes an inspection pair with a large number of IC inlets formed on an insulating film. A method for accurately inspecting the quality and defect of an IC inlet, which is an elephant, is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-286566
  • Patent Document 2 JP 2004-287800 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-44810
  • Patent Document 4 JP 2000-9776 A
  • Patent Document 5 Japanese Patent Laid-Open No. 11-72518
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-220141
  • a non-contact type electronic tag stores desired data in a memory circuit in a semiconductor chip (hereinafter simply referred to as a chip) and uses microwaves (other RF (Radio Frequency) radio waves or electromagnetic waves).
  • This tag is designed to read this data. Since electronic tags store data in a memory circuit in the chip, they have the advantage of storing large amounts of data compared to tags that use barcodes. In addition, the data stored in the memory circuit has the advantage that unauthorized tampering is difficult compared to the data stored in the barcode.
  • the present inventors have developed a technique for measuring the communication characteristics of a non-contact type electronic tag! I'm considering it. Among them, the present inventors have found the following problems.
  • One object of one typical invention disclosed in the present application is to provide a technique capable of shortening the time required for measuring the communication characteristics of a non-contact type electronic tag.
  • Another object of one representative invention disclosed in the present application is to provide a technique capable of easily measuring the communication characteristics of a non-contact type electronic tag.
  • the method for manufacturing an inlet for an electronic tag includes the following steps.
  • step (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
  • the inlet is disposed on a second antenna that communicates with the inlet, and a radio wave absorbing means that prevents reflection of radio waves from below and blocks radio waves from above is provided as the second antenna and the inlet.
  • step (e2) After the step (el), maintaining a distance between the inlet and the second antenna at a predetermined first distance, and communicating the inlet and the second antenna;
  • the inlet is held by holding means that moves up and down on the second antenna,
  • the radio wave absorbing means is attached to the holding means holding means via a relay means, interlocked with the operation of the holding means,
  • the second antenna is electrically connected to the data reading means
  • the data reading means and the holding means are electrically connected to a computer
  • the computer controls the operation of the holding means by software and records the first distance and the communication result.
  • the electronic tag inlet manufacturing method includes the following steps.
  • step (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
  • a data reading means electrically connected to the computer, and a variable attenuator electrically connected to the computer and the data reading means, and is electrically connected to communicate with the inlet; Disposing the inlet on the second antenna, and disposing radio wave absorbing means for preventing reflection of radio waves of lower force and blocking radio waves from above on the second antenna and the inlet;
  • a distance between the inlet and the second antenna is set to a predetermined value. Maintaining the first distance and communicating the inlet and the second antenna;
  • step (e3) a step of changing the attenuation of the variable attenuator by a predetermined amount, and repeating the step (e2),
  • step (e4) a step of repeating the step (e3) a predetermined number of times
  • the computer records the attenuation amount and communication result of the variable attenuator.
  • the method for manufacturing an inlet for an electronic tag includes the following steps.
  • step (d) includes:
  • the first socket is disposed on a second antenna that communicates with the semiconductor chip, and a radio wave absorber that prevents radio waves from being reflected from below and blocks radio waves from above is provided as the second antenna and Disposing the first socket on the first socket,
  • step (d2) After the step (dl), the distance between the first socket and the second antenna is kept at a predetermined first distance, and the first socket and the second antenna communicate with each other.
  • step (D3) a step of changing the first distance by a predetermined amount and repeating the step (e2)
  • step (d4) a step of repeating the step (d3) a predetermined number of times
  • the first socket is held by holding means that moves up and down on the second antenna;
  • the radio wave absorbing means is attached to the holding means holding means via a relay means, In conjunction with the operation of the holding means,
  • the second antenna and the holding unit are electrically connected to a computer, and the computer controls the operation of the holding unit by software and records the first distance and the communication result.
  • the method for manufacturing an inlet for an electronic tag includes the following steps.
  • step (f) A step of inspecting communication distance characteristics of the plurality of semiconductor chips by repeating the step (e) a predetermined number of times.
  • the computer records the attenuation amount of the variable attenuator and a communication result.
  • the method for manufacturing an inlet for an electronic tag includes the following steps.
  • step (d) After the step (c), by sealing each of the plurality of semiconductor chips A step of forming a plurality of inlets on the insulating film;
  • the computer records the attenuation amount and the communication result of the variable attenuator.
  • a method for manufacturing an inlet for an electronic tag including the following steps:
  • step (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
  • the inlet is disposed on a second antenna that communicates with the inlet, and radio wave absorbing means for preventing radio waves from being reflected from below and blocking radio waves from above is provided for the second antenna. Na and a step of disposing them on the inlet,
  • step (e2) After the step (el), maintaining a distance between the inlet and the second antenna at a predetermined first distance, and communicating the inlet and the second antenna;
  • step (e4) a step of repeating the step (e3) a predetermined number of times
  • the inlet is held by holding means that moves up and down on the second antenna,
  • the radio wave absorbing means is attached to the holding means holding means via a relay means, interlocked with the operation of the holding means,
  • the second antenna is electrically connected to the data reading means
  • the data reading means and the holding means are electrically connected to a computer
  • the computer controls the operation of the holding means by software and records the first distance and the communication result.
  • the electromagnetic wave absorbing means is disposed at a position sufficiently larger than the communication limit distance of the inlet by a distance of a second distance from the inlet.
  • the second distance is approximately twice the communication limit distance of the inlet.
  • the operation time of the holding means in the step (e3) is about 0.1 second or less.
  • the positional accuracy of the holding means in the step (e2) and the step (e3) is about 0.1 mm or less.
  • a method for manufacturing an inlet for an electronic tag including the following steps:
  • step (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
  • step (e) A step of inspecting communication distance characteristics of the plurality of inlets by selectively irradiating each of the plurality of inlets with the first radio wave having the predetermined frequency.
  • step (e) A step of inspecting communication distance characteristics of the plurality of inlets by selectively irradiating each of the plurality of inlets with the first radio wave having the predetermined frequency.
  • a data reading means electrically connected to the computer, and a variable attenuator electrically connected to the computer and the data reading means, and is electrically connected to communicate with the inlet; Disposing the inlet on the second antenna, and disposing radio wave absorbing means for preventing reflection of radio waves of lower force and blocking radio waves from above on the second antenna and the inlet;
  • step (e2) After the step (el), maintaining the distance between the inlet and the second antenna at a predetermined first distance, and communicating the inlet and the second antenna; (e3) Changing the attenuation of the variable attenuator by a predetermined amount and maintaining the step (e2),
  • step (e4) a step of repeating the step (e3) a predetermined number of times
  • the computer records the attenuation amount and communication result of the variable attenuator.
  • the computer performs software control of a change in the attenuation amount of the variable attenuator.
  • the radio wave absorbing means is disposed at a position sufficiently larger than the communication limit distance of the semiconductor chip and spaced from the first socket by a second distance.
  • variable attenuator is a variable attenuator using a mechanical contact or a semiconductor circuit, and a wattmeter is electrically connected to the computer,
  • a relay that switches a circuit between the second antenna and the power meter is electrically connected to the variable attenuator
  • the computer switches the relay to the wattmeter side and confirms whether or not a predetermined power is being output.
  • a method for manufacturing an inlet for an electronic tag including the following steps:
  • the first socket is disposed on a second antenna that communicates with the semiconductor chip, and a radio wave absorber that prevents radio waves from being reflected from below and blocks radio waves from above is provided as the second antenna and Disposing the first socket on the first socket,
  • step (d2) After the step (dl), the distance between the first socket and the second antenna is kept at a predetermined first distance, and the first socket and the second antenna communicate with each other.
  • step (D3) a step of changing the first distance by a predetermined amount and repeating the step (e2)
  • step (d4) a step of repeating the step (d3) a predetermined number of times
  • the first socket is held by holding means that moves up and down on the second antenna;
  • the radio wave absorbing means is attached to the holding means holding means via a relay means, interlocked with the operation of the holding means,
  • the second antenna and the holding unit are electrically connected to a computer, and the computer controls the operation of the holding unit by software and records the first distance and the communication result.
  • the radio wave absorbing means is disposed at a position sufficiently larger than the communication limit distance of the semiconductor chip and spaced from the first socket by a second distance.
  • the second distance is about twice the communication limit distance of the semiconductor chip.
  • the operation time of the holding means in the step (e3) is about 0.1 second or less.
  • the positional accuracy of the holding means in the step (e2) and the step (e3) is about 0.1 mm or less.
  • a method for manufacturing an inlet for an electronic tag including the following steps:
  • step (f) The step (e) is repeated a predetermined number of times to determine the communication distance characteristics of the plurality of semiconductor chips. Process to inspect.
  • the computer records the attenuation amount and communication result of the variable attenuator.
  • the computer performs software control of a change in the attenuation amount of the variable attenuator.
  • variable attenuator is a variable attenuator using a mechanical contact or a semiconductor circuit, and a wattmeter is electrically connected to the computer,
  • a relay that switches a circuit between the measurement jig and the power meter is electrically connected to the variable attenuator
  • the computer switches the relay to the wattmeter side and checks whether or not predetermined power is output!
  • An electronic tag inlet manufacturing method including the following steps:
  • step (d) after the step (c), by sealing each of the plurality of semiconductor chips, a step of forming a plurality of inlets on the insulating film;
  • the computer records the attenuation amount of the variable attenuator and a communication result.
  • a plurality of the measuring jigs are prepared,
  • the insulating film is passed between the second antenna of the measurement jig and the radio wave absorbing means, and the inlet and the computer are communicated with each other to (g) — (i) Execute the process and inspect the communication distance characteristics of the plurality of inlets simultaneously.
  • FIG. 1 is a plan view (surface side) showing an inlet for an electronic tag that is Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged plan view showing a part of FIG.
  • FIG. 3 is a side view showing the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 4 is a plan view (back side) showing the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 5 is an enlarged plan view showing a part of FIG.
  • FIG. 6 is an enlarged plan view (surface side) of a main part of the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 7 is an enlarged plan view (rear side) of a main part of the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 8 is a plan view of a semiconductor chip mounted on the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 9 is a sectional view of a bump electrode formed on the main surface of the semiconductor chip shown in FIG. 8 and its vicinity.
  • FIG. 10 is a cross-sectional view of dummy bump electrodes formed on the main surface of the semiconductor chip shown in FIG. 8 and the vicinity thereof.
  • FIG. 11 is a block diagram of a circuit formed on the main surface of the semiconductor chip shown in FIG.
  • FIG. 13 is a plan view showing a part of a long insulating film used for manufacturing the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 14 is an enlarged plan view showing a part of the insulating film shown in FIG.
  • FIG. 15 is a schematic view of an inner lead bonder showing a part of the manufacturing process of the electronic tag inlet (semiconductor chip and antenna connection process) according to the first embodiment of the present invention.
  • FIG. 16 is an enlarged schematic view showing a main part of the inner lead bonder shown in FIG.
  • FIG. 17 is an enlarged plan view of a main part of an insulating film showing a part of the manufacturing process of the inlet for an electronic tag (embodiment for connecting a semiconductor chip and an antenna) according to the first embodiment of the present invention.
  • FIG. 18 is an essential part enlarged plan view of the insulating film showing a part of the manufacturing process of the inlet for electronic tag (the connecting process of the semiconductor chip and the antenna) according to the first embodiment of the present invention.
  • FIG. 19 is a schematic view showing a part of the manufacturing process of the electronic tag inlet (embodiment 1 for sealing a semiconductor chip) according to the first embodiment of the present invention.
  • FIG. 20 is an enlarged plan view of an essential part of an insulating film showing a part of the manufacturing process of the electronic tag inlet according to the first embodiment of the present invention (semiconductor chip sealing process).
  • FIG. 21 is a side view showing a state in which an insulating film used for manufacturing the electronic tag inlet according to the first embodiment of the present invention is wound on a reel.
  • FIG. 22 is a display example of communication inspection results of the electronic tag inlet according to the first embodiment of the present invention. It is explanatory drawing which shows.
  • FIG. 23 is an explanatory diagram showing a configuration of a device used for communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 24 is an explanatory diagram showing traveling waves and reflected waves in the communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 25 is an explanatory diagram showing the installation of a radio wave shielding plate in the communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 26 is a cross-sectional view showing installation of a radio wave shielding plate in the communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 27 is an explanatory diagram showing a method of using an electronic tag using the electronic tag inlet according to the first embodiment of the present invention.
  • FIG. 28 is a plan view of a socket used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
  • FIG. 29 is a side view of a socket used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
  • FIG. 30 is a perspective view of a socket used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
  • FIG. 31 is a perspective view of each device used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
  • FIG. 32 is an explanatory diagram showing a problem in measuring the communication distance characteristics of the inlet for an electronic tag using a radio wave box.
  • FIG. 33 is an explanatory view showing the distance dependency of communication between the electronic tag inlet and the communication antenna.
  • FIG. 35 is an explanatory diagram showing the selection process of the electronic tag inlet when the electronic tag inlet and the communication antenna are at a short distance.
  • FIG. 36 is an explanatory view showing the selection process of the electronic tag inlet when the distance between the electronic tag inlet and the communication antenna is a short distance.
  • FIG. 37 is an explanatory diagram showing measurement of communication distance characteristics of the electronic tag inlet.
  • FIG. 39 is a circuit diagram when the communication antenna is connected to the reader device via the variable attenuator in the third embodiment of the present invention.
  • FIG. 40 is a circuit diagram when the communication antenna is connected to the reader device via the variable attenuator in the third embodiment of the present invention.
  • FIG. 41 is an internal circuit diagram of a variable attenuator connected between the communication antenna and the reader device in the third embodiment of the present invention.
  • FIG. 42 is an explanatory diagram showing a system for self-diagnosis of a variable attenuator connected between a communication antenna and a reader device in Embodiment 3 of the present invention.
  • FIG. 43 A perspective view of a measuring jig used in a system for measuring communication distance characteristics of the electronic tag inlet according to the fourth embodiment of the present invention.
  • FIG. 44 is an explanatory diagram of a system for measuring communication distance characteristics of the electronic tag inlet according to the fourth embodiment of the present invention.
  • FIG. 45 is an explanatory diagram showing an internal circuit of the measurement jig shown in FIG. 43.
  • FIG. 46 is a circuit diagram showing a circuit provided in the measuring jig shown in FIG.
  • FIG. 47 is a perspective view of a measuring jig used in a system for measuring communication distance characteristics of the electronic tag inlet according to the fifth embodiment of the present invention.
  • FIG. 48 is an explanatory diagram showing electrical connection between a dipole antenna and a signal terminal inside the measurement jig shown in FIG. 47.
  • FIG. 49 is a perspective view for explaining the measurement of the communication distance characteristic of the inlet performed using the measurement jig shown in FIG.
  • FIG. 50 is a perspective view of a measuring jig used in a system for measuring communication distance characteristics of the electronic tag inlet according to the fifth embodiment of the present invention.
  • FIG. 51 Electric power between the monopole antenna and the signal terminal inside the measurement jig shown in FIG. It is explanatory drawing which shows air connection.
  • FIG. 52 is a perspective view of a measuring jig used in a system for measuring communication distance characteristics of an electronic tag inlet according to the fifth embodiment of the present invention.
  • An electronic tag is a central electronic component of an RFID system or an EPC (Electronic Product Code) system, and generally has electronic information and communication functions on a chip of several millimeters or less (including more than that). This means data rewriting function, and communicates with the reader by radio waves or electromagnetic waves. It is also called a wireless tag or IC tag. By attaching it to a product, it is possible to perform information processing that is more sophisticated and complex than bar code. There is also a tag that can be used semi-permanently without a battery due to non-contact power transmission technology from the antenna side (external or internal). The tag has various shapes such as a label type, a card type, a coin type and a stick type, and is selected according to the application. The communication distance ranges from several millimeters to several meters, and these are also used depending on the application.
  • Inlet generally a complex of an RFID chip and an antenna, however, there is also an antenna! /, Or an antenna integrated on the chip. Therefore, an inlet may also be included without an antenna.
  • An anechoic box and an anechoic chamber are free space environments in which external electromagnetic waves are blocked.
  • Electromagnetic shield and radio wave anechoic a facility that measures and evaluates the amount of electromagnetic radiation from electronic equipment and the resistance of electronic equipment to electromagnetic waves from other radiation sources in its free space environment To tell.
  • a dipole antenna refers to two 1Z4-wave conductor bars joined together.
  • a monopole antenna refers to an antenna composed of a 1Z4 wavelength conductor rod, and can be regarded as a half of a dipole antenna.
  • the antenna is not limited to these.
  • Other three-dimensional antennas, planar antennas, printed circuit antennas, microstrip antennas, and the like may be used.
  • FIG. 1 is a plan view (front side) showing an inlet for an electronic tag according to the first embodiment
  • FIG. 2 is a plan view showing a part of FIG. 1 on an enlarged scale
  • FIG. 3 is a plan view showing the first embodiment
  • FIG. 4 is a side view showing the electronic tag inlet
  • FIG. 4 is a plan view (back side) showing the electronic tag inlet of the first embodiment.
  • FIG. 5 is an enlarged plan view showing a part of FIG.
  • a part or all of this embodiment is a part or all of the following embodiment (example). Therefore, as a general rule, the explanation of the overlapping parts is omitted.
  • An electronic tag inlet (hereinafter, simply referred to as an inlet) 1 constitutes a main part of a non-contact type electronic tag including an antenna for receiving microwaves.
  • This inlet 1 has a copper foil antenna 3 bonded to one surface of a long and narrow rectangular insulating film 2, and a chip 5 connected to the antenna 3 with the surface and side surfaces sealed with potting grease 4. And prepare.
  • the length of the antenna 3 along the long side direction of the insulating film 2 is 56 mm, for example, and is optimized so as to efficiently receive microwaves having a frequency of 2.45 GHz.
  • the width of the antenna 3 is 3 mm, and the antenna 3 is optimized so that both the size reduction of the inlet 1 and the securing of strength can be achieved.
  • An "L" -shaped slit 7 whose one end reaches the outer edge of the antenna 3 is formed at a substantially central portion of the antenna 3.
  • a potting grease 4 is formed in the middle of the slit 7.
  • the sealed chip 5 is mounted.
  • FIG. 6 and 7 are enlarged plan views showing the vicinity of the central portion of the antenna 3 in which the slit 7 is formed.
  • FIG. 6 shows the front side of the inlet 1 and
  • FIG. 7 shows the back side. ing .
  • illustration of the potting resin 4 and the cover film 6 for sealing the chip 5 is omitted.
  • a device hole 8 formed by punching a part of the insulating film 2 is formed in the middle of the slit 7, and the chip 5 is arranged at the center of the device hole 8.
  • each of these Au bumps 9a, 9b, 9c, and 9d is a lead 1 that is formed integrally with the antenna 3 and has one end extending inside the device hole 8. 0 is connected.
  • the two leads 10 extend from one of the antennas 3 divided into two by the slits 7 to the inside of the device hole 8, and Au bumps 9a and 9c of the chip 5 And are electrically connected.
  • the remaining two leads 10 also have the other force of the antenna 3 extending inside the device hole 8 and are electrically connected to the Au bumps 9b and 9d of the chip 5.
  • FIG. 8 is a plan view showing the layout of the four Au bumps 9a, 9b, 9c, 9d formed on the main surface of the chip 5, and FIG. 9 is an enlarged cross section in the vicinity of the Au bump 9a.
  • FIG. 10 is an enlarged cross-sectional view in the vicinity of the Au bump 9 c, and
  • FIG. 11 is a block diagram of a circuit formed on the chip 5.
  • Chip 5 is formed of a single crystal silicon substrate having a thickness of approximately 0.15 mm, and the main surface thereof includes a rectifier and transmitter as shown in FIG. A circuit is formed.
  • the ROM has a 128-bit storage capacity and can store a larger amount of data than a storage medium such as a barcode.
  • the data stored in the ROM has the advantage that unauthorized tampering is more difficult than the data stored in the barcode.
  • Au bumps 9a, 9b, 9c, and 9d are formed on the main surface of the chip 5 on which the circuit is formed. These four Au bumps 9a, 9b, 9c, 9d are located on a pair of imaginary diagonal lines shown by the two-dot chain line in FIG. 8, and the intersection of these diagonal lines (center of the main surface of chip 5) They are laid out so that their distances are almost equal. These Au bumps 9a, 9b, 9c, and 9d are formed using, for example, an electrolytic plating method, and the height thereof is, for example, about 15 m.
  • the layout of these Au bumps 9a, 9b, 9c, and 9d is not limited to the layout shown in FIG. 8, but may be a layout that is easy to balance against the weight at the time of chip connection.
  • the polygonal force formed by the tangents of the Au bumps is preferably arranged so as to surround the center of the chip.
  • the Au bump 9a constitutes the input terminal of the circuit shown in FIG. 11, and the Au bump 9b constitutes the GND terminal. .
  • the remaining two Au bumps 9c and 9d constitute dummy bumps not connected to the above circuit.
  • the Au bump 9 a constituting the input terminal of the circuit is the uppermost metal layer exposed by etching the passivation film 20 and the polyimide resin 21 covering the main surface of the chip 5. It is formed on the wiring 22.
  • a rare metal film 23 is formed between the Au bump 9a and the uppermost metal wiring 22 to enhance the adhesion between them.
  • the passivation film 20 is composed of, for example, a laminated film of an oxide silicon film and a silicon nitride film
  • the uppermost metal wiring 22 is composed of, for example, an A1 alloy film
  • the rare metal film 23 is composed of, for example, a laminated film of a Ti film having a high adhesion to the A1 alloy film and a Pd film having a high adhesion to the Au bump 9a.
  • the connection part between the Au bump 9b and the uppermost metal wiring 22 constituting the GND terminal of the circuit has the same structure as described above.
  • the Au bump 9c (and 9d) constituting the dummy bump is connected to the metal layer 24 formed on the same wiring layer as the uppermost metal wiring 22, and this 1S metal. Layer 24 is not connected to the circuit.
  • the inlet 1 of the first embodiment is provided with a slit 7 whose one end reaches the outer edge of the antenna 3 in a part of the antenna 3 formed on one surface of the insulating film 2.
  • the input terminal (Au bump 9a) of the chip 5 is connected to one side of the antenna 3 divided into two by the above, and the GND terminal (Au bump 9b) of the chip 5 is connected to the other side.
  • the inlet 1 of the first embodiment is provided with Au bumps 9a and 9b and dummy Au bumps 9c and 9d constituting circuit terminals on the main surface of the chip 5, and these four Connect the Au bumps 9a, 9b, 9c, and 9d to the lead 10 of the antenna 3.
  • the effective contact area between the Au bump and the lead 10 is larger than when only two Au bumps 9a and 9b connected to the circuit are connected to the lead 10.
  • the bond strength of 10 that is, the connection reliability of both is improved.
  • lead 10 is placed on Au bumps 9a, 9b, 9c, 9d.
  • the chip 5 does not tilt with respect to the insulating film 2 when connected. As a result, the chip 5 can be reliably sealed with the potting resin 4, so that the manufacturing yield of the inlet 1 is improved. [0063] Next, a method of manufacturing the inlet 1 configured as described above will be described with reference to FIGS.
  • FIG. 12 is a flowchart for explaining the manufacturing process of the inlet 1.
  • wafer processing is performed to form a semiconductor element, an integrated circuit, the bump electrodes 9a-9d, etc. on the main surface of a wafer-like semiconductor substrate (hereinafter simply referred to as a substrate).
  • a substrate a wafer-like semiconductor substrate
  • Process Pl the wafer-like substrate is divided into chips by dicing to form the aforementioned chip 5 (process P2).
  • FIG. 13 is a plan view showing the insulating film 2 used for manufacturing the inlet 1
  • FIG. 14 is a plan view showing a part of FIG. 13 in an enlarged manner.
  • the insulating film 2 is carried into the manufacturing process of the inlet 1 while being wound around the reel 25.
  • a large number of antennas 3 are formed at predetermined intervals.
  • a Cu foil having a thickness of about 18 ⁇ m is bonded to one surface of the insulating film 2, and this Cu foil is etched into the shape of the antenna 3.
  • the slit 7 and the lead 10 described above are formed in each antenna 3.
  • Sn (tin) plating is applied to the surface of the lead 10.
  • a first Cu film is formed on the surface of the insulating film having a thickness of about 38 m by sputtering, and the first Cu film is used as a seed layer for electrolysis.
  • a second Cu film thicker than the first Cu film is formed by a plating method, and the first and second Cu films are patterned.
  • the insulating film 2 conforms to the standard of a film carrier tape, and is made of, for example, a polyimide resin film having a width of 50 ⁇ m or 70 mm and a thickness of 75 ⁇ m. 6.
  • Device hole 8 shown in FIG. 7 is formed.
  • sprocket holes 26 for conveying the insulating film 2 are formed at predetermined intervals on both sides of the insulating film 2. The device hole 8 and the sprocket hole 26 are formed by punching a part of the insulating film 2 with a punch.
  • the reel 25 is attached to the inner lead bonder 30 having the bonding stage 31 and the bonding tool 32, and the insulating film 2 is moved along the upper surface of the bonding stage 31.
  • chip 5 is connected to antenna 3 (process P3).
  • the chip 5 is mounted on the bonding stage 31 heated to about 100 ° C. After positioning the device hole 8 of the insulating film 2 directly above the chip 5, the bonding tool 32 heated to about 400 ° C is pressed against the upper surface of the lead 10 protruding inside the device hole 8, and Au bump ( 9a-9d) and lead 10 are brought into contact.
  • an Au—Sn eutectic alloy layer is formed at the interface between the Sn plating formed on the surface of the lead 10 and the Au bump (9a-9d).
  • the Au bumps (9a-9d) and the lead 10 are bonded to each other.
  • a new chip 5 is mounted on the bonding stage 31, and then the insulating film 2 is moved by one pitch of the antenna 3, and then the same operation as above is performed. Connect chip 5 to antenna 3. Thereafter, the chip 5 is connected to all the antennas 3 formed on the insulating film 2 by repeating the same operation as described above. The insulating film 2 that has been connected to the chip 5 and the antenna 3 is conveyed to the next resin sealing process while being wound around the reel 25.
  • the four leads 10 are arranged in a direction perpendicular to the long side direction of the antenna 3 as shown in FIG. It is better to extend it. As shown in Fig. 18, when the four leads 10 are extended parallel to the long side direction of the antenna 3, when the completed inlet 1 is bent, the Au bump (9a-9d) and the lead 10 Since a strong tensile stress acts on the joint, there is a risk that the connection reliability between the two will decrease.
  • potting resin 4 is used by using a dispenser 33 or the like on the upper surface and side surface of chip 5 mounted inside device hole 8. Then, the potting resin 4 is beta in the heating furnace (process P4). Force not shown In the resin sealing process, the potting resin 4 is supplied and beta treatment is performed while the insulating film 2 is moved. Then, the insulating film 2 that has been sealed with the grease is transported to the next inspection process (process P5) while being wound on the reel 25, and the connection state of the chip 5 and the antenna 3 and the quality of the appearance are checked. Inspection is performed. Many antennas 3 formed on the insulating film 2 are electrically separated from each other.
  • the manufacturing process of the inlet 1 is completed by laminating the cover film 6 (see FIG. 3) on one surface of the insulating film 2 (the surface on which the antenna 3 is formed).
  • the inlet 1 manufactured as described above is packed in a state of being wound around a reel 25 and shipped to a customer (step P6).
  • the aforementioned inlet 1 has a communication distance characteristic, and the communication state changes depending on the distance between the reader device and the communication antenna electrically connected.
  • process P5 an arbitrary number (for example, 20) of inlets 1 are taken as samples, and the communication distance characteristics of these samples are measured to check whether they are within the specified values.
  • Inlet 1 and the reader unit communicate with each other while changing the frequency in increments of 1 MHz between 2. 407 GHz and 2.426 GHz for one distance (communication antenna ANT force is also applied to inlet 3 for the radio wave (first (Radio waves).
  • Such communication is carried out at intervals of 5 mm between 0-330 mm, for example, for a total of 67 points.
  • the communication result is judged and recorded manually, according to the result, such as (A) when communication is possible, (B) when communication is not possible, and (C) when communication is not possible, For example, record using symbols such as A, B, and C (see Figure 22).
  • the communication result is manually determined in this way, for example, the determination of (A) when communication is possible and (C) when communication cannot be performed may vary depending on the subjectivity of the worker. .
  • the operation of the inspection jig that holds the inlet 1 is manually performed to change the distance between the inlet 1 and the communication antenna, the work amount of the inspection jig is large. It takes a long time to move, and the position accuracy of the inspection jig may also decrease.
  • the time required for one communication is 0.3 seconds
  • the recording time is 5 seconds
  • the inspection jig is required to move. If the time is 5 seconds, the inspection time required for one inlet 1 inspection is (0.3 X 20 + 5 + 5)
  • the RM and the inspection jig TM are electrically connected to the computer COM, and the communication result is discriminated, recorded, and the inspection jig TM is moved by software control of the computer COM.
  • the work by the worker WK can be greatly reduced, and the inspection process can be simplified.
  • the movement of the inspection jig TM is actually performed by the vertical movement of the arm (holding means) AM holding the inlet 1, and the computer COM controls the amount of movement of the vertical movement of the arm. .
  • the position force measurement is started with the distance between the inlet 1 and the communication antenna ANT being Omm, and that distance becomes the final measurement position (for example, 330 mm). It is automatically performed without the operator's hand.
  • the position accuracy of the arm AM that is, the accuracy of the distance between the inlet 1 and the communication antenna ANT is improved by one digit or more compared to the case where it is controlled manually.
  • the time it takes for the reader to read once is about 0.05 seconds.
  • the monitoring software used for manual measurement requires a waiting time in consideration of human reaction time, so the measurement time is 0.3 seconds.
  • the movement time of the measuring jig TM that is, the operating time of the arm AM, can be set to about 0.1 second, which is about 4.9 seconds shorter than when manually controlled (about 5 seconds). It was.
  • the recording time of the measurement results can be reduced to almost 0 seconds, which is about 5 seconds shorter than when recording manually.
  • the inspection time required for inspection of one inlet 1 is (0. 05 X 20 + 0 + 0. 1)
  • the determination of the communication result is performed by the computer COM and the subjectivity of the worker WK can be excluded, so that a reproducible evaluation result can be obtained. From the above, according to the first embodiment, simple, high-speed and reliable It is possible to provide a measurement system for the communication distance characteristics of the let 1.
  • the influence of radio waves on the measurement result is also considered.
  • the measurement of the communication distance characteristics of Inlet 1 must be performed in a so-called free space where there is no object that reflects radio waves in the surroundings and radio waves do not enter from outside. Therefore, if the measurement system cannot be installed in the anechoic chamber or anechoic box, as shown in Fig. 24, a measurement space with as few objects as possible around it is formed, and the measurement system is placed in the measurement space. Will be inspected. However, when an inspection is performed with such a measurement space, a traveling wave FW transmitted from the inlet 1 and the communication antenna ANT, for example, is installed on the back side of the ceiling CL. As a result, the communication distance characteristics of the inlet 1 may become a peculiar result.
  • a radio wave shielding plate (radio wave absorbing means) DSB is disposed above the inlet 1 and the communication antenna ANT.
  • This radio wave shielding plate DSB is composed of, for example, a radio wave absorber DSB1 having a thickness of about 20 mm, in which a conductive sponge is coated with a paint that also serves as a radio wave absorber, and a support DSB2 made of radio wave transmitting material (for example, polystyrene foam) and force. Is formed.
  • a support SJG made of a radio wave transmitting material for example, styrene foam
  • Supports DSB2 and SJG are configured to hold the electromagnetic wave absorber, and the structure is such that the arm AM can maintain a constant distance D1 from the inlet 1 in conjunction with vertical movement.
  • the radio wave shield DSB is placed at a position sufficiently far from the communication limit of the inlet 1 design.
  • the distance D1 is the communication limit distance of the inlet 1 design (antenna ANT and inlet 1 in Fig. 26). Attach the radio wave shielding plate DSB to the support SJG so that it is about twice the distance D2).
  • the influence of the reflected wave force reflected by the radio wave shield DSB on the upward traveling wave FW transmitted from the communication antenna ANT is minimized.
  • the traveling wave FW is radiated in an oblique direction, but the traveling wave FW radiated in the oblique direction does not return to the antenna ANT even if it is reflected, so it can be almost ignored.
  • the upward traveling wave FW is reflected through the inlet 1 Since this will have the greatest effect on the measured value of the transmission distance characteristic, it is possible to prevent the measured value of the communication distance characteristic of the inlet 1 from being affected by preventing the reflected wave of the upward traveling wave FW. It becomes possible.
  • the radio wave shield DSB as described above, the upward traveling wave FW transmitted from the antenna ANT can be absorbed by the radio wave shield DSB, and the traveling wave becomes a reflected wave. This prevents problems that cause abnormalities in the measured values of the communication distance characteristics of Inlet 1.
  • FIG. 27 shows an example in which a double-sided adhesive tape or the like is attached to the back surface of the inlet 1 to produce an electronic tag and this is attached to the surface of an article such as a slip 34.
  • the steps after the step of mounting the chip 5 (see FIG. 4) on the antenna 3 are performed on the customer side.
  • the communication distance characteristics of the chip 5 are measured on the shipping side or the like.
  • FIGS. 27 to 28 are a plan view, a side view, and a perspective view of the socket SKT used for measuring the communication distance characteristics of the chip 5, respectively.
  • description of the same parts as those in the first embodiment (Example 1) is omitted.
  • part or all of the present embodiment (example) is part or all of the preceding or subsequent embodiment (example).
  • the socket SKT is formed with an antenna substrate AKB and a chip holder CHG force.
  • These antenna substrate AKB and chip holder CHG are formed of an insulating material (for example, plastic).
  • Antenna pattern ATP having the same shape and material as antenna 3 (see FIG. 1) of inlet 1 in the first embodiment is attached to antenna substrate AKB.
  • Chip 5 is arranged on this antenna pattern ATP.
  • the chip holder COG is attached to the chip holder CHG, and this chip holder COG is structured to fix the chip 5 arranged on the antenna pattern ATP.
  • the chip retainer COG is made of a flexible insulating material (elastomer, etc.) such as urethane rubber, and has a structure that prevents damage to the chip 5 when the chip 5 is fixed on the antenna pattern ATP.
  • RU flexible insulating material
  • the antenna substrate ATB can be used. As shown in Fig. 31, after placing the tip 5 on the antenna pattern ATP by the transport collet HKR, the tip 5 is fixed to the antenna pattern ATP by the terminal retainer TOG. In this state, the communication distance characteristics of chip 5 are measured.
  • FIG. 32 is an explanatory diagram showing a problem when the communication distance characteristic of inlet 1 is measured using a radio wave chest.
  • the description of the same parts as those in the first embodiment (Example 1) and the second embodiment (Example 2) is omitted.
  • part or all of the present embodiment (example) is part or all of the preceding or subsequent embodiment (example).
  • the communication antenna ANT described in the first embodiment and the fixing jig KJG for fixing the communication antenna ANT are arranged.
  • the fixing jig KJG is a radio wave B sound box by the fixing screw KNJ.
  • the communication antenna ANT and the reader RM are electrically connected by a semi-rigid cable KBL.
  • Inlet 1 is fed into the anechoic box DAB in the state of continuous insulation film 2 before being cut into individual inlets 1, and the communication distance characteristics are measured for each inlet 1. It is.
  • the distance D3 between the inlet 1 and the communication antenna ANT is changed by loosening the fixing screw KNJ and changing the position of the communication antenna ANT together with the fixing jig KJG.
  • the radio wave (traveling wave) transmitted from the communication antenna ANT spreads radially from the communication antenna ANT, so that the inlet 1 is moved away from the communication antenna ANT.
  • the power received is smaller.
  • the reflected wave from inlet 1 is also diffused in a radiation manner, the amount of modulation received by communication antenna ANT decreases as the inlet moves away.
  • a variable attenuator KGK is introduced between the communication antenna ANT and the reader RM, and the distance between the inlet 1 and the communication antenna ANT is introduced.
  • the distance dependence is reproduced by changing the attenuation while D3 is fixed.
  • the attenuation characteristic due to the distance between the standard inlet 1 and the communication antenna ANT is examined in advance, and the attenuation is changed by the variable attenuator KGK while keeping the distance D3 constant. The characteristic can be measured.
  • the above-mentioned problems (a)-(f) can be solved.
  • the communication distance is long! Communication distance characteristics can be measured without using a large anechoic box DAB.
  • the number of measurement points increases when measuring the communication distance characteristics, and there is a concern that the measurement time may be lengthened.
  • this embodiment shown in FIG. According to the configuration of 3, it is not necessary to change the distance D3 between the inlet 1 and the communication antenna ANT, and the measurement time can be shortened.
  • the inlet 1 cannot communicate if it is too far away from the communication antenna ANT, but it can also communicate if the received power is too strong and the internal circuit malfunctions. There are cases where it is not possible.
  • the power unavailability of communication at a short distance (under a strong electric field) as shown in FIG. 35 is measured, and then a long distance as shown in FIG. It is possible to communicate in a weak electric field.By measuring the force or power, it is possible to communicate at a distance between them by ensuring that communication is possible at both short and long distances. Guarantee that there is.
  • the measurement is performed from the short distance to the long distance (see FIG. 37).
  • one measurement device is required for communication measurement at short distance (under strong electric field), one for communication measurement at long distance (under weak electric field), and one for measurement of communication distance characteristics.
  • the configuration of the third embodiment as shown in FIG. 34 it becomes possible to perform these three measurements with one measuring device.
  • FIG. 38 shows a circuit when the communication antenna ANT is connected to the reader RM via the variable attenuator KGK.
  • the attenuation of the variable attenuator KGK is set to OdB.
  • the loss of the variable attenuator KGK itself actually exists it cannot be strictly set to OdB. Therefore, there is a problem that power (radio waves) cannot be applied to the inlet 1 from the communication antenna ANT.
  • Embodiment 3 as shown in FIG. 39, a circuit that does not pass through variable attenuator KGK is provided, and this circuit and variable attenuator KGK can be switched by relays RL1 and RL2. . Thereby, the attenuation of the variable attenuator RM itself can be eliminated.
  • the circuit configuration using the bipolar double-headed relays RL3 and RL4 enables variable reduction.
  • the relay contacts can be reduced by one compared to the circuit configuration shown in Fig. 39. Further, the attenuation can be reduced.
  • FIG. 41 is a circuit diagram showing an internal circuit configuration of variable attenuator KGK. As shown in Fig. 41, attenuators GSK1 to GSK7 with various attenuation amounts are arranged in series in the variable attenuator KGK. Attenuators GSK1 to GS K7 There is a circuit KR1—KR7 to make it pass! /. Attenuator GSK1 One GSK7 and circuit KR1-KR7 can be switched by mechanical contact type relays RL11-RL17, so that various attenuations can be formed. Fig. 41 shows the force when seven attenuators GSK1 to GSK7 are arranged in the variable attenuator KGK.
  • More attenuators can be arranged to further set the attenuation of the fine force. If you do not need to set a fine attenuation, or if you want to set only a small attenuation, you may use less than 7 attenuators.
  • the life of the variable attenuator KGK can be determined by repeating the switching of relays RL11-RL17. Therefore, it is necessary to periodically inspect the variable attenuator KGK. Therefore, in the third embodiment, as shown in FIG. 42, the relay RL5 is attached to the variable attenuator circuit KGC including the variable attenuator KGK and the relays RL3 and RL4, and the connection destination includes the communication antenna ANT and the power meter DRK. Switch to the power measurement circuit DSC.
  • the relay RL5 can be switched under the control of the computer COM, and the computer COM reads from the wattmeter DRK whether or not the variable damping circuit KGC force is outputting a predetermined power and performs self-diagnosis.
  • This self-diagnosis is automatically performed before, for example, the measurement of the communication distance characteristic of inlet 1 and after the measurement is completed.
  • the variable attenuator KGK can be inspected regularly without increasing the burden on the operator. As a result, it is possible to improve the overall reliability of the system that measures the communication distance characteristics of inlet 1.
  • Embodiment 1 Example 1
  • Example 2 Example 2
  • Embodiment 3 Example 3
  • part or all of this embodiment is part or all of the preceding or subsequent embodiment (example).
  • Inlet 1 (see Fig. 1) is a device that communicates by radio waves.
  • the strength of the radio wave reaching Inlet 1 depends on the surrounding radio wave environment, so the uncertain factor increases. In order to increase the production efficiency of inlet 1, it is preferable to eliminate this uncertain factor as much as possible. Since the inlet 1 itself operates at a high frequency current, radio waves are not necessarily required when measuring the communication distance characteristics of the inlet 1. Rather, for accurate measurement, it is preferable to carry out measurement through radio waves as much as possible.
  • the chip 5 (see Fig. 4) is mounted on the antenna 3 (see Fig. 1) using the measuring jig SJG1 as shown in Fig. 43 before the step of mounting the chip 5 (see Fig. 4). Measure the communication distance characteristics of 5.
  • the configuration (circuit configuration) of the measurement system other than the measurement jig SJG1 is, for example, the same as the configuration of the measurement system shown in FIG. 42 in the third embodiment (see FIG. 44).
  • Measurement jig SJG1 has a structure in which socket SKT2 and signal terminal ST1 are attached to housing KT1.
  • the top plate of the housing KT1 to which the socket SKT2 is attached has a structure in which a copper pattern is attached to, for example, a glass epoxy board, and the copper pattern is attached to the inside of the housing KT1.
  • the side plate to which the signal terminal ST1 is attached and other side plates are made of metal such as aluminum or iron.
  • the chip 5 mounted in the socket SKT2 is electrically connected to the signal terminal ST1 via the microstrip line MSL (the copper pattern).
  • the chip 5 mounted on the socket SKT2 is also electrically connected to the ground wiring GL that is electrically connected to the ground potential.
  • the characteristic impedance of the measurement system circuit including the variable attenuation circuit KGC see Fig.
  • an impedance matching circuit ISK is inserted between the chip 5 and the microstrip line MSL and the ground wiring GL to match the characteristic impedance of both.
  • the impedance matching circuit ISK is an impedance converter IHK attached to the microstrip line MSL (see Fig. 45).
  • An open stub can be illustrated as an impedance change lHK.
  • the anechoic box for forming the measurement environment becomes unnecessary, and the measurement jig SJG1 can be downsized.
  • a measurement jig for a transistor can be used as the measurement jig SJG1. This makes it possible to design the measuring jig SJG1 so that the measurement of the communication distance characteristics of chip 5 can be performed at high speed.
  • the communication distance characteristic of chip 5 is measured before the step of mounting chip 5 (see FIG. 4) on antenna 3 (see FIG. 1) using measurement jig SJG1 (see FIG. 43).
  • the communication distance characteristic of the inlet 1 is measured in a situation where the chip 5 is mounted on the antenna 3 (see FIG. 1).
  • the same parts as those in Embodiment 1 (Example 1), Embodiment 2 (Example 2), Embodiment 3 (Example 3), and Embodiment 4 (Example 4) are described. The description is omitted.
  • a part or all of the present embodiment (example) is a part or all of the preceding embodiment (example).
  • FIG. 47 is a perspective view of measurement jig S JG2 used for measuring the communication distance characteristic of inlet 1 in the fifth embodiment.
  • the configuration (circuit configuration) of the measurement system other than the measurement jig SJG2 is, for example, the same as the configuration of the measurement system shown in FIG.
  • the measuring tool SJG2 has a structure in which, for example, a dipole antenna DPA and a signal terminal ST2 are attached to the housing KT2.
  • the top plate of the housing KT2 to which the dipole antenna DPA is attached has a structure in which a copper pattern is attached to a glass epoxy substrate, for example, in the same manner as the measurement jig SJG1 described in the fourth embodiment.
  • the copper pattern is attached inside the case KT2.
  • the side plate to which signal terminal ST2 is attached The other side plates are formed of a metal such as aluminum or iron as in the measurement jig SJG1 of the fourth embodiment.
  • the dipole antenna DPA is arranged in the housing KT2, and is electrically connected to the signal terminal ST2 via the balun BRN inside the measuring jig SJG2 (see FIG. 48).
  • An opening reaching the dipole antenna DPA is provided in the top plate of the housing KT2, and radio waves are emitted from the opening in a semicircular shape to communicate with the inlet 1.
  • a shield SLD having a radio wave absorbing material force as shown in FIG. 49 is arranged to prevent radio waves radiated in a semicircular shape from radiating in directions other than upward. As a result, it is possible to prevent a malfunction that communicates with the inlet 1 other than the measurement target.
  • the insulation film 2 before being divided into individual inlets 1 is passed through the top surface (top plate) of the housing KT2 and the shield SLD, and the insulation film 2 is formed. Measure the communication distance characteristics of inlet 1 continuously.
  • a monopole antenna MPA may be used instead of the dipole antenna DPA (see Fig. 50).
  • the monopole antenna MPA is electrically connected to the signal terminal ST2 via the shielded cable SKB and V inside the measuring jig SJG2 (see Fig. 51).
  • the communication antenna of the measurement jig SJG2 becomes a dipole antenna DPA or a monopole antenna MPA, resulting in a low gain.
  • the dipole antenna (antenna 3) of the force inlet 1 itself it is possible to bring them close to each other.
  • the power received by inlet 1 can be made equivalent to the case of using a one-patch communication antenna ANT (see Fig. 33, for example).
  • inlet 1 and dipole antenna DP A or monopole antenna can be obtained by using variable attenuator KGK.
  • the communication limit value of the inlet 1 can be measured. As a result, quality control of inlet 1 can be facilitated. In addition, management with the standard sample is also possible when managing the measuring jig SJG2.
  • the positional accuracy is not required to be stricter than the measurement using the auxiliary antenna. . Therefore, management of the measuring jig SJG2 can be facilitated.
  • the antenna 3 is attached so that the antenna 3 contacts the dipole antenna DPA or the monopole antenna MPA.
  • the characteristics of the chip 5 itself can be measured by passing the insulating film 2 with the surface facing toward the housing KT2.
  • a plurality of measurement jigs SJG2 (housing KT2) can be used side by side. That is, as shown in Fig. 52, By arranging the tools SJG2 (housing KT2) and allowing the insulating film 3 to pass through all of these measuring jigs SJG2, the communication distance characteristics of a plurality of inlets 1 can be measured at a time. As a result, the time required for measuring the communication distance characteristics of inlet 1 can be further reduced.
  • the force that constitutes the antenna using the Cu foil attached to the insulating film made of polyimide resin is used, for example, the A1 (aluminum) foil attached to one surface of the insulating film.
  • the material cost of the inlet can be reduced by configuring the antenna or by configuring the insulating film with a less expensive resin (for example, polyethylene terephthalate) than the polyimide resin.
  • the antenna is composed of A1 foil, it is preferable to connect the Au bump of the chip and the antenna by, for example, forming an AuZAl joint using both ultrasonic and heating.
  • the method for manufacturing an inlet for an electronic tag of the present invention can be applied to a step of measuring the communication distance characteristics of the electronic tag.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Credit Cards Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

To shorten the time period required for measuring the communication characteristics of a non-contact type electronic tag, and to execute the measurement easily. A reader machine (RM) and a testing tool (TM) are electrically connected with a computer (COM) so that the decision and record of the communication results and the movement of the testing tool (TM) (or an arm (AM) holding an inlet (1)) may be controlled by the software of the computer (COM). When a worker (WK) inputs a measurement starting signal to the computer (COM), the measurement is started from the position, at which the distance between the inlet (1) and a communication antenna (ANT) is 0 mm, and is automatically executed without any operation of the worker till that distance becomes the final measurement position.

Description

明 細 書  Specification
電子タグ用インレットの製造方法  Method for manufacturing inlet for electronic tag
技術分野  Technical field
[0001] 本発明は、電子タグ用インレットの製造技術に関し、特に、電子タグの通信距離特 性を測定する工程に適用して有効な技術に関するものである。  The present invention relates to an electronic tag inlet manufacturing technique, and more particularly to a technique effective when applied to a process of measuring the communication distance characteristic of an electronic tag.
背景技術  Background art
[0002] 日本特開 2004-286566号公報 (特許文献 1)には、 ICチップやアンテナを損傷さ せることなぐ所定方向に沿って搬送される ICロールラベルの各 ICラベルを所望の通 信距離で適正に通信検査することのできる通信検査装置について開示されている。  [0002] Japanese Patent Application Laid-Open No. 2004-286566 (Patent Document 1) discloses that each IC label of an IC roll label conveyed along a predetermined direction without damaging an IC chip or an antenna has a desired communication distance. The communication inspection device that can properly perform the communication inspection is disclosed.
[0003] また、日本特開 2004-287800号公報(特許文献 2)には、 ICカードのような単片 形態の RF— IDメディアの検査を迅速に処理することのできる IC製品検査装置につい て開示されている。  [0003] Also, Japanese Patent Application Laid-Open No. 2004-287800 (Patent Document 2) describes an IC product inspection apparatus capable of quickly processing an inspection of a single piece of RF-ID media such as an IC card. It is disclosed.
[0004] また、日本特開 2003-44810号公報 (特許文献 3)には、ノ ソコンに接続したリー ダ'ライタを用いて ICカードの通信距離を測定する技術が開示されており、この技術 によれば 90mmの距離力も通信できることを確認できた旨の記載がある。  [0004] Japanese Patent Laid-Open No. 2003-44810 (Patent Document 3) discloses a technique for measuring the communication distance of an IC card using a reader / writer connected to a notebook computer. According to the report, it was confirmed that it was possible to communicate with a distance force of 90 mm.
[0005] また、日本特開 2000— 9776号公報 (特許文献 4)には、外界からの雑音電波を遮 断し、被試験機器 (EUT)のアンテナと、測定装置側のアンテナ間とで空中電波の擬 似的な授受を行い、かつ両アンテナのアンテナ間距離を擬似的に任意可変可能と する無線通信特性試験装置にっ ヽて開示されて!、る。  [0005] In addition, Japanese Patent Laid-Open No. 2000-9776 (Patent Document 4) discloses that the noise radio wave from the outside is blocked and the antenna under test (EUT) and the antenna on the measuring device side are in the air. This is a wireless communication characteristic test apparatus that can simulate the transmission and reception of radio waves and can change the distance between both antennas in a pseudo manner.
[0006] また、日本特開平 11-72518号公報 (特許文献 5)には、従来の技術として、アンテ ナに代えて同軸ケーブルや導波管を介して通信機器を接続し、空間距離減衰を与 える可変減衰器または固定減衰器を同軸ケーブルや導波管の途中に挿入して特性 測定および評価試験を行う技術にっ ヽて開示されて ヽる。  [0006] Also, in Japanese Patent Laid-Open No. 11-72518 (Patent Document 5), as a conventional technique, a communication device is connected via a coaxial cable or a waveguide instead of an antenna to reduce the spatial distance attenuation. A technique for performing characteristic measurement and evaluation test by inserting a variable attenuator or a fixed attenuator in the middle of a coaxial cable or waveguide is disclosed.
[0007] また、日本特開 2004— 220141号公報 (特許文献 6 (対応米国特許公報 USP5, 6 44, 245) )には、絶縁フィルム上に多数の ICインレットが形成された状態で、検査対 象である ICインレットの良、不良を精度よく検査する方法が開示されている。  [0007] In addition, Japanese Patent Application Laid-Open No. 2004-220141 (Patent Document 6 (corresponding US Patent Publication USP5, 644, 245)) describes an inspection pair with a large number of IC inlets formed on an insulating film. A method for accurately inspecting the quality and defect of an IC inlet, which is an elephant, is disclosed.
特許文献 1:特開 2004-286566号公報 特許文献 2:特開 2004-287800号公報 Patent Document 1: Japanese Patent Laid-Open No. 2004-286566 Patent Document 2: JP 2004-287800 A
特許文献 3:特開 2003-44810号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-44810
特許文献 4 :特開 2000-9776号公報  Patent Document 4: JP 2000-9776 A
特許文献 5:特開平 11-72518号公報  Patent Document 5: Japanese Patent Laid-Open No. 11-72518
特許文献 6:特開 2004— 220141号公報  Patent Document 6: Japanese Patent Application Laid-Open No. 2004-220141
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 非接触型の電子タグは、半導体チップ (以下、単にチップと記す)内のメモリ回路に 所望のデータを記憶させ、マイクロ波(その他 RF (Radio Frequency)電波または電磁 波)を使ってこのデータを読み取るようにしたタグである。電子タグは、チップ内のメモ リ回路にデータを記憶させるため、バーコードを利用したタグなどに比べて大容量の データを記憶できる利点がある。また、メモリ回路に記憶させたデータは、バーコード に記憶させたデータに比べて不正な改竄が困難であるという利点がある。  [0008] A non-contact type electronic tag stores desired data in a memory circuit in a semiconductor chip (hereinafter simply referred to as a chip) and uses microwaves (other RF (Radio Frequency) radio waves or electromagnetic waves). This tag is designed to read this data. Since electronic tags store data in a memory circuit in the chip, they have the advantage of storing large amounts of data compared to tags that use barcodes. In addition, the data stored in the memory circuit has the advantage that unauthorized tampering is difficult compared to the data stored in the barcode.
[0009] 本発明者らは、非接触型の電子タグの通信特性を測定する技術につ!ヽて検討して いる。その中で、本発明者らは、以下のような課題を見出した。  [0009] The present inventors have developed a technique for measuring the communication characteristics of a non-contact type electronic tag! I'm considering it. Among them, the present inventors have found the following problems.
[0010] すなわち、非接触型の電子タグの通信特性を取得する際には、電子タグと通信ァ ンテナとの間の距離を手作業で少しずつ変えつつ、通信可能 (データ読み取り可能) もしくは通信不可能 (データ読み取り不可能)の通信状態を記録して!/、き、読み取り 限界距離を求めて通信距離特性としている。そのため、 1個のサンプルの通信特性 を取得するのに時間がかかり、複数個のサンプル力 通信特性を取得して標準通信 特性を決定するのに膨大な時間を要してしまう課題が存在する。  [0010] That is, when acquiring the communication characteristics of a non-contact type electronic tag, communication can be performed (data can be read) or communication while the distance between the electronic tag and the communication antenna is manually changed little by little. The communication status of impossible (data cannot be read) is recorded! /, And the reading limit distance is obtained as the communication distance characteristic. Therefore, it takes time to acquire the communication characteristics of one sample, and there is a problem that it takes a lot of time to determine the standard communication characteristics by acquiring a plurality of sample power communication characteristics.
[0011] また、電子タグを選別する工程においては、上記標準通信特性をもとに近距離およ び遠距離の 2点で通信してデータの読み取りが可能であることを確認し、その 2点間 の間の距離でも読めるものとして保証している。しかしながら、選別に用いる選別機は 、電子タグと通信アンテナとの間の距離を容易に変更できる構造となって 、な 、こと から、特殊な治具を構築しないとその距離を変更することが困難となっている。そのた め、その距離を変更する度に測定機にストレスを加えてしまうことなり、測定機の管理 が困難になってしまう課題が存在する。 [0012] また、上記通信測定を測定する際には、電波環境が測定結果に大きく影響すること から、電波暗箱内に測定環境を構築しなければならない。そのため、測定対象の電 子タグを移動させるのに用いるハンドラは、限られた空間内で構築および配置するこ とになり、電子タグを高速で移動させることのできるハンドラを設計し難くなる課題が 存在する。 [0011] In addition, in the process of selecting an electronic tag, it is confirmed that data can be read by communicating at two points, short distance and long distance, based on the standard communication characteristics. Guarantees that the distance between points is also readable. However, the sorter used for sorting has a structure in which the distance between the electronic tag and the communication antenna can be easily changed. Therefore, it is difficult to change the distance without constructing a special jig. It has become. For this reason, each time the distance is changed, stress is applied to the measuring instrument, which makes it difficult to manage the measuring instrument. [0012] Further, when measuring the communication measurement, since the radio wave environment greatly affects the measurement result, the measurement environment must be constructed in the anechoic box. For this reason, the handler used to move the electronic tag to be measured is constructed and arranged in a limited space, which makes it difficult to design a handler that can move the electronic tag at high speed. Exists.
[0013] 本願に開示された一つの代表的な発明の一つの目的は、非接触型の電子タグの 通信特性を測定に要する時間を短縮できる技術を提供することにある。  One object of one typical invention disclosed in the present application is to provide a technique capable of shortening the time required for measuring the communication characteristics of a non-contact type electronic tag.
[0014] また、本願に開示された一つの代表的な発明の他の目的は、非接触型の電子タグ の通信特性の測定を簡易に実施できる技術を提供することにある。  [0014] Further, another object of one representative invention disclosed in the present application is to provide a technique capable of easily measuring the communication characteristics of a non-contact type electronic tag.
課題を解決するための手段  Means for solving the problem
[0015] 本願において開示される発明のうち、一つの代表的なものの概要を簡単に説明す れば、次のとおりである。 [0015] An outline of one representative one of the inventions disclosed in the present application will be briefly described as follows.
[0016] 1.電子タグ用インレットの製造方法は、以下の工程を含む。 [0016] 1. The method for manufacturing an inlet for an electronic tag includes the following steps.
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)所定周波数の電波を受信する複数の第 1のアンテナを用意する工程、  (b) preparing a plurality of first antennas for receiving radio waves of a predetermined frequency;
(c)前記複数の第 1のアンテナのそれぞれに前記半導体チップを接続する工程、 (c) connecting the semiconductor chip to each of the plurality of first antennas,
(d)前記 (c)工程後、前記複数個の半導体チップのそれぞれを封止することによって 、複数個のインレットを形成する工程、 (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
(e)前記複数個のインレットのそれぞれに前記所定周波数の第 1電波を選択的に照 射することによって、前記複数個のインレットの通信距離特性を検査する工程。  (e) A step of inspecting communication distance characteristics of the plurality of inlets by selectively irradiating each of the plurality of inlets with the first radio wave having the predetermined frequency.
[0017] ここで、前記(e)工程は、  [0017] Here, the step (e)
(el)前記インレットと通信を行う第 2のアンテナ上に前記インレットを配置し、下方か らの電波の反射を防ぎ上方からの電波を遮断する電波吸収手段を前記第 2のアンテ ナおよび前記インレット上に離間して配置する工程、  (el) The inlet is disposed on a second antenna that communicates with the inlet, and a radio wave absorbing means that prevents reflection of radio waves from below and blocks radio waves from above is provided as the second antenna and the inlet. A step of being spaced apart above,
(e2)前記 (el)工程後、前記インレットと前記第 2のアンテナとの間の距離を所定の 第 1の距離に保ち、前記インレットと前記第 2のアンテナとを通信させる工程、 (e2) After the step (el), maintaining a distance between the inlet and the second antenna at a predetermined first distance, and communicating the inlet and the second antenna;
(e3)前記第 1の距離を所定量だけ変化させて保ち、前記 (e2)工程を繰り返す工程 (e4)前記 (e3)工程を所定回繰り返す工程、 (e3) a step of repeating the step (e2) while keeping the first distance changed by a predetermined amount (e4) a step of repeating the step (e3) a predetermined number of times,
を含み、  Including
前記インレットは、前記第 2のアンテナ上にて上下動する保持手段によって保持さ れ、  The inlet is held by holding means that moves up and down on the second antenna,
前記電波吸収手段は、前記保持手段保持手段に中継手段を介して取り付けられ、 前記保持手段の動作に連動し、  The radio wave absorbing means is attached to the holding means holding means via a relay means, interlocked with the operation of the holding means,
前記第 2のアンテナは、データ読み取り手段と電気的に接続され、  The second antenna is electrically connected to the data reading means;
前記データ読み取り手段および前記保持手段は、コンピュータに電気的に接続さ れ、  The data reading means and the holding means are electrically connected to a computer,
前記コンピュータは、前記保持手段の動作をソフトウェア制御し、前記第 1の距離 および通信結果を記録する。  The computer controls the operation of the holding means by software and records the first distance and the communication result.
[0018] 2.電子タグ用インレットの製造方法は、以下の工程を含む。 [0018] 2. The electronic tag inlet manufacturing method includes the following steps.
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)所定周波数の電波を受信する複数の第 1のアンテナを用意する工程、  (b) preparing a plurality of first antennas for receiving radio waves of a predetermined frequency;
(c)前記複数の第 1のアンテナのそれぞれに前記半導体チップを接続する工程、 (c) connecting the semiconductor chip to each of the plurality of first antennas,
(d)前記 (c)工程後、前記複数個の半導体チップのそれぞれを封止することによって 、複数個のインレットを形成する工程、 (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
(e)前記複数個のインレットのそれぞれに前記所定周波数の第 1電波を選択的に照 射することによって、前記複数個のインレットの通信距離特性を検査する工程。  (e) A step of inspecting communication distance characteristics of the plurality of inlets by selectively irradiating each of the plurality of inlets with the first radio wave having the predetermined frequency.
[0019] ここで、前記(e)工程は、  [0019] Here, the step (e)
(el)コンピュータに電気的に接続されたデータ読み取り手段と、前記コンピュータぉ よび前記データ読み取り手段と電気的に接続された可変減衰器とを介して電気的に 接続され前記インレットと通信を行う第 2のアンテナ上に前記インレットを配置し、下方 力 の電波の反射を防ぎ上方からの電波を遮断する電波吸収手段を前記第 2のアン テナおよび前記インレット上に離間して配置する工程、  (el) a data reading means electrically connected to the computer, and a variable attenuator electrically connected to the computer and the data reading means, and is electrically connected to communicate with the inlet; Disposing the inlet on the second antenna, and disposing radio wave absorbing means for preventing reflection of radio waves of lower force and blocking radio waves from above on the second antenna and the inlet;
(e2)前記 (el)工程後、前記インレットと前記第 2のアンテナとの間の距離を所定の 第 1の距離に保ち、前記インレットと前記第 2のアンテナとを通信させる工程、(e2) After the step (el), a distance between the inlet and the second antenna is set to a predetermined value. Maintaining the first distance and communicating the inlet and the second antenna;
(e3)前記可変減衰器の減衰量を所定量だけ変化させて保ち、前記 (e2)工程を繰り 返す工程、 (e3) a step of changing the attenuation of the variable attenuator by a predetermined amount, and repeating the step (e2),
(e4)前記 (e3)工程を所定回繰り返す工程、  (e4) a step of repeating the step (e3) a predetermined number of times,
を含み、  Including
前記コンピュータは、前記可変減衰器の前記減衰量および通信結果を記録する。  The computer records the attenuation amount and communication result of the variable attenuator.
[0020] 3.電子タグ用インレットの製造方法は、以下の工程を含む。 [0020] 3. The method for manufacturing an inlet for an electronic tag includes the following steps.
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)所定周波数の電波を受信する第 1のアンテナが取り付けられた第 1のソケットを用 意する工程、  (b) providing a first socket having a first antenna for receiving radio waves of a predetermined frequency;
(c)前記第 1のアンテナと前記半導体チップとが電気的に接続するように前記半導体 チップを前記第 1のソケットに取り付ける工程、  (c) attaching the semiconductor chip to the first socket so that the first antenna and the semiconductor chip are electrically connected;
(d)前記第 1のソケットに前記所定周波数の第 1電波を選択的に照射することによつ て、前記複数個の半導体チップの通信距離特性を検査する工程。  (d) A step of inspecting the communication distance characteristics of the plurality of semiconductor chips by selectively irradiating the first socket with the first radio wave having the predetermined frequency.
[0021] ここで、前記(d)工程は、  [0021] Here, the step (d) includes:
(dl)前記半導体チップと通信を行う第 2のアンテナ上に前記第 1のソケットを配置し 、下方からの電波の反射を防ぎ上方からの電波を遮断する電波吸収手段を前記第 2 のアンテナおよび前記第 1のソケット上に離間して配置する工程、  (dl) The first socket is disposed on a second antenna that communicates with the semiconductor chip, and a radio wave absorber that prevents radio waves from being reflected from below and blocks radio waves from above is provided as the second antenna and Disposing the first socket on the first socket,
(d2)前記 (dl)工程後、前記第 1のソケットと前記第 2のアンテナとの間の距離を所定 の第 1の距離に保ち、前記第 1のソケットと前記第 2のアンテナとを通信させる工程、 (d3)前記第 1の距離を所定量だけ変化させて保ち、前記 (e2)工程を繰り返す工程  (d2) After the step (dl), the distance between the first socket and the second antenna is kept at a predetermined first distance, and the first socket and the second antenna communicate with each other. (D3) a step of changing the first distance by a predetermined amount and repeating the step (e2)
(d4)前記 (d3)工程を所定回繰り返す工程、 (d4) a step of repeating the step (d3) a predetermined number of times,
を含み、  Including
前記第 1のソケットは、前記第 2のアンテナ上にて上下動する保持手段によって保 持され、  The first socket is held by holding means that moves up and down on the second antenna;
前記電波吸収手段は、前記保持手段保持手段に中継手段を介して取り付けられ、 前記保持手段の動作に連動し、 The radio wave absorbing means is attached to the holding means holding means via a relay means, In conjunction with the operation of the holding means,
前記第 2のアンテナおよび前記保持手段は、コンピュータに電気的に接続され、 前記コンピュータは、前記保持手段の動作をソフトウェア制御し、前記第 1の距離 および通信結果を記録する。  The second antenna and the holding unit are electrically connected to a computer, and the computer controls the operation of the holding unit by software and records the first distance and the communication result.
[0022] 4.電子タグ用インレットの製造方法は、以下の工程を含む。 [0022] 4. The method for manufacturing an inlet for an electronic tag includes the following steps.
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)前記半導体チップを取り付ける第 1のソケットおよびインピーダンス整合回路を有 する測定治具と、前記測定治具と電気的に接続されたコンピュータ、データ読み取り 手段および可変減衰器とを用意する工程、  (b) preparing a measurement jig having a first socket for mounting the semiconductor chip and an impedance matching circuit, a computer electrically connected to the measurement jig, a data reading means, and a variable attenuator;
(c)前記第 1のソケットに前記半導体チップを取り付け、前記半導体チップと前記イン ピーダンス整合回路とを電気的に接続する工程、  (c) attaching the semiconductor chip to the first socket and electrically connecting the semiconductor chip and the impedance matching circuit;
(d)前記第 1のソケットに前記半導体チップを取り付けた状況下で、前記半導体チッ プと前記コンピュータとを通信させる工程、  (d) a step of causing the semiconductor chip and the computer to communicate with each other in a state where the semiconductor chip is attached to the first socket;
(e)前記可変減衰器の減衰量を所定量だけ変化させて保ち、前記 (d)工程を繰り返 す工程、  (e) changing and maintaining the attenuation of the variable attenuator by a predetermined amount, and repeating the step (d),
(f)前記 (e)工程を所定回繰り返し、前記複数個の半導体チップの通信距離特性を 検査する工程。  (f) A step of inspecting communication distance characteristics of the plurality of semiconductor chips by repeating the step (e) a predetermined number of times.
[0023] ここで、前記コンピュータは、前記可変減衰器の前記減衰量および通信結果を記 録する。  Here, the computer records the attenuation amount of the variable attenuator and a communication result.
[0024] 5.電子タグ用インレットの製造方法は、以下の工程を含む。  [0024] 5. The method for manufacturing an inlet for an electronic tag includes the following steps.
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)所定周波数の電波を受信する複数の第 1のアンテナが互いに分離された状態で 形成された絶縁フィルムを用意する工程、  (b) preparing an insulating film formed with a plurality of first antennas that receive radio waves of a predetermined frequency separated from each other;
(c)前記絶縁フィルムに形成された前記複数の第 1のアンテナのそれぞれに前記半 導体チップを接続する工程、  (c) connecting the semiconductor chip to each of the plurality of first antennas formed on the insulating film;
(d)前記 (c)工程後、前記複数個の半導体チップのそれぞれを封止することによって 、前記絶縁フィルム上に複数個のインレットを形成する工程、 (d) After the step (c), by sealing each of the plurality of semiconductor chips A step of forming a plurality of inlets on the insulating film;
(e)前記インレットと通信を行う第 2のアンテナと、前記第 2のアンテナ上にて下方から の電波の反射を防ぎ上方からの電波を遮断する電波吸収手段とを有する測定治具 を用意する工程、  (e) providing a measurement jig having a second antenna that communicates with the inlet, and a radio wave absorbing means that prevents radio waves from being reflected from below on the second antenna and blocking radio waves from above Process,
(f)前記測定治具と電気的に接続されたコンピュータ、データ読み取り手段および可 変減衰器とを用意する工程、  (f) preparing a computer, a data reading means and a variable attenuator electrically connected to the measurement jig;
(g)前記絶縁フィルムを前記測定治具の前記第 2のアンテナと前記電波吸収手段と の間を通過させ、前記インレットと前記コンピュータとを通信させる工程、  (g) passing the insulating film between the second antenna of the measuring jig and the radio wave absorbing means, and communicating the inlet and the computer;
(h)前記可変減衰器の減衰量を所定量だけ変化させて保ち、前記 (g)工程を繰り返 す工程、  (h) A step of changing the attenuation of the variable attenuator by a predetermined amount and maintaining the step (g),
(i)前記 (h)工程を所定回繰り返し、前記複数個のインレットの通信距離特性を検査 する工程。  (i) The step of inspecting the communication distance characteristics of the plurality of inlets by repeating the step (h) a predetermined number of times.
[0025] ここで、前記コンピュータは、前記可変減衰器の前記減衰量および通信結果を記 録する。  Here, the computer records the attenuation amount and the communication result of the variable attenuator.
[0026] 本願に含まれるその他の発明の概要を箇条書きにするとすれば、以下のごとくであ る。  [0026] If the summary of other inventions included in the present application is itemized, it is as follows.
1.以下の工程を含む電子タグ用インレットの製造方法:  1. A method for manufacturing an inlet for an electronic tag including the following steps:
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)所定周波数の電波を受信する複数の第 1のアンテナを用意する工程、  (b) preparing a plurality of first antennas for receiving radio waves of a predetermined frequency;
(c)前記複数の第 1のアンテナのそれぞれに前記半導体チップを接続する工程、 (c) connecting the semiconductor chip to each of the plurality of first antennas,
(d)前記 (c)工程後、前記複数個の半導体チップのそれぞれを封止することによって 、複数個のインレットを形成する工程、 (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
(e)前記複数個のインレットのそれぞれに前記所定周波数の第 1電波を選択的に照 射することによって、前記複数個のインレットの通信距離特性を検査する工程。  (e) A step of inspecting communication distance characteristics of the plurality of inlets by selectively irradiating each of the plurality of inlets with the first radio wave having the predetermined frequency.
[0027] ここで、前記(e)工程は、  [0027] Here, the step (e)
(el)前記インレットと通信を行う第 2のアンテナ上に前記インレットを配置し、下方か らの電波の反射を防ぎ上方からの電波を遮断する電波吸収手段を前記第 2のアンテ ナおよび前記インレット上に離間して配置する工程、 (el) The inlet is disposed on a second antenna that communicates with the inlet, and radio wave absorbing means for preventing radio waves from being reflected from below and blocking radio waves from above is provided for the second antenna. Na and a step of disposing them on the inlet,
(e2)前記 (el)工程後、前記インレットと前記第 2のアンテナとの間の距離を所定の 第 1の距離に保ち、前記インレットと前記第 2のアンテナとを通信させる工程、 (e2) After the step (el), maintaining a distance between the inlet and the second antenna at a predetermined first distance, and communicating the inlet and the second antenna;
(e3)前記第 1の距離を所定量だけ変化させて保ち、前記 (e2)工程を繰り返す工程 (e3) a step of repeating the step (e2) while keeping the first distance changed by a predetermined amount
(e4)前記 (e3)工程を所定回繰り返す工程、 (e4) a step of repeating the step (e3) a predetermined number of times,
を含み、 Including
前記インレットは、前記第 2のアンテナ上にて上下動する保持手段によって保持さ れ、  The inlet is held by holding means that moves up and down on the second antenna,
前記電波吸収手段は、前記保持手段保持手段に中継手段を介して取り付けられ、 前記保持手段の動作に連動し、  The radio wave absorbing means is attached to the holding means holding means via a relay means, interlocked with the operation of the holding means,
前記第 2のアンテナは、データ読み取り手段と電気的に接続され、  The second antenna is electrically connected to the data reading means;
前記データ読み取り手段および前記保持手段は、コンピュータに電気的に接続さ れ、  The data reading means and the holding means are electrically connected to a computer,
前記コンピュータは、前記保持手段の動作をソフトウェア制御し、前記第 1の距離 および通信結果を記録する。  The computer controls the operation of the holding means by software and records the first distance and the communication result.
2.前記項 1記載の電子タグ用インレットの製造方法にぉ 、て、  2. In the manufacturing method of the electronic tag inlet according to item 1,
前記電波吸収手段は、前記インレットの通信限界距離より十分に大き!ヽ第 2の距離 だけ前記インレットから離間した位置に配置する。  The electromagnetic wave absorbing means is disposed at a position sufficiently larger than the communication limit distance of the inlet by a distance of a second distance from the inlet.
3.前記項 2記載の電子タグ用インレットの製造方法において、  3. In the method for manufacturing an inlet for an electronic tag according to item 2,
前記第 2の距離は、前記インレットの通信限界距離の約 2倍である。  The second distance is approximately twice the communication limit distance of the inlet.
4.前記項 1記載の電子タグ用インレットの製造方法にぉ 、て、  4. The method for manufacturing an inlet for an electronic tag according to item 1 above,
前記 (e3)工程における前記保持手段の動作時間は約 0. 1秒以下である。  The operation time of the holding means in the step (e3) is about 0.1 second or less.
5.前記項 1記載の電子タグ用インレットの製造方法において、  5. In the method for manufacturing an inlet for an electronic tag according to item 1,
前記 (e2)工程および前記 (e3)工程における前記保持手段の位置精度は約 0. 1 mm以下  The positional accuracy of the holding means in the step (e2) and the step (e3) is about 0.1 mm or less.
6.以下の工程を含む電子タグ用インレットの製造方法:  6. A method for manufacturing an inlet for an electronic tag including the following steps:
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、 (a) A plurality of semiconductor chips having a memory circuit in which predetermined data is written A process of dividing the body wafer into pieces,
(b)所定周波数の電波を受信する複数の第 1のアンテナを用意する工程、  (b) preparing a plurality of first antennas for receiving radio waves of a predetermined frequency;
(c)前記複数の第 1のアンテナのそれぞれに前記半導体チップを接続する工程、 (c) connecting the semiconductor chip to each of the plurality of first antennas,
(d)前記 (c)工程後、前記複数個の半導体チップのそれぞれを封止することによって 、複数個のインレットを形成する工程、 (d) a step of forming a plurality of inlets by sealing each of the plurality of semiconductor chips after the step (c);
(e)前記複数個のインレットのそれぞれに前記所定周波数の第 1電波を選択的に照 射することによって、前記複数個のインレットの通信距離特性を検査する工程。 ここで、前記(e)工程は、  (e) A step of inspecting communication distance characteristics of the plurality of inlets by selectively irradiating each of the plurality of inlets with the first radio wave having the predetermined frequency. Here, the step (e)
(el)コンピュータに電気的に接続されたデータ読み取り手段と、前記コンピュータぉ よび前記データ読み取り手段と電気的に接続された可変減衰器とを介して電気的に 接続され前記インレットと通信を行う第 2のアンテナ上に前記インレットを配置し、下方 力 の電波の反射を防ぎ上方からの電波を遮断する電波吸収手段を前記第 2のアン テナおよび前記インレット上に離間して配置する工程、  (el) a data reading means electrically connected to the computer, and a variable attenuator electrically connected to the computer and the data reading means, and is electrically connected to communicate with the inlet; Disposing the inlet on the second antenna, and disposing radio wave absorbing means for preventing reflection of radio waves of lower force and blocking radio waves from above on the second antenna and the inlet;
(e2)前記 (el)工程後、前記インレットと前記第 2のアンテナとの間の距離を所定の 第 1の距離に保ち、前記インレットと前記第 2のアンテナとを通信させる工程、 (e3)前記可変減衰器の減衰量を所定量だけ変化させて保ち、前記 (e2)工程を繰り 返す工程、  (e2) After the step (el), maintaining the distance between the inlet and the second antenna at a predetermined first distance, and communicating the inlet and the second antenna; (e3) Changing the attenuation of the variable attenuator by a predetermined amount and maintaining the step (e2),
(e4)前記 (e3)工程を所定回繰り返す工程、  (e4) a step of repeating the step (e3) a predetermined number of times,
を含み、 Including
前記コンピュータは、前記可変減衰器の前記減衰量および通信結果を記録する。 The computer records the attenuation amount and communication result of the variable attenuator.
7.前記項 6記載の電子タグ用インレットの製造方法にぉ 、て、 7. The method for manufacturing an inlet for an electronic tag according to item 6 above,
前記コンピュータは、前記可変減衰器の前記減衰量の変化をソフトウェア制御する  The computer performs software control of a change in the attenuation amount of the variable attenuator.
8.前記項 6記載の電子タグ用インレットの製造方法において、 8. In the method for manufacturing an inlet for an electronic tag according to item 6,
前記電波吸収手段は、前記半導体チップの通信限界距離より十分に大き!、第 2の 距離だけ前記第 1のソケットから離間した位置に配置する。  The radio wave absorbing means is disposed at a position sufficiently larger than the communication limit distance of the semiconductor chip and spaced from the first socket by a second distance.
9.前記項 8記載の電子タグ用インレットの製造方法において、  9. In the method for manufacturing an inlet for an electronic tag according to item 8,
前記第 2の距離は、前記半導体チップの通信限界距離の約 2倍である。 10.前記項 6記載の電子タグ用インレットの製造方法において、 前記可変減衰器は、機械接点や半導体回路を用いた可変減衰器であり、 前記コンピュータには、電力計が電気的に接続され、 The second distance is about twice the communication limit distance of the semiconductor chip. 10. In the method of manufacturing an inlet for an electronic tag according to the item 6, the variable attenuator is a variable attenuator using a mechanical contact or a semiconductor circuit, and a wattmeter is electrically connected to the computer,
前記可変減衰器には、前記第 2のアンテナと前記電力計との間で回路を切り換える リレーが電気的に接続され、  A relay that switches a circuit between the second antenna and the power meter is electrically connected to the variable attenuator,
前記 (el)工程前および前記 (e4)工程後において、前記コンピュータは前記リレー を前記電力計側に切り換え、所定の電力が出力されている力否かを確認する。  Before the step (el) and after the step (e4), the computer switches the relay to the wattmeter side and confirms whether or not a predetermined power is being output.
11.以下の工程を含む電子タグ用インレットの製造方法:  11. A method for manufacturing an inlet for an electronic tag including the following steps:
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)所定周波数の電波を受信する第 1のアンテナが取り付けられた第 1のソケットを用 意する工程、  (b) providing a first socket having a first antenna for receiving radio waves of a predetermined frequency;
(c)前記第 1のアンテナと前記半導体チップとが電気的に接続するように前記半導体 チップを前記第 1のソケットに取り付ける工程、  (c) attaching the semiconductor chip to the first socket so that the first antenna and the semiconductor chip are electrically connected;
(d)前記第 1のソケットに前記所定周波数の第 1電波を選択的に照射することによつ て、前記複数個の半導体チップの通信距離特性を検査する工程。  (d) A step of inspecting the communication distance characteristics of the plurality of semiconductor chips by selectively irradiating the first socket with the first radio wave having the predetermined frequency.
ここで、前記(d)工程は、  Here, the step (d)
(dl)前記半導体チップと通信を行う第 2のアンテナ上に前記第 1のソケットを配置し 、下方からの電波の反射を防ぎ上方からの電波を遮断する電波吸収手段を前記第 2 のアンテナおよび前記第 1のソケット上に離間して配置する工程、  (dl) The first socket is disposed on a second antenna that communicates with the semiconductor chip, and a radio wave absorber that prevents radio waves from being reflected from below and blocks radio waves from above is provided as the second antenna and Disposing the first socket on the first socket,
(d2)前記 (dl)工程後、前記第 1のソケットと前記第 2のアンテナとの間の距離を所定 の第 1の距離に保ち、前記第 1のソケットと前記第 2のアンテナとを通信させる工程、 (d3)前記第 1の距離を所定量だけ変化させて保ち、前記 (e2)工程を繰り返す工程 (d2) After the step (dl), the distance between the first socket and the second antenna is kept at a predetermined first distance, and the first socket and the second antenna communicate with each other. (D3) a step of changing the first distance by a predetermined amount and repeating the step (e2)
(d4)前記 (d3)工程を所定回繰り返す工程、 (d4) a step of repeating the step (d3) a predetermined number of times,
を含み、 Including
前記第 1のソケットは、前記第 2のアンテナ上にて上下動する保持手段によって保 持され、 前記電波吸収手段は、前記保持手段保持手段に中継手段を介して取り付けられ、 前記保持手段の動作に連動し、 The first socket is held by holding means that moves up and down on the second antenna; The radio wave absorbing means is attached to the holding means holding means via a relay means, interlocked with the operation of the holding means,
前記第 2のアンテナおよび前記保持手段は、コンピュータに電気的に接続され、 前記コンピュータは、前記保持手段の動作をソフトウェア制御し、前記第 1の距離 および通信結果を記録する。  The second antenna and the holding unit are electrically connected to a computer, and the computer controls the operation of the holding unit by software and records the first distance and the communication result.
12.前記項 11記載の電子タグ用インレットの製造方法にぉ 、て、  12. In the manufacturing method of the inlet for an electronic tag according to the above item 11,
前記電波吸収手段は、前記半導体チップの通信限界距離より十分に大き!、第 2の 距離だけ前記第 1のソケットから離間した位置に配置する。  The radio wave absorbing means is disposed at a position sufficiently larger than the communication limit distance of the semiconductor chip and spaced from the first socket by a second distance.
13.前記項 12記載の電子タグ用インレットの製造方法において、  13. In the method of manufacturing an inlet for an electronic tag according to item 12,
前記第 2の距離は、前記半導体チップの通信限界距離の約 2倍である。  The second distance is about twice the communication limit distance of the semiconductor chip.
14.前記項 11記載の電子タグ用インレットの製造方法にぉ 、て、  14. The method of manufacturing an inlet for an electronic tag according to the above item 11,
前記 (e3)工程における前記保持手段の動作時間は約 0. 1秒以下である。  The operation time of the holding means in the step (e3) is about 0.1 second or less.
15.前記項 11記載の電子タグ用インレットの製造方法において、  15. In the method of manufacturing an inlet for an electronic tag according to the item 11,
前記 (e2)工程および前記 (e3)工程における前記保持手段の位置精度は約 0. 1 mm以下  The positional accuracy of the holding means in the step (e2) and the step (e3) is about 0.1 mm or less.
16.以下の工程を含む電子タグ用インレットの製造方法:  16. A method for manufacturing an inlet for an electronic tag including the following steps:
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)前記半導体チップを取り付ける第 2のソケットおよびインピーダンス整合回路を有 する測定治具と、前記測定治具と電気的に接続されたコンピュータ、データ読み取り 手段および可変減衰器とを用意する工程、  (b) preparing a measurement jig having a second socket for mounting the semiconductor chip and an impedance matching circuit, a computer electrically connected to the measurement jig, a data reading means, and a variable attenuator;
(c)前記第 2のソケットに前記半導体チップを取り付け、前記半導体チップと前記イン ピーダンス整合回路とを電気的に接続する工程、  (c) attaching the semiconductor chip to the second socket, and electrically connecting the semiconductor chip and the impedance matching circuit;
(d)前記第 2のソケットに前記半導体チップを取り付けた状況下で、前記半導体チッ プと前記コンピュータとを通信させる工程、  (d) a step of causing the semiconductor chip and the computer to communicate with each other in a state where the semiconductor chip is attached to the second socket;
(e)前記可変減衰器の減衰量を所定量だけ変化させて保ち、前記 (d)工程を繰り返 す工程、  (e) changing and maintaining the attenuation of the variable attenuator by a predetermined amount, and repeating the step (d),
(f)前記 (e)工程を所定回繰り返し、前記複数個の半導体チップの通信距離特性を 検査する工程。 (f) The step (e) is repeated a predetermined number of times to determine the communication distance characteristics of the plurality of semiconductor chips. Process to inspect.
ここで、前記コンピュータは、前記可変減衰器の前記減衰量および通信結果を記 録する。  Here, the computer records the attenuation amount and communication result of the variable attenuator.
17.前記項 16記載の電子タグ用インレットの製造方法において、  17. In the method of manufacturing an inlet for an electronic tag according to item 16,
前記コンピュータは、前記可変減衰器の前記減衰量の変化をソフトウェア制御する  The computer performs software control of a change in the attenuation amount of the variable attenuator.
18.前記項 16記載の電子タグ用インレットの製造方法において、 18. In the method for manufacturing an inlet for an electronic tag according to item 16,
前記可変減衰器は、機械接点や半導体回路を用いた可変減衰器であり、 前記コンピュータには、電力計が電気的に接続され、  The variable attenuator is a variable attenuator using a mechanical contact or a semiconductor circuit, and a wattmeter is electrically connected to the computer,
前記可変減衰器には、前記測定治具と前記電力計との間で回路を切り換えるリレ 一が電気的に接続され、  A relay that switches a circuit between the measurement jig and the power meter is electrically connected to the variable attenuator,
前記 (d)工程前および前記 (f)工程後において、前記コンピュータは前記リレーを 前記電力計側に切り換え、所定の電力が出力されて!、るか否かを確認する。  Before the step (d) and after the step (f), the computer switches the relay to the wattmeter side and checks whether or not predetermined power is output!
19.以下の工程を含む電子タグ用インレットの製造方法:  19. An electronic tag inlet manufacturing method including the following steps:
(a)所定のデータが書き込まれたメモリ回路を有する複数個の半導体チップを半導 体ウェハから個片化する工程、  (a) dividing a plurality of semiconductor chips having a memory circuit in which predetermined data is written from a semiconductor wafer;
(b)所定周波数の電波を受信する複数の第 1のアンテナが互いに分離された状態で 形成された絶縁フィルムを用意する工程、  (b) preparing an insulating film formed with a plurality of first antennas that receive radio waves of a predetermined frequency separated from each other;
(c)前記絶縁フィルムに形成された前記複数の第 1のアンテナのそれぞれに前記半 導体チップを接続する工程、  (c) connecting the semiconductor chip to each of the plurality of first antennas formed on the insulating film;
(d)前記 (c)工程後、前記複数個の半導体チップのそれぞれを封止することによって 、前記絶縁フィルム上に複数個のインレットを形成する工程、  (d) after the step (c), by sealing each of the plurality of semiconductor chips, a step of forming a plurality of inlets on the insulating film;
(e)前記インレットと通信を行う第 2のアンテナと、前記第 2のアンテナ上にて下方から の電波の反射を防ぎ上方からの電波を遮断する電波吸収手段とを有する測定治具 を用意する工程、  (e) providing a measurement jig having a second antenna that communicates with the inlet, and a radio wave absorbing means that prevents radio waves from being reflected from below on the second antenna and blocking radio waves from above Process,
(f)前記測定治具と電気的に接続されたコンピュータ、データ読み取り手段および可 変減衰器とを用意する工程、  (f) preparing a computer, a data reading means and a variable attenuator electrically connected to the measurement jig;
(g)前記絶縁フィルムを前記測定治具の前記第 2のアンテナと前記電波吸収手段と の間を通過させ、前記インレットと前記コンピュータとを通信させる工程、(g) the insulating film, the second antenna of the measurement jig and the radio wave absorption means Passing between the inlet and communicating the inlet and the computer,
(h)前記可変減衰器の減衰量を所定量だけ変化させて保ち、前記 (g)工程を繰り返 す工程、 (h) A step of changing the attenuation of the variable attenuator by a predetermined amount and maintaining the step (g),
(i)前記 (h)工程を所定回繰り返し、前記複数個のインレットの通信距離特性を検査 する工程。  (i) The step of inspecting the communication distance characteristics of the plurality of inlets by repeating the step (h) a predetermined number of times.
[0031] ここで、前記コンピュータは、前記可変減衰器の前記減衰量および通信結果を記 録する。  Here, the computer records the attenuation amount of the variable attenuator and a communication result.
20.前記項 19記載の電子タグ用インレットの製造方法において、  20. In the method for manufacturing an inlet for an electronic tag according to item 19,
前記測定治具を複数台用意し、  A plurality of the measuring jigs are prepared,
前記複数台の測定治具において前記絶縁フィルムを前記測定治具の前記第 2の アンテナと前記電波吸収手段との間を通過させ、前記インレットと前記コンピュータと を通信させることによって前記 (g)— (i)工程を実施し、前記複数個のインレットの通 信距離特性を同時に検査する。  In the plurality of measurement jigs, the insulating film is passed between the second antenna of the measurement jig and the radio wave absorbing means, and the inlet and the computer are communicated with each other to (g) — (i) Execute the process and inspect the communication distance characteristics of the plurality of inlets simultaneously.
発明の効果  The invention's effect
[0032] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば以下のとおりである。  [0032] The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
(1)非接触型の電子タグの通信特性を測定に要する時間を短縮できる。  (1) The time required for measuring the communication characteristics of a non-contact type electronic tag can be shortened.
(2)非接触型の電子タグの通信特性の測定を簡易に実施できる。  (2) The communication characteristics of the non-contact type electronic tag can be easily measured.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]本発明の実施の形態 1である電子タグ用インレットを示す平面図(表面側)であ る。  FIG. 1 is a plan view (surface side) showing an inlet for an electronic tag that is Embodiment 1 of the present invention.
[図 2]図 1の一部を拡大して示す平面図である。  2 is an enlarged plan view showing a part of FIG.
[図 3]本発明の実施の形態 1である電子タグ用インレットを示す側面図である。  FIG. 3 is a side view showing the electronic tag inlet according to the first embodiment of the present invention.
[図 4]本発明の実施の形態 1である電子タグ用インレットを示す平面図 (裏面側)であ る。  FIG. 4 is a plan view (back side) showing the electronic tag inlet according to the first embodiment of the present invention.
[図 5]図 4の一部を拡大して示す平面図である。  FIG. 5 is an enlarged plan view showing a part of FIG.
[図 6]本発明の実施の形態 1である電子タグ用インレットの要部拡大平面図(表面側) である。 圆 7]本発明の実施の形態 1である電子タグ用インレットの要部拡大平面図 (裏面側) である。 FIG. 6 is an enlarged plan view (surface side) of a main part of the electronic tag inlet according to the first embodiment of the present invention. FIG. 7 is an enlarged plan view (rear side) of a main part of the electronic tag inlet according to the first embodiment of the present invention.
圆 8]本発明の実施の形態 1である電子タグ用インレットに実装された半導体チップの 平面図である。 8] FIG. 8 is a plan view of a semiconductor chip mounted on the electronic tag inlet according to the first embodiment of the present invention.
[図 9]図 8に示す半導体チップの主面に形成されたバンプ電極およびその近傍の断 面図である。  FIG. 9 is a sectional view of a bump electrode formed on the main surface of the semiconductor chip shown in FIG. 8 and its vicinity.
[図 10]図 8に示す半導体チップの主面に形成されたダミーバンプ電極およびその近 傍の断面図である。  FIG. 10 is a cross-sectional view of dummy bump electrodes formed on the main surface of the semiconductor chip shown in FIG. 8 and the vicinity thereof.
[図 11]図 8に示す半導体チップの主面に形成された回路のブロック図である。  FIG. 11 is a block diagram of a circuit formed on the main surface of the semiconductor chip shown in FIG.
圆 12]本発明の実施の形態 1である電子タグ用インレットの製造工程を説明するフロ 一チャートである。 12] A flowchart illustrating the manufacturing process of the electronic tag inlet according to the first embodiment of the present invention.
圆 13]本発明の実施の形態 1である電子タグ用インレットの製造に用いる長尺の絶縁 フィルムの一部を示す平面図である。 [13] FIG. 13 is a plan view showing a part of a long insulating film used for manufacturing the electronic tag inlet according to the first embodiment of the present invention.
[図 14]図 13に示す絶縁フィルムの一部を拡大して示す平面図である。  14 is an enlarged plan view showing a part of the insulating film shown in FIG.
圆 15]本発明の実施の形態 1である電子タグ用インレットの製造工程の一部(半導体 チップとアンテナの接続工程)を示すインナーリードボンダの概略図である。 FIG. 15 is a schematic view of an inner lead bonder showing a part of the manufacturing process of the electronic tag inlet (semiconductor chip and antenna connection process) according to the first embodiment of the present invention.
[図 16]図 15に示すインナーリードボンダの要部を拡大して示す概略図である。  FIG. 16 is an enlarged schematic view showing a main part of the inner lead bonder shown in FIG.
圆 17]本発明の実施の形態 1である電子タグ用インレットの製造工程の一部(半導体 チップとアンテナの接続工程)を示す絶縁フィルムの要部拡大平面図である。 FIG. 17 is an enlarged plan view of a main part of an insulating film showing a part of the manufacturing process of the inlet for an electronic tag (embodiment for connecting a semiconductor chip and an antenna) according to the first embodiment of the present invention.
圆 18]本発明の実施の形態 1である電子タグ用インレットの製造工程の一部(半導体 チップとアンテナの接続工程)を示す絶縁フィルムの要部拡大平面図である。 FIG. 18 is an essential part enlarged plan view of the insulating film showing a part of the manufacturing process of the inlet for electronic tag (the connecting process of the semiconductor chip and the antenna) according to the first embodiment of the present invention.
圆 19]本発明の実施の形態 1である電子タグ用インレットの製造工程の一部(半導体 チップの榭脂封止工程)を示す概略図である。 FIG. 19 is a schematic view showing a part of the manufacturing process of the electronic tag inlet (embodiment 1 for sealing a semiconductor chip) according to the first embodiment of the present invention.
圆 20]本発明の実施の形態 1である電子タグ用インレットの製造工程の一部(半導体 チップの榭脂封止工程)を示す絶縁フィルムの要部拡大平面図である。 FIG. 20 is an enlarged plan view of an essential part of an insulating film showing a part of the manufacturing process of the electronic tag inlet according to the first embodiment of the present invention (semiconductor chip sealing process).
[図 21]本発明の実施の形態 1である電子タグ用インレットの製造に用いる絶縁フィル ムをリールに巻き取った状態を示す側面図である。 FIG. 21 is a side view showing a state in which an insulating film used for manufacturing the electronic tag inlet according to the first embodiment of the present invention is wound on a reel.
[図 22]本発明の実施の形態 1である電子タグ用インレットの通信検査結果の表示例 を示す説明図である。 FIG. 22 is a display example of communication inspection results of the electronic tag inlet according to the first embodiment of the present invention. It is explanatory drawing which shows.
[図 23]本発明の実施の形態 1である電子タグ用インレットの通信検査に用いる機器の 構成を示す説明図である。  FIG. 23 is an explanatory diagram showing a configuration of a device used for communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
[図 24]本発明の実施の形態 1である電子タグ用インレットの通信検査における進行波 および反射波を示す説明図である。  FIG. 24 is an explanatory diagram showing traveling waves and reflected waves in the communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
[図 25]本発明の実施の形態 1である電子タグ用インレットの通信検査における電波遮 蔽板の設置にっ 、て示す説明図である。  FIG. 25 is an explanatory diagram showing the installation of a radio wave shielding plate in the communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
[図 26]本発明の実施の形態 1である電子タグ用インレットの通信検査における電波遮 蔽板の設置にっ 、て示す断面図である。  FIG. 26 is a cross-sectional view showing installation of a radio wave shielding plate in the communication inspection of the electronic tag inlet according to the first embodiment of the present invention.
[図 27]本発明の実施の形態 1である電子タグ用インレットを用いた電子タグの使用方 法を示す説明図である。  FIG. 27 is an explanatory diagram showing a method of using an electronic tag using the electronic tag inlet according to the first embodiment of the present invention.
[図 28]本発明の実施の形態 2である電子タグ用インレットに含まれるチップの通信検 查に用いるソケットの平面図である。  FIG. 28 is a plan view of a socket used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
[図 29]本発明の実施の形態 2である電子タグ用インレットに含まれるチップの通信検 查に用いるソケットの側面図である。  FIG. 29 is a side view of a socket used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
[図 30]本発明の実施の形態 2である電子タグ用インレットに含まれるチップの通信検 查に用いるソケットの斜視図である。  FIG. 30 is a perspective view of a socket used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
[図 31]本発明の実施の形態 2である電子タグ用インレットに含まれるチップの通信検 查に用 、る各機器の斜視図である。  FIG. 31 is a perspective view of each device used for communication inspection of a chip included in the electronic tag inlet according to the second embodiment of the present invention.
圆 32]電波喑箱を用いて電子タグ用インレットの通信距離特性を測定する場合にお ける課題を示す説明図である。 [32] FIG. 32 is an explanatory diagram showing a problem in measuring the communication distance characteristics of the inlet for an electronic tag using a radio wave box.
圆 33]電子タグ用インレットと通信アンテナとの間の通信の距離依存性を示す説明図 である。 [33] FIG. 33 is an explanatory view showing the distance dependency of communication between the electronic tag inlet and the communication antenna.
圆 34]通信アンテナとリーダー機との間に可変減衰器を導入することで電子タグ用ィ ンレットと通信アンテナとの間の距離を一定にしたままで距離依存性を再現する手段 を示す説明図である。 圆 34] An explanatory diagram showing a means to reproduce the distance dependence while keeping the distance between the RFID tag inlet and the communication antenna constant by introducing a variable attenuator between the communication antenna and the reader. It is.
圆 35]電子タグ用インレットと通信アンテナとの間が近距離である場合における電子 タグ用インレットの選別工程を示す説明図である。 圆 36]電子タグ用インレットと通信アンテナとの間が近遠距離である場合における電 子タグ用インレットの選別工程を示す説明図である。 [35] FIG. 35 is an explanatory diagram showing the selection process of the electronic tag inlet when the electronic tag inlet and the communication antenna are at a short distance. FIG. 36 is an explanatory view showing the selection process of the electronic tag inlet when the distance between the electronic tag inlet and the communication antenna is a short distance.
圆 37]電子タグ用インレットの通信距離特性の測定を示す説明図である。 [37] FIG. 37 is an explanatory diagram showing measurement of communication distance characteristics of the electronic tag inlet.
圆 38]通信アンテナを可変減衰器を介してリーダー機に接続した場合の回路図であ る。 [38] This is a circuit diagram when the communication antenna is connected to the reader device via a variable attenuator.
圆 39]本発明の実施の形態 3において通信アンテナを可変減衰器を介してリーダー 機に接続した際の回路図である。 [39] FIG. 39 is a circuit diagram when the communication antenna is connected to the reader device via the variable attenuator in the third embodiment of the present invention.
圆 40]本発明の実施の形態 3において通信アンテナを可変減衰器を介してリーダー 機に接続した際の回路図である。 FIG. 40 is a circuit diagram when the communication antenna is connected to the reader device via the variable attenuator in the third embodiment of the present invention.
圆 41]本発明の実施の形態 3において通信アンテナとリーダー機との間に接続され た可変減衰器の内部の回路図である。 [41] FIG. 41 is an internal circuit diagram of a variable attenuator connected between the communication antenna and the reader device in the third embodiment of the present invention.
圆 42]本発明の実施の形態 3において通信アンテナとリーダー機との間に接続され た可変減衰器を自己診断するシステムを示す説明図である。 FIG. 42 is an explanatory diagram showing a system for self-diagnosis of a variable attenuator connected between a communication antenna and a reader device in Embodiment 3 of the present invention.
圆 43]本発明の実施の形態 4である電子タグ用インレットの通信距離特性を測定する システムで用いる測定治具の斜視図である。 FIG. 43] A perspective view of a measuring jig used in a system for measuring communication distance characteristics of the electronic tag inlet according to the fourth embodiment of the present invention.
圆 44]本発明の実施の形態 4である電子タグ用インレットの通信距離特性を測定する システムの説明図である。 FIG. 44 is an explanatory diagram of a system for measuring communication distance characteristics of the electronic tag inlet according to the fourth embodiment of the present invention.
圆 45]図 43に示した測定治具の内部回路を示す説明図である。 45] FIG. 45 is an explanatory diagram showing an internal circuit of the measurement jig shown in FIG. 43.
圆 46]図 43に示した測定治具の内部に設けられた回路を示す回路図である。 [46] FIG. 46 is a circuit diagram showing a circuit provided in the measuring jig shown in FIG.
圆 47]本発明の実施の形態 5である電子タグ用インレットの通信距離特性を測定する システムで用いる測定治具の斜視図である。 47] FIG. 47 is a perspective view of a measuring jig used in a system for measuring communication distance characteristics of the electronic tag inlet according to the fifth embodiment of the present invention.
[図 48]図 47に示した測定治具の内部におけるダイポールアンテナと信号端子との電 気的接続を示す説明図である。  FIG. 48 is an explanatory diagram showing electrical connection between a dipole antenna and a signal terminal inside the measurement jig shown in FIG. 47.
圆 49]図 47に示した測定治具を用いて行うインレットの通信距離特性の測定を説明 する斜視図である。 49] FIG. 49 is a perspective view for explaining the measurement of the communication distance characteristic of the inlet performed using the measurement jig shown in FIG.
圆 50]本発明の実施の形態 5である電子タグ用インレットの通信距離特性を測定する システムで用いる測定治具の斜視図である。 FIG. 50 is a perspective view of a measuring jig used in a system for measuring communication distance characteristics of the electronic tag inlet according to the fifth embodiment of the present invention.
[図 51]図 50に示した測定治具の内部におけるモノポールアンテナと信号端子との電 気的接続を示す説明図である。 [FIG. 51] Electric power between the monopole antenna and the signal terminal inside the measurement jig shown in FIG. It is explanatory drawing which shows air connection.
[図 52]本発明の実施の形態 5である電子タグ用インレットの通信距離特性を測定する システムで用いる測定治具の斜視図である。  FIG. 52 is a perspective view of a measuring jig used in a system for measuring communication distance characteristics of an electronic tag inlet according to the fifth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 本願発明を詳細に説明する前に、本願における用語の意味を説明すると次の通り である。 [0034] Before describing the present invention in detail, the meaning of terms in the present application will be described as follows.
[0035] 電子タグとは、 RFIDシステム、 EPC (Electronic Product Code)システムの中心的 電子部品であり、一般的に数 mm以下 (それ以上の場合を含む)のチップに電子情 報、通信機能、データ書き換え機能を納めたものを言い、電波や電磁波で読み取り 器と交信する。無線タグもしくは ICタグとも呼ばれ、商品に取り付けることでバーコ一 ドよりも高度で複雑な情報処理が可能になる。アンテナ側 (チップ外部または内部)か らの非接触電力伝送技術により、電池を持たない半永久的に利用可能なタグも存在 する。タグは、ラベル型、カード型、コイン型およびスティック型など様々な形状があり 、用途に応じて選択する。通信距離は数 mm程度のものから数 mのものがあり、これ も用途に応じて使 ヽ分けられる。  [0035] An electronic tag is a central electronic component of an RFID system or an EPC (Electronic Product Code) system, and generally has electronic information and communication functions on a chip of several millimeters or less (including more than that). This means data rewriting function, and communicates with the reader by radio waves or electromagnetic waves. It is also called a wireless tag or IC tag. By attaching it to a product, it is possible to perform information processing that is more sophisticated and complex than bar code. There is also a tag that can be used semi-permanently without a battery due to non-contact power transmission technology from the antenna side (external or internal). The tag has various shapes such as a label type, a card type, a coin type and a stick type, and is selected according to the application. The communication distance ranges from several millimeters to several meters, and these are also used depending on the application.
[0036] インレット(一般に RFIDチップとアンテナとの複合体、ただし、アンテナのな!/、もの やアンテナをチップ上に集積したものもある。したがって、アンテナのないものもイン レットに含まれることがある。)とは、金属コイル (アンテナ)に ICチップを実装した状態 での基本的な製品形態を言い、金属コイルおよび ICチップは一般にむき出しの状態 となるが、封止される場合もある。  [0036] Inlet (generally a complex of an RFID chip and an antenna, however, there is also an antenna! /, Or an antenna integrated on the chip. Therefore, an inlet may also be included without an antenna. Is a basic product form with an IC chip mounted on a metal coil (antenna), and the metal coil and IC chip are generally exposed, but may be sealed.
[0037] 電波暗箱および電波暗室とは、内部に外部からの電磁波を遮断した自由空間環境  [0037] An anechoic box and an anechoic chamber are free space environments in which external electromagnetic waves are blocked.
(電磁シールドかつ電波無響)を有し、その自由空間環境にて電子機器力 の電磁 波の放射量や、他の放射源からの電磁波に対する電子機器の耐性の測定および評 価を行う設備を言う。  (Electromagnetic shield and radio wave anechoic), a facility that measures and evaluates the amount of electromagnetic radiation from electronic equipment and the resistance of electronic equipment to electromagnetic waves from other radiation sources in its free space environment To tell.
[0038] ダイポールアンテナとは、 1Z4波長の導体の棒を 2つつなぎ合わせたものを言い、  [0038] A dipole antenna refers to two 1Z4-wave conductor bars joined together.
1Z4波長の導体の棒を 2つつなぎ合わせたことにより、 1Z2波長の導体となる。  By joining two 1Z4 wavelength conductor rods, it becomes a 1Z2 wavelength conductor.
[0039] モノポールアンテナとは、 1Z4波長の導体の棒からなるものを言い、ダイポールァ ンテナの半分を切り出したものと見なすことができる。アンテナは、これらに限らず、そ の他の立体アンテナ、平面アンテナ、印刷回路アンテナ、マイクロストリップアンテナ 等であっても良い。 [0039] A monopole antenna refers to an antenna composed of a 1Z4 wavelength conductor rod, and can be regarded as a half of a dipole antenna. The antenna is not limited to these. Other three-dimensional antennas, planar antennas, printed circuit antennas, microstrip antennas, and the like may be used.
[0040] 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまた は実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに 無関係なものではなぐ一方は他方の一部または全部の変形例、詳細、補足説明等 の関係にある。  [0040] In the following embodiment, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments, but they are not irrelevant unless otherwise specified. One is related to some or all of the other modification, details, supplementary explanation, etc.
[0041] また、以下の実施の形態において、要素の数等 (個数、数値、量、範囲等を含む) に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される 場合等を除き、その特定の数に限定されるものではなぐ特定の数以上でも以下でも 良い。  [0041] In the following embodiments, when referring to the number of elements, etc. (including the number, numerical value, quantity, range, etc.), it is limited to a specific number clearly when clearly indicated and in principle. Except in some cases, the number is not limited to the specific number, and may be a specific number or more.
[0042] さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特 に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必 ずしも必須のものではないことは言うまでもない。また、実施例等において構成要素 等について、「Aからなる」、「Aよりなる」と言うときは、特にその要素のみである旨明 示した場合等を除き、それ以外の要素を排除するものでな!、ことは言うまでもな!/、。  [0042] Furthermore, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily specified unless explicitly stated or considered to be clearly essential in principle. It goes without saying that it is not essential. Also, in the examples, etc., when it is said that it consists of “A” or “consists of A”, it excludes other elements unless specifically stated that it is the only element. Well! Needless to say! /
[0043] 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及す るときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等 を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このこ とは、上記数値および範囲についても同様である。  [0043] Similarly, in the following embodiments, when referring to the shape, positional relationship, etc. of the components, etc., unless otherwise specified, and in principle it is not clearly apparent in principle, In particular, it shall include an approximation or similar to its shape. The same applies to the above numerical values and ranges.
[0044] また、本実施の形態を説明するための全図において同一機能を有するものは同一 の符号を付し、その繰り返しの説明は省略する。  [0044] Also, components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof is omitted.
[0045] また、本実施の形態で用いる図面においては、平面図であっても図面を見易くする ために部分的にハッチングを付す場合がある。  [0045] In the drawings used in the present embodiment, even a plan view may be partially hatched to make the drawings easy to see.
[0046] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0047] (実施の形態 1)  [Embodiment 1]
図 1は、本実施の形態 1の電子タグ用インレットを示す平面図(表面側)、図 2は、図 1の一部を拡大して示す平面図、図 3は、本実施の形態 1の電子タグ用インレットを示 す側面図、図 4は、本実施の形態 1の電子タグ用インレットを示す平面図(裏面側)、 図 5は、図 4の一部を拡大して示す平面図である。上記したごとぐ本実施の形態(実 施例)の一部または全部は後続の実施の形態(実施例)の一部または全部である。し たがって、重複する部分は原則として、説明を省略する。 FIG. 1 is a plan view (front side) showing an inlet for an electronic tag according to the first embodiment, FIG. 2 is a plan view showing a part of FIG. 1 on an enlarged scale, and FIG. 3 is a plan view showing the first embodiment. FIG. 4 is a side view showing the electronic tag inlet, and FIG. 4 is a plan view (back side) showing the electronic tag inlet of the first embodiment. FIG. 5 is an enlarged plan view showing a part of FIG. As described above, a part or all of this embodiment (example) is a part or all of the following embodiment (example). Therefore, as a general rule, the explanation of the overlapping parts is omitted.
[0048] 本実施の形態 1の電子タグ用インレット(以下、単にインレットという) 1は、マイクロ波 受信用のアンテナを備えた非接触型電子タグの主要部を構成するものである。この インレット 1は、細長い長方形の絶縁フィルム 2の一面に接着された Cu箔カ なるァ ンテナ 3と、表面および側面がポッティング榭脂 4で封止された状態でアンテナ 3に接 続されたチップ 5とを備えて ヽる。絶縁フィルム 2の一面(アンテナ 3が形成された面) には、アンテナ 3やチップ 5を保護するためのカバーフィルム 6が必要に応じてラミネ ートされる。 [0048] An electronic tag inlet (hereinafter, simply referred to as an inlet) 1 according to the first embodiment constitutes a main part of a non-contact type electronic tag including an antenna for receiving microwaves. This inlet 1 has a copper foil antenna 3 bonded to one surface of a long and narrow rectangular insulating film 2, and a chip 5 connected to the antenna 3 with the surface and side surfaces sealed with potting grease 4. And prepare. On one surface of the insulating film 2 (the surface on which the antenna 3 is formed), a cover film 6 for protecting the antenna 3 and the chip 5 is laminated as necessary.
[0049] 上記絶縁フィルム 2の長辺方向に沿ったアンテナ 3の長さは、たとえば 56mmであり 、周波数 2. 45GHzのマイクロ波を効率よく受信できるように最適化されている。また 、アンテナ 3の幅は 3mmであり、インレット 1の小型化と強度の確保とが両立できるよう に最適化されている。  [0049] The length of the antenna 3 along the long side direction of the insulating film 2 is 56 mm, for example, and is optimized so as to efficiently receive microwaves having a frequency of 2.45 GHz. In addition, the width of the antenna 3 is 3 mm, and the antenna 3 is optimized so that both the size reduction of the inlet 1 and the securing of strength can be achieved.
[0050] アンテナ 3のほぼ中央部には、その一端がアンテナ 3の外縁に達する「L」字状のス リット 7が形成されており、このスリット 7の中途部には、ポッティング榭脂 4で封止され たチップ 5が実装されて 、る。  [0050] An "L" -shaped slit 7 whose one end reaches the outer edge of the antenna 3 is formed at a substantially central portion of the antenna 3. A potting grease 4 is formed in the middle of the slit 7. The sealed chip 5 is mounted.
[0051] 図 6および図 7は、上記スリット 7が形成されたアンテナ 3の中央部付近を拡大して 示す平面図であり、図 6はインレット 1の表面側、図 7は裏面側をそれぞれ示している 。なお、これらの図では、チップ 5を封止するポッティング榭脂 4およびカバーフィルム 6の図示は、省略してある。  6 and 7 are enlarged plan views showing the vicinity of the central portion of the antenna 3 in which the slit 7 is formed. FIG. 6 shows the front side of the inlet 1 and FIG. 7 shows the back side. ing . In these drawings, illustration of the potting resin 4 and the cover film 6 for sealing the chip 5 is omitted.
[0052] 図示のように、スリット 7の中途部には、絶縁フィルム 2の一部を打ち抜いて形成した デバイスホール 8が形成されており、前記チップ 5は、このデバイスホール 8の中央部 に配置されている。デバイスホール 8の寸法は、たとえば縦 X横 =0. 8mm X O. 8m mであり、チップ 5の寸法は、縦 X横 =0. 48mm X O. 48mmである。  As shown in the figure, a device hole 8 formed by punching a part of the insulating film 2 is formed in the middle of the slit 7, and the chip 5 is arranged at the center of the device hole 8. Has been. The dimensions of the device hole 8 are, for example, vertical X horizontal = 0.8 mm X O. 8 mm, and the dimensions of the chip 5 are vertical X horizontal = 0.48 mm X O. 48 mm.
[0053] 図 6に示すように、チップ 5の主面上には、たとえば 4個の Au (金)バンプ 9a、 9b、 9 c、 9dが形成されている。また、これらの Auバンプ 9a、 9b、 9c、 9dのそれぞれには、 アンテナ 3と一体に形成され、その一端がデバイスホール 8の内側に延在するリード 1 0が接続されている。 As shown in FIG. 6, on the main surface of the chip 5, for example, four Au (gold) bumps 9a, 9b, 9c, and 9d are formed. In addition, each of these Au bumps 9a, 9b, 9c, and 9d is a lead 1 that is formed integrally with the antenna 3 and has one end extending inside the device hole 8. 0 is connected.
[0054] 上記 4本のリード 10のうち、 2本のリード 10は、スリット 7によって 2分割されたアンテ ナ 3の一方からデバイスホール 8の内側に延在し、チップ 5の Auバンプ 9a、 9cと電気 的に接続されている。また、残り 2本のリード 10は、アンテナ 3の他方力もデバイスホ ール 8の内側に延在し、チップ 5の Auバンプ 9b、 9dと電気的に接続されている。  [0054] Of the four leads 10, the two leads 10 extend from one of the antennas 3 divided into two by the slits 7 to the inside of the device hole 8, and Au bumps 9a and 9c of the chip 5 And are electrically connected. The remaining two leads 10 also have the other force of the antenna 3 extending inside the device hole 8 and are electrically connected to the Au bumps 9b and 9d of the chip 5.
[0055] 図 8は、上記チップ 5の主面に形成された 4個の Auバンプ 9a、 9b、 9c、 9dのレイァ ゥトを示す平面図、図 9は、 Auバンプ 9aの近傍の拡大断面図、図 10は、 Auバンプ 9 cの近傍の拡大断面図、図 11は、チップ 5に形成された回路のブロック図である。  FIG. 8 is a plan view showing the layout of the four Au bumps 9a, 9b, 9c, 9d formed on the main surface of the chip 5, and FIG. 9 is an enlarged cross section in the vicinity of the Au bump 9a. FIG. 10 is an enlarged cross-sectional view in the vicinity of the Au bump 9 c, and FIG. 11 is a block diagram of a circuit formed on the chip 5.
[0056] チップ 5は、厚さ =0. 15mm程度の単結晶シリコン基板からなり、その主面には、 図 11に示すような整流'送信、クロック抽出、セレクタ、カウンタ、 ROMなどカゝらなる 回路が形成されている。 ROMは、 128ビットの記憶容量を有しており、バーコードな どの記憶媒体に比べて大容量のデータを記憶することができる。また、 ROMに記憶 させたデータは、バーコードに記憶させたデータに比べて不正な改竄が困難である という利点がある。  [0056] Chip 5 is formed of a single crystal silicon substrate having a thickness of approximately 0.15 mm, and the main surface thereof includes a rectifier and transmitter as shown in FIG. A circuit is formed. The ROM has a 128-bit storage capacity and can store a larger amount of data than a storage medium such as a barcode. In addition, the data stored in the ROM has the advantage that unauthorized tampering is more difficult than the data stored in the barcode.
[0057] 上記回路が形成されたチップ 5の主面上には、 4個の Auバンプ 9a、 9b、 9c、 9dが 形成されている。これら 4個の Auバンプ 9a、 9b、 9c、 9dは、図 8の二点鎖線で示す 一対の仮想的な対角線上に位置し、かつこれらの対角線の交点(チップ 5の主面の 中心)力もの距離がほぼ等しくなるようにレイアウトされて 、る。これらの Auバンプ 9a、 9b、 9c、 9dは、たとえば電解めつき法を用いて形成されたもので、その高さは、たと えば 15 m程度である。  [0057] Four Au bumps 9a, 9b, 9c, and 9d are formed on the main surface of the chip 5 on which the circuit is formed. These four Au bumps 9a, 9b, 9c, 9d are located on a pair of imaginary diagonal lines shown by the two-dot chain line in FIG. 8, and the intersection of these diagonal lines (center of the main surface of chip 5) They are laid out so that their distances are almost equal. These Au bumps 9a, 9b, 9c, and 9d are formed using, for example, an electrolytic plating method, and the height thereof is, for example, about 15 m.
[0058] なお、これら Auバンプ 9a、 9b、 9c、 9dのレイアウトは、図 8に示したレイアウトに限ら れるものではないが、チップ接続時の加重に対してバランスを取りやすいレイアウトで あることが好ましぐたとえば平面レイアウトにおいて Auバンプの接線によって形成さ れる多角形力 チップの中心を囲む様に配置するのが好ましい。  Note that the layout of these Au bumps 9a, 9b, 9c, and 9d is not limited to the layout shown in FIG. 8, but may be a layout that is easy to balance against the weight at the time of chip connection. For example, in a planar layout, the polygonal force formed by the tangents of the Au bumps is preferably arranged so as to surround the center of the chip.
[0059] 上記 4個の Auバンプ 9a、 9b、 9c、 9dのうち、たとえば Auバンプ 9aは、前記図 11に 示す回路の入力端子を構成し、 Auバンプ 9bは、 GND端子を構成している。また、 残り 2個の Auバンプ 9c、 9dは、上記回路には続されていないダミーのバンプを構成 している。 [0060] 図 9に示すように、回路の入力端子を構成する Auバンプ 9aは、チップ 5の主面を覆 うパッシベーシヨン膜 20とポリイミド榭脂 21とをエッチングして露出させた最上層メタ ル配線 22の上に形成されている。また、 Auバンプ 9aと最上層メタル配線 22との間に は、両者の密着力を高めるためのノ リアメタル膜 23が形成されている。パッシベーシ ヨン膜 20は、たとえば酸ィ匕シリコン膜と窒化シリコン膜との積層膜で構成され、最上層 メタル配線 22は、たとえば A1合金膜で構成されている。また、ノ リアメタル膜 23は、 たとえば A1合金膜に対する密着力が高い Ti膜と、 Auバンプ 9aに対する密着力が高 い Pd膜との積層膜で構成されている。図示は省略するが、回路の GND端子を構成 する Auバンプ 9bと最上層メタル配線 22との接続部も、上記と同様の構成になってい る。一方、図 10に示すように、ダミーのバンプを構成する Auバンプ 9c (および 9d)は 、上記最上層メタル配線 22と同一配線層に形成されたメタル層 24に接続されて ヽる 1S このメタル層 24は、前記回路に接続されていない。 [0059] Of the four Au bumps 9a, 9b, 9c, 9d, for example, the Au bump 9a constitutes the input terminal of the circuit shown in FIG. 11, and the Au bump 9b constitutes the GND terminal. . The remaining two Au bumps 9c and 9d constitute dummy bumps not connected to the above circuit. As shown in FIG. 9, the Au bump 9 a constituting the input terminal of the circuit is the uppermost metal layer exposed by etching the passivation film 20 and the polyimide resin 21 covering the main surface of the chip 5. It is formed on the wiring 22. In addition, a rare metal film 23 is formed between the Au bump 9a and the uppermost metal wiring 22 to enhance the adhesion between them. The passivation film 20 is composed of, for example, a laminated film of an oxide silicon film and a silicon nitride film, and the uppermost metal wiring 22 is composed of, for example, an A1 alloy film. In addition, the rare metal film 23 is composed of, for example, a laminated film of a Ti film having a high adhesion to the A1 alloy film and a Pd film having a high adhesion to the Au bump 9a. Although illustration is omitted, the connection part between the Au bump 9b and the uppermost metal wiring 22 constituting the GND terminal of the circuit has the same structure as described above. On the other hand, as shown in FIG. 10, the Au bump 9c (and 9d) constituting the dummy bump is connected to the metal layer 24 formed on the same wiring layer as the uppermost metal wiring 22, and this 1S metal. Layer 24 is not connected to the circuit.
[0061] このように、本実施の形態 1のインレット 1は、絶縁フィルム 2の一面に形成したアン テナ 3の一部に、その一端がアンテナ 3の外縁に達するスリット 7を設け、このスリット 7 によって 2分割されたアンテナ 3の一方にチップ 5の入力端子 (Auバンプ 9a)を接続 し、他方にチップ 5の GND端子 (Auバンプ 9b)を接続する。この構成により、アンテ ナ 3の実効的な長さを長くすることができるので、必要なアンテナ長を確保しつつ、ィ ンレット 1の小型化を図ることができる。  As described above, the inlet 1 of the first embodiment is provided with a slit 7 whose one end reaches the outer edge of the antenna 3 in a part of the antenna 3 formed on one surface of the insulating film 2. The input terminal (Au bump 9a) of the chip 5 is connected to one side of the antenna 3 divided into two by the above, and the GND terminal (Au bump 9b) of the chip 5 is connected to the other side. With this configuration, the effective length of the antenna 3 can be increased, so that the inlet 1 can be reduced in size while ensuring the necessary antenna length.
[0062] また、本実施の形態 1のインレット 1は、チップ 5の主面上に、回路の端子を構成す る Auバンプ 9a、 9bとダミーの Auバンプ 9c、 9dとを設け、これら 4個の Auバンプ 9a、 9b、 9c、 9dをアンテナ 3のリード 10に接続する。この構成により、回路に接続された 2 個の Auバンプ 9a、 9bのみをリード 10に接続する場合に比べて、 Auバンプとリード 1 0の実効的な接触面積が大きくなるので、 Auバンプとリード 10の接着強度、すなわち 両者の接続信頼性が向上する。また、 4個の Auバンプ 9a、 9b、 9c、 9dを図 8に示し たようなレイアウトでチップ 5の主面上に配置することにより、 Auバンプ 9a、 9b、 9c、 9 dにリード 10を接続した際に、チップ 5が絶縁フィルム 2に対して傾くことがない。これ により、チップ 5をポッティング榭脂 4で確実に封止することができるので、インレット 1 の製造歩留まりが向上する。 [0063] 次に、上記のように構成されたインレット 1の製造方法を図 12—図 21を用いて説明 する。 [0062] In addition, the inlet 1 of the first embodiment is provided with Au bumps 9a and 9b and dummy Au bumps 9c and 9d constituting circuit terminals on the main surface of the chip 5, and these four Connect the Au bumps 9a, 9b, 9c, and 9d to the lead 10 of the antenna 3. With this configuration, the effective contact area between the Au bump and the lead 10 is larger than when only two Au bumps 9a and 9b connected to the circuit are connected to the lead 10. The bond strength of 10, that is, the connection reliability of both is improved. Also, by arranging four Au bumps 9a, 9b, 9c, 9d on the main surface of chip 5 with the layout shown in Fig. 8, lead 10 is placed on Au bumps 9a, 9b, 9c, 9d. The chip 5 does not tilt with respect to the insulating film 2 when connected. As a result, the chip 5 can be reliably sealed with the potting resin 4, so that the manufacturing yield of the inlet 1 is improved. [0063] Next, a method of manufacturing the inlet 1 configured as described above will be described with reference to FIGS.
[0064] 図 12は、上記インレット 1の製造工程を説明するフローチャートである。このフロー チャートに示すように、まず、ウェハ状の半導体基板 (以下、単に基板と記す)の主面 上に半導体素子、集積回路および上記バンプ電極 9a— 9dなどを形成するウェハ処 理を実施する(工程 Pl)。続いて、そのウェハ状の基板をダイシングによりチップ単位 に分割し、前述のチップ 5を形成する(工程 P2)。  FIG. 12 is a flowchart for explaining the manufacturing process of the inlet 1. As shown in this flow chart, first, wafer processing is performed to form a semiconductor element, an integrated circuit, the bump electrodes 9a-9d, etc. on the main surface of a wafer-like semiconductor substrate (hereinafter simply referred to as a substrate). (Process Pl). Subsequently, the wafer-like substrate is divided into chips by dicing to form the aforementioned chip 5 (process P2).
[0065] 図 13は、インレット 1の製造に用いる絶縁フィルム 2を示す平面図、図 14は、図 13 の一部を拡大して示す平面図である。  FIG. 13 is a plan view showing the insulating film 2 used for manufacturing the inlet 1, and FIG. 14 is a plan view showing a part of FIG. 13 in an enlarged manner.
[0066] 図 13に示すように、絶縁フィルム 2は、リール 25に巻き取られた状態でインレット 1 の製造工程に搬入される。この絶縁フィルム 2の一面には、あらカゝじめ多数のアンテ ナ 3が所定の間隔で形成されている。これらのアンテナ 3を形成するには、たとえば絶 縁フィルム 2の一面に厚さ 18 μ m程度の Cu箔を接着し、この Cu箔をアンテナ 3の形 状にエッチングする。このとき、それぞれのアンテナ 3に、前述したスリット 7およびリー ド 10を形成する。その後、リード 10の表面に Sn (錫)メツキを施す。絶縁フィルムおよ びアンテナをさらに薄く形成するには、たとえば厚さ 38 m程度の絶縁フィルム表面 に、第 1の Cu膜をスパッタリング法により形成し、前記第 1の Cu膜をシード層として電 解メツキ法により、前記第 1の Cu膜よりも厚い第 2の Cu膜を形成し、これら第 1および 第 2の Cu膜をパターユングすればょ 、。  As shown in FIG. 13, the insulating film 2 is carried into the manufacturing process of the inlet 1 while being wound around the reel 25. On one surface of the insulating film 2, a large number of antennas 3 are formed at predetermined intervals. In order to form these antennas 3, for example, a Cu foil having a thickness of about 18 μm is bonded to one surface of the insulating film 2, and this Cu foil is etched into the shape of the antenna 3. At this time, the slit 7 and the lead 10 described above are formed in each antenna 3. Thereafter, Sn (tin) plating is applied to the surface of the lead 10. In order to make the insulating film and the antenna thinner, for example, a first Cu film is formed on the surface of the insulating film having a thickness of about 38 m by sputtering, and the first Cu film is used as a seed layer for electrolysis. A second Cu film thicker than the first Cu film is formed by a plating method, and the first and second Cu films are patterned.
[0067] 上記絶縁フィルム 2は、フィルムキャリアテープの規格に従ったもので、たとえば幅 5 0 μ mまたは 70mm、厚さ 75 μ mのポリイミド榭脂フィルムからなり、その一部には、 前記図 6、図 7に示したデバイスホール 8が形成されている。また、絶縁フィルム 2の両 側部には、絶縁フィルム 2を搬送するためのスプロケットホール 26が所定の間隔で形 成されている。デバイスホール 8およびスプロケットホール 26は、絶縁フィルム 2の一 部をパンチで打ち抜くことによって形成される。  [0067] The insulating film 2 conforms to the standard of a film carrier tape, and is made of, for example, a polyimide resin film having a width of 50 μm or 70 mm and a thickness of 75 μm. 6. Device hole 8 shown in FIG. 7 is formed. In addition, sprocket holes 26 for conveying the insulating film 2 are formed at predetermined intervals on both sides of the insulating film 2. The device hole 8 and the sprocket hole 26 are formed by punching a part of the insulating film 2 with a punch.
[0068] 次に、図 15に示すように、ボンディングステージ 31とボンディングツール 32とを備 えたインナーリードボンダ 30にリール 25を装着し、ボンディングステージ 31の上面に 沿って絶縁フィルム 2を移動させながら、アンテナ 3にチップ 5を接続する(工程 P3)。 [0069] アンテナ 3にチップ 5を接続するには、図 16 (図 15の要部拡大図)に示すように、 1 00°C程度に加熱したボンディングステージ 31の上にチップ 5を搭載し、このチップ 5 の真上に絶縁フィルム 2のデバイスホール 8を位置決めした後、デバイスホール 8の 内側に突出したリード 10の上面に 400°C程度に加熱したボンディングツール 32を押 し当て、 Auバンプ(9a— 9d)とリード 10を接触させる。このとき、ボンディングツール 3 2に所定の荷重を 2秒程度印加することにより、リード 10の表面に形成された Snメッ キと Auバンプ(9a— 9d)との界面に Au— Sn共晶合金層が形成され、 Auバンプ(9a 一 9d)とリード 10が互いに接着する。 Next, as shown in FIG. 15, the reel 25 is attached to the inner lead bonder 30 having the bonding stage 31 and the bonding tool 32, and the insulating film 2 is moved along the upper surface of the bonding stage 31. Then, chip 5 is connected to antenna 3 (process P3). [0069] To connect the chip 5 to the antenna 3, as shown in FIG. 16 (enlarged view of the main part in FIG. 15), the chip 5 is mounted on the bonding stage 31 heated to about 100 ° C. After positioning the device hole 8 of the insulating film 2 directly above the chip 5, the bonding tool 32 heated to about 400 ° C is pressed against the upper surface of the lead 10 protruding inside the device hole 8, and Au bump ( 9a-9d) and lead 10 are brought into contact. At this time, by applying a predetermined load to the bonding tool 3 2 for about 2 seconds, an Au—Sn eutectic alloy layer is formed at the interface between the Sn plating formed on the surface of the lead 10 and the Au bump (9a-9d). The Au bumps (9a-9d) and the lead 10 are bonded to each other.
[0070] 次に、ボンディングステージ 31の上に新たなチップ 5を搭載し、続、て絶縁フィルム 2をアンテナ 3の 1ピッチ分だけ移動させた後、上記と同様の操作を行うことによって、 このチップ 5をアンテナ 3に接続する。以後、上記と同様の操作を繰り返すことによつ て、絶縁フィルム 2に形成された全てのアンテナ 3にチップ 5を接続する。チップ 5とァ ンテナ 3の接続作業が完了した絶縁フィルム 2は、リール 25に巻き取られた状態で次 の榭脂封止工程に搬送される。  [0070] Next, a new chip 5 is mounted on the bonding stage 31, and then the insulating film 2 is moved by one pitch of the antenna 3, and then the same operation as above is performed. Connect chip 5 to antenna 3. Thereafter, the chip 5 is connected to all the antennas 3 formed on the insulating film 2 by repeating the same operation as described above. The insulating film 2 that has been connected to the chip 5 and the antenna 3 is conveyed to the next resin sealing process while being wound around the reel 25.
[0071] なお、 Auバンプ(9a— 9d)とリード 10の接続信頼性を向上させるためには、図 17 に示すように、 4本のリード 10をアンテナ 3の長辺方向と直交する方向に延在させた 方がよい。図 18に示すように、 4本のリード 10をアンテナ 3の長辺方向と平行に延在 させた場合は、完成したインレット 1を折り曲げたときに、 Auバンプ(9a— 9d)とリード 10の接合部に強い引っ張り応力が働くので、両者の接続信頼性が低下する虞れが ある。  [0071] In order to improve the connection reliability between the Au bump (9a-9d) and the lead 10, the four leads 10 are arranged in a direction perpendicular to the long side direction of the antenna 3 as shown in FIG. It is better to extend it. As shown in Fig. 18, when the four leads 10 are extended parallel to the long side direction of the antenna 3, when the completed inlet 1 is bent, the Au bump (9a-9d) and the lead 10 Since a strong tensile stress acts on the joint, there is a risk that the connection reliability between the two will decrease.
[0072] チップ 5の榭脂封止工程では、図 19および図 20に示すように、デバイスホール 8の 内側に実装されたチップ 5の上面および側面にデイスペンサ 33などを使ってポッティ ング榭脂 4を供給し、その後、ポッティング榭脂 4を加熱炉内でベータする(工程 P4) 。図示は省略する力 この榭脂封止工程においても、絶縁フィルム 2を移動させなが ら、ポッティング榭脂 4の供給およびベータ処理を行う。そして、榭脂封止作業が完了 した絶縁フィルム 2は、リール 25に巻き取られた状態で次の検査工程(工程 P5)に搬 送され、チップ 5とアンテナ 3の接続状態や外観の良否の検査が行われる。絶縁フィ ルム 2に形成された多数のアンテナ 3は、互いに電気的に分離された状態になってい るので、個々のアンテナ 3とチップ 5の導通試験は、容易に実施することができる。そ の後、絶縁フィルム 2の一面(アンテナ 3が形成された面)にカバーフィルム 6 (図 3参 照)をラミネートすることにより、インレット 1の製造工程が完了する。 [0072] In the resin sealing process of chip 5, as shown in FIG. 19 and FIG. 20, potting resin 4 is used by using a dispenser 33 or the like on the upper surface and side surface of chip 5 mounted inside device hole 8. Then, the potting resin 4 is beta in the heating furnace (process P4). Force not shown In the resin sealing process, the potting resin 4 is supplied and beta treatment is performed while the insulating film 2 is moved. Then, the insulating film 2 that has been sealed with the grease is transported to the next inspection process (process P5) while being wound on the reel 25, and the connection state of the chip 5 and the antenna 3 and the quality of the appearance are checked. Inspection is performed. Many antennas 3 formed on the insulating film 2 are electrically separated from each other. Therefore, the continuity test between the individual antenna 3 and the chip 5 can be easily performed. Then, the manufacturing process of the inlet 1 is completed by laminating the cover film 6 (see FIG. 3) on one surface of the insulating film 2 (the surface on which the antenna 3 is formed).
[0073] 上記のようにして製造されたインレット 1は、図 21に示すように、リール 25に巻き取ら れた状態で梱包され、顧客先に出荷される(工程 P6)。  [0073] As shown in Fig. 21, the inlet 1 manufactured as described above is packed in a state of being wound around a reel 25 and shipped to a customer (step P6).
[0074] ここで、上記工程 P5の検査工程について詳しく説明する。  Here, the inspection process of the process P5 will be described in detail.
[0075] 前述のインレット 1は通信距離特性を有し、リーダー機と電気的に接続された通信 アンテナとの間の距離によって通信状態が変化する。工程 P5においては、任意数( たとえば 20個)のインレット 1をサンプルとして取り出し、これらサンプルの通信距離特 性を測定して規定値内に収まっている力否かを検査する。この検査において、インレ ット 1とリーダー機は、たとえば 1つの距離について 2. 407GHz— 2. 426GHzの間 で 1MHzずつ周波数を変化させつつ通信(通信アンテナ ANT力もインレット 3に対し て電波(第 1電波)を照射)する。このような通信を、たとえば 0— 330mmの間で 5mm 間隔、すなわち全 67ポイントで実施する。通信結果を人手により判断して記録する場 合には、(A)通信できた場合、(B)通信できな力つた場合、および (C)通信できたり できなかったりした場合などの結果別に、たとえば A、 Bおよび C等の記号を用いて記 録する(図 22参照)。しかしながら、このように人手により通信結果を判断すると、たと えば (A)通信できた場合と (C)通信できたりできな力 たりした場合との判断が作業 者の主観によって変わってしまう虞がある。また、インレット 1と通信アンテナとの間の 距離を変更するために、インレット 1を保持する検査治具の操作も人手により実施す る場合には、人手による作業量が多いことから検査治具の移動時間を長く要し、さら に検査治具の位置精度も低下する虞がある。このように通信結果の記録および検査 治具の操作を人手によって行う場合において、 1回の通信に要する時間を 0. 3秒とし 、記録に要する時間を 5秒とし、検査治具の移動に要する時間を 5秒とすると、 1個の インレット 1の検査に要する検査時間は、(0. 3 X 20 + 5 + 5) X 67= 1072 = 18 分となり、インレット 1のサンプルが 20個ある場合には、 18 X 20 = 360分もの時間を 要すること〖こなる。  [0075] The aforementioned inlet 1 has a communication distance characteristic, and the communication state changes depending on the distance between the reader device and the communication antenna electrically connected. In process P5, an arbitrary number (for example, 20) of inlets 1 are taken as samples, and the communication distance characteristics of these samples are measured to check whether they are within the specified values. In this inspection, for example, Inlet 1 and the reader unit communicate with each other while changing the frequency in increments of 1 MHz between 2. 407 GHz and 2.426 GHz for one distance (communication antenna ANT force is also applied to inlet 3 for the radio wave (first (Radio waves). Such communication is carried out at intervals of 5 mm between 0-330 mm, for example, for a total of 67 points. When the communication result is judged and recorded manually, according to the result, such as (A) when communication is possible, (B) when communication is not possible, and (C) when communication is not possible, For example, record using symbols such as A, B, and C (see Figure 22). However, when the communication result is manually determined in this way, for example, the determination of (A) when communication is possible and (C) when communication cannot be performed may vary depending on the subjectivity of the worker. . Also, if the operation of the inspection jig that holds the inlet 1 is manually performed to change the distance between the inlet 1 and the communication antenna, the work amount of the inspection jig is large. It takes a long time to move, and the position accuracy of the inspection jig may also decrease. In this way, when the communication result is recorded and the inspection jig is operated manually, the time required for one communication is 0.3 seconds, the recording time is 5 seconds, and the inspection jig is required to move. If the time is 5 seconds, the inspection time required for one inlet 1 inspection is (0.3 X 20 + 5 + 5) X 67 = 1072 = 18 minutes, and there are 20 inlet 1 samples. Takes 18 X 20 = 360 minutes.
[0076] そこで、本実施の形態 1では、図 23に示すように、リーダー機 (データ読み取り手段 )RMおよび検査治具 TMをコンピュータ COMと電気的に接続し、通信結果の判別、 記録および検査治具 TMの移動をコンピュータ COMのソフトウェア制御によって行う 構成とする。それにより、作業者 WKによる作業を大幅に削減できるので、検査工程 を簡易化することができる。 Therefore, in the first embodiment, as shown in FIG. 23, as shown in FIG. ) The RM and the inspection jig TM are electrically connected to the computer COM, and the communication result is discriminated, recorded, and the inspection jig TM is moved by software control of the computer COM. As a result, the work by the worker WK can be greatly reduced, and the inspection process can be simplified.
[0077] 検査治具 TMの移動については、実際にはインレット 1を保持したアーム (保持手段 )AMの上下動によって行い、コンピュータ COMは、このアームの上下動の動作量を 制御することになる。作業者 WKが測定開始の信号をコンピュータ COMに入力する と、インレット 1と通信アンテナ ANTとの間の距離が Ommである位置力 測定を開始 し、その距離が最終測定位置 (たとえば 330mm)となるまで作業者の手を介さずに 自動的に実施される。このようにコンピュータ COMによって各動作を制御することに より、アーム AMの位置精度、すなわちインレット 1と通信アンテナ ANTとの間の距離 の精度は、人手によって制御した場合に比べて 1桁以上向上することができ、本発明 者らが行った実験によれば約 0. 1mm以内とすることができた。人手による測定の場 合でもコンピュータ制御による測定の場合でも実際にリーダー機が 1回読むのに掛か る時間は約 0. 05秒である。し力し人手による測定で使用するモニタ用のソフトウェア は人間の反応時間を考慮して待ち時間を入れる事が必要なので測定時間 0. 3秒に なる。コンピュータ制御の場合は人間の反応時間を考慮しなくて済み、待ち時間を省 く事が出来るので約 0. 05秒のみで済ますことができる。また、測定治具 TMの移動 時間、すなわちアーム AMの動作時間については約 0. 1秒とすることができ、人手に よって制御した場合 (約 5秒)に比べて約 4. 9秒短縮できた。また、測定結果の記録 時間についてはほぼ 0秒とすることができ、人手によって記録した場合に比べて約 5 秒短縮することができた。これらの数値をもとに 1個のインレット 1の検査に要する検査 時間を求めると、(0. 05 X 20 + 0 + 0. 1) X 67 = 73. 7 = 1. 23分となり、インレツ ト 1のサンプルが 20個ある場合の全測定時間は 1. 23 X 20 = 24. 6分となり、人手に よって制御した場合(360分)の約 7Z100と大幅に短縮することができる。  [0077] The movement of the inspection jig TM is actually performed by the vertical movement of the arm (holding means) AM holding the inlet 1, and the computer COM controls the amount of movement of the vertical movement of the arm. . When the operator WK inputs a measurement start signal to the computer COM, the position force measurement is started with the distance between the inlet 1 and the communication antenna ANT being Omm, and that distance becomes the final measurement position (for example, 330 mm). It is automatically performed without the operator's hand. By controlling each operation with the computer COM in this way, the position accuracy of the arm AM, that is, the accuracy of the distance between the inlet 1 and the communication antenna ANT is improved by one digit or more compared to the case where it is controlled manually. According to the experiment conducted by the present inventors, it was able to be within about 0.1 mm. Whether it is a manual measurement or a computer-controlled measurement, the time it takes for the reader to read once is about 0.05 seconds. However, the monitoring software used for manual measurement requires a waiting time in consideration of human reaction time, so the measurement time is 0.3 seconds. In the case of computer control, it is not necessary to consider human reaction time, and it is possible to save only about 0.05 seconds because waiting time can be omitted. In addition, the movement time of the measuring jig TM, that is, the operating time of the arm AM, can be set to about 0.1 second, which is about 4.9 seconds shorter than when manually controlled (about 5 seconds). It was. In addition, the recording time of the measurement results can be reduced to almost 0 seconds, which is about 5 seconds shorter than when recording manually. Based on these numbers, the inspection time required for inspection of one inlet 1 is (0. 05 X 20 + 0 + 0. 1) X 67 = 73. 7 = 1. 23 minutes. The total measurement time when there are 20 samples of 1 is 1.23 X 20 = 24.6 minutes, which can be greatly reduced to approximately 7Z100 when controlled manually (360 minutes).
[0078] また、本実施の形態 1においては、通信結果の判別は、コンピュータ COMによって 行い、作業者 WKの主観を排除することができるので、再現性のある評価結果を得る ことができる。以上のことから、本実施の形態 1によれば、簡易、高速かつ確実なイン レット 1の通信距離特性の測定システムを提供することが可能となる。 [0078] Further, in the first embodiment, the determination of the communication result is performed by the computer COM and the subjectivity of the worker WK can be excluded, so that a reproducible evaluation result can be obtained. From the above, according to the first embodiment, simple, high-speed and reliable It is possible to provide a measurement system for the communication distance characteristics of the let 1.
[0079] 本実施の形態 1においては、上記の測定システムにカ卩えて、測定結果への電波の 影響についても考慮する。インレット 1の通信距離特性の測定は、周りに電波を反射 する物がなく外からも電波が入らない環境、いわゆる自由空間で行う必要がある。そ こで、電波暗室もしくは電波暗箱内に測定システムを設置できない場合には、図 24 に示すように、できるだけ周囲に金属等の物体がない測定スペースを形成し、その測 定スペース内に測定システムを設置して検査を実施することになる。し力しながら、こ のような測定スペースを設けて検査を実施した場合には、たとえばインレット 1および 通信アンテナ ANTから発信された進行波 FWが天井 CLの裏側に設置されて ヽる配 管 DTなどに反射し、反射波 RWとなって戻ってくることが原因となって、インレット 1の 通信距離特性が特異な結果となってしまう虞がある。 [0079] In the first embodiment, in consideration of the above measurement system, the influence of radio waves on the measurement result is also considered. The measurement of the communication distance characteristics of Inlet 1 must be performed in a so-called free space where there is no object that reflects radio waves in the surroundings and radio waves do not enter from outside. Therefore, if the measurement system cannot be installed in the anechoic chamber or anechoic box, as shown in Fig. 24, a measurement space with as few objects as possible around it is formed, and the measurement system is placed in the measurement space. Will be inspected. However, when an inspection is performed with such a measurement space, a traveling wave FW transmitted from the inlet 1 and the communication antenna ANT, for example, is installed on the back side of the ceiling CL. As a result, the communication distance characteristics of the inlet 1 may become a peculiar result.
[0080] そこで、本実施の形態 1では、図 25および図 26に示すように、インレット 1および通 信アンテナ ANTの上部に電波遮蔽板 (電波吸収手段) DSBを配置する。この電波 遮蔽板 DSBは、たとえば導電性スポンジに電波吸収材カもなる塗料を塗布した 20m m程度の厚さの電波吸収体 DSB1と、電波透過物(たとえば発泡スチロール)からな る支持具 DSB2と力も形成されている。また、検査治具 TMのアーム AMには、電波 透過物(たとえば発泡スチロール)からなる支持具 SJGと取り付けられている。支持具 DSB2、 SJGが電波吸収体を保持する構成となり、アーム AMが上下動に連動してィ ンレット 1との間の距離 D1を一定に保つことが可能な構造となっている。電波遮蔽板 DSBは、インレット 1の設計上の通信限界より十分遠い位置に配置するものであり、 たとえば前記距離 D1がインレット 1の設計上の通信限界距離 (図 26中におけるアン テナ ANTとインレット 1との間の距離 D2)の 2倍程度となるように電波遮蔽板 DSBを 支持具 SJGに取り付ける。また、電波遮蔽板 DSBを支持具 SJGに固定する前には、 通信アンテナ ANTから発信された上方向への進行波 FWが電波遮蔽板 DSBによつ て反射した反射波力 の影響が最小な位置となるように電波遮蔽板 DSBの位置を高 さ方向で微調整する。進行波 FWは斜め方向へも放射されるが、この斜め方向へ放 射された進行波 FWは、反射してもアンテナ ANTに正対して戻って来ないので、ほ ぼ無視することができる。つまり、上方向への進行波 FWの反射波がインレット 1の通 信距離特性の測定値に最も影響を及ぼすことになるので、この上方向への進行波 F Wの反射波を防ぐことでインレット 1の通信距離特性の測定値に影響が出ることを防 ぐことが可能となる。すなわち、上記のように電波遮蔽板 DSBを設置することにより、 アンテナ ANTから発信された上方向への進行波 FWは電波遮蔽板 DSBによって吸 収することができ、進行波が反射波となってインレット 1の通信距離特性の測定値に 異常を及ぼしてしまう不具合を防ぐことができる。 Therefore, in the first embodiment, as shown in FIGS. 25 and 26, a radio wave shielding plate (radio wave absorbing means) DSB is disposed above the inlet 1 and the communication antenna ANT. This radio wave shielding plate DSB is composed of, for example, a radio wave absorber DSB1 having a thickness of about 20 mm, in which a conductive sponge is coated with a paint that also serves as a radio wave absorber, and a support DSB2 made of radio wave transmitting material (for example, polystyrene foam) and force. Is formed. Further, a support SJG made of a radio wave transmitting material (for example, styrene foam) is attached to the arm AM of the inspection jig TM. Supports DSB2 and SJG are configured to hold the electromagnetic wave absorber, and the structure is such that the arm AM can maintain a constant distance D1 from the inlet 1 in conjunction with vertical movement. The radio wave shield DSB is placed at a position sufficiently far from the communication limit of the inlet 1 design. For example, the distance D1 is the communication limit distance of the inlet 1 design (antenna ANT and inlet 1 in Fig. 26). Attach the radio wave shielding plate DSB to the support SJG so that it is about twice the distance D2). Before the radio wave shield DSB is fixed to the support SJG, the influence of the reflected wave force reflected by the radio wave shield DSB on the upward traveling wave FW transmitted from the communication antenna ANT is minimized. Finely adjust the position of the radio wave shielding plate DSB in the height direction so that it becomes the position. The traveling wave FW is radiated in an oblique direction, but the traveling wave FW radiated in the oblique direction does not return to the antenna ANT even if it is reflected, so it can be almost ignored. In other words, the upward traveling wave FW is reflected through the inlet 1 Since this will have the greatest effect on the measured value of the transmission distance characteristic, it is possible to prevent the measured value of the communication distance characteristic of the inlet 1 from being affected by preventing the reflected wave of the upward traveling wave FW. It becomes possible. That is, by installing the radio wave shield DSB as described above, the upward traveling wave FW transmitted from the antenna ANT can be absorbed by the radio wave shield DSB, and the traveling wave becomes a reflected wave. This prevents problems that cause abnormalities in the measured values of the communication distance characteristics of Inlet 1.
[0081] 上記インレット 1を購入した顧客は、絶縁フィルム 2を切断することによって、前記図 1一図 5に示すような個片化されたインレツト 1を得た後、このインレツト 1と他の部材と を組み合わせて電子タグを作製する。たとえば図 27は、インレット 1の裏面に両面接 着テープなどを貼り付けて電子タグを作製し、これを伝票 34などの物品の表面に貼り 付けた例を示している。  [0081] A customer who has purchased the inlet 1 cuts the insulating film 2 to obtain the separated inlet 1 as shown in FIG. 1 and FIG. 5, and then the inlet 1 and other members. An electronic tag is manufactured by combining and. For example, FIG. 27 shows an example in which a double-sided adhesive tape or the like is attached to the back surface of the inlet 1 to produce an electronic tag and this is attached to the surface of an article such as a slip 34.
[0082] (実施の形態 2)  [0082] (Embodiment 2)
本実施の形態 2は、たとえば前記実施の形態 1で示したインレット 1 (図 1参照)を製 造するに当たって、アンテナ 3へチップ 5 (図 4参照)を実装する工程以降の工程を顧 客側等で行う場合にぉ ヽて、出荷側等でチップ 5の通信距離特性を測定するもので ある。  In the second embodiment, for example, when manufacturing the inlet 1 (see FIG. 1) shown in the first embodiment, the steps after the step of mounting the chip 5 (see FIG. 4) on the antenna 3 are performed on the customer side. In this case, the communication distance characteristics of the chip 5 are measured on the shipping side or the like.
[0083] 図 27—図 28は、それぞれチップ 5の通信距離特性の測定に用いるソケット SKTの 平面図、側面図および斜視図である。前記実施の形態 1 (実施例 1)と重複する部分 については、原則として記載を省略する。上記したごとぐ本実施の形態(実施例)の 一部または全部は先行のまたは後続の実施の形態(実施例)の一部または全部であ る。  FIGS. 27 to 28 are a plan view, a side view, and a perspective view of the socket SKT used for measuring the communication distance characteristics of the chip 5, respectively. In principle, description of the same parts as those in the first embodiment (Example 1) is omitted. As described above, part or all of the present embodiment (example) is part or all of the preceding or subsequent embodiment (example).
[0084] ソケット SKTは、アンテナ基板 AKBおよびチップ保持具 CHG力 形成されている 。これらアンテナ基板 AKBおよびチップ保持具 CHGは、絶縁性材料 (たとえばブラ スチックなど)カゝら形成されている。アンテナ基板 AKBには、前記実施の形態 1にお けるインレット 1のアンテナ 3 (図 1参照)と同様の形状および材質のアンテナパターン ATPが貼付されている。このアンテナパターン ATP上にチップ 5が配置される。チッ プ保持具 CHGには、チップ押さえ具 COGが取り付けられており、このチップ押さえ 具 COGがアンテナパターン ATP上に配置されたチップ 5を固定する構造となってい る。チップ押さえ具 COGは、たとえばウレタンゴム等の柔軟性を有する絶縁材料 (ェ ラストマ等)から形成されており、チップ 5をアンテナパターン ATP上に固定した際に チップ 5の破損を防ぐ構造となって 、る。 [0084] The socket SKT is formed with an antenna substrate AKB and a chip holder CHG force. These antenna substrate AKB and chip holder CHG are formed of an insulating material (for example, plastic). Antenna pattern ATP having the same shape and material as antenna 3 (see FIG. 1) of inlet 1 in the first embodiment is attached to antenna substrate AKB. Chip 5 is arranged on this antenna pattern ATP. The chip holder COG is attached to the chip holder CHG, and this chip holder COG is structured to fix the chip 5 arranged on the antenna pattern ATP. The The chip retainer COG is made of a flexible insulating material (elastomer, etc.) such as urethane rubber, and has a structure that prevents damage to the chip 5 when the chip 5 is fixed on the antenna pattern ATP. RU
[0085] チップ 5がアンテナ 3に実装されていない単体の状態では、電波による通信ができ ないことから通信距離特性の測定を行うことができない。そこで、上記のような本実施 の形態 2のソケット SKTを用いてチップ 5とソケット SKTを一体化させることにより、前 記実施の形態 1のインレット 1と同様と見なすことができるので、アンテナ 3へ実装され ていないチップ 5でも前記実施の形態 1と同様に通信距離特性の測定を行うことが可 能となる。 [0085] When the chip 5 is not mounted on the antenna 3, a communication distance characteristic cannot be measured because communication using radio waves is not possible. Therefore, by integrating the chip 5 and the socket SKT using the socket SKT of the second embodiment as described above, it can be regarded as the same as the inlet 1 of the first embodiment. Even with the chip 5 that is not mounted, it is possible to measure the communication distance characteristics as in the first embodiment.
[0086] また、自動機を用いてチップ 5の通信距離特性の測定を行う場合でも、上記アンテ ナ基板 ATBを用いることができる。図 31に示すように、搬送コレット HKRによりチッ プ 5をアンテナパターン ATP上に配置した後、端子押さえ具 TOGによってチップ 5を アンテナパターン ATPに固定する。この状態でチップ 5の通信距離特性の測定が行 われる。  [0086] Even when the communication distance characteristic of the chip 5 is measured using an automatic machine, the antenna substrate ATB can be used. As shown in Fig. 31, after placing the tip 5 on the antenna pattern ATP by the transport collet HKR, the tip 5 is fixed to the antenna pattern ATP by the terminal retainer TOG. In this state, the communication distance characteristics of chip 5 are measured.
[0087] 上記のような本実施の形態 2によっても前記実施の形態 1と同様の効果を得ること ができる。  [0087] According to the second embodiment as described above, the same effect as in the first embodiment can be obtained.
[0088] (実施の形態 3)  [Embodiment 3]
図 32は、電波喑箱を用いてインレット 1の通信距離特性を測定する場合における課 題を示す説明図である。前記実施の形態 1 (実施例 1)および実施の形態 2 (実施例 2 )と重複する部分については、原則として記載を省略する。上記したごとぐ本実施の 形態 (実施例)の一部または全部は先行のまたは後続の実施の形態 (実施例)の一 部または全部である。  FIG. 32 is an explanatory diagram showing a problem when the communication distance characteristic of inlet 1 is measured using a radio wave chest. In principle, the description of the same parts as those in the first embodiment (Example 1) and the second embodiment (Example 2) is omitted. As described above, part or all of the present embodiment (example) is part or all of the preceding or subsequent embodiment (example).
[0089] 電波暗箱 DAB内には、前記実施の形態 1でも説明した通信アンテナ ANTおよび 通信アンテナ ANTを固定する固定治具 KJGが配置され、固定治具 KJGは、固定螺 子 KNJによって電波 B音箱 DABに固定されて!/ヽる。通信アンテナ ANTとリーダ一機 R Mとの間は、セミリジットケーブル KBLによって電気的に接続されている。インレット 1 は、このような電波暗箱 DAB内へ個々のインレット 1へと切断される前の連続した絶 縁フィルム 2の状態で送り込まれ、各インレット 1に対して通信距離特性の測定が行わ れる。インレット 1と通信アンテナ ANTとの間の距離 D3は、固定螺子 KNJを緩めて固 定治具 KJGごと通信アンテナ ANTの位置を変えることで変化させる。 [0089] In the anechoic box DAB, the communication antenna ANT described in the first embodiment and the fixing jig KJG for fixing the communication antenna ANT are arranged. The fixing jig KJG is a radio wave B sound box by the fixing screw KNJ. Fixed to DAB! The communication antenna ANT and the reader RM are electrically connected by a semi-rigid cable KBL. Inlet 1 is fed into the anechoic box DAB in the state of continuous insulation film 2 before being cut into individual inlets 1, and the communication distance characteristics are measured for each inlet 1. It is. The distance D3 between the inlet 1 and the communication antenna ANT is changed by loosening the fixing screw KNJ and changing the position of the communication antenna ANT together with the fixing jig KJG.
[0090] 上記のような構成下でインレット 1の通信距離特性の測定を行った場合には、 [0090] When the communication distance characteristic of the inlet 1 is measured under the above configuration,
(a)インレット 1と通信アンテナ ANTとの間の距離 D3を自動的に変化することが困難 であり、測定データを取得するのに時間が掛かる。  (a) It is difficult to automatically change the distance D3 between the inlet 1 and the communication antenna ANT, and it takes time to acquire measurement data.
(b)その距離 D3を必要量確保できるだけのスペースが電波暗箱 DAB内に設けなけ ればならず、電波暗箱 DABの大型化を招く。  (b) There must be enough space in the anechoic box DAB to secure the required distance D3, which leads to an increase in the anechoic box DAB.
(c)距離 D3を正確に変化させるための機構が必要となる。  (c) A mechanism for accurately changing the distance D3 is required.
(d)電波で通信を行うため、電波暗箱 DABで外来電波を遮断する必要があり、電波 B音箱 DABの小型化が困難である。  (d) In order to communicate with radio waves, it is necessary to block external radio waves with the anechoic box DAB, and it is difficult to downsize the radio B sound box DAB.
(e)電波暗箱 DAB内部で部品の変更があると、電波環境に変化が生じてしまうことか ら、データの取得し直しになってしまう。  (e) Anechoic box If parts are changed inside the DAB, the radio wave environment will change, and data will be re-acquired.
(f)頻繁に通信アンテナ ANT (固定治具 KJG)を移動させると、セミリジットケーブル KBLにストレスが掛カり破損してしまう。  (f) If the communication antenna ANT (fixing jig KJG) is moved frequently, the semi-rigid cable KBL will be stressed and damaged.
等の課題が生じる。  Such problems arise.
[0091] 図 33に示すように、通信アンテナ ANTから発信された電波 (進行波)は、通信アン テナ ANTから放射状に拡散して ヽくことから、通信アンテナ ANTから遠ざかるに従 つてインレット 1が受ける電力は小さくなる。また、インレット 1からの反射波も同様に放 射状に拡散するので、インレットが遠ざかるに従って通信アンテナ ANTが受ける変 調量は小さくなる。  [0091] As shown in FIG. 33, the radio wave (traveling wave) transmitted from the communication antenna ANT spreads radially from the communication antenna ANT, so that the inlet 1 is moved away from the communication antenna ANT. The power received is smaller. Also, since the reflected wave from inlet 1 is also diffused in a radiation manner, the amount of modulation received by communication antenna ANT decreases as the inlet moves away.
[0092] そこで、本実施の形態 3では、図 34に示すように、通信アンテナ ANTとリーダー機 RMとの間に可変減衰器 KGKを導入し、インレット 1と通信アンテナ ANTとの間の距 離 D3を固定したままで減衰量を変化させることで距離依存性を再現する。すなわち 、予め標準となるインレット 1と通信アンテナ ANTとの間の距離に起因する減衰特性 を調べておき、距離 D3を一定に保ったまま可変減衰器 KGKで減衰量を変化させる ことで、通信距離特性の測定を可能とするものである。それにより、上記 (a)— (f)等 の課題を解決することができる。  Therefore, in the third embodiment, as shown in FIG. 34, a variable attenuator KGK is introduced between the communication antenna ANT and the reader RM, and the distance between the inlet 1 and the communication antenna ANT is introduced. The distance dependence is reproduced by changing the attenuation while D3 is fixed. In other words, the attenuation characteristic due to the distance between the standard inlet 1 and the communication antenna ANT is examined in advance, and the attenuation is changed by the variable attenuator KGK while keeping the distance D3 constant. The characteristic can be measured. As a result, the above-mentioned problems (a)-(f) can be solved.
[0093] また、電波暗箱 DABの小型化を実現できるので、通信距離が長!、インレット 1でも 大型の電波暗箱 DABを用いることなく通信距離特性を測定することができる。また、 通信距離が約 lm以上の長いインレット 1の場合には、通信距離特性を測定する際に 測定点が多くなり、測定時間の長大化が懸念されるが、図 34に示す本実施の形態 3 の構成によればインレット 1と通信アンテナ ANTとの間の距離 D3を変化させる必要 がなくなり、測定時間を短縮することができる。 [0093] In addition, since the anechoic box DAB can be miniaturized, the communication distance is long! Communication distance characteristics can be measured without using a large anechoic box DAB. In addition, in the case of the long inlet 1 with a communication distance of about lm or more, the number of measurement points increases when measuring the communication distance characteristics, and there is a concern that the measurement time may be lengthened. However, this embodiment shown in FIG. According to the configuration of 3, it is not necessary to change the distance D3 between the inlet 1 and the communication antenna ANT, and the measurement time can be shortened.
[0094] ところで、インレット 1は、通信アンテナ ANTからの距離が離れ過ぎると通信できな いのはもちろんのこと、近過ぎても受ける電力が強すぎて内部回路が誤動作してしま うことによって通信できない場合がある。実際に、製品となるインレット 1を選別するェ 程では、図 35に示すような近距離 (強電界下)での通信が可能力否力を測定し、次 いで図 36に示すような遠距離 (弱電界下)での通信が可能力否力を測定することで、 近距離および遠距離の双方での通信が可能であることを保証することによって、その 間の距離での通信も可能であることを保証する。また、前述したように、通信距離特 性を測定する際には、近距離から遠距離の全距離で測定を行う(図 37参照)。すな わち、測定機器が、近距離 (強電界下)での通信測定で 1台、遠距離 (弱電界下)で の通信測定で 1台、および通信距離特性の測定で 1台必要となる。一方、図 34に示 したような本実施の形態 3の構成とすることによって、それら 3つの測定を 1台の測定 機器で実施することが可能となる。  [0094] By the way, the inlet 1 cannot communicate if it is too far away from the communication antenna ANT, but it can also communicate if the received power is too strong and the internal circuit malfunctions. There are cases where it is not possible. Actually, in the process of selecting inlet 1 as a product, the power unavailability of communication at a short distance (under a strong electric field) as shown in FIG. 35 is measured, and then a long distance as shown in FIG. It is possible to communicate in a weak electric field.By measuring the force or power, it is possible to communicate at a distance between them by ensuring that communication is possible at both short and long distances. Guarantee that there is. In addition, as described above, when measuring the communication distance characteristics, the measurement is performed from the short distance to the long distance (see FIG. 37). In other words, one measurement device is required for communication measurement at short distance (under strong electric field), one for communication measurement at long distance (under weak electric field), and one for measurement of communication distance characteristics. Become. On the other hand, by adopting the configuration of the third embodiment as shown in FIG. 34, it becomes possible to perform these three measurements with one measuring device.
[0095] 図 38は、通信アンテナ ANTを可変減衰器 KGKを介してリーダー機 RMに接続し た際の回路を示したものである。図 38に示すように、リーダー機 RMから送り出される 電力は、可変減衰器 KGKを経由してカゝら通信アンテナ ANTに送られるため、可変 減衰器 KGKの減衰量を OdBに設定してぉ ヽても実際には可変減衰器 KGK自身の 損失が存在するため、厳密に OdBとすることができない。そのため、通信アンテナ AN Tからインレット 1に強 、電力(電波)を印可することができな 、と 、う課題が存在する  FIG. 38 shows a circuit when the communication antenna ANT is connected to the reader RM via the variable attenuator KGK. As shown in Fig. 38, since the power sent from the reader RM is sent to the communication antenna ANT via the variable attenuator KGK, the attenuation of the variable attenuator KGK is set to OdB. However, since the loss of the variable attenuator KGK itself actually exists, it cannot be strictly set to OdB. Therefore, there is a problem that power (radio waves) cannot be applied to the inlet 1 from the communication antenna ANT.
[0096] そこで、本実施の形態 3では、図 39に示すように、可変減衰器 KGKを通さない回 路を設け、この回路と可変減衰器 KGKとをリレー RL1、 RL2で切り替えられるように する。それにより、可変減衰器 RM自体の減衰を解消することができる。また、図 40に 示すように、双極双頭のリレー RL3、 RL4を用いた回路構成とすることにより、可変減 衰器 KGKを通さない回路で通信アンテナ ANTとリーダー機 RMとが電気的に接続 された際に、リレーの接点が図 39に示した回路構成の場合に比べて 1つ減らすこと ができるので、さらに減衰量を低減することが可能となる。 Therefore, in Embodiment 3, as shown in FIG. 39, a circuit that does not pass through variable attenuator KGK is provided, and this circuit and variable attenuator KGK can be switched by relays RL1 and RL2. . Thereby, the attenuation of the variable attenuator RM itself can be eliminated. In addition, as shown in Fig. 40, the circuit configuration using the bipolar double-headed relays RL3 and RL4 enables variable reduction. When the communication antenna ANT and the reader RM are electrically connected in a circuit that does not pass the attenuator KGK, the relay contacts can be reduced by one compared to the circuit configuration shown in Fig. 39. Further, the attenuation can be reduced.
[0097] 図 41は、可変減衰器 KGKの内部の回路構成を示した回路図である。図 41に示す ように、可変減衰器 KGK内には、種々の減衰量の減衰器 GSK1— GSK7が直列に 配置されており、これら減衰器 GSK1— GSK7と並列するように減衰器 GSK1— GS K7を通さな!/、ようにするための回路 KR1— KR7が設けられて!/、る。減衰器 GSK1 一 GSK7と回路 KR1— KR7とは、それぞれ機械接点方式のリレー RL11— RL17に よって切り替えが可能な構造となっており、種々の減衰量を形成できるようになつてい る。図 41では、可変減衰器 KGK中に 7個の減衰器 GSK1— GSK7が配置されてい る場合を図示している力 さらに多くの減衰器を配置してさらに細力べ減衰量を設定 できるようにしたり、細かい減衰量設定が不要な場合や小さな減衰量のみを設定する ような場合には減衰器を 7個より少なくしたりしてもよい。  FIG. 41 is a circuit diagram showing an internal circuit configuration of variable attenuator KGK. As shown in Fig. 41, attenuators GSK1 to GSK7 with various attenuation amounts are arranged in series in the variable attenuator KGK. Attenuators GSK1 to GS K7 There is a circuit KR1—KR7 to make it pass! /. Attenuator GSK1 One GSK7 and circuit KR1-KR7 can be switched by mechanical contact type relays RL11-RL17, so that various attenuations can be formed. Fig. 41 shows the force when seven attenuators GSK1 to GSK7 are arranged in the variable attenuator KGK. More attenuators can be arranged to further set the attenuation of the fine force. If you do not need to set a fine attenuation, or if you want to set only a small attenuation, you may use less than 7 attenuators.
[0098] 図 41に示したような機械接点方式のリレー RL 11一 RL17を内部に有する可変減 衰器 KGKを用いた場合には、リレー RL11— RL17の切り替えの繰り返しにより可変 減衰器 KGKの寿命が短くなつてしまうことが懸念され、定期的に可変減衰器 KGKを 検査することが求められる。そこで、本実施の形態 3では、図 42に示すように、可変 減衰器 KGKおよびリレー RL3、RL4を含む可変減衰回路 KGCにリレー RL5を取り 付け、接続先を通信アンテナ ANTと電力計 DRKを含む電力測定回路 DSCとで切り 替えられるようにする。リレー RL5は、コンピュータ COMの制御で切り替えられるよう にし、さらにコンピュータ COMは、可変減衰回路 KGC力も所定の電力が出力されて いる力否かを電力計 DRKから読み取り自己診断する。この自己診断を、たとえばィ ンレット 1の通信距離特性の測定を開始する前と測定の終了後に自動的に実施する 。それにより、作業者の負担を増加することなく定期的に可変減衰器 KGKを検査す ることがかのうとなる。その結果、インレット 1の通信距離特性を測定するシステムの全 体の信頼性を向上することが可能となる。  [0098] When a variable attenuator KGK with an internal relay RL 11 RL17 as shown in Fig. 41 is used, the life of the variable attenuator KGK can be determined by repeating the switching of relays RL11-RL17. Therefore, it is necessary to periodically inspect the variable attenuator KGK. Therefore, in the third embodiment, as shown in FIG. 42, the relay RL5 is attached to the variable attenuator circuit KGC including the variable attenuator KGK and the relays RL3 and RL4, and the connection destination includes the communication antenna ANT and the power meter DRK. Switch to the power measurement circuit DSC. The relay RL5 can be switched under the control of the computer COM, and the computer COM reads from the wattmeter DRK whether or not the variable damping circuit KGC force is outputting a predetermined power and performs self-diagnosis. This self-diagnosis is automatically performed before, for example, the measurement of the communication distance characteristic of inlet 1 and after the measurement is completed. As a result, the variable attenuator KGK can be inspected regularly without increasing the burden on the operator. As a result, it is possible to improve the overall reliability of the system that measures the communication distance characteristics of inlet 1.
[0099] (実施の形態 4)  [0099] (Embodiment 4)
次に、本実施の形態 4について説明する。前記実施の形態 1 (実施例 1)、実施の形 態 2 (実施例 2)および実施の形態 3 (実施例 3)と重複する部分につ!ヽては、原則とし て記載を省略する。上記したごとぐ本実施の形態(実施例)の一部または全部は先 行のまたは後続の実施の形態(実施例)の一部または全部である。 Next, the fourth embodiment will be described. Embodiment 1 (Example 1), form of implementation In principle, the description of the same parts as in Embodiment 2 (Example 2) and Embodiment 3 (Example 3) is omitted. As described above, part or all of this embodiment (example) is part or all of the preceding or subsequent embodiment (example).
[0100] インレット 1 (図 1参照)は、電波で通信するデバイスである。また、インレット 1に達す る電波の強さは周囲の電波環境に左右されるため、不確定な要素が大きくなる。イン レット 1の生産効率を上げるためには、この不確定な要素をできるだけ排除することが 好ましい。インレット 1自身は高周波電流で動作することから、インレット 1の通信距離 特性を測定する際には、必ずしも電波は必要でなくなる。むしろ、正確な測定をする 上では、なるべく電波を介さな 、測定を実施することが好まし 、。 [0100] Inlet 1 (see Fig. 1) is a device that communicates by radio waves. In addition, the strength of the radio wave reaching Inlet 1 depends on the surrounding radio wave environment, so the uncertain factor increases. In order to increase the production efficiency of inlet 1, it is preferable to eliminate this uncertain factor as much as possible. Since the inlet 1 itself operates at a high frequency current, radio waves are not necessarily required when measuring the communication distance characteristics of the inlet 1. Rather, for accurate measurement, it is preferable to carry out measurement through radio waves as much as possible.
[0101] そこで、本実施の形態 4では、図 43に示すような測定治具 SJG1を用いて、アンテ ナ 3 (図 1参照)へチップ 5 (図 4参照)を実装する工程の前にチップ 5の通信距離特性 を測定する。測定治具 SJG1以外の測定システムの構成(回路構成)は、たとえば前 記実施の形態 3で図 42に示した測定システムの構成と同様である(図 44参照)。測 定治具 SJG1は、筐体 KT1にソケット SKT2および信号端子 ST1が取り付けられた構 造となっている。ソケット SKT2が取り付けられた筐体 KT1の天板は、たとえばガラス エポキシ製の基板に銅パターンが添付された構造となっており、その銅パターンは筐 体 KT1の内部側で添付されている。また、信号端子 ST1が取り付けられた側板およ びその他の側板は、アルミニウムまたは鉄等の金属から形成されている。図 45に示 すように、ソケット SKT2に装着されたチップ 5は、マイクロストリップ線路 MSL (前記 銅パターン)を介して信号端子 ST1と電気的に接続される。また、ソケット SKT2に装 着されたチップ 5は、接地電位と電気的に接続された接地配線 GLとも電気的に接続 されている。たとえば、可変減衰回路 KGC (図 42参照)を含む測定系回路の特性ィ ンピーダンスは約 50 Ωであるが、チップ 5の特性インピーダンスは約 50オームではな ぐそのまま両者を電気的に接続すると反射によってチップ 5に十分な電力が印加さ れないことになる。そこで、図 46に示すように、チップ 5とマイクロストリップ線路 MSL および接地配線 GLとの間にインピーダンス整合回路 ISKを入れ、両者の特性インピ 一ダンスの整合を取る。本実施の携帯 4では、このインピーダンス整合回路 ISKとし て、マイクロストリップ線路 MSLに取り付けたインピーダンス変換器 IHK (図 45参照) を例示することができ、そのインピーダンス変 lHKとしてオープンスタブを例示す ることがでさる。 [0101] Therefore, in the fourth embodiment, the chip 5 (see Fig. 4) is mounted on the antenna 3 (see Fig. 1) using the measuring jig SJG1 as shown in Fig. 43 before the step of mounting the chip 5 (see Fig. 4). Measure the communication distance characteristics of 5. The configuration (circuit configuration) of the measurement system other than the measurement jig SJG1 is, for example, the same as the configuration of the measurement system shown in FIG. 42 in the third embodiment (see FIG. 44). Measurement jig SJG1 has a structure in which socket SKT2 and signal terminal ST1 are attached to housing KT1. The top plate of the housing KT1 to which the socket SKT2 is attached has a structure in which a copper pattern is attached to, for example, a glass epoxy board, and the copper pattern is attached to the inside of the housing KT1. The side plate to which the signal terminal ST1 is attached and other side plates are made of metal such as aluminum or iron. As shown in FIG. 45, the chip 5 mounted in the socket SKT2 is electrically connected to the signal terminal ST1 via the microstrip line MSL (the copper pattern). The chip 5 mounted on the socket SKT2 is also electrically connected to the ground wiring GL that is electrically connected to the ground potential. For example, the characteristic impedance of the measurement system circuit including the variable attenuation circuit KGC (see Fig. 42) is about 50 Ω, but the characteristic impedance of chip 5 is not about 50 ohms. Not enough power is applied to chip 5. Therefore, as shown in FIG. 46, an impedance matching circuit ISK is inserted between the chip 5 and the microstrip line MSL and the ground wiring GL to match the characteristic impedance of both. In this mobile phone 4, the impedance matching circuit ISK is an impedance converter IHK attached to the microstrip line MSL (see Fig. 45). An open stub can be illustrated as an impedance change lHK.
[0102] 上記のような本実施の形態 4の構成とすることにより、測定環境を形成するための電 波暗箱が不要となるので、測定治具 SJG1を小型化することができる。たとえばトラン ジスタ用の測定治具を測定治具 SJG1として用いることも可能となる。それにより、チッ プ 5の通信距離特性の測定を高速ィ匕できるように測定治具 SJG1を設計することが可 能となる。  [0102] By adopting the configuration of the fourth embodiment as described above, the anechoic box for forming the measurement environment becomes unnecessary, and the measurement jig SJG1 can be downsized. For example, a measurement jig for a transistor can be used as the measurement jig SJG1. This makes it possible to design the measuring jig SJG1 so that the measurement of the communication distance characteristics of chip 5 can be performed at high speed.
[0103] また、上記のような本実施の形態 4の構成とすることにより、電波を発信する部分お よび受信する部分を省略することができるので、周囲の電波から影響を受けない測 定環境を形成することができる。それにより、本実施の形態 4のチップ 5の通信距離特 性の測定制度を向上することが可能となる。  [0103] In addition, by adopting the configuration of the fourth embodiment as described above, it is possible to omit the part that transmits and receives radio waves, so the measurement environment is not affected by surrounding radio waves. Can be formed. As a result, it is possible to improve the measurement system of the communication distance characteristic of the chip 5 of the fourth embodiment.
[0104] (実施の形態 5)  [Embodiment 5]
前記実施の形態 4においては、測定治具 SJG1 (図 43参照)を用いてアンテナ 3 (図 1参照)へチップ 5 (図 4参照)を実装する工程の前にチップ 5の通信距離特性を測定 する場合について説明したが、本実施の形態 5では、チップ 5がアンテナ 3 (図 1参照 )に実装された状況下でにお 、てインレット 1の通信距離特性を測定するものである。 前記実施の形態 1 (実施例 1)、実施の形態 2 (実施例 2)、実施の形態 3 (実施例 3)お よび実施の形態 4 (実施例 4)と重複する部分については、原則として記載を省略する 。上記したごとぐ本実施の形態 (実施例)の一部または全部は先行の実施の形態( 実施例)の一部または全部である。  In Embodiment 4, the communication distance characteristic of chip 5 is measured before the step of mounting chip 5 (see FIG. 4) on antenna 3 (see FIG. 1) using measurement jig SJG1 (see FIG. 43). In the fifth embodiment, the communication distance characteristic of the inlet 1 is measured in a situation where the chip 5 is mounted on the antenna 3 (see FIG. 1). In principle, the same parts as those in Embodiment 1 (Example 1), Embodiment 2 (Example 2), Embodiment 3 (Example 3), and Embodiment 4 (Example 4) are described. The description is omitted. As described above, a part or all of the present embodiment (example) is a part or all of the preceding embodiment (example).
[0105] 図 47は、本実施の形態 5でインレット 1の通信距離特性の測定に用いる測定治具 S JG2の斜視図である。測定治具 SJG2以外の測定システムの構成(回路構成)は、た とえば前記実施の形態 3で図 42に示した測定システムの構成と同様である。測定治 具 SJG2は、筐体 KT2に、たとえばダイポールアンテナ DPAおよび信号端子 ST2が 取り付けられた構造となって ヽる。ダイポールアンテナ DPAが取り付けられた筐体 K T2の天板は、前記実施の形態 4にて説明した測定治具 SJG1と同様に、たとえばガ ラスエポキシ製の基板に銅パターンが添付された構造となっており、その銅パターン は筐体 KT2の内部側で添付されている。また、信号端子 ST2が取り付けられた側板 およびその他の側板は、前記実施の形態 4の測定治具 SJG1と同様にアルミニウムま たは鉄等の金属から形成されている。ダイポールアンテナ DPAは、筐体 KT2内に配 置され、測定治具 SJG2の内部にぉ 、てバラン BRNを介して信号端子 ST2と電気的 に接続されている(図 48参照)。ダイポールアンテナ DPAは、筐体 KT2の上面に現 れるように配置することによって、上方向以外にはできるだけ電波を測定治具の外部 に放射させないようにすることができる。筐体 KT2の天板には、ダイポールアンテナ DPAに達する開口部が設けられており、この開口部から半円状に電波が放射されて インレット 1と通信する。本実施の形態 5においては、図 49に示すような電波吸収材 力 なるシールド SLDを配置し、その半円状に放射される電波が上方向以外へ放射 することを防ぐ。それにより、測定対象以外のインレット 1と通信してしまう不具合を防 ぐことができる。インレット 1の通信距離特性を測定する際には、個々のインレット 1へ 分割する前の絶縁フィルム 2を筐体 KT2の上面 (天板)とシールド SLDとの間に通し 、絶縁フィルム 2に形成されたインレット 1の通信距離特性を連続して測定して 、く。 FIG. 47 is a perspective view of measurement jig S JG2 used for measuring the communication distance characteristic of inlet 1 in the fifth embodiment. The configuration (circuit configuration) of the measurement system other than the measurement jig SJG2 is, for example, the same as the configuration of the measurement system shown in FIG. The measuring tool SJG2 has a structure in which, for example, a dipole antenna DPA and a signal terminal ST2 are attached to the housing KT2. The top plate of the housing KT2 to which the dipole antenna DPA is attached has a structure in which a copper pattern is attached to a glass epoxy substrate, for example, in the same manner as the measurement jig SJG1 described in the fourth embodiment. The copper pattern is attached inside the case KT2. Also, the side plate to which signal terminal ST2 is attached The other side plates are formed of a metal such as aluminum or iron as in the measurement jig SJG1 of the fourth embodiment. The dipole antenna DPA is arranged in the housing KT2, and is electrically connected to the signal terminal ST2 via the balun BRN inside the measuring jig SJG2 (see FIG. 48). By arranging the dipole antenna DPA so as to appear on the upper surface of the housing KT2, it is possible to prevent radio waves from radiating outside the measuring jig as much as possible except in the upward direction. An opening reaching the dipole antenna DPA is provided in the top plate of the housing KT2, and radio waves are emitted from the opening in a semicircular shape to communicate with the inlet 1. In the fifth embodiment, a shield SLD having a radio wave absorbing material force as shown in FIG. 49 is arranged to prevent radio waves radiated in a semicircular shape from radiating in directions other than upward. As a result, it is possible to prevent a malfunction that communicates with the inlet 1 other than the measurement target. When measuring the communication distance characteristics of inlet 1, the insulation film 2 before being divided into individual inlets 1 is passed through the top surface (top plate) of the housing KT2 and the shield SLD, and the insulation film 2 is formed. Measure the communication distance characteristics of inlet 1 continuously.
[0106] また、ダイポールアンテナ DPAの代わりに、モノポールアンテナ MPAを用いてもよ い(図 50参照)。この場合、モノポールアンテナ MPAは、測定治具 SJG2の内部にお V、てシールドケーブル SKBを介して信号端子 ST2と電気的に接続されて 、る(図 51 参照)。 [0106] In addition, a monopole antenna MPA may be used instead of the dipole antenna DPA (see Fig. 50). In this case, the monopole antenna MPA is electrically connected to the signal terminal ST2 via the shielded cable SKB and V inside the measuring jig SJG2 (see Fig. 51).
[0107] 上記のような測定治具 SJG2を用いてインレット 1の通信距離特性の測定を行った 場合には、測定治具 SJG2の通信アンテナがダイポールアンテナ DPAもしくはモノポ 一ルアンテナ MPAとなり利得が低くなる力 インレット 1自身のダイポールアンテナ( アンテナ 3)に対してマッチングが良好なものを選択ことにより、両者を極近距離まで 近づけることが可能となる。それにより、インレット 1が受ける電力は、 1パッチ型の通 信アンテナ ANT (たとえば図 33参照)を用いた場合と同等とすることができる。また、 ダイポールアンテナ DPAもしくはモノポールアンテナ MPAが配置されて!、る測定治 具 SJG2の上面から離れると、電波は急激に減衰するので、測定中のインレット 1以外 へは不要な電波を発信し難くなる。さらに、測定中のインレット 1以外のものからの電 波を受信し難くなるので、インレット 1の通信距離特性の測定精度を向上することがで きる。 [0108] また、上記のような測定治具 SJG2を用いてインレット 1の通信距離特性の測定を行 つた場合には、可変減衰器 KGKを用いることでインレット 1とダイポールアンテナ DP Aもしくはモノポールアンテナ MPAとの間の距離を一定に保ったまま距離依存性を 再現するので、インレット 1の通信限界値を測定することが可能となる。それにより、ィ ンレット 1の品質管理をしやすくすることができる。さらに、測定治具 SJG2を管理する 上でも、標準サンプルによる管理が行えるようになる。 [0107] When the communication distance characteristics of inlet 1 are measured using the measurement jig SJG2 as described above, the communication antenna of the measurement jig SJG2 becomes a dipole antenna DPA or a monopole antenna MPA, resulting in a low gain. By selecting one that has good matching with the dipole antenna (antenna 3) of the force inlet 1 itself, it is possible to bring them close to each other. As a result, the power received by inlet 1 can be made equivalent to the case of using a one-patch communication antenna ANT (see Fig. 33, for example). In addition, when the dipole antenna DPA or monopole antenna MPA is placed !, the radio wave attenuates rapidly when it is away from the upper surface of the measurement tool SJG2, so it is difficult to send unnecessary radio waves to other than the inlet 1 being measured. Become. Furthermore, since it becomes difficult to receive a wave from anything other than inlet 1 being measured, the measurement accuracy of the communication distance characteristic of inlet 1 can be improved. [0108] When measuring the communication distance characteristics of inlet 1 using the measurement jig SJG2 as described above, inlet 1 and dipole antenna DP A or monopole antenna can be obtained by using variable attenuator KGK. Since the distance dependence is reproduced while keeping the distance to the MPA constant, the communication limit value of the inlet 1 can be measured. As a result, quality control of inlet 1 can be facilitated. In addition, management with the standard sample is also possible when managing the measuring jig SJG2.
[0109] また、上記のような測定治具 SJG2を用いてインレット 1の通信距離特性の測定を行 つた場合には、測定治具 SJG2がシールドされて 、ることから電波暗箱が不要となる。 そのため、測定に必要なスペースを大幅に縮小することができ、本発明者らが行った 実験によれば、 1Z100程度にまで縮小することができた。  [0109] Further, when the communication distance characteristic of the inlet 1 is measured using the measurement jig SJG2 as described above, the measurement jig SJG2 is shielded, so that an anechoic box is not necessary. Therefore, the space required for measurement can be greatly reduced, and according to experiments conducted by the present inventors, it was possible to reduce the space to about 1Z100.
[0110] また、上記のような測定治具 SJG2を用いてインレット 1の通信距離特性の測定を行 つた場合には、前記実施の形態 3と同様に近距離 (強電界下)での通信測定、遠距 離 (弱電界下)での通信測定、および通信距離特性の測定を 1台の測定治具 SJG2 で行うことができる。それにより、本実施の形態 5のインレット 1の製造工程数を削減す ることがでさる。  [0110] When the communication distance characteristic of inlet 1 is measured using the measurement jig SJG2 as described above, communication measurement at a short distance (under a strong electric field) is performed as in the third embodiment. Communication measurement at a long distance (under a weak electric field) and measurement of communication distance characteristics can be performed with one measuring jig SJG2. As a result, the number of manufacturing steps of the inlet 1 of the fifth embodiment can be reduced.
[0111] また、上記のような測定治具 SJG2を用いてインレット 1の通信距離特性の測定を行 つた場合には、補助アンテナを用いた測定に比べて、位置精度に厳密さが要求され ない。そのため、測定治具 SJG2の管理を容易にすることができる。  [0111] In addition, when measuring the communication distance characteristics of the inlet 1 using the measuring jig SJG2 as described above, the positional accuracy is not required to be stricter than the measurement using the auxiliary antenna. . Therefore, management of the measuring jig SJG2 can be facilitated.
[0112] なお、ミューチップにおける非接触 RFID連続テープ上の選別を可能とするための 補助アンテナにつ ヽては、本発明者のうちの 1名を含む他の発明者による先願 (日本 特開 2004— 220141号公報、対応米国出願番号 10— 753, 454 ;米国出願日 2004 年 1月 9日)に記載されているので、必要な部分以外は繰り返さない。  [0112] Regarding the auxiliary antenna for enabling the selection on the non-contact RFID continuous tape in the mu-chip, prior applications by other inventors including one of the inventors (Japanese special No. 2004-220141, corresponding US application number 10-753, 454; US filing date January 9, 2004).
[0113] また、絶縁フィルム 2を筐体 KT2の上面 (天板)とシールド SLDとの間に通す際に、 アンテナ 3がダイポールアンテナ DPAもしくはモノポールアンテナ MPAと接するよう に、アンテナ 3が貼付された面を筐体 KT2側へ向けて絶縁フィルム 2を通すことにより 、チップ 5そのものの特¾を測定できるようになる。  [0113] Further, when the insulating film 2 is passed between the upper surface (top plate) of the housing KT2 and the shield SLD, the antenna 3 is attached so that the antenna 3 contacts the dipole antenna DPA or the monopole antenna MPA. The characteristics of the chip 5 itself can be measured by passing the insulating film 2 with the surface facing toward the housing KT2.
[0114] また、測定治具 SJG2を小型化できることから、複数台の測定治具 SJG2 (筐体 KT2 )を並べて用いることが可能となる。すなわち、図 52に示すように、複数台の測定治 具 SJG2 (筐体 KT2)を並べ、これら測定治具 SJG2のすべてに絶縁フィルム 3が通る ようにすることにより、複数個のインレット 1の通信距離特性を一度に測定できるように なる。それにより、インレット 1の通信距離特性の測定に要する時間をさらに短縮する ことが可能となる。 [0114] Further, since the measurement jig SJG2 can be reduced in size, a plurality of measurement jigs SJG2 (housing KT2) can be used side by side. That is, as shown in Fig. 52, By arranging the tools SJG2 (housing KT2) and allowing the insulating film 3 to pass through all of these measuring jigs SJG2, the communication distance characteristics of a plurality of inlets 1 can be measured at a time. As a result, the time required for measuring the communication distance characteristics of inlet 1 can be further reduced.
[0115] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが 、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることは 、うまでもな!/、。  [0115] While the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. There's nothing wrong!
[0116] 前記実施の形態では、ポリイミド榭脂からなる絶縁フィルムに貼り付けた Cu箔を使 つてアンテナを構成した力 たとえば絶縁フィルムの一面に貼り付けた A1 (アルミ-ゥ ム)箔を使ってアンテナを構成したり、絶縁フィルムをポリイミド榭脂よりも安価な榭脂( たとえばポリエチレンテレフタレートなど)で構成したりすることにより、インレットの材料 コストを低減することができる。アンテナを A1箔で構成した場合、チップの Auバンプと アンテナとの接続は、たとえば超音波と加熱を併用した AuZAl接合の形成によって 行うことが好ましい。  [0116] In the above-described embodiment, the force that constitutes the antenna using the Cu foil attached to the insulating film made of polyimide resin is used, for example, the A1 (aluminum) foil attached to one surface of the insulating film. The material cost of the inlet can be reduced by configuring the antenna or by configuring the insulating film with a less expensive resin (for example, polyethylene terephthalate) than the polyimide resin. When the antenna is composed of A1 foil, it is preferable to connect the Au bump of the chip and the antenna by, for example, forming an AuZAl joint using both ultrasonic and heating.
産業上の利用可能性  Industrial applicability
[0117] 本発明の電子タグ用インレットの製造方法は、電子タグの通信距離特性を測定する 工程に適用することができる。 [0117] The method for manufacturing an inlet for an electronic tag of the present invention can be applied to a step of measuring the communication distance characteristics of the electronic tag.

Claims

請求の範囲 The scope of the claims
[1] 以下の工程を含む RFID素子の製造方法:  [1] RFID device manufacturing method including the following steps:
(a)第 1のアンテナを有する RFID素子の通信距離特性を、前記 RFID素子の外部に 設けられた第 2のアンテナを用いて、前記第 1のアンテナと前記第 2のアンテナの距 離をほぼ一定にした状態で、測定する工程。  (a) The communication distance characteristic of the RFID element having the first antenna is approximately equal to the distance between the first antenna and the second antenna by using the second antenna provided outside the RFID element. The process of measuring in a constant state.
[2] 前記請求項 1の RFID素子の製造方法において、前記測定は複数の RFID素子に ついて、ほぼ同時に実施される。 [2] In the RFID element manufacturing method of claim 1, the measurement is performed on a plurality of RFID elements substantially simultaneously.
[3] 前記請求項 2の RFID素子の製造方法において、前記複数の RFID素子は、単一 のテープ上に固定されている。 [3] In the RFID element manufacturing method according to claim 2, the plurality of RFID elements are fixed on a single tape.
[4] 前記請求項 1の RFID素子の製造方法にぉ 、て、前記 RFID素子は、 IDデータを 格納した集積回路チップ上にアンテナを有する。 [4] In the method for manufacturing an RFID element according to Claim 1, the RFID element has an antenna on an integrated circuit chip storing ID data.
[5] 以下の工程を含む RFID素子の製造方法: [5] RFID device manufacturing method including the following steps:
(a)アンテナを実質的に有しない RFID素子の通信距離特性を、前記 RFID素子の 外部に設けられたアンテナを用いることなぐ電気的に測定する工程。  (a) A step of electrically measuring a communication distance characteristic of an RFID element that substantially does not have an antenna without using an antenna provided outside the RFID element.
[6] 以下の工程を含む RFID素子の製造方法: [6] RFID device manufacturing method including the following steps:
(a)アンテナを実質的に有しない RFID素子の通信距離特性を、前記 RFID素子の 外部に設けられた第 1および第 2アンテナを用いて、前記第 1および第 2アンテナ間 で電波を介して測定する工程。  (a) The communication distance characteristics of an RFID element having substantially no antenna are measured using radio waves between the first and second antennas using the first and second antennas provided outside the RFID element. The process of measuring.
[7] 前記請求項 6の RFID素子の製造方法において、前記測定は、前記第 1のアンテ ナと前記第 2のアンテナの距離をほぼ一定にした状態で行われる。 [7] In the RFID element manufacturing method according to [6], the measurement is performed in a state in which a distance between the first antenna and the second antenna is substantially constant.
[8] 以下の工程を含む RFID素子の製造方法: [8] RFID device manufacturing method including the following steps:
(a)第 1のアンテナを有する RFID素子の通信距離特性を、前記 RFID素子の外部に 設けられた第 2のアンテナを用いて、前記第 1のアンテナと前記第 2のアンテナの距 離を自動的に変化させて複数点で、自動的に測定する工程。  (a) The communication distance characteristic of the RFID element having the first antenna is automatically determined by using the second antenna provided outside the RFID element to determine the distance between the first antenna and the second antenna. The process of measuring automatically at multiple points by changing it automatically.
[9] 以下の工程を含む RFID素子の製造方法: [9] RFID device manufacturing method including the following steps:
(a) RFID素子の通信距離特性を、前記 RFID素子の外部に設けられたアンテナを 用いることなぐ電気的に測定する工程。  (a) A step of electrically measuring the communication distance characteristics of the RFID element without using an antenna provided outside the RFID element.
PCT/JP2005/002003 2005-02-10 2005-02-10 Method for manufacturing inlet for electronic tag WO2006085372A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007502515A JPWO2006085372A1 (en) 2005-02-10 2005-02-10 Method for manufacturing inlet for electronic tag
PCT/JP2005/002003 WO2006085372A1 (en) 2005-02-10 2005-02-10 Method for manufacturing inlet for electronic tag
TW094139167A TW200637200A (en) 2005-02-10 2005-11-08 Inlet manufacturing method applied to electronic tags

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/002003 WO2006085372A1 (en) 2005-02-10 2005-02-10 Method for manufacturing inlet for electronic tag

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/919,126 A-371-Of-International US7825843B2 (en) 2005-05-20 2005-10-31 D/A converter and semiconductor integrated circuit including the same
US12/887,969 Division US7982644B2 (en) 2005-05-20 2010-09-22 D/A converter and semiconductor integrated circuit including the same

Publications (1)

Publication Number Publication Date
WO2006085372A1 true WO2006085372A1 (en) 2006-08-17

Family

ID=36792947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002003 WO2006085372A1 (en) 2005-02-10 2005-02-10 Method for manufacturing inlet for electronic tag

Country Status (3)

Country Link
JP (1) JPWO2006085372A1 (en)
TW (1) TW200637200A (en)
WO (1) WO2006085372A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187319A (en) * 2008-02-06 2009-08-20 Toppan Forms Co Ltd Rfid inspection system
JP2009187318A (en) * 2008-02-06 2009-08-20 Toppan Forms Co Ltd Rfid inspection system
CN107026325A (en) * 2017-06-06 2017-08-08 中国电子技术标准化研究院 A kind of RFID antenna impedance matching attachment means

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076947A (en) * 2001-09-05 2003-03-14 Toppan Forms Co Ltd Rf-id inspection system
JP2003130905A (en) * 2001-10-23 2003-05-08 Mitsubishi Materials Corp Electronic component measuring instrument and measuring substrate
JP2003331220A (en) * 2002-05-13 2003-11-21 Mitsubishi Materials Corp Measuring device and measuring method of rfid tag and manufacturing method of rfid tag by using device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076947A (en) * 2001-09-05 2003-03-14 Toppan Forms Co Ltd Rf-id inspection system
JP2003130905A (en) * 2001-10-23 2003-05-08 Mitsubishi Materials Corp Electronic component measuring instrument and measuring substrate
JP2003331220A (en) * 2002-05-13 2003-11-21 Mitsubishi Materials Corp Measuring device and measuring method of rfid tag and manufacturing method of rfid tag by using device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187319A (en) * 2008-02-06 2009-08-20 Toppan Forms Co Ltd Rfid inspection system
JP2009187318A (en) * 2008-02-06 2009-08-20 Toppan Forms Co Ltd Rfid inspection system
CN107026325A (en) * 2017-06-06 2017-08-08 中国电子技术标准化研究院 A kind of RFID antenna impedance matching attachment means
CN107026325B (en) * 2017-06-06 2023-10-03 中国电子技术标准化研究院 Impedance matching connection device for radio frequency identification tag antenna

Also Published As

Publication number Publication date
JPWO2006085372A1 (en) 2008-06-26
TW200637200A (en) 2006-10-16

Similar Documents

Publication Publication Date Title
US20070132594A1 (en) Electronic device and fabrication method thereof
US10157297B2 (en) RFID tag board, RFID tag, and RFID system
JP2009025870A (en) Radio ic device, inspection system thereof, and method for manufacturing radio ic device by using the inspection system
KR102132821B1 (en) Id chip socket for test connector assembly, test connector assembly comprising the same and test device set
US20060258025A1 (en) Fabrication method of IC inlet, ID tag, ID tag reader and method of reading date thereof
JP5304975B1 (en) RFID tag inspection method and inspection apparatus
US7994995B2 (en) Transponder tuning method and a transponder
US20100207729A1 (en) Method and system for testing rfid tags
US20060109120A1 (en) RFID tag in a substrate
WO2006085372A1 (en) Method for manufacturing inlet for electronic tag
US12014235B2 (en) Wireless communication device
JP5266675B2 (en) Inspection system for electromagnetic coupling module and method for manufacturing electromagnetic coupling module using the inspection system
US7932730B2 (en) System for inspecting electromagnetic coupling modules and radio IC devices and method for manufacturing electromagnetic coupling modules and radio IC devices using the system
JP2006164083A (en) Antenna module for contactless communication, and personal digital assistant equipped therewith
US20070139290A1 (en) RFID tag and RFID system having the same
TWI388866B (en) Test module for radio frequency identification chips and method of the same
JP2007156672A (en) Reader/writer module
JP4310589B2 (en) Wireless IC device inspection system and wireless IC device manufacturing method using the same
JP5376019B2 (en) Inspection system for electromagnetic coupling module and method for manufacturing electromagnetic coupling module using the inspection system
JP5418220B2 (en) Inlet inspection device
JP5365631B2 (en) Semiconductor inspection apparatus and semiconductor inspection method
JP2007233885A (en) Inlet for rfid and manufacturing method thereof
JP2011198326A (en) Rfid inspection device
KR20060132299A (en) Tuning method for radio frequency characteristics and rfid tag using the said tuning method

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007502515

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05710055

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5710055

Country of ref document: EP