WO2006082827A1 - 光走査型ディスプレイおよびそれの駆動方法 - Google Patents

光走査型ディスプレイおよびそれの駆動方法 Download PDF

Info

Publication number
WO2006082827A1
WO2006082827A1 PCT/JP2006/301624 JP2006301624W WO2006082827A1 WO 2006082827 A1 WO2006082827 A1 WO 2006082827A1 JP 2006301624 W JP2006301624 W JP 2006301624W WO 2006082827 A1 WO2006082827 A1 WO 2006082827A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
sub
signal
synchronization signal
frequency
Prior art date
Application number
PCT/JP2006/301624
Other languages
English (en)
French (fr)
Inventor
Nobuaki Asai
Shoji Yamada
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005026767A external-priority patent/JP2006215201A/ja
Priority claimed from JP2005278975A external-priority patent/JP4779534B2/ja
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Publication of WO2006082827A1 publication Critical patent/WO2006082827A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • H04N5/12Devices in which the synchronising signals are only operative if a phase difference occurs between synchronising and synchronised scanning devices, e.g. flywheel synchronising
    • H04N5/126Devices in which the synchronising signals are only operative if a phase difference occurs between synchronising and synchronised scanning devices, e.g. flywheel synchronising whereby the synchronisation signal indirectly commands a frequency generator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners

Definitions

  • the present invention relates to a technique for displaying an image by two-dimensional scanning of a light beam, and particularly to a technique for controlling the scanning trajectory.
  • An optical scanning display that displays an image by two-dimensional scanning of a light beam is already known (see, for example, Japanese Patent No. 2988457;).
  • One example is a projector that projects and displays an image on a screen assigned to the outside of the observer, and another example projects a light beam directly onto the viewer's retina and scans the retina with that light beam. It is a retinal staggered display.
  • this type of optical scanning display generally includes (a) a light source unit that emits a light beam with a luminance corresponding to a luminance signal, and (b) a light beam emitted from the light source unit.
  • a scanning device capable of reciprocating scanning in the main scanning direction and the sub-scanning direction intersecting each other, and (c) generating the luminance signal based on the video signal, and supplying the generated luminance signal to the light source unit
  • a control unit that controls the scanning trajectory by the scanning unit.
  • the main scanning direction is normally set to be equal to the horizontal direction
  • the sub scanning direction is set to be equal to the vertical direction. Therefore, scanning in the main scanning direction is horizontal scanning and sub scanning.
  • the scanning in the scanning direction is referred to as vertical scanning, but the direction in each scanning direction is not limited thereto.
  • the light source unit actually emits a light beam during the effective scanning period of the entire period of each round-trip scanning. While the actual scanning line is formed as an effective scanning line, the non-existing scanning line is formed as an invalid scanning line by the light source unit not actually emitting a light beam during the invalid scanning period. .
  • the scanning device performs reciprocal scanning in the main scanning direction for each frame of the image! Configured to do.
  • non-interlace method also referred to as a progressive method
  • interlace method as a method of scanning a light beam to display an image.
  • non-interlace method all effective scanning lines for displaying one frame image are sequentially scanned one by one.
  • interlace method one frame of an image is composed of two fields, and these fields are scanned so that the scanning lines do not overlap each other.
  • the main scanning frequency can be lowered to, for example, half of that while keeping the sub-scanning frequency high (for example, a frequency of 50 Hz or more) to such an extent that the flits force is not noticeable.
  • the sub-scanning frequency high for example, a frequency of 50 Hz or more
  • the screen which is the minimum unit of image display (corresponds to a field in the interlace method, and corresponds to a frame in the non-interlace method).
  • the scanning line force is halved compared to the case of adopting the non-interlace method.
  • the present invention provides a technique for displaying an image by two-dimensional scanning of a light beam, thereby reducing the required main scanning frequency and reducing the required sub-scanning frequency by improving the scanning trajectory.
  • the challenge was to enable at least one of the increase and the increase in the number of effective scanning lines per frame.
  • each section in the form of quoting the numbers of other sections so that the technical characteristics described in each section are separated from the technical characteristics described in the other sections. It should be construed that the technical features described in each section can be made independent as appropriate according to their nature.
  • An optical scanning display that displays an image by two-dimensional scanning of a light beam, and a light source unit that emits the light beam at a luminance corresponding to a luminance signal;
  • a scanning device capable of reciprocally scanning a light beam emitted from the light source unit in a main scanning direction and a sub-scanning direction intersecting each other, and is arranged in the main scanning direction for each frame of the image. Performing more reciprocating scans in the sub-scanning direction,
  • the luminance signal is generated on the basis of the video signal so that one frame of the image is divided into three or more fields and displayed by the scanning device, and the luminance signal is generated based on the video signal.
  • the generated luminance signal is such that effective scanning lines formed by the light source section actually emitting a light beam do not overlap each other among the three or more fields in the same frame.
  • An optical scanning display including:
  • this optical scanning display one frame of an image is scanned and displayed in three or more fields, and further, effective scanning lines overlap each other among three or more fields in the same frame. It is formed as follows.
  • optical scanning display it is easier to lower the required main scanning frequency than when the above-described conventional interlace method is employed.
  • one frame is composed of 3 or more fields and the required sub-scanning frequency is increased, one frame is composed of 2 or less fields, so the necessary sub-scanning frequency cannot be increased As a result, the number of effective scanning lines formed in one frame increases with the same main scanning frequency and sub-scanning frequency. Increasing the number of effective scanning lines leads to improvement in the resolution of the display image in the sub-scanning direction.
  • the luminance signal control unit includes:
  • the luminance signal is generated so that both the one-way scanning period and the backward scanning period are the effective scanning period in the entire period of each round-trip scanning in the sub-scanning direction.
  • the optical scanning display according to (1) further including a first signal generation unit that outputs to the light source unit.
  • any one of the one-way scanning period and the backward scanning period is included in the entire period of each round-trip scanning in the sub-scanning direction for each frame of the image. It is possible to implement in a mode used as an effective scanning period. In this mode, one field is formed by one reciprocating scan in the sub-scanning direction. Will be. This is the same as the case of adopting the conventional interlace method described above.
  • the luminance signal is a signal that is sequentially processed by the light source unit, and is generated based on a plurality of luminance data respectively representing the luminance of a plurality of pixels arranged in a line in the image.
  • the plurality of luminance data includes the first luminance data group processed by the light source unit to form the effective scanning line in the unidirectional scanning period, and the effective luminance in the reverse scanning period.
  • the luminance signal controller is
  • the light source unit is arranged so that the direction in which the image is drawn according to each luminance data group is opposite between the first and second luminance data groups.
  • the optical scanning display according to item (2) including a data output unit that outputs to
  • the luminance data group and the second luminance data group processed by the light source unit to form an effective scanning line in the reverse scanning period are the first in which the image is drawn according to each luminance data group.
  • the second luminance data group are outputted to the light source unit so as to be opposite to each other.
  • the luminance signal is sequentially processed by the light source unit, whereas in the one-way scanning period and the backward scanning period, regions corresponding to the scanning periods are respectively included in the image. Rendered in opposite directions.
  • This optical scanning display According to the above, the luminance signal input to the light source unit is generated to reflect a plurality of luminance data arranged so as to match the image drawing direction, thereby guaranteeing that the image is normally displayed. Is done.
  • the luminance signal is set so that any one of the unidirectional scanning period and the backward scanning period becomes the effective scanning period in the entire period of each reciprocating scanning in the main scanning direction.
  • the optical scanning display according to any one of (1), (3), and (3), which includes a second signal generation unit that generates and outputs to the light source unit.
  • the preceding effective scanning line and the subsequent effective scanning line proceeding in parallel and in the same direction in a certain field.
  • the gap force between is filled by at least one effective scan line in the following field.
  • both the unidirectional scanning period and the backward scanning period are included in the effective scanning period in the entire period of each reciprocating scanning in the main scanning direction.
  • a third signal generation unit configured to generate the luminance signal so that the effective scanning line extends in parallel with the image display region and output the luminance signal to the light source unit; (1); The optical scanning display as described.
  • the orientation of an image display area in which an image is displayed by an optical scanning display is set so as to extend in a predetermined reference direction (for example, a horizontal direction) with respect to an absolute space by design. Actually, it depends on the direction of a plurality of scanning lines. Although it is desirable that the orientation of the design image display area matches the orientation of the actual image display area, the actual orientation of the image display area depends on the orientation of a plurality of scanning lines.
  • the degree of coincidence in the scanning line direction decreases.
  • the degree of coincidence in the scanning line direction the more the inclination of all the scanning lines to be inclined with respect to the reference direction.
  • the direction of the plurality of effective scanning lines in the same frame is matched with the direction of the designed image display area. Otherwise, the degree of the design image display area orientation and the actual image display area orientation will not match each other, and as a result, the observer may feel uncomfortable with the display image.
  • the effective scanning line is parallel to the image display area in the image display area set to extend in the reference direction in the absolute space.
  • a luminance signal is generated so as to extend to, and is output to the light source unit.
  • the scanning device includes:
  • a second vibrating part for vibrating the mirror together with the first vibrating part to reciprocate the mirror for the sub-scanning
  • optical scanning display according to any one of (1), (1), and (5) above.
  • the term "reciprocating motion" in this section and the following sections refers to, for example, the swing axis associated with a mirror (the swing axis passing through the center of the mirror and parallel to the mirror, It can be interpreted to mean a rocking motion that causes the mirror to move around a position that is off the center force of the mirror and is parallel to the mirror, or along the linear motion axis associated with the mirror. It can be interpreted to mean the reciprocating linear motion caused by the mirror.
  • the necessary sub-scanning frequency can be increased. Can be performed. Therefore, in the optical scanning display according to this section, main scanning and sub-scanning are performed using the resonance of the mirror.
  • optical scanning display it is possible to perform main scanning and sub-scanning with reduced power consumption without causing a problem with respect to scanning frequency.
  • the scanning device comprises: A first mirror that is reciprocated to scan the light beam in the main scanning direction; a second mirror that is reciprocated to scan the light beam in the sub-scanning direction; and a reciprocating motion of the first mirror.
  • a first mirror that is reciprocated to scan the light beam in the main scanning direction
  • a second mirror that is reciprocated to scan the light beam in the sub-scanning direction
  • a reciprocating motion of the first mirror is not limited to a first mirror that is reciprocated to scan the light beam in the main scanning direction
  • a second mirror that is reciprocated to scan the light beam in the sub-scanning direction
  • a reciprocating motion of the first mirror a reciprocating motion of the first mirror.
  • each scanning frequency is arranged with mutual interference in mind. It is possible to set with a high degree of freedom. Therefore, it becomes easy to design and manufacture the scanning device so that the necessary main scanning frequency and the necessary sub-scanning frequency are compatible.
  • one of the first and second mirrors reciprocates using the resonance of the corresponding vibrating part, while the other reciprocates without using resonance. It can be implemented in any way.
  • optical scanning display according to this section may be implemented in such a manner that both the first and second mirrors perform reciprocal motion using the resonance of the corresponding vibration part,
  • both of the second mirrors can be implemented in such a manner that the reciprocating motion is performed without using the resonance of the corresponding vibration part.
  • the optical scanning display according to this section requires that one of the first and second mirrors that is required to scan at a lower speed than the other mirror has a corresponding vibration.
  • the reciprocating motion is performed using the resonance of the part, the other can also be implemented in a manner of performing the reciprocating motion without using the resonance.
  • the scanning device scans the light flux at a higher speed in the main scanning direction than in the sub-scanning direction (1), but the optical scanning according to any one of the paragraphs (8) Mold display.
  • the optical scanning display is a retinal scanning display that displays the image by projecting the light beam directly onto the retina of the eye and scanning on the retina (1).
  • the scanning device includes:
  • a main scanning unit capable of reciprocatingly scanning the light beam in the main scanning direction using a first mechanical resonance system based on a main scanning drive signal
  • a sub-scanning unit capable of reciprocatingly scanning the light beam in the sub-scanning direction using a second mechanical resonance system based on a sub-scanning drive signal
  • the optical scanning display further includes:
  • a synchronization signal generator for generating a main scanning synchronization signal and a sub-scanning synchronization signal, and the main scanning driving signal and the sub-scanning driving signal based on the generated main scanning synchronization signal and sub-scanning synchronization signal.
  • the synchronization signal generator is
  • One of the main scanning unit and the sub-scanning unit is set as a tracking control target, and the main scanning synchronization signal and the sub-scanning synchronization signal corresponding to the tracking control target are set as target synchronization signals,
  • a first synchronization signal control unit that controls the target synchronization signal to follow the resonance frequency of the tracking control target based on the scanning state detected by the detection unit;
  • a second synchronization signal control unit that controls the other of the main scanning synchronization signal and the sub-scanning synchronization signal as a non-target synchronization signal and controls the non-target synchronization signal based on the controlled target synchronization signal;
  • optical scanning display according to any one of (1), (1), and (10).
  • a scanning mirror that deflects an incident light beam by reflection is configured as a mechanical resonance system, and the scanning mirror reciprocates. It is possible to periodically change the deflection angle of the light beam by movement.
  • the "scanning device" in the above section (1) uses (a) the light flux based on the main scanning drive signal to A main scanning unit capable of reciprocating scanning in the main scanning direction using the mechanical resonance system of (1), and (b) based on the sub-scanning drive signal, the light beam is transmitted to the second mechanical resonance system. And a sub-scanning unit capable of reciprocating scanning in the sub-scanning direction.
  • the ratio between the main scanning frequency and the sub-scanning frequency is maintained at the set ratio, and is incident on the retina. This is important because the actual scanning trajectory drawn on the retina by the spot of the light beam being scanned by the scanning device is normal.
  • the height of the main scanning frequency depends on the vibration frequency of the first mechanical resonance system, and similarly, the height of the sub-scanning frequency is the second frequency. Depends on the vibration frequency of the mechanical resonance system.
  • the resonance frequency of a mechanical resonance system is not always constant, and may vary due to various reasons such as its operating environment and deterioration over time. For this reason, in order to scan the luminous flux by always efficiently using the resonance phenomenon of the mechanical resonance system, the vibration frequency of the mechanical resonance system is tracking-controlled so as to follow the resonance frequency of the mechanical resonance system. It is effective to control.
  • the frequency of the drive signal supplied to the mechanical resonance system drive source is changed to match the resonance frequency of the mechanical resonance system.
  • the main scanning and the sub-scanning are respectively performed using two types of mechanical resonance systems having different resonance frequencies that realize different main-scanning frequencies and sub-scanning frequencies.
  • an optical scanning display configured to perform the above, if frequency tracking control is performed for each of these two types of mechanical resonance systems independently of each other, the main scanning frequency and the sub-scanning frequency are determined. The ratio of changes the set specific power. This is because the resonance frequencies of these two types of mechanical resonance systems do not always change so that the ratio of the main scanning frequency and the sub-scanning frequency is not changed from the set ratio. [0063] Therefore, in such an optical scanning display, frequency tracking control is performed.
  • the ratio between the main scanning frequency and the sub-scanning frequency be changed so that the set specific power does not change.
  • the main scanning is used.
  • the phase of scanning for example, the phase of time fluctuation due to main scanning of the light beam deflection angle by the above-mentioned scanning mirror
  • the phase of sub-scanning for example, the time variation of light beam deflection angle by the above-mentioned scanning mirror due to sub-scanning
  • the main scanning phase depends on the vibration phase of the first mechanical resonance system
  • the sub-scanning phase depends on the vibration of the second mechanical resonance system. Depends on the phase.
  • the main scanning driving signal and the sub scanning driving signal are based on the main scanning synchronizing signal and the sub scanning synchronizing signal. And are generated respectively.
  • the main scanning unit and the sub-scanning unit are driven based on the generated main scanning driving signal and sub-scanning driving signal, respectively.
  • the main scanning unit and the sub-scanning unit One of these is a tracking control target, and the main scanning synchronization signal and the sub-scanning synchronization signal corresponding to the tracking control target are the target synchronization signals.
  • the frequency of the target synchronization signal further follows the resonance frequency of the tracking control target based on the scanning state of the scanning device (including the scanning state of the main scanning unit).
  • the other of the main scanning synchronization signal and the sub-scanning synchronization signal is controlled based on the target synchronization signal controlled for the tracking control target.
  • one of the main scanning unit and the sub-scanning unit is set as a tracking control target so that the actual vibration frequency matches the actual resonance frequency.
  • the other frequency of the main scanning unit and the sub-scanning unit is controlled so as to maintain a certain relationship with the frequency of the target synchronization signal to be tracked.
  • this optical scanning display power consumption for scanning is reduced and the main scanning is reduced compared to the case where frequency tracking control is not performed for either the main scanning unit or the sub-scanning unit.
  • frequency tracking control is performed for both the sub-scanning unit and the sub-scanning unit, the ratio of the main scanning frequency to the sub-scanning frequency is always maintained at the set ratio, and the actual scanning trajectory is always kept normal. It becomes easy.
  • the first synchronization signal control unit sets the frequency of the target synchronization signal to the resonance frequency of the tracking control target based on the scanning state of the tracking control target detected by the detection unit.
  • one of the main scanning unit and the sub-scanning unit is such that the frequency of its own synchronization signal follows its actual resonance frequency based on its own scanning state. To be controlled.
  • the second synchronization signal control unit controls the frequency of the non-target synchronization signal so that the ratio of the main scanning frequency and the sub-scanning frequency matches a set ratio.
  • optical scanning display in the situation where frequency tracking control is performed for one of the main scanning unit and the sub scanning unit, the main scanning frequency and the sub scanning unit are displayed.
  • the ratio with the scanning frequency is maintained at the set ratio, and the actual scanning trajectory is normalized.
  • the follow-up control target is one in which the Q value of the corresponding mechanical resonance system is larger than the Q value of the other mechanical resonance system among the main scanning unit and the sub-scanning unit (The optical scanning display according to any one of items 11) to (14).
  • the main scanning is horizontal scanning
  • the sub-scanning is vertical scanning
  • the rectangular area is scanned in the horizontal direction and longer in the vertical direction. Therefore, when the resonance energy required for the main scanning unit is larger than the resonance energy required for the sub-scanning unit, these different requests can be realized without excess or deficiency.
  • the main scanning unit reciprocally deflects and scans the light beam so as to be emitted at a main scanning deflection angle that periodically changes at the main scanning frequency
  • the detection unit outputs a signal reflecting the main scanning deflection angle as a main scanning displacement signal
  • the synchronization signal generation unit further includes:
  • the phase difference control unit for generating the main scanning synchronization signal so that the phase difference of the main scanning displacement signal with respect to the main scanning driving signal becomes a set value.
  • the actual vibration frequency of the mechanical resonance system is When deviating from the actual resonance frequency, the phase difference between the signal reflecting the temporal variation of the scanning deflection angle and the drive signal changes. Therefore, if the drive signal is generated by controlling the synchronization signal so that the phase difference matches the set value, the actual vibration frequency can be changed to follow the actual resonance frequency.
  • the main scanning section performs a reciprocating deflection scanning so that the luminous flux is emitted at a main scanning deflection angle that periodically changes at the main scanning frequency. Further, the detection unit outputs a signal reflecting the main scanning deflection angle as a main scanning displacement signal.
  • the main scanning synchronization signal is generated so that the phase difference of the main scanning displacement signal with respect to the main scanning driving signal becomes a set value.
  • the actual vibration frequency of the mechanical resonance system of the main scanning unit is changed so as to follow the actual resonance frequency.
  • the synchronization signal generator further includes
  • a phase changing unit that changes a phase of at least one of the main scanning synchronization signal and the sub-scanning synchronization signal so that a phase difference between the main scanning synchronization signal and the sub-scanning synchronization signal becomes a set value; Including (11) Optical scanning type display according to any one of items (17).
  • the phase difference between the main scanning synchronization signal and the sub-scanning synchronization signal is normalized regardless of the frequency tracking control described above. Therefore, according to this optical scanning display, the ratio between the main scanning frequency and the sub-scanning frequency is normalized, and the phase difference between the time variation of the main scanning deflection angle and the time variation of the sub-scanning deflection angle is normalized. It will be easy to achieve this together.
  • the scanning device comprises:
  • a main scanning unit capable of reciprocatingly scanning the light beam in the main scanning direction using a first mechanical resonance system based on a main scanning drive signal
  • a sub-scanning unit capable of reciprocatingly scanning the light flux in the sub-scanning direction using a second mechanical resonance system based on a sub-scanning drive signal
  • the optical scanning display further includes:
  • a detection unit for detecting a scanning state of the scanning device;
  • a synchronization signal generator for generating a main scanning synchronization signal and a sub-scanning synchronization signal;
  • a drive signal generator for generating the main scan drive signal and the sub scan drive signal based on the generated main scan synchronization signal and sub scan synchronization signal
  • the main scanning unit performs reciprocal deflection scanning of the light beam so that the main scanning unit emits light at a main scanning deflection angle that periodically changes at a main scanning frequency
  • the sub-scanning unit performs reciprocal deflection scanning of the light beam so as to be emitted at a sub-scanning deflection angle that periodically changes at a sub-scanning frequency
  • the detection unit outputs a signal reflecting the main scanning deflection angle and a signal reflecting the sub scanning deflection angle as a main scanning displacement signal and a sub scanning displacement signal, respectively.
  • the synchronization signal generator is
  • At least one of the main-scanning synchronization signal and the sub-scanning synchronization signal follows a resonance frequency of a corresponding one of the main scanning unit and the sub-scanning unit; Based on the scanning state detected by the detection unit, the frequency of the main scanning synchronization signal and the frequency of the sub-scanning synchronization signal are achieved so that the ratio with the scanning frequency matches the set ratio. And a frequency changing unit that discretely changes the main scanning frequency step size and the sub-running frequency step size,
  • the main scanning phase difference of the main scanning displacement signal with respect to the main scanning drive signal, and the sub-scanning phase difference of the sub-scanning displacement signal with respect to the sub-scanning drive signal fluctuates
  • the phase difference between the scanning lines of the plurality of scanning lines formed by the scanning device varies
  • the main scanning frequency step width is set so as not to exceed the first allowable value so that the fluctuation amount of the scanning line phase difference caused by the fluctuation of the main scanning phase difference is within an allowable range.
  • the sub-scanning frequency step width does not exceed a second allowable value so that the fluctuation amount of the scanning line phase difference caused by the fluctuation of the sub-scanning phase difference is within the allowable range.
  • the optical scanning display according to any one of (1) to (18), which is set.
  • the scanning device (a) emits a light beam based on the main scanning drive signal to the first mechanical joint.
  • a main scanning unit capable of reciprocating scanning in the main scanning direction using a vibration system; and (b) sub-scanning using the second mechanical resonance system based on the sub-scanning drive signal.
  • a sub-scanning unit capable of reciprocating in the direction.
  • the main scanning unit performs reciprocal deflection scanning of the light beam so as to be emitted at a main scanning deflection angle that periodically changes at the main scanning frequency
  • the sub scanning unit performs the sub scanning frequency.
  • the light beam is reciprocally deflected and scanned so that the light beam is emitted at a sub-scanning deflection angle that periodically changes
  • the detection unit outputs a signal reflecting the main-scanning deflection angle and a signal reflecting the sub-scanning deflection angle, respectively.
  • a displacement signal and a sub-scanning displacement signal are output.
  • a main scanning driving signal and a sub scanning driving signal are generated based on a main scanning synchronizing signal and a sub scanning synchronizing signal, respectively.
  • the main scanning unit and the sub scanning unit are driven based on the generated main scanning driving signal and sub scanning driving signal, respectively.
  • At least one of the main scanning synchronization signal and the sub scanning synchronization signal follows the resonance frequency of the corresponding one of the main scanning portion and the sub scanning portion; Based on the scanning state of the scanning device, the frequency of the main scanning synchronization signal and the frequency of the sub-scanning synchronization signal are set so that the ratio of the main scanning frequency and the sub-scanning frequency coincides with the set ratio. Each is changed discretely with the main scanning frequency step size and the sub scanning frequency step size.
  • the frequency of the main scanning synchronization signal and the frequency of the sub-scanning synchronization signal are discretely changed as described above (for example, the frequency and the resonance frequency).
  • the main scanning phase difference of the main scanning displacement signal with respect to the main scanning driving signal and the sub scanning phase difference of the sub scanning displacement signal with respect to the sub scanning driving signal fluctuate. Furthermore, due to the fluctuation of the main scanning phase difference and the fluctuation of the sub-scanning phase difference, the phase difference between the scanning lines of the plurality of scanning lines formed by the scanning device fluctuates.
  • the main scanning frequency step size is the main scanning phase difference. It is set not to exceed the first allowable value so that the fluctuation amount of the phase difference between the scanning lines due to the fluctuation is within the allowable range. Similarly, the sub scanning frequency step size should not exceed the second allowable value so that the fluctuation amount of the inter-scan line phase difference caused by the sub scanning phase difference fluctuation is within the allowable range! Is set.
  • the frequency of the main scanning synchronization signal (main scanning frequency) and the sub scanning synchronization signal Although the frequency (sub-scanning frequency) is discretely changed, the amount of fluctuation of the inter-scan line phase difference caused by the fluctuation of the main scanning phase difference is also changed by the scanning caused by the fluctuation of the sub-scanning phase difference.
  • the amount of fluctuation of the line phase difference is also set within the allowable range.
  • the amount of fluctuation in the phase difference between the scanning lines is changed even though the frequency of the main scanning synchronization signal and the frequency of the sub-scanning synchronization signal are discretely changed, respectively. As a result, the actual scanning trajectory is made regular.
  • the main scanning frequency is f
  • the sub-scanning frequency is f
  • the set ratio is n: n (n
  • the Q value of the first mechanical resonance system is Q
  • the second tolerance value is a
  • optical scanning display according to item (19), defined as:
  • the main scanning frequency step size is the main scanning frequency f
  • the sub-scanning frequency step size is appropriately set in relation to the sub-scanning frequency f, the setting ratio n: n, and the Q value Q of the second mechanical resonance system.
  • the inter-scanning line level caused by discrete changes in the frequency of the main scanning synchronization signal and the frequency of the sub-scanning synchronization signal is greater than when the coefficient ⁇ is less than 2 and greater than 6.
  • the fluctuation amount of the phase difference is more preferably suppressed.
  • the synchronization signal generator further includes:
  • One of the main scanning unit and the sub-scanning unit is set as a tracking control target, and the main scanning synchronization signal and the sub-scanning synchronization signal corresponding to the tracking control target are set as target synchronization signals,
  • a first synchronization signal control unit that controls the target synchronization signal to follow the resonance frequency of the tracking control target based on the scanning state detected by the detection unit;
  • a second synchronization signal control unit for controlling the other of the main scanning synchronization signal and the sub-scanning synchronization signal based on the controlled target synchronization signal;
  • optical scanning display according to any one of (19) and (21) above.
  • the synchronization signal generator further includes:
  • a phase changing unit that changes a phase of at least one of the main scanning synchronization signal and the sub-scanning synchronization signal so that a phase difference between the main scanning synchronization signal and the sub-scanning synchronization signal becomes a set value; Including (19) No, Optical scanning display according to item (22).
  • the phase difference between the main scanning synchronization signal and the sub-scanning synchronization signal is normalized regardless of the execution of the frequency tracking control described above. Therefore, according to this optical scanning display, the ratio between the main scanning frequency and the sub-scanning frequency is normalized, and the phase difference between the time variation of the main scanning deflection angle and the time variation of the sub-scanning deflection angle is normalized. It will be easy to achieve this together.
  • a luminance signal output step of outputting the generated luminance signal to the light source unit
  • An optical scanning display driving method including:
  • both the one-way scanning period and the backward scanning period of the entire period of each round-trip scanning in the sub-scanning direction are the effective.
  • the scanning device comprises: A main scanning unit capable of reciprocatingly scanning the light beam in the main scanning direction using a first mechanical resonance system based on a main scanning drive signal;
  • a sub-scanning unit capable of reciprocatingly scanning the light beam in the sub-scanning direction using a second mechanical resonance system based on a sub-scanning drive signal
  • the optical scanning display further includes a detection unit that detects a scanning state of the scanning device,
  • the optical scanning display driving method further includes:
  • the synchronization signal generation step includes
  • One of the main scanning unit and the sub-scanning unit is set as a tracking control target, and the main scanning synchronization signal and the sub-scanning synchronization signal corresponding to the tracking control target are set as target synchronization signals, A first synchronization signal control process for controlling the target synchronization signal so as to follow the resonance frequency of the tracking control target based on the scanning state detected by the detection unit;
  • the scanning device comprises:
  • a main scanning unit capable of reciprocatingly scanning the light beam in the main scanning direction using a first mechanical resonance system based on a main scanning drive signal
  • the light beam is radiated using the second mechanical resonance system.
  • a sub-scanning section capable of reciprocating scanning in the scanning direction;
  • the optical scanning display further includes a detection unit that detects a scanning state of the scanning device,
  • the optical scanning display driving method further includes:
  • the main scanning unit performs reciprocal deflection scanning of the light beam so that the main scanning unit emits light at a main scanning deflection angle that periodically changes at a main scanning frequency
  • the sub-scanning unit performs reciprocal deflection scanning of the light beam so as to be emitted at a sub-scanning deflection angle that periodically changes at a sub-scanning frequency
  • the detection unit outputs a signal reflecting the main scanning deflection angle and a signal reflecting the sub scanning deflection angle as a main scanning displacement signal and a sub scanning displacement signal, respectively.
  • the synchronization signal generation step includes
  • At least one of the main-scanning synchronization signal and the sub-scanning synchronization signal follows a resonance frequency of a corresponding one of the main scanning unit and the sub-scanning unit; Based on the scanning state detected by the detection unit, the frequency of the main scanning synchronization signal and the frequency of the sub-scanning synchronization signal are achieved so that the ratio with the scanning frequency matches the set ratio. And a frequency changing step for discretely changing the main scanning frequency step size and the sub-running frequency step size,
  • the main scanning phase difference of the main scanning displacement signal with respect to the main scanning drive signal, and the sub-scanning phase difference of the sub-scanning displacement signal with respect to the sub-scanning drive signal fluctuates
  • the main scanning frequency step width is set so as not to exceed the first allowable value so that the fluctuation amount of the scanning line phase difference caused by the fluctuation of the main scanning phase difference is within an allowable range.
  • the sub-scanning frequency step width is set so as not to exceed a second allowable value so that a fluctuation amount of the scanning line phase difference caused by the fluctuation of the sub-scanning phase difference is within the allowable range.
  • FIG. 1 is a system diagram showing a retinal scanning display 10 according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the scanner 60 in FIG.
  • FIG. 3 is a block diagram conceptually showing the scanner unit 20, the light source unit 34, and the signal processing circuit 120 in FIG.
  • FIG. 4 is a flowchart conceptually showing an image display program executed by the computer 122 in FIG.
  • FIG. 5 is a diagram for explaining the logical structure of the frame buffer 140 in FIG. 3 in a tabular form.
  • FIG. 6 is a diagram illustrating a horizontal scanning drive signal supplied from the horizontal scanning drive circuit 92 to the drive source 90 in FIG. 3 and a vertical scanning drive signal supplied from the vertical scan drive circuit 112 to the drive source 110. It is a graph to show.
  • FIG. 7 is a block diagram focusing on the functions performed by the scanner unit 20, the light source unit 34, and the signal processing circuit 120 in FIG.
  • FIG. 8 is a timing chart showing the horizontal scanning synchronization signal, vertical scanning synchronization signal and frame synchronization signal in FIG.
  • FIG. 9 is a front view showing a plurality of effective scanning lines formed for displaying an image by a conventional interlace scanning method.
  • FIG. 10 is a front view showing an example of a plurality of effective scanning lines formed in order to display an image by scanning each frame of the image into three or more fields.
  • FIG. 11 is a front view showing another example of a plurality of effective scanning lines formed to display an image by scanning each frame of the image into three or more fields.
  • FIG. 12 is a diagram for explaining the geometric characteristics of a plurality of scanning lines formed as a Lissajous figure in cooperation with horizontal scanning and vertical scanning.
  • FIG. 13 is a front view showing an example of a plurality of scanning lines expressed by the equation shown in FIG.
  • FIG. 14 is a diagram for explaining the formation of scanning lines by executing the image display program shown in FIG. 4.
  • FIG. 15 is a second diagram for explaining the formation of scanning lines by executing the image display program shown in FIG. 4.
  • FIG. 16 is a further exemplary diagram for explaining the formation of scanning lines by executing the image display program shown in FIG. 4.
  • FIG. 17 is a further exemplary diagram for explaining the formation of scanning lines by executing the image display program shown in FIG. 4.
  • FIG. 18 is a further example for explaining the formation of scanning lines by executing the image display program shown in FIG. 4.
  • FIG. 19 is a system diagram showing a retinal scanning display 160 according to a second embodiment of the present invention.
  • FIG. 20 is a block diagram conceptually showing the optical scanning system 162 in FIG. 19 together with the signal processing circuit 120.
  • FIG. 21 is a system diagram showing a retinal scanning display 210 according to a third embodiment of the present invention.
  • FIG. 22 is a plan view showing horizontal scanning section 270 in FIG.
  • FIG. 23 shows the optical scanning unit 220, the light source unit 234, and the signal processing circuit in FIG.
  • FIG. 3 is a block diagram conceptually showing 320.
  • FIG. FIG. 24 is a block diagram focusing on the functions performed by the optical scanning unit 220, the light source unit 234, and the signal processing circuit 320 in FIG.
  • FIG. 25 is a block diagram showing details of the synchronization signal processing unit 352 in FIG. 24.
  • FIG. 26 is a timing chart for explaining the temporal transition of various signals in FIG.
  • FIG. 27 is a front view showing an example of a scanning trajectory formed as a Lissajous figure by the cooperative action of horizontal scanning and vertical scanning.
  • FIG. 28 is a plurality of equations for explaining the design of the synchronization signal processing unit 352 shown in FIG. 25.
  • FIG. 29 shows another plurality of equations for explaining the design of the synchronization signal processing unit 352 shown in FIG. 25.
  • FIG. 30 is a flowchart conceptually showing a scanning control program executed by the computer 322 shown in FIG.
  • FIG. 1 shows a retinal scanning display (hereinafter abbreviated as “RSD”) 10 according to the first embodiment of the present invention.
  • the RSD 10 projects a laser beam, which is an example of a luminous flux representing an image, directly onto the retina 16 via the pupil 14 of the observer's eye 12 and scans the projected luminous flux on the retina 16. Designed to display images!
  • the RSD 10 includes a light source unit 18 and a scanner unit 20.
  • the light source unit 18 includes an R laser 22, a G laser 24, and a B laser 26 that emit red light, green light, and blue light, respectively.
  • the luminance (intensity) of the three-color laser beams (an example of the luminous flux) emitted from the R laser 22, G laser 24, and B laser 26 is modulated by the R laser driver 28, the G laser driver 30, and the B laser driver 32, respectively. Is done.
  • the R laser 22, the G laser 24, and the B laser 26 and these The R laser driver 28, the G laser driver 30 and the B laser driver 32 corresponding to the above constitute a light source unit 34 in cooperation with each other.
  • the R laser 22, G laser 24, and B laser 26 include three collimator lenses 40, 42, and 44, and three dichroic mirrors 50, 52, and 54. Is installed. The laser beams emitted from the lasers 22, 24, and 26 are collimated by the corresponding collimator lenses 40, 42, and 44, and then enter the corresponding dichroic mirrors 50, 52, and 54.
  • Each of these three dichroic mirrors 50, 52, and 54 has wavelength selectivity, and each of the three color laser beams emitted from the R laser 22, the G laser 24, and the B laser 26 is one. It is provided for synthesis into a laser beam.
  • the condensed combined laser beam is incident on the scanner unit 20 through the optical fiber 58 as an optical transmission medium and the collimator lens 59 disposed at the output end of the optical fiber 58 in that order.
  • the scanner unit 20 includes a scanner 60 that performs horizontal scanning and vertical scanning.
  • FIG. 2 is an enlarged plan view of the scanner 60.
  • the scanner 60 includes a vibrating body 62 and performs horizontal scanning and vertical scanning by using the torsional resonance of the vibrating body 62.
  • the vibrating body 62 is formed by a plate-like or film-like member having elasticity, such as silicon.
  • the vibrating body 62 penetrates in the thickness direction of the vibrating body 62! Due to several through holes, the outermost fixing portion 64 and the inner side of the fixing portion 64 are provided. It is divided into a first vibrating part 70 which is a movable part located at the first and a second vibrating part 72 which is a movable part located inside the first vibrating part 70.
  • the vibrating body 62 is fixed to the housing of the scanner 60 shown in FIG. As shown in FIG. 2, in the vibrating body 62, a first swing axis and a second swing axis that are orthogonal to each other are set within the plane of the vibrating body 62.
  • the first swing axis is the second vibration section 72
  • the second swing axis is set for the first vibrating part 70.
  • the first vibrating portion 70 is swung around the second swing axis with respect to the fixed portion 64, whereas the second vibrating portion 72 is swung around the first vibrating portion 70. Is swung around the first swing axis. Therefore, in the present embodiment, the reflecting surface 76 is formed only on the second vibrating section 72 in order to perform both horizontal scanning and vertical scanning with respect to the light incident on the scanner 60. The same reflection surface 76 allows both horizontal scanning and vertical scanning.
  • the second vibrating portion 72 includes a mirror portion 80 having a reflecting surface 76 and a pair of beam portions 82 and 82 facing each other across the mirror portion 80. Contains.
  • the mirror unit 80 has a circular shape in order to minimize the moment of inertia while ensuring the incident area of the light beam to be scanned.
  • the pair of beam portions 82, 82 extend linearly along the first swing axis.
  • Each of the beam portions 82 and 82 includes one first leaf spring portion 84 extending from the mirror portion 80, and two second leaf spring portions 86 extending from the first leaf spring portion 84 and extending in parallel to each other. With 86.
  • Each of the first leaf spring portion 84 and the second leaf spring portions 86 and 86 has a thickness direction that is common to the thickness direction of the vibrating body 62.
  • the two second leaf spring portions 86, 86 oppose each other across the first swing axis. Therefore, if the second leaf spring portions 86 and 86 are bent in opposite directions, the first leaf spring portion 84 is twisted around the first swing axis, and the mirror portion 80 is thus moved to the first swing. It is rotated around the axis of movement. Further, if bending is alternately applied to the same second leaf spring portion 86 in opposite directions, the mirror portion 80 is swung around the first swing axis.
  • a drive source 90 is installed in each of the second leaf spring portions 86, 86.
  • the drive source 90 can be configured using, for example, an element that converts an applied electric field into a displacement in a direction crossing the application direction.
  • an example of such an element is a plate-like piezoelectric element.
  • the scanner unit 20 includes a horizontal scanning drive circuit 92 for driving a drive source 90 installed in the second vibrating section 72.
  • the horizontal scanning drive circuit 92 is configured to include, for example, an oscillation circuit.
  • the first vibrating portion 70 is swung around the second swing axis in accordance with basically the same principle as the second vibrating portion 72.
  • the first vibration part 70 includes a support part 100 that supports the second vibration part 72, and the support part 100 is swung around the second swinging axis integrally with the second vibration part 72. .
  • the support portion 100 is supported by the fixed portion 64 by a pair of beam portions 102 and 102 facing each other with the second vibrating portion 72 therebetween. Since the pair of beam portions 102 and 102 has a structure common to the pair of beam portions 82 and 82 in the second vibrating portion 72, a brief description will be given below.
  • the pair of beam portions 102, 102 extend linearly along the second swing axis.
  • Each of the beam portions 102, 102 includes one first leaf spring portion 104 that also extends the central force of the support portion 100, and two second leaf springs that branch from the first leaf spring portion 104 and extend in parallel with each other. Parts 106 and 106. Both the first leaf spring portion 104 and the second leaf spring portions 106 and 106 have a thickness direction that is common to the thickness direction of the vibrating body 62.
  • the two second leaf spring portions 106, 106 face each other across the second swing axis. Therefore, if bending vibrations are applied to the second leaf spring portions 106 and 106 in opposite directions, the first leaf spring portion 102 is twisted around the second swing axis, and as a result, the support portion 100 and the mirror. The portion 80 is swung around the second swing axis.
  • a drive source 110 is installed in each of the second leaf springs 106, 106 in order to capture such bending vibration in each of the second leaf springs 106, 106.
  • the drive source 110 can employ a method common to the drive source 90 in the second vibrating section 72.
  • the scanner unit 20 includes a vertical scanning drive circuit 112 for driving a drive source 110 installed in the first vibrating section 70.
  • the vertical scanning drive circuit 112 is configured to include, for example, an oscillation circuit.
  • the horizontal scanning frequency of the mirror unit 80 is determined by the resonance frequency of the second vibration unit 72, and the resonance frequency is mainly determined by the moment of inertia and rigidity of the second vibration unit 72. Maru.
  • the horizontal scanning frequency of the mirror unit 80 is lower as the inertia moment of the second vibrating unit 72 is larger.
  • the vertical scanning frequency of the mirror unit 80 is determined by the resonance frequency of the first vibrating unit 70, and the resonance frequency is mainly only the moment of inertia and rigidity of the first vibrating unit 70. It also depends on the moment of inertia of the second vibrating part 72.
  • the vertical scanning frequency of the mirror section 80 is lower as the combined moment of inertia of the first vibrating section 70 and the second vibrating section 72 is larger.
  • the resultant moment of inertia is larger than the moment of inertia of the second vibration part 72. Therefore, in the present embodiment, the vertical scanning frequency is lower than the horizontal scanning frequency because of the structure of the scanner 60.
  • the light source unit 18 further includes a signal processing circuit 120.
  • the signal processing circuit 120 includes a computer 122 as shown in FIG.
  • the converter 122 is configured by connecting a CPU 124, a ROM 126, and a RAM 128 to each other via a bus 130.
  • a video signal is supplied to the computer 122 from the outside.
  • the ROM 126 stores various programs such as the image display program conceptually shown in the flowchart of FIG.
  • the image display program is executed by the CPU 124 based on a video signal supplied from the outside and using the RAM 128, whereby an image is displayed on the retina 14 of the observer's eye 10.
  • the signal processing circuit 120 generates a plurality of pixel data (luminance data) representing the luminance of each of the plurality of pixels constituting the image to be displayed based on the video signal supplied with the external force. Based on the generated pixel data, the RAM 128 is used for data processing, etc., so that an R luminance signal for red light, a G luminance signal for green light, and a B luminance signal for blue light are obtained. Generated.
  • the R laser driver 28, the G laser driver 30 and the B laser driver 32 are connected to the signal processing circuit 120 through the R laser 22, the G laser 24 and the B laser 26.
  • the signal processing circuit 120 outputs an R luminance signal to the R laser driver 28, outputs a G luminance signal to the G laser driver 30, and outputs a B luminance signal to the B laser driver 32.
  • a frame bar is connected to the computer 122.
  • Buffer 140 is connected.
  • the frame buffer 140 stores image data necessary for reproducing one frame of an image by scanning a laser beam, and a set of a plurality of pixel data (data representing luminance signals) in association with the scanning line number SL. To do.
  • the frame buffer 140 is provided for each color of the laser beam.
  • FIG. 5 conceptually shows how image data is stored in the frame buffer 140, which will be described in detail later with reference to FIG.
  • the signal processing circuit 120 is further connected with a horizontal scanning driving circuit 92 and a vertical scanning driving circuit 112 of the scanner 60.
  • a horizontal scanning drive signal is supplied from the horizontal scanning driving circuit 92 to the driving source 90, and a vertical scanning driving signal is supplied from the vertical scanning driving circuit 112 to the driving source 110.
  • a horizontal scanning and vertical scanning by the scanner 60 are performed. Is done.
  • the horizontal scanning drive signal is represented by the upper graph, and the vertical scanning drive signal is represented by the lower graph.
  • the horizontal scanning drive signal has a higher frequency than the vertical scanning drive signal.
  • the frequency of the vertical scanning drive signal is set to several hundred Hz, for example.
  • FIG. 7 conceptually shows the light source unit 34 and the scanner unit 20 together with the signal processing circuit 120 in a block diagram.
  • the signal processing circuit 120 includes a luminance signal generation unit 150 that generates a luminance signal based on the video signal and outputs the luminance signal to the light source unit 34.
  • the signal processing circuit 120 further includes a synchronization signal processing unit 152 that supplies the luminance signal generation unit 150 with a frame synchronization signal and a horizontal scanning synchronization signal.
  • the luminance signal generation unit 150 generates luminance signals of respective colors in response to the timing at which the frame synchronization signal (including the field synchronization signal) and the horizontal scanning signal are supplied from the synchronization signal processing unit 152, respectively. Output to the light source unit 34.
  • a horizontal scanning unit 154 is configured by the first vibrating unit 70, the drive source 90, and the horizontal scanning drive circuit 92, and the second vibrating unit 72,
  • the driving source 110 and the vertical scanning driving circuit 112 constitute a vertical scanning unit 156.
  • the horizontal scanning drive circuit 92 generates a horizontal scanning synchronization signal based on the clock signal for horizontal scanning, and outputs the horizontal scanning synchronization signal to the synchronization signal processing unit 152.
  • the synchronization signal processing unit 152 outputs a vertical scanning synchronization signal to the vertical scanning driving circuit 112 in response to the timing at which the horizontal scanning synchronization signal is supplied.
  • FIG. 8 shows the frame synchronization signal, the vertical scanning synchronization signal, and the horizontal scanning synchronization signal, respectively, in a timing chart.
  • the horizontal scanning synchronization signal is generated for each scanning line.
  • scan line refers to an effective scan line that exists (in the visible region) and an invalid scan line that does not exist (in the invisible region) (a scan that is erased because it is outside the image display region). And an erasure blanking that is within the image display area but is erased because it is a blanking.).
  • Horizontal scan synchronization signals are generated sequentially for n frames per image. n is the horizontal scan 1
  • the synchronization signal processing unit 152 generates a frame synchronization signal when the initial phase difference time At elapses from the generation timing of a horizontal scanning synchronization signal. This frame synchronization signal is generated for each frame of the image in synchronization with the start time.
  • the synchronization signal processing unit 152 further performs n at the time when the initial phase difference time At has elapsed from the generation time of a certain horizontal scanning synchronization signal, that is, at the same time as the generation time of the frame synchronization signal. Generating the first vertical scanning synchronization signal of the vertical scanning synchronization signals
  • the n is equal to the number of round trips per frame for vertical scanning.
  • the generated frame synchronization signal and horizontal scanning synchronization signal are output to the luminance signal generation unit 150.
  • the luminance signal generation unit 150 is configured by a part that executes an image display program described later in the computer 122, and the synchronization signal processing unit 152 is not illustrated in the computer 122. It consists of the part that executes the synchronization signal processing program.
  • the horizontal scanning frequency is There is a large gap between the horizontal scanning frequency and the vertical scanning frequency, such that the vertical scanning frequency is around 60 Hz while it is between kHz and several tens of kHz. Therefore, in the past, horizontal scanning and vertical scanning were generally performed using separate scanners.
  • the desire for miniaturization of the scanner can be achieved, for example, by improving the principle of repeatedly deflecting the light beam. For example, when scanning light bundles using the resonance of a vibrating body with a reflecting surface, the scanner is smaller than when scanning light bundles using separate polygon mirrors or separate galvanometer mirrors. It is possible to In addition, miniaturization of the scanner! The demand can be achieved by performing horizontal and vertical scans using the same reflective surface.
  • both the horizontal scanning unit 154 and the vertical scanning unit 156 are configured to repetitively deflect the light beam using the resonance of the vibrating body 62.
  • a mirror unit 80 is shared between the horizontal scanning unit 154 and the vertical scanning unit 156.
  • this RSD 10 employs a structure in which the entire first vibrating portion 70 is always swung in accordance with the swinging of the support portion 100 of the vibrating body 62. Yes.
  • the apparent moment of inertia of the vibrating body 62 that is, the above-described combined moment of inertia increases from the single moment of inertia of the second vibrating section 72, and the vertical scanning frequency decreases.
  • the vertical scanning frequency can be lowered.
  • the supporting part 100 increases the thickness of the vibrating body 62 locally only in the supporting part 100 due to the use of the vibrating body 62 that is common to the first vibrating part 70, while applying the force. It is difficult to increase the moment of inertia of the support part 100. [0171] Even if the thickness of the support part 100 is locally increased, the effect of lowering the vertical scanning frequency is small. The effect is great in that the support part 100 is enlarged in the radial direction, but this is contrary to the downsizing of the scanner 60.
  • the scanner 60 is obtained by jointly employing the light beam deflection principle using the resonance of the vibrating body 62 and the common use of the mirror unit 80 between horizontal scanning and vertical scanning.
  • the vertical scanning frequency is apparently increased by improving the technique for displaying an image by scanning a light beam.
  • FIG. 9 shows a front view (a diagram showing the trajectory of the scanning line on the screen) in which one frame of an image is displayed according to the conventional interlace scanning method.
  • a plurality of horizontal solid lines indicate a plurality of effective scanning lines constituting an odd field
  • a plurality of horizontal broken lines indicate a plurality of even lines constituting an even field.
  • FIG. 10 shows a front view of how an image is displayed according to the proposed image display method.
  • the visible scanning point of the light beam reciprocates in the horizontal scanning direction and moves in one direction in the vertical scanning direction on the scanning surface of the light beam.
  • the directional scanning line (hereinafter referred to as the “forward scanning line”) and from the right to the left, the directional scanning line (hereinafter referred to as the “return scanning line”) are both alternately used as effective scanning lines. It is formed side by side.
  • Fig. 10 (b) shows an example of one frame using three or more fields shown in Fig. 10 (a).
  • the same number of effective scanning lines corresponding to each other among three or more fields are shifted in parallel to each other in the vertical scanning direction.
  • the visible scanning point of the luminous flux reciprocates in the horizontal scanning direction on the surface of the luminous flux, and the vertical scanning method. It moves forward in one direction, that is, from the upper side to the lower side. That is, in this example, both the forward and backward scanning points for horizontal scanning are used for image display, whereas only the forward scanning point for vertical scanning is used for image display.
  • Fig. 10 (c) shows another example of one frame using three or more fields shown in Fig. 10 (a). It is shown.
  • the visible scanning point reciprocates in the horizontal scanning direction on the scanning surface while moving in the forward direction in the vertical scanning direction, that is, in one direction from the upper side to the lower side.
  • the visible scanning point reciprocates in the horizontal scanning direction on the scanning surface while moving in the reverse direction in the vertical scanning direction, that is, in one direction from the lower side to the upper side.
  • both the forward and backward scan points for horizontal scanning are used for image display, and the forward and backward scan points for vertical scanning are also used for image display. is there.
  • the forward scanning line emits light as an effective scanning line, while the return scanning line, that is, the return line is erased.
  • An example in which a scan is performed is shown.
  • an area parallel to the forward scanning line in one frame is defined as an image display area (area indicated by a rectangular frame in the figure) 158, and the outward direction is outside the image display area 158. Even a scan line is erased.
  • the image display area 158 is inclined with respect to the horizontal line, and the observer may feel uncomfortable.
  • FIG. 11 (b) shows an example of the optical system involved in image display in the RSD 10 shown in FIG. 11 (a).
  • the final image display area 158 An example in which the inclination of the optical system is adjusted in advance so as to extend flatly is shown.
  • this example is realized by jointly performing the above-described special signal processing relating to the scanning of the light beam and the tilt adjustment of the optical system.
  • the RSD 10 allows an observer to display an image within the image display area 158 shown in FIG.
  • the raster that is the locus drawn by the scanning point has a sine wave shape strictly. It is a Lissajous figure.
  • the vertical scanning angle ⁇ is vertical scanning as represented by the equation (1) in FIG.
  • V the amplitude and the angular velocity as the product of the number of round-trip times n per frame in vertical scanning and the frame frequency f multiplied by 2 ⁇ .
  • Amplitude (maximum deflection angle) ⁇ is the amplitude, and the number of round-trip times ⁇ and frame per horizontal scanning
  • a product of 2 ⁇ multiplied by the product frequency f is the angular velocity and the initial phase difference time At is
  • a plurality of effective scanning lines are uniformly distributed in each frame (a plurality of effective scanning lines should not overlap each other in a plurality of fields in the same frame).
  • the value of n and the value of n are relatively prime, as represented by equation (3) in FIG.
  • the initial phase difference time ⁇ t should be a specific value.
  • the raster formed by the scanner 60 when the conditions to be expressed are actually expressed by a plurality of sinusoidal curves, but is approximately expressed by a plurality of straight lines with arcsine correction. Yes.
  • FIGS. 14 to 16 a state in which a plurality of scanning lines are formed by the RSD 10 is developed in time and shown in front views.
  • the solid line indicates the effective scanning line
  • the broken line indicates the erasing return line (invalid scanning line)! / Speak.
  • Figure 14 shows the first field
  • Figure 15 shows the first and second fields together
  • Figure 16 shows the first through eighth fields, that is, all the fields that make up the current frame. Are shown together.
  • the image display area 158 set for one frame shown in FIG. 16 shows the inclination of the optical system (for example, the scanner 60) involved in image display in the RSD 10.
  • the front view shows the tilting with respect to the horizon!
  • the image display area 158 shown in FIG. 17 is shown in a horizontally extending posture by adjusting the inclination of the optical system (for example, the scanner 60) involved in image display in the RSD 10. Further, in FIG. 18, only a portion existing in the image display area 158 is visualized from among a plurality of scanning lines (scanning lines that can be visualized as effective scanning lines) in one frame shown in FIG. It is shown that a portion existing outside the display area 158 is erased.
  • the optical system for example, the scanner 60
  • the RSD 10 is designed so that an image can be observed within the image display area 158 shown in FIG.
  • step S1 When the execution of the image display program is started by the computer 122, first, in step S1 (hereinafter, simply referred to as "S1". The same applies to other steps), the operation of the scanner 60 is performed. The horizontal scan and the vertical scan are executed in synchronization with each other.
  • the scanning point (reproduction point) of the laser beam on the retina 14 The locus is in a state where a desired image can be drawn as a Lissajous figure.
  • the current value of the frame number FRM attached to each of a series of frames constituting the video to be displayed is set to 1.
  • S3 it is awaited that the latest frame synchronization signal is generated from the synchronization signal processing unit 152.
  • the generated image data for one frame is stored in the frame buffer 140 in association with the scanning line number SL as line data divided for each effective scanning line.
  • the image data for one frame is configured as a set of a plurality of line data respectively corresponding to a plurality of effective scanning lines.
  • One frame is composed of n effective scanning lines.
  • n frames of image data are stored in the frame buffer 140.
  • Each line data is a set of a plurality of pieces of pixel data each representing the luminance of a plurality of pixels located on the corresponding effective scanning line.
  • the image data force for one frame is configured as a set of nine line data, and the line data is associated with each of the nine scanning line numbers SL1 to SL9 to be a frame buffer. Stored at 140.
  • the line data stored in the frame buffer 140 in association with each effective scanning line constituting the current odd field is data corresponding to the pixel existing in the image display area 158.
  • a reading area suitable for reading from the frame buffer 140 is set by calculation.
  • the line data corresponding to each effective scanning line is constituted by a plurality of pixel data respectively representing a plurality of pixels located on the effective scanning line.
  • the readout area includes, for example, the readout start position (address) and readout end position (address) of the line data corresponding to each effective scanning line, the original inclination angle of each effective scanning line, That is, it is set by specifying according to the inclination angle of each effective scanning line with respect to the horizontal line shown in FIG. 17 and the position and size of the image display area 158.
  • the traveling direction of each effective scanning line in the current odd field is originally , Equal to the forward direction in which the image display area 158 is scanned.
  • the plurality of pixel data forces existing in the set readout area of the frame buffer 140 are reverse to the order in which the pixel data are stored in parallel from the frame buffer 140.
  • the pixel data is read out in the same direction as the order in which the pixel data is reproduced.
  • each of the even fields in this time is set.
  • the traveling direction of the effective scanning line is equal to the reverse direction in which the image display area 158 is scanned.
  • image data representing an image to be displayed is displayed on the image. It is configured as a plurality of pixel data (or luminance data) each representing the luminance of a plurality of pixels arranged in a row.
  • a luminance signal that is sequentially processed by the light source unit 34 is generated based on the plurality of pixel data.
  • the plurality of pieces of pixel data are processed by the light source unit 34 in order to form an effective scanning line in a period (one-way scanning period) in which each effective scanning line is scanned in the forward direction in the odd field.
  • a second luminance data group processed by the light source unit 34 to form an effective scanning line in a period in which each effective scanning line is scanned in the reverse direction (reverse scanning period) in the even field. Is included.
  • the line data force whose scanning line number SL is 1 corresponds to the first luminance data group
  • the line data force whose scanning line number SL is 2 the second luminance data. Corresponds to the group.
  • the first luminance data group is set such that an odd field in which effective scanning lines and invalid scanning lines (erase blanking lines) are alternately arranged is formed on the image display area 158. Is generated.
  • the second luminance data group is formed so that an even field in which effective scanning lines and invalid scanning lines (erase blanking lines) are alternately arranged is formed on the image display area 158. Is generated.
  • the current value of the scanning line number SL is set to 1 in S11. Subsequently, in S12, the synchronization signal processing unit 152 waits for the latest horizontal scanning synchronization signal to be generated.
  • the determination in S12 is YES, and in S13, the scanning line number corresponding to the image data read in S8 or S10 is the current scanning line number SL. It is determined whether or not the values match. If they match, the determination is YES.
  • the image data force read in S8 or S10 is converted into a luminance signal for each color. Further, the converted luminance signal is transferred to each of the drivers 28, 30 and 32.
  • this S 14 is generated for odd and even fields, respectively. It is configured to perform processing for converting the generated image data into luminance signals for each color and processing for outputting the converted luminance signals to the drivers 28, 30, and 32 for each color.
  • each of the lasers 22, 24, and 26 emits a laser beam of each color so that each pixel has a luminance (intensity) corresponding to the corresponding luminance signal.
  • the emitted laser beam of each color enters the scanner 60 as a combined laser beam.
  • each effective scanning line (only the forward scanning line) is formed by a laser beam from the upper side to the lower side in the forward direction, so that the current odd field is displayed.
  • each effective scanning line in the current even field is displayed.
  • This even field is displayed by forming the laser beam in the opposite direction from the lower side to the upper side (forward scan line only).
  • the RSD 10 is an example of the “optical scanning display” according to the item (1) and the “optical scanning display” according to the item (11).
  • the image display program shown in FIG. 4 that constitutes an example is executed by the computer 122 in order to implement an example of the “optical scanning display driving method” according to the item (11).
  • the light source unit 34 constitutes an example of the “light source unit” in each of the items (1) and (11), and the scanner 60 includes the items (1) and (11).
  • the signal processing circuit 120 (in particular, the luminance signal generation unit 150) constitutes an example of the “luminance signal control unit” in the above item (1). It is.
  • the portion of the computer 122 that is allocated to execute S6, S8, S10, and S14 in FIG. 4 is an example of the “first signal generation unit” in the section (2).
  • the portion of the computer 122 that is allocated to execute S6, S8, and S10 in the figure constitutes an example of the “data output unit” in the above item (3).
  • the portion assigned to execute S6, S8, S10 and S14 in FIG. 4 in the computer 122 is an example of the “second signal generation unit” in the above section (4).
  • the portion of the computer 122 assigned to execute S7 to S10 and S14 in the figure constitutes an example of the “third signal generator” in the paragraph (5). .
  • the mirror unit 80 constitutes an example of the “mirror” in the items (6) and (7), and the horizontal scanning and the vertical scanning are “main scanning” in the same term.
  • an example of “sub-scan”, and the beam 82 is the “first vibrating part” in the same paragraph.
  • An example is configured, and the support unit 100 and the beam unit 102 are combined with each other to configure an example of the “second vibration unit” in the same paragraph.
  • the RSD 160 according to the present embodiment has the same basic hardware configuration as the RSD 10 shown in FIG. 1 except for the scanner, and also has an image display method using interlace.
  • the RSD 160 is formed by dividing one frame of an image into three or more fields, and thereby, two effective scanning line forces adjacent to each other in each field. It is designed to be interpolated by two or more effective scan lines in the above fields.
  • the RSD 160 includes a light source unit 18 and an optical scanning system 162.
  • the light source unit 18 includes a light source unit 34 and a signal processing circuit 120 as in the first embodiment.
  • the signal processing circuit 120 is mainly configured by a computer 122.
  • the computer 122 is electrically connected to the light source unit 34 by the image processing circuit 164 and has an interface 166.
  • the optical scanning system 162 is electrically connected.
  • the image processing circuit 164 generates a luminance signal based on the video signal supplied from the outside and outputs the luminance signal to the light source unit 34.
  • the function of the computer 122 in the RSD 160 is the first embodiment. Because of this, duplicate explanation is omitted.
  • the optical scanning system 162 is configured to include a horizontal scanning unit 170, a vertical scanning unit 172, and a synchronization signal processing circuit 174.
  • Each of the horizontal scanning unit 170 and the vertical scanning unit 172 includes a first mirror 180 and a second mirror 182 which are independent from each other. In this respect, the horizontal mirror and the vertical scanning are performed using the same mirror unit 80. 1 Different from the embodiment.
  • the first mirror 180 is supported by the first vibrating body 184, and by utilizing the resonance phenomenon of the first vibrating body 184, the first mirror 180 is moved to the first vibration body 184. It can be swung around the axis.
  • the swing angle that is, the scanning angle of the first mirror 180 is represented by “0” in FIG.
  • the horizontal scanning unit 170 includes a horizontal scanning driving circuit 190, and the horizontal scanning driving circuit 190 supplies a driving signal to the driving source 200 mounted on the first vibrating body 184.
  • the first mirror 180 is swung by vibrating the first vibrating body 184.
  • the drive source 200 is configured to include an element (for example, a piezoelectric element) that converts a voltage or an electric field into a displacement.
  • the second mirror 182 is supported by the second vibrating body 186, and the second mirror 18 2 is used by utilizing the resonance phenomenon of the second vibrating body 186. Is swung around a second swing axis that intersects the first swing axis.
  • the swing angle that is, the scan angle of the second mirror 182 is represented by “0” in FIG.
  • the vertical scanning unit 172 includes a vertical scanning driving circuit 192, and the vertical scanning driving circuit 192 supplies a driving signal to the driving source 202 attached to the second vibrating body 186, whereby The second vibrating body 186 is vibrated to swing the second mirror 182.
  • the drive source 202 is configured to include an element (for example, a piezoelectric element) that converts a voltage or an electric field into a displacement.
  • the first vibrating body 184 and the second vibrating body 186 are installed independently of each other so as not to transmit vibration to each other.
  • the frequency and the vertical scanning frequency of the vertical scanning unit 172 can be set independently of each other.
  • the horizontal scanning frequency is high !, the frequency and the vertical scanning frequency are low, while the scanning frequency achieved using resonance does not use resonance. Usually higher than the scanning frequency achieved. Therefore, it is possible to achieve at least the horizontal scanning frequency among the horizontal scanning frequency and the vertical scanning frequency by using resonance.
  • the synchronization signal processing circuit 174 is configured as an electric circuit independent from the signal processing circuit 120.
  • the function of the synchronization signal processing circuit 174 Is common to the synchronization signal processing unit 152 (see FIG. 7) in the first embodiment.
  • the synchronization signal processing circuit 174 includes a vertical scanning synchronization signal, a frame synchronization signal, and a frame synchronization signal based on the horizontal scanning synchronization signal supplied from the horizontal scanning unit 170 as shown in the timing chart of FIG. Is generated. As shown in FIG. 20, the synchronization signal processing circuit 174 outputs the generated vertical scanning synchronization signal to the vertical scanning unit 172, while desirably generating the generated horizontal scanning synchronization signal and frame synchronization signal. The signal is output to the signal processing circuit 120 together with the vertical scanning synchronization signal.
  • the optical scanning system 162 constitutes an example of the “scanning device” in the above item (1)
  • the signal processing circuit 120 and the synchronization signal processing circuit 17 4 Together constitute an example of the “brightness signal control unit” in the same section.
  • the first and second mirrors 180 and 182 constitute an example of the “first mirror” and an example of the “second mirror” in the item (7), respectively.
  • Each of the vertical scans constitutes an example of “main scan” and an example of “sub-scan” in the same term
  • the first vibrator 184 constitutes an example of “first vibrator” in the same term
  • the second vibrator 186 This constitutes an example of the “second vibration part” in the same section.
  • this RSD 210 projects a laser beam, which is an example of a light beam representing an image, directly onto the retina 16 via the pupil 14 of the eye 12 of the observer, and the projection. An image is displayed by scanning the light beam on the retina 16.
  • a laser beam which is an example of a light beam representing an image
  • the spot of the laser beam is formed on the retina 16 and the spot is scanned two-dimensionally on the retina 16.
  • the image is perceived as a virtual image by the observer.
  • the RSD 210 has the same basic hardware configuration as the RSD 160 according to the second embodiment (see Fig. 19).
  • the RSD 210 further uses an interlaced image display method in common with the RSD 10 according to the first embodiment and the RSD 160 according to the second embodiment.
  • the RSD 210 is formed by scanning one frame of an image by dividing it into three or more fields as in the first and second embodiments, and thereby adjacent to each other in each field. Two effective scan line forces are designed to be interpolated by two or more effective scan lines in the remaining two or more fields.
  • the RSD 210 includes an image light generation unit 218 and an optical scanning unit 220.
  • the video light generation unit 218 generates a luminance signal for each of the three primary colors based on the video signal supplied from the outside, and the generation thereof.
  • the image light generation unit 218 includes an R laser 222, a G laser 224, and a B laser 226 that emit red light, green light, and blue light, respectively.
  • the luminance (intensity) of the three colors of laser beams (examples of light flux) emitted from the R laser 222, G laser 224, and B laser 226 is as follows: R laser drive circuit 228, G laser drive circuit 230, and B laser drive circuit 232 Respectively.
  • the R laser 222, G laser 224, and B laser 226 and the corresponding R laser driving circuit 228, G laser driving circuit 230, and B laser driving circuit 232 cooperate with each other.
  • the light source unit 234 is configured.
  • the R laser 222, the G laser 224, and the B laser 226 include three collimator lenses 240, 242 and 244, and three dichroic mirrors 250, 252 and 254. Is provided! /
  • the laser beams emitted from the respective lasers 222, 224, and 226 are collimated by the corresponding ones of the collimator lenses 240, 242, and 244, and then the dichroic mirrors 250, 252, and 252. Incident on the corresponding one of 254.
  • These three dichroic mirrors 250, 252, 25 4 have wavelength selectivity, and combine the three color laser beams emitted from the R laser 222, G laser 224 and B laser 226 into one laser beam. Is provided to
  • the laser beam is focused by the coupling optics 256
  • the collimator lenses 240, 242, 244, the dichroic mirrors 250, 252, 254, and the coupling optical system 256 together constitute an optical multiplexing unit 258.
  • the combined laser beam focused by the coupling optical system 256 includes an optical fiber 260 as an optical transmission medium and a collimator lens 262 disposed at the output end of the optical fiber 260.
  • the light enters the optical scanning unit 220 through these orders.
  • the optical scanning unit 220 which will be described in detail later, has a function of two-dimensionally scanning the laser beam emitted from the image light generation unit 218 based on various synchronization signals, and the laser beam to the pupil 14 And has a function of forming an image on the retina 16.
  • the optical scanning unit 220 performs a horizontal scan on the laser beam emitted from the collimator lens 262 and a vertical scan on the laser beam emitted from the horizontal scan unit 270. And a vertical scanning unit 272 for performing.
  • This optical scanning unit 220 includes a relay optical system 274 that converges and transmits the laser beam emitted from the horizontal scanning unit 270 to the vertical scanning unit 272, and the laser beam emitted from the vertical scanning unit 272. And a relay optical system 276 for converging and transmitting to the eye 12.
  • the horizontal scanning unit 270 includes a horizontal scanning mirror 280 as a vibrating body.
  • the horizontal scanning unit 270 uses the torsional resonance of the horizontal scanning mirror 280 to perform horizontal scanning.
  • the horizontal scanning mirror 280 is formed of an elastic plate-like or film-like member such as silicon.
  • FIG. 22 is an enlarged plan view showing the configuration of the horizontal scanning unit 270.
  • the plate-like horizontal scanning mirror 280 is provided with both the direction of the swing axis. At the end portions, they are supported by a pair of beam portions 282, 282, respectively.
  • the pair of beam portions 282 and 282 extend along the swing axis in a posture facing each other across the horizontal scanning mirror 280.
  • Each of the pair of beam portions 282 and 282 is fixed to the fixed frame 283 at the end opposite to the horizontal scanning mirror 280.
  • Each of the beam portions 282, 282 includes one first leaf spring portion 284 extending from the horizontal scanning mirror 280 and two second leaf springs branched from the first leaf spring portion 284 and extending in parallel with each other. Parts 286 and 2 86.
  • the first plate spring portion 284 and the second plate spring portions 286, 286 both have a thickness direction that is the same as the thickness direction of the horizontal scanning mirror 280.
  • the two second leaf spring portions 286, 286 are opposed to each other across the swing axis. Therefore, if the second leaf springs 286 and 286 are bent in opposite directions, the first leaf spring 284 is twisted around the swing axis, and the horizontal scanning mirror 280 is around the swing axis. To be rotated. Further, if the bending is alternately held in the opposite direction in the second leaf spring portion 286, the horizontal scanning mirror 280 is swung around the swing axis.
  • a drive source 288 is installed in each second leaf spring portion 286, 286.
  • the drive source 288 can be configured using, for example, an element that converts an applied electric field into a displacement in a direction crossing the application direction.
  • An example of such an element is a plate-like piezoelectric element. For example, if the piezoelectric element is vibrated in the length direction in a state where the piezoelectric element is attached to one of both surfaces of the second leaf spring portions 286 and 286 facing each other in the thickness direction, Bending vibration is generated in each of the second leaf spring portions 286 and 286.
  • the vertical scanning unit 272 includes a vertical scanning mirror 290 as a vibrating body and a drive source 292 that drives the vertical scanning mirror 290 to vibrate the vertical scanning mirror 290 (FIG. 22). 3). Similar to the horizontal scanning unit 270, the vertical scanning unit 272 performs vertical scanning using the torsional resonance of the vertical scanning mirror 290.
  • the vertical scanning mirror 290 is formed of an elastic plate-like or film-like member such as silicon.
  • the drive source 292 applies an applied electric field as its application direction. It can be configured using an element that converts the displacement in the intersecting direction, and an example of such an element is a plate-like piezoelectric element.
  • the configuration of the vertical scanning unit 272 is the same as that of the horizontal scanning unit 270 shown in FIG.
  • the horizontal scanning unit 270 further includes a horizontal scanning driving circuit 300 for driving a driving source 288 installed on the horizontal scanning mirror 280.
  • the horizontal scanning drive circuit 300 is configured to include an oscillation circuit to generate a drive signal supplied to the drive source 288, for example.
  • the horizontal scanning unit 270 further includes a horizontal scanning detection circuit 302 that detects the operation of the horizontal scanning mirror 280.
  • the horizontal scanning detection circuit 302 outputs a signal reflecting the deflection angle ⁇ of the horizontal scanning mirror 280 as a displacement signal.
  • the horizontal scanning detection circuit 302 is configured to optically detect the angular displacement of the horizontal scanning mirror 280, for example.
  • An example of this type of horizontal scanning detection circuit 302 is a beam detector that receives a laser beam that is incident on the horizontal scanning mirror 280 and also reflects its force, and the time when the laser beam is detected by the beam detector. And a measuring unit that measures the length of time until the time detected by the beam detector, and detects the angular displacement of the horizontal scanning mirror 280 based on the measured length of time.
  • the vertical scanning unit 272 further includes a vertical scanning driving circuit 310 for driving a driving source 292 installed on the vertical scanning mirror 290.
  • the vertical scanning drive circuit 310 is configured to include an oscillation circuit to generate a drive signal supplied to the drive source 292, for example.
  • the vertical scanning unit 272 further includes a vertical scanning detection circuit 312 that detects the operation of the vertical scanning mirror 290.
  • the vertical scanning detection circuit 312 outputs a signal reflecting the deflection angle ⁇ of the vertical scanning mirror 290 as a displacement signal.
  • This vertical scanning detection circuit 312 For example, similarly to the horizontal scanning detection circuit 302, the angular displacement of the vertical scanning mirror 290 is configured to be optically detected.
  • the horizontal scanning frequency of the horizontal scanning unit 270 is determined by the resonance frequency of the horizontal scanning mirror 280, and similarly, the vertical scanning frequency of the vertical scanning unit 272 is determined by the resonance frequency of the vertical scanning mirror 290.
  • the resonance frequencies of the horizontal scanning mirror 280 and the vertical scanning mirror 290 are set so that the horizontal scanning frequency is higher than the vertical scanning frequency.
  • the video light generation unit 218 further includes a signal processing circuit 320.
  • the signal processing circuit 320 includes a computer 322 as shown in FIG.
  • the computer 322 is configured to be connected to each other by a CPU 324, a ROM 326, a RAM 328, and a casing 330.
  • a video signal is supplied to the computer 322 from the outside.
  • Various programs are stored in the ROM 326, including the image display program conceptually shown in the flowchart in FIG. 4 and the scanning control program conceptually shown in the flowchart in FIG. RU
  • the image display program and the scan control program are executed by the CPU 324 based on the video signal supplied with the external force and using the RAM 328, so that an image is displayed on the retina 14 of the observer's eye 10.
  • the signal processing circuit 320 generates a plurality of pixel data (luminance data) representing the luminance of each of the plurality of pixels constituting the image to be displayed based on the video signal supplied with the external force. Based on the generated pixel data, RAM 328 is used for data processing, etc. to generate an R luminance signal for red light, a G luminance signal for green light, and a B luminance signal for blue light Is done.
  • a video data storage unit 334 is connected to the signal processing circuit 320.
  • the signal processing circuit 320 causes the video data storage unit 334 to store a collection of a plurality of generated luminance data as video data.
  • the signal processing circuit 320 reads out necessary luminance data from the video data storage unit 334 in order to generate a luminance signal from the luminance data for each color.
  • the signal processing circuit 320 includes an R laser driving circuit 228, a G laser driving.
  • An R laser 222, a G laser 224 and a B laser 226 are connected via a circuit 230 and a B laser driving circuit 232.
  • the signal processing circuit 320 outputs an R luminance signal to the R laser driving circuit 228, outputs a G luminance signal to the G laser driving circuit 230, and outputs a B luminance signal to the B laser driving circuit 232.
  • a frame buffer 340 is connected to a computer 322.
  • the frame buffer 340 stores image data necessary for reproducing one frame of an image by scanning with a laser beam and a set of a plurality of pixel data (data representing luminance signals) in association with the scanning line number SL.
  • the frame buffer 340 is provided for each color of the laser beam. As described above with reference to FIG. 5, the image data is stored in the frame buffer 340.
  • the signal processing circuit 320 is further connected to the horizontal scanning drive circuit 300 and the vertical scanning drive circuit 310 of the optical scanning unit 220.
  • a horizontal scanning driving signal is supplied from the horizontal scanning driving circuit 300 to the driving source 288, and a vertical scanning driving signal is supplied from the vertical scanning driving circuit 310 to the driving source 110.
  • horizontal scanning and vertical scanning by the horizontal scanning unit 270 are performed.
  • Vertical scanning by the unit 272 is performed.
  • the horizontal scanning drive signal has a higher frequency than the vertical scanning drive signal.
  • the frequency of the vertical scanning drive signal is set to several hundred Hz, for example.
  • the synchronization between the operation timing (intensity modulation) of the light source unit 234 and the operation timing (horizontal scanning and vertical scanning) of the optical scanning unit 220 is described in detail. explain.
  • FIG. 24 conceptually shows the light source unit 234 and the optical scanning unit 220 together with the signal processing circuit 320 in a block diagram.
  • the signal processing circuit 320 includes a luminance signal generation unit 350 that generates a luminance signal based on the video signal and outputs the luminance signal to the light source unit 234.
  • the signal processing circuit 320 further includes a scanning control unit 352.
  • the scanning control unit 352 generates a frame synchronization signal, a horizontal scanning synchronization signal, a vertical synchronization signal, and a dot clock signal, which will be described in detail later with reference to FIG.
  • the scanning control unit 352 supplies the generated frame synchronization signal (including the field synchronization signal), the horizontal synchronization signal, and the dot clock signal to the luminance signal generation unit 350.
  • the luminance signal generation unit 350 sends the luminance signals of the respective colors to the light source unit 234 in response to the timing at which the frame synchronization signal, the horizontal scanning signal, and the dot clock signal are supplied from the scanning control unit 352. Output.
  • the scanning control unit 352 supplies the generated horizontal scanning synchronization signal to the horizontal scanning driving circuit 300 as shown in FIG.
  • the vertical scanning drive circuit 310 is supplied.
  • the horizontal scanning detection circuit 302 supplies a displacement signal reflecting the operation of the horizontal scanning mirror 280 to the scanning control unit 352.
  • the vertical scanning detection circuit 312 supplies a displacement signal reflecting the operation of the vertical scanning mirror 290 to the scanning control unit 352.
  • the frame synchronization signal, the vertical scanning synchronization signal, and the horizontal scanning synchronization signal are defined.
  • the horizontal scanning synchronization signal is within the effective scanning line, the invalid scanning line (the scanning line to be deleted because it is outside the image display area 158, and the image display area 158). And an erasure blanking that is erased because it is a blanking)).
  • Horizontal scanning synchronization signals are generated sequentially for n frames per image. n is per horizontal scan frame
  • the scanning control unit 352 calculates the initial phase difference time from the time when the horizontal scanning synchronization signal is generated once.
  • a frame synchronization signal is generated when At elapses. This frame synchronization signal is generated for each frame of the image in synchronization with the start time.
  • the scanning control unit 352 further performs n vertical scanning at the time when the initial phase difference time At has elapsed from the time when the horizontal scanning synchronization signal is generated, that is, at the same time as the time when the frame synchronization signal is generated.
  • the first vertical scanning synchronization signal in the scanning synchronization signal is generated.
  • Scan control section 352 outputs the generated frame synchronization signal and horizontal scan synchronization signal to luminance signal generation section 350.
  • the luminance signal generation unit 350 is configured by a part of the computer 322 that executes the image display program described above with reference to FIG. 4, and the scanning control unit 352 is configured as shown in FIG.
  • the central control unit 370 that is, the computer 322 Of these, it consists of a combination of a part that executes a scanning control program (see FIG. 30), which will be described in detail later, and an electronic circuit.
  • FIG. 25 conceptually shows the configuration of the scan control unit 352 in a block diagram.
  • the running control unit 352 includes a central control unit 370 constituted by a computer 322 and an electronic circuit unit 372 constituted by a plurality of electronic circuits.
  • the electronic circuit section 372 includes a state signal generation circuit 380 that generates a state signal that indicates the operating state of the horizontal scanning mirror 280, and a state signal generation circuit that generates a state signal that indicates the operating state of the vertical scanning mirror 290. 382.
  • the electronic circuit unit 372 further generates the above-described horizontal scanning synchronization signal, frame synchronization signal, vertical scanning synchronization signal, and dot clock signal in a time-related manner and adjusting the respective frequencies.
  • a synchronization signal generation circuit 384 is provided.
  • the state signal generation circuit 380 for horizontal scanning is connected to the horizontal scanning drive circuit 300, the horizontal stroke detection circuit 302, the central control unit 370, and the synchronization signal generation circuit 384.
  • the horizontal scanning drive circuit 300 includes a horizontal scanning synchronization signal input from the synchronization signal generation circuit 384 and a horizontal scanning amplitude command signal input from the central control unit 370, and the horizontal scanning mirror 280 amplitude (maximum A sine-wave drive signal (drive voltage signal) is generated and supplied to a drive source 288 (for example, a piezoelectric element) in order to rotate and oscillate the horizontal scanning mirror 280 on the basis of a signal for instructing a vibration width.
  • a drive source 288 for example, a piezoelectric element
  • the vibration frequency of the horizontal scanning mirror 280 is equal to the frequency of the driving signal, and the frequency of the driving signal is equal to the frequency of the horizontal scanning synchronization signal.
  • the displacement phase of the horizontal scanning mirror 280 is equal to the phase of the driving signal, and the phase of the driving signal is equal to the phase of the horizontal scanning synchronization signal.
  • the amplitude of the horizontal scanning mirror 280 depends on the amplitude of the driving signal, and the amplitude of the driving signal depends on the horizontal scanning amplitude command signal.
  • the horizontal scanning synchronization signal and the driving signal of the horizontal scanning mirror 280 are respectively temporally related to each other and represented by a graph.
  • the horizontal scanning detection circuit 302 detects, as a displacement signal, a signal representing the temporal variation of the displacement of the horizontal scanning mirror 280.
  • the displacement signal is proportional to the deflection angle of the horizontal scanning mirror 280.
  • the drive signal and the displacement signal of the horizontal scanning mirror 280 are respectively associated with each other in time and represented by a graph. These drive signal and displacement signal have a phase difference of 90 degrees in the ideal resonance state of the horizontal scanning mirror 280.
  • the state signal generation circuit 380 includes a drive signal output from the horizontal scan drive circuit 300, a displacement signal output from the horizontal scan detection circuit 302, and a synchronization signal generation circuit 384.
  • the output dot clock signal and frame synchronization signal are received.
  • This state signal generation circuit 380 synchronizes with the dot clock signal, a digital displacement amplitude signal representing the amplitude of the displacement signal of the horizontal scanning mirror 280, and a displacement signal of the horizontal scanning mirror 280 with respect to the drive signal.
  • Central control by generating digital displacement phase signal (pair drive signal) representing the phase and digital displacement phase signal (versus frame synchronization signal) representing the phase of the displacement signal of the horizontal scanning mirror 280 relative to the frame synchronization signal Supply to part 370.
  • the state signal generation circuit 380 detects the peak point of the displacement signal of the horizontal scanning mirror 280, and converts the detected peak point signal level by AZD, thereby detecting the displacement amplitude. Generate a signal.
  • This state signal generation circuit 380 detects the length of time from the zero cross point of the drive signal to the zero cross point of the displacement signal in units of the period of the master clock signal, which will be described later.
  • a displacement phase signal (a drive signal) is generated as a signal representing the length.
  • This status signal generation circuit 380 detects the length of time from the rising point of the frame synchronization signal to the zero cross point at which the rising point force first appears in the displacement signal, in units of the master clock signal period. Then, a displacement phase signal (for frame synchronization signal) is generated as a signal representing the detected length of time.
  • the drive signal, the displacement signal, and the frame synchronization signal of the horizontal scanning mirror 280 are temporally associated with each other and represented by a graph.
  • the central control unit 370 generates a horizontal scanning amplitude command signal based on the various signals supplied from the state signal generation circuit 380 and supplies the horizontal scanning amplitude command signal to the horizontal scanning drive circuit 300.
  • various command signals are supplied to the synchronization signal generation circuit 384.
  • the state signal generation circuit 382 for vertical scanning includes a vertical scanning driving circuit 310, a vertical scanning detection circuit 312, a central control unit 370, It is connected to the synchronization signal generation circuit 384.
  • the vertical scan drive circuit 310 includes a vertical scan synchronization signal input from the synchronization signal generation circuit 384 and a vertical scan amplitude command signal input from the central control unit 370. Based on the signal for commanding the amplitude (maximum amplitude) of the vertical scanning mirror 290, a sine wave drive signal (drive voltage signal) is generated to drive the vertical scan mirror 290 to oscillate. For example, the piezoelectric element is supplied.
  • the vibration frequency of the vertical scanning mirror 290 is equal to the frequency of the driving signal, and the frequency of the driving signal is equal to the frequency of the vertical scanning synchronization signal.
  • the displacement phase of the vertical scanning mirror 290 is equal to the phase of the driving signal, and the phase of the driving signal is equal to the phase of the vertical scanning synchronization signal.
  • the amplitude of the vertical scanning mirror 290 depends on the amplitude of the driving signal, and the amplitude of the driving signal depends on the vertical scanning amplitude command signal.
  • the vertical scanning synchronization signal and the driving signal of the vertical scanning mirror 290 are respectively associated with each other in terms of time and represented by a graph.
  • the vertical scanning detection circuit 312 detects, as a displacement signal, a signal representing the temporal variation of the displacement of the vertical scanning mirror 290.
  • the displacement signal is proportional to the deflection angle of the vertical scanning mirror 290.
  • the state signal generation circuit 382 receives the displacement signal output from the vertical scanning detection circuit 312 and the dot clock signal and frame synchronization signal output from the synchronization signal generation circuit 384. Receive.
  • the state signal generation circuit 382 synchronizes with the dot clock signal, a digital displacement amplitude signal representing the amplitude of the displacement signal of the vertical scanning mirror 290, and a displacement signal of the vertical scanning mirror 290.
  • a digital displacement phase signal (with respect to the frame synchronization signal) representing the phase of the signal with respect to the frame synchronization signal is generated and supplied to the central control unit 370.
  • the state signal generation circuit 382 detects the peak point of the displacement signal of the vertical scanning mirror 290 in the same manner as the state signal generation circuit 380, and detects the signal level of the detected peak point.
  • a displacement amplitude signal is generated by performing AZD conversion on.
  • the state signal generation circuit 382 determines the length of time from the rising point of the frame synchronization signal to the zero cross point that first appears in the displacement signal from the rising point. Detection is performed in units of clock cycles, and a displacement phase signal (versus frame synchronization signal) is generated as a signal representing the length of the detected time.
  • the drive signal and the frame synchronization signal of the vertical scanning mirror 290 are temporally correlated with each other, and are represented by a graph.
  • the central control unit 370 generates a vertical scanning amplitude command signal based on various signals supplied from the state signal generation circuit 382 and supplies the vertical scanning amplitude command signal to the vertical scanning drive circuit 310. As will be described in detail later, Various command signals are supplied to the synchronization signal generation circuit 384.
  • the drive signal is supplied to the state signal generation circuit 380 for horizontal scanning, and the state signal generation circuit 380 detects the phase difference of the drive signal with respect to the displacement signal. It has become. This is because tracking control is performed so that the actual vibration frequency of the horizontal scanning mirror 280 follows the actual resonance frequency, as will be described in detail later.
  • the drive signal is not supplied to the state signal generation circuit 382 for vertical scanning, and the state signal generation circuit 382 does not detect the phase difference of the drive signal with respect to the displacement signal. This is because, as will be described in detail later, frequency tracking control is not performed for the vertical scanning mirror 290, unlike the horizontal scanning mirror 280.
  • the horizontal scanning synchronization signal is changed so as to rise at the horizontal scanning period T.
  • the vertical scanning synchronization signal changes so as to rise at the vertical scanning period ⁇ . That
  • the phase difference between the horizontal scanning synchronization signal and the vertical scanning synchronization signal is the aforementioned initial phase difference time ⁇ t.
  • the frame synchronization signal changes so as to rise at the frame period T.
  • the luminance signal is converted into each pixel.
  • the spot of the laser beam whose intensity has been modulated in response is scanned on the retina 16 by the cooperative action of the horizontal scanning by the horizontal scanning unit 270 and the vertical scanning by the vertical scanning unit 272.
  • Figure 13 shows the case where the horizontal scanning reciprocation number n is 7 and the vertical scanning reciprocation number n is n.
  • the state is represented by a graph without arcsine correction.
  • the horizontal axis represents the horizontal scanning angle (the deflection angle of the horizontal scanning mirror 280).
  • Equation (3) (a) in Fig. 12 the condition expressed by Equation (3) (a) in Fig. 12 is satisfied and the initial phase difference
  • the initial phase difference time At can be explained by paying attention to the relationship between the horizontal scanning synchronization signal and the vertical scanning synchronization signal. As shown in Fig. 26, the initial phase difference time At is the level of the horizontal scanning synchronization signal and the vertical scanning synchronization signal. It means phase difference.
  • the initial phase difference time At can be determined by taking the vertical scanning synchronization signal as a reference and the horizontal scanning synchronization signal advance time relative to the vertical scanning synchronization signal (vertical scanning angle ⁇
  • This initial phase difference time ⁇ t is accurate to ensure that the actual scanning trajectory is normal. Management is an important physical quantity. If the actual value of the initial phase difference time At deviates beyond the limit of the ideal value, the scanning line interval becomes non-uniform and the image quality is degraded. Specifically, in the scanning trajectory, the spacing between scanning lines alternately changes between a narrow spacing and a wide spacing for each scanning line in the vertical scanning direction.
  • the coefficient ⁇ is desirably a numerical value of 10 or less, more desirably a numerical value of 8 or less, and further desirably a numerical value of 6 or less.
  • the relative phase is managed with sufficient accuracy, so that the horizontal scanning by the horizontal scanning unit 270 and the vertical scanning by the vertical scanning unit 272 are synchronized with sufficient accuracy. It is important to design.
  • the horizontal scanning frequency f force ⁇ OkHz, and the vertical scanning frequency f is
  • the ideal value of the vertical scanning delay time ratio is “1Z4,000”.
  • This vertical scanning delay time ratio can be converted into an angle [deg] as shown in equation (14) of FIG.
  • the ideal value of the angle converted from the vertical scanning delay time ratio is 0.09 deg.
  • the horizontal scanning advance time ratio that is, the ideal value of AtZT is “
  • the ideal angle converted into the vertical scanning delay time ratio force is much smaller than the ideal angle converted into the horizontal scanning advance time ratio force.
  • Such a relationship between both ideal values also holds in other general scanning devices. Therefore, the accuracy required for vertical scanning because the actual value of the vertical scanning delay time ratio force converted to the ideal value matches the ideal value, and the actual value of the angle converted to the horizontal scanning advance time ratio force is the ideal value. Higher than the accuracy required for horizontal scanning, to match.
  • the angle converted from the vertical scanning delay time ratio is proportional to the frequency of the vertical scanning synchronization signal.
  • the angle converted into the horizontal scanning advance time ratio power is also converted to the frequency of the horizontal scanning synchronization signal. Proportional. Therefore, the accuracy required for the vertical scanning synchronization signal is higher than the accuracy required for the horizontal scanning synchronization signal.
  • the frequency and phase of the vertical scanning synchronization signal and the frequency and phase of the horizontal scanning synchronization signal are controlled with relative accuracy equal to each other.
  • the optical scanning unit 220 controls the frequency and phase of the vertical scanning synchronization signal with an accuracy that satisfies the required accuracy.
  • the vertical scanning delay time ratio is the distance from the ideal value of the actual value of the vertical scanning delay time ratio, that is, the maximum value Emax of the allowable value Ealw of the error E.
  • the allowable value Ealw is described by Equation (15) in FIG. 28 by using the coefficient ⁇ described above.
  • both the horizontal scanning unit 270 and the vertical scanning unit 272 are configured as a mechanical resonance system, and the horizontal scanning unit 270 is ideally horizontal.
  • the scanning mirror 280 is operated with the actual vibration frequency matching the actual resonance frequency.
  • the vertical scanning unit 272 is ideally operated in a state where the actual vibration frequency of the vertical scanning mirror 290 matches the actual resonance frequency.
  • the resonance frequency depends on the mechanical properties of the mirrors 280 and 290, respectively. Its mechanical properties vary due to manufacturing variations, and vary depending on the operating environment (eg, environmental temperature, environmental humidity), aging (eg, deterioration), and the like. Therefore, the resonance frequency varies.
  • the Q value Q of the horizontal scanning unit 270 that generates higher resonance energy in the vertical scanning unit 272 in the horizontal scanning unit 270 is lower.
  • the Q value of the direct scan unit 272 is set larger than Q.
  • An example of a Q value is about 1000,
  • An example Q value is about 100.
  • the Q value of a mechanical resonance system is a value representing the strength of resonance.
  • the Q value is defined by equation (16) in Fig. 28, where S represents the energy lost per unit time due to Joule heat when resonance occurs at energy W under frequency ⁇ .
  • S represents the energy lost per unit time due to Joule heat when resonance occurs at energy W under frequency ⁇ .
  • the higher the Q value of the mechanical resonance system the more sensitive the resonance energy to the deviation of the actual vibration frequency from the actual resonance frequency.
  • the vibration amplitude of the mechanical resonance system is reduced, and thereby the scanning angle range of the laser beam (maximum deflection width of the laser beam during scanning) is reduced.
  • only the horizontal scanning unit 270 is tracking-controlled so that the actual scanning frequency of the horizontal scanning mirror 280 follows the actual resonance frequency.
  • the horizontal scanning unit 270 can be changed discretely (stepwise) by the step size ⁇ .
  • the process is repeated until the phase difference between the signal and the displacement signal is restored to the normal value, that is, until the vibration state of the horizontal scanning mirror 90 is restored to the resonance state.
  • the frequency f V of the vertical scanning synchronization signal is also changed.
  • phase of the horizontal scanning synchronization signal and the phase of the vertical scanning synchronization signal are both corrected so as to continue to realize the initial phase difference time At.
  • the actual vibration frequency of the horizontal scanning mirror 280 is an instantaneous value of the frequency (frequency command value) f H of the horizontal scanning synchronization signal.
  • the actual vibration frequency of the vertical scanning mirror 290 is the moment of the vertical scanning synchronization signal frequency (frequency command value) f.
  • the actual vibration frequency of the horizontal scanning mirror 280 and the actual vibration frequency of the vertical scanning mirror 290 are different from each other, and the deflection angle of the horizontal scanning mirror 280 A condition that the actual value of the phase difference time (hereinafter referred to as “scanning phase difference time At”) between the time fluctuation and the time fluctuation of the deflection angle of the vertical scanning mirror 290 matches the ideal value of the initial phase difference time At. A period in which is not established transiently occurs.
  • the actual scanning trajectory will temporarily not coincide with the most ideal scanning trajectory, which will cause a transient variation in the scanning phase difference time At.
  • the step size ⁇ f force is transient in the scanning phase difference time ⁇ t.
  • Error ⁇ ⁇ is set so as not to exceed the aforementioned allowable value ⁇ alw.
  • phase change ⁇ is generally defined by equation (17) in Fig. 28 in the vicinity of the resonance frequency fr.
  • the direct scan delay time ratio does not exceed the converted angle [rad], and the phase change for horizontal scanning ⁇ force
  • the horizontal scan advance time ratio does not exceed the converted angle [rad]
  • Expression (18) is converted to Expression (20) and Expression (21) in FIG. 28 by using Expression (17) as well.
  • Equation (17) the magnitude of the phase change ⁇ is taken into account, but its sign is ignored.
  • it is set to satisfy the step ⁇ force equation (20) for discretely changing the frequency of the horizontal scanning synchronization signal, and vertical scanning synchronization is performed.
  • the step size for discretely changing the signal frequency ⁇ ⁇ is set to satisfy Equation (21).
  • the synchronization signal processing unit 352 is digitally synchronized with a combination of a computer 322 and a plurality of electronic circuits. Designed to handle.
  • the conventional synchronization signal processing unit processes the synchronization signal in an analog manner using the PLL as a basic component.
  • the frequency of the horizontal scanning synchronization signal is discretely and accurately changed with a small step width ⁇ ⁇ , and the frequency of the vertical scanning synchronization signal is changed to a small step width.
  • the synchronization signal generation circuit 384 divides the master clock 390 that generates the master clock signal at the master clock frequency fmst and the master clock signal output from the master oscillator 390 by the division number n (master Dividing the frequency of the clock signal by the division number n)
  • Circulator 392 is activated.
  • the dividing number is n force.
  • the master clock frequency is fmst force 80 MHz.
  • the synchronization signal generation circuit 384 further includes a PLL clock supply unit 394.
  • the clock supply unit 394 includes a frequency divider 396, a frequency divider 398, an error voltage signal generation circuit 400 including a phase comparator and a filter (for example, a loop filter), a voltage controlled oscillator VCO404, and a frequency divider. Constructed to include 406! [0400]
  • This clock supply unit 394 includes a master clock signal 1S output from the master oscillator 390 and its frequency divided by a frequency divider n by a frequency divider 396 and then the reference signal.
  • the reference signal is compared with an oscillation signal described later by a phase comparator of the error voltage signal generation circuit 400, and an analog error voltage signal representing a frequency difference (clock error) between the reference signal and the oscillation signal. Is smoothed by the filter of the error voltage signal generation circuit 400.
  • the smoothed error voltage signal is supplied to the voltage controlled oscillator VCO 404 as an analog control signal.
  • the voltage controlled oscillator VCO 404 generates a digital oscillation signal based on the supplied control signal.
  • the plurality of electronic circuits constituting the synchronization signal generation circuit 384 are configured as digital circuits except for the error voltage signal generation circuit 400 and the voltage controlled oscillator VCO404. Thereby, it is ensured that the amount (error) of the transient fluctuation of the scanning phase difference time At caused by the discrete change of the main scanning frequency and the sub scanning frequency does not exceed the allowable value ⁇ alw.
  • the digital oscillation signal generated by the voltage controlled oscillator VCO 404 is frequency-divided by the frequency divider n 406 by the frequency divider 406 and then supplied from the clock supply unit 394.
  • the output oscillation signal is frequency-divided by the frequency divider n 398 by the frequency divider n and then input to the phase comparator of the error voltage signal generation circuit 400.
  • frequency division number n force 800000 frequency division number n force 1 ⁇ 2600
  • the frequency divider 396 is connected to the central control unit 370.
  • This frequency divider 3 96 is a discrete number n divided by 1 according to the command signal input from the central control unit 370.
  • this frequency divider 396 the frequency dividing number n is finely changed digitally.
  • the synchronization signal generation circuit 384 further includes a frequency divider 410 that divides the frequency of the output signal of the frequency divider 406 by the frequency division number n, and an output of the frequency divider 410.
  • the delay circuit 412 receives the output signal of the master oscillator 390 together with the output signal of the frequency divider 410.
  • the delay circuit 412 is configured as a digital circuit, and as is well known, the output signal of the frequency divider 410 is input by counting the number of master clock pulses input from the master oscillator 390. Delay time until output
  • This delay circuit 412 changes the length of the delay time At by changing the target count number of the master clock pulse according to the command signal input from the central control unit 370.
  • the delay circuit 412 has a digitally fine delay time At.
  • the output signal of the delay circuit 412 is supplied to the horizontal scanning drive circuit 300 as a horizontal scanning synchronization signal.
  • the synchronization signal generation circuit 384 further includes a frequency divider 416 that divides the frequency of the output signal of the frequency divider 406 by the frequency division number n, and an output of the frequency divider 416.
  • the output signal of master oscillator 390 is input to delay circuit 418 together with the output signal of frequency divider 416.
  • This delay circuit 418 is configured as a digital circuit, similar to the delay circuit 412, and receives the output signal of the frequency divider 410 by counting the number of master clock pulses input from the master oscillator 390. Delay time until output
  • this delay circuit 418 changes the length of the delay time ⁇ t by changing the target count number of the master clock pulse in accordance with the command signal input from the central control unit 370. Designed to change!
  • the delay circuit 418 has a digitally fine delay time At.
  • the output signal of the delay circuit 418 is supplied to the vertical scanning drive circuit 310 as a vertical scanning synchronization signal.
  • the frequency divider 410 and the frequency divider 416 are connected in parallel to the frequency divider 406, and the frequency dividers 410 and 216 have the same frequency. Divide the signal by the respective division number n and n.
  • the frequency division numbers n and n are the frequency of the horizontal scanning synchronization signal and the vertical scanning synchronization signal.
  • n an integer ratio that is relatively prime to frequency, i.e. n: n (in the above example, 1
  • the synchronization signal generation circuit 384 further includes a frequency divider that divides the frequency of the output signal of the frequency divider 416 by a frequency division number n (11 in the above specific example).
  • the output signal of the frequency divider 420 is supplied to the status signal generation circuits 380 and 382 as a frame scanning synchronization signal.
  • phase difference of the horizontal scanning synchronization signal is adjusted by the delay circuit 412 and the phase difference of the vertical scanning synchronization signal is adjusted by the delay circuit 418.
  • Time At is managed with high accuracy.
  • FIG. 30 conceptually shows a flowchart of the above-described scanning control program executed in the central control unit 370.
  • This scanning control program is repeatedly executed. At each execution, first, in S101, the displacement signal of the horizontal scanning mirror 280, the displacement phase signal (to drive signal), and the displacement phase signal (to frame synchronization signal) are output from the state signal generation circuit 380. Is read.
  • the optimum value of the frequency division number n is determined in an exploratory manner.
  • the direction in which the displacement phase (vs. drive signal) deviates from the target value is determined as either increased calorie or decreased, According to the determined bias direction, the direction of change of the frequency division number n is determined to be either increased or decreased.
  • the displacement phase (the drive signal) is smaller than a target value (for example, 90 degrees), it is reduced by the number of divisions n force Si that increases the horizontal scanning frequency.
  • the frequency f of the sync signal changes by the step size ⁇ ⁇ . Its step size ⁇ ⁇ , ie, the smallest
  • the horizontal scanning unit 270 and the synchronization signal generation circuit 384 are designed so that the discrete change amount of the signal satisfies the condition represented by the equation (20) in FIG.
  • the step size ⁇ ⁇ is, for example,
  • the frequency f of the direct scan synchronization signal also changes by the step size ⁇ ⁇ .
  • the vertical scanning unit 272 and the synchronization signal generation circuit 384 are designed so that the minimum discrete change amount satisfies the condition represented by the equation (21) in FIG.
  • the step size ⁇ ⁇ is an example
  • the horizontal scanning amplitude command signal is set at a fixed or variable set amount based on the direction and amount that the displacement amplitude deviates from the target value force.
  • the changed horizontal scanning amplitude command signal is output to the horizontal scanning driving circuit 300. This execution of S109 is repeated until the determination in S103 becomes YES.
  • the sum of the displacement phase of the horizontal scanning synchronization signal (vs. frame synchronization signal) and the displacement phase of the vertical scanning synchronization signal (vs. frame synchronization signal) is equal to the scanning phase difference time ⁇ t. Therefore, in S110 and S111, the delay time At and
  • the determination in S107 is NO. Thereafter, in S112, the vertical scanning amplitude command signal is changed by a fixed or variable set amount based on the direction and amount that the displacement amplitude deviates from the target value force, and the changed vertical scanning amplitude command signal is changed to the vertical scanning. It is output to the drive circuit 310. This execution of S110 is repeated until the determination in S107 becomes YES.
  • the RSD 210 constitutes an example of the “light scanning display” according to the item (11), and the light source unit 234 is the “light source unit” in the same term.
  • the optical scanning unit 220 constitutes an example of the “scanning device” in the same section.
  • the luminance signal generation unit 350 constitutes an example of the “brightness signal control unit” in the item (11), and at least the horizontal scanning detection circuit 302 has the “detection unit” in the same term.
  • the horizontal scanning driving circuit 300 and the vertical scanning driving circuit 310 cooperate with each other to configure an example of the “driving signal generation unit” in the same section.
  • horizontal scanning corresponds to an example of “main scanning” in the above item (11)
  • vertical scanning corresponds to an example of “sub scanning” in the same item
  • a horizontal scanning unit 270 constitutes an example of “main scanning section” in the same paragraph
  • horizontal scanning mirror 280 constitutes an example of “first mechanical resonance system” in the same paragraph
  • vertical scanning section 272 constitutes “sub-scanning” in the same paragraph.
  • the vertical scanning mirror 290 constitutes an example of the “second mechanical resonance system” in the same section.
  • the horizontal scanning synchronization signal constitutes an example of the "main running gear synchronization signal" in the paragraph (11), and the vertical scanning synchronization signal is the sub-scanning synchronization signal in the same paragraph.
  • the horizontal scanning unit 270 constitutes an example of “following control target” in the same term, and the horizontal scanning synchronization signal constitutes an example of “target synchronizing signal” in the same term.
  • the apportionment and force for executing S101, S102, and S108 in FIG. Is an example of “first synchronization signal control unit”, and frequency divider 416 is an example of “second synchronization signal control unit” in the same section.
  • the apportionment and force for executing S101, S102, and S108 in FIG. constitutes an example of the “first frequency control unit” in the section).
  • the frequency divider 416 constitutes an example of the "second frequency control unit" in the above (13), and is relatively prime to represent the ratio between the horizontal scanning frequency and the vertical scanning frequency.
  • Integer ratio n: n corresponds to an example of the “setting ratio” in the above item (14), and the horizontal scanning unit 270
  • the horizontal scanning unit 270 constitutes an example of the “main scanning unit” in the paragraph (17), and the horizontal scanning angle corresponds to an example of the “main scanning deflection angle” in the same term.
  • the horizontal scanning detection circuit 302 constitutes an example of the “detection unit” in the same term, and the displacement phase (pair drive signal) represented by the displacement signal (versus the drive signal) is an example of “phase difference” in the same term.
  • the state signal generation circuit 380 the frequency divider 396, and the computer 322 that execute S101, S102, and S108 in FIG. It is composed.
  • the scanning phase difference time ⁇ t (displacement signal for horizontal scanning)
  • the delay circuits 412 and 418, and the computer 322 include S101, S104, S105, S106, S110 and Si ll
  • the parts that execute the above together form an example of the “phase changing unit” in the same section.
  • the RSD 210 constitutes an example of an "optical scanning display” according to the item (19), and the light source part 234 constitutes an example of the "light source part” in the paragraph,
  • the optical scanning unit 220 constitutes an example of the “scanning device” in the same section.
  • the luminance signal generation unit 350 constitutes an example of the “brightness signal control unit” in the above (19), and the horizontal scanning detection circuit 302 and the vertical scanning detection circuit 312 are mutually connected.
  • the “detection unit” in the same section is jointly configured, and the horizontal scanning drive circuit 300 and the vertical scan drive circuit 310 jointly configure an example of the “driving signal generation section” in the same section. is there.
  • horizontal scanning corresponds to an example of “main scanning” in the above section (19)
  • vertical scanning corresponds to an example of “sub scanning” in the same section
  • a horizontal scanning unit 270 constitutes an example of “main scanning section” in the same paragraph
  • horizontal scanning mirror 280 constitutes an example of “first mechanical resonance system” in the same paragraph
  • vertical scanning section 272 constitutes “sub-scanning” in the same paragraph.
  • the vertical scanning mirror 290 constitutes an example of the “second mechanical resonance system” in the same section.
  • the horizontal scanning synchronization signal constitutes an example of the "main running gear synchronization signal" in the above section (19), and the vertical scanning synchronization signal is the "sub-scanning synchronization signal” in the same section.
  • a ratio of integers that are relatively prime n: n is the “setting ratio” in the same term
  • the horizontal scanning angle corresponds to an example of “main scanning deflection angle” in the same term
  • the vertical scanning angle corresponds to an example of “sub scanning deflection angle” in the same term.
  • the step size ⁇ f corresponds to an example of the “main scanning frequency step size” in the same section, and the step width ⁇ ⁇ in the same section.
  • the allowable value ⁇ a lw represented by the equation (12) in FIG. 28 corresponds to an example of the “allowable range” in the above-mentioned item (19) (range in which the width is 0).
  • formula (20) The numerical value represented by the term written on the right side of the is equivalent to an example of “first tolerance” in the same term, and the numerical value represented by the term written on the right side of Equation (21) is “ This corresponds to an example of “second tolerance”.
  • the frequency divider 416 constitutes an example of the “second sync signal control unit” in the same paragraph, and the horizontal scanning unit 270 An example of “following control target” is configured, and the horizontal scanning synchronization signal is an example of “target synchronization signal” in the same section.
  • the scanning phase difference time ⁇ t corresponds to an example of the “phase difference” in the item (23), and the state signal generation circuits 380 and 382 and the delay circuits 412 and 41 8 and the portion of computer 322 that executes S101, S104, S105, S106, S110, and S111 in FIG. 30 together form an example of the “phase changing unit” in the same section. It is.

Abstract

光束の2次元的な走査によって画像を表示する光走査型ディスプレイ(10)が開示されている。この光走査型ディスプレイ(10)においては、画像の1フレームが3以上のフィールドに分けて走査装置(60)によって走査されて表示されるように、映像信号に基づいて輝度信号が生成される。さらに、各回の往復走査の全体期間のうちの有効走査期間中に、光源部(34)が実際に光束を出射することによって形成される有効走査線が同じフレームにおいて前記3以上のフィールド間で互いに重ならないように、前記生成された輝度信号が光源部(34)に出力される。

Description

明 細 書
光走査型ディスプレイおよびそれの駆動方法
技術分野
[0001] 本発明は、光束の 2次元的な走査によって画像を表示する技術に関するものであり 、特に、その走査の軌跡を制御する技術に関するものである。
背景技術
[0002] 光束の 2次元的な走査によって画像を表示する光走査型ディスプレイが既に知ら れている(例えば、日本国特許第 2988457号公報参照。;)。その一例は、観察者の 外界に割り当てられたスクリーンに画像を投影して表示するプロジェクタであり、別の 例は、観察者の網膜上に光束を直接に投影し、その光束で網膜を走査する網膜走 查型ディスプレイである。
[0003] いずれの例においても、この種の光走査型ディスプレイは、一般に、(a)輝度信号 に応じた輝度で光束を出射する光源部と、(b)その光源部から出射した光束を互い に交差する主走査方向と副走査方向とにおいてそれぞれ往復走査することが可能な 走査装置と、(c)映像信号に基づいて前記輝度信号を生成し、その生成された輝度 信号を前記光源部に出力することにより、前記走査部による走査軌跡を制御する制 御部とを含むように構成される。
[0004] この種の光走査型ディスプレイにおいては、通常、主走査方向は水平方向、副走 查方向は垂直方向とそれぞれ等しくなるように設定されるため、主走査方向における 走査は水平走査、副走査方向における走査は垂直走査と称されるが、各走査方向 の向きはそれらに限定されない。
[0005] この種の光走査型ディスプレイにお 、ては、前記走査装置が、各回の往復走査の 全体期間のうちの有効走査期間中には、光源部が実際に光束を出射することにより 、実在する走査線が有効走査線として形成される一方、無効走査期間中には、光源 部が実際に光束を出射しないことにより、実在しない走査線が無効走査線として形成 されるように構成される。
発明の開示 [0006] この種の光走査型ディスプレイにお 、ては、通常、前記走査装置が、画像の各フレ ームごとに、主走査方向に往復走査を行!、ながら副走査方向に往復走査を行うよう に構成される。
[0007] 画像を表示するために光束を走査する方式として、ノンインターレース方式 (プログ レツシブ方式ともいう。)とインターレース方式とがある。ノンインターレース方式におい ては、 1フレームの画像を表示するための全有効走査線が 1本ずつ順に走査される。 これに対し、インターレース方式においては、画像の 1フレームが 2つのフィールドで 構成され、それらフィールドは、それらフィールド同士で走査線が重ならないように、 走査される。
[0008] インターレース方式を採用する場合には、フリツ力が目立たない程度に副走査周波 数を高く(例えば、 50Hz以上の周波数に)保ったまま、例えばその半分まで主走査 周波数を下げることが可能となり、さらに、画像の主走査方向(水平方向)における解 像度を保ったまま、副走査方向(垂直方向)における解像度の低下をある程度抑制 することが可能である。
[0009] したがって、インターレース方式を採用する場合には、画像表示の最小単位である 画面(インターレース方式においてはフィールドに相当し、ノンインターレース方式に おいてはフレームに相当する。 ) 1枚当たりの有効走査線力 ノンインターレース方式 を採用する場合より半減する。
[0010] よって、インターレース方式を採用する場合には、ノンインターレース方式を採用す る場合より、必要主走査周波数を低下させることが容易であり、換言すれば、必要副 走査周波数を増加させることが容易である。
[0011] 以上説明した事情を背景にして、本発明は、光束の 2次元的な走査によって画像を 表示する技術において、走査軌跡の改善により、必要主走査周波数の低下と、必要 副走査周波数の増加と、 1フレーム当たりの有効走査線数の増加とのうちの少なくと も一つを可能にすることを課題としてなされたものである。
[0012] 本発明によって下記の各態様が得られる。各態様は、項に区分し、各項には番号 を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、本発明が 採用し得る技術的特徴の一部およびそれの組合せの理解を容易にするためであり、 本発明が採用し得る技術的特徴およびそれの組合せが以下の態様に限定されると 解釈すべきではない。すなわち、下記の態様には記載されていないが本明細書には 記載されている技術的特徴を本発明の技術的特徴として適宜抽出して採用すること は妨げられな 、と解釈すべきなのである。
[0013] さらに、各項を他の項の番号を引用する形式で記載することが必ずしも、各項に記 載の技術的特徴を他の項に記載の技術的特徴から分離させて独立させることを妨げ ることを意味するわけではなぐ各項に記載の技術的特徴をその性質に応じて適宜 独立させることが可能であると解釈すべきである。
[0014] (1) 光束の 2次元的な走査によって画像を表示する光走査型ディスプレイであって 輝度信号に応じた輝度で前記光束を出射する光源部と、
その光源部から出射した光束を互いに交差する主走査方向と副走査方向とにおい てそれぞれ往復走査することが可能な走査装置であって、前記画像の各フレームご とに、前記主走査方向にぉ 、て前記副走査方向におけるより多数回の往復走査を 行うものと、
前記画像の 1フレームが 3以上のフィールドに分けて前記走査装置によって走査さ れて表示されるように、映像信号に基づいて前記輝度信号を生成し、各回の往復走 查の全体期間のうちの有効走査期間中に、前記光源部が実際に光束を出射するこ とによって形成される有効走査線が同じフレームにおいて前記 3以上のフィールド間 で互いに重ならな 、ように、前記生成された輝度信号を前記光源部に出力する輝度 信号制御部と
を含む光走査型ディスプレイ。
[0015] この光走査型ディスプレイにおいては、画像の 1フレームが 3以上のフィールドに分 けて走査されて表示され、さらに、有効走査線が同じフレームにおいて 3以上のフィ 一ルド間で互いに重ならな 、ように形成される。
[0016] このようにしても、 1フレーム内の有効走査線同士の重なりなしで画像が形成される ため、前述の従来のインターレース方式やノンインターレース方式と同様に画像を表 示できる。 [0017] したがって、この光走査型ディスプレイによれば、前述の従来のインターレース方式 やノンインターレース方式を採用する場合より、 1フレームを構成するフィールドの数 が増加し、その結果、前述の、画像表示の最小単位である画面 1枚を表示するのに 必要な有効走査線の数が減少する。
[0018] よって、この光走査型ディスプレイによれば、前述の従来のインターレース方式を採 用する場合より、必要主走査周波数を低下させることが容易となる。
[0019] 1フレームにおいて同じ走査線数を実現するのに必要な主走査周波数が低い場合 には、高い場合より、前記走査装置のうち主走査を行う部分の設計および構造が容 易化される。
[0020] したがって、本項に係る光走査型ディスプレイによって必要主走査周波数を低下さ せることが容易となれば、例えば、走査装置の設計および製造や、その走査装置の 性能向上が容易となる。
[0021] 1フレームを 3以上のフィールドによって構成したうえで必要副走査周波数を増加さ せれば、 1フレームが 2以下のフィールドによって構成されるために必要副走査周波 数を増加させることができない場合より、同じ主走査周波数および副走査周波数のも とに 1フレームに形成される有効走査線の数が増加する。その有効走査線の数が増 カロすることは、表示画像の解像度が副走査方向において向上することにつながる。
[0022] したがって、本項に係る光走査型ディスプレイによって有効走査線数を増加させる ことが容易となれば、例えば、表示画像の解像度を向上させることが容易となる。
[0023] (2) 前記輝度信号制御部は、
前記画像の各フレームごとに、前記副走査方向における各回の往復走査の全体期 間のうち一方向走査期間と逆方向走査期間との双方が前記有効走査期間となるよう に前記輝度信号を生成して前記光源部に出力する第 1信号生成部を含む(1)項に 記載の光走査型ディスプレイ。
[0024] 前記(1)項に係る光走査型ディスプレイは、画像の各フレームごとに、副走査方向 における各回の往復走査の全体期間のうち一方向走査期間と逆方向走査期間との いずれかが有効走査期間として利用される態様で実施することが可能である。この態 様においては、副走査方向における 1回の往復走査により、 1フィールドが形成され ることになる。この点、前述の従来のインターレース方式を採用する場合と同様である
[0025] これに対し、本項に係る光走査型ディスプレイにおいては、一方向走査期間と逆方 向走査期間との双方が有効走査期間として利用されるため、副走査方向における 1 回の往復走査によって 2フィールドが形成される。したがって、この光走査型ディスプ レイによれば、上述の態様に比較し、副走査方向における往復走査が主走査の有効 利用につながり、このことは、主走査周波数がみかけ上低下することを意味する。
[0026] (3) 前記輝度信号は、前記光源部によって順次処理される信号であって、前記画 像において一列に並んだ複数個の画素の輝度をそれぞれ表す複数の輝度データに 基づいて生成され、
それら複数の輝度データは、前記一方向走査期間において前記有効走査線を形 成するために前記光源部によって処理される第 1の輝度データ群と、前記逆方向走 查期間にお 、て前記有効走査線を形成するために前記光源部によって処理される 第 2の輝度データ群とを含み、
前記輝度信号制御部は、
それら第 1および第 2の輝度データ群を、各輝度データ群に応じて前記画像が描 画される向きがそれら第 1および第 2の輝度データ群の間において互いに逆となるよ うに前記光源部に出力するデータ出力部を含む(2)項に記載の光走査型ディスプレ ィ。
[0027] この光走査型ディスプレイにおいては、副走査方向における各回の往復走査の全 体期間のうちの一方向走査期間において有効走査線を形成するために光源部によ つて処理される第 1の輝度データ群と、逆方向走査期間において有効走査線を形成 するために光源部によって処理される第 2の輝度データ群とが、各輝度データ群に 応じて画像が描画される向きがそれら第 1および第 2の輝度データ群の間において 互いに逆となるように光源部に出力される。
[0028] この光走査型ディスプレイにおいては、輝度信号が光源部によって順次処理される のに対し、一方向走査期間と逆方向走査期間とにおいては、画像のうち各走査期間 に対応する領域がそれぞれ互いに逆向きに描画される。この光走査型ディスプレイ によれば、光源部に入力される輝度信号が、画像の描画方向に合致するように並ん だ複数の輝度データを反映するように生成され、それにより、画像が正常に表示され る状態が保証される。
[0029] (4) 前記輝度信号制御部は、
前記画像の各フレームごとに、前記主走査方向における各回の往復走査の全体期 間のうち一方向走査期間と逆方向走査期間とのいずれ力が前記有効走査期間とな るように前記輝度信号を生成して前記光源部に出力する第 2信号生成部を含む(1) な!、し (3)項の 、ずれかに記載の光走査型ディスプレイ。
[0030] 前記(1)ないし(3)項のいずれかに係る光走査型ディスプレイにおいては、あるフィ 一ルドにおいて互いに平行にかつ同じ向きに進行する先の有効走査線と後の有効 走査線との間の隙間力 後続するフィールドにおける少なくとも 1本の有効走査線に よって埋められる。
[0031] そのため、特別の対策を講ずることなぐ画像の各フレームごとに、主走査方向にお ける各回の往復走査の全体期間のうち一方向走査期間と逆方向走査期間との双方 を有効走査期間として利用すると、あるフィールドにおいて、互いに平行にかつ同じ 向きに進行する先の有効走査線と後の有効走査線との間に存在する、それらとは逆 向きに進行する有効走査線力 後続するフィールドにおける少なくとも 1本の有効走 查線と交差する可能性がある。
[0032] 一方、互いに隣接したフィールド間において有効走査線同士が交差することは、各 有効走査線の輝度が、その交差点において局部的に増加し、このことは輝度むらの 原因となり得る。
[0033] これに対し、本項に係る光走査型ディスプレイにおいては、画像の各フレームごと に、主走査方向における各回の往復走査の全体期間のうち一方向走査期間と逆方 向走査期間とのいずれかが有効走査期間として利用される。したがって、この光走査 型ディスプレイによれば、互いに隣接したフィールド間において有効走査線同士が交 差せずに済み、その結果、その交差に起因した輝度むらも発生せずに済む。
[0034] (5) 前記輝度信号制御部は、
絶対空間にお 、て基準方向に延びるように設定された画像表示領域内にぉ 、て 前記有効走査線がその画像表示領域に平行に延びるように前記輝度信号を生成し て前記光源部に出力する第 3信号生成部を含む(1)な 、し (4)項の 、ずれかに記載 の光走査型ディスプレイ。
[0035] 一般に、光走査型ディスプレイによって画像が表示される画像表示領域の向きは、 設計上、絶対空間に対し、予め定められた基準方向(例えば、水平方向)に延びるよ うに設定される一方、現実には、複数本の走査線の向きによって決まる。設計上の画 像表示領域の向きが現実の画像表示領域の向きと一致することが望ましいが、その 現実の画像表示領域の向きは、複数本の走査線の向きに依存する。
[0036] 画像の 1フレームが分割されるフィールドの数(以下、単に「1フレーム当たりのフィ 一ルド数」という。)が多いほど、同じフレームにおいて走査線の方向が前記基準方 向に一致する程度 (以下、「走査線方向の一致度」という。)が低下する。一方、走査 線方向の一致度が低いほど、すべての走査線が前記基準方向に対して傾斜する傾 向が増すため、現実の画像表示領域も前記基準方向に対して傾斜する傾向が増す
[0037] そのため、前記(1)ないし (4)項のいずれかに係る光走査型ディスプレイにおいて は、同じフレームにおける複数本の有効走査線の向きを、設計上の画像表示領域の 向きに合わせて決定しないと、その設計上の画像表示領域の向きと現実の画像表示 領域の向きとが互いに一致しない程度が増し、その結果、観察者が表示画像に対し て違和感を覚える可能性がある。
[0038] これに対し、本項に係る光走査型ディスプレイにおいては、絶対空間において基準 方向に延びるように設定された画像表示領域内にお!、て有効走査線がその画像表 示領域に平行に延びるように輝度信号が生成されて光源部に出力される。
[0039] したがって、この光走査型ディスプレイによれば、絶対空間において基準方向に延 びるように設定された設計上の画像表示領域の向きを、有効走査線によって形成さ れる現実の画像表示領域の向きと一致させることが容易となる。その結果、この光走 查型ディスプレイによれば、設計上の画像表示領域の向きと現実の画像表示領域の 向きとの不一致に起因して、観察者が表示画像に対して違和感を覚える可能性が軽 減される。 [0040] (6) 前記走査装置は、
前記光束を前記主走査方向に走査する主走査と前記副走査方向に走査する副走 查とに共通に設けられて往復運動させられるミラーと、
前記主走査のために前記ミラーを往復運動させるためにそのミラーを振動させる第 1振動部と、
前記副走査のために前記ミラーを往復運動させるためにそのミラーを前記第 1振動 部と共に振動させる第 2振動部と
を含む(1)な 、し (5)項の 、ずれかに記載の光走査型ディスプレイ。
[0041] この光走査型ディスプレイによれば、走査装置が同じミラーを主走査と副走査とに 共通に使用するために、その走査装置の小型化が容易となる。
[0042] 本項および下記の各項における「往復運動」という用語は、例えば、ミラーに関連付 けられた揺動軸線 (ミラーの中心を通過してそのミラーに平行な揺動軸線や、ミラー の中心力 外れた位置を通過してそのミラーに平行な揺動軸線)まわりにそのミラー が行わせられる揺動を意味するように解釈したり、ミラーに関連付けられた直線運動 軸線に沿ってそのミラーが行わせられる往復直線運動を意味するように解釈すること が可能である。
[0043] (7) 前記ミラーは、そのミラーの共振を利用して前記主走査方向と前記副走査方向 とに往復運動させられる (6)項に記載の光走査型ディスプレイ。
[0044] 一般に、光を反射するミラーの共振を利用して光の走査を行う場合には、そのミラ 一を駆動する駆動源によって消費される電力が、共振を利用しないで光の走査を行 う場合より節減される一方で、実際の走査周波数が増加する傾向が生じる。
[0045] これに対し、前記(1)項に係る光走査型ディスプレイによれば、前述のように、必要 副走査周波数を増加させることが可能となるため、ミラーの共振を利用して副走査を 行うことが可能となる。そこで、本項に係る光走査型ディスプレイにおいては、ミラーの 共振を利用して主走査と副走査とが行われる。
[0046] したがって、この光走査型ディスプレイによれば、走査周波数に関する問題を生じ させることなぐ節減された消費電力で主走査および副走査を行うことが可能となる。
[0047] (8) 前記走査装置は、 前記光束を前記主走査方向に走査するために往復運動させられる第 1ミラーと、 前記光束を前記副走査方向に走査するために往復運動させられる第 2ミラーと、 前記第 1ミラーを往復運動させるためにその第 1ミラーを振動させる第 1振動部と、 前記第 2ミラーを往復運動させるためにその第 2ミラーを振動させる第 2振動部と を含む(1)な 、し (5)項の 、ずれかに記載の光走査型ディスプレイ。
[0048] この光走査型ディスプレイによれば、走査装置が、互いに独立した 2つのミラーを主 走査と副走査とに別々に使用するために、それぞれの走査周波数を、相互干渉を心 配することなぐ高い自由度で設定することが可能となる。よって、必要主走査周波数 と必要副走査周波数とが両立するように走査装置を設計および製造することが容易 となる。
[0049] この光走査型ディスプレイは、第 1および第 2ミラーの一方は、対応する振動部の共 振を利用して往復運動を行うが、他方は、共振を利用することなく往復運動を行う態 様で実施することが可能である。
[0050] また、本項に係る光走査型ディスプレイは、それら第 1および第 2ミラーのいずれも、 対応する振動部の共振を利用して往復運動を行う態様で実施したり、それら第 1およ び第 2ミラーのいずれも、対応する振動部の共振を利用することなく往復運動を行う 態様で実施することが可能である。
[0051] さらに、本項に係る光走査型ディスプレイは、それら第 1および第 2ミラーのうち、他 方のミラーより高速で走査を行うことが要求されるものは、対応する振動部の共振を 利用して往復運動を行うが、他方は、共振を利用することなく往復運動を行う態様で 実施することも可能である。
[0052] この態様に代えて、本項に係る光走査型ディスプレイは、それら第 1および第 2ミラ 一のうち、他方のミラーより低速で走査を行うことが要求されるものは、対応する振動 部の共振を利用して往復運動を行うが、他方は、共振を利用することなく往復運動を 行う態様で実施することも可能である。
[0053] (9) 前記走査装置は、前記光束の走査を、前記主走査方向において前記副走査 方向におけるより高速で行う(1)な 、し (8)項の 、ずれかに記載の光走査型ディスプ レイ。 [0054] (10) 当該光走査型ディスプレイは、前記光束を眼の網膜上に直接に投影してその 網膜上において走査することによって前記画像を表示する網膜走査型ディスプレイ である(1)な 、し (9)項の 、ずれかに記載の光走査型ディスプレイ。
[0055] (11) 前記走査装置は、
主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
当該光走査型ディスプレイは、さらに、
前記走査装置の走査状態を検出する検出部と、
主走査同期信号と副走査同期信号とを発生させる同期信号発生部と、 それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生部と を含み、
前記同期信号発生部は、
前記主走査部と前記副走査部とのうちの一方を追従制御対象とし、前記主走査同 期信号と前記副走査同期信号とのうち前記追従制御対象に対応するものを対象同 期信号とし、その対象同期信号を、前記検出部によって検出された走査状態に基づ き、前記追従制御対象の共振周波数に追従するように制御する第 1同期信号制御部 と、
前記主走査同期信号と前記副走査同期信号とのうちの他方を非対象同期信号とし 、その非対象同期信号を、前記制御された対象同期信号に基づいて制御する第 2同 期信号制御部と
を含む(1)な 、し(10)項の 、ずれかに記載の光走査型ディスプレイ。
[0056] 光束を走査するために機械的共振系の共振現象を利用すれば、その走査による 消費電力を容易に節減することができる。そのために、例えば、入射した光束を反射 によって偏向する走査ミラーを機械的共振系として構成し、その走査ミラーの往復運 動によって光束の偏向角を周期的に変化させることが可能である。
[0057] このような事情を背景にして、本項に係る光走査型ディスプレイにおいては、前記( 1)項における「走査装置」が、(a)主走査駆動信号に基づき、前記光束を、第 1の機 械的共振系を利用して、前記主走査方向に往復走査することが可能な主走査部と、 (b)副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記 副走査方向に往復走査することが可能な副走査部とを有するように構成される。
[0058] このように構成された走査装置を用いる光走査型ディスプレイにお!/、ては、主走査 周波数と副走査周波数との比が設定比に維持されることが、網膜上に入射する光束 のスポットが走査装置によって走査されることによって網膜上に描かれる実際の走査 軌跡が正規であるために重要である。
[0059] この種の光走査型ディスプレイにおいては、主走査周波数の高さが第 1の機械的 共振系の振動周波数の高さに依存し、同様に、副走査周波数の高さが第 2の機械的 共振系の振動周波数の高さに依存する。
[0060] 一般に、機械的共振系の共振周波数は、常に一定であるとは限らず、その作動環 境や経時劣化等、種々の理由によって変動する可能性がある。そのため、機械的共 振系の共振現象を常に効率よく利用して光束の走査を行うためには、機械的共振系 の共振周波数に追従するように、その機械的共振系の振動周波数をトラッキング制 御することが有効である。
[0061] その周波数トラッキング制御においては、例えば、機械的共振系の駆動源に供給 する駆動信号の周波数が、その機械的共振系の共振周波数に一致するように変更 される。
[0062] し力しながら、互いに異なる主走査周波数と副走査周波数とを実現すベぐ互いに 異なる共振周波数を有する 2種類の機械的共振系を利用して主走査と副走査とをそ れぞれ行うように構成された光走査型ディスプレイにお ヽては、それら 2種類の機械 的共振系につ 、てそれぞれ互いに独立して周波数トラッキング制御が行われると、 主走査周波数と副走査周波数との比が設定比力 変化してしまう。なぜなら、それら 2種類の機械的共振系の共振周波数が、主走査周波数と副走査周波数との比を設 定比から変化させな 、ように変動するとは限らな 、からである。 [0063] したがって、そのような光走査型ディスプレイにおいては、周波数トラッキング制御を
、主走査周波数と副走査周波数との比が設定比力 変化しな 、ように行うことが望ま しい。
[0064] 上述のように、互いに異なる共振周波数を有する 2種類の機械的共振系を利用し て主走査と副走査とをそれぞれ行うように構成された光走査型ディスプレイにお ヽて は、主走査の位相(例えば、前述の走査ミラーによる光束偏向角の、主走査による時 間変動の位相)と、副走査の位相(例えば、前述の走査ミラーによる光束偏向角の、 副走査による時間変動の位相)との差が設定値に維持されることが、実際の走査軌 跡が正規であるために重要である。
[0065] この種の光走査型ディスプレイにおいては、主走査の位相が第 1の機械的共振系 の振動の位相に依存し、同様に、副走査の位相が第 2の機械的共振系の振動の位 相に依存する。
[0066] この種の光走査型ディスプレイにおいては、それら 2種類の機械的共振系のうちの 少なくとも一方について上述の周波数トラッキング制御が行われると、その少なくとも 一方の機械的共振系の振動周波数の強制的変更に伴い、その少なくとも一方の機 械的共振系の振動周波数の位相が変化する。この変化は、主走査の位相と副走査 の位相との差に変化を生じさせる。
[0067] この種の光走査型ディスプレイにおいては、主走査の位相と副走査の位相との差 が設定値カゝら外れるにつれて、実際の走査軌跡が理想の走査軌跡から逸脱し、その 結果、表示画像の再現性が低下する。
[0068] したがって、この種の光走査型ディスプレイにおいては、周波数トラッキング制御を 、主走査の位相と副走査の位相との差が設定値力 大きく変化しないように行うこと が望ましい。
[0069] 以上説明した事情を背景にして、本項に係る光走査型ディスプレイにお!/、ては、主 走査同期信号と副走査同期信号とに基づいて主走査駆動信号と副走査駆動信号と がそれぞれ発生させられる。それら発生させられた主走査駆動信号と副走査駆動信 号とに基づいて前記主走査部と前記副走査部とがそれぞれ駆動される。
[0070] この光走査型ディスプレイにおいては、さらに、それら主走査部と副走査部とのうち の一方が追従制御対象とされ、主走査同期信号と副走査同期信号とのうち追従制御 対象に対応するものが対象同期信号とされる。
[0071] この光走査型ディスプレイにおいては、さらに、その対象同期信号の周波数が、走 查装置の走査状態 (主走査部の走査状態を含む。)に基づき、追従制御対象の共振 周波数に追従するように制御される一方、主走査同期信号と副走査同期信号とのう ちの他方が、追従制御対象のために制御された対象同期信号に基づいて制御され る。
[0072] その結果、この光走査型ディスプレイによれば、主走査部と副走査部とのうちの一 方は、追従制御対象とされて、実際の振動周波数が実際の共振周波数に一致する ように制御される一方、主走査部と副走査部とのうちの他方の周波数は、追従制御対 象の対象同期信号の周波数と一定関係を維持するように制御される。
[0073] したがって、この光走査型ディスプレイによれば、主走査部と副走査部とのいずれ についても周波数トラッキング制御を行わない場合より、走査のための消費電力が節 減されるとともに、主走査部と副走査部とのいずれについても周波数トラッキング制御 を行う場合より、主走査周波数と副走査周波数との比を常に設定比に維持して、実 際の走査軌跡を常に正規ィ匕することが容易となる。
[0074] (12) 前記第 1同期信号制御部は、前記対象同期信号の周波数を、前記検出部に よって検出された前記追従制御対象の走査状態に基づき、前記追従制御対象の共 振周波数に追従するように制御する第 1周波数制御部を含む(11)項に記載の光走 查型ディスプレイ。
[0075] この光走査型ディスプレイによれば、主走査部と副走査部とのうちの一方が、自身 の同期信号の周波数が、自身の走査状態に基づき、自身の実際の共振周波数に追 従するように制御される。
[0076] (13) 前記第 2同期信号制御部は、前記非対象同期信号の周波数を、主走査周波 数と副走査周波数との比が設定比に一致するように、制御する第 2周波数制御部を 含む( 11)または( 12)項に記載の光走査型ディスプレイ。
[0077] したがって、この光走査型ディスプレイによれば、主走査部と副走査部とのうちの一 方については周波数トラッキング制御が行われる状況において、主走査周波数と副 走査周波数との比が設定比に維持されて、実際の走査軌跡が正規化される。
[0078] (14) 前記設定比は、互いに素である整数の比である(13)項に記載の光走査型デ イスプレイ。
[0079] (15) 前記追従制御対象は、前記主走査部と前記副走査部とのうち、対応する機械 的共振系の Q値が他方の機械的共振系の Q値より大きいものである(11)ないし(14 )項の 、ずれかに記載の光走査型ディスプレイ。
[0080] この光走査型ディスプレイによれば、主走査部と副走査部とにぞれぞれ要求される 共振エネルギーが互いに異なる場合に、それら互いに異なる要求を過不足なく実現 することが可能となる。
[0081] (16) 前記第 1の機械的共振系の Q値は、前記第 2の機械的共振系の Q値より大き い( 15)項に記載の光走査型ディスプレイ。
[0082] この光走査型ディスプレイによれば、例えば、主走査を水平走査、副走査を垂直走 查として、水平方向にお 、て垂直方向におけるより寸法が長!、矩形の領域を走査す ることが必要であるために、主走査部に要求される共振エネルギーが副走査部に要 求される共振エネルギーより大きい場合に、それら互いに異なる要求を過不足なく実 現することが可能となる。
[0083] (17) 前記主走査部は、前記主走査周波数で周期的に変化する主走査偏向角で 出射するように前記光束を往復偏向走査し、
前記検出部は、前記主走査偏向角を反映する信号を主走査変位信号として出力し 前記同期信号発生部は、さらに、
前記主走査変位信号の前記主走査駆動信号に対する位相差が設定値となるよう に前記主走査同期信号を発生させる位相差制御部を含む( 11)ないし( 16)項の 、 ずれかに記載の光走査型ディスプレイ。
[0084] 一般に、同期信号に基づ!/、て生成された駆動信号によって駆動される機械的共振 系を用いて光束の走査を行う場合には、その機械的共振系の実際の振動周波数が 実際の共振周波数から外れると、走査偏向角の時間変動を反映する信号と駆動信 号との位相差が変化する。 [0085] したがって、その位相差が設定値に一致するように、同期信号を制御して駆動信号 を生成すれば、実際の共振周波数に追従するように実際の振動周波数が変化させら れる。
[0086] このような知見に基づき、本項に係る光走査型ディスプレイにおいては、主走査部 力 光束を、主走査周波数で周期的に変化する主走査偏向角で出射するように往復 偏向走査し、さらに、検出部が、その主走査偏向角を反映する信号を主走査変位信 号として出力する。
[0087] さらに、この光走査型ディスプレイにおいては、主走査変位信号の主走査駆動信号 に対する位相差が設定値となるように、主走査同期信号が発生させられる。それによ り、主走査部の機械的共振系の実際の振動周波数が、実際の共振周波数に追従す るように変化させられる。
[0088] (18) 前記同期信号発生部は、さらに、
前記主走査同期信号と前記副走査同期信号との位相差が設定値となるように、そ れら主走査同期信号と副走査同期信号とのうちの少なくとも一方の位相を変更する 位相変更部を含む(11)な ヽし(17)項の ヽずれかに記載の光走査型ディスプレイ。
[0089] この光走査型ディスプレイによれば、前述の周波数トラッキング制御が実行されるに もかかわらず、主走査同期信号と副走査同期信号との位相差が正規化される。よつ て、この光走査型ディスプレイによれば、主走査周波数と副走査周波数との比の正 規化と、主走査偏向角の時間変動と副走査偏向角の時間変動との位相差の正規ィ匕 とを一緒に達成することが容易となる。
[0090] (19) 前記走査装置は、
主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
当該光走査型ディスプレイは、さらに、
前記走査装置の走査状態を検出する検出部と、 主走査同期信号と副走査同期信号とを発生させる同期信号発生部と、
それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生部と を含み、
前記主走査部は、主走査周波数で周期的に変化する主走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記副走査部は、副走査周波数で周期的に変化する副走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記検出部は、前記主走査偏向角を反映する信号と前記副走査偏向角を反映す る信号とをそれぞれ主走査変位信号と副走査変位信号として出力し、
前記同期信号発生部は、
前記主走査同期信号と前記副走査同期信号とのうちの少なくとも一つが前記主走 查部と前記副走査部とのうち対応するものの共振周波数に追従することと、前記主走 查周波数と前記副走査周波数との比が設定比に一致することとがー緒に達成される ように、前記検出部によって検出された走査状態に基づき、前記主走査同期信号の 周波数と前記副走査同期信号の周波数とをそれぞれ、主走査周波数刻み幅と副走 查周波数刻み幅とで離散的に変更する周波数変更部を含み、
前記主走査同期信号の周波数と前記副走査同期信号の周波数とが前記周波数変 更部によって変更されることに起因し、前記主走査変位信号の前記主走査駆動信号 に対する主走査位相差と、前記副走査変位信号の前記副走査駆動信号に対する副 走査位相差とが変動し、
前記主走査位相差の変動と前記副走査位相差の変動とに起因し、前記走査装置 によって形成される複数本の走査線の走査線間位相差が変動し、
前記主走査周波数刻み幅は、前記主走査位相差の変動に起因する前記走査線 間位相差の変動量が許容範囲内であるように、第 1の許容値を超えないように設定さ れ、
前記副走査周波数刻み幅は、前記副走査位相差の変動に起因する前記走査線 間位相差の変動量が前記許容範囲内であるように、第 2の許容値を超えな 、ように 設定される( 1)ないし( 18)項の 、ずれかに記載の光走査型ディスプレイ。
[0091] この光走査型ディスプレイにおいては、前記(11)項に係る光走査型ディスプレイと 同様に、前記走査装置が、(a)主走査駆動信号に基づき、光束を、第 1の機械的共 振系を利用して、主走査方向に往復走査することが可能な主走査部と、(b)副走査 駆動信号に基づき、光束を、第 2の機械的共振系を利用して、副走査方向に往復走 查することが可能な副走査部とを含むように構成される。
[0092] この光走査型ディスプレイにおいては、主走査部が、主走査周波数で周期的に変 化する主走査偏向角で出射するように光束を往復偏向走査し、副走査部が、副走査 周波数で周期的に変化する副走査偏向角で出射するように光束を往復偏向走査し 、検出部が、主走査偏向角を反映する信号と副走査偏向角を反映する信号とをそれ ぞれ主走査変位信号と副走査変位信号として出力する。
[0093] この光走査型ディスプレイにおいては、主走査同期信号と副走査同期信号とに基 づ 、て主走査駆動信号と副走査駆動信号とがそれぞれ発生させられる。それら発生 させられた主走査駆動信号と副走査駆動信号とに基づいて主走査部と副走査部と がそれぞれ駆動される。
[0094] この光走査型ディスプレイにおいては、さらに、主走査同期信号と副走査同期信号 とのうちの少なくとも一つが主走査部と副走査部とのうち対応するものの共振周波数 に追従することと、主走査周波数と副走査周波数との比が設定比に一致することとが 一緒に達成されるように、走査装置の走査状態に基づき、主走査同期信号の周波数 と副走査同期信号の周波数とがそれぞれ、主走査周波数刻み幅と副走査周波数刻 み幅とで離散的に変更される。
[0095] この光走査型ディスプレイにおいては、主走査同期信号の周波数と副走査同期信 号の周波数とがそれぞれ、上述のようにして離散的に変更されると (例えば、それら 周波数と共振周波数とは、最大刻み幅だけ異なり)、主走査変位信号の主走査駆動 信号に対する主走査位相差と、副走査変位信号の副走査駆動信号に対する副走査 位相差とが変動する。さら〖こ、主走査位相差の変動と副走査位相差の変動とに起因 して、走査装置によって形成される複数本の走査線の走査線間位相差が変動する。
[0096] この光走査型ディスプレイにおいては、主走査周波数刻み幅が、主走査位相差の 変動に起因する走査線間位相差の変動量が許容範囲内であるように、第 1の許容値 を超えないように設定される。同様にして、副走査周波数刻み幅が、副走査位相差 の変動に起因する走査線間位相差の変動量が許容範囲内であるように、第 2の許容 値を超えな!/ヽように設定される。
[0097] したがって、この光走査型ディスプレイによれば、主走査周波数刻み幅および副走 查周波数刻み幅が最適化されるため、主走査同期信号の周波数 (主走査周波数)と 副走査同期信号の周波数 (副走査周波数)とがそれぞれ離散的に変更されるにもか かわらず、主走査位相差の変動に起因する走査線間位相差の変動量も、副走査位 相差の変動に起因する走査線間位相差の変動量も、許容範囲内であるようにされる
[0098] よって、この光走査型ディスプレイによれば、主走査同期信号の周波数と副走査同 期信号の周波数とがそれぞれ離散的に変更されるにもかかわらず、走査線間位相差 の変動量が抑制され、その結果、実際の走査軌跡が正規であるようにされる。
[0099] (20) 前記主走査周波数を f 、前記副走査周波数を f 、前記設定比を n : n (n
M S M S M
および nは共に整数)、前記第 1の機械的共振系の Q値を Q 、前記第 2の機械的共
S M
振系の Q値を Q、 1
S より大きい係数を γでそれぞれ表記する場合に、前記第 1の許容 値は、
π ί / {A y - Q · η )
Μ M S
として定義され、
前記第 2の許容値は、
π ί / {A y - Q · η )
S S M
として定義される ( 19)項に記載の光走査型ディスプレイ。
[0100] この光走査型ディスプレイによれば、主走査周波数刻み幅が、主走査周波数 f 、
M
設定比 n : nおよび第 1の機械的共振系の Q値 Q との関係において適正に設定さ
M S M
れる。
[0101] さらに、この光走査型ディスプレイによれば、副走査周波数刻み幅が、副走査周波 数 f 、設定比 n : nおよび第 2の機械的共振系の Q値 Qとの関係において適正に設
S M S S
定される。 [0102] (21) 前記係数 γは、 2以上で 6以下である値を有する(20)項に記載の光走査型 ディスプレイ。
[0103] この光走査型ディスプレイによれば、係数 γが 2より小さい場合および 6より大きい 場合より、主走査同期信号の周波数および副走査同期信号の周波数の離散的変更 に起因する走査線間位相差の変動量がより好適に抑制される。
[0104] 例えば、係数 γが 2より小さい場合には、走査線間位相差の変動量が許容値より大 きくなる傾向がある。また、係数 γが大きいほど、走査線間位相差の変動量が低減す るが、 6より大きくしても、視認できるほどに画質が改善されず、その一方、回路設計 に無用な高性能化が要求されることになる。
[0105] (22) 前記同期信号発生部は、さらに、
前記主走査部と前記副走査部とのうちの一方を追従制御対象とし、前記主走査同 期信号と前記副走査同期信号とのうち前記追従制御対象に対応するものを対象同 期信号とし、その対象同期信号を、前記検出部によって検出された走査状態に基づ き、前記追従制御対象の共振周波数に追従するように制御する第 1同期信号制御部 と、
前記主走査同期信号と前記副走査同期信号とのうちの他方を、前記制御された対 象同期信号に基づいて制御する第 2同期信号制御部と
を含む(19)な 、し (21)項の 、ずれかに記載の光走査型ディスプレイ。
[0106] この光走査型ディスプレイによれば、主走査部と副走査部とのいずれについても周 波数トラッキング制御を行わない場合より、走査のための消費電力が節減されるととも に、主走査部と副走査部との!/、ずれにつ!ヽても周波数トラッキング制御を行う場合よ り、主走査周波数と副走査周波数との比を常に設定比に維持して、実際の走査軌跡 を常に正規ィ匕することが、前記(11)項に係る光走査型ディスプレイと同様な理由か ら、容易となる。
[0107] (23) 前記同期信号発生部は、さらに、
前記主走査同期信号と前記副走査同期信号との位相差が設定値となるように、そ れら主走査同期信号と副走査同期信号とのうちの少なくとも一方の位相を変更する 位相変更部を含む(19)な 、し (22)項の 、ずれかに記載の光走査型ディスプレイ。 [0108] この光走査型ディスプレイによれば、前述の周波数トラッキング制御が実行されるに もかかわらず、主走査同期信号と副走査同期信号との位相差が正規化される。よつ て、この光走査型ディスプレイによれば、主走査周波数と副走査周波数との比の正 規化と、主走査偏向角の時間変動と副走査偏向角の時間変動との位相差の正規ィ匕 とを一緒に達成することが容易となる。
[0109] (24) 光束の 2次元的な走査によって画像を表示するために、(a)輝度信号に応じ た輝度で前記光束を出射する光源部と、(b)その光源部から出射した光束を互いに 交差する主走査方向と副走査方向とにおいてそれぞれ往復走査することが可能な走 查装置であって、前記画像の各フレームごとに、前記主走査方向において前記副走 查方向におけるより多数回の往復走査を行うものとを含む光走査型ディスプレイを駆 動する光走査型ディスプレイ駆動方法であって、
前記画像の 1フレームが 3以上のフィールドに分けて前記走査装置によって走査さ れて表示されるように、映像信号に基づいて前記輝度信号を生成する輝度信号生成 工程と、
各回の往復走査の全体期間のうちの有効走査期間中に、前記光源部が実際に光 束を出射することによって形成される有効走査線が同じフレームにおいて前記 3以上 のフィールド間で互いに重ならな 、ように、前記生成された輝度信号を前記光源部 に出力する輝度信号出力工程と
を含む光走査型ディスプレイ駆動方法。
[0110] この方法によれば、前記(1)項に係る光走査型ディスプレイと基本的に同じ原理に 従い、それと基本的に同じ作用効果を実現することが可能である。
[0111] (25) 前記輝度信号生成工程は、前記画像の各フレームごとに、前記副走査方向 における各回の往復走査の全体期間のうち一方向走査期間と逆方向走査期間との 双方が前記有効走査期間となるように前記輝度信号を生成する工程を含む(24)項 に記載の光走査型ディスプレイ駆動方法。
[0112] この方法によれば、前記(2)項に係る光走査型ディスプレイと基本的に同じ原理に 従い、それと基本的に同じ作用効果を実現することが可能である。
[0113] (26) 前記走査装置は、 主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
前記光走査型ディスプレイは、さらに、前記走査装置の走査状態を検出する検出 部を含み、
当該光走査型ディスプレイ駆動方法は、さらに、
主走査同期信号と副走査同期信号とを発生させる同期信号発生工程と、 それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生工程と を含み、
前記同期信号発生工程は、
前記主走査部と前記副走査部とのうちの一方を追従制御対象とし、前記主走査同 期信号と前記副走査同期信号とのうち前記追従制御対象に対応するものを対象同 期信号とし、その対象同期信号を、前記検出部によって検出された走査状態に基づ き、前記追従制御対象の共振周波数に追従するように制御する第 1同期信号制御ェ 程と、
前記主走査同期信号と前記副走査同期信号とのうちの他方を非対象同期信号とし 、その非対象同期信号を、前記制御された対象同期信号に基づいて制御する第 2同 期信号制御工程と
を含む(24)または(25)項に記載の光走査型ディスプレイ駆動方法。
[0114] この方法によれば、前記(11)項に係る光走査型ディスプレイと基本的に同じ原理 に従い、それと基本的に同じ作用効果を実現することが可能である。
[0115] (27) 前記走査装置は、
主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
前記光走査型ディスプレイは、さらに、前記走査装置の走査状態を検出する検出 部を含み、
当該光走査型ディスプレイ駆動方法は、さらに、
主走査同期信号と副走査同期信号とを発生させる同期信号発生工程と、 それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生工程と を含み、
前記主走査部は、主走査周波数で周期的に変化する主走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記副走査部は、副走査周波数で周期的に変化する副走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記検出部は、前記主走査偏向角を反映する信号と前記副走査偏向角を反映す る信号とをそれぞれ主走査変位信号と副走査変位信号として出力し、
前記同期信号発生工程は、
前記主走査同期信号と前記副走査同期信号とのうちの少なくとも一つが前記主走 查部と前記副走査部とのうち対応するものの共振周波数に追従することと、前記主走 查周波数と前記副走査周波数との比が設定比に一致することとがー緒に達成される ように、前記検出部によって検出された走査状態に基づき、前記主走査同期信号の 周波数と前記副走査同期信号の周波数とをそれぞれ、主走査周波数刻み幅と副走 查周波数刻み幅とで離散的に変更する周波数変更工程を含み、
前記主走査同期信号の周波数と前記副走査同期信号の周波数とが前記周波数変 更部によって変更されることに起因し、前記主走査変位信号の前記主走査駆動信号 に対する主走査位相差と、前記副走査変位信号の前記副走査駆動信号に対する副 走査位相差とが変動し、
前記主走査位相差の変動と前記副走査位相差の変動とに起因し、前記走査装置 によって形成される複数本の走査線の走査線間位相差が変動し、 前記主走査周波数刻み幅は、前記主走査位相差の変動に起因する前記走査線 間位相差の変動量が許容範囲内であるように、第 1の許容値を超えないように設定さ れ、
前記副走査周波数刻み幅は、前記副走査位相差の変動に起因する前記走査線 間位相差の変動量が前記許容範囲内であるように、第 2の許容値を超えな 、ように 設定される (24)な 、し (26)項の 、ずれかに記載の光走査型ディスプレイ駆動方法
[0116] この方法によれば、前記(19)項に係る光走査型ディスプレイと基本的に同じ原理 に従い、それと基本的に同じ作用効果を実現することが可能である。
図面の簡単な説明
[0117] [図 1]図 1は、本発明の第 1実施形態に従う網膜走査型ディスプレイ 10を示す系統図 である。
[図 2]図 2は、図 1におけるスキャナ 60を示す平面図である。
[図 3]図 3は、図 1におけるスキャナユニット 20、光源部 34および信号処理回路 120 を概念的に表すブロック図である。
[図 4]図 4は、図 3におけるコンピュータ 122によって実行される画像表示プログラムを 概念的に表すフローチャートである。
[図 5]図 5は、図 3におけるフレームバッファ 140の論理的構造を表形式で説明するた めの図である。
[図 6]図 6は、図 3における水平走査駆動回路 92から駆動源 90に供給される水平走 查駆動信号と、垂直走査駆動回路 112から駆動源 110に供給される垂直走査駆動 信号とを示すグラフである。
[図 7]図 7は、図 1におけるスキャナユニット 20、光源部 34および信号処理回路 120 をそれぞれが果たす機能に着目して表すブロック図である。
[図 8]図 8は、図 7における水平走査同期信号、垂直走査同期信号およびフレーム同 期信号を示すタイミングチャートである。
[図 9]図 9は、従来のインターレーススキャン方式で画像を表示するために形成される 複数本の有効走査線を示す正面図である。 [図 10]図 10は、画像の各フレームを 3以上のフィールドに分けて走査する方式で画 像を表示するために形成される複数本の有効走査線の一例を示す正面図である。
[図 11]図 11は、画像の各フレームを 3以上のフィールドに分けて走査する方式で画 像を表示するために形成される複数本の有効走査線の別の例を示す正面図である
[図 12]図 12は、水平走査と垂直走査との共同によってリサージュ図形として形成され る複数本の走査線の幾何学的特性を式で説明する図である。
[図 13]図 13は、図 12に示す式で表現される複数本の走査線の一例を示す正面図で ある。
[図 14]図 14は、図 4に示す画像表示プログラムの実行による走査線の形成を説明す るための図である。
[図 15]図 15は、図 4に示す画像表示プログラムの実行による走査線の形成を説明す るための; ¾の図である。
[図 16]図 16は、図 4に示す画像表示プログラムの実行による走査線の形成を説明す るためのさらに; ¾の図である。
[図 17]図 17は、図 4に示す画像表示プログラムの実行による走査線の形成を説明す るためのさらに; ¾の図である。
[図 18]図 18は、図 4に示す画像表示プログラムの実行による走査線の形成を説明す るためのさらに; ¾の図である。
[図 19]図 19は、本発明の第 2実施形態に従う網膜走査型ディスプレイ 160を示す系 統図である。
[図 20]図 20は、図 19における光走査系 162を信号処理回路 120と共に概念的に表 すブロック図である。
[図 21]図 21は、本発明の第 3実施形態に従う網膜走査型ディスプレイ 210を示す系 統図である。
[図 22]図 22は、図 21における水平走査部 270を示す平面図である。
[図 23]図 23は、図 21における光走査ユニット 220、光源部 234および信号処理回路
320を概念的に表すブロック図である。 [図 24]図 24は、図 21における光走査ユニット 220、光源部 234および信号処理回路 320をそれぞれが果たす機能に着目して表すブロック図である。
[図 25]図 25は、図 24における同期信号処理部 352の詳細を示すブロック図である。
[図 26]図 26は、図 25における各種信号の時間的推移を説明するためのタイミングチ ヤートである。
[図 27]図 27は、水平走査と垂直走査との共同作用によってリサージュ図形として形 成される走査軌跡の一例を示す正面図である。
[図 28]図 28は、図 25に示す同期信号処理部 352の設計を説明するための複数の式 である。
[図 29]図 29は、図 25に示す同期信号処理部 352の設計を説明するための別の複数 の式である。
[図 30]図 30は、図 25に示すコンピュータ 322によって実行される走査制御プログラム を概念的に表すフローチャートである。
発明を実施するための最良の形態
[0118] 以下、本発明のさらに具体的な実施の形態のいくつかを図面に基づいて詳細に説 明する。
[0119] 図 1には、本発明の第 1実施形態に従う網膜走査型ディスプレイ (以下、「RSD」と 略称する。 ) 10が示されている。この RSD10は、画像を表す光束の一例であるレー ザビームを観察者の眼 12の瞳孔 14を経て網膜 16上に直接に投影し、その投影され た光束を網膜 16上にぉ 、て走査することにより、画像を表示するように設計されて!ヽ る。
[0120] 図 1に示すように、この RSD10は、光源ユニット 18とスキャナユニット 20とを含んで いる。光源ユニット 18は、赤色光、緑色光および青色光をそれぞれ出射する Rレーザ 22、 Gレーザ 24および Bレーザ 26を備えている。それら Rレーザ 22、 Gレーザ 24お よび Bレーザ 26から出射する 3色のレーザビーム (光束の一例)の輝度(強度)は、 R レーザドライバ 28、 Gレーザドライバ 30および Bレーザドライバ 32によってそれぞれ 変調される。
[0121] 本実施形態においては、それら Rレーザ 22、 Gレーザ 24および Bレーザ 26とそれら に対応する Rレーザドライバ 28、 Gレーザドライバ 30および Bレーザドライバ 32とが互 いに共同して光源部 34を構成して 、る。
[0122] 図 1に示すように、それら Rレーザ 22、 Gレーザ 24および Bレーザ 26には、 3個のコ リメータレンズ 40、 42および 44と、 3個のダイクロイツクミラー 50、 52および 54とが設 けられている。各レーザ 22, 24, 26から出射したレーザビームは、対応するコリメ一 タレンズ 40, 42, 44によってコリメートされた後、対応するダイクロイツクミラー 50, 52 , 54に入射する。
[0123] それら 3個のダイクロイツクミラー 50, 52, 54は、それぞれ波長選択性を有しており 、 Rレーザ 22、 Gレーザ 24および Bレーザ 26から出射した 3色のレーザビームを 1つ のレーザビームに合成するために設けられている。
[0124] それら 3個のダイクロイツクミラー 50, 52, 54を代表する 1個のダイクロイツクミラー、 すなわち、本実施形態においては、ダイクロイツクミラー 50から合成レーザビームが 出射し、その出射した合成レーザビームは、結合光学系 56によって集光される。
[0125] その集光された合成レーザビームは、光伝送媒体としての光ファイバ 58と、その光 ファイバ 58の出射端に配置されたコリメータレンズ 59とをそれらの順に経てスキャナ ユニット 20に入射する。
[0126] 図 1に示すように、スキャナユニット 20は、水平走査と垂直走査とを行うスキャナ 60 を備えている。図 2には、そのスキャナ 60が拡大されて平面図で示されている。このス キヤナ 60は、振動体 62を有し、その振動体 62のねじり共振を利用して水平走査と垂 直走査とを行う。振動体 62は、例えば、シリコン等、弾性を有する板状または膜状の 部材によって形成される。
[0127] 図 2に示すように、振動体 62は、それの厚さ方向に貫通する!、くつかの貫通孔によ り、最も外側に位置する固定部 64と、その固定部 64の内側に位置する可動部である 第 1振動部 70と、その第 1振動部 70の内側に位置する可動部である第 2振動部 72と に分割されている。
[0128] この振動体 62は、固定部 64において、図 1に示すスキャナ 60のハウジングに固定 される。図 2に示すように、振動体 62には、互いに直交する第 1揺動軸線と第 2揺動 軸線とが振動体 62の面内において設定されている。第 1揺動軸線は、第 2振動部 72 のために設定される一方、第 2揺動軸線は、第 1振動部 70のために設定されている。
[0129] 図 2に示すように、第 1振動部 70は、固定部 64に対して第 2揺動軸線まわりに揺動 させられるのに対し、第 2振動部 72は、第 1振動部 70に対して第 1揺動軸線まわりに 揺動させられる。したがって、本実施形態においては、スキャナ 60への入射光に対し て水平走査と垂直走査との双方を行うために第 2振動部 72のみに反射面 76が形成 されている。同じ反射面 76により、水平走査と垂直走査との双方が行われるようにな つているのである。
[0130] 図 2に示すように、その第 2振動部 72は、反射面 76が形成されたミラー部 80と、そ のミラー部 80を隔てて互いに対向する一対のはり部 82, 82とを含んでいる。ミラー部 80は、走査すべき光束の入射面積を確保しつつ慣性モーメントを最小化するために 、円形状を成している。
[0131] 一対のはり部 82, 82は、第 1揺動軸線に沿って直線的に延びている。各はり部 82 , 82は、ミラー部 80から延びる 1本の第 1板ばね部 84と、その第 1板ばね部 84から分 岐して互いに平行に延びる 2本の第 2板ばね部 86, 86とを備えている。それら第 1板 ばね部 84および第 2板ばね部 86, 86は、いずれも、振動体 62の厚さ方向と共通す る厚さ方向を有している。
[0132] 2本の第 2板ばね部 86, 86は、第 1揺動軸線を隔てて互いに対向している。したが つて、それら第 2板ばね部 86, 86にそれぞれ互いに逆向きに曲げが加えられれば、 第 1板ばね部 84が第 1揺動軸線まわりにねじられ、ひいてはミラー部 80が第 1揺動 軸線まわりに回転させられる。さらに、同じ第 2板ばね部 86に曲げが互いに逆向きに 交互に加えられれば、ミラー部 80が第 1揺動軸線まわりに揺動させられることになる。
[0133] そのような曲げを各第 2板ばね部 86, 86に加えるために、各第 2板ばね部 86, 86 に駆動源 90が設置されている。駆動源 90は、例えば、印加された電界をその印加 方向と交差する方向の変位に変換する素子を用いて構成することが可能である。
[0134] そのような素子の一例は、板状の圧電素子である。例えば、その圧電素子が各第 2 板ばね部 86, 86の、厚さ方向において互いに対向する両面のいずれかに貼り付け られた状態で、その圧電素子が長さ方向に振動させられれば、各第 2板ばね部 86, 86に曲げ振動が発生させられる。 [0135] 図 1に示すように、スキャナユニット 20は、第 2振動部 72に設置された駆動源 90を 駆動するために水平走査駆動回路 92を備えている。その水平走査駆動回路 92は、 例えば、発振回路を含むように構成される。
[0136] 図 2に示すように、第 1振動部 70は、第 2振動部 72と基本的に同じ原理に従って第 2揺動軸線まわりに揺動させられる。第 1振動部 70は、第 2振動部 72を支持する支持 部 100を備えており、その支持部 100は、第 2振動部 72と一体的に、第 2揺動軸線ま わりに揺動させられる。
[0137] その支持部 100は、第 2振動部 72を隔てて互いに対向する一対のはり部 102, 10 2により、固定部 64に支持されている。それら一対のはり部 102, 102は、第 2振動部 72における一対のはり部 82, 82と共通する構造を有するため、以下、簡単に説明す る。
[0138] それら一対のはり部 102, 102は、第 2揺動軸線に沿って直線的に延びている。各 はり部 102, 102は、支持部 100の中心部力も延びる 1本の第 1板ばね部 104と、そ の第 1板ばね部 104から分岐して互いに平行に延びる 2本の第 2板ばね部 106, 10 6とを備えている。それら第 1板ばね部 104および第 2板ばね部 106, 106は、いずれ も、振動体 62の厚さ方向と共通する厚さ方向を有している。
[0139] 2本の第 2板ばね部 106, 106は、第 2揺動軸線を隔てて互いに対向している。した がって、それら第 2板ばね部 106, 106にそれぞれ互いに逆向きに曲げ振動が加え られれば、第 1板ばね部 102が第 2揺動軸線まわりにねじられ、ひいては支持部 100 およびミラー部 80が第 2揺動軸線まわりに揺動させられる。
[0140] そのような曲げ振動を各第 2板ばね部 106, 106にカ卩えるために、各第 2板ばね部 106, 106に駆動源 110が設置されている。駆動源 110は、第 2振動部 72における 駆動源 90と共通する方式を採用することが可能である。
[0141] 図 1に示すように、スキャナユニット 20は、第 1振動部 70に設置された駆動源 110を 駆動するために垂直走査駆動回路 112を備えて 、る。その垂直走査駆動回路 112 は、例えば、発振回路を含むように構成される。
[0142] ミラー部 80の水平走査周波数は、第 2振動部 72の共振周波数によって決まり、そ の共振周波数は、主に、その第 2振動部 72の慣性モーメントおよび剛性によって決 まる。そして、ミラー部 80の水平走査周波数は、第 2振動部 72の慣性モーメントが大 きいほど、低い。
[0143] これに対し、ミラー部 80の垂直走査周波数は、第 1振動部 70の共振周波数によつ て決まり、その共振周波数は、主に、その第 1振動部 70の慣性モーメントおよび剛性 のみならず第 2振動部 72の慣性モーメントにも依存する。
[0144] ミラー部 80の垂直走査周波数は、第 1振動部 70および第 2振動部 72の合成慣性 モーメントが大きいほど、低い。一方、その合成慣性モーメントは、第 2振動部 72の慣 性モーメントより大きい。したがって、本実施形態においては、スキャナ 60の構造上、 垂直走査周波数が水平走査周波数より低 、。
[0145] 図 1に示すように、光源ユニット 18は、さらに、信号処理回路 120を備えている。そ の信号処理回路 120は、図 3に示すように、コンピュータ 122を含んでいる。コンビュ ータ 122は、 CPU124と ROM126と RAM128とがバス 130によって互いに接続さ れて構成されている。このコンピュータ 122には、外部から映像信号が供給される。
[0146] ROM126には、図 4にフローチャートで概念的に表されている画像表示プログラム を始めとし、各種プログラムが記憶されている。その画像表示プログラムが CPU 124 により、外部から供給された映像信号に基づき、かつ、 RAM 128を使用しつつ実行 されることにより、観察者の眼 10の網膜 14上に画像が表示される。
[0147] 信号処理回路 120においては、外部力も供給された映像信号に基づき、表示すベ き画像を構成する複数の画素の各々の輝度を表す複数の画素データ (輝度データ) が生成され、それら生成された画素データに基づき、 RAM 128を利用してデータ処 理を行うなどして、赤色光のための R輝度信号、緑色光のための G輝度信号および 青色光のための B輝度信号が生成される。
[0148] 図 3に示すように、信号処理回路 120には、 Rレーザドライバ 28、 Gレーザドラーバ 30および Bレーザドライバ 32を経て Rレーザ 22、 Gレーザ 24および Bレーザ 26が接 続されている。信号処理回路 120は、 Rレーザドライバ 28には R輝度信号を出力し、 Gレーザドライバ 30には G輝度信号を出力し、 Bレーザドライバ 32には B輝度信号を 出力する。
[0149] 図 3に示すように、この信号処理回路 120において、コンピュータ 122にフレームバ ッファ 140が接続されている。フレームバッファ 140は、画像の 1フレームをレーザビ ームの走査によって再生するのに必要な画像データであって複数の画素データ (輝 度信号を表すデータ)の集合を走査線番号 SLに関連付けて格納する。フレームバッ ファ 140は、レーザビームの各色ごとに対応して設けられている。
[0150] 図 5には、フレームバッファ 140に画像データが格納される様子が概念的に示され ているが、それについては後に図 5を参照することによって詳細に説明する。
[0151] 図 3に示すように、信号処理回路 120には、さらに、スキャナ 60の水平走査駆動回 路 92および垂直走査駆動回路 112も接続されている。水平走査駆動回路 92から駆 動源 90へは水平走査駆動信号、垂直走査駆動回路 112から駆動源 110へは垂直 走査駆動信号がそれぞれ供給され、その結果、スキャナ 60による水平走査と垂直走 查とが行われる。
[0152] 図 6には、水平走査駆動信号が上側のグラフ、垂直走査駆動信号が下側のグラフ でそれぞれ表されている。それらグラフから明らかなように、本実施形態においては、 水平走査駆動信号が垂直走査駆動信号より高!、周波数を有して!/、る。垂直走査駆 動信号の周波数は例えば、数百 Hzに設定される。
[0153] ここで、図 7および図 8を参照することにより、光源部 34の作動タイミング (強度変調 )と、スキャナユニット 20の作動タイミング (水平走査および垂直走査)との同期を詳細 に説明する。
[0154] 図 7には、光源部 34およびスキャナユニット 20が、信号処理回路 120と共に、ブロ ック図で概念的に表されている。信号処理回路 120は、映像信号に基づいて輝度信 号を生成して光源部 34に出力する輝度信号生成部 150を備えて 、る。この信号処 理回路 120は、さらに、その輝度信号生成部 150にフレーム同期信号と水平走査同 期信号とを供給する同期信号処理部 152を備えている。
[0155] 輝度信号生成部 150は、その同期信号処理部 152からそれらフレーム同期信号( フィールド同期信号を含む。)と水平走査信号とがそれぞれ供給されるタイミングに応 答して各色の輝度信号を光源部 34に出力する。
[0156] 図 7に示すように、スキャナユニット 20においては、第 1振動部 70、駆動源 90およ び水平走査駆動回路 92によって水平走査部 154が構成され、また、第 2振動部 72、 駆動源 110および垂直走査駆動回路 112によって垂直走査部 156が構成されて 、 る。
[0157] 本実施形態においては、水平走査駆動回路 92が、水平走査のためのクロック信号 に基づいて水平走査同期信号を生成し、同期信号処理部 152に出力する。その同 期信号処理部 152は、その水平走査同期信号が供給されたタイミングに応答して垂 直走査同期信号を垂直走査駆動回路 112に出力する。
[0158] 図 8には、それらフレーム同期信号、垂直走査同期信号および水平走査同期信号 がそれぞれタイミングチャートで表されて 、る。
[0159] 水平走査同期信号は、各走査線ごとに発生させられる。ここに、「走査線」という用 語は、実在する(可視領域にある)有効走査線と、実在しない (不可視領域にある)無 効走査線 (画像表示領域外にあるために消去される走査線と、画像表示領域内にあ るが帰線であるために消去される消去帰線とを含む。)とを含んでいる。水平走査同 期信号は、画像の 1フレーム当たり n個、順次発生させられる。 nは、水平走査の 1
H H
フレーム当たりの往復回数に等しい。
[0160] 同期信号処理部 152は、ある回の水平走査同期信号の発生時期から初期位相差 時間 A tが経過した時期に、フレーム同期信号を発生させる。このフレーム同期信号 は、画像の各フレームごとに、その開始時期に同期して発生させられる。
[0161] この同期信号処理部 152は、さらに、ある回の水平走査同期信号の発生時期から 初期位相差時間 A tが経過した時期、すなわち、フレーム同期信号の発生時期と同 じ時期に、 n個の垂直走査同期信号における最初の垂直走査同期信号を発生させ
V
る。 nは、垂直走査の 1フレーム当たりの往復回数に等しい。同期信号処理部 152は
V
、それら発生させられたフレーム同期信号と水平走査同期信号とを輝度信号生成部 150に出力する。
[0162] 本実施形態においては、輝度信号生成部 150が、コンピュータ 122のうち、後述の 画像表示プログラムを実行する部分によって構成されており、同期信号処理部 152 は、コンピュータ 122のうち、図示しない同期信号処理プログラムを実行する部分によ つて構成されている。
[0163] 一般に、ラスタースキャンによって画像表示を行う場合には、水平走査周波数は数 kHzないし数十 kHzであるのに対し、垂直走査周波数は 60Hz前後であるというよう に、水平走査周波数と垂直走査周波数との間に大きな隔たりが存在する。そのため、 従来においては、水平走査と垂直走査とを別々のスキャナを用いて行うのが一般的 であった。
[0164] 一方、スキャナが用いられる分野にぉ 、ては、スキャナの小型化が要望される場合 があり、この RSD10についても同様な要望が存在する。
[0165] スキャナの小型化という要望は、例えば、光束を反復的に偏向する原理を改善する ことによって達成され得る。例えば、反射面が形成された振動体の共振を利用して光 束の走査を行う場合には、別々のポリゴンミラーや別々のガルバノミラーを用いて光 束の走査を行う場合より、スキャナを小型化することが可能である。また、スキャナの 小型化と!/ヽぅ要望は、同じ反射面を用いて水平走査と垂直走査とを行うことによって ち達成され得る。
[0166] 以上説明した事情を背景に、この RSD10においては、水平走査部 154および垂 直走査部 156がいずれも、振動体 62の共振を利用して光束の反復的偏向を行う形 式とされたうえで、それら水平走査部 154と垂直走査部 156との間にお 、てミラー部 80が共通化されている。
[0167] 具体的には、この RSD10においては、振動体 62のうちの支持部 100が揺動させら れればそれに伴って必ず第 1振動部 70の全体が揺動させられる構造が採用されて いる。その結果、垂直走査においては、振動体 62のみかけの慣性モーメントすなわ ち前述の合成慣性モーメントが、第 2振動部 72の単独の慣性モーメントより増加し、 垂直走査周波数が低下する。
[0168] 次に、図 4を参照することにより、前述の画像表示プログラムをさらに詳細に説明す るが、まず、その画像表示プログラムにおいて採用される画像表示原理を説明する。
[0169] 振動体 62のうちの支持部 100の慣性モーメントを増カロさせれば、垂直走査周波数 を低下させることが可能である。
[0170] し力しながら、支持部 100は、第 1振動部 70と共通の振動体 62を利用する関係上 、その振動体 62の厚さを支持部 100のみにおいて局部的に増カロさせてその支持部 100の慣性モーメントを増加させることは困難である。 [0171] また、たとえ支持部 100の厚さを局部的に増加させても、垂直走査周波数を低下さ せる効果が小さ 、。その効果が大き 、のは支持部 100を半径方向に大型化すること であるが、これでは、スキャナ 60の小型化に反してしまう。
[0172] そこで、本実施形態においては、振動体 62の共振を利用した光束偏向原理の採 用と、水平走査と垂直走査との間におけるミラー部 80の共通化との共同によってスキ ャナ 60の小型化が実現され、さらに、光束の走査によって画像表示を行う手法が改 善することにより、垂直走査周波数がみかけ上上昇する。以下、その画像表示手法を さらに具体的に説明する。
[0173] 図 9には、従来のインターレーススキャン方式に従って画像の 1フレームが表示され る様子が正面図(画面上の走査線の軌跡を示す図)で示されて 、る。図 9にお 、て、 複数本の水平方向の実線は、奇数フィールドを構成する複数本の有効走査線を示し ているのに対し、複数本の水平方向の破線は、偶数フィールドを構成する複数本の 消去帰線を示して 、る。その消去帰線は図示されて 、な 、。
[0174] この従来のインターレーススキャン方式によれば、 1フレームが 2フィールドに分けて 走査されて形成される。そのため、水平走査周波数についての条件も垂直走査周波 数についての条件も同じであると仮定して比較すると、 1フレームを構成する有効走 查線の数が、ノンインターレーススキャン方式を採用する場合より増加する。
[0175] このことは、有効走査線の数についての条件が同じであると仮定して比較すると、 水平走査周波数がみかけ上低下して、垂直走査周波数がみかけ上上昇することを 意味する。フィールド自体が 1画面を形成し、フレーム周波数は下がっているものの、 フィールド周波数 (垂直同期周波数)は下がっていないため、フリツ力が目立たずに 済むという効果を奏する。
[0176] 本発明者らは、 1フレームを 3以上のフィールドに分けて走査して形成することにより 、垂直走査周波数をみかけ上さらに上昇させる画像表示手法を提案した。図 10には 、その提案された画像表示手法に従って画像が表示される様子が正面図で示されて いる。
[0177] 図 10 (a)には、各フィールドにおいて、光束の走査面上において光束の可視走査 点が水平走査方向に往復運動しつつ垂直走査方向に一方向運動することにより、左 側から右側に向力 走査線 (以下、「往き走査線」という。)と右側から左側に向力 走 查線 (以下、「戻り走査線」という。)とが、共に有効走査線として、交互に並んで形成 される。
[0178] 図 9に示すように、従来のインターレーススキャン方式を採用する場合には、 1フレ ームが 2フィールドに分割され、一方のフィールドにおいて互いに隣接した 2本の有 効走査線が他方のフィールドにおける 1本の有効走査線によって補間される。
[0179] これに対し、本発明者らの提案に従い、 1フレームを 3以上のフィールドによって構 成する場合には、各フィールドにおいて互いに隣接した 2本の有効走査線力 残りの 2以上のフィールドにおける 2本以上の有効走査線によって補間される。このことは、 各フィールドにおいて互いに隣接した 2本の有効走査線間の隙間力 従来のインタ 一レーススキャン方式を採用する場合より広くなり、画像の鮮明さ (解像度)が低下す ることを意味する。
[0180] そのような不都合を軽減するため、図 10 (a)に示すように、各フィールドにおいては 、往き走査線のみならず戻り走査線も有効走査線として画像表示のために利用可能 とされる。
[0181] 図 10 (b)には、図 10 (a)に示すフィールドを 3以上用いて成る 1フレームの一例が 示されている。この例においては、 3以上のフィールド間において互いに対応する、 それらフィールドの数と同数の有効走査線が垂直走査方向に互 、に平行にずれて いる。
[0182] したがって、この例を採用する場合には、従来のインターレーススキャン方式を採用 する場合より、往き走査線と戻り走査線とが互 、に非平行である傾向が強 、にもかか わらず、 1フレーム内において解像度にむらが発生することが抑制される。
[0183] さらに、図 10 (b)に示す例においては、いずれのフィールドにおいても、光束の走 查面上にお!、て光束の可視走査点が水平走査方向に往復運動しつつ垂直走査方 向に順方向、すなわち、上側から下側に向力つて一方向運動する。すなわち、この 例においては、水平走査のための走査点の往路も復路も画像表示に利用されるの に対し、垂直走査のための走査点の往路のみが画像表示に利用される。
[0184] 図 10 (c)には、図 10 (a)に示すフィールドを 3以上用いて成る 1フレームの別の例 が示されている。
[0185] この例においては、奇数フィールドにおいては、走査面上において可視走査点が 水平走査方向に往復運動しつつ垂直走査方向に順方向、すなわち、上側から下側 に向かって一方向運動するのに対し、偶数フィールドにおいては、走査面上におい て可視走査点が水平走査方向に往復運動しつつ垂直走査方向に逆方向、すなわち 、下側から上側に向かって一方向運動する。
[0186] すなわち、この例においては、水平走査のための走査点の往路も復路も画像表示 に利用されるうえに、垂直走査のための走査点の往路も復路も画像表示に利用され るのである。
[0187] したがって、垂直走査周波数をみかけ上上昇させた!/、場合には、図 10 (c)に示す 例を採用することが、図 10 (b)に示す例を採用するより望ましい。
[0188] しかし、図 10 (c)に示す例を採用する場合には、図 10 (b)に示す例を採用する場 合と同様に、図において丸印で囲む領域内において、ある回のフィールドにおける 戻り走査線力 別の回のフィールドにおける住き走査線と重なってしまう。
[0189] 一方、 1フレーム内において、有効走査線が重なり合う領域においては、重なり合 わない領域より、画像の輝度が増加する。そのため、それら例のいずれを採用しても 、有効走査線の重なり合いに起因して輝度むらが発生してしまう可能性がある。
[0190] 図 11 (a)には、そのような輝度むらを解消するために、往き走査線は有効走査線と して発光するのに対し、戻り走査線すなわち帰線は消去されるように走査が行われる 一例が示されている。
[0191] この例においては、さらに、 1フレームのうち往き走査線に平行な領域が画像表示 領域(図において矩形の枠で示す領域) 158とされ、その画像表示領域 158の外側 においては、往き走査線といえども消去される。
[0192] しかし、図 11 (a)に示す例を採用する場合には、画像表示領域 158が水平線に対 して傾斜してしま 、、観察者が違和感を抱く可能性がある。
[0193] 図 11 (b)には、図 11 (a)に示す例を、 RSD10のうち、画像表示に関与する光学系
(例えば、スキャナ 60)に特別な対策を講じることなぐ採用した場合に画像表示領域 158が水平線に対して傾斜する角度を見込んで、最終的な画像表示領域 158が水 平に延びるように、その光学系の傾きを予め調整した場合の一例が示されている。
[0194] すなわち、この例は、光束の走査に関する前述の特別な信号処理と、その光学系 の傾き調整との共同により、実現されるものなのである。
[0195] RSD10は、観察者が、図 11 (b)に示す画像表示領域 158内に画像を、従来の RS
Dに対して遜色な ヽ感覚で観察することが可能であるように設計されて!ヽる。
[0196] 次に、図 12および図 13を参照することにより、スキャナ 60によって形成される走査 点の軌跡を説明する。
[0197] 本実施形態においては、走査点が、水平走査方向にも垂直走査方向にも、概して 単振動させられるため、その走査点によって描かれる軌跡であるラスタは、厳密には 、正弦波状を成すリサージュ図形である。
[0198] したがって、垂直走査角度 Θ は、図 12において式(1)で表されるように、垂直走査
V
角度振幅 (最大振れ角) Θ
Vを振幅とし、かつ、垂直走査の 1フレーム当たりの往復回 数 nとフレーム周波数 f との積に 2 πを乗じた値を角速度とする三角関数で表現され
V 0
る。
[0199] また、水平走査角度 Θ は、図 12において式(2)で表されるように、水平走査角度
Η
振幅(最大振れ角) Θ を振幅とし、水平走査の 1フレーム当たりの往復回数 ηとフレ
Η Η
ーム周波数 f との積に 2 πを乗じた値を角速度とし、かつ、初期位相差時間 A tを初
0
期位相とする三角関数で表現される。
[0200] 一方、各フレームにおいて複数本の有効走査線を均一に分布させる(複数本の有 効走査線が同じフレームにお 、て複数のフィールド間で互 、に重ならな 、ようにする )ためには、図 12に式(3)で表すように、 n の値と nの値とが互いに素であり、かつ、
H V
初期位相差時間 Δ tが特定値であるようにすることが望まし 、。
[0201] 図 13には、 n力 ¾に等しぐかつ、 n力^に等しい場合を例にとり、上記式(3)で表
V H
現される条件を満たす場合にスキャナ 60によって形成されるラスタが、実際には複数 本の正弦波状の曲線で表現されるところ、アークサイン補正された、複数本の直線で 近似的に表現されている。
[0202] ここで、図 14ないし図 18を参照することにより、 RSD10によって画像が表示される 原理をさらに詳細に説明する。 [0203] 図 14ないし図 16には、 RSD10により複数本の走査線が形成される様子が時間的 に展開されて正面図で示されている。各図において実線は有効走査線を示し、破線 は消去帰線 (無効走査線)を示して!/ヽる。
[0204] 図 14ないし図 16に示す例においては、画像の 1フレームが 8フィールドに分かれて 走査される。図 14には第 1フィールドが示され、図 15には第 1および第 2フィールドが 一緒に示され、図 16には、第 1ないし第 8フィールド、すなわち、今回のフレームを構 成する全フィールドが一緒に示されて 、る。
[0205] 図 17には、図 16に示す 1フレームに対して設定される画像表示領域 158が、 RSD 10のうち画像表示に関与する光学系(例えば、スキャナ 60)の傾きを、従来のインタ 一レーススキャン方式または従来のノンインターレーススキャン方式に適合するように 設計した場合に、水平線に対して傾斜する様子が正面図で示されて!/ヽる。
[0206] 図 18には、図 17に示す画像表示領域 158が、 RSD10のうち画像表示に関与する 光学系(例えば、スキャナ 60)の傾き調整により、水平に延びる姿勢で示されている。 さらに、図 18には、図 17に示す 1フレーム中の複数本の走査線 (有効走査線として 可視化され得る走査線)のうち、画像表示領域 158内に存在する部分のみが可視化 され、その画像表示領域 158の外側に存在する部分は消去される様子が示されてい る。
[0207] RSD10は、観察者力 図 18に示す画像表示領域 158内において画像を観察する ことができるように設計されて!、る。
[0208] 以上、前述の画像表示プログラムにおいて採用される画像表示原理を説明したが
、次に、図 4を参照することにより、その画像表示プログラムを説明する。
[0209] この画像表示プログラムの実行がコンピュータ 122によって開始されると、まず、ス テツプ S1 (以下、単に「S1」で表す。他のステップについても同じとする。)において、 スキャナ 60の作動が開始され、それにより、水平走査と垂直走査とが互いに同期して 実行される。
[0210] その結果、 Rレーザ 22、 Gレーザ 24および Bレーザ 26のうちの少なくとも一つからレ 一ザビームが出射されることを条件に、網膜上 14においてレーザビームの走査点( 再生点)の軌跡が所望の画像をリサージュ図形として描画可能な状態となる。 [0211] 次に、 S2において、表示すべき映像を構成する一連の複数のフレームにそれぞれ 付されるフレーム番号 FRMの今回値が 1にセットされる。続いて、 S3において、同期 信号処理部 152から最新のフレーム同期信号が発生させられるのが待たれる。
[0212] その最新のフレーム同期信号が発生させられたならば、この S3の判定が YESとな り、 S4において、外部力も供給された映像信号に基づき、今回のフレームを表示す るための画像データ (画像における各画素の輝度を表すデータであり、輝度信号に 相当する。)が生成される。
[0213] その生成された 1フレーム分の画像データは、フレームバッファ 140に、各有効走 查線ごとに区分されたラインデータとして、走査線番号 SLに関連付けてストアされる
[0214] 1フレーム分の画像データは、複数本の有効走査線にそれぞれ対応する複数のラ インデータの集合として構成される。 1フレームが n本の有効走査線によって構成さ
H
れる場合には、フレームバッファ 140には、画像データが n行分、ストアされることに
H
なる。各ラインデータは、対応する有効走査線上に位置する複数の画素の輝度をそ れぞれ表す複数の画素データの集合である。
[0215] 図 5に示す例においては、 1フレーム分の画像データ力 9個のラインデータの集合 として構成され、それらラインデータが 9個の走査線番号 SL1ないし 9にそれぞれ関 連付けてフレームバッファ 140にストアされる。
[0216] 続いて、 S5において、各フレームを構成する一連の複数のフィールドにそれぞれ 付されるフィールド番号 FLDの今回値が 1にセットされる。
[0217] その後、 S6において、今回のフィールド番号 FLDが奇数であるか否かが判定され る。奇数である場合には、その判定が YESとなり、続いて、 S7に移行する。
[0218] この S7においては、今回の奇数フィールドを構成する各有効走査線に関連付けて フレームバッファ 140にストアされているラインデータのうち、画像表示領域 158内に 存在する画素に対応するデータであるとしてそのフレームバッファ 140から読み出す ことが適当である読出領域が計算によって設定される。各有効走査線に対応するライ ンデータは、その有効走査線上に位置する複数の画素をそれぞれ表す複数の画素 データによって構成される。 [0219] その読出領域は、例えば、各有効走査線に対応するラインデータのうちの読出開 始位置 (アドレス)と読出終了位置 (アドレス)とを、各有効走査線のもとの傾斜角、す なわち、図 17に示す各有効走査線の水平線に対する傾斜角と、画像表示領域 158 の位置およびサイズとに応じて特定することにより、設定される。
[0220] 続いて、図 4の S8において、フレームバッファ 140の、その設定された読出領域内 に存在する複数の画素データが、そのフレームバッファ 140から、それら画素データ が並んでストアされている順序と同じ方向、すなわち、今回の奇数フィールドにおい て各有効走査線が左側力 右側へ進行するにつれてそれら画素データが再生され る順序と同じ方向に読み出される。
[0221] 本実施形態においては、そもそも、画像表示領域 158の左上隅が走査開始点、右 下隅が走査終了点にそれぞれ設定されているため、今回の奇数フィールドにおける 各有効走査線の進行方向は、画像表示領域 158が走査される順方向に等しい。
[0222] 以上、今回のフィールド番号 FLDが奇数である場合を説明したが、偶数である場 合には、 S6の判定が NOとなり、 S9に移行する。
[0223] この S9においては、 S7に準じて、今回の偶数フィールドを構成する各有効走査線 に関連付けてフレームバッファ 140に格納されているラインデータのうち、画像表示 領域 158内に存在する画素に対応するデータであるとしてそのフレームバッファ 140 力 読み出すことが適当である読出領域が計算によって設定される。
[0224] 続いて、 S10において、フレームバッファ 140の、その設定された読出領域内に存 在する複数の画素データ力 そのフレームバッファ 140から、それら画素データが並 んでストアされている順序とは逆方向、すなわち、今回の偶数フィールドにおいて各 有効走査線が右側から左側へ進行するにつれてそれら画素データが再生される順 序と同じ方向に読み出される。
[0225] 前述のように、本実施形態においては、そもそも、画像表示領域 158の左上隅が走 查開始点、右下隅が走査終了点にそれぞれ設定されているため、今回の偶数フィー ルドにおける各有効走査線の進行方向は、画像表示領域 158が走査される逆方向 に等しい。
[0226] 本実施形態にぉ ヽては、表示すべき画像を表す画像データが、その画像にぉ ヽて 一列に並んだ複数個の画素の輝度をそれぞれ表す複数の画素データ (または輝度 データ)として構成されている。それら複数の画素データに基づき、光源部 34によつ て順次処理される輝度信号が生成される。
[0227] それら複数の画素データは、奇数フィールドにおいて各有効走査線が順方向に走 查される期間(一方向走査期間)において有効走査線を形成するために光源部 34 によって処理される第 1の輝度データ群と、偶数フィールドにおいて各有効走査線が 逆方向に走査される期間(逆方向走査期間)において有効走査線を形成するために 光源部 34によって処理される第 2の輝度データ群とを含んでいる。
[0228] 図 5に示す例においては、走査線番号 SLが 1であるラインデータ力 第 1の輝度デ ータ群に相当し、走査線番号 SLが 2であるラインデータ力 第 2の輝度データ群に相 当する。
[0229] 図 10における S8においては、有効走査線と無効走査線(消去帰線)とが交互に並 んだ奇数フィールドが画像表示領域 158上に形成されるように、第 1の輝度データ群 が生成される。これに対し、同図における S10においては、有効走査線と無効走査 線 (消去帰線)とが交互に並んだ偶数フィールドが画像表示領域 158上に形成され るように、第 2の輝度データ群が生成される。
[0230] 今回のフィールドが奇数フィールドである場合にも偶数フィールドである場合にも、 その後、 S11において、走査線番号 SLの今回値が 1にセットされる。続いて、 S12に おいて、同期信号処理部 152から最新の水平走査同期信号が発生させられるのが 待たれる。
[0231] その最新の水平走査同期信号が発生させられると、 S12の判定が YESとなり、 S13 において、 S8または S 10において読み出された画像データに対応する走査線番号 力 走査線番号 SLの今回値に一致するか否かが判定される。一致する場合には、 判定が YESとなる。
[0232] その後、 S14において、 S8または S10において読み出された画像データ力 各色 ごとに、輝度信号に変換される。さらに、その変換された輝度信号が、各ドライバ 28, 30, 32に転送される。
[0233] すなわち、この S 14は、奇数フィールドおよび偶数フィールドについてそれぞれ生 成された画像データを各色ごとに輝度信号に変換する処理と、その変換された輝度 信号を各色ごとにドライバ 28, 30, 32に出力する処理とを行うように構成されている のである。
[0234] 転送された輝度信号に応答し、各レーザ 22, 24, 26は、各画素ごとに、対応する 輝度信号に応じた輝度 (強度)を有するように、各色のレーザビームを出射する。その 出射した各色のレーザビームは、合成レーザビームとしてスキャナ 60に入射する。
[0235] その結果、図 14ないし図 18に示す例においては、図 16に示すように、今回のフィ 一ルドが奇数フィールド (第 1、第 3、第 5または第 7フィールド)である場合には、今回 の奇数フィールドにおける各有効走査線 (往き走査線のみ)が上側から下側に向かつ て順方向にレーザビームによって形成されることにより、今回の奇数フィールドが表 示される。
[0236] これに対し、今回のフィールドが偶数フィールド (第 2、第 4、第 6または第 8フィール ド)である場合には、図 16に示すように、今回の偶数フィールドにおける各有効走査 線 (往き走査線のみ)が下側から上側に向力つて逆方向にレーザビームによって形 成されることにより、今回の偶数フィールドが表示される。
[0237] その後、図 4の S15において、走査線番号 SLの今回値が最大値 SLmax以上であ る力否かが判定される。その最大値 SLmaxは、今回のフィールドに属する有効走査 線の数に等しい。今回は、走査線番号 SLの今回値が最大値 SLmax以上ではない と仮定すれば、その判定が NOとなり、 S16において、走査線番号 SLの今回値が 1 だけインクリメントされた後、 S 12に戻る。
[0238] それら S12ないし S16の実行が必要回数繰り返された結果、 S15の判定が YESと なれば、 S17において、フィールド番号 FLDの今回値が最大値 FLDmax以上であ るか否かが判定される。その最大値 FLDmaxは、今回のフレームに属するフィールド の数に等しい。今回は、フィールド番号 FLDの今回値が最大値 FLDmax以上では ないと仮定すれば、その判定が NOとなり、 S18において、フィールド番号 FLDの今 回値が 1だけインクリメントされた後、 S6に戻る。
[0239] それら S6ないし S 18の実行が必要回数繰り返された結果、 S17の判定が YESとな れば、 S19において、フレーム番号 FRMの今回値が最大値 FRMmax以上であるか 否かが判定される。その最大値 FRMmaxは、今回の映像に属するフレームの数に 等しい。今回は、フレーム番号 FRMの今回値が最大値 FRMmax以上ではないと仮 定すれば、その判定が NOとなり、 S20において、フレーム番号 FRMの今回値が 1だ けインクリメントされた後、 S3に戻る。
[0240] それら S3ないし S20の実行が必要回数繰り返された結果、 S19の判定が YESとな れば、以上で、この画像表示プログラムの一回の実行が終了する。
[0241] 以上の説明から明らかなように、本実施形態においては、 RSD10が前記(1)項に 係る「光走査型ディスプレイ」の一例および前記(11)項における「光走査型ディスプ レイ」の一例を構成し、図 4に示す画像表示プログラムが前記(11)項に係る「光走査 型ディスプレイ駆動方法」の一例を実施するためにコンピュータ 122によって実行さ れる。
[0242] さらに、本実施形態においては、光源部 34が前記(1)項および(11)項のそれぞれ における「光源部」の一例を構成し、スキャナ 60が前記(1)項および(11)項のそれ ぞれにおける「走査装置」の一例を構成し、信号処理回路 120 (特に、輝度信号生成 部 150)が前記(1)項における「輝度信号制御部」の一例を構成して 、るのである。
[0243] さらに、本実施形態においては、コンピュータ 122のうち図 4における S6, S8, S10 および S14を実行するために割り当てられる部分が前記(2)項における「第 1信号生 成部」の一例を構成し、コンピュータ 122のうち同図における S6, S8および S10を実 行するために割り当てられる部分が前記(3)項における「データ出力部」の一例を構 成しているのである。
[0244] さらに、本実施形態においては、コンピュータ 122のうち図 4における S6, S8, S10 および S14を実行するために割り当てられる部分が前記 (4)項における「第 2信号生 成部」の一例を構成し、コンピュータ 122のうち同図における S7ないし S10および S1 4を実行するために割り当てられる部分が前記(5)項における「第 3信号生成部」の一 例を構成して 、るのである。
[0245] さらに、本実施形態においては、ミラー部 80が前記(6)項および(7)項における「ミ ラー」の一例を構成し、水平走査および垂直走査がそれぞれ同項における「主走査」 の一例および「副走査」の一例を構成し、はり部 82が同項における「第 1振動部」の 一例を構成し、支持部 100およびはり部 102が互いに共同して同項における「第 2振 動部」の一例を構成して 、るのである。
[0246] さらに、本実施形態においては、図 4における S4ないし S14 (ただし、 S14について は、輝度信号を各ドライバ 28, 30, 32に出力する処理を行う部分を除く。)が前記(1
1)項における「輝度信号生成工程」の一例を構成し、同図における S14 (ただし、画 像データを輝度信号に変換する処理を行う部分を除く。 )が同項における「輝度信号 出力工程」の一例を構成しているのである。
[0247] 次に、図 19を参照することにより、本発明の第 2実施形態に従う RSD160を説明す る。
[0248] ただし、本実施形態は、第 1実施形態に対してスキャナが異なるのみで、他の要素 については共通するため、スキャナについてのみ詳細に説明し、他の要素について は、第 1実施形態と同一の符号または名称を使用して引用することにより、詳細な説 明を省略する。
[0249] 本実施形態に従う RSD160は、図 1に示す RSD10に対し、スキャナを除き、基本 的なハードウェア構成が共通しており、さらに、インターレースによる画像表示手法も 共通している。
[0250] 具体的には、この RSD160は、画像の 1フレームを 3以上のフィールドに分けて走 查して形成し、それにより、各フィールドにおいて互いに隣接した 2本の有効走査線 力 残りの 2以上のフィールドにおける 2本以上の有効走査線によって補間されるよう に、設計されている。
[0251] 図 19に示すように、この RSD160は、光源ユニット 18と、光走査系 162とを備えて いる。光源ユニット 18は、第 1実施形態と同様に、光源部 34と、信号処理回路 120と を含んでいる。
[0252] その信号処理回路 120は、コンピュータ 122を主体として構成されており、そのコン ピュータ 122は、画像処理回路 164にお 、て光源部 34に電気的に接続されるととも に、インターフェース 166にお 、て光走査系 162に電気的に接続されて 、る。
[0253] 画像処理回路 164は、外部から供給された映像信号に基づいて輝度信号を生成し て光源部 34に出力する。 RSD160におけるコンピュータ 122の機能は第 1実施形態 と共通するため、重複した説明を省略する。
[0254] 光走査系 162は、図 20に示すように、水平走査部 170と、垂直走査部 172と、同期 信号処理回路 174とを含むように構成されて 、る。それら水平走査部 170および垂 直走査部 172はそれぞれ、互いに独立した第 1ミラー 180および第 2ミラー 182を備 えており、この点、水平走査と垂直走査とを同じミラー部 80を用いて行う第 1実施形 態とは異なる。
[0255] 水平走査部 170においては、第 1ミラー 180が第 1振動体 184によって支持されて おり、その第 1振動体 184の共振現象を利用することにより、第 1ミラー 180が第 1揺 動軸線まわりに揺動させられる。第 1ミラー 180の揺動角すなわち走査角は、図 20に おいて「0 」で表されている。
H
[0256] この水平走査部 170は、水平走査駆動回路 190を備えており、その水平走査駆動 回路 190は、第 1振動体 184に装着された駆動源 200に駆動信号を供給することに より、第 1振動体 184を振動させて第 1ミラー 180を揺動させる。駆動源 200は、電圧 または電界を変位に変換する素子 (例えば、圧電素子)を含むように構成される。
[0257] これに対し、垂直走査部 172においては、第 2ミラー 182が第 2振動体 186によって 支持されており、その第 2振動体 186の共振現象を利用することにより、第 2ミラー 18 2が、上記第 1揺動軸線と交差する第 2揺動軸線まわりに揺動させられる。第 2ミラー 1 82の揺動角すなわち走査角は、図 20において「0 」で表されている。
V
[0258] この垂直走査部 172は、垂直走査駆動回路 192を備えており、その垂直走査駆動 回路 192は、第 2振動体 186に装着された駆動源 202に駆動信号を供給することに より、第 2振動体 186を振動させて第 2ミラー 182を揺動させる。駆動源 202は、電圧 または電界を変位に変換する素子 (例えば、圧電素子)を含むように構成される。
[0259] 本実施形態においては、第 1振動体 184と第 2振動体 186とが、相互に振動を伝達 しないように、互いに独立して設置されており、よって、水平走査部 170の水平走査 周波数と、垂直走査部 172の垂直走査周波数とをそれぞれ、互いに独立して設定す ることが可能である。
[0260] 画像表示の分野にお!、ては、水平走査周波数は高!、周波数、垂直走査周波数は 低い周波数となり、一方、共振を利用して達成される走査周波数は共振を利用せず に達成される走査周波数より高いのが通常である。したがって、それら水平走査周波 数と垂直走査周波数とのうち少なくとも水平走査周波数を共振を利用して達成するこ とが可能である。
[0261] 図 20に示すように、同期信号処理回路 174は、第 1実施形態とは異なり、信号処理 回路 120から独立した電気回路として構成されているが、この同期信号処理回路 17 4の機能は、第 1実施形態における同期信号処理部 152 (図 7参照)と共通する。
[0262] 具体的には、この同期信号処理回路 174は、図 8にタイミングチャートで示すように 、水平走査部 170から供給された水平走査同期信号に基づいて垂直走査同期信号 とフレーム同期信号とを生成する。この同期信号処理回路 174は、図 20に示すよう に、その生成された垂直走査同期信号を垂直走査部 172に出力する一方、その生 成された水平走査同期信号およびフレーム同期信号を、望ましくは垂直走査同期信 号と共に、信号処理回路 120に出力する。
[0263] 以上の説明から明らかなように、本実施形態においては、光走査系 162が前記(1) 項における「走査装置」の一例を構成し、信号処理回路 120と同期信号処理回路 17 4とが互いに共同して同項における「輝度信号制御部」の一例を構成しているのであ る。
[0264] さらに、本実施形態においては、第 1および第 2ミラー 180, 182がそれぞれ前記(7 )項における「第 1ミラー」の一例および「第 2ミラー」の一例を構成し、水平走査および 垂直走査がそれぞれ同項における「主走査」の一例および「副走査」の一例を構成し 、第 1振動体 184が同項における「第 1振動部」の一例を構成し、第 2振動体 186が 同項における「第 2振動部」の一例を構成して ヽるのである。
[0265] 次に、図 21を参照することにより、本発明の第 3実施形態に従う RSD210を説明す る。
[0266] この RSD210は、第 1および第 2実施形態と同様に、画像を表す光束の一例である レーザビームを観察者の眼 12の瞳孔 14を経て網膜 16上に直接に投影し、その投影 された光束を網膜 16上において走査することにより、画像を表示する。
[0267] この RSD210においては、第 1および第 2実施形態と同様に、レーザビームのスポ ットが網膜 16上に形成されるとともに、そのスポットが網膜上 16を 2次元的に走査さ れることにより、観察者によって画像が虚像として知覚される。
[0268] この RSD210は、第 2実施形態に従う RSD160 (図 19参照)に対し、基本的なハー ドウエア構成が共通している。この RSD210は、さらに、第 1実施形態に従う RSD10 および第 2実施形態に従う RSD160に対し、インターレースによる画像表示手法が 共通している。
[0269] 具体的には、この RSD210は、第 1および第 2実施形態と同様に、画像の 1フレー ムを 3以上のフィールドに分けて走査して形成し、それにより、各フィールドにおいて 互いに隣接した 2本の有効走査線力 残りの 2以上のフィールドにおける 2本以上の 有効走査線によって補間されるように、設計されて 、る。
[0270] 図 21に示すように、この RSD210は、映像光生成ユニット 218と光走査ユニット 22 0とを含んでいる。
[0271] 映像光生成ユニット 218は、第 1および第 2実施形態と同様にして、外部から供給さ れた映像信号に基づいて 3原色の各色ごとに輝度信号を生成する機能と、その生成 された輝度信号に基づいて強度変調されたレーザビームを各色ごとに生成する機能 と、同期信号を生成して光走査ユニット 220に供給する機能とを有する。
[0272] そのため、映像光生成ユニット 218は、赤色光、緑色光および青色光をそれぞれ出 射する Rレーザ 222、 Gレーザ 224および Bレーザ 226を備えている。それら Rレーザ 222、 Gレーザ 224および Bレーザ 226から出射する 3色のレーザビーム(光束の一 例)の輝度(強度)は、 Rレーザ駆動回路 228、 Gレーザ駆動回路 230および Bレーザ 駆動回路 232によってそれぞれ変調される。
[0273] 本実施形態においては、それら Rレーザ 222、 Gレーザ 224および Bレーザ 226と それらに対応する Rレーザ駆動回路 228、 Gレーザ駆動回路 230および Bレーザ駆 動回路 232とが互いに共同して光源部 234を構成して 、る。
[0274] 図 21に示すように、それら Rレーザ 222、 Gレーザ 224および Bレーザ 226には、 3 個のコリメータレンズ 240, 242および 244と、 3個のダイクロイツクミラー 250, 252お よび 254とが設けられて!/、る。
[0275] 各レーザ 222, 224, 226から出射したレーザビームは、コリメータレンズ 240, 242 , 244のうち対応するものによってコリメートされた後、ダイクロイツクミラー 250, 252, 254のうち対応するものに入射する。それら 3個のダイクロイツクミラー 250, 252, 25 4は、波長選択性を有しており、 Rレーザ 222、 Gレーザ 224および Bレーザ 226から 出射した 3色のレーザビームを 1つのレーザビームに合成するために設けられている
[0276] それら 3個のダイクロイツクミラー 250, 252, 524を代表する 1個のダイクロイツクミラ 一、すなわち、本実施形態においては、ダイクロイツクミラー 250から合成レーザビー ムが出射し、その出射した合成レーザビームは、結合光学系 256によって集光される
[0277] 本実施形態においては、コリメータレンズ 240, 242, 244と、ダイクロイツクミラー 25 0, 252, 254と、結合光学系 256とが互いに共同して光合波部 258を構成している。
[0278] 図 21に示すように、結合光学系 256によって集光された合成レーザビームは、光 伝送媒体としての光ファイバ 260と、その光ファイバ 260の出射端に配置されたコリメ ータレンズ 262とをそれらの順に経て光走査ユニット 220に入射する。
[0279] その光走査ユニット 220は、後に詳述するが、映像光生成ユニット 218から出射し たレーザビームを各種同期信号に基づいて 2次元的に走査する機能と、そのレーザ ビームを瞳孔 14に投入して網膜 16に結像させる機能とを有する。
[0280] そのため、この光走査ユニット 220は、コリメータレンズ 262から出射したレーザビー ムに対して水平走査を行う水平走査部 270と、その水平走査部 270から出射したレ 一ザビームに対して垂直走査を行う垂直走査部 272とを備えている。
[0281] この光走査ユニット 220は、さら〖こ、水平走査部 270から出射したレーザビームを収 束させて垂直走査部 272に伝送するリレー光学系 274と、垂直走査部 272から出射 したレーザビームを収束させて眼 12に伝送するリレー光学系 276とを備えている。
[0282] 図 21に示すように、水平走査部 270は、振動体としての水平走査ミラー 280を備え ている。この水平走査部 270は、水平走査ミラー 280のねじり共振を利用して水平走 查を行う。その水平走査ミラー 280は、例えば、シリコン等、弾性を有する板状または 膜状の部材によって形成される。
[0283] 図 22には、水平走査部 270の構成が拡大されて平面図で示されている。この水平 走査部 270においては、板状の水平走査ミラー 280が、揺動軸線の方向における両 端部において、一対のはり部 282, 282によってそれぞれ支持されている。それら一 対のはり部 282, 282は、その水平走査ミラー 280を隔てて互いに対向する姿勢で、 揺動軸線に沿って延びている。これら一対のはり部 282, 282はそれぞれ、水平走査 ミラー 280とは反対側の端部において固定枠 283に固定されている。
[0284] 各はり部 282, 282は、水平走査ミラー 280から延びる 1本の第 1板ばね部 284と、 その第 1板ばね部 284から分岐して互いに平行に延びる 2本の第 2板ばね部 286, 2 86とを備えている。それら第 1板ばね部 284および第 2板ばね部 286, 286は、いず れも、水平走査ミラー 280の厚さ方向と共通する厚さ方向を有している。
[0285] 2本の第 2板ばね部 286, 286は、揺動軸線を隔てて互いに対向している。したが つて、それら第 2板ばね部 286, 286にそれぞれ互いに逆向きに曲げが加えられれ ば、第 1板ばね部 284が揺動軸線まわりにねじられ、ひいては水平走査ミラー 280が 揺動軸線まわりに回転させられる。さらに、同じ第 2板ばね部 286に曲げが互いに逆 向きに交互にカ卩えられれば、水平走査ミラー 280が揺動軸線まわりに揺動させられる ことになる。
[0286] そのような曲げを各第 2板ばね部 286, 286に加えるために、各第 2板ばね部 286, 286に駆動源 288が設置されている。この駆動源 288は、例えば、印加された電界を その印加方向と交差する方向の変位に変換する素子を用いて構成することが可能で ある。
[0287] そのような素子の一例は、板状の圧電素子である。例えば、その圧電素子が各第 2 板ばね部 286, 286の、厚さ方向において互いに対向する両面のいずれかに貼り付 けられた状態で、その圧電素子が長さ方向に振動させられれば、各第 2板ばね部 28 6, 286に曲げ振動が発生させられる。
[0288] 同様に、垂直走査部 272は、図 21に示すように、振動体としての垂直走査ミラー 29 0と、その垂直走査ミラー 290を振動させるためにそれを駆動する駆動源 292 (図 22 3参照)とを備えている。この垂直走査部 272は、水平走査部 270と同様に、垂直走 查ミラー 290のねじり共振を利用して垂直走査を行う。
[0289] その垂直走査ミラー 290は、例えば、シリコン等、弾性を有する板状または膜状の 部材によって形成される。駆動源 292は、例えば、印加された電界をその印加方向と 交差する方向の変位に変換する素子を用いて構成することが可能であり、そのような 素子の一例は、板状の圧電素子である。
[0290] 垂直走査部 272の構成は、図 22に示す水平走査部 270と共通するため、文章お よび図による重複した説明を省略する。
[0291] 図 21〖こ示すよう〖こ、水平走査部 270は、さらに、水平走査ミラー 280に設置された 駆動源 288を駆動するために水平走査駆動回路 300を備えている。その水平走査 駆動回路 300は、例えば、駆動源 288に供給される駆動信号を生成するために発振 回路を含むように構成される。
[0292] この水平走査部 270は、さらに、水平走査ミラー 280の動作を検出する水平走査検 出回路 302を備えている。この水平走査検出回路 302は、水平走査ミラー 280の偏 向角 Θ を反映する信号を変位信号として出力する。
H
[0293] この水平走査検出回路 302は、例えば、水平走査ミラー 280の角度変位を光学的 に検出するように構成される。この種の水平走査検出回路 302の一例は、水平走査 ミラー 280に入射してそこ力も反射したレーザビームを受光するビームディテクタと、 レーザビームがビームディテクタによって検出された時期から、そのレーザビームが 次にビームディテクタによって検出される時期までの時間の長さを計測する計測部と を含み、その計測された時間の長さに基づいて水平走査ミラー 280の角度変位を検 出する。
[0294] 往復揺動させられる走査ミラーの振れ角を光学的に検出する技術の一例が日本国 特願 2004— 286286号明細書に記載されており、その例に関する記載は参照によ つて本明細書に合体される。
[0295] 図 21に示すように、垂直走査部 272は、さらに、垂直走査ミラー 290に設置された 駆動源 292を駆動するために垂直走査駆動回路 310を備えている。その垂直走査 駆動回路 310は、例えば、駆動源 292に供給される駆動信号を生成するために発振 回路を含むように構成される。
[0296] この垂直走査部 272は、さらに、垂直走査ミラー 290の動作を検出する垂直走査検 出回路 312を備えている。この垂直走査検出回路 312は、垂直走査ミラー 290の偏 向角 Θ を反映する信号を変位信号として出力する。この垂直走査検出回路 312は 、例えば、水平走査検出回路 302と同様に、垂直走査ミラー 290の角度変位を光学 的に検出するように構成される。
[0297] 水平走査部 270の水平走査周波数は、水平走査ミラー 280の共振周波数によって 決まり、同様に、垂直走査部 272の垂直走査周波数は、垂直走査ミラー 290の共振 周波数によって決まる。本実施形態においては、水平走査周波数が垂直走査周波 数より高くなるように、水平走査ミラー 280および垂直走査ミラー 290の共振周波数が 設定されている。
[0298] 図 21に示すように、映像光生成ユニット 218は、さらに、信号処理回路 320を備え ている。その信号処理回路 320は、図 23に示すように、コンピュータ 322を含んでい る。そのコンピュータ 322は、 CPU324と ROM326と RAM328とカ ス 330によつ て互いに接続されて構成されている。このコンピュータ 322には、外部から映像信号 が供給される。
[0299] ROM326には、図 4にフローチャートで概念的に表されている画像表示プログラム と、図 30にフローチャートで概念的に表されている走査制御プログラムとを始めとし、 各種プログラムが記憶されて 、る。それら画像表示プログラムおよび走査制御プログ ラムが CPU324により、外部力も供給された映像信号に基づき、かつ、 RAM328を 使用しつつ実行されることにより、観察者の眼 10の網膜 14上に画像が表示される。
[0300] 信号処理回路 320においては、外部力も供給された映像信号に基づき、表示すベ き画像を構成する複数の画素の各々の輝度を表す複数の画素データ (輝度データ) が生成され、それら生成された画素データに基づき、 RAM328を利用してデータ処 理を行うなどして、赤色光のための R輝度信号、緑色光のための G輝度信号および 青色光のための B輝度信号が生成される。
[0301] 図 21に示すように、信号処理回路 320には映像データ記憶部 334が接続されてい る。信号処理回路 320は、生成された複数の輝度データの集まりを映像データとして 、その映像データ記憶部 334に記憶させる。この信号処理回路 320は、各色ごとに 輝度データから輝度信号を生成するため、必要な輝度データを映像データ記憶部 3 34から読み出す。
[0302] 図 23に示すように、信号処理回路 320には、 Rレーザ駆動回路 228、 Gレーザ駆動 回路 230および Bレーザ駆動回路 232を経て Rレーザ 222、 Gレーザ 224および Bレ 一ザ 226が接続されている。信号処理回路 320は、 Rレーザ駆動回路 228には R輝 度信号を出力し、 Gレーザ駆動回路 230には G輝度信号を出力し、 Bレーザ駆動回 路 232には B輝度信号を出力する。
[0303] 図 23に示すように、この信号処理回路 320において、コンピュータ 322にフレーム バッファ 340が接続されている。フレームバッファ 340は、画像の 1フレームをレーザ ビームの走査によって再生するのに必要な画像データであって複数の画素データ( 輝度信号を表すデータ)の集合を走査線番号 SLに関連付けて格納する。フレーム バッファ 340は、レーザビームの各色ごとに対応して設けられている。図 5を参照して 前述したように、フレームバッファ 340に画像データが格納される。
[0304] 図 23に示すように、信号処理回路 320には、さらに、光走査ユニット 220の水平走 查駆動回路 300および垂直走査駆動回路 310も接続されている。水平走査駆動回 路 300から駆動源 288へは水平走査駆動信号、垂直走査駆動回路 310から駆動源 110へは垂直走査駆動信号がそれぞれ供給され、その結果、水平走査部 270による 水平走査と垂直走査部 272による垂直走査とがそれぞれ行われる。
[0305] 図 6を参照して前述したように、水平走査駆動信号が垂直走査駆動信号より高い周 波数を有している。垂直走査駆動信号の周波数は例えば、数百 Hzに設定される。
[0306] ここで、図 24および図 8を参照することにより、光源部 234の作動タイミング(強度変 調)と、光走査ユニット 220の作動タイミング (水平走査および垂直走査)との同期を 詳細に説明する。
[0307] 図 24には、光源部 234および光走査ユニット 220が、信号処理回路 320と共に、ブ ロック図で概念的に表されている。信号処理回路 320は、映像信号に基づいて輝度 信号を生成して光源部 234に出力する輝度信号生成部 350を備えている。
[0308] この信号処理回路 320は、さらに、走査制御部 352を備えている。その走査制御部 352は、後に図 25を参照して詳述するが、フレーム同期信号と水平走査同期信号と 垂直同期信号とドットクロック信号とを生成する。この走査制御部 352は、生成された フレーム同期信号 (フィールド同期信号を含む。 )と水平同期信号とドットクロック信号 とを輝度信号生成部 350に供給する。 [0309] その輝度信号生成部 350は、その走査制御部 352からフレーム同期信号と水平走 查信号とドットクロック信号とが供給されるタイミングに応答して、各色の輝度信号を光 源部 234に出力する。
[0310] 走査制御部 352は、後に図 25を参照して詳述する力 図 24に示すように、生成さ れた水平走査同期信号を水平走査駆動回路 300に供給し、垂直走査同期信号を垂 直走査駆動回路 310に供給する。
[0311] 図 24に示すように、水平走査検出回路 302は、水平走査ミラー 280の動作を反映 する変位信号を走査制御部 352に供給する。同様に、垂直走査検出回路 312は、 垂直走査ミラー 290の動作を反映する変位信号を走査制御部 352に供給する。
[0312] 図 8を参照して前述したように、それらフレーム同期信号、垂直走査同期信号およ び水平走査同期信号が定義されている。
[0313] 具体的には、水平走査同期信号は、有効走査線と、無効走査線 (画像表示領域 1 58の外にあるために消去される走査線と、画像表示領域 158の内にあるが帰線であ るために消去される消去帰線とを含む。)とを含んでいる。水平走査同期信号は、画 像の 1フレーム当たり n個、順次発生させられる。 n は、水平走査の 1フレーム当たり
H H
の往復回数に等しい。
[0314] 走査制御部 352は、ある回の水平走査同期信号の発生時期から初期位相差時間
A tが経過した時期に、フレーム同期信号を発生させる。このフレーム同期信号は、 画像の各フレームごとに、その開始時期に同期して発生させられる。
[0315] 走査制御部 352は、さらに、ある回の水平走査同期信号の発生時期から初期位相 差時間 A tが経過した時期、すなわち、フレーム同期信号の発生時期と同じ時期に、 n個の垂直走査同期信号における最初の垂直走査同期信号を発生させる。 nは、
V V
垂直走査の 1フレーム当たりの往復回数に等しい。
[0316] 走査制御部 352は、それら発生させられたフレーム同期信号と水平走査同期信号 とを輝度信号生成部 350に出力する。
[0317] 本実施形態においては、輝度信号生成部 350が、コンピュータ 322のうち、図 4を 参照して前述した画像表示プログラムを実行する部分によって構成されており、走査 制御部 352は、図 25〖こ示すよう〖こ、中央制御部 370、すなわち、コンピュータ 322の うち、後に詳述する走査制御プログラム(図 30参照)を実行する部分と、電子回路と の組合せによって構成されて 、る。
[0318] 次に、図 12および図 13ならびに図 25ないし図 29を参照することにより、水平走査 部 270および垂直走査部 272をそれぞれ駆動するために採用される原理を説明す る。
[0319] 図 25には、走査制御部 352の構成がブロック図で概念的に表されている。この走 查制御部 352は、コンピュータ 322によって構成される中央制御部 370と、複数の電 子回路によって構成される電子回路部 372とを含んでいる。
[0320] その電子回路部 372は、水平走査ミラー 280の作動状態を表す状態信号を生成す る状態信号生成回路 380と、垂直走査ミラー 290の作動状態を表す状態信号を生成 する状態信号生成回路 382とを備えている。この電子回路部 372は、さらに、前述の 水平走査同期信号、フレーム同期信号および垂直走査同期信号と、ドットクロック信 号とを、互いに時間的に関連付けて、それぞれの周波数が調整された状態で生成す る同期信号生成回路 384を備えて 、る。
[0321] 水平走査のための状態信号生成回路 380は、水平走査駆動回路 300と、水平走 查検出回路 302と、中央制御部 370と、同期信号生成回路 384とに接続されている
[0322] 水平走査駆動回路 300は、同期信号生成回路 384から入力された水平走査同期 信号と、中央制御部 370から入力された水平走査振幅指令信号であって水平走査ミ ラー 280の振幅 (最大振れ幅)を指令する信号とに基づき、水平走査ミラー 280を回 転振動させるために、正弦波状の駆動信号 (駆動電圧信号)を生成して駆動源 288 ( 例えば、圧電素子)に供給する。
[0323] 水平走査ミラー 280の定常状態においては、水平走査ミラー 280の振動周波数は 、駆動信号の周波数に等しぐその駆動信号の周波数は、水平走査同期信号の周 波数に等しい。さらに、水平走査ミラー 280の変位位相は、駆動信号の位相に等しく 、その駆動信号の位相は、水平走査同期信号の位相に等しい。さらに、水平走査ミラ 一 280の振幅は、駆動信号の振幅に依存し、その駆動信号の振幅は、水平走査振 幅指令信号に依存する。 [0324] 図 26には、水平走査同期信号と、水平走査ミラー 280の駆動信号とがそれぞれ、 互いに時間的に関連付けられて、グラフで表されて 、る。
[0325] 水平走査検出回路 302は、水平走査ミラー 280の変位の時間変動を表す信号を 変位信号として検出する。その変位信号は、水平走査ミラー 280の偏向角に比例す る。
[0326] 図 26には、水平走査ミラー 280の駆動信号と変位信号とがそれぞれ、互いに時間 的に関連付けられて、グラフで表されている。それら駆動信号と変位信号とは、水平 走査ミラー 280の理想的な共振状態において、 90度の位相差を有する。
[0327] 図 25に示すように、状態信号生成回路 380は、水平走査駆動回路 300から出力さ れた駆動信号と、水平走査検出回路 302から出力された変位信号と、同期信号生成 回路 384から出力されたドットクロック信号およびフレーム同期信号とを受信する。
[0328] この状態信号生成回路 380は、ドットクロック信号に同期して、水平走査ミラー 280 の変位信号の振幅を表すデジタルの変位振幅信号と、水平走査ミラー 280の変位信 号の、駆動信号に対する位相を表すデジタルの変位位相信号 (対駆動信号)と、水 平走査ミラー 280の変位信号の、フレーム同期信号に対する位相を表すデジタルの 変位位相信号 (対フレーム同期信号)とを生成して中央制御部 370に供給する。
[0329] 具体的には、この状態信号生成回路 380は、水平走査ミラー 280の変位信号のピ 一ク点を検出し、その検出されたピーク点の信号レベルを AZD変換することにより、 変位振幅信号を生成する。
[0330] この状態信号生成回路 380は、駆動信号のゼロクロス点から変位信号のゼロクロス 点までの時間の長さを、後述のマスタクロック信号の周期を単位として、検出し、その 検出された時間の長さを表す信号として変位位相信号 (対駆動信号)を生成する。
[0331] この状態信号生成回路 380は、フレーム同期信号の立ち上がり点から、その立ち 上がり点力も最初に変位信号に現れるゼロクロス点までの時間の長さを、マスタクロッ ク信号の周期を単位として、検出し、その検出された時間の長さを表す信号として変 位位相信号 (対フレーム同期信号)を生成する。
[0332] 図 26には、水平走査ミラー 280の駆動信号と変位信号とフレーム同期信号とがそ れぞれ、互いに時間的に関連付けられて、グラフで表されている。 [0333] 図 25に示すように、中央制御部 370は、状態信号生成回路 380から供給された各 種信号に基づき、水平走査振幅指令信号を生成して水平走査駆動回路 300に供給 するとともに、後に詳述するように、同期信号生成回路 384に各種の指令信号を供給 する。
[0334] 垂直走査のための状態信号生成回路 382は、水平走査のための状態信号生成回 路 380と同様に、垂直走査駆動回路 310と、垂直走査検出回路 312と、中央制御部 370と、同期信号生成回路 384とに接続されている。
[0335] 垂直走査駆動回路 310は、水平走査駆動回路 300と同様に、同期信号生成回路 3 84から入力された垂直走査同期信号と、中央制御部 370から入力された垂直走査 振幅指令信号であって垂直走査ミラー 290の振幅 (最大振れ幅)を指令する信号と に基づき、垂直走査ミラー 290を回転振動させるために、正弦波状の駆動信号 (駆 動電圧信号)を生成して駆動源 292 (例えば、圧電素子)に供給する。
[0336] 垂直走査ミラー 290の定常状態においては、垂直走査ミラー 290の振動周波数は 、駆動信号の周波数に等しぐその駆動信号の周波数は、垂直走査同期信号の周 波数に等しい。さらに、垂直走査ミラー 290の変位位相は、駆動信号の位相に等しく 、その駆動信号の位相は、垂直走査同期信号の位相に等しい。さらに、垂直走査ミラ 一 290の振幅は、駆動信号の振幅に依存し、その駆動信号の振幅は、垂直走査振 幅指令信号に依存する。
[0337] 図 26には、垂直走査同期信号と、垂直走査ミラー 290の駆動信号とがそれぞれ、 互いに時間的に関連付けられて、グラフで表されて 、る。
[0338] 垂直走査検出回路 312は、垂直走査ミラー 290の変位の時間変動を表す信号を 変位信号として検出する。その変位信号は、垂直走査ミラー 290の偏向角に比例す る。
[0339] 図 25に示すように、状態信号生成回路 382は、垂直走査検出回路 312から出力さ れた変位信号と、同期信号生成回路 384から出力されたドットクロック信号およびフ レーム同期信号とを受信する。
[0340] この状態信号生成回路 382は、ドットクロック信号に同期して、垂直走査ミラー 290 の変位信号の振幅を表すデジタルの変位振幅信号と、垂直走査ミラー 290の変位信 号の、フレーム同期信号に対する位相を表すデジタルの変位位相信号 (対フレーム 同期信号)とを生成して中央制御部 370に供給する。
[0341] 具体的には、この状態信号生成回路 382は、状態信号生成回路 380と同様に、垂 直走査ミラー 290の変位信号のピーク点を検出し、その検出されたピーク点の信号レ ベルを AZD変換することにより、変位振幅信号を生成する。
[0342] この状態信号生成回路 382は、状態信号生成回路 380と同様に、フレーム同期信 号の立ち上がり点から、その立ち上がり点から最初に変位信号に現れるゼロクロス点 までの時間の長さを、マスタクロックの周期を単位として、検出し、その検出された時 間の長さを表す信号として変位位相信号 (対フレーム同期信号)を生成する。
[0343] 図 26には、垂直走査ミラー 290の駆動信号とフレーム同期信号とがそれぞれ、互 いに時間的に関連付けられて、グラフで表されて 、る。
[0344] 中央制御部 370は、状態信号生成回路 382から供給された各種信号に基づき、垂 直走査振幅指令信号を生成して垂直走査駆動回路 310に供給するとともに、後に詳 述するように、同期信号生成回路 384に各種の指令信号を供給する。
[0345] 図 25に示すように、水平走査のため状態信号生成回路 380には駆動信号が供給 されて、その状態信号生成回路 380において、変位信号に対する駆動信号の位相 差が検出されるようになっている。これは、後に詳述するように、水平走査ミラー 280 の実際の振動周波数を、実際の共振周波数に追従するようにトラッキング制御するた めである。
[0346] これに対し、垂直走査のための状態信号生成回路 382には、駆動信号が供給され ないし、その状態信号生成回路 382において、変位信号に対する駆動信号の位相 差が検出されない。これは、後に詳述するように、垂直走査ミラー 290については、 水平走査ミラー 280とは異なり、周波数トラッキング制御が行われないからである。
[0347] 図 26に示すように、水平走査同期信号は、水平走査周期 Tで立ち上がるように変
H
化する。垂直走査同期信号は、垂直走査周期 τで立ち上がるように変化する。それ
V
ら水平走査同期信号と垂直走査同期信号との位相差が、前述の初期位相差時間 Δ tである。フレーム同期信号は、フレーム周期 Tで立ち上がるように変化する。
0
[0348] 前述の説明から明らかなように、本実施形態においては、各画素ごとに輝度信号に 応じて強度変調されたレーザビームのスポットが、水平走査部 270による水平走査と 垂直走査部 272による垂直走査との共同作用により、網膜 16上を走査される。
[0349] その走査によって網膜 16上に描かれる軌跡は、それが正規である限り、その軌跡 を定義するサインカーブに対してアークサイン補正を施すと、例えば図 13に示すよう に、複数本の走査線が等間隔で並ぶように表現される。すなわち、正規の走査軌跡 においては、走査線間隔が均一となるのである。
[0350] 図 13には、水平走査往復回数 nが 7、垂直走査往復回数 n力^である場合に網
H V
膜 16上に描かれる正規の走査軌跡の一例力 アークサイン補正が行われた状態で 、グラフで表されている。これに対し、図 27には、水平走査往復回数 n力^ 1、垂直
H
走査往復回数 n力 ¾である場合に網膜 16上に描かれる正規の走査軌跡の一例が、
V
アークサイン補正が行われな 、状態で、グラフで表されて 、る。
[0351] 図 27のグラフにおいては、横軸に水平走査角度 (水平走査ミラー 280の偏向角) Θ
力 水平走査角度振幅 Θ に対する倍率で表され、一方、縦軸に垂直走査角度 (垂
H H
直走査ミラー 290の偏向角) 0 力 垂直走査角度振幅 Θ に対する倍率で表されて
V V
いる。
[0352] その走査軌跡が正規であるためには、水平走査往復回数 nと垂直走査往復回数
H
nとについては、図 12に式(3) (a)で表される条件が成立し、かつ、初期位相差時
V
間 A tについては、図 12に式(3) (b)で表される関係が成立することが必要である。
[0353] 初期位相差時間 A tは、水平走査同期信号と垂直走査同期信号との関係に着目し て説明すれば、図 26に示すように、水平走査同期信号と垂直走査同期信号との位 相差を意味する。
[0354] したがって、この初期位相差時間 A tは、垂直走査同期信号を基準にすれば、その 垂直走査同期信号に対する水平走査同期信号の進み時間 (垂直走査角度 Θ
Vの時 間変動に対する水平走査角度 Θ
Hの時間変動の位相進みに相当する。 )を意味し、 逆に、水平走査同期信号を基準にすれば、その水平走査同期信号に対する垂直走 查同期信号の遅れ時間 (水平走査角度 Θ
Hの時間変動に対する垂直走査角度 Θ
V
の時間変動の位相遅れに相当する。 )を意味する。
[0355] この初期位相差時間 Δ tは、実際の走査軌跡が正規であるようにするために精度よ く管理することが重要な物理量である。この初期位相差時間 A tの実際値が理想値 力も限度を超えて外れてしまうと、走査線間隔が不均一となって、画質が低下する。 具体的には、走査軌跡において、走査線間の間隔が、垂直走査方向に、走査線 1本 ごとに、狭い間隔と広い間隔とに交互に変化するようになってしまう。
[0356] 初期位相差時間 A tの実際値の理想値力もの誤差 εが増カロして lZ (4n ·η -f )
H V 0 に達すると、正規の走査軌跡において互いに隣接する 2本の走査線が重なり合って しまうことになる。
[0357] したがって、それら互いに隣接する 2本の走査線が重なり合わない限り、実際の走 查軌跡が正規であると定義すれば、初期位相差時間 A tの誤差 εの許容値 ε alwの 最大値 ε maxは、図 28において式(11)で表される。
[0358] しかし、初期位相差時間 A tの誤差 ε力^に近いほど、実際の走査軌跡が最も理想 的な走査軌跡に近づく。したがって、本実施形態においては,初期位相差時間 A t の誤差 εの許容値 ε alwが、 1より大きい係数 γを用いて、図 28において式(12)で 表される。
[0359] 係数 γは、例えば、 10以下の数値であることが望ましぐまた、 8以下の数値である ことがさらに望ましぐまた、 6以下の数値であることがさらに望ましい。
[0360] 正規の走査軌跡を保証するために、レーザビームのスポットの、水平方向における 往復運動(水平走査角度 Θ の
Η 時間変動)と、垂直方向における往復運動(垂直走 查角度 Θ
Vの時間変動)との間の相対位相を正確に調整することが重要である。よつ て、その相対位相が十分に精度よく管理され、それにより、水平走査部 270による水 平走査と垂直走査部 272による垂直走査とが十分に精度よく同期するように、走査制 御部 352を設計することが重要となる。
[0361] 走査制御部 352によって達成すべき精度のレベルを、フレーム周波数 f ( = 1/T ο ο
)力 ΟΗζであり、 1フレーム中の走査線の数が 1, 000本であり、水平走査往復回数 ηが 1, 000であり、垂直走査往復回数 ηが 11である場合を例にとり、具体的に説
Η V
明する。
[0362] この具体例においては、水平走査周波数 f 力 ^OkHzとなり、垂直走査周波数 f が
H V
660Hzとなる。さらに、上述のいくつかの数値を図 12の式(3) (b)に代入し、かつ、 その式における任意の整数 nを 0とすると、垂直走査周期 Tを用いて、図 28の式(13
V
)が誘導される。
[0363] この式( 13)にお!/、て、「 Δ t/T」は、垂直走査遅れ時間比率を意味し、上記の具
V
体例においては、その垂直走査遅れ時間比率の理想値が「1Z4, 000」である。この 垂直走査遅れ時間比率は、図 28の式(14)のように、角度 [deg]に換算することがで きる。
[0364] したがって、この具体例においては、垂直走査遅れ時間比率から換算された角度 の理想値が 0. 09degである。
[0365] この具体例においては、水平走査進み時間比率、すなわち、 AtZTの理想値は「
H
1Z44」となり、また、水平走査進み時間比率力 換算された角度の理想値は約 8de gとなる。
[0366] このように、垂直走査遅れ時間比率力 換算された角度の理想値は、水平走査進 み時間比率力 換算された角度の理想値より非常に小さい。このような両理想値間 の関係は、他の一般的な走査装置においても成立する。したがって、垂直走査遅れ 時間比率力 換算された角度の実際値が理想値に一致するために垂直走査に要求 される精度の方が、水平走査進み時間比率力 換算された角度の実際値が理想値 に一致するために水平走査に要求される精度より高 、。
[0367] 一方、垂直走査遅れ時間比率から換算された角度は、垂直走査同期信号の周波 数に比例し、同様に、水平走査進み時間比率力 換算された角度も、水平走査同期 信号の周波数に比例する。したがって、垂直走査同期信号に要求される精度の方が 、水平走査同期信号に要求される精度より高い。また、一般に、同じシステムである 限り、垂直走査同期信号の周波数および位相も、水平走査同期信号の周波数およ び位相も、互いに等 ヽ相対精度で制御される。
[0368] したがって、本実施形態においては、実際の走査軌跡が正規であるために、光走 查ユニット 220が、垂直走査同期信号の周波数および位相を、その要求精度を満た す精度で制御するように設計されて 、る。
[0369] 前述のように、走査軌跡において互いに隣接する 2本の走査線が重なり合わない 限り、実際の走査軌跡が正規であると定義する場合には、垂直走査遅れ時間比率の 理想値は、その垂直走査遅れ時間比率の実際値の、理想値からの隔たり、すなわち 、誤差 Eの許容値 Ealwの最大値 Emaxに等しい。また、その許容値 Ealwは、前述の 係数 γを用 、ることにより、図 28にお ヽて式( 15)で記述される。
[0370] 前述の説明から明らかなように、本実施形態においては、水平走査部 270も垂直 走査部 272も機械的共振系として構成されており、水平走査部 270は、理想的には 、水平走査ミラー 280の実際の振動周波数が実際の共振周波数に一致する状態で 作動させられる。同様に、垂直走査部 272は、理想的には、垂直走査ミラー 290の実 際の振動周波数が実際の共振周波数に一致する状態で作動させられる。
[0371] 水平走査ミラー 280についても垂直走査ミラー 290についても、共振周波数が、そ れぞれのミラー 280, 290の機械的性質に依存している。その機械的性質は製造ば らつき、作動環境 (例えば、環境温度、環境湿度)、経年変化 (例えば、劣化)等によ つて変化する。そのため、共振周波数は変動する。
[0372] したがって、そのような依存性にもかかわらずそれら水平走査ミラー 280および垂直 走査ミラー 290を共振状態に維持するために、それらミラー 280, 290の振動周波数 を実際の共振周波数に追従させること、すなわち、周波数トラッキングが必要である。
[0373] 一方、実際の走査軌跡が正規であるためには、前述のように、水平走査周波数と垂 直走査周波数との比が互いに素な整数の比 η : ηとして表されるという条件が成立し
Η V
なければならない。
[0374] し力しながら、この条件を常に満たしつつ、水平走査ミラー 280と垂直走査ミラー 29 0との双方につき、周波数トラッキングを、時間的に互いに並行し、かつ、内容的に互 いに独立するように行うことは事実上不可能である。
[0375] 一方、本実施形態においては、水平走査部 270において垂直走査部 272における より大きな共振エネルギーを発生させるベぐ水平走査部 270の Q値 Q の方が、垂
Η
直走査部 272の Q値 Qより大きく設定されている。 Q値の一例は、約 1000であり、
V Η
Q値の一例は、約 100である。
V
[0376] 一般に、機械的共振系の Q値は、共振の強さを表す値である。 Q値は、周波数 ωの もとにエネルギー Wで共振が起こったときに、ジュール熱等で単位時間に失うエネル ギーを Sで表記すると、図 28の式(16)で定義される。 [0377] さらに、一般に、機械的共振系の Q値が大きいほど、実際の振動周波数の実際の 共振周波数からの偏倚に対して敏感に共振エネルギーが低下する。一方、共振エネ ルギ一が低下すると、機械的共振系の振動振幅が減少し、それにより、レーザビーム の走査角度範囲(走査中におけるレーザビームの最大振れ幅)が減少する。
[0378] したがって、本実施形態においては、水平走査部 270のみが、水平走査ミラー 280 の実際の走査周波数が実際の共振周波数に追従するように、トラッキング制御される
[0379] 各回のトラッキング制御においては、水平走査同期信号の周波数 f がほぼ瞬間的
H
に離散的に (ステップ的に)刻み幅 Δίで変更されることが、水平走査部 270の駆動
Η
信号と変位信号との位相差が正規値に回復するまで、すなわち、水平走査ミラー 90 の振動状態が共振状態に回復するまで、反復される。
[0380] 各回のトラッキング制御においては、水平走査同期信号の周波数 f が変更されると
H
、それに伴って垂直走査同期信号の周波数 f Vも変更される。なぜなら、前述のように
、実際の走査軌跡を正規であることを維持するために、水平走査周波数 f Hと垂直走 查周波数 f とが互いに素な整数比 n : nとして表されるという関係が成立しなければ
V H V
ならないからである。
[0381] さらに、本実施形態においては、トラッキング制御中、水平走査同期信号の位相も 垂直走査同期信号の位相も、前述の初期位相差時間 Atが実現し続けられるように、 修正される。
[0382] し力しながら、現実には、水平走査部 270にお 、ては、水平走査ミラー 280の実際 の振動周波数が、水平走査同期信号の周波数 (周波数の指令値) f Hの瞬間的変更 に対して敏感に追従するのに対し、垂直走査部 272においては、垂直走査ミラー 29 0の実際の振動周波数が、垂直走査同期信号の周波数 (周波数の指令値) f の瞬間
V
的変更に対してそれほど敏感には追従しない。このことは、振動の位相についても同 様である。
[0383] そのため、各回のトラッキング制御においては、水平走査同期信号の周波数 f がー
H
度変更されると、水平走査ミラー 280の実際の振動周波数と垂直走査ミラー 290の実 際の振動周波数とが、互いに素であるという条件や、水平走査ミラー 280の偏向角の 時間変動と垂直走査ミラー 290の偏向角の時間変動との位相差時間(以下、「走査 位相差時間 At」という。)の実際値が、初期位相差時間 Atの理想値に一致するとい う条件が成立しない期間が過渡的に発生する。
[0384] そのため、各回のトラッキング制御においては、水平走査同期信号の周波数 f がー
H
度変更されると、実際の走査軌跡が最も理想的な走査軌跡に一時的に一致しなくな り、このことは、走査位相差時間 Atの過渡的変動を招来する。
[0385] 各回のトラッキング制御においては、走査位相差時間 Atの過渡的変動を完全には 避け得ないとしても、その過渡的変動に起因する実際の走査軌跡の悪ィ匕の程度が 観察者が容易に気づく程度を超えない限り、その過渡的変動を許容してもみかけ上 の支障はない。
[0386] したがって、本実施形態にぉ 、ては、刻み幅 Δ f 力 走査位相差時間 Δ tに過渡
H
的に発生する誤差 ε ί 前述の許容値 ε alwを超えないように設定されている。
[0387] 一般に、機械的共振系である走査ミラーの駆動源に印加される駆動電圧が一定で ある状態で、走査ミラーの実際の振動周波数が実際の共振周波数 frから Δί変化す ると、駆動源に供給される駆動信号と、走査ミラーの動作を反映する変位信号との間 に、位相変化 Δ φ [rad]が発生する。
[0388] その位相変化 Δ φは、一般に、共振周波数 frの近傍においては、図 28において 式(17)で定義される。
[0389] その位相変化 Δ φの発生にもかかわらず、実際の走査軌跡が正規であるためには 、前述の説明から明らかなように、垂直走査についての位相変化 Δ φ 1S 前述の垂
V
直走査遅れ時間比率が換算された角度 [rad]を超えず、かつ、水平走査についての 位相変化 Δ φ 力 前述の水平走査進み時間比率が換算された角度 [rad]を超えな
H
V、ことが必要である。このことは図 28にお!/、て式(18)で記述される。
[0390] この式(18)における「At」は、前述の説明から明らかなように、図 28において式(1 9)で記述される。
[0391] したがって、式(18)は、式(17)をも用いることにより、図 28の式(20)および式(21 )に変換される。ただし、式(17)を用いるに当たり、位相変化 Δ φの大きさは考慮さ れるが、その符号は無視される。 [0392] 本実施形態においては、トラッキング制御中、水平走査同期信号の周波数を離散 的に変更する刻み幅 Δ ί力 式 (20)を満たすように設定され、また、垂直走査同期
Η
信号の周波数を離散的に変更する刻み幅 Δ ί 式 (21)を満たすように設定され
V
ている。
[0393] 前述のように、本実施形態においては、図 25を参照して後に詳述するように、同期 信号処理部 352が、コンピュータ 322と複数の電子回路との組合せによってデジタル 的に同期信号を処理するように設計されている。これに対し、従来の同期信号処理 部は、 PLLを基本構成要素としてアナログ的に同期信号を処理する。
[0394] したがって、本実施形態によれば、水平走査同期信号の周波数を小さな刻み幅 Δ ί で離散的に精度よく変更するとともに、垂直走査同期信号の周波数を小さな刻み幅
Η
Δ ίで離散的に変更することを、従来の同期信号処理部より容易に実現することが
V
可能である。
[0395] ここで、図 25を参照することにより、本実施形態における同期信号生成回路 384を 詳細に説明する。
[0396] この同期信号生成回路 384は、マスタクロック信号をマスタクロック周波数 fmstで生 成するマスタ発振器 390と、そのマスタ発振器 390から出力されたマスタクロック信号 を分周数 nで分周し (マスタクロック信号の周波数を分周数 nで割り算し)、それによ
D D
り、ドットクロック信号をドットクロック周波数 f
Dで生成する分周器 392とを備えている。
[0397] フレーム周波数 f 力 ΟΗζ、水平走査往復回数 ηが 1, 000、垂直走査往復回数 η
0 Η
力 l l、 1本の走査線中のドット数 Nが 1, 000である具体例においては、ドットクロック
V
周波数 f は、 2f ·η ·Ν= 120ΜΗζとなる。
D O H
[0398] 本実施形態においては、 f =fmstZ4なる式で表される関係が成立するように、分
D
周器 392が作動させられる。この分周器においては、分周数 n力 である。したがつ
D
て、この具体例においては、マスタクロック周波数 fmst力 80MHzとなる。
[0399] 図 25に示すように、同期信号生成回路 384は、さらに、 PLL方式のクロック供給部 394を備えている。このクロック供給部 394は、分周器 396と、分周器 398と、位相比 較器およびフィルタ(例えば、ループフィルタ)を含む誤差電圧信号生成回路 400と、 電圧制御発振器 VCO404と、分周器 406とを含むように構成されて!ヽる。 [0400] このクロック供給部 394には、マスタ発振器 390から出力されたマスタクロック信号 1S それの周波数が分周器 396によって可変の分周数 n で分周された後、基準信
01
号として、供給される。その基準信号は、後述の発振信号と、誤差電圧信号生成回 路 400の位相比較器にぉ 、て比較され、それら基準信号と発振信号との周波数差( クロック誤差)を表すアナログな誤差電圧信号が誤差電圧信号生成回路 400のフィ ルタによって平滑ィ匕される。
[0401] その平滑化された誤差電圧信号は、電圧制御発振器 VCO404にアナログな制御 信号として供給される。その電圧制御発振器 VCO404は、その供給された制御信号 に基づ!/ヽてデジタルの発振信号を生成する。
[0402] 本実施形態においては、同期信号生成回路 384を構成する複数の電子回路が、 誤差電圧信号生成回路 400と電圧制御発振器 VCO404とを除き、デジタル回路とし て構成されている。それにより、主走査周波数および副走査周波数の離散的変更に 起因する走査位相差時間 A tの過渡的変動の量 (誤差)が許容値 ε alwを超えない ことが保証されている。
[0403] 電圧制御発振器 VCO404によって生成されたデジタルの発振信号は、それの周 波数が分周器 406によって分周数 n で分周された後、このクロック供給部 394から
HV
出力される。その出力された発振信号は、それの周波数が分周器 398によって分周 数 n で分周された後、誤差電圧信号生成回路 400の位相比較器に入力される。
02
[0404] このクロック供給部 394においては、分周器 406の出力信号の周波数を f で表記
HV
すると、図 29において式(31)および(32)で表される関係が成立する。
[0405] 上記の具体例については、分周数 n 力 800000、分周数 n 力 ½600、分周数 n
01 02 H 力 100である。
V
[0406] 図 25に示すように、分周器 396は中央制御部 370に接続されている。この分周器 3 96は、中央制御部 370から入力される指令信号に従い、分周数 n を 1ずつ離散的
01
に変更するように設計されて 、る。
[0407] すなわち、この分周器 396は、それの分周数 n がデジタル的に微細に変更される
01
ようになっているのである。分周数 n の離散的変更に伴い、分周器 406の出力信号
01
の周波数 f 瞬間的にかつ離散的に変化する。 [0408] 図 25に示すように、同期信号生成回路 384は、さらに、分周器 406の出力信号の 周波数を分周数 nで分周する分周器 410と、その分周器 410の出力信号を可変の
V
遅延時間で遅延させる遅延回路 412とを備えている。
[0409] その遅延回路 412には、分周器 410の出力信号と共に、マスタ発振器 390の出力 信号が入力される。この遅延回路 412は、デジタル回路として構成されており、よく知 られているように、マスタ発振器 390から入力されるマスタクロックパルスの数をカウン トすることにより、分周器 410の出力信号を入力して出力するまでの遅延時間 Atの
H
長さを制御する。
[0410] この遅延回路 412は、中央制御部 370から入力される指令信号に従い、マスタクロ ックパルスの目標カウント数を変更することにより、遅延時間 At の長さを変更するよ
H
うに設計されている。
[0411] すなわち、この遅延回路 412は、それの遅延時間 Atの長さがデジタル的に微細
H
に変更されるようになっているのである。この遅延回路 412の出力信号は、水平走査 同期信号として、水平走査駆動回路 300に供給される。
[0412] 図 25に示すように、同期信号生成回路 384は、さらに、分周器 406の出力信号の 周波数を分周数 nで分周する分周器 416と、その分周器 416の出力信号を可変の
H
遅延時間で遅延させる遅延回路 418とを備えている。
[0413] その遅延回路 418には、分周器 416の出力信号と共に、マスタ発振器 390の出力 信号が入力される。この遅延回路 418は、遅延回路 412と同様に、デジタル回路とし て構成されており、マスタ発振器 390から入力されるマスタクロックパルスの数をカウ ントすることにより、分周器 410の出力信号を入力して出力するまでの遅延時間 At
V
の長さを制御する。
[0414] この遅延回路 418は、遅延回路 412と同様に、中央制御部 370から入力される指 令信号に従い、マスタクロックパルスの目標カウント数を変更することにより、遅延時 間 Δ t の長さを変更するように設計されて!、る。
V
[0415] すなわち、この遅延回路 418は、それの遅延時間 Atの長さがデジタル的に微細
V
に変更されるようになっているのである。この遅延回路 418の出力信号は、垂直走査 同期信号として、垂直走査駆動回路 310に供給される。 [0416] このように、本実施形態においては、分周器 406に分周器 410と分周器 416とが互 いに並列に接続され、それら分周器 410および 216は、同じ周波数を有する信号を それぞれの分周数 nおよび nで分周する。
V H
[0417] それら分周数 nおよび n は、水平走査同期信号の周波数と垂直走査同期信号の
V H
周波数とが互いに素である整数比、すなわち、 n : n (上述の具体例においては、 1
H V
000: 11)として表されるように設定されて!、る。
[0418] したがって、本実施形態においては、水平走査同期信号の周波数を変化させるベ く分周器 396の分周数 n が変更されても、過渡的な期間を除けば、水平走査同期
01
信号の周波数と垂直走査同期信号の周波数とが互いに素である関係が維持される。
[0419] 図 25に示すように、同期信号生成回路 384は、さらに、分周器 416の出力信号の 周波数を分周数 n (上述の具体例においては、 11)で分周する分周器 420を備えて
V
いる。その分周器 420の出力信号は、フレーム走査同期信号として、状態信号生成 回路 380および 382に供給される。
[0420] 本実施形態においては、水平走査同期信号の位相が遅延回路 412によって調整 されることと、垂直走査同期信号の位相が遅延回路 418によって調整されることとの 共同作用により、走査位相差時間 A tが精度よく管理される。
[0421] 図 30には、中央制御部 370において実行される前述の走査制御プログラムが概念 的にフローチャートで表されている。
[0422] この走査制御プログラムは繰り返し実行される。各回の実行時には、まず、 S101に おいて、状態信号生成回路 380から、水平走査ミラー 280の変位振幅信号と、変位 位相信号 (対駆動信号)と、変位位相信号 (対フレーム同期信号)とが読み込まれる。
[0423] 次に、 S 102において、その読み込まれた変位位相信号 (対駆動信号)によって表 される変位位相が目標値に等しいか否かが判定される。今回は、その変位位相(対 駆動信号)が目標値に等しいと仮定すれば、その判定が YESとなり、 S103に移行す る。
[0424] これに対し、今回は、その変位位相(対駆動信号)が目標値に等しくはないと仮定 すると、 S102の判定が NOとなる。その後、 S108において、分周数 n を 1だけ変更
01
するために指令信号が分周器 396に出力される。この S108と S102との実行は、分 周数 n を 1だけ変更することが繰り返されることにより、変位位相 (対駆動信号)が目
01
標値に等しくなるまで、繰り返される。
[0425] 本実施形態においては、分周数 n の最適値が探索的に決定される。具体的には
01
、例えば、図 28において式(17)で表される関係に着目し、変位位相(対駆動信号) が目標値に対して偏倚している方向が増カロと減少とのいずれかとして決定され、その 決定された偏倚方向に応じ、分周数 n の変更方向が増カロと減少とのいずれかに決
01
定される。さらに具体的には、変位位相(対駆動信号)が目標値 (例えば、 90度)より 小さい場合には、水平走査周波数を増加させるベぐ分周数 n 力 Siだけ減じられる。
01
[0426] それら S102および S108の反復的実行により、分周数 n がそれの初期値から 1ず
01
つ変更されるごとに、変位位相 (対駆動信号)が目標値に等 、か否力が判定される [0427] 本実施形態においては、分周数 n 力^だけ変更されると、それに伴って水平走査
01
同期信号の周波数 f が刻み幅 Δ ίだけ変化する。その刻み幅 Δ ί、すなわち、最小
Η Η Η
の離散的変化量が、図 28において式 (20)で示す条件を満たすように、水平走査部 270および同期信号生成回路 384が設計されている。その刻み幅 Δ ίは、例えば、
Η
10_6以下の値を取る。
[0428] 本実施形態においては、分周数 η 力^だけ変更されると、さらに、それに伴って垂
01
直走査同期信号の周波数 f も刻み幅 Δ ίだけ変化する。その刻み幅 Δ ί、すなわち
V V V
、最小の離散的変化量が、図 28において式(21)で示す条件を満たすように、垂直 走査部 272および同期信号生成回路 384が設計されている。その刻み幅 Δ ίは、例
V
えば、 10_6以下の値を取る。
[0429] いずれの場合にも、 S102の判定力 SYESとなると、 S103において、前記読み込ま れた変位振幅信号によって表される変位振幅が目標値に等 、か否力が判定される 。今回は、その変位振幅が目標値に等しいと仮定すれば、その判定が YESとなり、 S 104に移行する。
[0430] これに対し、今回は、その変位振幅が目標値に等しくはないと仮定すれば、 S103 の判定が NOとなる。その後、 S109において、その変位振幅が目標値力も外れてい る向きおよび量に基づき、水平走査振幅指令信号が固定のまたは可変の設定量で 変更され、その変更された水平走査振幅指令信号が水平走査駆動回路 300に出力 される。この S109の実行は、 S103の判定が YESとなるまで、繰り返される。
[0431] いずれの場合にも、 S103の判定力 SYESとなると、 S104において、前記読み込ま れた変位位相信号 (対フレーム同期信号)によって表される変位位相が目標値に等 しいか否かが判定される。今回は、その変位位相(対フレーム同期信号)が目標値に 等しいと仮定すれば、その判定が YESとなり、 S105に移行する。
[0432] これに対し、今回は、その変位位相(対フレーム同期信号)が目標値に等しくはな いと仮定すれば、 S104の判定が NOとなる。その後、 S110において、その変位位相 が目標値から外れている向きおよび量に基づき、水平走査同期信号の遅延時間 A t を固定のまたは可変の設定量で修正するために指令信号が遅延回路 412に出力
H
される。この S110の実行は、 S104の判定が YESとなるまで、繰り返される。
[0433] いずれの場合にも、 S104の判定力 SYESとなると、 S105において、状態信号生成 回路 382から、垂直走査ミラー 290の変位振幅信号と、変位位相信号 (対フレーム同 期信号)とが読み込まれる。
[0434] 続いて、 S106において、その読み込まれた変位位相信号 (対フレーム同期信号) によって表される変位位相が目標値に等しいか否かが判定される。今回は、その変 位位相(対フレーム同期信号)が目標値に等し 、と仮定すれば、その判定が YESと なり、 S107に移行する。
[0435] これに対し、今回は、その変位位相(対フレーム同期信号)が目標値に等しくはな いと仮定すれば、 S106の判定が NOとなる。その後、 S111において、その変位位相 が目標値から外れている向きおよび量に基づき、垂直走査同期信号の遅延時間 A t を固定のまたは可変の設定量で修正するために指令信号が遅延回路 418に出力さ
V
れる。この S111の実行は、 S 106の判定が YESとなるまで、繰り返される。
[0436] 本実施形態においては、水平走査同期信号の変位位相(対フレーム同期信号)と 垂直走査同期信号の変位位相 (対フレーム同期信号)との和が、走査位相差時間 Δ tに等しい。したがって、 S110および S111においてはそれぞれ、遅延時間 A tおよ
H
び遅延時間 A t ί 水平走査同期信号の変位位相 (対フレーム同期信号)と垂直走
V
查同期信号の変位位相(対フレーム同期信号)との和が走査位相差時間 A tの理想 値に等しくなるように設定される。
[0437] いずれの場合にも、 S106の判定力 SYESとなると、 S107において、前記読み込ま れた変位振幅信号によって表される変位振幅が目標値に等 、か否力が判定される 。今回は、その変位振幅が目標値に等しいと仮定すれば、その判定が YESとなり、こ の走査制御プログラムの一回の実行が終了する。
[0438] これに対し、今回は、その変位振幅が目標値に等しくはないと仮定すれば、 S107 の判定が NOとなる。その後、 S112において、その変位振幅が目標値力も外れてい る向きおよび量に基づき、垂直走査振幅指令信号が固定のまたは可変の設定量で 変更され、その変更された垂直走査振幅指令信号が垂直走査駆動回路 310に出力 される。この S110の実行は、 S107の判定が YESとなるまで、繰り返される。
[0439] いずれの場合にも、 S107の判定力YESとなると、この走査制御プログラムの一回 の実行が終了する。
[0440] 以上の説明から明らかなように、本実施形態においては、 RSD210が前記(11)項 に係る「光走査型ディスプレイ」の一例を構成し、光源部 234が同項における「光源 部」の一例を構成し、光走査ユニット 220が同項における「走査装置」の一例を構成 しているのである。
[0441] さらに、本実施形態においては、輝度信号生成部 350が前記(11)項における「輝 度信号制御部」の一例を構成し、少なくとも水平走査検出回路 302が同項における「 検出部」の一例を構成し、水平走査駆動回路 300および垂直走査駆動回路 310が 互いに共同して同項における「駆動信号発生部」の一例を構成しているのである。
[0442] さらに、本実施形態においては、水平走査が前記(11)項における「主走査」の一 例に相当し、垂直走査が同項における「副走査」の一例に相当し、水平走査部 270 が同項における「主走査部」の一例を構成し、水平走査ミラー 280が同項における「 第 1の機械的共振系」の一例を構成し、垂直走査部 272が同項における「副走査部」 の一例を構成し、垂直走査ミラー 290が同項における「第 2の機械的共振系」の一例 を構成しているのである。
[0443] さらに、本実施形態においては、水平走査同期信号が前記(11)項における「主走 查同期信号」の一例を構成し、垂直走査同期信号が同項における「副走査同期信号 」の一例を構成し、水平走査部 270が同項における「追従制御対象」の一例を構成し 、水平走査同期信号が同項における「対象同期信号」の一例を構成しているのであ る。
[0444] さらに、本実施形態においては、状態信号生成回路 380と分周器 396とコンビユー タ 322のうち図 30における S101、 S102および S108を実行する咅分と力互いに共 同して前記(11)項における「第 1同期信号制御部」の一例を構成し、分周器 416が 同項における「第 2同期信号制御部」の一例を構成しているのである。
[0445] さらに、本実施形態においては、状態信号生成回路 380と分周器 396とコンビユー タ 322のうち図 30における S101、 S102および S108を実行する咅分と力互いに共 同して前記(12)項における「第 1周波数制御部」の一例を構成して 、るのである。
[0446] さらに、本実施形態においては、分周器 416が前記(13)項における「第 2周波数 制御部」の一例を構成し、水平走査周波数と垂直走査周波数との比を表す互いに素 な整数比 n : nが前記(14)項における「設定比」の一例に相当し、水平走査部 270
H V
が前記(15)項における「追従制御対象」の一例を構成し、水平走査ミラー 280が前 記(6)項における「第 1の機械的共振系」の一例を構成して 、るのである。
[0447] さらに、本実施形態においては、水平走査部 270が前記(17)項における「主走査 部」の一例を構成し、水平走査角度が同項における「主走査偏向角」の一例に相当 し、水平走査検出回路 302が同項における「検出部」の一例を構成し、変位信号 (対 駆動信号)によって表される変位位相 (対駆動信号)が同項における「位相差」の一 例に相当し、状態信号生成回路 380と分周器 396とコンピュータ 322のうち図 30に おける S101、 S102および S108を実行する部分とが互いに共同して同項における「 位相差制御部」の一例を構成して 、るのである。
[0448] さらに、本実施形態にぉ 、ては、走査位相差時間 Δ t (水平走査のための変位信号
(対フレーム同期信号)によって表される変位位相 (対フレーム同期信号)と、垂直走 查のための変位信号 (対フレーム同期信号)によって表される変位位相(対フレーム 同期信号)との組合せによって定義される。 )が前記(18)項における「位相差」の一 例に相当し、状態信号生成回路 380および 382と遅延回路 412および 418と、コン ピュータ 322のうち図 30における S101、 S104、 S105、 S106、 S110および Si l l を実行する部分とが互いに共同して同項における「位相変更部」の一例を構成して いるのである。
[0449] さらに、本実施形態においては、 RSD210が前記(19)項に係る「光走査型デイス プレイ」の一例を構成し、光源部 234が同項における「光源部」の一例を構成し、光 走査ユニット 220が同項における「走査装置」の一例を構成しているのである。
[0450] さらに、本実施形態においては、輝度信号生成部 350が前記(19)項における「輝 度信号制御部」の一例を構成し、水平走査検出回路 302と垂直走査検出回路 312と が互いに共同して同項における「検出部」の一例を構成し、水平走査駆動回路 300 および垂直走査駆動回路 310が互いに共同して同項における「駆動信号発生部」の 一例を構成して 、るのである。
[0451] さらに、本実施形態においては、水平走査が前記(19)項における「主走査」の一 例に相当し、垂直走査が同項における「副走査」の一例に相当し、水平走査部 270 が同項における「主走査部」の一例を構成し、水平走査ミラー 280が同項における「 第 1の機械的共振系」の一例を構成し、垂直走査部 272が同項における「副走査部」 の一例を構成し、垂直走査ミラー 290が同項における「第 2の機械的共振系」の一例 を構成しているのである。
[0452] さらに、本実施形態においては、水平走査同期信号が前記(19)項における「主走 查同期信号」の一例を構成し、垂直走査同期信号が同項における「副走査同期信号 」の一例を構成し、互いに素である整数の比である n : nが同項における「設定比」
H V
の一例に相当し、水平走査角度が同項における「主走査偏向角」の一例に相当し、 垂直走査角度が同項における「副走査偏向角」の一例に相当しているのである。
[0453] さらに、本実施形態においては、状態信号生成回路 380と分周器 396および 416 とコンピュータ 322のうち図 30における S101、 S102および S108を実行する部分と が互いに共同して前記(19)項における「周波数変更部」の一例を構成し、刻み幅 Δ f が同項における「主走査周波数刻み幅」の一例に相当し、刻み幅 Δ ίが同項にお
Η V
ける「副走査周波数刻み幅」の一例に相当して 、るのである。
[0454] さらに、本実施形態においては、図 28における式(12)によって表される許容値 ε a lwが前記(19)項における「許容範囲」の一例(幅が 0である範囲)に相当し、式(20) の右辺に記された項によって表される数値が同項における「第 1の許容値」の一例に 相当し、式(21)の右辺に記された項によって表される数値が同項における「第 2の許 容値」の一例に相当して 、るのである。
[0455] さらに、本実施形態においては、状態信号生成回路 380と分周器 396とコンビユー タ 322のうち図 30における S101、 S102および S108を実行する咅分と力互いに共 同して前記 (22)項における「第 1同期信号制御部」の一例を構成し、分周器 416が 同項における「第 2同期信号制御部」の一例を構成し、水平走査部 270が同項にお ける「追従制御対象」の一例を構成し、水平走査同期信号が同項における「対象同 期信号」の一例を構成して 、るのである。
[0456] さらに、本実施形態にぉ 、ては、走査位相差時間 Δ tが前記(23)項における「位 相差」の一例に相当し、状態信号生成回路 380および 382と遅延回路 412および 41 8と、コンピュータ 322のうち図 30における S101、 S104、 S105、 S106、 S110およ び S 111を実行する部分とが互いに共同して同項における「位相変更部」の一例を構 成しているのである。
[0457] 以上、本発明の実施の形態のうちのいくつかを図面に基づいて詳細に説明したが 、これらは例示であり、前記 [発明の開示]の欄に記載の態様を始めとして、当業者の 知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能 である。

Claims

請求の範囲
[1] 光束の 2次元的な走査によって画像を表示する光走査型ディスプレイであって、 輝度信号に応じた輝度で前記光束を出射する光源部と、
その光源部から出射した光束を互いに交差する主走査方向と副走査方向とにおい てそれぞれ往復走査することが可能な走査装置であって、前記画像の各フレームご とに、前記主走査方向にぉ 、て前記副走査方向におけるより多数回の往復走査を 行うものと、
前記画像の 1フレームが 3以上のフィールドに分けて前記走査装置によって走査さ れて表示されるように、映像信号に基づいて前記輝度信号を生成し、各回の往復走 查の全体期間のうちの有効走査期間中に、前記光源部が実際に光束を出射するこ とによって形成される有効走査線が同じフレームにおいて前記 3以上のフィールド間 で互いに重ならな 、ように、前記生成された輝度信号を前記光源部に出力する輝度 信号制御部と
を含む光走査型ディスプレイ。
[2] 前記輝度信号制御部は、
前記画像の各フレームごとに、前記副走査方向における各回の往復走査の全体期 間のうち一方向走査期間と逆方向走査期間との双方が前記有効走査期間となるよう に前記輝度信号を生成して前記光源部に出力する第 1信号生成部を含む請求の範 囲第 1項に記載の光走査型ディスプレイ。
[3] 前記輝度信号は、前記光源部によって順次処理される信号であって、前記画像に おいて一列に並んだ複数個の画素の輝度をそれぞれ表す複数の輝度データに基 づいて生成され、
それら複数の輝度データは、前記一方向走査期間において前記有効走査線を形 成するために前記光源部によって処理される第 1の輝度データ群と、前記逆方向走 查期間にお 、て前記有効走査線を形成するために前記光源部によって処理される 第 2の輝度データ群とを含み、
前記輝度信号制御部は、
それら第 1および第 2の輝度データ群を、各輝度データ群に応じて前記画像が描 画される向きがそれら第 1および第 2の輝度データ群の間において互いに逆となるよ うに前記光源部に出力するデータ出力部を含む請求の範囲第 2項に記載の光走査 型ディスプレイ。
[4] 前記輝度信号制御部は、
前記画像の各フレームごとに、前記主走査方向における各回の往復走査の全体期 間のうち一方向走査期間と逆方向走査期間とのいずれ力が前記有効走査期間とな るように前記輝度信号を生成して前記光源部に出力する第 2信号生成部を含む請求 の範囲第 1項に記載の光走査型ディスプレイ。
[5] 前記輝度信号制御部は、
絶対空間にお 、て基準方向に延びるように設定された画像表示領域内にぉ 、て 前記有効走査線がその画像表示領域に平行に延びるように前記輝度信号を生成し て前記光源部に出力する第 3信号生成部を含む請求の範囲第 1項に記載の光走査 型ディスプレイ。
[6] 前記走査装置は、
前記光束を前記主走査方向に走査する主走査と前記副走査方向に走査する副走 查とに共通に設けられて往復運動させられるミラーと、
前記主走査のために前記ミラーを往復運動させるためにそのミラーを振動させる第 1振動部と、
前記副走査のために前記ミラーを往復運動させるためにそのミラーを前記第 1振動 部と共に振動させる第 2振動部と
を含む請求の範囲第 1項に記載の光走査型ディスプレイ。
[7] 前記ミラーは、そのミラーの共振を利用して前記主走査方向と前記副走査方向とに 往復運動させられる請求の範囲第 6項に記載の光走査型ディスプレイ。
[8] 前記走査装置は、
前記光束を前記主走査方向に走査するために往復運動させられる第 1ミラーと、 前記光束を前記副走査方向に走査するために往復運動させられる第 2ミラーと、 前記第 1ミラーを往復運動させるためにその第 1ミラーを振動させる第 1振動部と、 前記第 2ミラーを往復運動させるためにその第 2ミラーを振動させる第 2振動部と を含む請求の範囲第 1項に記載の光走査型ディスプレイ。
[9] 前記走査装置は、前記光束の走査を、前記主走査方向において前記副走査方向 におけるより高速で行う請求の範囲第 1項に記載の光走査型ディスプレイ。
[10] 当該光走査型ディスプレイは、前記光束を眼の網膜上に直接に投影してその網膜 上において走査することによって前記画像を表示する網膜走査型ディスプレイである 請求の範囲第 1項に記載の光走査型ディスプレイ。
[11] 前記走査装置は、
主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
当該光走査型ディスプレイは、さらに、
前記走査装置の走査状態を検出する検出部と、
主走査同期信号と副走査同期信号とを発生させる同期信号発生部と、 それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生部と を含み、
前記同期信号発生部は、
前記主走査部と前記副走査部とのうちの一方を追従制御対象とし、前記主走査同 期信号と前記副走査同期信号とのうち前記追従制御対象に対応するものを対象同 期信号とし、その対象同期信号を、前記検出部によって検出された走査状態に基づ き、前記追従制御対象の共振周波数に追従するように制御する第 1同期信号制御部 と、
前記主走査同期信号と前記副走査同期信号とのうちの他方を非対象同期信号とし 、その非対象同期信号を、前記制御された対象同期信号に基づいて制御する第 2同 期信号制御部と
を含む請求の範囲第 1項に記載の光走査型ディスプレイ。
[12] 前記第 1同期信号制御部は、前記対象同期信号の周波数を、前記検出部によって 検出された前記追従制御対象の走査状態に基づき、前記追従制御対象の共振周波 数に追従するように制御する第 1周波数制御部を含む請求の範囲第 11項に記載の 光走査型ディスプレイ。
[13] 前記第 2同期信号制御部は、前記非対象同期信号の周波数を、主走査周波数と 副走査周波数との比が設定比に一致するように、制御する第 2周波数制御部を含む 請求の範囲第 11項に記載の光走査型ディスプレイ。
[14] 前記設定比は、互いに素である整数の比である請求の範囲第 13項に記載の光走 查型ディスプレイ。
[15] 前記追従制御対象は、前記主走査部と前記副走査部とのうち、対応する機械的共 振系の Q値が他方の機械的共振系の Q値より大きいものである請求の範囲第 11項 に記載の光走査型ディスプレイ。
[16] 前記第 1の機械的共振系の Q値は、前記第 2の機械的共振系の Q値より大きい請 求の範囲第 15項に記載の光走査型ディスプレイ。
[17] 前記主走査部は、前記主走査周波数で周期的に変化する主走査偏向角で出射す るように前記光束を往復偏向走査し、
前記検出部は、前記主走査偏向角を反映する信号を主走査変位信号として出力し 前記同期信号発生部は、さらに、
前記主走査変位信号の前記主走査駆動信号に対する位相差が設定値となるよう に前記主走査同期信号を発生させる位相差制御部を含む請求の範囲第 11項に記 載の光走査型ディスプレイ。
[18] 前記同期信号発生部は、さらに、
前記主走査同期信号と前記副走査同期信号との位相差が設定値となるように、そ れら主走査同期信号と副走査同期信号とのうちの少なくとも一方の位相を変更する 位相変更部を含む請求の範囲第 11項に記載の光走査型ディスプレイ。
[19] 前記走査装置は、
主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
当該光走査型ディスプレイは、さらに、
前記走査装置の走査状態を検出する検出部と、
主走査同期信号と副走査同期信号とを発生させる同期信号発生部と、 それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生部と を含み、
前記主走査部は、主走査周波数で周期的に変化する主走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記副走査部は、副走査周波数で周期的に変化する副走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記検出部は、前記主走査偏向角を反映する信号と前記副走査偏向角を反映す る信号とをそれぞれ主走査変位信号と副走査変位信号として出力し、
前記同期信号発生部は、
前記主走査同期信号と前記副走査同期信号とのうちの少なくとも一つが前記主走 查部と前記副走査部とのうち対応するものの共振周波数に追従することと、前記主走 查周波数と前記副走査周波数との比が設定比に一致することとがー緒に達成される ように、前記検出部によって検出された走査状態に基づき、前記主走査同期信号の 周波数と前記副走査同期信号の周波数とをそれぞれ、主走査周波数刻み幅と副走 查周波数刻み幅とで離散的に変更する周波数変更部を含み、
前記主走査同期信号の周波数と前記副走査同期信号の周波数とが前記周波数変 更部によって変更されることに起因し、前記主走査変位信号の前記主走査駆動信号 に対する主走査位相差と、前記副走査変位信号の前記副走査駆動信号に対する副 走査位相差とが変動し、
前記主走査位相差の変動と前記副走査位相差の変動とに起因し、前記走査装置 によって形成される複数本の走査線の走査線間位相差が変動し、
前記主走査周波数刻み幅は、前記主走査位相差の変動に起因する前記走査線 間位相差の変動量が許容範囲内であるように、第 1の許容値を超えないように設定さ れ、
前記副走査周波数刻み幅は、前記副走査位相差の変動に起因する前記走査線 間位相差の変動量が前記許容範囲内であるように、第 2の許容値を超えな 、ように 設定される請求の範囲第 1項に記載の光走査型ディスプレイ。
[20] 前記主走査周波数を f 、前記副走査周波数を f 、前記設定比を n : n (n および
M S M S M
nは共に整数)、前記第 1の機械的共振系の Q値を Q 、前記第 2の機械的共振系の
S M
Q値を Q、 1
S より大きい係数を γでそれぞれ表記する場合に、前記第 1の許容値は、 π ί / {A y - Q · η )
Μ M S
として定義され、
前記第 2の許容値は、
π ί / {A y - Q · η )
S S M
として定義される請求の範囲第 19項に記載の光走査型ディスプレイ。
[21] 前記係数 γは、 2以上で 6以下である値を有する請求の範囲第 20項に記載の光走 查型ディスプレイ。
[22] 前記同期信号発生部は、さらに、
前記主走査部と前記副走査部とのうちの一方を追従制御対象とし、前記主走査同 期信号と前記副走査同期信号とのうち前記追従制御対象に対応するものを対象同 期信号とし、その対象同期信号を、前記検出部によって検出された走査状態に基づ き、前記追従制御対象の共振周波数に追従するように制御する第 1同期信号制御部 と、
前記主走査同期信号と前記副走査同期信号とのうちの他方を、前記制御された対 象同期信号に基づいて制御する第 2同期信号制御部と
を含む請求の範囲第 19項に記載の光走査型ディスプレイ。
[23] 前記同期信号発生部は、さらに、
前記主走査同期信号と前記副走査同期信号との位相差が設定値となるように、そ れら主走査同期信号と副走査同期信号とのうちの少なくとも一方の位相を変更する 位相変更部を含む請求の範囲第 19項に記載の光走査型ディスプレイ。
[24] 光束の 2次元的な走査によって画像を表示するために、(a)輝度信号に応じた輝度 で前記光束を出射する光源部と、(b)その光源部から出射した光束を互いに交差す る主走査方向と副走査方向とにおいてそれぞれ往復走査することが可能な走査装置 であって、前記画像の各フレームごとに、前記主走査方向において前記副走査方向 におけるより多数回の往復走査を行うものとを含む光走査型ディスプレイを駆動する 光走査型ディスプレイ駆動方法であって、
前記画像の 1フレームが 3以上のフィールドに分けて前記走査装置によって走査さ れて表示されるように、映像信号に基づいて前記輝度信号を生成する輝度信号生成 工程と、
各回の往復走査の全体期間のうちの有効走査期間中に、前記光源部が実際に光 束を出射することによって形成される有効走査線が同じフレームにおいて前記 3以上 のフィールド間で互いに重ならな 、ように、前記生成された輝度信号を前記光源部 に出力する輝度信号出力工程と
を含む光走査型ディスプレイ駆動方法。
[25] 前記輝度信号生成工程は、前記画像の各フレームごとに、前記副走査方向におけ る各回の往復走査の全体期間のうち一方向走査期間と逆方向走査期間との双方が 前記有効走査期間となるように前記輝度信号を生成する工程を含む請求の範囲第 2 4項に記載の光走査型ディスプレイ駆動方法。
[26] 前記走査装置は、
主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
前記光走査型ディスプレイは、さらに、前記走査装置の走査状態を検出する検出 部を含み、 当該光走査型ディスプレイ駆動方法は、さらに、
主走査同期信号と副走査同期信号とを発生させる同期信号発生工程と、 それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生工程と を含み、
前記同期信号発生工程は、
前記主走査部と前記副走査部とのうちの一方を追従制御対象とし、前記主走査同 期信号と前記副走査同期信号とのうち前記追従制御対象に対応するものを対象同 期信号とし、その対象同期信号を、前記検出部によって検出された走査状態に基づ き、前記追従制御対象の共振周波数に追従するように制御する第 1同期信号制御ェ 程と、
前記主走査同期信号と前記副走査同期信号とのうちの他方を非対象同期信号とし
、その非対象同期信号を、前記制御された対象同期信号に基づいて制御する第 2同 期信号制御工程と
を含む請求の範囲第 24項に記載の光走査型ディスプレイ駆動方法。
前記走査装置は、
主走査駆動信号に基づき、前記光束を、第 1の機械的共振系を利用して、前記主 走査方向に往復走査することが可能な主走査部と、
副走査駆動信号に基づき、前記光束を、第 2の機械的共振系を利用して、前記副 走査方向に往復走査することが可能な副走査部と
を含み、
前記光走査型ディスプレイは、さらに、前記走査装置の走査状態を検出する検出 部を含み、
当該光走査型ディスプレイ駆動方法は、さらに、
主走査同期信号と副走査同期信号とを発生させる同期信号発生工程と、 それら発生させられた主走査同期信号と副走査同期信号とに基づいて前記主走査 駆動信号と前記副走査駆動信号とをそれぞれ発生させる駆動信号発生工程と を含み、 前記主走査部は、主走査周波数で周期的に変化する主走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記副走査部は、副走査周波数で周期的に変化する副走査偏向角で出射するよ うに前記光束を往復偏向走査し、
前記検出部は、前記主走査偏向角を反映する信号と前記副走査偏向角を反映す る信号とをそれぞれ主走査変位信号と副走査変位信号として出力し、
前記同期信号発生工程は、
前記主走査同期信号と前記副走査同期信号とのうちの少なくとも一つが前記主走 查部と前記副走査部とのうち対応するものの共振周波数に追従することと、前記主走 查周波数と前記副走査周波数との比が設定比に一致することとがー緒に達成される ように、前記検出部によって検出された走査状態に基づき、前記主走査同期信号の 周波数と前記副走査同期信号の周波数とをそれぞれ、主走査周波数刻み幅と副走 查周波数刻み幅とで離散的に変更する周波数変更工程を含み、
前記主走査同期信号の周波数と前記副走査同期信号の周波数とが前記周波数変 更部によって変更されることに起因し、前記主走査変位信号の前記主走査駆動信号 に対する主走査位相差と、前記副走査変位信号の前記副走査駆動信号に対する副 走査位相差とが変動し、
前記主走査位相差の変動と前記副走査位相差の変動とに起因し、前記走査装置 によって形成される複数本の走査線の走査線間位相差が変動し、
前記主走査周波数刻み幅は、前記主走査位相差の変動に起因する前記走査線 間位相差の変動量が許容範囲内であるように、第 1の許容値を超えないように設定さ れ、
前記副走査周波数刻み幅は、前記副走査位相差の変動に起因する前記走査線 間位相差の変動量が前記許容範囲内であるように、第 2の許容値を超えな 、ように 設定される請求の範囲第 24項に記載の光走査型ディスプレイ駆動方法。
PCT/JP2006/301624 2005-02-02 2006-02-01 光走査型ディスプレイおよびそれの駆動方法 WO2006082827A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005026767A JP2006215201A (ja) 2005-02-02 2005-02-02 光走査型ディスプレイおよびそれの駆動方法
JP2005-026767 2005-02-02
JP2005278975A JP4779534B2 (ja) 2005-09-27 2005-09-27 光走査型ディスプレイ
JP2005-278975 2005-09-27

Publications (1)

Publication Number Publication Date
WO2006082827A1 true WO2006082827A1 (ja) 2006-08-10

Family

ID=36777211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301624 WO2006082827A1 (ja) 2005-02-02 2006-02-01 光走査型ディスプレイおよびそれの駆動方法

Country Status (1)

Country Link
WO (1) WO2006082827A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282299A (ja) * 2008-05-22 2009-12-03 E-Pin Optical Industry Co Ltd クロック周波数を生成するmemsスキャンコントローラおよびその制御方法
US7864393B2 (en) 2006-09-28 2011-01-04 Brother Kogyo Kabushiki Optical scanning element, optical scanning device, optical scanning display device, and retinal scanning display
JP4790875B1 (ja) * 2011-01-26 2011-10-12 パイオニア株式会社 二次元光走査装置
WO2012011183A1 (ja) * 2010-07-22 2012-01-26 パイオニア株式会社 画像生成装置
JP2012068349A (ja) * 2010-09-22 2012-04-05 Nippon Signal Co Ltd:The 光走査装置及びこれを用いた光測距装置
CN113918018A (zh) * 2013-03-15 2022-01-11 奇跃公司 显示系统和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513506A (ja) * 1995-10-09 1999-11-16 セルシウステク エレクトロニクス エービー 画像表示方法及び装置
JP2002357783A (ja) * 2001-06-01 2002-12-13 Victor Co Of Japan Ltd ディスプレイ装置及び画像表示方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11513506A (ja) * 1995-10-09 1999-11-16 セルシウステク エレクトロニクス エービー 画像表示方法及び装置
JP2002357783A (ja) * 2001-06-01 2002-12-13 Victor Co Of Japan Ltd ディスプレイ装置及び画像表示方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864393B2 (en) 2006-09-28 2011-01-04 Brother Kogyo Kabushiki Optical scanning element, optical scanning device, optical scanning display device, and retinal scanning display
JP2009282299A (ja) * 2008-05-22 2009-12-03 E-Pin Optical Industry Co Ltd クロック周波数を生成するmemsスキャンコントローラおよびその制御方法
WO2012011183A1 (ja) * 2010-07-22 2012-01-26 パイオニア株式会社 画像生成装置
JP5557913B2 (ja) * 2010-07-22 2014-07-23 パイオニア株式会社 画像生成装置
US9019176B2 (en) 2010-07-22 2015-04-28 Pioneer Corporation Image forming apparatus
JP2012068349A (ja) * 2010-09-22 2012-04-05 Nippon Signal Co Ltd:The 光走査装置及びこれを用いた光測距装置
JP4790875B1 (ja) * 2011-01-26 2011-10-12 パイオニア株式会社 二次元光走査装置
WO2012101782A1 (ja) * 2011-01-26 2012-08-02 パイオニア株式会社 二次元光走査装置
EP2535758A1 (en) * 2011-01-26 2012-12-19 Pioneer Corporation Two-dimensional optical scan device
US8358326B2 (en) 2011-01-26 2013-01-22 Pioneer Corporation Two-dimensional light scanning apparatus
EP2535758A4 (en) * 2011-01-26 2014-01-01 Pioneer Corp TWO-DIMENSIONAL OPTICAL SCANNING DEVICE
CN113918018A (zh) * 2013-03-15 2022-01-11 奇跃公司 显示系统和方法

Similar Documents

Publication Publication Date Title
JP4779534B2 (ja) 光走査型ディスプレイ
JP4929738B2 (ja) 光走査装置、光走査装置の制御方法及び画像表示装置
US9291817B2 (en) Optical deflection device, apparatus including the same, and method of controlling optical deflecting device
JP5549459B2 (ja) 画像表示装置
US9251730B2 (en) Image display apparatus and image scanning apparatus
JP5447114B2 (ja) 画像形成装置
CN101893812B (zh) 激光投影仪
US7982906B2 (en) Optical scanning device, image display device and retinal scanning display
US10187620B2 (en) Display device
JP4840175B2 (ja) 画像表示装置
JP2012103327A (ja) 画像表示装置
WO2006082827A1 (ja) 光走査型ディスプレイおよびそれの駆動方法
JP2007047243A (ja) 画像表示装置及び画像表示装置の制御方法
JP5083452B2 (ja) 光走査装置、光走査装置の制御方法及び画像表示装置
JP5494225B2 (ja) 画像形成装置
JP2011237707A (ja) 画像形成装置
US8089671B2 (en) Optical scanning device, image display device and retinal scanning display provided with optical scanning device
JP2006215201A (ja) 光走査型ディスプレイおよびそれの駆動方法
JP5402589B2 (ja) 光走査装置
JP2010217647A (ja) 画像形成装置
JP2007025607A (ja) 光走査装置、画像表示装置、光走査装置又は画像表示装置における反射ミラーの位置調節方法及び揺動状態検出方法
JP2010217646A (ja) 画像形成装置
JP2007079087A (ja) 画像表示装置及び画像表示装置の制御方法
JP5402588B2 (ja) 光走査装置
JP6123877B2 (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712767

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712767

Country of ref document: EP