WO2006078045A1 - Circuit pattern inspection device and method thereof - Google Patents

Circuit pattern inspection device and method thereof Download PDF

Info

Publication number
WO2006078045A1
WO2006078045A1 PCT/JP2006/301077 JP2006301077W WO2006078045A1 WO 2006078045 A1 WO2006078045 A1 WO 2006078045A1 JP 2006301077 W JP2006301077 W JP 2006301077W WO 2006078045 A1 WO2006078045 A1 WO 2006078045A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
conductive pattern
inspection
inspected
difference
Prior art date
Application number
PCT/JP2006/301077
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hamori
Shuji Yamaoka
Shogo Ishioka
Original Assignee
Oht Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oht Inc. filed Critical Oht Inc.
Publication of WO2006078045A1 publication Critical patent/WO2006078045A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • the present invention relates to a circuit pattern inspection apparatus and method, and more particularly, to a circuit pattern inspection apparatus and method that can inspect the quality of a conductive pattern formed on a glass substrate.
  • a pin contact method conventionally used is, for example, as described in Patent Document 1, for a substrate to be inspected.
  • Metal pin probes are set up at all terminals, and electrical signals are sent to the conductive pattern via these probes. Therefore, there is an advantage that a good S / N ratio (signal-to-noise ratio) can be obtained for the inspection signal, but there is a risk of damaging the product to be inspected and its pattern.
  • This pin contact type inspection confirms that the inspection signal supplied to the conductive pattern to be inspected has normally passed through the conductive pattern.
  • the inspection probe is connected to the conductive pattern adjacent to the conductive pattern to be inspected.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6 2-2 6 9 0 7 5
  • the pin signal is supplied only to the inspection signal supply side for supplying and detecting the inspection signal to the conductive pattern to be inspected.
  • the probe is brought into direct contact and the inspection signal is detected in a non-contact state via capacitive coupling between the conductive pattern and the sensor on the other end side.
  • a non-contact method in which a continuity test is performed in a non-contact state on both the signal supply side and the detection side via capacitive coupling has been used.
  • noise countermeasures are very important for improving the accuracy of inspections. Therefore, the prevention of external noise and the outflow of noise to the outside of the device Even if various filters are installed for the purpose of prevention, the multiple response patterns cannot be scanned at high speed due to the slow response speed of the filter. Therefore, the influence on the inspection speed and inspection time becomes large, so it is not possible to add a fill evening.
  • An object of the present invention is to provide a circuit pattern inspection apparatus and method that can improve the accuracy of detecting a conductive pattern even in a noisy environment. It is.
  • the present invention is a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, and a signal supply means for supplying an inspection signal to a first part of a conductive pattern to be inspected.
  • a first detection means capable of detecting a first signal from a second portion of the conductive pattern to be inspected, and a second from a conductive pattern at least 4 to 5 patterns apart from the conductive pattern to be inspected.
  • a second detection means capable of detecting a signal of the first signal, a difference means for obtaining a difference between the first signal and the second signal, and a change in the difference signal obtained by the difference means.
  • an identification means for identifying pass / fail.
  • the present invention also provides a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, the signal supply means for supplying an inspection signal to a first part of the conductive pattern to be inspected, and the inspection Target conductive pattern First detection means capable of detecting the first signal from the second part of the sensor and second detection capable of detecting the second signal from the conductive pattern separated from the conductive pattern to be inspected by a predetermined distance.
  • the difference means removes the second signal that is the noise signal from the first signal in which the noise signal is superimposed on the inspection signal. Further, the identification means identifies a disconnection state of the conductive pattern based on the signal from which the noise signal has been removed.
  • the inspection signal is supplied to the conductive pattern and the inspection signal is detected from the conductive pattern in the vicinity of the tips of all the patterns at one end of the conductive pattern.
  • the signal supply means includes a plate member facing the conductive pattern at a constant interval, and supplies the inspection signal in a non-contact manner through capacitive coupling between the plate member and the conductive pattern.
  • each of the first detection means and the second detection means includes a plate member facing the conductive pattern at a constant interval, and through capacitive coupling between the plate member and the conductive pattern. It is characterized by detecting signals without contact.
  • the present invention is a circuit pattern inspection method in a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, and a step of supplying an inspection signal to a first part of a conductive pattern to be inspected And a first detection step for detecting a first signal from a second portion of the conductive pattern to be inspected, and a conductive pattern that is at least 4 to 5 away from the conductive pattern to be inspected.
  • an identification step for identifying whether the pattern is good or bad.
  • the present invention is a circuit pattern inspection method in a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, and supplies an inspection signal to a first part of the conductive pattern to be inspected
  • an identification step for identifying.
  • the second signal that is the noise signal is removed from the first signal in which a noise signal is superimposed on the inspection signal.
  • the identifying step is characterized in that the disconnection state of the conductive pattern is identified based on the signal from which the noise signal has been removed.
  • the signal supply unit, the first detection unit, and the second detection unit are further configured to sequentially scan the conductive pattern to be inspected.
  • a step for positioning and moving the step is provided.
  • the inspection signal is supplied to the conductive pattern and the inspection signal is detected from the conductive pattern in the vicinity of the tips of all the patterns at one end of the conductive pattern.
  • the signal supply means includes a plate member facing the conductive pattern at a constant interval, and supplies the inspection signal in a non-contact manner through capacitive coupling between the plate member and the conductive pattern. To do.
  • each of the first detection unit and the second detection unit includes a plate member that is opposed to the conductive pattern at a constant interval, and is not connected via capacitive coupling between the plate member and the conductive pattern. A signal is detected by contact.
  • FIG. 1 is a block diagram showing the overall configuration of a substrate inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of signal measurement results in the substrate inspection apparatus according to the present embodiment.
  • FIG. 3 is a diagram equivalently showing a measurement circuit of the substrate inspection apparatus according to the present embodiment.
  • FIG. 4 is a diagram showing an example of a noise signal waveform and a measurement signal waveform in which noise is superimposed on the inspection signal.
  • FIG. 5 is a flowchart showing an inspection procedure in the substrate inspection apparatus according to the present embodiment.
  • FIG. 1 is a block diagram showing the overall configuration of the substrate inspection apparatus according to the present embodiment.
  • the inspection target of the substrate inspection apparatus shown in FIG. 1 is, for example, a liquid crystal display panel or an evening type panel.
  • Check h for pass / fail (disconnected state of conductive pattern and presence / absence of short circuit between patterns).
  • These conductive patterns are, for example, row-shaped conductive patterns in the above-described panel before bonding, and for example, chromium, silver, aluminum, ITO, etc. are used as the conductive material.
  • these conductive patterns 2a to 2h to be inspected have a configuration in which both ends are independent from each other and separated from adjacent conductive patterns as shown in FIG.
  • the inspection target is not limited to the conductive pattern having such a configuration.
  • the control unit 15 is, for example, a microprocessor that controls the entire apparatus, and comprehensively controls the inspection sequence.
  • R O M 18 control procedures including a board inspection procedure described later are stored as a computer program.
  • R A M I 7 is a memory used as a work area for temporarily storing control data, inspection data, and the like.
  • One end of the conductive pattern to be inspected (conductive pattern 2a in the example of substrate inspection shown in Fig. 1) is a power supply unit 1 capable of supplying an AC inspection signal of a predetermined frequency to the conductive pattern 2a in a non-contact manner.
  • 2 is positioned, and the other end of the conductive pattern 2 a is an open sensor 1 for detecting whether the pattern is good or not in a non-contact manner, that is, whether the pattern is in an open state (also called a disconnected state).
  • 3 is arranged.
  • the open sensor 13 is connected to the adjacent conductive pattern (4 patterns away from the conductive pattern 2 e in the example shown in FIG. 1) at a predetermined distance (several patterns) away from the conductive pattern 2 a.
  • a noise sensor 19 is placed on the same end as the one where it is placed. In this board inspection apparatus, the noise sensor 19 and the open sensor 13 are the same in size, thickness, etc., and the ground resistance is also in the same state.
  • noise originating from other devices and mecha-sound noise of the inspection device are external noise 1 1 a to 1 1 c from various directions at various levels. Will come in. These noises affect not only the specific patterns of the conductive patterns 2a to 2h, but also the patterns, and these patterns flow as noise currents.
  • the pattern in which the open sensor 1 3 is arranged and a predetermined interval (for example, 4 to 5 pattern intervals)
  • a noise sensor 19 is arranged in a non-contact manner at the end of a conductive pattern that is far away. In the example shown in FIG. 1, the noise current of the conductive pattern 2 e is detected by the noise sensor 19.
  • the distance between the noise sensor 1 9 and the open sensor 1 3 can be reduced by the differential amplifier 2 0 placed immediately after the open sensor 1 3 and the noise sensor 1 9 to eliminate the influence of external noise and the like on the detection signal.
  • the optimum distance between the noise sensor 19 and the open sensor 13 varies depending on the size of the substrate inspection device itself, the pattern interval of the conductive pattern to be inspected, the pattern width, the material, etc. As an initial value, keep at least 4-5 patterns apart, and adjust as necessary.
  • the weak signals detected by the open sensor 1 3 and noise sensor 1 9 Amplified by a differential amplifier (amplifier) 20.
  • the amplifier 20 is composed of, for example, an operational amplifier (op amp) or the like in order to amplify a minute signal with a predetermined amplification degree.
  • the amplifier 20 is arranged immediately after the open sensor 13 and the noise sensor 19, thereby eliminating the influence of external noise and the like on the detection signal itself.
  • the power supply unit 12 is connected to a signal generation unit 10 that is an oscillator of the inspection signal.
  • a high-frequency signal of 20.0 kHz is supplied to the power supply unit 12. Is output.
  • the power feeding unit 12 includes a flat plate plate for supplying an AC signal to the conductive pattern 2 in a non-contact manner. Therefore, the inspection signal is supplied to the conductive pattern through capacitive coupling between the power feeding unit 12 and the conductive pattern. Then, the inspection signal supplied to the conductive pattern reaches the open sensor 13 through the capacitive coupling between the conductive pattern and the open sensor 13.
  • the drive unit 16 receives the control signal from the control unit 15 and moves the entire stage 14 on which the inspection target is mounted at a predetermined speed in a predetermined direction, thereby supplying the power supply unit 1 2 and the open sensor 1. 3 and the noise sensor 19 can sequentially scan the conductive pattern to be inspected in a non-contact state. Therefore, the drive unit 16 moves the stage 14 in a predetermined direction on the m order.
  • the stage 14 on which the inspection object is placed is moved.
  • the power feeding unit 12, the open sensor 13, and the noise A unit that integrates the sensor 19 may be moved in a predetermined direction so that a conductive pattern or the like to be inspected can be sequentially scanned.
  • the drive control of the stage 14 is performed so as to move in the direction indicated by the arrow in FIG. In this way, the conductive patterns 2a to 2h arranged in a row on the substrate 3 are sequentially scanned, and their open states are individually inspected.
  • An output signal from the amplifier 20 is sent to the signal processing unit 21.
  • the signal processing unit 21 performs a conversion process such as a waveform process for converting the amplified AC signal into a DC level signal, or an analog signal into a digital signal.
  • the control unit 15 compares the result obtained by processing by the signal processing unit 21 with a reference value set in advance, and determines whether or not the processing result is equal to or greater than the reference value. The determination result is sent from the control unit 15 to the display unit 25.
  • the display unit 25 is composed of, for example, CRT, a liquid crystal display, and the like, and visually displays in a format that allows the inspector to understand the quality of the inspection target (conductive pattern) that is the determination result sent from the control unit 15. If there is a defect in the conductive pattern, the position of the conductive pattern on the substrate is also displayed.
  • the display of the inspection result is not limited to the visible display, and may be output in a format such as sound. Also, visual display and sound may be mixed.
  • the open sensor 13 is capacitively coupled to the conductive pattern to be inspected, and detects the inspection signal (alternating current signal) flowing through the conductive pattern as the strength of the detection signal level. For this reason, the power supply unit 1 2 moves in the direction of the arrow shown in Fig. 1, and the open sensor 1 3 moves in the same direction by the same distance. Extract changes.
  • an inspection signal proportional to the corresponding area between the flat plate plate of the power feeding unit 12 and the conductive pattern can be supplied to the conductive pattern. Then, the conductive path to which the inspection signal is supplied If there is no disconnection (open state) in the turn, the inspection signal is detected by the open sensor 1 3, but when the power feeding unit 1 2 is between the conductive patterns by scanning, the inspection signal supplied to the conductive pattern is The output of the open sensor 1 3 decreases because it becomes negligible. In other words, the voltage level detected by the open sensor 13 decreases (for example, see Figure 2).
  • the inspection AC signal supplied from the power supply unit 1 2 does not reach the open sensor 1 3 and is detected by the open sensor 1 3 as described later.
  • the voltage level decreases. For this reason, if a large drop in the output voltage level from the open sensor 13 is detected, it can be determined that there is a break in the conductive pattern at that position.
  • the signal detected by the open sensor 13 from the inspection target pattern (this signal contains both inspection signals and noise) and
  • the signal detected by the noise sensor 19 from the conductive pattern to which no inspection signal is supplied (only noise) is input to the positive input terminal (+) and negative input terminal (-) of the differential amplifier 20 for example.
  • an open sensor 13 is arranged, and the normal voltage detection value (that is, how the continuous signal in a non-defective product changes) is measured in advance, and a voltage different from that in the inspection process. If the value (signal change) is obtained, it can be determined that the conductive pattern is open. In this way, it is possible to accurately detect the presence or absence of disconnection of the conductive pattern with a simple configuration.
  • FIG. 2 shows an example of the inspection result in the substrate inspection apparatus according to the present embodiment.
  • the vertical axis is the output voltage (m V p p) from the sensor, and the horizontal axis is the movement distance (/ m) of the sensor (or stage).
  • Fig. 2 (a) shows the measured waveform when the output of the sensor (open sensor 1 3) is not passed through the differential amplifier, and
  • Fig. 2 (b) shows the detection output by the open sensor 1 3. This is the output voltage waveform when the noise signal is removed by the differential amplifier.
  • Fig. 2 (a) it is difficult to identify the defective part from the signal waveform with the noise superimposed on it, but with the symbols A, B, C, D, and E in Fig. 2 (b).
  • a significant waveform change (decrease in signal level) was detected.
  • the differential amplifier 2 0 immediately after the open sensor 1 3 and the noise sensor 1 9 to eliminate the influence of external noise etc. on the detection signal, the normal and open locations of the conductive pattern (conductive The detection results differ greatly depending on whether the pattern is disconnected. Therefore, it can be seen that the defective part can be easily identified and recognized in the substrate inspection apparatus according to the present embodiment.
  • the measurement conditions of the waveform shown in Fig. 2 are the gears between the sensor and the conductive pattern.
  • the sensor is set to 50 jum
  • the moving speed of the sensor is 30 mm
  • the applied voltage is 3 220 V
  • the distance between the sensors is 1550 mm.
  • FIG. 3 equivalently shows a measurement circuit of the substrate inspection apparatus according to the present embodiment including the differential amplifier 20.
  • FIG. 4 (a) shows an example of the noise signal waveform
  • FIG. (b) shows an example of a measurement signal waveform in which noise is superimposed on the inspection signal.
  • V l is a noise signal
  • v 2 is a measurement signal
  • resistance Ri is the resistance of noise sensor 19
  • resistance R 2 is the resistance of open sensor 13.
  • FIG. 5 is a flowchart showing an inspection procedure in the substrate inspection apparatus according to the present embodiment.
  • the glass substrate (inspection substrate) on which the conductive pattern to be inspected is formed is conveyed to a predetermined position of the substrate inspection apparatus along a conveyance path (not shown).
  • the inspection substrate is held and positioned by the substrate mounting stage 14 described above.
  • This board-mounted stage 14 is configured so that three-dimensional position control is possible by four-axis control of XYZ 0 angle.
  • the open sensor 13 is positioned so as to be near the right end of the conductive pattern 2a which is the innermost side of the conductive pattern shown in FIG.
  • step S 3 the signal generation unit 10 is controlled by the control unit 15, and the above-described high-frequency signal (inspection signal) of 200 kHz ) Is supplied to the power feeding section 1 2.
  • step S5 the signal processing unit 21 performs the above-described waveform processing, signal conversion processing, and the like.
  • step S6 the control unit 15 stores these processing results in the memory (R A M I 7).
  • step S7 it is determined whether processing and inspection have been completed for all conductive patterns to be inspected. This determination is made, for example, based on whether or not the movement distance of the inspection substrate matches the distance obtained by adding up the total of all the conductive pattern widths and the total of the pattern intervals. Therefore, if the result of determination in step S7 is that processing / inspection of all conductive patterns has not been completed, the control unit 15 determines that the next conductive pattern to be inspected is the open sensor 1 3 in step S8.
  • the drive unit 16 is controlled to move the inspection board by a predetermined distance so that it is positioned directly below (specifically, The open sensor 13 is controlled so as to move relatively in the direction of the arrow in FIG. 2 by the distance between the centers of adjacent row-shaped conductive patterns).
  • control unit 15 returns the process to step S5 and performs the same process as described above.
  • the above-described waveform processing and the like are continuously executed for the conductive pattern to be inspected, and the processing results corresponding to each pattern are sequentially stored in R A M I 7.
  • the procedure from step S5 to step S8 is performed while the inspection substrate is moved while maintaining the state where the inspection signal is supplied to the power feeding unit (the state of step S3). That is, the unit 5 sequentially scans the conductive pattern to be inspected.
  • This movement of the inspection board is stopped while the inspection board is moved by a predetermined distance (Step S 8) and the sensor output signal processing (Step S 5) and the processing result are stored (Step S 6).
  • the sensor output signal is processed (Step S 5) and the processing result is stored (Step S 6) while the inspection board is moved a predetermined distance (Step S 8). You may move.
  • the procedure from step S5 to step S8 is effective if the inspection board is moved continuously without stopping.
  • Step S in step S9 the processing result stored in RAM 17 is analyzed in step S9, and the quality of the inspection object is determined based on the analysis result. Specifically, the result obtained by processing the sensor output signal is compared with a reference value, and if it is greater than or equal to the reference value, it is determined that the conductive pattern is not open.
  • step S10 if it is determined that the detection signal levels at the respective conductive pattern positions are all within the predetermined range, it is determined that all the conductive patterns are normal.
  • the control unit 15 controls the display unit 25 to display that the inspection object is a non-defective product.
  • the inspection board is lowered to the transfer position, placed on the transfer path, and transferred to the next stage.
  • the process returns to step S1, and the substrate to be inspected next is transported to a predetermined position of the substrate inspection apparatus.
  • control unit 15 checks the display unit 25 in step S 1 3. Control to display that the target is defective. Then, the inspection substrate is lowered to the transfer position and placed on the transfer path and transferred to the next stage, or the defective substrate is removed from the transfer path.
  • the arrangement of the conductive pattern to be inspected on the board is shown on the board.
  • the present invention is not limited to the example in which only the pattern shown in 1 is provided, and the inspection method of the present invention can be applied to a case where a plurality of sets of inspection patterns are arranged on the same substrate.
  • the presence or absence of the open state of the conductive pattern to be inspected is determined based on the detection signals from the open sensor 1 3 and the noise sensor 1 9. It is also possible to detect a short circuit between each other.
  • the above-mentioned pattern is adjacent to the conductive pattern in which the power feeding section 12 is disposed, and the end portion on the opposite side of the power feeding section 12 is disposed in a non-contact manner.
  • Open sensor 1 A short sensor having the same function as 3 is arranged. Even in this case, since the short sensor is capacitively coupled to the conductive pattern to be inspected, if the adjacent conductive patterns are short-circuited, the inspection from the power feeding section 12 A signal is applied to the pattern in a short circuit condition.
  • the inspection signal flowing through the short-circuit point is detected by the short sensor as the strength of the detection signal level. That is, the short sensor detects the short-circuit current as a higher level inspection signal.
  • the signal detected by the short sensor and the signal detected by the noise sensor 19 are input to the positive input terminal (+) and negative input terminal (one) of the differential amplifier (op amp), respectively, and are amplified.
  • the noise signal is applied to all conductive patterns.
  • the differential amplifier takes the difference between these signals and removes noise from the detection signal of the short sensor.
  • the short sensor may detect a signal from, for example, at least two column-shaped conductive patterns adjacent to the column-shaped conductive pattern to be inspected.
  • the short sensor is moved in the direction of the arrow shown in FIG. It is possible to extract changes in detection results.
  • a power feeding unit that supplies an inspection signal to one end of the conductive pattern is arranged, and the conductive pattern
  • An open sensor for detecting the inspection signal is placed at the other end, and a noise sensor is placed at the end on the same side as the open sensor is placed in a conductive pattern several distances away from the conductive pattern.
  • the signal that mixed the inspection signal and noise detected by the open sensor from the inspection target pattern and the noise sensor A noise-only signal detected from the conductive pattern and not mixed with the inspection signal is input to the differential amplifier.
  • noise signals are in-phase component signals with respect to the positive and negative input terminals of the differential amplifier, only the noise signal is easily removed from the detection signal by taking the difference with the differential amplifier. It is possible to eliminate the influence of noise and improve the detection accuracy of the open state of the conductive pattern.
  • the inspection speed of the conductive pattern can be increased.

Abstract

There are provided a circuit pattern inspection device and method thereof capable of detecting the open state of a conductive pattern on a substrate. A power supply unit (12) for supplying an inspection signal in a non-contact way is arranged at one end of the conductive pattern and an open sensor (13) for detecting the inspection signal in a non-contact way is arranged at the other end of the conductive pattern. Furthermore, a noise sensor (19) is arranged in a non-contact way on a conductive pattern located at a distance of several patterns from the aforementioned conductive pattern and at the end of the same side as the open sensor (13). A signal containing the inspection signal and a noise detected by the open sensor (13) and a signal containing only noise not mixed with the inspection signal detected by a noise sensor are inputted to a differential amplifier (20), where the noise as a signal of the same phase component is removed. Thus, it is possible to surely inspect the conductive patterns arranged on a string shape on the substrate in a non-contact way.

Description

明細書 回路パターン検査装置およびその方法 技術分野  Description: Circuit pattern inspection apparatus and method
本発明は、 回路パターン検査装置およびその方法に関し、 例えば、 ガ ラス基板に形成された導電パターンの良否を検査可能な回路パターン検 査装置およびその方法に関するものである。 背景技術  The present invention relates to a circuit pattern inspection apparatus and method, and more particularly, to a circuit pattern inspection apparatus and method that can inspect the quality of a conductive pattern formed on a glass substrate. Background art
基板上に形成された回路パターンを検査する方法の代表的なものとし て、 従来より使用されているピンコンタク ト方式は、 例えば、 特許文献 1に記載されているように、 検査対象とする基板の全端子に金属性のピ ンプローブを立てて、 これらのプローブを経由して導電パターンへ電気 信号を送り込んでいる。 そのため、 検査信号について良好な S / N比 ( 信号対雑音比) が得られるという利点がある反面、 検査対象製品自体や そのパターンを傷つけるおそれがある。  As a typical method for inspecting a circuit pattern formed on a substrate, a pin contact method conventionally used is, for example, as described in Patent Document 1, for a substrate to be inspected. Metal pin probes are set up at all terminals, and electrical signals are sent to the conductive pattern via these probes. Therefore, there is an advantage that a good S / N ratio (signal-to-noise ratio) can be obtained for the inspection signal, but there is a risk of damaging the product to be inspected and its pattern.
このピンコンタク ト方式による検査は、 被検査導電パターンに供給し た検査信号が、 その導電パターンを正常に通過したことを確認するもの であるが、 さらに、 検査プローブを被検査導電パターンに隣接するパ夕 ーンにも配置し、 その隣接パターンの他端からも信号が検出されるか否 かを判断することで、 被検査導電パターンと隣接パターンとの短絡 (シ ョート) 状態を判定する方法もある。  This pin contact type inspection confirms that the inspection signal supplied to the conductive pattern to be inspected has normally passed through the conductive pattern. In addition, the inspection probe is connected to the conductive pattern adjacent to the conductive pattern to be inspected. There is also a method for determining the short-circuit state between the conductive pattern to be inspected and the adjacent pattern by determining whether a signal is also detected from the other end of the adjacent pattern. is there.
特許文献 1 特開昭 6 2— 2 6 9 0 7 5号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 6 2-2 6 9 0 7 5
検査対象である導電パターンへの検査信号の供給とその検出のため、 上記のピンコンタク ト方式以外にも、 検査信号の供給側でのみピンプロ ーブを直接接触させ、 他端側では、 導電パターンとセンサ間の容量結合 を介して非接触状態で検査信号を検出する、 非接触—接触併用方式をと るものがある。 さらに、 容量結合を介して信号の供給側と検出側の両方 において非接触状態で導通検査を行う非接触方式も従来より使用されて いる。 In addition to the pin contact method described above, the pin signal is supplied only to the inspection signal supply side for supplying and detecting the inspection signal to the conductive pattern to be inspected. There is a non-contact / contact combination method in which the probe is brought into direct contact and the inspection signal is detected in a non-contact state via capacitive coupling between the conductive pattern and the sensor on the other end side. Furthermore, a non-contact method in which a continuity test is performed in a non-contact state on both the signal supply side and the detection side via capacitive coupling has been used.
しかし、 回路パターンを検査するための検査システムが設置されるェ 場等は、 通常、 そのシステム周辺で様々な設備や装置が稼動しているた め、 それらがノイズ源となり、 検査システムに対して外来ノイズが多い 使用環境となる。 このような環境下においては、 特にグランドラインに 定常的にコモンモードのノイズが重畳している。 また、 検査システム自 身が使用しているサーボモー夕類がノイズの発生源ともなつている。 従来の検査システム、 とりわけ上述した非接触方式を採用するものは 、 極めて微弱な信号を扱っている。 例えば、 導電パターンのオープン検 出を行う場合、 導電パターンにオープン状態がないときの検出信号レべ ルと、 オープン箇所があるときの検出信号レベルのわずかなレベル差を もとに、 パターンの良否判定を行っている。 このとき、 外部からのノィ ズが検査対象パターンにのるだけでなく、 測定信号にも重畳し、 パター ン検査の安定度や確度に悪影響がある。 その結果、 センサ検出信号とノ ィズとの区別が困難になり、 検出結果の信頼性という点でも問題が生じ る。  However, in a field where an inspection system for inspecting circuit patterns is installed, various equipment and devices are usually operating around the system, so they become noise sources and There is a lot of external noise. In such an environment, common-mode noise is constantly superimposed on the ground line. Servo motors used by the inspection system itself are also sources of noise. Conventional inspection systems, especially those that employ the non-contact method described above, handle very weak signals. For example, when conducting open detection of a conductive pattern, the quality of the pattern is determined based on a slight level difference between the detection signal level when the conductive pattern is not open and the detection signal level when there is an open location. Judgment is being made. At this time, not only the external noise is applied to the pattern to be inspected but also superimposed on the measurement signal, which adversely affects the stability and accuracy of the pattern inspection. As a result, it becomes difficult to distinguish between the sensor detection signal and noise, and a problem arises in terms of the reliability of the detection result.
よって、 従来の検査装置では、 隣り合った導電パターンからの信号を 連続して検出しているため、 様々なノイズが検出信号にのってしまうこ とを回避できず、 これらのノイズを、 例えば、 微分回路等を使用してソ フト的に除去している。  Therefore, since conventional inspection apparatuses continuously detect signals from adjacent conductive patterns, it is impossible to avoid various noises from appearing on the detection signal. It is softly removed using a differentiation circuit.
このように、 検査の確度を上げるためには、 ノイズ対策が非常に重要 となる。 そこで、 外来ノイズの阻止、 および装置外へのノイズの流出を 防止する目的で各種フィルターを装備しても、 フィル夕一の応答速度が 遅いため複数の検査対象パターンを高速に走査 (スキャン) できない。 従って、 検査速度や検査時間に与える影響が大きくなるため、 フィル夕 一を付加することはできない。 In this way, noise countermeasures are very important for improving the accuracy of inspections. Therefore, the prevention of external noise and the outflow of noise to the outside of the device Even if various filters are installed for the purpose of prevention, the multiple response patterns cannot be scanned at high speed due to the slow response speed of the filter. Therefore, the influence on the inspection speed and inspection time becomes large, so it is not possible to add a fill evening.
さらには、 検査対象を載置するステージやセンサ一ヘッ ドのみをダラ ンドに接続しても、 それぞれのグランドレベルがノイズにより変動する ことになるため、 検査に与える影響がさらに大きくなる。 発明の開示  Furthermore, even if only the stage or sensor head on which the test object is placed is connected to the ground, the ground level fluctuates due to noise, so the effect on the inspection is further increased. Disclosure of the invention
本発明は、 上述した課題に鑑みてなされたもので、 その目的とすると ころは、 ノイズの多い環境下でも導電パターンの良否検出精度を上げる ことのできる回路パターン検査装置およびその方法を提供することであ る。  The present invention has been made in view of the above-described problems. An object of the present invention is to provide a circuit pattern inspection apparatus and method that can improve the accuracy of detecting a conductive pattern even in a noisy environment. It is.
かかる目的を達成し、 上述した課題を解決する一手段として、 例えば 、 以下の構成を備える。 すなわち、 本発明は、 基板に配された導電パ夕 ーンの状態を検査する回路パターン検査装置であって、 検査対象となる 導電パターンの第 1の部位に検査信号を供給する信号供給手段と、 上記 検査対象となる導電パターンの第 2の部位より第 1の信号を検出可能な 第 1の検出手段と、 上記検査対象となる導電パターンから少なくとも 4 乃至 5パターン間隔離れた導電パターンより第 2の信号を検出可能な第 2の検出手段と、 上記第 1の信号と第 2の信号の差分を求める差分手段 と、 上記差分手段で得られた差分信号の変化に基づいて上記導電パター ンの良否を識別する識別手段とを備えることを特徴とする。  As a means for achieving this object and solving the above-mentioned problems, for example, the following configuration is provided. That is, the present invention is a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, and a signal supply means for supplying an inspection signal to a first part of a conductive pattern to be inspected. A first detection means capable of detecting a first signal from a second portion of the conductive pattern to be inspected, and a second from a conductive pattern at least 4 to 5 patterns apart from the conductive pattern to be inspected. A second detection means capable of detecting a signal of the first signal, a difference means for obtaining a difference between the first signal and the second signal, and a change in the difference signal obtained by the difference means. And an identification means for identifying pass / fail.
また、 本発明は、 基板に配された導電パターンの状態を検査する回路 パターン検査装置であって、 検査対象となる導電パターンの第 1の部位 に検査信号を供給する信号供給手段と、 上記検査対象となる導電パター ンの第 2の部位より第 1の信号を検出可能な第 1の検出手段と、 上記検 査対象となる導電パターンから所定間隔離れた導電パターンより第 2の 信号を検出可能な第 2の検出手段と、 上記第 1の信号と第 2の信号の差 分を求める差分手段と、 上記差分手段で得られた差分信号の変化に基づ いて上記導電パターンの良否を識別する識別手段とを備えることを特徴 とする。 The present invention also provides a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, the signal supply means for supplying an inspection signal to a first part of the conductive pattern to be inspected, and the inspection Target conductive pattern First detection means capable of detecting the first signal from the second part of the sensor and second detection capable of detecting the second signal from the conductive pattern separated from the conductive pattern to be inspected by a predetermined distance. Means, difference means for obtaining a difference between the first signal and the second signal, and identification means for identifying the quality of the conductive pattern based on a change in the difference signal obtained by the difference means. It is characterized by this.
例えば、 上記差分手段は、 上記検査信号に上記ノイズ信号が重畳した 上記第 1の信号より、 上記ノィズ信号である上記第 2の信号を除去する ことを特徴とする。 また、 上記識別手段は、 上記ノイズ信号が除去され た信号をもとに上記導電パターンの断線状態を識別することを特徴とす る。  For example, the difference means removes the second signal that is the noise signal from the first signal in which the noise signal is superimposed on the inspection signal. Further, the identification means identifies a disconnection state of the conductive pattern based on the signal from which the noise signal has been removed.
例えば、 さらに、 検査対象とする上記導電パターンを順次走査するよ う、 上記信号供給手段、 上記第 1の検出手段、 および上記第 2の検出手 段を位置決め移動させる手段を備えることを特徴とする。  For example, further comprising: means for positioning and moving the signal supply means, the first detection means, and the second detection means so as to sequentially scan the conductive pattern to be inspected. .
例えば、 上記走査により、 上記導電パターンの一方端部のすべてのパ ターンの先端近傍について上記導電パターンへの上記検査信号の供給と 上記導電パターンよりの上記検査信号の検出を行うことを特徴とする。 また、 例えば、 上記信号供給手段は、 上記導電パターンと一定間隔で 対向するプレート部材を含み、 上記プレート部材と上記導電パターン間 の容量結合を介して非接触で上記検査信号を供給することを特徴とする 例えば、 上記第 1の検出手段、 および上記第 2の検出手段各々は、 上 記導電パターンと一定間隔で対向するプレート部材を含み、 上記プレー ト部材と上記導電パターン間の容量結合を介して非接触で信号を検出す ることを特徴とする。  For example, by the scanning, the inspection signal is supplied to the conductive pattern and the inspection signal is detected from the conductive pattern in the vicinity of the tips of all the patterns at one end of the conductive pattern. . In addition, for example, the signal supply means includes a plate member facing the conductive pattern at a constant interval, and supplies the inspection signal in a non-contact manner through capacitive coupling between the plate member and the conductive pattern. For example, each of the first detection means and the second detection means includes a plate member facing the conductive pattern at a constant interval, and through capacitive coupling between the plate member and the conductive pattern. It is characterized by detecting signals without contact.
さらに、 上述した課題を解決する他の手段として、 例えば、 以下の構 成を備える。 すなわち、 本発明は、 基板に配された導電パターンの状態 を検査する回路パターン検査装置における回路パターン検査方法であつ て、 検査対象となる導電パターンの第 1の部位に検査信号を供給するス テツプと、 上記検査対象となる導電パターンの第 2の部位より第 1の信 号を検出する第 1の検出ステップと、 上記検査対象となる導電パターン から少なく とも 4乃至 5つ離れた導電パターンより第 2の信号を検出す る第 2の検出ステップと、 上記第 1の信号と第 2の信号の差分を求める 差分算出ステツプと、 上記差分算出ステツプで得られた差分信号の変化 に基づいて上記導電パターンの良否を識別する識別ステツプとを備える ことを特徴とする。 Furthermore, as another means for solving the above-mentioned problem, for example, the following configuration Prepare for the completion. That is, the present invention is a circuit pattern inspection method in a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, and a step of supplying an inspection signal to a first part of a conductive pattern to be inspected And a first detection step for detecting a first signal from a second portion of the conductive pattern to be inspected, and a conductive pattern that is at least 4 to 5 away from the conductive pattern to be inspected. A second detection step for detecting the second signal, a difference calculation step for obtaining a difference between the first signal and the second signal, and a change in the difference signal obtained in the difference calculation step. And an identification step for identifying whether the pattern is good or bad.
またさらに、 本発明は、 基板に配された導電パターンの状態を検査す る回路パターン検査装置における回路パターン検査方法であって、 検査 対象となる導電パターンの第 1の部位に検査信号を供給するステップと 、 上記検査対象となる導電パターンの第 2の部位より第 1の信号を検出 する第 1の検出ステップと、 上記検査対象となる導電パターンから所定 間隔離れた導電パターンより第 2の信号を検出する第 2の検出ステップ と、 上記第 1の信号と第 2の信号の差分を求める差分算出ステップと、 上記差分算出ステツプで得られた差分信号の変化に基づいて上記導電パ ターンの良否を識別する識別ステツプとを備えることを特徴とする。 例えば、 上記差分算出ステップでは、 上記検査信号にノイズ信号が重 畳した上記第 1の信号より、 上記ノイズ信号である上記第 2の信号が除 去されることを特徴とする。 また、 例えば、 上記識別ステップは、 上記 ノイズ信号が除去された信号をもとに上記導電パターンの断線状態を識 別することを特徴とする。  Furthermore, the present invention is a circuit pattern inspection method in a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, and supplies an inspection signal to a first part of the conductive pattern to be inspected A first detection step of detecting a first signal from a second portion of the conductive pattern to be inspected, and a second signal from a conductive pattern spaced a predetermined distance from the conductive pattern to be inspected A second detection step for detecting; a difference calculating step for obtaining a difference between the first signal and the second signal; and whether the conductive pattern is good or bad based on a change in the difference signal obtained in the difference calculating step. And an identification step for identifying. For example, in the difference calculating step, the second signal that is the noise signal is removed from the first signal in which a noise signal is superimposed on the inspection signal. Further, for example, the identifying step is characterized in that the disconnection state of the conductive pattern is identified based on the signal from which the noise signal has been removed.
例えば、 さらに、 検査対象とする上記導電パターンを順次走査するよ う、 上記信号供給手段、 上記第 1の検出手段、 および上記第 2の検出手 段を位置決め移動させるステツプを備えることを特徴とする。 For example, the signal supply unit, the first detection unit, and the second detection unit are further configured to sequentially scan the conductive pattern to be inspected. A step for positioning and moving the step is provided.
例えば、 上記走査により、 上記導電パターンの一方端部のすべてのパ ターンの先端近傍について上記導電パターンへの上記検査信号の供給と 上記導電パターンよりの上記検査信号の検出を行うことを特徴とする。 例えば、 上記信号供給手段は、 上記導電パターンと一定間隔で対向す るプレート部材を含み、 上記プレート部材と上記導電パターン間の容量 結合を介して非接触で上記検査信号を供給することを特徴とする。  For example, by the scanning, the inspection signal is supplied to the conductive pattern and the inspection signal is detected from the conductive pattern in the vicinity of the tips of all the patterns at one end of the conductive pattern. . For example, the signal supply means includes a plate member facing the conductive pattern at a constant interval, and supplies the inspection signal in a non-contact manner through capacitive coupling between the plate member and the conductive pattern. To do.
また、 例えば、 上記第 1の検出手段、 および上記第 2の検出手段各々 は、 上記導電パターンと一定間隔で対向するプレート部材を含み、 上記 プレート部材と上記導電パターン間の容量結合を介して非接触で信号を 検出することを特徴とする。 図面の簡単な説明  In addition, for example, each of the first detection unit and the second detection unit includes a plate member that is opposed to the conductive pattern at a constant interval, and is not connected via capacitive coupling between the plate member and the conductive pattern. A signal is detected by contact. Brief Description of Drawings
第 1図は、 本発明の実施の形態例に係る基板検査装置の全体構成を示 すブロック図である。  FIG. 1 is a block diagram showing the overall configuration of a substrate inspection apparatus according to an embodiment of the present invention.
第 2図は、 本実施の形態例に係る基板検査装置における信号測定結果 の一例を示す図である。  FIG. 2 is a diagram showing an example of signal measurement results in the substrate inspection apparatus according to the present embodiment.
第 3図は、 本実施の形態例に係る基板検査装置の測定回路を等価的に 示す図である。  FIG. 3 is a diagram equivalently showing a measurement circuit of the substrate inspection apparatus according to the present embodiment.
第 4図は、 ノイズ信号波形と、 検査信号にノイズが重畳した測定信号 波形の一例を示す図である。  FIG. 4 is a diagram showing an example of a noise signal waveform and a measurement signal waveform in which noise is superimposed on the inspection signal.
第 5図は、 本実施の形態例に係る基板検査装置での検査手順を示すフ 口一チヤ一トである。 発明を実施するための最良の形態  FIG. 5 is a flowchart showing an inspection procedure in the substrate inspection apparatus according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係る実施の形態例を詳細に説明 する。 図 1は、 本実施の形態例に係る基板検査装置の全体構成を示すブ ロック図である。 図 1に示す基板検査装置の検査対象は、 例えば、 液晶 表示パネルや夕ツチ式パネルであり、 ここでは、 ガラス製の基板 3上に 列状に配設された多数の導電パターン 2 a〜 2 hの良否 (導電パターン の断線状態やパターン相互の短絡状態の有無) を検査する。 これらの導 電パターンは、 例えば、 上記のパネルにおける張り合わせ前の列状導電 パターンであり、 その導電性材料として、 例えば、 クロム、 銀、 アルミ 二ゥム、 I T O等が使用されている。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described in detail below with reference to the accompanying drawings. To do. FIG. 1 is a block diagram showing the overall configuration of the substrate inspection apparatus according to the present embodiment. The inspection target of the substrate inspection apparatus shown in FIG. 1 is, for example, a liquid crystal display panel or an evening type panel. Here, a large number of conductive patterns 2 a to 2 arranged in rows on a glass substrate 3. Check h for pass / fail (disconnected state of conductive pattern and presence / absence of short circuit between patterns). These conductive patterns are, for example, row-shaped conductive patterns in the above-described panel before bonding, and for example, chromium, silver, aluminum, ITO, etc. are used as the conductive material.
なお、 検査対象であるこれらの導電パターン 2 a〜 2 hは、 図 1に示 すように、 .その両端が互いに独立し、 隣接する導電パターンとは分離さ れた構成をとつているが、 検査対象は、 かかる構成の導電パターンに限 定されるものではない。 例えば、 パターンの一端が相互に接続されたコ モンパターン (櫛歯状パターン) であっても、 その良否を検査可能であ る。 また、 パターンは列状でなく、 曲線状パターンであってもよい。 図 1に示す基板検査装置において、 制御部 1 5は、 装置全体の制御を 行う、 例えばマイクロプロセッサであり、 検査シーケンスを統括的に制 御する。 R O M 1 8には、 後述する基板検査手順を含む制御手順がコン ピュー夕プログラムとして格納されている。 また、 R A M I 7は、 制御 データ、 検査データ等を一時的に格納するための作業領域として使用す るメモリである。  Note that these conductive patterns 2a to 2h to be inspected have a configuration in which both ends are independent from each other and separated from adjacent conductive patterns as shown in FIG. The inspection target is not limited to the conductive pattern having such a configuration. For example, it is possible to inspect the quality of a common pattern (comb-like pattern) in which one end of the pattern is connected to each other. Further, the pattern may be a curved pattern instead of a line. In the board inspection apparatus shown in FIG. 1, the control unit 15 is, for example, a microprocessor that controls the entire apparatus, and comprehensively controls the inspection sequence. In R O M 18, control procedures including a board inspection procedure described later are stored as a computer program. R A M I 7 is a memory used as a work area for temporarily storing control data, inspection data, and the like.
検査対象の導電パターン (図 1に示す基板検査の例では、 導電パター ン 2 a ) の一端には、 非接触方式で導電パターン 2 aに所定周波数の交 流検査信号を供給可能な給電部 1 2が位置決めされ、 導電パターン 2 a の他端には、 非接触方式でパターンの良否、 つまり、 そのパターンがォ ープン状態 (断線状態ともいう) にあるか否かを検出するためのオーブ ンセンサ 1 3が配されている。 さらに、 その導電パターン 2 aから所定間隔 (数パターン分) 離れた 位置にある隣接導電パターン (図 1に示す例では、 4パターン分、 離れ た導電パターン 2 e ) には、 オープンセンサ 1 3が配されたのと同一端 側にノイズセンサ 1 9が配されている。 なお、 本基板検査装置では、 ノ ィズセンサ 1 9とオープンセンサ 1 3は、 大きさや厚さ等が同一で、 そ のグランド抵抗も同じ状態になっている。 One end of the conductive pattern to be inspected (conductive pattern 2a in the example of substrate inspection shown in Fig. 1) is a power supply unit 1 capable of supplying an AC inspection signal of a predetermined frequency to the conductive pattern 2a in a non-contact manner. 2 is positioned, and the other end of the conductive pattern 2 a is an open sensor 1 for detecting whether the pattern is good or not in a non-contact manner, that is, whether the pattern is in an open state (also called a disconnected state). 3 is arranged. Furthermore, the open sensor 13 is connected to the adjacent conductive pattern (4 patterns away from the conductive pattern 2 e in the example shown in FIG. 1) at a predetermined distance (several patterns) away from the conductive pattern 2 a. A noise sensor 19 is placed on the same end as the one where it is placed. In this board inspection apparatus, the noise sensor 19 and the open sensor 13 are the same in size, thickness, etc., and the ground resistance is also in the same state.
図 1に示す基板検査装置には、 例えば、 他の装置が発生源となってい るノイズや検査装置のメカサ一ポノイズ等が外部ノイズ 1 1 a〜 1 1 c として、 あらゆる方向から、 様々なレベルで到来する。 そして、 これら のノイズは、 導電パターン 2 a〜 2 hの特定のパターンではなく、 いず れのパターンにも影響を与え、 それがノイズ電流となってパターンを流 れる。  In the board inspection device shown in Fig. 1, for example, noise originating from other devices and mecha-sound noise of the inspection device are external noise 1 1 a to 1 1 c from various directions at various levels. Will come in. These noises affect not only the specific patterns of the conductive patterns 2a to 2h, but also the patterns, and these patterns flow as noise currents.
そこで、 本実施の形態例に係る基板検査装置では、 パターンに流れる ノイズ電流を検出するために、 オープンセンサ 1 3とは別に、 そのォー プンセンサ 1 3が配されたパターンと所定間隔 (例えば、 4〜 5パター ン間隔) 離れた導電パターンの端部にノイズセンサ 1 9を非接触方式で 配置している。 図 1に示す例では、 ノイズセンサ 1 9により導電パター ン 2 eのノイズ電流を検出している。  Therefore, in the substrate inspection apparatus according to the present embodiment, in order to detect the noise current flowing in the pattern, in addition to the open sensor 1 3, the pattern in which the open sensor 1 3 is arranged and a predetermined interval (for example, 4 to 5 pattern intervals) A noise sensor 19 is arranged in a non-contact manner at the end of a conductive pattern that is far away. In the example shown in FIG. 1, the noise current of the conductive pattern 2 e is detected by the noise sensor 19.
なお、 ノイズセンサ 1 9とオープンセンサ 1 3との間隔は、 オープン センサ 1 3とノイズセンサ 1 9の直後に配した差動増幅器 2 0により、 検出信号に対する外来ノイズ等の影響が排除可能となるように設定する 。 具体的には、 基板検査装置自身の大きさ、 検査対象の導電パターンの パターン間隔、 パターン幅、 材質等により、 ノイズセンサ 1 9とォ一プ ンセンサ 1 3との最適な間隔は変わるので、 例えば、 初期値として少な くとも 4〜 5パターン間隔離しておき、 必要に応じて調整を行う。  The distance between the noise sensor 1 9 and the open sensor 1 3 can be reduced by the differential amplifier 2 0 placed immediately after the open sensor 1 3 and the noise sensor 1 9 to eliminate the influence of external noise and the like on the detection signal. Set as follows. Specifically, the optimum distance between the noise sensor 19 and the open sensor 13 varies depending on the size of the substrate inspection device itself, the pattern interval of the conductive pattern to be inspected, the pattern width, the material, etc. As an initial value, keep at least 4-5 patterns apart, and adjust as necessary.
オープンセンサ 1 3とノイズセンサ 1 9各々が検出した微弱な信号は 、 差動増幅器 (アンプ) 2 0によって増幅される。 増幅器 2 0は、 微小 な信号を所定の増幅度で増幅するため、 例えば、 演算増幅器 (オペアン プ) 等で構成されている。 本実施の形態例では、 オープンセンサ 1 3と ノイズセンサ 1 9の直後に増幅器 2 0を配することで、 検出信号そのも のに対する外来ノイズ等の影響を排除している。 The weak signals detected by the open sensor 1 3 and noise sensor 1 9 Amplified by a differential amplifier (amplifier) 20. The amplifier 20 is composed of, for example, an operational amplifier (op amp) or the like in order to amplify a minute signal with a predetermined amplification degree. In the present embodiment, the amplifier 20 is arranged immediately after the open sensor 13 and the noise sensor 19, thereby eliminating the influence of external noise and the like on the detection signal itself.
給電部 1 2には、 検査信号の発振器である信号生成部 1 0が接続され ており、 本実施の形態例では、 例えば、 2 0 0 k H zの高周波信号が給 電部 1 2に対して出力されている。 また、 給電部 1 2は、 上述したよう に非接触方式で導電パターン 2に交流信号を供給するため、 平板プレー トを備えている。 このため検査信号は、 給電部 1 2と導電パターン間の 容量結合を介して導電パターンへ供給される。 そして、 導電パターンに 供給された検査信号は、 導電パターンとオープンセンサ 1 3間の容量結 合を介してオープンセンサ 1 3へ到達する。  The power supply unit 12 is connected to a signal generation unit 10 that is an oscillator of the inspection signal. In this embodiment, for example, a high-frequency signal of 20.0 kHz is supplied to the power supply unit 12. Is output. Further, as described above, the power feeding unit 12 includes a flat plate plate for supplying an AC signal to the conductive pattern 2 in a non-contact manner. Therefore, the inspection signal is supplied to the conductive pattern through capacitive coupling between the power feeding unit 12 and the conductive pattern. Then, the inspection signal supplied to the conductive pattern reaches the open sensor 13 through the capacitive coupling between the conductive pattern and the open sensor 13.
駆動部 1 6は、 制御部 1 5からの制御信号を受けて、 検査対象が載置 されたステージ 1 4全体を所定方向に所定の速度で移動させることで、 給電部 1 2、 オープンセンサ 1 3、 およびノイズセンサ 1 9が、 非接触 状態で検査対象の導電パターン等を順次、 走査できるようにしている。 そのため駆動部 1 6は、 mオーダーでステージ 1 4を所定方向へ移動 する。  The drive unit 16 receives the control signal from the control unit 15 and moves the entire stage 14 on which the inspection target is mounted at a predetermined speed in a predetermined direction, thereby supplying the power supply unit 1 2 and the open sensor 1. 3 and the noise sensor 19 can sequentially scan the conductive pattern to be inspected in a non-contact state. Therefore, the drive unit 16 moves the stage 14 in a predetermined direction on the m order.
なお、 本実施の形態例では、 検査対象が載置されたステージ 1 4を移 動すると説明しているが、 ステージ 1 4を移動させる代わりに、 例えば 給電部 1 2とオープンセンサ 1 3とノイズセンサ 1 9とを一体化させた ュニッ トを所定方向へ移動させて、 検査対象の導電パターン等を順次、 走査できるようにする構成としても良い。  In this embodiment, it is described that the stage 14 on which the inspection object is placed is moved. Instead of moving the stage 14, for example, the power feeding unit 12, the open sensor 13, and the noise A unit that integrates the sensor 19 may be moved in a predetermined direction so that a conductive pattern or the like to be inspected can be sequentially scanned.
すなわち、 給電部 1 2、 オープンセンサ 1 3、 およびノイズセンサ 1 In other words, power feeding unit 1 2, open sensor 1 3 and noise sensor 1
9は、 上述したように導電パターンの一端、 あるいはその近傍に配され ながら、 例えば、 図 1において矢印で示す方向へ移動するようにステ一 ジ 1 4の駆動制御が行われる。 このようにすることで、 基板 3上に列状 に配された導電パターン 2 a〜 2 hを順次、 走査し、 それらのオープン 状態を個別に検査する。 9 is arranged at one end of the conductive pattern or in the vicinity thereof as described above. However, for example, the drive control of the stage 14 is performed so as to move in the direction indicated by the arrow in FIG. In this way, the conductive patterns 2a to 2h arranged in a row on the substrate 3 are sequentially scanned, and their open states are individually inspected.
増幅器 2 0からの出力信号は、 信号処理部 2 1へ送られる。 この信号 処理部 2 1は、 増幅後の交流信号を直流レベルの信号に変換する波形処 理ゃ、 アナログ信号をデジタル信号に変換する等の変換処理を行う。 そ して、 制御部 1 5は、 信号処理部 2 1で処理して得られた結果と、 あら かじめ設定した基準値とを比較し、 処理結果が基準値以上か否かを判定 する。 判定結果は、 制御部 1 5から表示部 2 5へ送られる。  An output signal from the amplifier 20 is sent to the signal processing unit 21. The signal processing unit 21 performs a conversion process such as a waveform process for converting the amplified AC signal into a DC level signal, or an analog signal into a digital signal. Then, the control unit 15 compares the result obtained by processing by the signal processing unit 21 with a reference value set in advance, and determines whether or not the processing result is equal to or greater than the reference value. The determination result is sent from the control unit 15 to the display unit 25.
表示部 2 5は、 例えば、 C R Tや液晶表示器等からなり、 制御部 1 5 から送られた判定結果である検査対象 (導電パターン) の良否を検査員 が解る形式で可視表示する。 導電パターンに不良箇所があれば、 その導 電パターンの基板上での位置も表示する。 なお、 検査結果の表示は、 可 視表示に限定されず、 音声等の形式で出力してもよい。 また、 可視表示 と音声を混在させてもよい。  The display unit 25 is composed of, for example, CRT, a liquid crystal display, and the like, and visually displays in a format that allows the inspector to understand the quality of the inspection target (conductive pattern) that is the determination result sent from the control unit 15. If there is a defect in the conductive pattern, the position of the conductive pattern on the substrate is also displayed. The display of the inspection result is not limited to the visible display, and may be output in a format such as sound. Also, visual display and sound may be mixed.
次に、 本実施の形態例に係る基板検査装置における検査原理について 説明する。 上述したように、 オープンセンサ 1 3は、 検査対象の導電パ ターンと容量結合された状態にあり、 その導電パターンを流れる検査信 号 (交流信号) を検出信号レベルの強弱として検出する。 このため、 給 電部 1 2が、 図 1に示す矢印方向へ移動し、 それと同期して、 オープン センサ 1 3も同方向へ同じ距離だけ移動することで、 各導電パターンに ついての検出結果の変化を抽出する。  Next, the inspection principle in the substrate inspection apparatus according to this embodiment will be described. As described above, the open sensor 13 is capacitively coupled to the conductive pattern to be inspected, and detects the inspection signal (alternating current signal) flowing through the conductive pattern as the strength of the detection signal level. For this reason, the power supply unit 1 2 moves in the direction of the arrow shown in Fig. 1, and the open sensor 1 3 moves in the same direction by the same distance. Extract changes.
給電部 1 2が各導電パターン対向位置に走査されてきたとき、 給電部 1 2の平板プレー卜と導電パターンとの対応面積に比例する検査信号が 導電パターンに供給可能となる。 そして、 検査信号が供給される導電パ ターンに断線 (オープン状態) がなければ、 その検査信号がオープンセ ンサ 1 3により検出されるが、 走査により給電部 1 2が導電パターン間 にあるときは、 導電パターンに供給される検査信号は、 ごくわずかとな るため、 オープンセンサ 1 3の出力は低下する。 つまり、 オープンセン サ 1 3で検出される電圧レベルが低下する (例えば、 図 2参照)。 When the power feeding unit 12 is scanned at the positions facing each conductive pattern, an inspection signal proportional to the corresponding area between the flat plate plate of the power feeding unit 12 and the conductive pattern can be supplied to the conductive pattern. Then, the conductive path to which the inspection signal is supplied If there is no disconnection (open state) in the turn, the inspection signal is detected by the open sensor 1 3, but when the power feeding unit 1 2 is between the conductive patterns by scanning, the inspection signal supplied to the conductive pattern is The output of the open sensor 1 3 decreases because it becomes negligible. In other words, the voltage level detected by the open sensor 13 decreases (for example, see Figure 2).
また、 検査対象である導電パターンにオープン箇所がある場合は、 給 電部 1 2から供給された検査交流信号がオープンセンサ 1 3に到達せず 、 後述するように、 オープンセンサ 1 3での検出電圧レベルは低下する 。 このため、 オープンセンサ 1 3からの出力電圧レベルの大きな低下が 検出されれば、 その位置における導電パターンに断線箇所があると判別 できる。  In addition, when there is an open part in the conductive pattern to be inspected, the inspection AC signal supplied from the power supply unit 1 2 does not reach the open sensor 1 3 and is detected by the open sensor 1 3 as described later. The voltage level decreases. For this reason, if a large drop in the output voltage level from the open sensor 13 is detected, it can be determined that there is a break in the conductive pattern at that position.
一方、 外部より検査基板に到来するノイズに着目すると、 それらのノ ィズは、 検査対象である導電パターンを含むすべての導電パターンにの るため、 オープンセンサ 1 3は、 給電部 1 2より供給された検査信号と ノイズの両方を検出することになる。 他方、 ノイズセンサ 1 9は、 その 直下の導電パターンには検査信号が流れていないため、 その導電パター ンにのったノイズだけを検出する。  On the other hand, paying attention to noise coming to the inspection board from the outside, those noises are applied to all the conductive patterns including the conductive pattern to be inspected, so the open sensor 13 is supplied from the power feeding unit 12 Both the detected inspection signal and noise will be detected. On the other hand, since the inspection signal does not flow through the conductive pattern immediately below the noise sensor 19, it detects only the noise on the conductive pattern.
そこで、 本実施の形態例に係る基板検査装置では、 図 1に示すように 、 オープンセンサ 1 3が検査対象パターンから検出した信号 (この信号 には、 検査信号とノイズが混在している) と、 検査信号が供給されてい ない導電パターンからノイズセンサ 1 9が検出した信号 (ノイズのみ) それぞれを、 えば、 差動増幅器 2 0の正入力端子 (+ ) と負入力端子 ( - ) に入力する。  Therefore, in the board inspection apparatus according to the present embodiment, as shown in FIG. 1, the signal detected by the open sensor 13 from the inspection target pattern (this signal contains both inspection signals and noise) and The signal detected by the noise sensor 19 from the conductive pattern to which no inspection signal is supplied (only noise) is input to the positive input terminal (+) and negative input terminal (-) of the differential amplifier 20 for example. .
これらのノイズは、 上述したように検査対象である導電パターンを含 むすべての導電パターンにのることから、 差動増幅器 2 0の正 '負入力 端子に対して同相成分の信号となる。 そこで、 差動増幅器 2 0によって これらの差分をとり、 センサ 1 3による検出信号からノイズを除去する 。 なお、 差動増幅器、 オープンセンサ等によるノイズ除去の原理につい ては、 数式を用いて後述する。 Since these noises are included in all conductive patterns including the conductive pattern to be inspected as described above, they become in-phase component signals with respect to the positive and negative input terminals of the differential amplifier 20. So, by differential amplifier 2 0 These differences are taken and noise is removed from the detection signals from the sensors 13. The principle of noise removal using a differential amplifier, open sensor, etc. will be described later using mathematical formulas.
よって、 図 1に示すようにオープンセンサ 1 3を配し、 正常時の電圧 検出値 (すなわち、 良品における連続信号がどのように変化するか) を あらかじめ測定しておき、 検査工程でそれと異なる電圧値 (信号変化) が得られた場合、 導電パターンがオープン状態にあるとの判定が可能と なる。 このように、 簡単な構成で正確に導電パターンの断線の有無を検 出できる。  Therefore, as shown in Fig. 1, an open sensor 13 is arranged, and the normal voltage detection value (that is, how the continuous signal in a non-defective product changes) is measured in advance, and a voltage different from that in the inspection process. If the value (signal change) is obtained, it can be determined that the conductive pattern is open. In this way, it is possible to accurately detect the presence or absence of disconnection of the conductive pattern with a simple configuration.
図 2は、 本実施の形態例に係る基板検査装置における検査結果の一例 を示している。 縦軸がセンサからの出力電圧 (m V p p )、 横軸がセン サ (あるいはステージ) の移動距離 (/ m) である。 図 2 ( a ) は、 セ ンサ (オープンセンサ 1 3 ) の出力に対して差動増幅器を介さないとき の測定波形であり、 図 2 ( b ) は、 オープンセンサ 1 3による検出出力 に対して差動増幅器によりノイズ信号を除去した場合の出力電圧波形で ある。  FIG. 2 shows an example of the inspection result in the substrate inspection apparatus according to the present embodiment. The vertical axis is the output voltage (m V p p) from the sensor, and the horizontal axis is the movement distance (/ m) of the sensor (or stage). Fig. 2 (a) shows the measured waveform when the output of the sensor (open sensor 1 3) is not passed through the differential amplifier, and Fig. 2 (b) shows the detection output by the open sensor 1 3. This is the output voltage waveform when the noise signal is removed by the differential amplifier.
図 2 ( a ) に示すように、 ノイズが重畳したままの信号波形からは、 不良箇所の特定は困難であるのに対し、 図 2 ( b ) の符号 A, B , C , D, Eで示す部分では顕著な波形の変化 (信号レベルの低下) が検出さ れた。 このように、 オープンセンサ 1 3とノイズセンサ 1 9の直後に差 動増幅器 2 0を配し、 検出信号に対する外来ノイズ等の影響を排除する ことで、 導電パターンの正常な箇所とオープン箇所 (導電パターンの断 線箇所) とで検出結果が大きく相違する。 よって、 本実施の形態例に係 る基板検査装置において、 容易に不良箇所を特定し、 認識できることが わかる。  As shown in Fig. 2 (a), it is difficult to identify the defective part from the signal waveform with the noise superimposed on it, but with the symbols A, B, C, D, and E in Fig. 2 (b). In the area shown, a significant waveform change (decrease in signal level) was detected. In this way, by arranging the differential amplifier 2 0 immediately after the open sensor 1 3 and the noise sensor 1 9 to eliminate the influence of external noise etc. on the detection signal, the normal and open locations of the conductive pattern (conductive The detection results differ greatly depending on whether the pattern is disconnected. Therefore, it can be seen that the defective part can be easily identified and recognized in the substrate inspection apparatus according to the present embodiment.
なお、 図 2に示す波形の測定条件は、 センサと導電パターン間のギヤ ップを 5 0 jum、 センサの移動速度を 3 0 mm,秒、 印加電圧を 3 2 0 V、 センサ間の距離を 1 5 0 mmとして行ったものである。 Note that the measurement conditions of the waveform shown in Fig. 2 are the gears between the sensor and the conductive pattern. In this case, the sensor is set to 50 jum, the moving speed of the sensor is 30 mm, second, the applied voltage is 3 220 V, and the distance between the sensors is 1550 mm.
次に、 差動増幅器 2 0におけるノイズ除去について数式を用いて詳細 に説明する。 図 3は、 差動増幅器 2 0を含む、 本実施の形態例に係る基 板検査装置の測定回路を等価的に示しており、 図 4 ( a) は、 ノイズ信 号波形の一例、 図 4 (b) は、 検査信号にノイズが重畳した測定信号波 形の一例を示している。  Next, noise removal in the differential amplifier 20 will be described in detail using mathematical expressions. FIG. 3 equivalently shows a measurement circuit of the substrate inspection apparatus according to the present embodiment including the differential amplifier 20. FIG. 4 (a) shows an example of the noise signal waveform, and FIG. (b) shows an example of a measurement signal waveform in which noise is superimposed on the inspection signal.
図 3において、 V lがノイズ信号、 v2が測定信号、 抵抗 Riはノイズ センサ 1 9の抵抗、 抵抗 R2はオープンセンサ 1 3の抵抗である。 いま 、 点 Pの電圧を v3とすると、 負入力端子 (一) への電流は、 すべて帰 還抵抗 Rfを流れるため、 i i= i f、 すなわち、 In FIG. 3, V l is a noise signal, v 2 is a measurement signal, resistance Ri is the resistance of noise sensor 19, and resistance R 2 is the resistance of open sensor 13. Now, assuming that the voltage at point P is v 3 , all the current to the negative input terminal (one) flows through the feedback resistor R f , so ii = if, that is,
Vein ~V3 3 -Vout ( "1 ) Vein ~ V 3 3- V out ("1)
が成立する。 Is established.
また、 点 Qの電圧 vsは、 υς = (υ- + 、2) Also, the voltage v s at point Q is υ ς = (υ- +, 2)
cm
Figure imgf000015_0001
となる。
c m
Figure imgf000015_0001
It becomes.
点 P、 点 Q間の電圧は仮想的に 0、 つまり、 v3= v8なので、
Figure imgf000015_0002
Figure imgf000016_0001
となる。
The voltage between point P and point Q is virtually 0, that is, v 3 = v 8, so
Figure imgf000015_0002
Figure imgf000016_0001
It becomes.
また、 これらの式 ( 3), (4) より、
Figure imgf000016_0002
が成立する。
From these equations (3) and (4),
Figure imgf000016_0002
Is established.
そこで、 式 ( 5) より出力電圧 v。utについて整理すると υ,
Figure imgf000016_0003
となる。
Therefore, the output voltage v from Equation (5). Organizing ut , υ,
Figure imgf000016_0003
It becomes.
上記の式 ( 6) において、
Figure imgf000016_0004
Rs=Rfとすると、
Figure imgf000016_0005
となり、 測定信号 v2からノイズ信号 V iを除去することができる。 つま り、 差動増幅器 2 0の同相除去比 (CMRR) により、 測定信号からノ ィズ信号だけが低減されることになる。 次に、 本実施の形態例に係る基板検査装置における検査手順等につい て説明する。 図 5は、 本実施の形態例に係る基板検査装置での検査手順 を示すフローチャートである。 図 5のステップ S 1において、 その表面 に検査対象である導電パターンが形成されたガラス基板 (検査基板) が 、 不図示の搬送路に従って、 基板検査装置の所定位置に搬送されてくる 。 そして、 ステップ S 2で、 検査基板が上述した基板搭載ステージ 1 4 により保持され、 位置決めされる。
In equation (6) above,
Figure imgf000016_0004
If R s = R f ,
Figure imgf000016_0005
Thus, the noise signal V i can be removed from the measurement signal v 2 . That is, only the noise signal is reduced from the measurement signal due to the common-mode rejection ratio (CMRR) of the differential amplifier 20. Next, an inspection procedure and the like in the substrate inspection apparatus according to this embodiment will be described. FIG. 5 is a flowchart showing an inspection procedure in the substrate inspection apparatus according to the present embodiment. In step S1 of FIG. 5, the glass substrate (inspection substrate) on which the conductive pattern to be inspected is formed is conveyed to a predetermined position of the substrate inspection apparatus along a conveyance path (not shown). In step S 2, the inspection substrate is held and positioned by the substrate mounting stage 14 described above.
この基板搭載ステージ 1 4は、 X Y Z 0角度の 4軸制御により三次元 位置制御が可能に構成されており、 検査対象基板をセンサ位置より一定 距離離反させた測定前の基準となる位置に位置決めする。 例えば、 ォ一 プンセンサ 1 3が、 図 1に示す導電パターンのうち、 最も奥側の導電パ ターン 2 a右端近傍にくるように位置決めする。  This board-mounted stage 14 is configured so that three-dimensional position control is possible by four-axis control of XYZ 0 angle. . For example, the open sensor 13 is positioned so as to be near the right end of the conductive pattern 2a which is the innermost side of the conductive pattern shown in FIG.
このように検査基板の測定位置への位置決め後、 ステツプ S 3におい て、 例えば、 制御部 1 5によって信号生成部 1 0を制御して、 上述した 2 0 0 k H zの高周波信号 (検査信号) が給電部 1 2に供給されるよう にする。 ステップ S 5で、 信号処理部 2 1において、 上述した波形処理 や信号変換処理等を行い、 続くステップ S 6において、 制御部 1 5は、 これらの処理結果をメモリ (R A M I 7 ) に格納する。  After positioning the inspection board to the measurement position in this way, in step S 3, for example, the signal generation unit 10 is controlled by the control unit 15, and the above-described high-frequency signal (inspection signal) of 200 kHz ) Is supplied to the power feeding section 1 2. In step S5, the signal processing unit 21 performs the above-described waveform processing, signal conversion processing, and the like. In subsequent step S6, the control unit 15 stores these processing results in the memory (R A M I 7).
ステップ S 7において、 検査対象とする全ての導電パターンについて 処理,検査が終了したかどうかを判定する。 この判定は、 例えば、 検査 基板の移動距離が、 全ての導電パターン幅の合計と、 それらのパターン 間隔の合計とを合算して得た距離に合致しているか否かに基づいて行う 。 そこで、 ステップ S 7での判定の結果、 全導電パターンの処理 ·検査 が終了していない場合には、 制御部 1 5は、 ステップ S 8において、 次 に検査すべき導電パターンがオープンセンサ 1 3等の直下に位置するよ う、 駆動部 1 6を制御して検査基板を所定距離移動させる (具体的には 、 隣接する列状導電パターンの中心間の距離だけ、 図 2の矢印方向にォ —プンセンサ 1 3等が相対的に移動するよう制御する)。 In step S7, it is determined whether processing and inspection have been completed for all conductive patterns to be inspected. This determination is made, for example, based on whether or not the movement distance of the inspection substrate matches the distance obtained by adding up the total of all the conductive pattern widths and the total of the pattern intervals. Therefore, if the result of determination in step S7 is that processing / inspection of all conductive patterns has not been completed, the control unit 15 determines that the next conductive pattern to be inspected is the open sensor 1 3 in step S8. The drive unit 16 is controlled to move the inspection board by a predetermined distance so that it is positioned directly below (specifically, The open sensor 13 is controlled so as to move relatively in the direction of the arrow in FIG. 2 by the distance between the centers of adjacent row-shaped conductive patterns).
その後、 制御部 1 5は、 処理をステップ S 5に戻し、 上述したのと同 様の処理を行う。 その結果、 上述した波形処理等が、 検査すべき導電パ ターンについて連続して実行され、 R A M I 7には、 各パターンに対応 した処理結果が順次、 蓄積されることになる。  After that, the control unit 15 returns the process to step S5 and performs the same process as described above. As a result, the above-described waveform processing and the like are continuously executed for the conductive pattern to be inspected, and the processing results corresponding to each pattern are sequentially stored in R A M I 7.
このように、 この図 5における検査手順において、 ステップ S 5から ステップ S 8の手順は、 給電部に検査信号が供給された状態 (ステップ S 3の状態) を維持しながら、 検査基板が移動 (即ちユニット 5が検査 対象の導電パターン上を順次走査) することになる。 なお、 この検査基 板の移動は、 検査基板を所定距離移動 (ステップ S 8 ) してセンサ出力 信号の処理 (ステップ S 5 ) と処理結果を格納 (ステップ S 6 ) とを行 う間、 停止していても良いし、 検査基板を所定距離移動 (ステップ S 8 ) しながらセンサ出力信号の処理 (ステップ S 5 ) と処理結果を格納 ( ステップ S 6 ) とを行い、 停止させずに連続して移動しても良い。 特に 検査時間の短縮には、 ステップ S 5からステップ S 8の手順は、 検査基 板を停止させずに連続して移動させると有効である。  In this way, in the inspection procedure in FIG. 5, the procedure from step S5 to step S8 is performed while the inspection substrate is moved while maintaining the state where the inspection signal is supplied to the power feeding unit (the state of step S3). That is, the unit 5 sequentially scans the conductive pattern to be inspected. This movement of the inspection board is stopped while the inspection board is moved by a predetermined distance (Step S 8) and the sensor output signal processing (Step S 5) and the processing result are stored (Step S 6). The sensor output signal is processed (Step S 5) and the processing result is stored (Step S 6) while the inspection board is moved a predetermined distance (Step S 8). You may move. In particular, in order to shorten the inspection time, the procedure from step S5 to step S8 is effective if the inspection board is moved continuously without stopping.
—方、 検査対象とする全ての導電パターンについての検査が終了した 場合、 つまり、 検査基板の移動距離が全導電パターン幅の合計とパター ン間隔の合計との合算値に一致した場合 (ステップ S 7で Y E S )、 ス テツプ S 9において、 R A M 1 7に格納した処理結果を解析して、 その 解析結果をもとに検査対象の良否を判定する。 具体的には、 センサ出力 信号を処理して得た結果と基準値とを比較し、 それが基準値以上であれ ば、 その導電パターンはオープン状態にないと判定する。  On the other hand, when all the conductive patterns to be inspected have been inspected, that is, when the movement distance of the inspection board matches the sum of the total conductive pattern width and the total pattern interval (Step S In step S9), the processing result stored in RAM 17 is analyzed in step S9, and the quality of the inspection object is determined based on the analysis result. Specifically, the result obtained by processing the sensor output signal is compared with a reference value, and if it is greater than or equal to the reference value, it is determined that the conductive pattern is not open.
ステップ S 1 0において、 各導電パターン位置での検出信号レベルが 全て所定範囲内にあると判定されれば、 全導電パターンが正常であると して、 ステップ S 1 2において、 制御部 1 5は、 検査対象が良品である 旨の表示をするよう表示部 2 5を制御する。 In step S10, if it is determined that the detection signal levels at the respective conductive pattern positions are all within the predetermined range, it is determined that all the conductive patterns are normal. In step S 12, the control unit 15 controls the display unit 25 to display that the inspection object is a non-defective product.
このように検査対象が良品の場合、 検査基板を搬送位置まで下降させ て搬送路上に載置し、 次のステージに搬送する。 なお、 連続した検査を 行う場合は、 ステップ S 1に戻って、 次に検査する基板を基板検査装置 の所定位置に搬送する。  In this way, when the inspection target is a non-defective product, the inspection board is lowered to the transfer position, placed on the transfer path, and transferred to the next stage. When performing continuous inspection, the process returns to step S1, and the substrate to be inspected next is transported to a predetermined position of the substrate inspection apparatus.
しかし、 導電パターン位置での検出信号レベルが 1箇所でも所定範囲 内になければ、 その導電パターンは不良であるとして、 制御部 1 5は、 ステップ S 1 3において、 表示部 2 5に対して検査対象が不良品である 旨の表示をするよう制御する。 そして、 検査基板を搬送位置まで下降さ せて搬送路上に載置し、 次のステージに搬送するか、 あるいは、 不良基 板を搬送路から外す等の処理を行う。  However, if the detection signal level at the position of the conductive pattern is not within the predetermined range even at one location, it is determined that the conductive pattern is defective, and the control unit 15 checks the display unit 25 in step S 1 3. Control to display that the target is defective. Then, the inspection substrate is lowered to the transfer position and placed on the transfer path and transferred to the next stage, or the defective substrate is removed from the transfer path.
なお、 基板上における検査対象の導電パターンの配設は、 基板上に図 The arrangement of the conductive pattern to be inspected on the board is shown on the board.
1に示すパターンのみが配された例に限定されず、 同一基板上に縦横と も複数組の検査パターンが配設されたものにも、 本発明の検査方法を適 用で.きる。 The present invention is not limited to the example in which only the pattern shown in 1 is provided, and the inspection method of the present invention can be applied to a case where a plurality of sets of inspection patterns are arranged on the same substrate.
上述した実施の形態例では、 オープンセンサ 1 3とノイズセンサ 1 9 による検出信号をもとに、 検査対象導電パターンのオープン状態の有無 を判定しているが、 以下に説明する方法により、 導電パターンどうしの 短絡 (ショート) を検出することも可能である。  In the above-described embodiment, the presence or absence of the open state of the conductive pattern to be inspected is determined based on the detection signals from the open sensor 1 3 and the noise sensor 1 9. It is also possible to detect a short circuit between each other.
例えば、 図 1に示す基板検査装置において、 給電部 1 2を配した導電 パターンと隣接するパターンに、 給電部 1 2が配されたのとは反対側の 端部に非接触方式で、 上述したオープンセンサ 1 3と同じ機能を有する ショートセンサを配する。 この場合においても、 ショートセンサは、 検 査対象の導電パターンと容量結合された状態にあるため、 隣接する導電 パターンどうしが短絡 (ショート) していれば、 給電部 1 2からの検査 信号が、 短絡状態にあるそのパターンに供給される。 For example, in the board inspection apparatus shown in FIG. 1, the above-mentioned pattern is adjacent to the conductive pattern in which the power feeding section 12 is disposed, and the end portion on the opposite side of the power feeding section 12 is disposed in a non-contact manner. Open sensor 1 A short sensor having the same function as 3 is arranged. Even in this case, since the short sensor is capacitively coupled to the conductive pattern to be inspected, if the adjacent conductive patterns are short-circuited, the inspection from the power feeding section 12 A signal is applied to the pattern in a short circuit condition.
このため、 ショートセンサによって、 短絡箇所を通じて流れてきた検 査信号が、 検出信号レベルの強弱として検出される。 すなわち、 ショー トセンサは、 その短絡電流をより大きなレベルの検査信号として検出す る。 そして、 ショートセンサが検出した信号とノイズセンサ 1 9の検出 信号をそれぞれ差動増幅器 (オペアンプ) の正入力端子 (+ ) と負入力 端子 (一) へ入力し、 増幅する。 その結果、 隣接する導電パターン相互 に短絡がある場合には、 正常時に比べて検出信号の強度に差異が生じる 上述したようにノイズ信号は、 すべての導電パターンにのることから For this reason, the inspection signal flowing through the short-circuit point is detected by the short sensor as the strength of the detection signal level. That is, the short sensor detects the short-circuit current as a higher level inspection signal. The signal detected by the short sensor and the signal detected by the noise sensor 19 are input to the positive input terminal (+) and negative input terminal (one) of the differential amplifier (op amp), respectively, and are amplified. As a result, when there is a short circuit between adjacent conductive patterns, a difference occurs in the intensity of the detection signal compared to the normal state. As described above, the noise signal is applied to all conductive patterns.
、 差動増幅器の正 ·負入力端子に対して同相成分の信号となるため、 そ の差動増幅器により、 これらの信号の差分をとり、 ショートセンサでの 検出信号からノイズを除去する。 なお、 ショートセンサは、 例えば、 検 査対象とする列状導電パターンの隣接する少なくとも 2列の列状導電パ ターンより信号を検出するようにしてもよい。 Since the signal is in-phase with respect to the positive and negative input terminals of the differential amplifier, the differential amplifier takes the difference between these signals and removes noise from the detection signal of the short sensor. Note that the short sensor may detect a signal from, for example, at least two column-shaped conductive patterns adjacent to the column-shaped conductive pattern to be inspected.
また、 ショートセンサは、 上記実施の形態例におけるオープンセンサ と同様、 給電部 1 2と同期させて、 図 1に示す矢印方向へ給電部 1 2と 同じ距離だけ移動させることで、 各導電パターンについての検出結果の 変化を抽出することができる。  Similarly to the open sensor in the above embodiment, the short sensor is moved in the direction of the arrow shown in FIG. It is possible to extract changes in detection results.
以上説明したように、 基板上に列状に配設された導電パターンの良否 を非接触で検査する際、 導電パターンの一方端部に検査信号を供給する 給電部を配し、 その導電パターンの他方端部に検査信号を検知するため のオープンセンサを配するとともに、 その導電パターンから数パターン 分、 離れた距離にある導電パターンに、 オープンセンサが配されたのと 同一側の端にノイズセンサを配し、 オープンセンサが検査対象パターン より検出した、 検査信号とノイズとが混在した信号と、 ノイズセンサが 導電パターンから検出した、 検査信号との混在のないノィズのみの信号 を差動増幅器に入力する。 As described above, when inspecting the quality of conductive patterns arranged in a row on a substrate in a non-contact manner, a power feeding unit that supplies an inspection signal to one end of the conductive pattern is arranged, and the conductive pattern An open sensor for detecting the inspection signal is placed at the other end, and a noise sensor is placed at the end on the same side as the open sensor is placed in a conductive pattern several distances away from the conductive pattern. The signal that mixed the inspection signal and noise detected by the open sensor from the inspection target pattern and the noise sensor A noise-only signal detected from the conductive pattern and not mixed with the inspection signal is input to the differential amplifier.
この場合、 これらのノイズ信号は、 差動増幅器の正 ·負入力端子に対 して同相成分の信号であるため、 差動増幅器で差分をとることで、 検出 信号から容易にノイズ信号だけを除去でき、 ノイズによる影響を排して 導電パターンのオープン状態の検出精度を向上することができる。  In this case, since these noise signals are in-phase component signals with respect to the positive and negative input terminals of the differential amplifier, only the noise signal is easily removed from the detection signal by taking the difference with the differential amplifier. It is possible to eliminate the influence of noise and improve the detection accuracy of the open state of the conductive pattern.
また、 フィルターを付加してノイズを除去する場合に比べて、 応答速 度が格段に速くなるため、 複数の検査対象パターンを高速に走査でき、 その結果、 検査速度や検査時間を大幅に短縮した導電パターンの不良箇 所の検出を確実に行える。 産業上の利用可能性  In addition, since the response speed is significantly faster than when noise is removed by adding a filter, multiple patterns to be inspected can be scanned at high speed, resulting in a significant reduction in inspection speed and inspection time. The defective part of the conductive pattern can be reliably detected. Industrial applicability
本発明によれば、 検査対象である基板上の導電パターンの良否を高精 度、 かつ確実に検出できる。  According to the present invention, it is possible to accurately and reliably detect the quality of a conductive pattern on a substrate to be inspected.
また、 本発明によれば、 導電パターンの検査速度を高速化することが 可能となる。  In addition, according to the present invention, the inspection speed of the conductive pattern can be increased.

Claims

請求の範囲 The scope of the claims
1 . 基板に配された導電パターンの状態を検査する回路パターン検査 装置であって、 1. A circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate,
検査対象となる導電パターンの第 1の部位に検査信号を供給する信号 供給手段と、  A signal supply means for supplying an inspection signal to the first portion of the conductive pattern to be inspected;
前記検査対象となる導電パターンの第 2の部位より第 1の信号を検出 可能な第 1の検出手段と、  A first detection means capable of detecting a first signal from a second part of the conductive pattern to be inspected;
前記検査対象となる導電パターンから少なくとも 4乃至 5パ夕ーン間 隔離れた導電パターンより第 2の信号を検出可能な第 2の検出手段と、 前記第 1の信号と第 2の信号の差分を求める差分手段と、  Second detection means capable of detecting a second signal from a conductive pattern separated from the conductive pattern to be inspected by at least 4 to 5 patterns; a difference between the first signal and the second signal Difference means for obtaining
前記差分手段で得られた差分信号の変化に基づいて前記導電パターン の良否を識別する識別手段とを備えることを特徴とする回路パ夕一ン検 査装置。  A circuit pattern inspection apparatus comprising: an identification unit that identifies the quality of the conductive pattern based on a change in the difference signal obtained by the difference unit.
2 . 基板に配された導電パターンの状態を検査する回路パターン検査 装置であって、 2. A circuit pattern inspection device for inspecting the state of a conductive pattern arranged on a substrate,
検査対象となる導電パターンの第 1の部位に検査信号を供給する信号 供給手段と、  A signal supply means for supplying an inspection signal to the first portion of the conductive pattern to be inspected;
前記検査対象となる導電パターンの第 2の部位より第 1の信号を検出 可能な第 1の検出手段と、  A first detection means capable of detecting a first signal from a second part of the conductive pattern to be inspected;
前記検査対象となる導電パターンから所定間隔離れた導電パターンよ り第 2の信号を検出可能な第 2の検出手段と、  A second detection means capable of detecting a second signal from a conductive pattern spaced a predetermined distance from the conductive pattern to be inspected;
前記第 1の信号と第 2の信号の差分を求める差分手段と、  Difference means for obtaining a difference between the first signal and the second signal;
前記差分手段で得られた差分信号の変化に基づいて前記導電パターン の良否を識別する識別手段とを備えることを特徴とする回路パターン検 査装置。 A circuit pattern inspection apparatus comprising: identification means for identifying the quality of the conductive pattern based on a change in the difference signal obtained by the difference means.
3 . 前記差分手段は、 前記検査信号に前記ノイズ信号が重畳した前記 第 1の信号より、 前記ノイズ信号である前記第 2の信号を除去すること を特徴とする請求項 1または請求項 2に記載の回路パターン検査装置。 3. The difference unit according to claim 1 or 2, wherein the difference means removes the second signal that is the noise signal from the first signal in which the noise signal is superimposed on the inspection signal. The circuit pattern inspection apparatus described.
4 . 前記識別手段は、 前記ノイズ信号が除去された信号をもとに前記 導電パターンの断線状態を識別することを特徴とする請求項 3記載の回 路パターン検査装置。 4. The circuit pattern inspection apparatus according to claim 3, wherein the identification unit identifies a disconnection state of the conductive pattern based on the signal from which the noise signal has been removed.
5 . さらに、 検査対象とする前記導電パターンを順次走査するよう、 前記信号供給手段、 前記第 1の検出手段、 および前記第 2の検出手段を 位置決め移動させる手段を備えることを特徴とする請求項 1または請求 項 2に記載の回路パターン検査装置。  5. The apparatus further comprises means for positioning and moving the signal supply means, the first detection means, and the second detection means so as to sequentially scan the conductive pattern to be inspected. The circuit pattern inspection apparatus according to claim 1 or 2.
6 . 前記走査により、 前記導電パターンの一方端部のすべてのパ夕一 ンの先端近傍について前記導電パターンへの前記検査信号の供給と前記 導電パターンよりの前記検査信号の検出を行うことを特徴とする請求項 5記載の回路パターン検査装置。  6. By the scanning, the inspection signal is supplied to the conductive pattern and the inspection signal is detected from the conductive pattern in the vicinity of the tips of all patterns at one end of the conductive pattern. The circuit pattern inspection device according to claim 5.
7 . 前記信号供給手段は、 前記導電パターンと一定間隔で対向するプ レート部材を含み、 前記プレート部材と前記導電パターン間の容量結合 を介して非接触で前記検査信号を供給することを特徴とする請求項 6記 載の回路パターン検査装置。 7. The signal supply means includes a plate member opposed to the conductive pattern at a predetermined interval, and supplies the inspection signal in a non-contact manner through capacitive coupling between the plate member and the conductive pattern. The circuit pattern inspection apparatus according to claim 6.
8 . 前記第 1の検出手段、 および前記第 2の検出手段各々は、 前記導 電パターンと一定間隔で対向するプレート部材を含み、 前記プレート部 材と前記導電パターン間の容量結合を介して非接触で信号を検出するこ とを特徴とする請求項 6記載の回路パターン検査装置。  8. Each of the first detection means and the second detection means includes a plate member that is opposed to the conductive pattern at a constant interval, and is not connected via capacitive coupling between the plate member and the conductive pattern. 7. The circuit pattern inspection apparatus according to claim 6, wherein the signal is detected by contact.
9 . 基板に配された導電パターンの状態を検査する回路パターン検査 装置における回路パターン検査方法であって、  9. A circuit pattern inspection method in a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate,
検査対象となる導電パターンの第 1の部位に検査信号を供給するステ ップと、 前記検査対象となる導電パターンの第 2の部位より第 1の信号を検出 する第 1の検出ステップと、 Supplying an inspection signal to the first portion of the conductive pattern to be inspected; A first detection step of detecting a first signal from a second portion of the conductive pattern to be inspected;
前記検査対象となる導電パターンから少なくとも 4乃至 5つ離れた導 電パターンより第 2の信号を検出する第 2の検出ステップと、  A second detection step of detecting a second signal from a conductive pattern at least 4 to 5 away from the conductive pattern to be inspected;
前記第 1の信号と第 2の信号の差分を求める差分算出ステップと、 前記差分算出ステップで得られた差分信号の変化に基づいて前記導電 パターンの良否を識別する識別ステツプとを備えることを特徴とする回 路パターン検査方法。  A difference calculating step for obtaining a difference between the first signal and the second signal, and an identification step for identifying the quality of the conductive pattern based on a change in the difference signal obtained in the difference calculating step. Circuit pattern inspection method.
1 0 . 基板に配された導電パターンの状態を検査する回路パターン検 査装置における回路パターン検査方法であって、  1 0. A circuit pattern inspection method in a circuit pattern inspection apparatus for inspecting the state of a conductive pattern arranged on a substrate, comprising:
検査対象となる導電パターンの第 1の部位に検査信号を供給するステ ップと、  Supplying an inspection signal to the first portion of the conductive pattern to be inspected;
前記検査対象となる導電パターンの第 2の部位より第 1の信号を検出 する第 1の検出ステップと、  A first detection step of detecting a first signal from a second portion of the conductive pattern to be inspected;
前記検査対象となる導電パターンから所定間隔離れた導電パターンよ り第 2の信号を検出する第 2の検出ステップと、  A second detection step of detecting a second signal from a conductive pattern spaced a predetermined distance from the conductive pattern to be inspected;
前記第 1の信号と第 2の信号の差分を求める差分算出ステップと、 前記差分算出ステツプで得られた差分信号の変化に基づいて前記導電 パターンの良否を識別する識別ステツプとを備えることを特徴とする回 路パターン検査方法。  A difference calculating step for obtaining a difference between the first signal and the second signal; and an identification step for identifying the quality of the conductive pattern based on a change in the difference signal obtained in the difference calculating step. Circuit pattern inspection method.
1 1 . 前記差分算出ステップでは、 前記検査信号にノイズ信号が重畳 した前記第 1の信号より、 前記ノイズ信号である前記第 2の信号が除去 されることを特徴とする請求項 9または請求項 1 0に記載の回路パ夕一 ン検查方法。  11. The difference calculation step, wherein the second signal that is the noise signal is removed from the first signal in which a noise signal is superimposed on the inspection signal. 10. Circuit pattern inspection method described in 10.
1 2 . 前記識別ステップは、 前記ノイズ信号が除去された信号をもと に前記導電パターンの断線状態を識別することを特徴とする請求項 1 1 記載の回路パターン検査方法。 1 2. The identification step may identify a disconnection state of the conductive pattern based on a signal from which the noise signal has been removed. The circuit pattern inspection method described.
1 3 . さらに、 検査対象とする前記導電パターンを順次走査するよう 、 前記信号供給手段、 前記第 1の検出手段、 および前記第 2の検出手段 を位置決め移動させるステップを備えることを特徴とする請求項 9また は請求項 1 0に記載の回路パターン検査方法。  Further comprising the step of positioning and moving the signal supply means, the first detection means, and the second detection means so as to sequentially scan the conductive pattern to be inspected. Item 9. The circuit pattern inspection method according to Item 10 or Item 10.
1 4 . 前記走査により、 前記導電パターンの一方端部のすべてのパ夕 ーンの先端近傍について前記導電パターンへの前記検査信号の供給と前 記導電パターンよりの前記検査信号の検出を行うことを特徴とする請求 項 1 3記載の回路パターン検査方法。  14. Supplying the inspection signal to the conductive pattern and detecting the inspection signal from the conductive pattern for the vicinity of the tips of all patterns at one end of the conductive pattern by the scanning. The circuit pattern inspection method according to claim 13.
1 5 . 前記信号供給手段は、 前記導電パターンと一定間隔で対向する プレート部材を含み、 前記プレート部材と前記導電パターン間の容量結 合を介して非接触で前記検査信号を供給することを特徴とする請求項 1 4記載の回路パターン検査方法。  15. The signal supply unit includes a plate member facing the conductive pattern at a predetermined interval, and supplies the inspection signal in a non-contact manner through a capacitive coupling between the plate member and the conductive pattern. The circuit pattern inspection method according to claim 14.
1 6 . 前記第 1の検出手段、 および前記第 2の検出手段各々は、 前記 導電パターンと一定間隔で対向するプレート部材を含み、 前記プレート 部材と前記導電パターン間の容量結合を介して非接触で信号を検出する ことを特徴とする請求項 1 4記載の回路パターン検査方法。  16. Each of the first detection means and the second detection means includes a plate member facing the conductive pattern at a constant interval, and is in non-contact via capacitive coupling between the plate member and the conductive pattern. The circuit pattern inspection method according to claim 14, wherein a signal is detected by the method.
1 7 . 請求項 9乃至 1 6のいずれかに記載の回路パターン検査方法を コンピュータ制御で実現するためのコンピュータプログラムを記憶する コンピュータ可読記録媒体。  17. A computer-readable recording medium that stores a computer program for realizing the circuit pattern inspection method according to any one of claims 9 to 16 by computer control.
1 8 . 請求項 9乃至 1 6のいずれかに記載の回路パターン検査方法を コンピュータ制御で実現するためのコンピュータプログラム列。  1 8. A computer program sequence for realizing the circuit pattern inspection method according to any one of claims 9 to 16 by computer control.
PCT/JP2006/301077 2005-01-19 2006-01-18 Circuit pattern inspection device and method thereof WO2006078045A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005012006A JP4417858B2 (en) 2005-01-19 2005-01-19 Circuit pattern inspection apparatus and method
JP2005-012006 2005-01-19

Publications (1)

Publication Number Publication Date
WO2006078045A1 true WO2006078045A1 (en) 2006-07-27

Family

ID=36692414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301077 WO2006078045A1 (en) 2005-01-19 2006-01-18 Circuit pattern inspection device and method thereof

Country Status (5)

Country Link
JP (1) JP4417858B2 (en)
KR (1) KR101175384B1 (en)
CN (1) CN101107535A (en)
TW (2) TW200632351A (en)
WO (1) WO2006078045A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249522A (en) * 2007-03-30 2008-10-16 Aisin Seiki Co Ltd Glass breakage detection apparatus
JP5391819B2 (en) * 2009-05-14 2014-01-15 日本電産リード株式会社 Touch panel inspection device
JP4644745B2 (en) * 2009-08-04 2011-03-02 オー・エイチ・ティー株式会社 Circuit pattern inspection device
JP5580247B2 (en) * 2011-04-27 2014-08-27 株式会社ユニオンアロー・テクノロジー Pattern inspection device
JP5432213B2 (en) * 2011-05-20 2014-03-05 株式会社ユニオンアロー・テクノロジー Pattern inspection device
US9121884B2 (en) * 2013-06-07 2015-09-01 Infineon Technologies Ag Capacitive test method, apparatus and system for semiconductor packages
CN110672948B (en) 2019-09-29 2021-04-20 云谷(固安)科技有限公司 Touch panel detection equipment and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177256A (en) * 2002-11-27 2004-06-24 Nidec-Read Corp Device and method for inspecting substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187088A (en) * 1992-12-18 1994-07-08 Seiko Epson Corp Tablet
JP3527726B2 (en) * 2002-05-21 2004-05-17 ウインテスト株式会社 Inspection method and inspection device for active matrix substrate
KR101013243B1 (en) * 2002-11-30 2011-02-09 오에이치티 가부시끼가이샤 Circuit pattern inspection device and circuit pattern inspection method
JP2004264272A (en) * 2003-02-28 2004-09-24 Oht Inc Electric conductor inspecting device and electric conductor inspection method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177256A (en) * 2002-11-27 2004-06-24 Nidec-Read Corp Device and method for inspecting substrate

Also Published As

Publication number Publication date
TW200632351A (en) 2006-09-16
JP4417858B2 (en) 2010-02-17
TW201323901A (en) 2013-06-16
KR20070097113A (en) 2007-10-02
KR101175384B1 (en) 2012-08-20
JP2006200992A (en) 2006-08-03
TWI407126B (en) 2013-09-01
CN101107535A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
JP2006200993A (en) Circuit pattern inspection device and its method
KR100799161B1 (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
WO2006078045A1 (en) Circuit pattern inspection device and method thereof
JP2006300665A (en) Inspection device, and conductive pattern inspection method
JP5387818B2 (en) Circuit pattern inspection device
TWI401452B (en) Circuit pattern inspection device and inspection method
JPH09264919A (en) Method and device for inspecting board
JP2002365325A (en) Circuit pattern inspection device, circuit pattern inspection method and storage medium
CN101107537A (en) Inspection device, inspection method, and inspection device sensor
JP5305111B2 (en) Circuit pattern inspection device
US20060043153A1 (en) Circuit pattern inspection device and circuit pattern inspection method
JP4394980B2 (en) Substrate inspection apparatus and substrate inspection method
US7088107B2 (en) Circuit pattern inspection instrument and pattern inspection method
KR20080098088A (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
KR101926978B1 (en) Non-contact-type substrate inspecting apparatus and method
JP5122512B2 (en) Circuit pattern inspection device
US6952104B2 (en) Inspection method and apparatus for testing fine pitch traces
JP2005208058A (en) Circuit pattern inspection device and circuit pattern inspection method
JP2006284597A (en) Circuit pattern inspection device and circuit pattern inspection method
JP2008014918A (en) Circuit pattern inspecting device and circuit pattern inspection method
JP2612102B2 (en) Disconnection inspection device and disconnection inspection method
JP2007127659A (en) Circuit pattern inspection device and circuit pattern inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680002731.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077018783

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06701400

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6701400

Country of ref document: EP