WO2006075447A1 - ユーザスループット地理的分布推定システムおよびユーザスループット地理的分布推定方法 - Google Patents

ユーザスループット地理的分布推定システムおよびユーザスループット地理的分布推定方法 Download PDF

Info

Publication number
WO2006075447A1
WO2006075447A1 PCT/JP2005/021097 JP2005021097W WO2006075447A1 WO 2006075447 A1 WO2006075447 A1 WO 2006075447A1 JP 2005021097 W JP2005021097 W JP 2005021097W WO 2006075447 A1 WO2006075447 A1 WO 2006075447A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
user throughput
cell
throughput
estimation
Prior art date
Application number
PCT/JP2005/021097
Other languages
English (en)
French (fr)
Inventor
Akio Aoyama
Kojiro Hamabe
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to GB0713612A priority Critical patent/GB2437012B/en
Priority to US11/813,296 priority patent/US7697474B2/en
Priority to CN2005800464611A priority patent/CN101099310B/zh
Priority to JP2006552852A priority patent/JP4636282B2/ja
Publication of WO2006075447A1 publication Critical patent/WO2006075447A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present invention relates to a user throughput geographical distribution estimation system and a user throughput geographical distribution estimation method, and in particular, in a cellular system that performs wireless packet communication using a shared channel between a base station and a user terminal.
  • the technology related to estimating user throughput.
  • user throughput exhibits different values depending on the geography around the base station.
  • the user throughput is a value measured by the user terminal and represents the number of bits of packets received by the user terminal from the base station per unit time.
  • continuous time system level simulation of the cellular system is performed in a system level simulator 300.
  • the system level simulator 300 takes, as input values, a base station configuration, a traffic volume of packets generated when each user terminal requests a download, and the number of all users in the cell.
  • the base station configuration represents the setting and status of the base station. For example, the position of the base station, transmission power, antenna pattern, antenna orientation, antenna tilt, type of packet scheduler for scheduling the priority of packet transmission processing to the user terminal, and the like.
  • System level simulator 300 estimates the reception quality of the shared channel at each user terminal position based on the above input values, and the process of radio packet communication is similar to the reality! Simulate continuous time including and estimate user throughput.
  • a reception signal to interference power ratio (SIR) representing the reception signal power to interference wave signal power ratio of the shared channel is used.
  • System level simulator 300 is an HSDPA (High SPEED) high-speed downlink packet access of W-CDMA (Wide band-Code Division Multiple Access) as a downlink radio packet communication method from a base station to a user terminal.
  • HSDPA High SPEED
  • W-CDMA Wide band-Code Division Multiple Access
  • the traffic volume of the packet requested here is the traffic volume generated by the user terminal described above.
  • Second process Estimate the reception quality of the shared channel at each user terminal location. Specifically, for each user terminal, interference wave signal powers of packets received from a plurality of base stations are calculated and repeated, and based on the calculation result, a shared channel HS—PDSCH (High Speed-Physical Downlink Shared CHannel Calculate and estimate the reception quality of
  • the system level simulator 300 performs the first to fourth processes every 2 ms in real time. Also, the system level simulator 300
  • the first to fourth processes are simulated every 2 ms for more than one hour.
  • the processing amount for simulating the first to fourth processings every 2 ms for 1 hour or more is very large, and the user throughput estimation time becomes long.
  • system level simulator 300 performs processing to average the user throughput in the fifth process to display the geographical distribution of user throughput! Will be longer.
  • Increasing the user throughput estimation time is particularly problematic when considering the appropriate value of the base station configuration according to the user throughput.
  • a system and user throughput geographical distribution estimation method is provided.
  • the user throughput geographical distribution estimation system of the present invention comprises a cellular system including a user terminal and a base station performing radio packet communication using a shared channel between user terminals in its own cell. Applied to estimate the geographical distribution of user throughput.
  • the user throughput geographical distribution estimation system of the present invention comprises reception quality estimation means for estimating reception quality of a shared channel at the position of a user terminal in a cell, and an estimation target range for which estimation of reception quality has been performed.
  • User throughput calculation that calculates user throughput using traffic information reading means for reading traffic information at the same time, reception quality of shared channel at the position of the user terminal in the cell and traffic information in the estimation target range as input values
  • a user throughput estimation unit configured to estimate a user throughput at a position of a user terminal in a cell using a function.
  • a function such as a user throughput calculation function has an output value corresponding to the input value, it is possible to obtain the output value instantaneously when the input value is obtained. Therefore, according to the configuration using functions as described above, the process by which the user terminal shares the shared channel by the packet scheduler processing is detailed with high time resolution as compared with the configuration using the conventional system level simulation. Since it is not necessary to simulate continuous time, the geographical distribution of the user throughput can be estimated in a short time.
  • the traffic information reading means may be configured to read traffic information in an estimation target range measured by either the base station or the radio network controller. According to this configuration, the input value of the user throughput calculation function can be made close to the actual value, so that the estimation accuracy of the user throughput can be improved.
  • user terminal measurement means for traveling in the cell and measuring the reception quality and user throughput of the shared channel at the position of the user terminal in the cell are further provided, and the user throughput estimation means is a shared channel. It may be configured to include function correction means for correcting the user throughput calculation function according to the relationship between the reception quality actual value and the user throughput actual value. According to this configuration, the user throughput calculation function corrected according to the relationship between the measured value of the reception quality of the shared channel and the measured value of the user throughput is used. It is possible to improve the estimation accuracy of the user throughput.
  • FIG. 1 is a diagram for explaining a conventional user throughput geographical distribution estimation method.
  • FIG. 2 is a block diagram showing the configuration of a user throughput geographical distribution estimation system according to Example 1 of the present invention.
  • FIG. 3 is a graph illustrating an example of a user throughput calculation function used in Embodiment 1 of the present invention.
  • FIG. 4 is a view showing a display example of geographical distribution of user throughput using the estimation result of user throughput estimated in Example 1 of the present invention.
  • FIG. 5 is a block diagram showing the configuration of a user throughput geographical distribution estimation system according to a second embodiment of the present invention.
  • FIG. 6 is a block diagram showing the configuration of a user throughput geographical distribution estimation system according to Example 3 of the present invention.
  • FIG. 7 is a graph illustrating an example of a user throughput calculation function used in Embodiment 3 of the present invention.
  • FIG. 8 is a block diagram showing the configuration of a user throughput geographical distribution estimation system according to a fourth embodiment of the present invention.
  • FIG. 9 is a graph illustrating an example of a user throughput calculation function used in Embodiment 4 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a user throughput geographical distribution estimation system according to an eighth example of the present invention.
  • FIG. 11 is a graph illustrating an example of a method of correcting a user throughput calculation function by a function of user terminal actual measurement values.
  • FIG. 2 is a block diagram showing a configuration of a user throughput geographical distribution estimation system according to a first embodiment of the present invention.
  • the cellular system to which this embodiment is applied is a cellular system including a user terminal and a base station that performs radio packet communication using a shared channel between user terminals in its own cell. Do.
  • the user throughput geographical distribution estimation system includes reception quality estimation means 11, traffic information reading means 12, and user throughput estimation means 13.
  • Reception quality estimating means 11 assumes that user terminals exist at various positions in the cell. Furthermore, the reception quality estimation means 11 propagates between the base station and each user terminal based on the position of the base station input as the base station configuration and the position of each user terminal in the cell. Calculate the loss. The propagation loss is derived by substituting the distance between the base station and each user terminal into a predetermined propagation formula.
  • the reception quality estimation means 11 is based on the packet transmission power in the shared channel, the antenna pattern, and the antenna orientation inputted as the base station configuration, and the calculation result of the propagation loss calculated above. First, the reception quality of the shared channel at the position of each user terminal in the cell is estimated. Note that the reception SIR is used as the reception quality.
  • Reception quality estimation means 11 outputs the position of each user terminal in the cell and the reception quality of the shared channel at that position. Among these, the reception quality of the shared channel is output to the user throughput estimation means 13.
  • Traffic information reading means 12 reads external information from traffic information in the estimation target range for which reception quality is estimated by reception quality estimation means 11 and outputs the read traffic information to user throughput estimation means 13 .
  • the traffic information in the estimation target range is the load applied to the estimation target range by the packet generated by the user terminal existing in the estimation target range.
  • the transmission power of a base station is generally used.
  • the number of user terminals in the cell was increased
  • the total transmission power used by the base station for packet transmission to user terminals in the cell increases. That is, traffic information is a quantitative value related to the number of user terminals in a cell.
  • traffic information in the estimation target range is defined as the number of user terminals in a cell.
  • this traffic information is
  • the user throughput estimation means 13 incorporates a user throughput calculation function f for calculating the user throughput U, using the reception quality of the shared channel and the traffic information in the estimation target range as input values.
  • the user throughput estimation unit 13 receives the reception quality of the shared channel output from the reception quality estimation unit 11 and the traffic information in the estimation target range output from the traffic information reading unit 12.
  • the user throughput calculation function f described above is used to calculate the user throughput at the position of each user terminal in the cell, and output as a user throughput estimation result.
  • the user throughput calculation function f is prepared in advance by using the estimation result of user throughput by system level simulation, the measured value of the user throughput to be received by the radio network controller, the result of approximate analysis of the user throughput, and the like. And is incorporated in the user throughput estimation means 13.
  • the qualitative nature of user throughput is that if the reception quality of the shared channel is high
  • A is any constant used for power
  • B is any constant used for power
  • C is any constant
  • Equation 1 takes a form in which the value obtained by raising the reception quality of the shared channel is a numerator. Also, if there is more traffic, user throughput will decrease. Therefore, Equation 1 takes the form of a value obtained by raising the traffic information as the denominator.
  • the arbitrary constants A, B, and C need to be adjusted in advance to approximate the user throughput calculation function f to the estimation result of the system level simulation.
  • FIG. 3 is a graph for explaining an example of the user throughput calculation function f used in the first embodiment of the present invention.
  • the user throughput calculation function f can be represented by a graph as shown in FIG. 3 when the reception quality of the shared channel is taken along the horizontal axis and the user throughput is taken along the vertical axis, and the traffic information in the estimation target range is used as a parameter. .
  • the position of each user terminal in the cell assumed by reception quality estimation means 11 and the position of each user terminal in the cell estimated by user throughput estimation means 13 It outputs together with the estimation result of the user throughput. Therefore, based on these outputs, it is possible to estimate the geographical distribution of user throughput in the cell.
  • FIG. 4 is a diagram showing a display example of geographical distribution of user throughput using the estimation result of user throughput estimated in the first embodiment of the present invention.
  • FIG. 4 the geographical distribution of user throughput of user terminals around a three-sector base station is shown. As shown in Fig. 4, geographical distribution of user throughput should be color-coded to make it easier to visually display in a flat view.
  • the user throughput estimation means 13 receives the reception quality of the shared channel at the position of each user terminal in the cell and the traffic in the estimation target range.
  • the user throughput is calculated at the position of each user terminal in the cell by inputting the clock information and the user throughput calculation function f.
  • the estimation method using such function does not have to simulate the process of wireless packet communication in detail in continuous time as compared to the estimation method using conventional system level simulation. It can be estimated in a short time.
  • the user throughput calculation function f uses only two pieces of information: the reception quality of the shared channel at each user terminal position in the cell and the traffic information in the estimation target range. It is possible to estimate The basis for being able to estimate the user throughput with only two pieces of information is as follows.
  • the user throughput is basically determined in accordance with the frequency with which a radio resource is allocated to a user terminal and the transmission rate of the radio link when the radio resource is allocated.
  • the frequency with which radio resources are allocated to user terminals is related to the degree of congestion of the user terminals at the base station, that is, traffic in the estimation target range.
  • the transmission rate of the wireless link is related to the reception quality of the shared channel of the wireless link. Also, qualitatively, user throughput tends to decrease when the congestion degree of the user terminal in the base station is high, and user throughput tends to increase when the congestion degree of the user terminal is low.
  • the modulation method of the high transmission rate is selected, so the transmission rate rises, and if the reception quality of the shared channel is low, the modulation method of the low transmission rate is used. Because the selection is made, the transmission rate tends to decrease.
  • the correspondence between the reception quality of the shared channel, the traffic information in the estimation target range, and the user throughput is determined qualitatively. Therefore, The relation is obtained in advance by using the estimation result of the user throughput by the system level simulation, the measured value of the user throughput received from the wireless network control device, the result of approximate analysis of the user throughput, etc. Formulate. As a result, it is possible to estimate the user throughput with only two pieces of information: reception quality of the shared channel and traffic information in the estimation target range.
  • the method of estimating the user throughput based on only the two information of the reception quality of the shared channel and the traffic information in the estimation target range extremely restricts the factors affecting the user throughput, It can be said that it is a very simplified method.
  • the estimation time should be greatly shortened with a good estimation accuracy without any practical problem by formulating the user throughput calculation function f correctly. You can get the benefit of being able to
  • the method of quickly estimating the user throughput according to the present embodiment can significantly reduce the examination time of the appropriate value of the base station configuration.
  • FIG. 5 is a block diagram showing the configuration of a user throughput geographical distribution estimation system according to a second embodiment of the present invention.
  • the user throughput geographical distribution estimation system differs from the cellular system to which it is applied as compared with the first embodiment shown in FIG. That is, the wireless network control device 100 is added to the cellular system to which the present embodiment is applied.
  • the remaining structure of the present embodiment is similar to that of the first embodiment shown in FIG. 2, and the same reference numerals are given to the same components.
  • base stations 101 to 103 are connected to radio network control apparatus 100. Further, in the cell of the base station 103, three user terminals 1031 to 1033 exist.
  • the base stations 101 to 103 or the radio network controller within 100 cells.
  • the number of user terminals is measured, and the number of measured user terminals is output to the traffic information reading means 12 as traffic information in the estimation target range.
  • base station 103 or radio network controller 100 measures the number of user terminals in the cell of base station 103, and the measured user The number of terminals is output to traffic information reading means 12 as traffic information in the estimation target range.
  • FIG. 5 shows an example where the radio network controller 100 measures the number of user terminals in the cell 103.
  • the corresponding base station or radio network controller 100 measures the number of user terminals in the cell of the corresponding base station. And outputs the measured number of user terminals to the traffic information reading means 12 as traffic information in the estimation target range.
  • the traffic information reading means 12 may read the traffic information in real time and output it to the user throughput estimating means 13 or the maximum value of the traffic information read in a fixed period (for example, one day) as the user system throughput. It may be output to the estimating means 13.
  • the user throughput estimation means 13 is an accurate traffic for estimating the user throughput. Information can be used. Thereby, the estimation accuracy of the user throughput can be improved.
  • the user throughput estimating means 13 can estimate the user throughput in real time. As a result, it is possible to find in real time in the cell where the user throughput has dropped.
  • the traffic information reading means 12 is configured to output the maximum value of the traffic information in the estimated target range read in a fixed period (for example, one day) to the user system throughput estimation means 13, the base station configuration As an appropriate value of, it is possible to consider an appropriate value that can withstand the largest traffic information in a given period.
  • FIG. 6 is a block diagram showing a configuration of a user throughput geographical distribution estimation system according to a third embodiment of the present invention.
  • the user throughput geographical distribution estimation system differs from the second embodiment shown in FIG. 5 in that a packet scheduler reading means 14a is added.
  • the other configuration of this embodiment is the same as that of the second embodiment shown in FIG. 5, and the same components are denoted by the same reference numerals.
  • the packet scheduler reading means 14a reads and reads the type of packet scheduler (which schedules the priority of packet transmission processing to user terminals using shared channels) used in the base station.
  • the type of packet scheduler is output to the user throughput estimation means 13.
  • the user throughput estimation unit 13 incorporates a user throughput calculation function f 1 in which the type of packet scheduler is added as a new parameter to the user throughput calculation function f used in the first embodiment described above. It is.
  • the user throughput estimation unit 13 receives the reception quality of the shared channel output from the reception quality estimation unit 11, the traffic information in the estimation target range output from the traffic information reading unit 12, and the packet scheduler reading unit The user throughput is calculated at the position of each user terminal in the cell using the user throughput calculation function fl for the input with the type of packet scheduler output from 14a, and output as the estimation result of the user throughput .
  • the user throughput calculation function fl may be prepared for each type of packet scheduler, or may be approximated and formulated as a continuous function as in the first embodiment described above.
  • the user throughput calculation function fl is approximated and formulated as a continuous function, the following equation 2 can be used as an example of the user throughput calculation function fl.
  • Equation 2 U is user throughput, SIR is shared channel reception quality, Sche dular is the type of packet scheduler, Load is the traffic information in the estimation target range
  • a constant determined according to the type of the Judger is an arbitrary constant, and G is an arbitrary constant used for power.
  • Equation 2 takes the form of multiplying the user throughput calculation function f used in the first embodiment described above by the constant D corresponding to the type of packet scheduler. Also, the impact of the bucket scheduler tends to decrease as the traffic gets higher. Therefore, Equation 2 takes the form of dividing the constant D by the traffic information.
  • FIG. 7 is a graph for explaining an example of the user throughput calculation function fl used in the third embodiment of the present invention.
  • the user throughput calculation function fl can be represented by a graph with the reception quality of the shared channel taken on the horizontal axis and the user throughput taken on the vertical axis, with the type of packet scheduler and the traffic information in the estimation target range as parameters. .
  • the user throughput calculation function fl can be represented by a graph as shown in FIG.
  • the user throughput estimation unit 13 calculates the user throughput by adding the type of packet scheduler output from the knock schedule reader reading unit 14 a as a new parameter. Because of this, it is possible to estimate user throughput closer to reality. This can further improve the estimation accuracy of the user throughput.
  • FIG. 8 is a block diagram showing a configuration of a user throughput geographical distribution estimation system according to a fourth embodiment of the present invention.
  • the user throughput geographical distribution estimation system differs from the third embodiment shown in FIG. 6 in that shared channel use ratio reading means 14b is added.
  • the other configuration of the present embodiment is the same as that of the third embodiment shown in FIG. 6, and the same components are denoted by the same reference numerals.
  • Shared channel utilization ratio reading means 14 b is allocated individually from all user terminals in the cell (user terminals that perform wireless packet communication using shared channels and base stations without using shared channels. Of the user terminal performing wireless packet communication using the shared channel with respect to the user terminal performing voice communication etc. using only the specified individual channel), and the read rate is the user throughput Output to estimation means 13.
  • the ratio of user terminals using shared channels may be estimated by shared channel usage ratio reading means 14b based on the penetration rate of user terminals using shared channels, or the radio network controller If the measurement can be made at 100, the result actually measured by the wireless network control device 100 may be used by the shared channel utilization ratio reading means 14b.
  • the user throughput estimation means 13 is a user throughput in which the proportion of user terminals using shared channels is added as a new parameter to the user throughput calculation function fl used in the third embodiment described above.
  • a calculation function f 2 is incorporated.
  • the user throughput estimation unit 13 receives the reception quality of the shared channel output from the reception quality estimation unit 11, the traffic information in the estimation target range output from the traffic information reading unit 12, and the packet scheduler reading unit
  • the user throughput calculation function f 2 is used for the input of the type of packet scheduler output from 14 a and the ratio of user terminals using the shared channel output from shared channel utilization ratio reading means 14 b using the user throughput calculation function f 2 Calculates the user throughput at the position of each user terminal inside and outputs it as the estimation result of user throughput.
  • a user terminal using only an individual channel has a greater impact on traffic than a user terminal using a shared channel.
  • user terminals using shared channels use radio resources (power and frequency of the base station) only when necessary, so the frequency of use of radio resources is low.
  • user terminals that use only dedicated channels continue to consume individually allocated wireless resources of dedicated channels during communication, and it takes time to perform connection processing, so the frequency of use of wireless resources is high. .
  • D is a constant determined according to the type of packet scheduler
  • G is an arbitrary constant used for exponentiation
  • H is a coefficient representing the influence of user terminals using only dedicated channels on traffic
  • J is an arbitrary constant.
  • Formula 3 is basically the same as Formula 2 used in the third embodiment described above, but the traffic in the estimation target range is considered in terms of the degree of influence given to the user terminal using only the dedicated channel. It has a form similar to.
  • (1 Ratio) is a user terminal using only individual channels.
  • FIG. 9 is a graph for explaining an example of the user throughput calculation function f 2 used in the fourth embodiment of the present invention.
  • the user throughput calculation function f 2 takes the reception quality of the shared channel on the horizontal axis and the user throughput on the vertical axis, and the ratio of user terminals using the shared channel and packet scheduling It can be expressed in the form of a graph using the type of error and the traffic information in the estimation target range as parameters. For example, when the type of packet scheduler and the traffic information in the estimation target range are fixed, and the ratio of user terminals using shared channels is changed, the user throughput calculation function f 2 is a graph as shown in FIG. Can be represented.
  • the user throughput estimation unit 13 adds, as a new parameter, the ratio of user terminals using shared channels, which is output from the shared channel usage ratio reading unit 14b. Since the user throughput is calculated, the user throughput closer to reality can be estimated. Thereby, the estimation accuracy of the user throughput can be further improved.
  • the user throughput geographical distribution estimation system differs from the first embodiment in that the traffic information in the estimation target range is defined as the system throughput.
  • the user throughput is throughput from the viewpoint of the user terminal, that is, throughput measured at the user terminal.
  • the system throughput is the throughput from the viewpoint of the base station side which is the system, that is, the throughput measured at the base station side.
  • the system throughput represents the total number of bits of all packets transmitted by the base station to all user terminals in the cell per unit time.
  • the traffic information in the estimation target range is a quantitative value related to the number of user terminals in a cell.
  • the frequency, time, and power of one cell are finite, naturally, the amount of communication that one cell can handle is limited. Taking this into consideration, the traffic information in the estimation target range can be regarded as the congestion degree of the user terminal in the cell.
  • the base station system tends to be in proportion to the number of user terminals.
  • the stem throughput is used as traffic information in the estimation target range.
  • the traffic information in the estimation target range is defined as the average number of simultaneous connections of user terminals in the cell, as compared with the first through fifth embodiments. The only difference is that
  • the average simultaneous connection number of user terminals in a cell is the number obtained by averaging the number of user terminals in a cell connected to the base station at the same time over a certain period of time. This value is measurable at the base station and obviously tends to be proportional to the number of user terminals in the cell.
  • the average simultaneous connection number of user terminals in a cell that tends to be proportional to the number of user terminals is used as traffic information in the estimation target range.
  • the user throughput geographical distribution estimation system has traffic information in the estimation target range compared with the first embodiment or the sixth embodiment, and the use time rate of the packet transmission power of the base station in the cell. The only difference is that it is defined as.
  • the use time rate of packet transmission power of the base station in the cell is a temporal utilization rate of packet transmission power used by the base station for packet transmission to user terminals in the cell.
  • the base station If there is no user terminal in the cell, the base station does not transmit packets, so the temporal usage rate of packet transmission power of the base station decreases. Conversely, if there are many user terminals in the cell, the temporal utilization of packet transmission power of the base station will increase. In other words, this value is measurable at the base station and clearly tends to be proportional to the number of user terminals in the cell.
  • the usage time rate of the transmission power of the base station in the cell which tends to be proportional to the number of user terminals is used as the traffic information in the estimation target range.
  • FIG. 10 is a block diagram showing a configuration of a user throughput geographical distribution estimation system according to an eighth example of the present invention.
  • the user throughput geographical distribution estimation system according to the eighth embodiment of the present invention has a user terminal measurement unit 200 and a user terminal actual measurement compared with the fourth embodiment shown in FIG. The difference is that the value reading means 15 and the function correction means 13a provided inside the user throughput estimation means 13 are added.
  • the other configuration of this embodiment is the same as that of the fourth embodiment shown in FIG. 8, and the same components are denoted by the same reference numerals.
  • user terminal measurement means 200 travels in the cell of base station 103, and at each position of user terminals 1031 to 1033 in the cell. Measure the reception quality of the shared channel and the user throughput at the same time.
  • the user terminal actual value reading means 15 reads the actual measurement value of the reception quality of the shared channel measured by the user terminal actual measurement means 200 and the actual measurement value of the user throughput. Then, the user terminal actual value reading means 15 averages the read actual values for a certain period of time, and then functions fc representing the relationship between the actual value of the reception quality of the shared channel and the actual value of the user throughput. Create Averaging is performed because the fluctuation range of user throughput with respect to reception quality of shared channel is large! /, And it is effective to use the average value of user throughput with respect to reception quality. Further, the user terminal actual value reading means 15 outputs the function f c of the actual measurement value to the function correction means 13 a in the user throughput estimation means 13.
  • the function correction means 13 a adds a correction to the user throughput calculation function f 2 based on the function fc of the actual measurement values output from the user terminal actual measurement value reading means 15. Specifically, as shown in FIG. 11, the function correction means 13a corrects the function fc of the actual measurement value and the function f2 before correction into a function f2 'obtained by averaging.
  • the following equation 4 can be used as the function correction means 13a as the above-mentioned specific correction method.
  • Equation 4 In Equation 4, f2 'is the user throughput calculation function after correction, and f2 is the user before correction
  • the throughput calculation function, fc is a function of the actual measurement value of the user terminal.
  • the function correction means 13a weights both the function fc of the measured value and the function f2 before the correction in consideration of the data amount of the measured value and the reliability of the measured value.
  • a method of averaging may be used.
  • the user throughput estimation means 13 estimates a user throughput by using the same parameter as in the fourth embodiment as an input value, and using the user throughput calculation function f2 corrected by the function correction means 13a.
  • the user throughput estimation means 13 is a function f 2 in which the user throughput function f 2 is corrected in accordance with the actual measurement value of the reception quality of the shared channel and the actual measurement value of the user throughput. Since the user throughput is calculated using ', it is possible to estimate more realistic user throughput. As a result, it is possible to further improve the estimation accuracy of user throughput.
  • the user throughput is estimated by inputting the reception quality of the shared channel at the position of the user terminal and the traffic information in the estimation target range to the user throughput calculation function. ing.
  • the estimation method using these functions simulates the process in which the user terminal shares the shared channel by the packet scheduler process in detail with continuous time simulation with high time resolution. It is possible to estimate the geographical distribution of user throughput in a short time because it is not necessary.
  • the estimation accuracy of the user throughput can be improved.
  • the present invention it is possible to use a measured value as traffic information in an estimated target range which is a parameter of the user throughput calculation function. That is, according to the present invention, since the input value of the user throughput calculation function can be made close to the actual value, the estimation accuracy of the user throughput can be improved. Furthermore, in the present invention, the user throughput calculation function may be corrected according to the relationship between the actual measurement value of the reception quality of the shared channel at the position of the user terminal and the actual measurement value of the user throughput. Therefore, since the present invention can use the user throughput calculation function according to the relationship between the reception quality of the shared channel close to real and the user throughput, the user throughput can be estimated with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 ユーザ端末と、自己のセル内のユーザ端末との間で共有チャネルを利用して無線パケット通信を行う基地局とを含むセルラシステムにおけるユーザスループットの地理的分布を推定するシステムが提供される。受信品質推定手段(11)は、セル内のユーザ端末の位置での共用チャネルの受信品質を推定する。トラヒック情報読込み手段(12)は、受信品質の推定が行われた推定対象範囲におけるトラヒック情報を読込む。ユーザスループット推定手段(13)は、セル内のユーザ端末の位置での共用チャネルの受信品質と推定対象範囲におけるトラヒック情報とを入力値としてユーザスループットを算出するユーザスループット算出関数を用いて、セル内のユーザ端末の位置でのユーザスループットを推定する。

Description

明 細 書
ユーザスループット地理的分布推定システムおよびユーザスループット地 理的分布推定方法
技術分野
[0001] 本発明は、ユーザスループット地理的分布推定システムおよびユーザスループット 地理的分布推定方法に関し、特に、基地局とユーザ端末との間で共有チャネルを利 用して無線パケット通信を行うセルラシステムにおけるユーザスループットを推定する 技術に関する。
背景技術
[0002] 従来、ユーザ端末と、自己のセル内のユーザ端末との間で共有チャネルを利用し て無線パケット通信を行う基地局とを含むセルラシステムがある。
[0003] セルラシステムでは、ユーザスループットは、基地局の周囲の地理に応じて異なる 値を示す。ユーザスループットとは、ユーザ端末にて測定される値で、ユーザ端末が 単位時間あたりに基地局から受信したパケットのビット数を表すものである。
[0004] セルラシステムにおけるユーザスループットの地理的分布を推定する方法としては 、コンピュータによって、セルラシステムのシステムレベルシミュレーションを連続時間 行う方法が一般的である。その理由は、セル内のユーザ端末が高速な制御を行って 共用チャネルを共用するため、その共用の過程を高い時間分解能で連続時間模擬 し、上位層を含めた無線パケット通信のプロセスを詳細に模擬しないと、ユーザスル 一プットを正確に推定することができないためである。
[0005] 従来のユーザスループットの地理的分布推定方法について、図 1を参照して説明 する。
[0006] 図 1に示すように、セルラシステムの連続時間のシステムレベルシミュレーションは、 システムレベルシミュレータ 300にて行われる。
[0007] システムレベルシミュレータ 300は、基地局コンフィギュレーション、各ユーザ端末が ダウンロードを要求することで発生するパケットのトラヒック量、セル内の全ユーザ数を 入力値とする。なお、基地局コンフィギュレーションとは、基地局の設定や状態を表す もので、例えば、基地局の位置、送信電力、アンテナパターン、アンテナ方位、アン テナチルト、ユーザ端末へのパケット送信処理の優先順位をスケジューリングするパ ケットスケジューラの種類などである。
[0008] システムレベルシミュレータ 300は、上記の入力値に基づいて、各ユーザ端末の位 置での共用チャネルの受信品質を推定し、現実に近!、無線パケット通信のプロセス をプロトコルの上位層も含めて連続時間模擬し、ユーザスループットを推定する。な お、共用チャネルの受信品質としては、通常、共用チャネルの受信信号電力対干渉 波信号電力比を表す受信 SIR (Signal to Interference power Ratio)が用いられる。
[0009] ここで、システムレベルシミュレータ 300による連続時間のシステムレベルシミュレ一 シヨンの手順について詳細に説明する。
[0010] システムレベルシミュレータ 300は、基地局からユーザ端末への下りリンクの無線パ ケット通信方式として、 W— CDMA (Wide band-Code Division Multiple Access)の 高速下りリンクパケットアクセスである HSDPA (High SPEED Downlink Packet Access )方式を用いる場合、以下の第 1から第 5の処理を模擬的に行う。
•まず、第 1の処理:様々な位置にユーザ
端末を発生させる。そして、た後にユーザ端末を移動さ各せ、ユーザ端末から基地 局に対し、共用チャネルでパケットを送信するようトラヒック要求する。ここで要求する パケットのトラヒック量が、上述したユーザ端末が発生するトラヒック量となる。
•第 2の処理:各ユーザ端末の位置での共用チャネルの受信品質を推定する。詳細 には、各ユーザ端末ごとに、複数の基地局から受信したパケットの干渉波信号電力 を計算し繰り返し、その計算結果に基づいて共用チャネルである HS— PDSCH (Hig h Speed-Physical Downlink Shared CHannel)の受信品質を計算推定する。
•第 3の処理:基地局力 各ユーザ端末に対し、各ユーザ端末が発生するトラヒック量
、各ユーザ端末の位置での共用チャネルの受信品質、および基地局のパケットスケ ジユーラに基づ 、て、共用チャネルを利用してパケットを送信する。
•第 4の処理:各ユーザ端末ごとに、基地局から受信したパケットのビット数に基づき ユーザスループットを計算する。第 4の処理が終了すると第 1の処理に戻る。このとき
、各ユーザ端末の位置を、そのユーザ端末の移動速度に応じて更新し、再び、第 1 から第 4の処理を繰り返す。
•第 5の処理:第 4の処理での計算結果であるユーザスループットを平均化する。そし て、各せ、ユーザ端末の位置を出力するとともに、各せ、ユーザ端末のユーザスルー プットの平均値をユーザスループットの推定結果として出力する。
[0011] システムレベルシミュレータ 300は、第 1から第 4の処理を実時間に合わせて 2ms毎 に行っている。また、システムレベルシミュレータ 300は、
統計的に信頼度の高いユーザスループットの推定結果を得るために、第 1から第 4 の処理を 2ms毎に 1時間以上に渡って模擬している。
[0012] その結果、ユーザスループットの推定結果の精度は向上する。しかし、その反面、 第 1から第 4の処理を 2ms毎に 1時間以上に渡って模擬する処理量は非常に膨大な ものとなるため、ユーザスループットの推定時間が長くなる。
[0013] また、システムレベルシミュレータ 300は、ユーザスループットの地理的分布を表示 するために第 5の処理でユーザスループットを平均化する処理を行って!/、るため、ュ 一ザスループットの推定時間がさらに長くなる。
[0014] ユーザスループットの推定時間の長時間化は、特に、ユーザスループットに応じて 基地局コンフィギュレーションの適正値を検討する際に問題となる。基地局コンフィギ ユレーシヨンの適正値を検討する場合、基地局コンフィギュレーションを変更するたび に、システムレベルシミュレーションを行う。そのため、基地局コンフィギュレーションの 適正値が決定されるまで、何度も長時間のシステムレベルシミュレーションを繰り返す ことになり、検討時間が非常に長くなる。
[0015] なお、従来のスループットを推定する他の方法としては、スループットを推定して通 信開始の適否を判断する方法 (例えば、特開 2000— 224094号公報参照)、システ ムスループットを改善する方法 (例えば、特開 2003— 298498号公報参照)、バケツ ト品質を推定できる基地局を実現する方法 (例えば、特開 2004— 112597号公報参 照)などがある。
発明の開示
[0016] そこで、本発明の目的は、セルラシステムにおけるユーザスループットの地理的分 布推定を精度良くかつ短時間で行うことができるユーザスループット地理的分布推定 システムおよびユーザスループット地理的分布推定方法を提供することにある。
[0017] 本発明のユーザスループット地理的分布推定システムは、ユーザ端末と、自己のセ ル内のユーザ端末との間で共有チャネルを利用して無線パケット通信を行う基地局 とを含むセルラシステムにおけるユーザスループットの地理的分布を推定するために 適用される。
[0018] 本発明のユーザスループット地理的分布推定システムは、セル内のユーザ端末の 位置での共用チャネルの受信品質を推定する受信品質推定手段と、受信品質の推 定が行われた推定対象範囲におけるトラヒック情報を読込むトラヒック情報読込み手 段と、セル内のユーザ端末の位置での共用チャネルの受信品質と推定対象範囲に おけるトラヒック情報とを入力値としてユーザスループットを算出するユーザスループ ット算出関数を用いて、セル内のユーザ端末の位置でのユーザスループットを推定 するユーザスループット推定手段とを有する構成である。
[0019] ユーザスループット算出関数のような関数は、入力値に対応する出力値が定まって いるため、入力値が得られると、瞬時に出力値を求めることが可能である。従って、上 記のように関数を用いる構成によれば、従来のシステムレベルシミュレーションを用い る構成と比較して、パケットスケジューラの処理によってユーザ端末が共用チャネル を共用する過程を高い時間分解能で詳細に連続時間模擬する必要がないため、ュ 一ザスループットの地理的分布を短時間で推定することができる。
[0020] また、トラヒック情報読込み手段は、基地局または無線ネットワーク制御装置のいず れかにて測定された推定対象範囲におけるトラヒック情報を読込む構成としても良い 。この構成によれば、ユーザスループット算出関数の入力値を現実に近い値とするこ とができるため、ユーザスループットの推定精度の向上を図ることができる。
[0021] また、セル内を走行し、セル内のユーザ端末の位置での共用チャネルの受信品質 とユーザスループットとを実測するユーザ端末実測手段をさらに有し、ユーザスルー プット推定手段は、共用チャネルの受信品質の実測値とユーザスループットの実測 値との関係に応じてユーザスループット算出関数を補正する関数補正手段を含む構 成としても良い。この構成によれば、共用チャネルの受信品質の実測値とユーザスル 一プットの実測値との関係に応じて補正したユーザスループット算出関数を利用する ことができるため、ユーザスループットの推定精度の向上を図ることができる。
図面の簡単な説明
[0022] [図 1]従来のユーザスループット地理的分布推定方法を説明する図である。
[図 2]本発明の実施例 1によるユーザスループット地理的分布推定システムの構成を 示すブロック図である。
[図 3]本発明の実施例 1で用いられるユーザスループット算出関数の例を説明するグ ラフである。
[図 4]本発明の実施例 1で推定されたユーザスループットの推定結果を用いたユーザ スループットの地理的分布の表示例を示す図である。
[図 5]本発明の実施例 2によるユーザスループット地理的分布推定システムの構成を 示すブロック図である。
[図 6]本発明の実施例 3によるユーザスループット地理的分布推定システムの構成を 示すブロック図である。
[図 7]本発明の実施例 3で用いられるユーザスループット算出関数の例を説明するグ ラフである。
[図 8]本発明の実施例 4によるユーザスループット地理的分布推定システムの構成を 示すブロック図である。
[図 9]本発明の実施例 4で用いられるユーザスループット算出関数の例を説明するグ ラフである。
[図 10]本発明の第 8の実施例によるユーザスループット地理的分布推定システムの 構成を示すブロック図である。
[図 11]ユーザスループット算出関数をユーザ端末実測値の関数によって補正する方 法の例を説明するグラフである。
発明を実施するための最良の形態
[0023] 以下に、本発明のユーザスループット地理的分布推定システムの実施例について 図面を参照して説明する。なお、以下の記載では、基地局からユーザ端末への下りリ ンクの無線パケット通信方式として、 W— CDMAの HSDPA方式を用いるものとして 説明する。 実施例 1
[0024] 図 2は、本発明の実施例 1によるユーザスループット地理的分布推定システムの構 成を示すブロック図である。なお、本実施例が適用されるセルラシステムは、ユーザ 端末と、自己のセル内のユーザ端末との間で共有チャネルを利用して無線パケット 通信を行う基地局とを含むセルラシステムであるものとする。
[0025] 図 2を参照すると、本実施例によるユーザスループット地理的分布推定システムは、 受信品質推定手段 11と、トラヒック情報読込み手段 12と、ユーザスループット推定手 段 13とを有している。
[0026] 受信品質推定手段 11は、セル内の様々な位置にユーザ端末が存在していると想 定する。その上で、受信品質推定手段 11は、基地局コンフィギュレーションとして入 力された基地局の位置と、セル内の各ユーザ端末の位置とに基づいて、基地局と各 ユーザ端末との間の伝搬損を計算する。なお、伝搬損は、基地局と各ユーザ端末と の間の距離を、所定の伝搬式に代入することで導出される。
[0027] さらに、受信品質推定手段 11は、基地局コンフィギュレーションとして入力された、 共用チャネルでのパケット送信電力、アンテナパターン、およびアンテナ方位と、上 記で計算した伝搬損の計算結果とに基づ 、て、セル内の各ユーザ端末の位置での 共用チャネルの受信品質を推定する。なお、受信品質としては、受信 SIRを用いるも のとする。
[0028] 受信品質推定手段 11は、セル内の各ユーザ端末の位置と、その位置での共用チ ャネルの受信品質とを出力する。このうち、共用チャネルの受信品質は、ユーザスル 一プット推定手段 13に出力される。
[0029] トラヒック情報読込み手段 12は、受信品質推定手段 11にて受信品質が推定された 推定対象範囲におけるトラヒック情報を外部力 読込み、読込んだトラヒック情報をュ 一ザスループット推定手段 13に出力する。推定対象範囲におけるトラヒック情報とは 、推定対象範囲に存在するユーザ端末が発生するパケットによって、推定対象範囲 に加えられる負荷のことである。
[0030] 例えば、 W— CDMAの下りリンクのトラヒック情報の指標としては、基地局の送信電 力が一般的に用いられる。下りリンクでは、セル内のユーザ端末の数が増えるにした がって、基地局がセル内のユーザ端末へのパケット送信に用いる総送信電力が増加 する。すなわち、トラヒック情報は、セル内のユーザ端末の数に関連する定量的な値 となる。
[0031] そこで、以後、本発明の実施例 1から 4においては、推定対象範囲におけるトラヒッ ク情報をセル内のユーザ端末の数と定義して説明する。ただし、このトラヒック情報は
「0」よりも大き ヽ値であるものとする。
[0032] ユーザスループット推定手段 13は、共用チャネルの受信品質と、推定対象範囲に おけるトラヒック情報とを入力値として、ユーザスループット Uを算出するユーザスル 一プット算出関数 fを内蔵して 、る。
[0033] ユーザスループット推定手段 13は、受信品質推定手段 11から出力される共用チヤ ネルの受信品質と、トラヒック情報読込み手段 12から出力される推定対象範囲にお けるトラヒック情報との入力に対し、上述したユーザスループット算出関数 fを用いて、 セル内の各ユーザ端末の位置でのユーザスループットを算出し、ユーザスループット の推定結果として出力する。
[0034] ユーザスループット算出関数 fは、システムレベルシミュレーションによるユーザスル 一プットの推定結果、無線ネットワーク制御装置力 受信するユーザスループットの 実測値、およびユーザスループットを近似解析した結果等を利用して事前に用意さ れ、ユーザスループット推定手段 13に内蔵されたものである。
[0035] ユーザスループット算出関数 fは、共用チャネルの受信品質と、推定対象範囲にお けるトラヒック情報とを入力値とする連続関数として近似し定式ィ匕すると、連続的な入 力値がある場合の推定処理が容易になる。
[0036] ユーザスループットの定性的な性質としては、共用チャネルの受信品質が高ければ
、ユーザスループットが上昇し、トラヒックが多ければ、ユーザスループットが低下する という性質がある。このことから、ユーザスループット算出関数 fの例として、次の数式
1を用いることができる。
[0037] [数 1]
U = f(SIR,LoadcelI) = C x 。 π
Loaaceu 数式 1において、 Uはユーザスループット、 SIRは共用チャネルの受信品質、 Load は推定対象範囲におけるトラヒック情報(=セル内のユーザ端末数。ただし、 Load eil eel
>0)、 Aは累乗に用いる任意の定数、 Bは累乗に用いる任意の定数、 Cは任意の定
1
数である。
[0038] 上述したように、共用チャネルの受信品質が高ければ、ユーザスループットが上昇 する。そのため、数式 1は、共用チャネルの受信品質を累乗した値を分子とする形式 をとる。また、トラヒックが多くなれば、ユーザスループットが低下する。そのため、数式 1は、トラヒック情報を累乗した値を分母とする形式をとる。なお、任意の定数 A, B, C は、ユーザスループット算出関数 fをシステムレベルシミュレーションの推定結果等に 近似させるために、事前に調整しておく必要がある。
[0039] 図 3は、本発明の実施例 1で用いられるユーザスループット算出関数 fの例を説明 するグラフである。
[0040] ユーザスループット算出関数 fは、横軸に共用チャネルの受信品質、縦軸にユーザ スループットを取り、推定対象範囲におけるトラヒック情報をパラメータとした場合、図 3のようなグラフで表すことができる。
[0041] 本実施例においては、受信品質推定手段 11にて想定されたセル内の各ユーザ端 末の位置と、ユーザスループット推定手段 13にて推定されたセル内の各ユーザ端末 の位置でのユーザスループットの推定結果とを併せて出力している。そのため、これ ら出力に基づいて、セル内のユーザスループットの地理的分布を推定することが可 能となる。
[0042] 図 4は、本発明の実施例 1にて推定されたユーザスループットの推定結果を用いた ユーザスループットの地理的分布の表示例を示す図である。
[0043] 図 4を参照すると、 3セクタ構成の基地局の周囲にあるユーザ端末のユーザスルー プットの地理的分布が示されている。図 4のように、ユーザスループットの地理的分布 は、視覚的に把握しやすいように平面的に表示するのが良ぐさらに色分け表示する のが良い。
[0044] 上述したように本実施例においては、ユーザスループット推定手段 13が、セル内の 各ユーザ端末の位置での共用チャネルの受信品質と、推定対象範囲におけるトラヒ ック情報とをユーザスループット算出関数 fに入力することで、セル内の各ユーザ端末 の位置でのユーザスループットを算出して 、る。
[0045] ユーザスループット算出関数 fのような関数は、入力値に対応する出力値が定まつ ているため、入力値が得られると、瞬時に出力値を求めることが可能である。従って、 こうした関数を用いる推定方法は、従来のシステムレベルシミュレーションを用いる推 定方法と比較して、無線パケット通信のプロセスを詳細に連続時間模擬する必要が な 、ため、ユーザスループットの地理的分布を短時間で推定することができる。
[0046] ところで、ユーザスループット算出関数 fは、上述したように、セル内の各ユーザ端 末の位置での共用チャネルの受信品質と、推定対象範囲におけるトラヒック情報との 2つの情報のみでユーザスループットを推定することを可能とするものである。 2つの 情報のみでユーザスループットを推定することができる根拠は、以下の通りである。
[0047] ユーザスループットは、基本的に、ユーザ端末に無線リソースが割り当てられる頻度 と、無線リソースが割り当てられた際の無線リンクの伝送レートとに応じて決定される。 ユーザ端末に無線リソースが割り当てられる頻度は、基地局におけるユーザ端末の 混雑度、つまり推定対象範囲におけるトラヒックに関連する。また、無線リンクの伝送 レートは、無線リンクの共用チャネルの受信品質に関連する。また、ユーザスループ ットは、定性的に、基地局におけるユーザ端末の混雑度が高ければユーザスループ ットが低下し、ユーザ端末の混雑度が低ければユーザスループットが上昇する傾向 がある。
[0048] また、 HSDPAでは、共用チャネルの受信品質が高ければ高伝送レートの変調方 式が選択されるため、伝送レートが上昇し、共用チャネルの受信品質が低ければ低 伝送レートの変調方式が選択されるため、伝送レートが低下する傾向がある。
[0049] HSDPA以外の無線パケット通信方式でも、共用チャネルの受信品質が高ければ 誤り率が低いため、実効伝送レートが上昇し、共用チャネルの受信品質が低ければ 誤り率が高いため、実効伝送レートが低下する。よって、上述した HSDPAと同様の 傾向がある。
[0050] 以上のことから、共用チャネルの受信品質と、推定対象範囲におけるトラヒック情報 と、ユーザスループットとの対応関係は定性的に定まっている。従って、その対応関 係を、システムレベルシミュレーションによるユーザスループットの推定結果、無線ネ ットワーク制御装置から受信するユーザスループットの実測値、およびユーザスルー プットを近似解析した結果等を利用して事前に取得し、さらには近似して定式化して おく。それによつて、共用チャネルの受信品質と推定対象範囲におけるトラヒック情報 との 2つの情報のみでユーザスループットを推定することが可能となる。
[0051] このように、共用チャネルの受信品質と推定対象範囲におけるトラヒック情報との 2 つの情報のみでユーザスループットを推定する方法は、ユーザスループットに影響を 与える要素を極端に限定しているため、非常に簡略化された方法といえる。
[0052] ただし、推定方法の簡略化に伴い、推定精度に幾らかの劣化が発生する。しかし、 システムレベルシミュレーションの結果等に近似させるために、ユーザスループット算 出関数 fを正確に定式ィ匕しておくことによって、実用上問題のない良い推定精度で、 推定時間を大幅に短縮することができるというメリットを得ることができる。
[0053] 特に、基地局コンフィギュレーションの適正値を検討する際には、基地局コンフィギ ユレーシヨンを幾つも変更して迅速に適正値を求めることが重要となる。そのため、本 実施例によるユーザスループットの高速な推定方法によって、基地局コンフィギユレ ーシヨンの適正値の検討時間を大幅に短縮することができる。
実施例 2
[0054] 図 5は、本発明の実施例 2によるユーザスループット地理的分布推定システムの構 成を示すブロック図である。
[0055] 図 5を参照すると、本実施例によるユーザスループット地理的分布推定システムは、 図 2に示した実施例 1と比較して、適用されるセルラシステムが異なっている。すなわ ち、本実施例が適用されるセルラシステムには、無線ネットワーク制御装置 100が追 カロされている。なお、本実施例のこれ以外の構成は、図 2に示した実施例 1と同様の 構成となっており、同一構成要素には同一符号を付してある。
[0056] なお、図 5においては、無線ネットワーク制御装置 100には、基地局 101〜103が 接続されている。また、基地局 103のセル内には、 3つのユーザ端末 1031〜1033 が存在している。
[0057] 本実施例では、基地局 101〜103または無線ネットワーク制御装置 100力 セル内 のユーザ端末の数を測定し、測定されたユーザ端末の数を推定対象範囲におけるト ラヒック情報としてトラヒック情報読込み手段 12に出力する。
[0058] 例えば、基地局 103のセル内のユーザスループットを推定する場合は、基地局 10 3または無線ネットワーク制御装置 100が基地局 103のセル内のユーザ端末の数を 測定し、測定されたユーザ端末の数を推定対象範囲におけるトラヒック情報としてトラ ヒック情報読込み手段 12に出力する。なお、図 5には、無線ネットワーク制御装置 10 0がセル 103内のユーザ端末の数を測定する例が示されている。
[0059] 同様に、基地局 101, 102のセル内のユーザスループットを推定する場合も、該当 する基地局または無線ネットワーク制御装置 100が該当する基地局のセル内のユー ザ端末の数を測定し、測定されたユーザ端末の数を推定対象範囲におけるトラヒック 情報としてトラヒック情報読込み手段 12に出力する。
[0060] トラヒック情報は時々刻々と変化する。そのため、トラヒック情報読込み手段 12は、ト ラヒック情報をリアルタイムで読込んでユーザスループット推定手段 13に出力しても 良いし、一定期間(例えば 1日)に読込んだトラヒック情報の最大値をユーザシステム スループット推定手段 13に出力しても良い。
[0061] 上述したように本実施例においては、トラヒック情報読込み手段 12がセルラシステ ムで実際に測定されたトラヒック情報を出力する構成としたため、ユーザスループット 推定手段 13はユーザスループットの推定に正確なトラヒック情報を用いることができ る。それにより、ユーザスループットの推定精度の向上を図ることができる。
[0062] 例えば、トラヒック情報読込み手段 12が推定対象範囲におけるトラヒック情報の実 測値をリアルタイムに出力する構成とした場合、ユーザスループット推定手段 13はュ 一ザスループットをリアルタイムに推定することができる。それにより、セル内でユーザ スループットが低下した地点をリアルタイムに発見することができる。
[0063] あるいは、トラヒック情報読込み手段 12が一定期間(例えば 1日)に読込んだ推定 対象範囲におけるトラヒック情報の最大値をユーザシステムスループット推定手段 13 に出力する構成とした場合、基地局コンフィギュレーションの適正値として、一定期間 中の最大のトラヒック情報に耐えられる適正値を検討することができる。
実施例 3 [0064] 図 6は、本発明の実施例 3によるユーザスループット地理的分布推定システムの構 成を示すブロック図である。
[0065] 図 6を参照する、本実施例によるユーザスループット地理的分布推定システムは、 図 5に示した実施例 2と比較して、パケットスケジューラ読込み手段 14aを追加した点 が異なる。本実施例のこれ以外の構成は、図 5に示した実施例 2と同様の構成となつ ており、同一構成要素には同一符号を付してある。
[0066] パケットスケジューラ読込み手段 14aは、基地局で用いられているパケットスケジュ ーラ(共用チャネルを利用するユーザ端末へのパケット送信処理の優先順位をスケ ジユーリングするもの)の種類を読込み、読込んだパケットスケジューラの種類をユー ザスループット推定手段 13に出力する。
[0067] ユーザスループット推定手段 13には、上述した実施例 1で用いたユーザスループッ ト算出関数 fに対して、パケットスケジューラの種類が新たなパラメータとして追加され たユーザスループット算出関数 f 1が内蔵されて 、る。
[0068] ユーザスループット推定手段 13は、受信品質推定手段 11から出力される共用チヤ ネルの受信品質と、トラヒック情報読込み手段 12から出力される推定対象範囲にお けるトラヒック情報と、パケットスケジューラ読込み手段 14aから出力されるパケットスケ ジユーラの種類との入力に対し、ユーザスループット算出関数 flを用いて、セル内の 各ユーザ端末の位置でのユーザスループットを算出し、ユーザスループットの推定結 果として出力する。
[0069] ユーザスループット算出関数 flは、パケットスケジューラの種類毎に用意しても良く 、上述した実施例 1と同様に、連続関数として近似し定式ィ匕しても良い。ユーザスル 一プット算出関数 flを連続関数として近似し定式化する場合、ユーザスループット算 出関数 flの例として、次の数式 2を用いることができる。
[0070] [数 2]
D(Schedular)
U =
Figure imgf000014_0001
= ~リ、。レ11 cuuld" fl x
E (l + Loadcell)
数式 2において、 Uはユーザスループット、 SIRは共用チャネルの受信品質、 Sche dularはパケットスケジューラの種類、 Load は推定対象範囲におけるトラヒック情報
cell
(=セル内のユーザ端末の数。ただし、 Load 〉0)、 D (Schedular)はパケットスケ
cell
ジユーラの種類に応じて決まる定数、 Eは任意の定数、 Gは累乗に用いる任意の定 数である。
[0071] ユーザスループットは、パケットスケジューラの種類に応じて、上昇したり低下したり する。そのため、数式 2は、パケットスケジューラの種類に応じた定数 Dを、上述した 実施例 1で用いたユーザスループット算出関数 fに乗算する形式をとる。また、バケツ トスケジューラの影響は、トラヒックが高くなるにしたがって小さくなる傾向がある。その ため、数式 2は、定数 Dをトラヒック情報で除算する形式をとる。
[0072] 図 7は、本発明の実施例 3で用いられるユーザスループット算出関数 flの例を説明 するグラフである。
[0073] ユーザスループット算出関数 flは、横軸に共用チャネルの受信品質、縦軸にユー ザスループットを取り、パケットスケジューラの種類と推定対象範囲におけるトラヒック 情報とをパラメータとしたグラフで表すことができる。例えば、推定対象範囲における トラヒック情報を固定し、パケットスケジューラの種類を変化させた場合、ユーザスルー プット算出関数 flは、図 7のようなグラフで表すことができる。
[0074] 上述したように本実施例においては、ユーザスループット推定手段 13が、ノケットス ケジユーラ読込み手段 14aから出力されるパケットスケジューラの種類を新たなパラメ ータとして追加してユーザスループットを算出する構成であるため、より現実に近いュ 一ザスループットを推定することができる。それにより、ユーザスループットの推定精 度のさらなる向上を図ることができる。
実施例 4
[0075] 図 8は、本発明の実施例 4によるユーザスループット地理的分布推定システムの構 成を示すブロック図である。
[0076] 図 8を参照すると、本実施例によるユーザスループット地理的分布推定システムは、 図 6に示した実施例 3と比較して、共用チャネル利用割合読込み手段 14bを追加した 点が異なる。本実施例のこれ以外の構成は、図 6に示した実施例 3と同様の構成とな つており、同一構成要素には同一符号を付してある。 [0077] 共用チャネル利用割合読込み手段 14bは、セル内の全てのユーザ端末 (共用チヤ ネルを利用して無線パケット通信を行うユーザ端末と、共用チャネルを利用せずに基 地局から個別に割り当てられた個別チャネルのみを利用して音声通信等を行うユー ザ端末)に対して、共用チャネルを利用して無線パケット通信を行うユーザ端末が占 める割合を読込み、読込んだ割合をユーザスループット推定手段 13に出力する。な お、共用チャネルを利用するユーザ端末の割合は、共用チャネルを利用するユーザ 端末の普及率を基にして共用チャネル利用割合読込み手段 14bにて推定して求め ても良いし、無線ネットワーク制御装置 100で測定可能であれば、実際に無線ネット ワーク制御装置 100で測定された結果を共用チャネル利用割合読込み手段 14bに て利用しても良い。
[0078] ユーザスループット推定手段 13には、上述した実施例 3で用いたユーザスループッ ト算出関数 flに対して、共用チャネルを利用するユーザ端末の割合が新たなパラメ ータとして追加されたユーザスループット算出関数 f 2が内蔵されている。
[0079] ユーザスループット推定手段 13は、受信品質推定手段 11から出力される共用チヤ ネルの受信品質と、トラヒック情報読込み手段 12から出力される推定対象範囲にお けるトラヒック情報と、パケットスケジューラ読込み手段 14aから出力されるパケットスケ ジユーラの種類と、共用チャネル利用割合読込み手段 14bから出力される共用チヤ ネルを利用するユーザ端末の割合との入力に対し、ユーザスループット算出関数 f 2 を用いて、セル内の各ユーザ端末の位置でのユーザスループットを算出し、ユーザス ループットの推定結果として出力する。
[0080] 個別チャネルのみを利用するユーザ端末は、共用チャネルを利用するユーザ端末 と比較して、トラヒックへ与える影響が大きい。例えば、共用チャネルを利用するユー ザ端末は、無線リソース (基地局の電力や周波数)を必要な時だけ利用するため、無 線リソースの利用頻度が低い。他方、個別チャネルのみを利用するユーザ端末は、 個別に割り当てられた個別チャネルの無線リソースを通信中に継続して消費し、接続 処理にも時間が掛カるため、無線リソースの利用頻度が高い。
[0081] つまり、個別チャネルのみを利用するユーザ端末は、共用チャネルを利用するユー ザ端末と比較して、トラヒックを上昇させる影響度が大きいため、ユーザスループット U を低下させる要因となる。
[0082] このことを考慮すると、ユーザスループット算出関数 f 2を、実施例 1と同様に、連続 関数として近似し定式化する場合、ユーザスループット算出関数 f 2の例として、次の 数式 3を用いることができる。
[0083] [数 3]
U = i2 (SIR , Load∞11 , Schedular , Ratio SCH )
_ D(Schedular)
J x [{Ratio + H x (1 - RatioSCH )} Load^ 数式 3において、 Uはユーザスループット、 SIRは共用チャネルの受信品質、 Load ellは推定対象範囲におけるトラヒック情報(=セル内のユーザ端末の数。ただし、 Loa d 〉0)、 Schedularはパケットスケジューラの種類、 Ratio は共用チャネルを利 cell SCH
用するユーザ端末の割合、 D (Schedular)はパケットスケジューラの種類に応じて決 まる定数、 Gは累乗に用いる任意の定数、 Hは個別チャネルのみを利用するユーザ 端末がトラヒックへ与える影響を表す係数、 Jは任意の定数である。
[0084] 数式 3は、上述した実施例 3で用いた数式 2と基本的に同様であるが、推定対象範 囲におけるトラヒックを、個別チャネルのみを利用するユーザ端末が与える影響度を 考慮したトラヒックに近似した形式をとつている。
[0085] 数式 3の分母において、(1 Ratio )は個別チャネルのみを利用するユーザ端
SCH
末の割合を表している。この割合に係数 Hを乗算した結果は、個別チャネルのみを 利用しトラヒックへ影響を与える実効的なユーザ端末の割合を表して 、る。この割合 に共用チャネルを利用するユーザ端末の割合 Ratio を加えた上で、トラヒック情報
SCH
Load を乗算した結果は、推定対象範囲におけるトラヒックを近似した結果となり、 [{ cell
Ratio +H X (1 -Ratio ) } X Load ]で表される。
SCH SCH cell
[0086] 図 9は、本発明の実施例 4で用いられるユーザスループット算出関数 f 2の例を説明 するグラフである。
[0087] ユーザスループット算出関数 f 2は、横軸に共用チャネルの受信品質、縦軸にユー ザスループットを取り、共用チャネルを利用するユーザ端末の割合とパケットスケジュ ーラの種類と推定対象範囲におけるトラヒック情報とをパラメータとしたグラフで表すこ とができる。例えば、パケットスケジューラの種類と推定対象範囲におけるトラヒック情 報とを固定し、共用チャネルを利用するユーザ端末の割合を変化させた場合、ユー ザスループット算出関数 f 2は、図 9のようなグラフで表すことができる。
[0088] 上述したように本実施例においては、ユーザスループット推定手段 13が、共用チヤ ネル利用割合読込み手段 14bから出力される、共用チャネルを利用するユーザ端末 の割合を新たなパラメータとして追加してユーザスループットを算出する構成である ため、より現実に近いユーザスループットを推定することができる。それにより、ユーザ スループットの推定精度のさらなる向上を図ることができる。
[0089] 今後のセルラシステムは、 HSDPA対応のユーザ端末の普及に伴い、共用チヤネ ルを利用するユーザ端末の割合が徐々に増加していくことが予想される。このように セルラシステムが成熟、発展していく過程において、上記のようなユーザスループット の推定方法は、特に有効に利用されると考えられる。
実施例 5
[0090] 本発明の実施例 5によるユーザスループット地理的分布推定システムは、実施例 1 力 4と比較して、推定対象範囲におけるトラヒック情報をシステムスループットと定義 している点だけが異なる。
[0091] ユーザスループットは、ユーザ端末側の視点に立ったスループット、つまりユーザ端 末側で測定されるスループットである。これに対して、システムスループットは、システ ムである基地局側の視点に立ったスループット、つまり基地局側で測定されるスルー プットである。システムスループットとは、基地局が単位時間あたりにセル内の全ユー ザ端末に送信した全パケットの総ビット数を表すものである。
[0092] 実施例 1で説明したように、推定対象範囲におけるトラヒック情報は、セル内のユー ザ端末の数に関連する定量的な値である。ここで、 1つのセルが持つ周波数、時間、 電力は有限であることから、当然に、 1つのセルが扱うことのできる通信量は有限であ る。このことを考慮すると、推定対象範囲におけるトラヒック情報はセル内のユーザ端 末の混雑度として捉えることができる。
[0093] そこで、本実施例においては、ユーザ端末の数に比例する傾向にある基地局のシ ステムスループットを、推定対象範囲におけるトラヒック情報として用いている。
実施例 6
[0094] 本発明の実施例 6によるユーザスループット地理的分布推定システムは、実施例 1 力も 5と比較して、推定対象範囲におけるトラヒック情報を、セルにおけるユーザ端末 の平均同時接続数と定義している点だけが異なる。
[0095] セルにおけるユーザ端末の平均同時接続数とは、セル内のユーザ端末が基地局 に同時刻に接続している数を一定時間に渡って平均した数である。この値は、基地 局で測定可能な値で、明らかにセル内のユーザ端末の数に比例する傾向がある。
[0096] そこで、本実施例においては、ユーザ端末の数に比例する傾向があるセル内のュ 一ザ端末の平均同時接続数を、推定対象範囲におけるトラヒック情報として用いてい る。
実施例 7
[0097] 本発明の実施例 6によるユーザスループット地理的分布推定システムは、実施例 1 力も 6と比較して、推定対象範囲におけるトラヒック情報を、セルにおける基地局のパ ケット送信電力の使用時間率と定義している点だけが異なる。
[0098] セルにおける基地局のパケット送信電力の使用時間率は、基地局がセル内のユー ザ端末へのパケット送信に用いるパケット送信電力の時間的な使用率である。
[0099] セル内にユーザ端末が存在しなければ、基地局はパケットの送信を行わないので、 基地局のパケット送信電力の時間的な使用率は低下する。逆に、セル内にユーザ端 末が多く存在すれば、基地局のパケット送信電力の時間的な使用率は上昇する。つ まり、この値は、基地局で測定可能な値で、明らかにセル内のユーザ端末の数に比 例する傾向がある。
[0100] そこで、本実施例においては、ユーザ端末の数に比例する傾向があるセルにおけ る基地局の送信電力の使用時間率を、推定対象範囲におけるトラヒック情報として用 いている。
実施例 8
[0101] 図 10は、本発明の第 8の実施例によるユーザスループット地理的分布推定システ ムの構成を示すブロック図である。 [0102] 図 10を参照すると、本発明の実施例 8によるユーザスループット地理的分布推定シ ステムは、図 8に示した実施例 4と比較して、ユーザ端末実測手段 200と、ユーザ端 末実測値読取り手段 15と、ユーザスループット推定手段 13の内部に設けられた関数 補正手段 13aとを追加した点が異なる。本実施例のこれ以外の構成は、図 8に示した 実施例 4と同様の構成となっており、同一構成要素には同一符号を付してある。
[0103] ユーザ端末実測手段 200は、例えば、基地局 103のセル内のユーザスループット を推定する場合、基地局 103のセル内を走行し、セル内のユーザ端末 1031〜103 3の各々の位置で共用チャネルの受信品質とユーザスループットとを同時に実測す る。
[0104] ユーザ端末実測値読取り手段 15は、ユーザ端末実測手段 200で実測された共用 チャネルの受信品質の実測値とユーザスループットの実測値とを読取る。そして、ュ 一ザ端末実測値読取り手段 15は、読取った実測値を一定時間に渡って平均化した 上で、共用チャネルの受信品質の実測値とユーザスループットの実測値との関係を 表す関数 fcを作成する。平均化を行うのは、共用チャネルの受信品質に対するユー ザスループットの変動幅が大き!/、ので、受信品質に対するユーザスループットの平均 値を用いるのが有効なためである。さらに、ユーザ端末実測値読取り手段 15は、実 測値の関数 f cを、ユーザスループット推定手段 13内の関数補正手段 13aに出力す る。
[0105] 関数補正手段 13aは、ユーザ端末実測値読取り手段 15から出力された実測値の 関数 fcを基にして、ユーザスループット算出関数 f2に補正を加える。具体的には、関 数補正手段 13aは、図 11に示すように、実測値の関数 fcと補正前の関数 f 2とを平均 化した関数 f2'へと補正する。上記の具体的な補正方法として、関数補正手段 13a は、以下の数式 4を用いることができる。
[0106] [数 4]
Figure imgf000020_0001
数式 4において、 f2 'は補正後のユーザスループット算出関数、 f2は補正前のユー ザスループット算出関数、 fcはユーザ端末の実測値の関数である。
[0107] なお、関数補正手段 13aは、その他の補正方法として、実測値のデータ量や、実測 値の信頼度を考慮して、実測値の関数 fcと補正前の関数 f2との両者に重み付け平 均を施す方法をとつても良い。
[0108] ユーザスループット推定手段 13は、実施例 4と同じパラメータを入力値として、関数 補正手段 13aにより補正されたユーザスループット算出関数 f2を用いて、ユーザスル 一プットを推定する。
[0109] 上述したように本実施例においては、ユーザスループット推定手段 13が、共用チヤ ネルの受信品質の実測値とユーザスループットの実測値とに応じてユーザスループ ット関数 f2を補正した関数 f2'を用いてユーザスループットを算出する構成であるた め、より現実に近いユーザスループットを推定することができる。それにより、ユーザス ループットの推定精度のさらなる向上を図ることができる。
[0110] 以上説明したように本発明においては、ユーザ端末の位置での共用チャネルの受 信品質と推定対象範囲におけるトラヒック情報とを、ユーザスループット算出関数に 入力することで、ユーザスループットを推定している。
[0111] ユーザスループット算出関数のような関数は、入力値に対応する出力値が定まって いるため、入力値が得られると、瞬時に出力値を求めることが可能である。従って、こ うした関数を用いる推定方法は、従来のシステムレベルシミュレーションを用いる推定 方法と比較して、パケットスケジューラの処理によってユーザ端末が共用チャネルを 共用する過程を高い時間分解能で詳細に連続時間模擬する必要がないため、ユー ザスループットの地理的分布を短時間で推定することができる。
[0112] また、本発明においては、ユーザスループット算出関数として、システムレベルシミ ユレーシヨン等の推定結果を反映させているため、ユーザスループットの推定精度の 向上を図ることができる。
[0113] さらに、本発明においては、ユーザスループット算出関数のパラメータとなる推定対 象範囲におけるトラヒック情報として、実測値を利用する構成とすることもできる。つま り、本発明は、ユーザスループット算出関数の入力値を現実に近い値とすることがで きるため、ユーザスループットの推定精度の向上を図ることができる。 さらにまた、本発明においては、ユーザ端末の位置での共用チャネルの受信品質 の実測値とユーザスループットの実測値との関係に応じてユーザスループット算出関 数を補正する構成とすることもできる。そのため、本発明は、現実に近い共用チヤネ ルの受信品質とユーザスループットとの関係に応じたユーザスループット算出関数を 利用することができるため、ユーザスループットを精度良く推定することができる。

Claims

請求の範囲
[1] ユーザ端末と、自己のセル内のユーザ端末との間で共有チャネルを利用して無線 パケット通信を行う基地局とを含むセルラシステムにおけるユーザスループットの地理 的分布を推定するユーザスループット地理的分布推定システムであって、
前記セル内のユーザ端末の位置での共用チャネルの受信品質を推定する受信品 質推定手段と、
前記受信品質の推定が行われた推定対象範囲におけるトラヒック情報を読込むトラ ヒック情報読込み手段と、
前記セル内のユーザ端末の位置での前記共用チャネルの受信品質と前記推定対 象範囲におけるトラヒック情報とを入力値としてユーザスループットを算出するユーザ スループット算出関数を用いて、前記セル内のユーザ端末の位置でのユーザスルー プットを推定するユーザスループット推定手段とを有するシステム。
[2] 前記セルラシステムが前記基地局に接続された無線ネットワーク制御装置をさらに 含み、
前記トラヒック情報読込み手段は、前記基地局または前記無線ネットワーク制御装 置のいずれかにて測定された前記推定対象範囲におけるトラヒック情報を読込む、 請求項 1記載のシステム。
[3] 前記基地局のパケットスケジューラの種類を読込むパケットスケジューラ読込み手 段をさらに有し、
前記ユーザスループット推定手段は、前記パケットスケジューラの種類を前記ユー ザスループット算出関数の入力値としてさらに用いる、請求項 1記載のシステム。
[4] 前記セル内の全てのユーザ端末に対して、前記共用チャネルを利用して無線パケ ット通信を行うユーザ端末が占める割合を読込む手段をさらに有し、
前記ユーザスループット推定手段は、前記共用チャネルを利用するユーザ端末の 割合を前記ユーザスループット算出関数の入力値としてさらに用いる、請求項 1記載 のシステム。
[5] 前記推定対象範囲におけるトラヒック情報は、前記セル内のユーザ端末の数である 、請求項 1記載のシステム。
[6] 前記推定対象範囲におけるトラヒック情報は、前記基地局のシステムスループットで ある、請求項 1記載のシステム。
[7] 前記推定対象範囲におけるトラヒック情報は、前記セル内のユーザ端末が前記基 地局に同時刻に接続している数を一定時間に渡って平均した数である、請求項 1記 載のシステム。
[8] 前記推定対象範囲におけるトラヒック情報は、前記基地局が前記セル内のユーザ 端末へのパケット送信に用いるパケット送信電力の時間的な使用率である、請求項 1 記載のシステム。
[9] 前記セル内を走行し、前記セル内のユーザ端末の位置での前記共用チャネルの 受信品質と前記ユーザスループットとを実測するユーザ端末実測手段をさらに有し、 前記ユーザスループット推定手段は、前記共用チャネルの受信品質の実測値と前 記ユーザスループットの実測値との関係に応じて前記ユーザスループット算出関数 を補正する関数補正手段を含む、請求項 1記載のシステム。
[10] ユーザ端末と、自己のセル内のユーザ端末との間で共有チャネルを利用して無線 パケット通信を行う基地局とを含むセルラシステムにおけるユーザスループットの地理 的分布を推定するユーザスループット地理的分布推定方法であって、
前記セル内のユーザ端末の位置での共用チャネルの受信品質を推定する受信品 質推定処理と、
前記受信品質の推定が行われた推定対象範囲におけるトラヒック情報を読込むトラ ヒック情報読込み処理と、
前記セル内のユーザ端末の位置での前記共用チャネルの受信品質と前記推定対 象範囲におけるトラヒック情報とを入力値としてユーザスループットを算出するユーザ スループット算出関数を用いて、前記セル内のユーザ端末の位置でのユーザスルー プットを推定するユーザスループット推定処理とを有する方法。
[11] 前記セルラシステムが前記基地局に接続された無線ネットワーク制御装置をさらに 含み、
前記トラヒック情報読込み処理では、前記基地局または前記無線ネットワーク制御 装置のいずれかにて測定された前記推定対象範囲におけるトラヒック情報を読込む 、請求項 10記載の方法。
[12] 前記基地局のパケットスケジューラの種類を読込む処理をさらに有し、
前記ユーザスループット推定処理では、前記パケットスケジューラの種類を前記ュ 一ザスループット算出関数の入力値としてさらに用いる、請求項 10記載の方法。
[13] 前記セル内の全てのユーザ端末に対して、前記共用チャネルを利用して無線パケ ット通信を行うユーザ端末が占める割合を読込む処理をさらに有し、
前記ユーザスループット推定処理では、前記共用チャネルを利用するユーザ端末 の割合を前記ユーザスループット算出関数の入力値としてさらに用いる、請求項 10 記載の方法。
[14] 前記推定対象範囲におけるトラヒック情報は、前記セル内のユーザ端末の数である
、請求項 10記載の方法。
[15] 前記推定対象範囲におけるトラヒック情報は、前記基地局のシステムスループットで ある、請求項 10記載の方法。
[16] 前記推定対象範囲におけるトラヒック情報は、前記セル内のユーザ端末が前記基 地局に同時刻に接続している数を一定時間に渡って平均した数である、請求項 10 記載の方法。
[17] 前記推定対象範囲におけるトラヒック情報は、前記基地局が前記セル内のユーザ 端末へのパケット送信に用いるパケット送信電力の時間的な使用率である、請求項 1 0記載の方法。
[18] 前記セル内を走行し、前記セル内のユーザ端末の位置での前記共用チャネルの 受信品質と前記ユーザスループットとを実測する処理をさらに有し、
前記ユーザスループット推定処理では、前記共用チャネルの受信品質の実測値と 前記ユーザスループットの実測値との関係に応じて前記ユーザスループット算出関 数を補正する、請求項 10記載の方法。
PCT/JP2005/021097 2005-01-12 2005-11-17 ユーザスループット地理的分布推定システムおよびユーザスループット地理的分布推定方法 WO2006075447A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0713612A GB2437012B (en) 2005-01-12 2005-11-17 User throughput geographical distribution estimating system and user throughput geographical distribution estimating method
US11/813,296 US7697474B2 (en) 2005-01-12 2005-11-17 User throughput geographical distribution estimating system and user throughput geographical distribution estimating method
CN2005800464611A CN101099310B (zh) 2005-01-12 2005-11-17 用户吞吐量地理分布估计系统和用户吞吐量地理分布估计方法
JP2006552852A JP4636282B2 (ja) 2005-01-12 2005-11-17 ユーザスループット地理的分布推定システムおよびユーザスループット地理的分布推定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-004626 2005-01-12
JP2005004626 2005-01-12

Publications (1)

Publication Number Publication Date
WO2006075447A1 true WO2006075447A1 (ja) 2006-07-20

Family

ID=36677480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021097 WO2006075447A1 (ja) 2005-01-12 2005-11-17 ユーザスループット地理的分布推定システムおよびユーザスループット地理的分布推定方法

Country Status (5)

Country Link
US (1) US7697474B2 (ja)
JP (1) JP4636282B2 (ja)
CN (1) CN101099310B (ja)
GB (1) GB2437012B (ja)
WO (1) WO2006075447A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833762A (zh) * 2011-06-13 2012-12-19 中兴通讯股份有限公司 Lte系统小区的用户吞吐量确定方法及装置
JP2012257263A (ja) * 2007-08-14 2012-12-27 Ntt Docomo Inc 受信装置及びデータ取得方法
JP2015149764A (ja) * 2011-09-29 2015-08-20 日本電気株式会社 通信品質予測装置、無線基地局、通信品質予測方法、およびプログラム
WO2023084785A1 (ja) * 2021-11-15 2023-05-19 日本電信電話株式会社 係数導出装置、係数導出方法及びプログラム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080075051A1 (en) * 2006-09-27 2008-03-27 Baris Dundar Methods, apparatus and articles for radio frequency planning
US8498207B2 (en) * 2008-06-26 2013-07-30 Reverb Networks Dynamic load balancing
EP2446583A1 (en) 2009-06-25 2012-05-02 Telefonaktiebolaget L M Ericsson (PUBL) Estimating user-perceived tcp throughput
US9826416B2 (en) * 2009-10-16 2017-11-21 Viavi Solutions, Inc. Self-optimizing wireless network
US20110090820A1 (en) 2009-10-16 2011-04-21 Osama Hussein Self-optimizing wireless network
WO2011055720A1 (ja) * 2009-11-04 2011-05-12 株式会社エヌ・ティ・ティ・ドコモ 災害情報提供システムおよび災害情報提供方法
JP5108865B2 (ja) * 2009-11-30 2012-12-26 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末、ネットワーク装置、移動通信システム及び移動通信方法
US8385900B2 (en) * 2009-12-09 2013-02-26 Reverb Networks Self-optimizing networks for fixed wireless access
KR101624907B1 (ko) * 2010-03-16 2016-06-08 삼성전자주식회사 광대역 무선통신 시스템에서 실내 기지국의 송신 전력 제어 장치 및 방법
JP5835234B2 (ja) * 2011-01-28 2015-12-24 日本電気株式会社 スループット推定装置
US8489031B2 (en) 2011-05-18 2013-07-16 ReVerb Networks, Inc. Interferer detection and interference reduction for a wireless communications network
US8509762B2 (en) 2011-05-20 2013-08-13 ReVerb Networks, Inc. Methods and apparatus for underperforming cell detection and recovery in a wireless network
US9369886B2 (en) 2011-09-09 2016-06-14 Viavi Solutions Inc. Methods and apparatus for implementing a self optimizing-organizing network manager
US9258719B2 (en) 2011-11-08 2016-02-09 Viavi Solutions Inc. Methods and apparatus for partitioning wireless network cells into time-based clusters
WO2013123162A1 (en) 2012-02-17 2013-08-22 ReVerb Networks, Inc. Methods and apparatus for coordination in multi-mode networks
CN103813455B (zh) * 2012-11-07 2017-09-29 中国电信股份有限公司 长期演进系统参数优化分配方法及基站
US9007953B1 (en) * 2012-12-28 2015-04-14 Sprint Communications Company L.P. Estimating average user throughput in a wireless network
JP6355142B2 (ja) 2014-05-05 2018-07-11 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 情報処理方法及び装置
US9113353B1 (en) 2015-02-27 2015-08-18 ReVerb Networks, Inc. Methods and apparatus for improving coverage and capacity in a wireless network
PL3406034T3 (pl) * 2016-01-20 2020-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Sposoby, system i urządzenie użytkownika sieci komunikacji bezprzewodowej do określania warunków transmisji dla przepływu mediów w czasie rzeczywistym
JP7131394B2 (ja) * 2019-01-04 2022-09-06 日本電信電話株式会社 品質推定システム、品質推定方法、及びプログラム
TWI780822B (zh) * 2021-07-19 2022-10-11 國立陽明交通大學 網路吞吐量評估裝置以及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094502A (ja) * 1999-09-24 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> 電磁環境設計方法および設計プログラムを記録した記録媒体
JP2003114911A (ja) * 2001-10-05 2003-04-18 Ntt Docomo Inc 設計支援プログラム、設計支援プログラムを記録したコンピュータ読み取り可能な記録媒体、設計支援装置及び設計支援方法
JP2003298510A (ja) * 2000-06-26 2003-10-17 Matsushita Electric Ind Co Ltd 送信パワ制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224094A (ja) 1999-02-03 2000-08-11 Toshiba Corp 移動通信端末
JP3426194B2 (ja) * 2000-06-26 2003-07-14 松下電器産業株式会社 通信端末装置
DE10126344A1 (de) * 2000-07-14 2002-01-24 Max Planck Gesellschaft Apoptose-induzierende DNA-Sequenzen
US20030162539A1 (en) * 2002-02-28 2003-08-28 Fiut Brian D. System and method for remote monitoring of basestations
JP3864825B2 (ja) 2002-04-03 2007-01-10 日本電気株式会社 移動通信システム、移動局、基地局及びそれらに用いる通信路品質推定方法
US20030210665A1 (en) * 2002-05-08 2003-11-13 Matti Salmenkaita System and method for dynamic frequency allocation for packet switched services
JP4731092B2 (ja) 2002-09-20 2011-07-20 富士通東芝モバイルコミュニケーションズ株式会社 移動通信端末
JP2004112597A (ja) 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd 基地局装置及びパケット品質推定方法
US7302278B2 (en) * 2003-07-03 2007-11-27 Rotani, Inc. Method and apparatus for high throughput multiple radio sectorized wireless cell
US20050124347A1 (en) * 2003-12-05 2005-06-09 Hosein Patrick A. Method and apparatus for congestion control in high speed wireless packet data networks
US7197013B2 (en) * 2004-03-01 2007-03-27 Cisco Technology, Inc. Quality evaluation for wireless communication networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094502A (ja) * 1999-09-24 2001-04-06 Nippon Telegr & Teleph Corp <Ntt> 電磁環境設計方法および設計プログラムを記録した記録媒体
JP2003298510A (ja) * 2000-06-26 2003-10-17 Matsushita Electric Ind Co Ltd 送信パワ制御方法
JP2003114911A (ja) * 2001-10-05 2003-04-18 Ntt Docomo Inc 設計支援プログラム、設計支援プログラムを記録したコンピュータ読み取り可能な記録媒体、設計支援装置及び設計支援方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012257263A (ja) * 2007-08-14 2012-12-27 Ntt Docomo Inc 受信装置及びデータ取得方法
EP2180620A4 (en) * 2007-08-14 2015-06-03 Ntt Docomo Inc RECEIVING DEVICE AND METHOD FOR ACQUIRING DATA
CN102833762A (zh) * 2011-06-13 2012-12-19 中兴通讯股份有限公司 Lte系统小区的用户吞吐量确定方法及装置
JP2014518471A (ja) * 2011-06-13 2014-07-28 中▲興▼通▲訊▼股▲フン▼有限公司 Lteシステムにおけるセルのユーザスループットの確定方法及び装置
CN102833762B (zh) * 2011-06-13 2017-10-27 中兴通讯股份有限公司 Lte系统小区的用户吞吐量确定方法及装置
JP2015149764A (ja) * 2011-09-29 2015-08-20 日本電気株式会社 通信品質予測装置、無線基地局、通信品質予測方法、およびプログラム
US9438393B2 (en) 2011-09-29 2016-09-06 Nec Corporation Radio parameter control apparatus, radio base station, radio parameter control method, and non-transitory computer readable medium
WO2023084785A1 (ja) * 2021-11-15 2023-05-19 日本電信電話株式会社 係数導出装置、係数導出方法及びプログラム

Also Published As

Publication number Publication date
JPWO2006075447A1 (ja) 2008-08-07
GB2437012B (en) 2011-01-19
GB2437012A (en) 2007-10-10
CN101099310A (zh) 2008-01-02
CN101099310B (zh) 2012-05-02
US7697474B2 (en) 2010-04-13
US20090003236A1 (en) 2009-01-01
JP4636282B2 (ja) 2011-02-23
GB0713612D0 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
WO2006075447A1 (ja) ユーザスループット地理的分布推定システムおよびユーザスループット地理的分布推定方法
EP2938115B1 (en) Network coverage planning method and device of evolution communication system
CN1951058B (zh) 用于接收信号质量估计的方法和设备
KR100292641B1 (ko) 가중최소제곱위치해법으로공분산매트릭스추정을행하는방법및장치
CN101213853B (zh) 无线高速数据网络规划工具
Hämäläinen et al. Advanced WCDMA radio network simulator
JP4184551B2 (ja) 基地局送信パワーレベルを設定する方法
CN105376089B (zh) 一种网络规划方法及装置
EP2025185B1 (en) System and method for radio network planning with hsdpa analysis
EP1203465A1 (en) Test apparatus for rf receiver
JP4154174B2 (ja) トラフィック量測定装置、トラフィック量測定方法及びトラフィック量測定プログラム
EP2547013B1 (en) Radio wave propagation simulator
US20110019576A1 (en) Radio quality estimation system, radio quality estimation device, radio quality estimation method, and radio quality estimation program
Fraile et al. Mobile radio bi‐dimensional large‐scale fading modelling with site‐to‐site cross‐correlation
CN101577958A (zh) 一种闭环功率控制算法的性能测试系统和方法
Wittenburg et al. A quantitative evaluation of the simulation accuracy of wireless sensor networks
Monserrat et al. Complete shadowing modeling and its effect on system level performance evaluation
KR20000065790A (ko) 무선망 성능 분석을 위한 모의시험 방법
KR100601872B1 (ko) 커버리지 데이터 보정 시스템 및 방법
CN115226144A (zh) 一种小区容量确定方法、装置、电子设备及存储介质
KR101517539B1 (ko) 링크 레벨과 시스템 레벨 간의 인터페이스 방법 및 그시뮬레이터 장치
CN114745747A (zh) 一种网络覆盖性能的测试方法、装置及存储介质
Kordybach et al. Lost capacity of the UMTS radio access network
KR20160025907A (ko) 무선통신환경에서의 파라미터 설정방법 및 파라미터 설정장치
Tripathi et al. Analysis of Handoff and Radio Resource Management Algorithms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006552852

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11813296

Country of ref document: US

ENP Entry into the national phase

Ref document number: 0713612

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20051117

WWE Wipo information: entry into national phase

Ref document number: 0713612.0

Country of ref document: GB

Ref document number: 200580046461.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806756

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5806756

Country of ref document: EP