WO2006073067A1 - Resin composition excelling in anticorrosive and/or conductive performance and member coated with resin composition - Google Patents

Resin composition excelling in anticorrosive and/or conductive performance and member coated with resin composition Download PDF

Info

Publication number
WO2006073067A1
WO2006073067A1 PCT/JP2005/023612 JP2005023612W WO2006073067A1 WO 2006073067 A1 WO2006073067 A1 WO 2006073067A1 JP 2005023612 W JP2005023612 W JP 2005023612W WO 2006073067 A1 WO2006073067 A1 WO 2006073067A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
parts
resin
component
Prior art date
Application number
PCT/JP2005/023612
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Kobayashi
Original Assignee
Shieldtechs, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shieldtechs, Inc. filed Critical Shieldtechs, Inc.
Publication of WO2006073067A1 publication Critical patent/WO2006073067A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Definitions

  • the present invention can be applied easily, has conductivity with a small amount of metal powder, and / or has excellent anti-corrosion (corrosion-preventing) properties equal to or better than zinc plating.
  • the present invention relates to a resin composition that also exhibits excellent shielding properties for blocking electromagnetic waves, and a resin-coated member coated with such a resin composition.
  • Metal spraying methods are known in which zinc or aluminum is melted with a gas flame, arc, etc., adhered to the surface of steel materials, etc., and prevented by applying a sacrificial anode reaction due to the potential difference between the metals (for example, JP-A-2001-271152, JP-A-9-125221, JP-A-9-3614, JP-A-8-176781, and the like.
  • melt-sealing method has a corrosion resistance of 10 to 15 years
  • a large-scale plant for immersing the workpiece in molten zinc or the like is necessary to implement it.
  • sheet steel is not applicable to long steel materials due to problems such as melting temperature, immersion pool, and distortion of workpieces due to high temperatures.
  • the metal spraying method has a feature that a functional surface such as a zinc'aluminum alloy is directly formed on the surface of the steel material.
  • a functional surface such as a zinc'aluminum alloy is directly formed on the surface of the steel material.
  • mechanical equipment for metal spraying suction gun, power supply device, blower, wire rod take-out device, spraying extension cord, etc.
  • construction efficiency is also a determinant of craftsman's technology.
  • the steel structure surface is subjected to shot blasting or sand blasting, and an anchor effect is exhibited using a rough surface forming agent. Pre-processing is required. Furthermore, if the metal spray surface is made thicker in order to enhance the effect of metal spraying, there is a problem in that the adhesiveness such as peeling of the metal spray layer is deteriorated due to the generation of internal strain and residual stress due to the difference in heat dissipation effect. In addition, since a spongy hole is formed on the surface of the sprayed material, it is pointed out that a further sealing process is required.
  • the electromagnetic wave shielding methods that have been proposed so far also include the following: Problems have been pointed out.
  • the method of pasting metal plates and pasting shield plates mixed with conductive fillers into building materials cannot be applied to narrow parts, complex shapes, uneven surfaces, mating parts, etc.
  • the construction cost is high in terms of profitability.
  • conductive shield paints narrow areas, complex shapes, and uneven parts can be applied and electromagnetic leakage can be prevented.
  • Organic paints and organic solvents are used for paint components.
  • the present invention has been made under such circumstances, and the object thereof is to enable easy painting while producing the advantages of the conventional anti-corrosion (corrosion-prevention) method, and to melt the force. Exhibits superior antibacterial and conductive properties equivalent to those of metal plating, eliminates the need for additional processing such as sealing that prevents thermal embrittlement in the base material, and eliminates the risk of residual stress even when applied thickly. As a non-polluting antifungal agent that can be applied to prevent deterioration, it further eliminates the problems associated with conventional electromagnetic shielding technology, and has a uniform coating structure with the conventional coating method regardless of the construction site. It is an object of the present invention to provide a resin composition useful as a pollution-free electromagnetic wave shielding agent that exhibits characteristics, and a resin-coated member in which such a resin composition is coated on a substrate surface.
  • the resin composition of the present invention that has achieved the above-mentioned object is: (a) Zn and Z or A1 formed in a scale-foil-like fine powder; and (b) formed in a scale-foil-like fine powder.
  • the gist is that a fine powder of clad scale foil of a dissimilar metal containing at least one of Cu and / or Ni is blended with a resin.
  • This resin composition is preferably blended with a powder or alloy powder of one or more elements selected from the group power consisting of Mn, Mg, Mo, Li, C and Ag, if necessary.
  • the resin used in the resin composition of the present invention has a general formula: R 1 Si (OR 2 ) (wherein R 1 Is a hydrocarbon group having from 10 to 10 carbon atoms, R 2 is an alkyl group having 1 to 3 carbon atoms, 2 to
  • Curable silicone resin comprising a silanic compound or a partially hydrolyzed condensate thereof, which is an acyl group of 3 or an alkoxyacyl group of 3 to 5 carbon atoms, and N is an integer of 0 to 2. Is mentioned.
  • the resin composition of the present invention may also contain (1) a metal alkoxide (excluding Si alkoxide) or lithium hydroxide (LiOH), whereby the resin composition These characteristics can be further improved.
  • a metal alkoxide excluding Si alkoxide
  • LiOH lithium hydroxide
  • FIG. 1 is a graph showing the electric field shielding effect of a resin composition measured over a wide frequency range.
  • FIG. 2 is a graph showing the magnetic field shielding effect of a resin composition measured over a wide frequency range.
  • the present inventor has intensively studied to achieve the above object. As a result, (a) Zn and / or A1 formed on the scale-like fine powder and (b) Cu and / or Ni formed on the scale-like fine powder.
  • the inventors have found that a resin composition that can achieve the above-mentioned object can be realized by using a metal clad scale foil powder in a resin, and the present invention has been completed.
  • the components (a) and (b) above are used in the form of a scale-foil fine powder, and the "scale foil-like fine powder” means a flaky fine powder, It can be manufactured by applying a ball mill.
  • the A1 foil can be made into an aluminum scale foil-like fine powder by the above method.
  • the components (a) and (b) formed into a scale-foil-like fine powder as appropriate and applying impact pressure in an inert atmosphere with a vibration mill, etc. Due to the electrostatic effect of impact energy, other powders are irregularly pressed onto the powder surface, resulting in a clad scale foil fine powder.
  • the resin composition of the present invention contains at least one of the above-mentioned components (a) and (b).
  • the combination of clad scale fine powder is not necessarily the component (a) and (b).
  • the clad scale fine powder is composed of (a) components or (b) components.
  • Zn powder and A1 powder formed into a scale-foil-like powder are pulverized into fine pieces with a vibration mill, so that the surface of the Zn scale foil powder, which is the base material, has irregularly low A1 scale powder. And then clad by completely or partially coating the surface of the Zn powder to form a composite material of dissimilar metals.
  • the component (a) is a scale-like Zn and Z or A1 fine powder.
  • the size (particle diameter) is preferably about 10 to 50 ⁇ m, and the thickness 1 to about 10 ⁇ m. More preferably, the size is 15 to 30 / im and the thickness is 2 to 6 ⁇ .
  • the component (b) is a scale-like Cu and / or Ni fine powder.
  • the strength (particle size) is preferably about 10-30 ⁇ m and the thickness is about 0.5-5 ⁇ m. More preferably, a size of 10 to 20 / m and a thickness of 1 to 3 / m are good.
  • the blending ratio of the clad scale fine powder to the resin is preferably 50% by mass or more. However, when it is excessively blended, the ratio of the resin is reduced. Since the paintability deteriorates, it is preferable to make it 60% by mass or less.
  • the clad scale fine powder used in the antifungal agent of the present invention preferably has a size (particle size) of about 10 to 50 ⁇ m and a thickness of about 1 to 8 ⁇ m. Preferably size 20-40 m, thickness It should be 2-5 ⁇ m.
  • the ratio at which each component is clad may be appropriately set.
  • the zinc component is 70 to 95 masses with respect to the total mass of Zn and A1.
  • the range of about 85% by mass to 95% by mass is preferable.
  • the volume with respect to the ratio of zinc and aluminum is closer to the same capacity, the sacrificial anode effect due to the difference in standard electrode potential becomes more prominent.
  • A1 standard electrode potential is _1.662V
  • zinc standard electrode potential-0.762V iron standard electrode potential by laminating each component Since the voltage is 0.447V, the sacrificial anode effect due to the potential difference between them improves the fender resistance.
  • the component (a) contributes to improvement of anti-mold properties, and the component (b) contributes to conductivity (electromagnetic wave shielding property). What is necessary is just to set arbitrarily about the blending ratio of (a) component and (b) component according to the characteristic requested
  • the resin composition of the present invention if necessary, it is also useful to blend a powder or alloy powder of one or more elements selected from the group consisting of Mn, Mg, Mo, Li, C and Ag. .
  • These components reduce the gap between the powder particles in the resin, thereby making the dispersed state of the powder particles more airtight, further improving the uniformity of the metal powder in the resin and the uniform coating film structure.
  • These components are also effective for imparting conductivity, as in the case of component (b). In order to exert these effects, it is appropriate that the mixing ratio of the resin is about:! To 12% by mass.
  • C powder (graphite powder) formed in a scale foil shape is particularly preferable.
  • the size (particle size) is preferably about 1 to 10 zm.
  • the resin used in the resin composition of the present invention various resins such as a modified silicone resin and a curable silicone resin can be used, and the type of the resin is not particularly limited.
  • the silane compound represented by 1) or a partially hydrolyzed condensate thereof is preferably a curable silicone resin.
  • the curable silicone resin is conventionally a so-called silicone varnish solution in which a curable silicone resin having a terminal silanol group is dissolved in an organic solvent such as toluene or xylene. Although it is frequently used, this has the following problems (1) and (2).
  • An organic solvent having a low flash point is an essential component.
  • a silicone alkoxy oligomer obtained by partial (co) hydrolytic condensation of organoalkoxysilane; If necessary, the addition of a curing catalyst that promotes moisture curing of this silicone alkoxy oligomer is studied, and by using a resin represented by the general formula (1) described below, curing at room temperature is possible, It can also be applied to maintenance of steel structures and indoor / outdoor electromagnetic shielding construction.
  • inorganic zinc paints There are two types of inorganic zinc paints that have been used in the past: a type in which powders such as zinc are mixed with an inorganic high molecular silicone paint system immediately before use, and a type that is washed with modified silicone. Conductivity cannot be exhibited unless zinc powder: 90-96 mass% is included as a solid component.
  • organic or inorganic antifouling paints mixed with simple scale metal powder, but since it is a mixture of simple metal powders, the anti-fouling (anticorrosion) effect becomes uneven due to irregular arrangement in the coating film.
  • the zinc powder as a metal solid component 90-96% by mass.
  • the resin composition according to the present invention conductivity can be imparted by adding a small amount of clad scale foil powder, and good anti-corrosion (anticorrosion) properties can be secured. .
  • the formed surface becomes rough and porous, so that the effect is not exhibited unless the film thickness is 100 ⁇ m or more.
  • the effect is exhibited even when the film thickness is about 50 ⁇ m.
  • excellent workability that can be applied simply as in the conventional coating method, and even if the amount of metal powder is reduced, the resulting film is an inorganic zinc paint, an organic 'inorganic antifouling paint. Excellent, equal to or better than hot dip galvanizing and metal spraying In addition to exhibiting antifungal properties, it has various advantages such as the need for troublesome post-treatment such as sealing treatment.
  • the hydrolyzable reactive group _OR (a) of the curable silicone resin undergoes a hydrolysis reaction, and the metal surface ( It can adsorb to the hydroxyl group of Me) by hydrogen bonding, and then chemically dehydrate (Me_O_Si_ ⁇ R) by dehydrating condensation reaction to form a film that adheres firmly to the steel structure.
  • clad scale fine powder is a heterogeneous metal bond (for example, OR-Al-O-Si-O-Zn-O-Si_ ⁇ R) formed by partial hydrolysis or dehydration condensation reaction. Therefore, the cured silicone resin has no residual harmful components and has excellent weather resistance. It shows some non-polluting protection (corrosion protection).
  • the curable silicone resin preferably used in the present invention contains an alkoxysilyl group, which is a silane compound represented by the following general formula (1), or a portion thereof (both). One or a mixture of two or more hydrolysis condensates.
  • R 1 in the general formula (1) may be the same or different and is an unsubstituted or substituted monovalent hydrocarbon group having!: 10 to 10 carbon atoms, specifically a methyl group or an ethyl group. , Propyl group, butyl group, hexyl group, octyl group, decyl group, etc. alkyl group, cyclohexyl group, etc. cycloalkyl group, vinyl group, aryl group etc., alkenyl group, phenyl group, tolyl group, etc.
  • the aryl group is exemplified.
  • R 2 is an alkyl group having 1 to 3 carbon atoms, an acyl group having 2 to 3 carbon atoms, or an alkoxyalkyl group having 3 to 5 carbon atoms, specifically a methyl group, an ethyl group, Propyl group, Isopropyl group power Alkyl groups selected, acyl groups such as acetyl groups, methoxyethyl groups, ethoxyethyl groups, propoxycetyl groups, methoxypropyl groups, ethoxypropyl groups, and other alkoxyalkyl groups.
  • the ratio of the partial (co) hydrolysis condensate is preferably 60 mol% or less in the curable silicone resin.
  • a (co) hydrolysis condensate is used in combination, toughness and flexibility are imparted to the cured coating, but if the amount is too large, sufficient crosslinking density cannot be obtained. May decrease.
  • silane compounds and partial (co) hydrolysis condensates thereof include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, Methyltriacetoxysilane, methyltris (methoxyethoxy) silane, methyltris (methoxypropoxy) silane, etyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyl Trimethoxysilane, cyclohexyltrimethoxysilane, vinyltrimethoxysilane, butyltriethoxysilane, allyltrimethoxysilane, phenyltrimethoxysilane, phenyltrimethoxysilane,
  • R 1 in the general formula (1) is a group selected from a methyl group and a phenyl group
  • R 2 is a group selected from a methyl group and an ethyl group.
  • methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethylenogetoxysilane, diphenylenole are preferable. Examples include dimethoxysilane and dipheninoresiethoxysilane.
  • the partial (co) hydrolysis condensate a dimer of the above silane compound (1 mol of water is allowed to act on 2 mol of the silane compound and 2 mol of alcohol is eliminated).
  • Siloxane units) to 100 mer, preferably 2 to 50 mer, more preferably 2 to 30 mer can be suitably used, and two or more silane compounds are used as raw materials.
  • the (co) hydrolysis condensate can also be used.
  • the above-mentioned silane compound or a partial (co) hydrolysis condensate thereof may be used alone, but two types having different structures are used.
  • the above silane compound or partial (co) hydrolysis condensate may be used, or the silane compound and partial (co) hydrolysis condensate may be used in combination.
  • partial (co) hydrolysis condensate is an essential component from the viewpoint of volatility during mixing and coating of components, workability, ease of curability control, and the amount of alcohol generated by moisture curing. It is preferable to do.
  • partial (co) hydrolysis condensate as described above, those commercially available as silicone alkoxy oligomers can be used, but less than an equivalent amount of hydrolyzable silane compound can be added based on a conventional method. It can be produced by removing by-products such as alcohol and hydrochloric acid after reacting with the decomposed water.
  • an acid such as hydrochloric acid or sulfuric acid, an alkali metal such as sodium hydroxide or potassium hydroxide, or an alkali
  • alkaline earth metal such as alkaline earth metal hydroxide or triethylamine
  • the viscosity (mechanical properties) of curable silicone resin component at 25 ° C The silane compound described above for the purpose of adjusting viscosity and curability is preferably 1 to 200 mPa's, more preferably 5 to 50 mPa's, and even more preferably 10 to 30 mPa's. It can be used, and in some cases, it is also acceptable to use a solvent component such as alcohol together.
  • a silane coupling agent having an epoxy group, amino group, mercapto group or the like is added for the purpose of improving the adhesion to the substrate, or a silanol group-containing silicone resin is used for the purpose of improving the coating film properties. It is also possible to use parts together.
  • metal alkoxide lithium hydroxide
  • metal alkoxides enter between the three-dimensional cross-links formed by the curable silicone resin, and the metal ions released by reaction with moisture improve the conductivity of the film, resulting in sacrificial anodic action and electromagnetic shielding properties.
  • the anti-magnetic effect “electromagnetic wave shielding effect” can be improved.
  • alkoxide As the type of metal alkoxide, various alkoxides such as Al, Li, Sn, Zr, Fe, and Zn can be used. From the viewpoint of metal ionicity, Si alkoxide cannot be adopted. Among these, A1 alkoxide can be preferably used because it has a high effect of increasing conductivity.
  • the alkoxy group may include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a hexenoreoxy group, and a phenoxy group. In view of easiness, an isopropoxy group is preferred. Particularly preferred is aluminum triisopropoxide.
  • the above metal alkoxide is used, it is good in combination with alcohols.
  • the alcohol used at this time monohydric alcohols are preferable, and 2-propanol is particularly preferable.
  • the content of the metal alkoxide is preferably in the range of! To 20 parts by mass with respect to 100 parts by mass of the resin component from the viewpoint of the ratio of the metal powder and the metal ions and the prevention of gelling of the silicone resin. 8: The range is 15 parts by mass.
  • Li ions impart conductivity to the silicone resin, thereby forming the curable silicone resin. It can penetrate between the three-dimensional cross-linking, improve the conductivity of the film, enhance the sacrificial anodic action and electromagnetic wave shielding characteristics, and improve the antibacterial effect and electromagnetic wave shielding effect.
  • Lithium hydroxide has the ability to use hydrates and hydrates S, and if hydrates are mixed with curable silicone resin, viscosity increases easily due to hydrolysis reaction. It is preferable to use a non-hydrate.
  • the content is preferably in the range of 0 :! to 5 parts by mass with respect to 100 parts by mass of the resin component, preferably 0.5-2 parts by mass Part range.
  • the resin composition of the present invention (when a curable silicone resin is used)
  • a curing catalyst for moisture curing the curable silicone resin containing an alkoxysilyl group may be used.
  • Such curing catalysts include acids such as phosphoric acid; organic amines such as triethanolamine; organic amine salts such as dimethylamine acetate; quaternary ammonium salts such as tetramethylammonium hydroxide; carbonic acid Alkali (earth) metal salts of organic acids such as sodium hydride; Aminoalkylsilane compounds such as ⁇ -aminopropyltriethoxysilane; Carboxylic acid metal salts such as zinc octylate; Organic tin compounds such as dioctyltin dilaurate; Examples thereof include titanic acid esters such as tetraisopropyl titanate and tetrabutyl titanate; metal chelate compounds such as acetylacetone aluminum salt.
  • the blending amount of the curing catalyst varies depending on the type of the curable silicone resin component and the curing catalyst to be used and the desired curing rate, but the curability and the work can be increased or decreased. Generally, it is preferable that the amount be in the range of 0.:! To 20 parts by mass with respect to 100 parts by mass of the curable silicone resin component, because the properties, storage stability, and coating film properties are adversely affected. It is good to mix in the range of 5-10 parts by mass.
  • the resin composition of the present invention includes various pigments, dyes, fillers, adhesion improvers, leveling properties in addition to the above components within the range that does not interfere with the effects of the present invention depending on the purpose of use. It is optional to add improvers, inorganic and organic ultraviolet absorbers, storage stability improvers, plasticizers, anti-aging agents, and the like.
  • the clad scale fine powder may be mixed in the resin. Specifically, first, the resin component and the metal alkoxide were sufficiently mixed. In a dispersion stirrer, a predetermined amount of (a) component and / or (b) component force, clad scale-foil fine powder is added and mixed, and stirred for 60 minutes to 120 minutes. In this mixing, it is preferable to carry out in a nitrogen atmosphere for the purpose of preventing hydrolyzable groups such as alkoxy groups from being hydrolyzed due to water mixing.
  • steel materials such as steel and pig iron are representatively exemplified for the purpose of imparting antifungal properties
  • wood, gypsum board material, concrete-based material, and plastic material can be mentioned.
  • the coating method (coating method) at this time include a dipping method, a spray method, and a brush coating method, and it is also possible to perform on-site coating.
  • the coating amount of the resin composition may vary depending on the type and purpose of the substrate. Generally, it is preferable that the coating thickness after curing is in the range of 150 to 30 ⁇ . Is in the range of 100-60 ⁇ m.
  • the curing conditions of the resin composition are not particularly limited.
  • the resin composition is cured by moisture in the air to form a film. It can be dried by allowing it to stand for 30 minutes to 2 hours in an ambient atmosphere (surface tack free state), and the curing reaction can be completed by leaving it for several hours to several days.
  • it is optional to further heat-treat the substrate to be coated as long as it does not adversely affect the properties of the coating film, but the initial stage force of the drying process is exposed to high temperatures. It is preferable because the silane compound in the solvent evaporates and the moisture necessary for curing is not supplied. It ’s not good.
  • the resin composition according to the present invention bonds dissimilar metals in a bridge shape by chemical bonding, becomes stronger with time due to sharing of internal electrons between metals, and bonds semi-permanently without cracking or peeling.
  • a film coated with such a film on the surface of the base material is a resin composition-coated member having excellent antifungal properties and / or conductivity.
  • Clad component ratio is 100% by mass of zinc / aluminum fine powder, zinc powder: 88% by mass, aluminum powder: 12% by mass; Size (particle size): 20-40 / m , Thickness: ⁇ 5 xm (purity 98%)
  • A- 2 cladding component ratio, with respect to zinc Z aluminum fine powder per 100 wt%, zinc powder: 90 mass 0/0, aluminum powder: 10 mass 0/0; size (particle diameter): 20 -40 ⁇ m, thickness 4-7 xm (purity 98%)
  • Clad component ratio is 100% by mass of nickel Z aluminum fine powder, nickel powder: 90% by mass, aluminum powder: 10% by mass; Size (particle size): 15-30 ⁇ m , Thickness 3-6 ⁇ m (purity 98%)
  • Clad component ratio is 100% by mass of nickel Z copper fine powder, nickel powder: 98 % by mass, copper powder: 2 % by mass; size (particle size): I 5 ⁇ : 30 am, thickness 3-6 ⁇ m (purity 98%)
  • A-5 Clad component ratio is 100% by mass of zinc / aluminum / copper fine powder, zinc powder: 90% by mass, aluminum powder: 9.5% by mass, copper powder: 0.5% ; Size (particle size): 20-40 ⁇ m, thickness 4-7 / im (purity 98%)
  • A-6 Nickel powder: 95% by mass, aluminum powder: 5% by mass, clad component ratio of 100% by mass of nickel / aluminum fine powder; Size (particle size): 15-30 / i m , thickness 3-6 ⁇ m (purity 98%)
  • Clad component ratio is nickel Z copper Z aluminum fine powder total 100 mass%, nickel powder: 99.5 mass%, copper powder: 0.4 mass%, aluminum powder: 0.1 mass%; Particle size): 15-30 xm, thickness 3-6 zm (purity 98%)
  • Component (C) metal alkoxide or lithium hydroxide
  • Example 1 The amount of each component used in Example 1 was the same as in step (2) except that (A) component (A-2): 100 parts by mass was prepared, and a resin composition was obtained. It was. The viscosity of this resin composition was 50 mPa's.
  • Example 1 The amount of each component used in Example 1 was determined as (B-2): 18 parts by mass, (B-3): 68 parts by mass as the curable silicone resin of component (B) in step (1). Part (B-5): 2 parts by mass was stirred and mixed, and (D-2): 2 parts by mass was added and mixed as a curing catalyst to obtain a resin composition. The viscosity of this resin composition was 90 mPa's.
  • step (1) the amount of each component used in Example 1 was determined as (B-1): 40 parts by mass, (B-4): 30 parts by mass as the curable silicone resin of component (B). (B-5): Stir 12 parts by mass The mixture was stirred and the same adjustment was performed except that (D-1): 8 parts by mass was added and mixed as a curing catalyst to obtain a resin composition.
  • the viscosity of this resin composition was 90 mPa's.
  • step (2) the amount of each component used in Example 1 is (A) as component (A-3)
  • Example 6 (1) The amount of each component used in Example 6 was prepared in steps (4), (B), (C), and (D) in step (4): 45 parts by mass, and in steps (2) and (3) Components (A), (F), (G): 55 parts by weight were mixed, and the mixture was sufficiently stirred and mixed in a nitrogen atmosphere while maintaining at 28 ° C or lower by water cooling using a dispersion stirrer. Operation was performed to obtain a resin composition. The viscosity of this resin composition was 50 mPa's.
  • Example 8 (1) Prepare the amount of each component used in Example 6 in step (1) as (A) component (A-7): 8.3 parts by mass and (E) component (El): 86.2 parts by mass in step (1) did.
  • step (4) 100 parts by mass, further as solvent (D-3): 5 parts by mass
  • the mixture was stirred and mixed to obtain a resin composition.
  • the viscosity of this resin composition was 55 mPa's.
  • a resin composition was obtained in the same manner as in Example 9 except that the amount of each component used in Example 9 was prepared in step (2) except that (A) component (A_5): 100 parts by mass was prepared.
  • the viscosity of this resin composition was 50 mPa's.
  • Example 9 (1) The amount of each component used in Example 9 was determined in the step (1) as (B) component curable silicone resin (B-4): 18 parts by mass, (B-3): 78 masses. Part, (B-5): 2 parts by mass The mixture was stirred and the same adjustment was performed except that (D-2): 2 parts by mass was added and mixed as a curing catalyst to obtain a resin composition.
  • the viscosity of this resin composition was 70 mPa's.
  • step (1) the amount of each component used in Example 9 was determined as (B-1): 49 parts by mass, (B-4): 30 parts by mass, as the curable silicone resin of component (B). (B-5): 12 parts by mass was stirred and mixed, and the same adjustment was performed except that (D-1): 8 parts by mass was added and mixed as a curing catalyst to obtain a resin composition.
  • the viscosity of this resin composition was 90 mPa's.
  • Example 1 The amount of each component used in Example 1 was adjusted in the same manner as in step (2) except that (A-6): 100 parts by mass was prepared as component (A) to obtain a resin composition.
  • the viscosity of this resin composition was 80 mPa's.
  • Example 14 The amount of each component used in Example 14 is the same as that in step (4) in (B), (C), and (D) components.
  • the viscosity of this resin composition was 60 mPa's.
  • Example 14 (1) The amount of each component used in Example 14 was determined in step (2) as (A) component (A-7): 89.5 parts by mass and (E) component (E-1): 5 A mass part was prepared.
  • Mixture of components (B), (C) and (D) prepared in step (4): 40 parts by mass, and (E), (F) and (G) prepared in steps (2) and (3) Ingredients: 60 parts by mass were blended, and the mixture was thoroughly stirred and mixed in a nitrogen atmosphere while maintaining a temperature of 28 ° C. or less by water cooling using a dispersion stirrer.
  • step (1) the amount of each component used in Example 1 was stirred and mixed in (B-1): 72 parts by mass, (B2): 18 parts by mass, (B-5): 2 parts by mass, Further, 8 parts by mass of (D 1) as a curing catalyst was added and mixed and stirred. At this time, the component (C) was not used, and the same adjustment was carried out except for that to obtain a resin composition.
  • the viscosity of this resin composition was 60 mPa's.
  • a galvanized steel sheet was prepared.
  • This zinc-plated steel sheet is obtained by immersing a test piece of the same size as the test piece prepared in the example to have a coating thickness of 60 ⁇ m.
  • Organic Gintari Paint was prepared. An acrylic resin product with a zinc content of 98% by mass was used.
  • An inorganic Zintari paint was prepared.
  • An acrylic silicate resin product with a zinc content of 98% by mass was used.
  • Step (2) the amount of each component used in Comparative Example 1 is (E-1): 94 parts by mass, (F-1): 94 parts by mass, (F-1): 94 parts by mass, (F-1): 94 parts by mass, (F-1): 94 parts by mass, (F-1): 94 parts by mass, (F-1): 94 parts by mass, (F-1): 94 parts by mass, (F-1): 94 parts by mass, (F
  • each of the above resin compositions was evaluated for antifungal properties and electromagnetic wave shielding properties by the following methods.
  • an antifungal test is performed about Example:!-5, 9-: 13, comparative example:!-4, and electromagnetic shielding property is Example 6-8, 14-: 16, comparative example 5-7. Went about.
  • a cast test for accelerated durability test which is a kind of galvanizing test for each of the above test pieces.
  • the antifungal property was evaluated by observing the presence or absence of wrinkles visually by conducting an antifungal test in accordance with H8520) (test temperature: 50 ⁇ 2 ° C, 360 hours).
  • the electromagnetic shielding properties were measured by Advantest (near electromagnetic field). At this time, remove the dust and dirt from the surface of the plywood (5mm x 200mm x 200mm) and apply the resin composition so that the coating thickness is 80 ⁇ m when dried with an air spray gun. The sample was left to stand for 7 days in an atmosphere of temperature: 25 ° C and humidity: 55% to form a cured film, which was used as a test piece.
  • Cu and / or Ni at least The clad scale fine powder of dissimilar metal, which contains any force, can be easily applied by blending with the resin, and it has conductivity and / or a small amount of metal powder.
  • a resin composition that has excellent anti-corrosion (corrosion-prevention) properties equivalent to or better than zinc plating and that also exhibits excellent shielding properties to block electromagnetic waves has been realized.

Abstract

A resin composition comprised of a resin compounded with clad scale micropowder of different types of metals containing at least either (a) Zn and/or Al formed into scaly micropowder or (b) Cu and/or Ni formed into scaly micropowder. The resin composition can be easily applied to a base material while taking advantage of the conventional corrosion preventive (anticorrosive) method. The resin composition exhibits excellent anticorrosive and conductive characteristics equivalent to or higher than those of hot-dip plating. The resin composition obviates the occurrence of any thermal brittleness in base materials and requires no additional treatments, such as pore sealing treatment. The resin composition is available as a nonpolluting anticorrosive agent that even in the event of thick coating, is free of anxiety about residual stress and permits workmanship capable of coping with aging deterioration. The resin composition is available as a nonpolluting electromagnetic wave shielding agent that solves problems of conventional electromagnetic wave shielding technology and exhibits electromagnetic wave shielding characteristics with a uniform coating film structure formed through conventional application method while avoiding the need to select locality of execution. Moreover, there is disclosed a resin-coated member having a base material surface coated with this resin composition.

Description

明 細 書  Specification
防鲭性および Zまたは導電性に優れた樹脂組成物並びに樹脂組成物被 覆部材  Resin composition excellent in anti-mold property and Z or conductivity and resin composition covering member
技術分野  Technical field
[0001] 本発明は、簡便に塗布することが出来、少量の金属粉の配合で導電性を有し、お よび/または亜鉛めつきと同等以上の優れた防鲭(防食)性を有し、しかも電磁波を 遮断する優れたシールド特性をも発揮する樹脂組成物、およびこうした樹脂組成物 を被覆した樹脂被覆部材に関するものである。  [0001] The present invention can be applied easily, has conductivity with a small amount of metal powder, and / or has excellent anti-corrosion (corrosion-preventing) properties equal to or better than zinc plating. In addition, the present invention relates to a resin composition that also exhibits excellent shielding properties for blocking electromagnetic waves, and a resin-coated member coated with such a resin composition.
背景技術  Background art
[0002] 鉄鋼材料ではその表面を防食(防鲭)することが必要であるが、こうした方法として は、(I)塗料や他の有機樹脂材料によって表面を多層膜で被覆することによって酸 素、硫化物、ハロゲン化物等との接触を遮断する塗装方法、(Π)溶融亜鉛、溶融亜 鉛—アルミニウムに被処理物を一定時間浸漬させ、亜鉛—アルミニウムを付着形成さ せる溶融めつき方法、 (III)亜鉛やアルミニウムをガスフレームやアーク等で溶かし、 鉄鋼材料等の表面に付着させ、金属間の電位差による犠牲陽極反応を応用して防 鲭する金属溶射方法等が知られている(例えば、特開 2001— 271152号、特開平 9 — 125221号、特開平 9— 3614号、特開平 8— 176781号など)。  [0002] In steel materials, it is necessary to prevent corrosion (anti-corrosion) on the surface, but as such a method, (I) by coating the surface with a coating film or other organic resin material with a multilayer film, oxygen, Coating method that blocks contact with sulfides, halides, etc. (i) Melting method in which the object to be treated is immersed in molten zinc or molten zinc-aluminum for a certain period of time, and zinc-aluminum is deposited and formed. III) Metal spraying methods are known in which zinc or aluminum is melted with a gas flame, arc, etc., adhered to the surface of steel materials, etc., and prevented by applying a sacrificial anode reaction due to the potential difference between the metals (for example, JP-A-2001-271152, JP-A-9-125221, JP-A-9-3614, JP-A-8-176781, and the like.
[0003] 一方、多様な電子機器類や無線 LAN、携帯電話等の普及やュビキタス時代の到 来による、電磁波障害や情報漏洩が問題視され、電磁波シールドの重要性が増し様 々な電磁波シールド材ゃ電磁波シールド塗料が使用されている。こうした技術として は、金属板の張り合わせ、建築材料に導電性フィラーを混入したシールド板を張り合 わせる技術等が知られている。また合成ゴムや合成樹脂に金属性のフイラーゃフアイ バーを混入した電磁波シールド材ゃ電磁波シールド塗料等も提案されてレ、る(例え ば、特開 2002— 309107号、特開平 10— 316910号)。更に、金属めつきや金属蒸 着などの方法によって、導電性を付与することによって電磁波シールド性を向上させ る技 テも知られている。 [0003] On the other hand, electromagnetic interference and information leakage are seen as problems due to the widespread use of various electronic devices, wireless LANs, mobile phones, etc. and the arrival of the ubiquitous era. Nyen shielding paint is used. As such technology, there are known techniques such as bonding of metal plates and bonding of shield plates mixed with conductive fillers into building materials. In addition, an electromagnetic shielding material in which a metallic filler or fiber is mixed with synthetic rubber or synthetic resin has been proposed (for example, JP-A-2002-309107, JP-A-10-316910). . Further, a technique for improving electromagnetic wave shielding properties by imparting conductivity by a method such as metal plating or metal deposition is also known.
[0004] 上記した各種防鲭(防食)方法には、夫々下記のような問題があることが指摘されて いる。まず、(I)塗装による防鲭(防食)方法では、主に有機溶剤系塗料が使用されて いる力 硬度が不足して表面の損傷や損耗による傷が発生し、それらが原因となって 大気との遮断機能の劣化や剥離を誘引し、また紫外線に起因する劣化等による損傷 で腐食が発生するという問題がある。 [0004] It has been pointed out that the various anti-corrosion (corrosion-prevention) methods described above have the following problems. Yes. First, (I) anti-corrosion (anti-corrosion) methods using paint mainly use organic solvent-based paints. Hardness is insufficient, resulting in surface damage and scratches due to wear. This causes the deterioration of the blocking function and peeling, and also causes corrosion due to damage due to deterioration caused by ultraviolet rays.
[0005] (Π)溶融めつき方法では、 10年〜 15年の耐食性能があるものの、それを実施する ためには溶融亜鉛等に被処理物浸漬のための大型プラントが必要であり、既設鉄鋼 構造物のメンテナンスには適用できないという問題がある。特に、薄板鋼鈑ゃ長尺鋼 材には溶融温度ゃ浸漬プール、高温による被処理物の歪みなどによる問題から適 用できない。  [0005] (ii) Although the melt-sealing method has a corrosion resistance of 10 to 15 years, a large-scale plant for immersing the workpiece in molten zinc or the like is necessary to implement it. There is a problem that it cannot be applied to the maintenance of steel structures. In particular, sheet steel is not applicable to long steel materials due to problems such as melting temperature, immersion pool, and distortion of workpieces due to high temperatures.
[0006] 最近では亜鉛、アルミニウムの合金めつきの技術も進んでいる力 セラミック炉等の 設備にコストがかかり、また使用する有害物質の排水処理にも環境規制が厳しくなり 、経済的な面からも問題がある。更に、亜鉛 ·アルミニウム合金めつきでは、亜鉛とァ ノレミニゥムの冷却温度の違いにより、生成する亜鉛とアルミニウムの結晶粒の大きさ が異なるために、いわゆる粒界面から腐食が生じ易いという特性上の問題もある。  [0006] Recent advances in zinc and aluminum alloying technology Costs are required for facilities such as ceramic furnaces, and environmental regulations are becoming stricter in wastewater treatment of harmful substances. There's a problem. Furthermore, with zinc-aluminum alloy plating, the size of the crystal grains of zinc and aluminum that are produced varies depending on the cooling temperature of zinc and aluminum, so that corrosion is likely to occur from the so-called grain interface. There is also.
[0007] (III)金属溶射方法では、鉄鋼材料表面に直接亜鉛'アルミニウム合金等の機能表 面を形成するという特徴があるため、犠牲陽極反応により内部の金属を保護するので 、亜鉛めつき以上の耐食性を発揮できるものの、金属溶射のための機械装置 (溶射 ガン、電源装置、送風装置、線材卷取り送り出し装置、溶射延長コード等)が必要で あり、施工効率は職人の技術による決定要素もあり、装置の搬入'整備の負担が大き レ、ことからみても、採算面での検討を必要とし、既設鋼構造物への溶射や狭隘な構 造部分への施工には困難性があるといった問題がある。また、亜鉛'アルミニウムを 溶力、して被処理物の表面に強制的に付着させるためには、鉄鋼構造物表面にショッ トブラストやサンドブラスト処理を施し、粗面形成剤を用いてアンカー効果を発揮させ るという前処理が必要となる。更に、金属溶射による効果を高めるために金属溶射面 を厚くすると放熱効果の差による内部ひずみや残留応力の発生によって、金属溶射 層のはがれ等の密着性の劣化がみられるという問題もある。しかも、被溶射材表面に スポンジ状の孔が生じるため、封孔処理が更に必要になるという欠点も指摘される。 [0007] (III) The metal spraying method has a feature that a functional surface such as a zinc'aluminum alloy is directly formed on the surface of the steel material. However, it requires mechanical equipment for metal spraying (spraying gun, power supply device, blower, wire rod take-out device, spraying extension cord, etc.), and construction efficiency is also a determinant of craftsman's technology. There is a heavy burden of carrying in equipment and maintenance, and even from this, it is necessary to consider profitability, and there are difficulties in spraying on existing steel structures and construction in narrow structures There's a problem. In addition, in order to force zinc'aluminum to adhere to the surface of the object to be treated, the steel structure surface is subjected to shot blasting or sand blasting, and an anchor effect is exhibited using a rough surface forming agent. Pre-processing is required. Furthermore, if the metal spray surface is made thicker in order to enhance the effect of metal spraying, there is a problem in that the adhesiveness such as peeling of the metal spray layer is deteriorated due to the generation of internal strain and residual stress due to the difference in heat dissipation effect. In addition, since a spongy hole is formed on the surface of the sprayed material, it is pointed out that a further sealing process is required.
[0008] 一方、これまで提案されている電磁波シールド方法においても、下記に示すような 問題が指摘されている。例えば、金属板の張り合わせ、建築材料に導電性フィラーを 混入したシールド板を張り合わせる方法では、狭部や複雑な形状部、凹凸面、合せ 部等は施工が不可能であり、平面部においても張り合わせ部の隙間より電磁波が漏 れ、導電性テープで塞いでも完全には電磁波を遮断できない問題がある。特に、施 ェに際しては採算面では施工費が高額になるという欠点がある。また導電性シール ド塗料においては、狭部や複雑な形状部、凹凸部の施工は可能で電磁波漏れは防 げるカ S、塗料成分に有機樹脂と有機溶剤(トルエン等)を使用している為に、残存有 害物質 (ホルムアルデヒト等)の揮発による環境問題、温度や湿気、紫外線に起因す る経年劣化によるひび割れからの電磁波漏れが問題として挙げられる。更に、合成ゴ ム電磁波シートや電磁波シールドフィルムにおいても、継ぎ目を導電性テープで塞 いでも、テープの剥がれ等により完全には電磁波を遮断できないという問題がある。 [0008] On the other hand, the electromagnetic wave shielding methods that have been proposed so far also include the following: Problems have been pointed out. For example, the method of pasting metal plates and pasting shield plates mixed with conductive fillers into building materials cannot be applied to narrow parts, complex shapes, uneven surfaces, mating parts, etc. There is a problem that electromagnetic waves are leaked from the gap between the bonded portions and cannot be completely blocked even if they are covered with conductive tape. In particular, there is a drawback that the construction cost is high in terms of profitability. In conductive shield paints, narrow areas, complex shapes, and uneven parts can be applied and electromagnetic leakage can be prevented. Organic paints and organic solvents (toluene, etc.) are used for paint components. Therefore, environmental problems due to volatilization of residual harmful substances (formaldehyde etc.), electromagnetic leakage from cracks due to aging due to temperature, humidity, and ultraviolet rays can be cited as problems. Furthermore, even with synthetic rubber electromagnetic wave sheets and electromagnetic wave shielding films, there is a problem that even if the seam is closed with a conductive tape, electromagnetic waves cannot be completely blocked due to peeling of the tape or the like.
[0009] 本発明はこうした状況の下でなされたものであって、その目的は、従来の防鲭(防 食)方法の利点を生力しつつ、簡便に塗装することができ、し力も溶融めつきと同等 以上の優れた防鲭特性や導電特性を発揮し、母材に熱脆性が生じることなぐ封孔 処理等の追加処理が不要で、また厚く塗っても残留応力の心配も無く経年劣化に対 応できる施工が可能である無公害型防鲭剤として、更に従来の電磁波シールド技術 における問題を解消し、施工場所を選ばず従来の塗装方法で均一な塗膜構造を有 した電磁波シールド特性を発揮する無公害型電磁波シールド剤として有用な樹脂組 成物、およびこうした樹脂組成物を基材表面に被覆した樹脂被覆部材を提供するこ とにある。 [0009] The present invention has been made under such circumstances, and the object thereof is to enable easy painting while producing the advantages of the conventional anti-corrosion (corrosion-prevention) method, and to melt the force. Exhibits superior antibacterial and conductive properties equivalent to those of metal plating, eliminates the need for additional processing such as sealing that prevents thermal embrittlement in the base material, and eliminates the risk of residual stress even when applied thickly. As a non-polluting antifungal agent that can be applied to prevent deterioration, it further eliminates the problems associated with conventional electromagnetic shielding technology, and has a uniform coating structure with the conventional coating method regardless of the construction site. It is an object of the present invention to provide a resin composition useful as a pollution-free electromagnetic wave shielding agent that exhibits characteristics, and a resin-coated member in which such a resin composition is coated on a substrate surface.
発明の開示  Disclosure of the invention
[0010] 上記目的を達成し得た本発明の樹脂組成物とは、(a)鱗箔状微粉末に形成された Znおよび Zまたは A1と、 (b)鱗箔状微粉末に形成された Cuおよび/または Niの、 少なくともいずれかを含んでなる異種金属のクラッド状鱗箔微粉末を、樹脂に配合し たものである点に要旨を有するものである。この樹脂組成物には、必要によって、 Mn , Mg, Mo, Li, Cおよび Agよりなる群力 選ばれる 1種以上の元素の粉末若しくは 合金粉末を配合することが好ましレ、。  [0010] The resin composition of the present invention that has achieved the above-mentioned object is: (a) Zn and Z or A1 formed in a scale-foil-like fine powder; and (b) formed in a scale-foil-like fine powder. The gist is that a fine powder of clad scale foil of a dissimilar metal containing at least one of Cu and / or Ni is blended with a resin. This resin composition is preferably blended with a powder or alloy powder of one or more elements selected from the group power consisting of Mn, Mg, Mo, Li, C and Ag, if necessary.
[0011] 本発明の樹脂組成物で用いる樹脂としては、一般式、 R1 Si (OR2) (式中、 R1 は、炭素数:!〜 10の炭化水素基であり、 R2は炭素数 1〜3のアルキル基、炭素数 2〜[0011] The resin used in the resin composition of the present invention has a general formula: R 1 Si (OR 2 ) (wherein R 1 Is a hydrocarbon group having from 10 to 10 carbon atoms, R 2 is an alkyl group having 1 to 3 carbon atoms, 2 to
3のァシル基若しくは炭素数 3〜5のアルコキシァシル基であり、 Nは 0〜2の整数で ある)で示されるシランィ匕合物、またはその部分加水分解縮合物からなる硬化性シリ コーン樹脂が挙げられる。 Curable silicone resin comprising a silanic compound or a partially hydrolyzed condensate thereof, which is an acyl group of 3 or an alkoxyacyl group of 3 to 5 carbon atoms, and N is an integer of 0 to 2. Is mentioned.
[0012] 本発明の樹脂組成物には、必要によって、(1)金属アルコキシド(Siアルコキシドを 除く)や水酸化リチウム(LiOH)を含有させることも有用であり、これによつて樹脂組 成物の特性を更に向上させることができる。 [0012] If necessary, the resin composition of the present invention may also contain (1) a metal alkoxide (excluding Si alkoxide) or lithium hydroxide (LiOH), whereby the resin composition These characteristics can be further improved.
[0013] 上記のような樹脂組成物を基材表面に被覆することによって、防鲭性および/また は導電性に優れた樹脂組成物被覆部材が得られる。 [0013] By coating the surface of the substrate with the resin composition as described above, a resin composition-coated member having excellent antifungal properties and / or conductivity can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]樹脂組成物による電界のシールド効果を、広い周波数範囲で測定したグラフで ある。  FIG. 1 is a graph showing the electric field shielding effect of a resin composition measured over a wide frequency range.
[図 2]樹脂組成物による磁界のシールド効果を、広い周波数範囲で測定したグラフで ある。  FIG. 2 is a graph showing the magnetic field shielding effect of a resin composition measured over a wide frequency range.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明者は、上記目的を達成するため鋭意検討を行った。その結果、(a)鱗箔状 微粉末に形成された Znおよび/または A1と、 (b)鱗箔状微粉末に形成された Cuお よび/または Niの、少なくともいずれかを含んでなる異種金属のクラッド状鱗箔微粉 末を、樹脂に配合したものでは、上記目的を達成し得る樹脂組成物が実現できること を見出し、本発明を完成した。  [0015] The present inventor has intensively studied to achieve the above object. As a result, (a) Zn and / or A1 formed on the scale-like fine powder and (b) Cu and / or Ni formed on the scale-like fine powder. The inventors have found that a resin composition that can achieve the above-mentioned object can be realized by using a metal clad scale foil powder in a resin, and the present invention has been completed.
[0016] 上記 (a), (b)の成分は、鱗箔状微粉末のものが使用されるが、「鱗箔状微粉末」と は、薄片状の微細粉末を意味し、スタンビングミルやボールミルを適用することによつ て製造すること力できる。例えば、 A1では、 A1箔を上記の方法によって、アルミニウム の鱗箔状微粉末とすることができる。また、鱗箔状微粉末に成形させた (a)成分およ び (b)成分を適宜組み合わせて、振動ミル等によって不活性雰囲気中で衝撃圧力を 力 4ナることによって、硬度の違いと衝撃エネルギーによる静電気作用によって粉末表 面に他の粉末が不規則的に圧着し、クラッド状鱗箔微粉末となる。  [0016] The components (a) and (b) above are used in the form of a scale-foil fine powder, and the "scale foil-like fine powder" means a flaky fine powder, It can be manufactured by applying a ball mill. For example, in A1, the A1 foil can be made into an aluminum scale foil-like fine powder by the above method. In addition, by combining the components (a) and (b) formed into a scale-foil-like fine powder as appropriate and applying impact pressure in an inert atmosphere with a vibration mill, etc. Due to the electrostatic effect of impact energy, other powders are irregularly pressed onto the powder surface, resulting in a clad scale foil fine powder.
[0017] 本発明の樹脂組成物には、上記(a)成分および (b)成分の少なくともいずれ力を含 む必要があるが、クラッド状鱗箔微粉末とする組み合わせは、必ずしも(a)成分と (b) 成分とする必要はなぐ(a)成分同士若しくは (b)成分同士によるクラッド状鱗箔微粉 末を使用することも可能である。例えば、鱗箔状微粉末に形成された Zn粉末と A1粉 末を振動ミルにて粉砕細鱗片化することにより、母材にあたる Zn鱗箔粉末の表面に 硬度の低い A1鱗箔粉末が不規則的に圧着して、 Zn粉末表面を完全被覆若しくは部 分被覆することによってクラッド化し、異種金属の複合材料となる。こうした状況は、 (b )成分同士或いは(a)成分と (b)成分の相互においても同様である。但し、(a)成分 同士若しくは (b)成分同士を選ぶ場合には、必然的に「Zn粉末および A1粉末」、或 いは「Cu粉末および Ni粉末」のいずれかの組み合わせによって、異種金属のクラッ ド状鱗箔微粉末を構成することになる。 [0017] The resin composition of the present invention contains at least one of the above-mentioned components (a) and (b). However, the combination of clad scale fine powder is not necessarily the component (a) and (b). The clad scale fine powder is composed of (a) components or (b) components. Can also be used. For example, Zn powder and A1 powder formed into a scale-foil-like powder are pulverized into fine pieces with a vibration mill, so that the surface of the Zn scale foil powder, which is the base material, has irregularly low A1 scale powder. And then clad by completely or partially coating the surface of the Zn powder to form a composite material of dissimilar metals. This situation is the same for the components (b) or between the components (a) and (b). However, when selecting (a) components or (b) components inevitably, a combination of “Zn powder and A1 powder” or “Cu powder and Ni powder” can be used. This constitutes a fine powder of clad scale foil.
[0018] 上記(a)成分は、鱗箔状の Znおよび Zまたは A1微細粉末である力 その大きさ(粒 径)は 10〜50 μ m程度、厚さ 1〜: 10 μ m程度が好ましぐより好ましくは大きさ: 15〜 30 /i m、厚さ 2〜6 μ ΐηのものが良い。また上記(b)成分は鱗箔状の Cuおよび/ま たは Ni微細粉末である力 その大きさ(粒径)は 10〜30 μ m程度、厚さ 0· 5〜5 μ m 程度が好ましぐより好ましくは大きさ 10〜20 / m、厚さ 1〜3 / m程度のものが良い [0018] The component (a) is a scale-like Zn and Z or A1 fine powder. The size (particle diameter) is preferably about 10 to 50 μm, and the thickness 1 to about 10 μm. More preferably, the size is 15 to 30 / im and the thickness is 2 to 6 μΐη. The component (b) is a scale-like Cu and / or Ni fine powder. The strength (particle size) is preferably about 10-30 μm and the thickness is about 0.5-5 μm. More preferably, a size of 10 to 20 / m and a thickness of 1 to 3 / m are good.
[0019] 上記のようなクラッド状鱗箔微粉末を樹脂中に配合することによって、防鲭性および /または導電性に優れた樹脂組成物が実現できたのである。こうした構成を採用す ることによって、上記効果が得られる理由についてはその全てを解明し得た訳ではな レ、が、おそらく次のように考えることができた。即ち、上記のようなクラッド状鱗箔微粉 末を樹脂中に配合したものでは、樹脂内での金属粉の均一化が図れると共に、均一 な塗膜構造を有するものとなって、防鲭性ゃ導電性に優れたものとなると考えられた [0019] By blending the clad scale fine powder as described above into the resin, a resin composition having excellent antifungal properties and / or conductivity can be realized. By adopting such a configuration, the reason why the above-mentioned effects can be obtained has not been clarified, but I could probably think as follows. That is, when the clad scale fine powder as described above is blended in the resin, the metal powder can be made uniform in the resin and has a uniform coating film structure. It was thought to be excellent in conductivity
[0020] 本発明の効果を発揮させるためには、クラッド状鱗箔微粉末の樹脂への配合割合 は 50質量%以上とすることが好ましいが、過剰に配合されると樹脂の割合が少なくな つて塗装性が劣化するので、 60質量%以下とすることが好ましレ、。 [0020] In order to exert the effect of the present invention, the blending ratio of the clad scale fine powder to the resin is preferably 50% by mass or more. However, when it is excessively blended, the ratio of the resin is reduced. Since the paintability deteriorates, it is preferable to make it 60% by mass or less.
[0021] 本発明の防鲭剤に使用されるクラッド状鱗箔微粉末は、その大きさ(粒径)は 10〜5 0 μ m程度、厚さ 1〜8 μ m程度が好ましいが、より好ましくは大きさ 20〜40 m、厚 さ 2〜5 μ mのものが良い。 [0021] The clad scale fine powder used in the antifungal agent of the present invention preferably has a size (particle size) of about 10 to 50 μm and a thickness of about 1 to 8 μm. Preferably size 20-40 m, thickness It should be 2-5 μm.
[0022] 尚、各成分においてクラッドさせるときの比率は、適宜設定すればよいが、例えば Z nと A1を組み合わせる場合には、 Znと A1の合計質量に対して亜鉛成分を 70〜95質 量%程度の範囲とすればよぐ好ましくは 85質量%〜95質量%の範囲である。亜鉛 とアルミニウムの比率に対する容積が同容量に近くなる程、標準電極電位の差による 犠牲陽極効果が際立った防鲭効果が発揮される。 [0022] It should be noted that the ratio at which each component is clad may be appropriately set. For example, when combining Zn and A1, the zinc component is 70 to 95 masses with respect to the total mass of Zn and A1. The range of about 85% by mass to 95% by mass is preferable. As the volume with respect to the ratio of zinc and aluminum is closer to the same capacity, the sacrificial anode effect due to the difference in standard electrode potential becomes more prominent.
[0023] 例えば亜鉛/アルミニウムクラッド状鱗箔微粉末では、各成分が積層されることによ つて、 A1の標準電極電位が _ 1.662V、亜鉛の標準電極電位— 0.762V、鉄の標準 電極電位一 0.447Vであることから、これら相互間の電位差による犠牲陽極効果によ つて防鲭性が向上することになる。  [0023] For example, in the zinc / aluminum clad fine powder, A1 standard electrode potential is _1.662V, zinc standard electrode potential-0.762V, iron standard electrode potential by laminating each component Since the voltage is 0.447V, the sacrificial anode effect due to the potential difference between them improves the fender resistance.
[0024] 上記(a)成分は防鲭性向上に寄与するものであり、上記 (b)成分は導電性(電磁波 シールド性)に寄与するものである。 (a)成分と(b)成分の配合比率については要求 される特性に応じて任意に設定すればよい。  [0024] The component (a) contributes to improvement of anti-mold properties, and the component (b) contributes to conductivity (electromagnetic wave shielding property). What is necessary is just to set arbitrarily about the blending ratio of (a) component and (b) component according to the characteristic requested | required.
[0025] 本発明の樹脂組成物には、必要によって、 Mn, Mg, Mo, Li, Cおよび Agよりなる 群から選ばれる 1種以上の元素の粉末若しくは合金粉末を配合することも有用である 。これらの成分は、樹脂中の粉末粒子間のギャップを小さくすることによって、粉末粒 子の分散状態をより気密化し、樹脂内での金属粉の均一化および均一な塗膜構造 を更に向上させる。これらの成分は、上記 (b)成分と同様に、導電性を付与するのに も有効である。これらの効果を発揮させるためには、その配合割合は、樹脂中に:!〜 12質量%程度が適切である。尚、これらの成分のうち、特に好ましいのは鱗箔状に 形成された C粉末 (黒鉛粉末)である。また、これらの成分の配合による効果をより有 効に発揮させるためには、その大きさ(粒径)は 1〜: 10 z m程度が好ましい。  [0025] In the resin composition of the present invention, if necessary, it is also useful to blend a powder or alloy powder of one or more elements selected from the group consisting of Mn, Mg, Mo, Li, C and Ag. . These components reduce the gap between the powder particles in the resin, thereby making the dispersed state of the powder particles more airtight, further improving the uniformity of the metal powder in the resin and the uniform coating film structure. These components are also effective for imparting conductivity, as in the case of component (b). In order to exert these effects, it is appropriate that the mixing ratio of the resin is about:! To 12% by mass. Of these components, C powder (graphite powder) formed in a scale foil shape is particularly preferable. Moreover, in order to exhibit the effect by the combination of these components more effectively, the size (particle size) is preferably about 1 to 10 zm.
[0026] 本発明の樹脂組成物で用いる樹脂としては、変性シリコーン樹脂、硬化性シリコー ン樹脂等、様々な樹脂が使用できその種類については特に限定されるものではない が、後述する一般式(1)で示されるシラン化合物、またはその部分加水分解縮合物 力 なる硬化性シリコーン樹脂が好ましいものとして挙げられる。  [0026] As the resin used in the resin composition of the present invention, various resins such as a modified silicone resin and a curable silicone resin can be used, and the type of the resin is not particularly limited. The silane compound represented by 1) or a partially hydrolyzed condensate thereof is preferably a curable silicone resin.
[0027] 硬化性シリコーン樹脂は、従来では末端シラノール基を有する硬化性シリコーン樹 脂をトルエン、キシレン等の有機溶剤に溶解させた、いわゆるシリコーンワニス溶液が 多用されているが、これには下記(1)、(2)のような問題がある。 [0027] The curable silicone resin is conventionally a so-called silicone varnish solution in which a curable silicone resin having a terminal silanol group is dissolved in an organic solvent such as toluene or xylene. Although it is frequently used, this has the following problems (1) and (2).
(1)低引火点の有機溶剤を必須成分とする。  (1) An organic solvent having a low flash point is an essential component.
(2)—般的に硬化塗膜形成には 150°C以上で長時間の加熱硬化が必要とされる。 このため、硬化に多大なエネルギーを必要とすると共に、応用範囲がライン塗工法に 限定され、現場施工は基本的に不可能である。  (2) —Generally, long-time heat curing at 150 ° C or higher is required to form a cured coating film. For this reason, a large amount of energy is required for curing, and the application range is limited to the line coating method, so on-site construction is basically impossible.
[0028] これらの問題があることから、有機溶剤を含有せず、常温硬化が可能な無溶剤常温 硬化性シリコーン樹脂として、オルガノアルコキシシランを部分(共)加水分解縮合し たシリコーンアルコキシオリゴマーと、必要に応じてこのシリコーンアルコキシオリゴマ 一の湿気硬化を促進させる硬化触媒の添加を検討し、後述する一般式(1)で示され る樹脂を用いることによって室温雰囲気下での硬化が可能となり、既設鉄鋼構造物 のメンテナンスや屋内外電磁波シールド施工にも適応可能になったのである。  [0028] Because of these problems, as a solvent-free room-temperature curable silicone resin that does not contain an organic solvent and can be cured at room temperature, a silicone alkoxy oligomer obtained by partial (co) hydrolytic condensation of organoalkoxysilane; If necessary, the addition of a curing catalyst that promotes moisture curing of this silicone alkoxy oligomer is studied, and by using a resin represented by the general formula (1) described below, curing at room temperature is possible, It can also be applied to maintenance of steel structures and indoor / outdoor electromagnetic shielding construction.
[0029] 上記のような硬化性シリコーン樹脂にクラッド状鱗箔粉末を配合することによって、 均一な積層皮膜を形成し、皮膜特性を更に向上することのできる樹脂組成物となる。  [0029] By blending the clad scale powder with the curable silicone resin as described above, a uniform laminated film can be formed and the resin composition can be further improved.
[0030] 従来使用されている無機ジンクペイントは、使用する直前に、亜鉛などの粉体を無 機高分子シリコーン塗料系に混合するタイプと、変性シリコーンでゥォッシュするタイ プ等があるが、金属個体成分として亜鉛粉: 90〜96質量%程度含有させないと導電 性は発揮できない。また、単体鱗片金属粉を混合した有機あるいは無機防鲭塗料も あるが、単体金属粉の混合であるため、塗膜内の配列が不規則なために防鲭(防食 )効果が不均一になり、し力も金属個体成分として亜鉛粉: 90〜96質量%程度含有 させないと導電性は発揮できなレ、。  [0030] There are two types of inorganic zinc paints that have been used in the past: a type in which powders such as zinc are mixed with an inorganic high molecular silicone paint system immediately before use, and a type that is washed with modified silicone. Conductivity cannot be exhibited unless zinc powder: 90-96 mass% is included as a solid component. In addition, there are organic or inorganic antifouling paints mixed with simple scale metal powder, but since it is a mixture of simple metal powders, the anti-fouling (anticorrosion) effect becomes uneven due to irregular arrangement in the coating film. The zinc powder as a metal solid component: 90-96% by mass.
[0031] これに対して本発明による樹脂組成物では、クラッド状鱗箔粉末状を少量配合する ことによって導電性付与が可能になり、また良好な防鲭(防食)性が確保できるように なる。また、金属粉を 90〜96質量%配合すると、形成された面が粗面でポーラスとな るため皮膜厚さが 100 μ m以上でなければその効果が発揮されなレ、が、本発明の樹 脂組成物による皮膜形成においては皮膜厚さが 50 μ m程度であってもその効果が 発揮されるものとなる。本発明の樹脂組成物では、従来の塗装方法と同様に簡便に 塗装できるという優れた作業性と、金属粉を減量しても、得られた皮膜は無機ジンク ペイント、有機'無機系防鲭塗料、溶融亜鉛鍍金や金属溶射方法と同等以上の優れ た防鲭性を示す他、封孔処理等の面倒な後処理が不要となる等の各種利点を有す るものとなる。 [0031] On the other hand, in the resin composition according to the present invention, conductivity can be imparted by adding a small amount of clad scale foil powder, and good anti-corrosion (anticorrosion) properties can be secured. . In addition, when 90 to 96% by mass of metal powder is blended, the formed surface becomes rough and porous, so that the effect is not exhibited unless the film thickness is 100 μm or more. In the film formation with the resin composition, the effect is exhibited even when the film thickness is about 50 μm. With the resin composition of the present invention, excellent workability that can be applied simply as in the conventional coating method, and even if the amount of metal powder is reduced, the resulting film is an inorganic zinc paint, an organic 'inorganic antifouling paint. Excellent, equal to or better than hot dip galvanizing and metal spraying In addition to exhibiting antifungal properties, it has various advantages such as the need for troublesome post-treatment such as sealing treatment.
[0032] 上記のように、硬化性シリコーン樹脂にクラッド状鱗箔粉末を配合した樹脂組成物 では、硬化性シリコーン樹脂の加水分解性反応基 _OR (a)が加水分解反応し、金 属表面 (Me)の水酸基と水素結合的に吸着し、その後脱水縮合反応することにより 化学結合 (Me _ O _ Si _〇R)し、鉄鋼構造材に強固に接着した皮膜を形成するこ と力できる。また、クラッド状鱗箔微粉末とは、加水分解 ·脱水縮合反応による異種金 属結合 (例えば、 OR— Al -O -Si-O-Zn- O - Si_〇R等の部分的化学結合状 態)を形成するので、皮膜中に金属粉末をしつ力 固定することができ、硬化したシリ コーン樹脂には残存有害成分が無ぐまた優れた耐候性を有しているため、耐久性 のある無公害な防鲭(防食)性を示すものとなる。  [0032] As described above, in the resin composition in which the clad scale powder is blended with the curable silicone resin, the hydrolyzable reactive group _OR (a) of the curable silicone resin undergoes a hydrolysis reaction, and the metal surface ( It can adsorb to the hydroxyl group of Me) by hydrogen bonding, and then chemically dehydrate (Me_O_Si_ ○ R) by dehydrating condensation reaction to form a film that adheres firmly to the steel structure. In addition, clad scale fine powder is a heterogeneous metal bond (for example, OR-Al-O-Si-O-Zn-O-Si_〇R) formed by partial hydrolysis or dehydration condensation reaction. Therefore, the cured silicone resin has no residual harmful components and has excellent weather resistance. It shows some non-polluting protection (corrosion protection).
[0033] 本発明で好ましく用いられる硬化性シリコーン樹脂は、アルコキシシリル基を含有す るものであるが、これは下記一般式(1)で表されるシランィ匕合物、またはその部分 (共 )加水分解縮合物の 1種または 2種以上の混合物である。  [0033] The curable silicone resin preferably used in the present invention contains an alkoxysilyl group, which is a silane compound represented by the following general formula (1), or a portion thereof (both). One or a mixture of two or more hydrolysis condensates.
[0034] R1 Si (OR2) [0034] R 1 Si (OR 2 )
N 4-N  N 4-N
上記一般式(1)中の R1は、同一または異なってもよい、炭素数:!〜 10の非置換ま たは置換の一価炭化水素基であり、具体的にはメチル基、ェチル基、プロピル基、ブ チル基、へキシル基、ォクチル基、デシル基等のアルキル基、シクロへキシル基等の シクロアルキル基、ビニル基、ァリル基等のアルケニル基、フエ二ル基、トリル基等の ァリール基が例示される。 R 1 in the general formula (1) may be the same or different and is an unsubstituted or substituted monovalent hydrocarbon group having!: 10 to 10 carbon atoms, specifically a methyl group or an ethyl group. , Propyl group, butyl group, hexyl group, octyl group, decyl group, etc. alkyl group, cyclohexyl group, etc. cycloalkyl group, vinyl group, aryl group etc., alkenyl group, phenyl group, tolyl group, etc. The aryl group is exemplified.
[0035] また、 R2は、炭素数 1〜3のアルキル基、炭素数 2〜3のァシル基、または炭素数 3 〜5のアルコキシアルキル基であり、具体的にはメチル基、ェチル基、プロピル基、ィ ソプロピル基力 選択されるアルキル基、ァセチル基等のァシル基、メトキシェチル 基、エトキシェチル基、プロポキシェチル基、メトキシプロピル基、エトキシプロピル基 等のアルコキシアルキル基が例示される。 [0035] R 2 is an alkyl group having 1 to 3 carbon atoms, an acyl group having 2 to 3 carbon atoms, or an alkoxyalkyl group having 3 to 5 carbon atoms, specifically a methyl group, an ethyl group, Propyl group, Isopropyl group power Alkyl groups selected, acyl groups such as acetyl groups, methoxyethyl groups, ethoxyethyl groups, propoxycetyl groups, methoxypropyl groups, ethoxypropyl groups, and other alkoxyalkyl groups.
[0036] 上記一般式(1)中の Nは、 0〜2の整数(N = 0、 1、 2)であるが、樹脂組成物の硬 化性、硬化塗膜の表面硬度、基材との密着性等の観点からして、硬化性シリコーン 樹脂中で、 N= 1のシラン化合物および/またはその部分(共)加水分解縮合物の占 める割合が 30モル%以上であることが好ましぐより好ましくは 40〜: 100モル%であ るのが良い。また、 N = 0のシランィ匕合物および/またはその部分(共)加水分解縮 合物の占める割合は、硬化性シリコーン樹脂中で 40モル%以下であることが好ましく 、 N = 2のシラン化合物および/またはその部分(共)加水分解縮合物の占める割合 は、硬化性シリコーン樹脂中で 60モル%以下であることが好ましい。 [0036] N in the general formula (1) is an integer of 0 to 2 (N = 0, 1, 2), but the hardenability of the resin composition, the surface hardness of the cured coating film, the substrate and In view of adhesion of the curable silicone resin, N = 1 silane compound and / or its partial (co) hydrolysis condensate It is more preferable that the ratio is 30 mol% or more, and 40 to 100 mol% is more preferable. The proportion of the N = 0 silane compound and / or its partial (co) hydrolyzed condensate is preferably 40 mol% or less in the curable silicone resin, and the N = 2 silane compound The ratio of the partial (co) hydrolysis condensate is preferably 60 mol% or less in the curable silicone resin.
[0037] 硬化性シリコーン樹脂成分として、 N = lのシラン化合物および Zまたはその部分( 共)加水分解縮合物に加えて、 N = 0のシラン化合物および Zまたはその部分 (共) 加水分解縮合物を配合すると、硬化皮膜 (樹脂皮膜)の表面硬度をより高くすること ができるが、配合量が多過ぎると皮膜表面にクラックが発生するおそれがあり、 N = 2 のシラン化合物および/またはその部分(共)加水分解縮合物を併用すると、硬化塗 膜に強靱性と可撓性が与えられるが、配合量が多すぎると十分な架橋密度が得られ なレ、ために、表面硬度や硬化性が低下するおそれがある。  [0037] As the curable silicone resin component, in addition to the silane compound of N = l and Z or a partial (co) hydrolysis condensate thereof, the silane compound of N = 0 and the portion thereof (co) hydrolytic condensate When added, the surface hardness of the cured film (resin film) can be increased, but if the amount is too large, cracks may occur on the surface of the film, and N = 2 silane compound and / or its part When a (co) hydrolysis condensate is used in combination, toughness and flexibility are imparted to the cured coating, but if the amount is too large, sufficient crosslinking density cannot be obtained. May decrease.
[0038] このようなシラン化合物及びその部分(共)加水分解縮合物の具体例としては、テト ラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラ ン、メチルトリイソプロポキシシラン、メチルトリァセトキシシラン、メチルトリス(メトキシェ トキシ)シラン、メチルトリス(メトキシプロボキシ)シラン、ェチルトリメトキシシラン、プロ ピルトリメトキシシラン、ブチルトリメトキシシラン、へキシルトリメトキシシラン、ォクチル トリメトキシシラン、デシルトリメトキシシラン、シクロへキシルトリメトキシシラン、ビニルト リメトキシシラン、ビュルトリエトキシシラン、ァリルトリメトキシシラン、フエニルトリメトキ シシラン、フエニルトリエトキシシラン、トリルトリメトキシシラン、シァノエチルトリエトキシ キシシラン、 β —(3, 4エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 γ—メタタリ ノプロピルトリメトキシシラン、 γ—ァミノプロピルトリエトキシシラン、 N _ j3 (アミノエチ ノレ) γ—ァミノプロビルトリメトキシシラン、 Ν—フエ二ノレ一 γ—ァミノプロビルトリメトキ 、ジフエ二ルジメトキシシラン、ジフエ二ルジェトキシシラン、メチルフエ二ルジメトキシ シラン、 γ—クロ口プロピルメチルジメトキシシラン、 3, 3, 3—トリフルォロプロピルメチ ルジメトキシシラン、 γ—グリシドキシプロピルメチルジェトキシシラン、 γ—メタクリロ [0038] Specific examples of such silane compounds and partial (co) hydrolysis condensates thereof include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, Methyltriacetoxysilane, methyltris (methoxyethoxy) silane, methyltris (methoxypropoxy) silane, etyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyl Trimethoxysilane, cyclohexyltrimethoxysilane, vinyltrimethoxysilane, butyltriethoxysilane, allyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, tolyltrimethoxy Lanthanum, cyanoethyltriethoxyxysilane, β- (3,4-epoxycyclohexylenole) ethinoretrimethoxysilane, γ-metatalinopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N_j3 (aminoethylinole) ) Γ-Aminoprovir trimethoxysilane, フ -Finenore γ-Aminoprovir trimethoxy , Diphenyldimethoxysilane, diphenyljetoxysilane, methylphenyldimethoxysilane, γ-clopropylpropylmethyldimethoxysilane, 3,3,3-trifluoropropylmethyldimethoxysilane, γ-glycidoxypropylmethylger Toxisilane, γ-methacrylo
、 y—ァミノプロピルメチルジェトキシシラン、 N— β (アミノエチル) γ—ァミノプロピ キシシランまたはァシロキシシラン、並びにこれらの部分(共)加水分解縮合物を挙げ ること力 Sできる。 , Y-aminopropylmethyl jetoxysilane, N-β (aminoethyl) γ-aminopropoxysilane or acyloxysilane, and partial (co) hydrolysis condensates thereof.
[0039] これらのシラン化合物および部分(共)加水分解縮合物の前駆体としてのシランィ匕 合物の中でも、汎用性、コスト面、防鲭剤ゃ電磁波シールド剤として使用した際の硬 化性、塗膜 (皮膜)特性等の観点からすれば、一般式(1)における R1がメチル基およ びフエニル基から選択される基、 R2がメチル基およびェチル基から選択される基であ るシラン化合物を用いることが好ましぐ具体的には、メチルトリメトキシシラン、メチル トリエトキシシラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、ジメチルジ メトキシシラン、ジメチノレジェトキシシラン、ジフヱニノレジメトキシシラン、ジフエニノレジ エトキシシランが例示される。 [0039] Among these silane compounds and silane compounds as precursors of partial (co) hydrolysis condensates, versatility, cost, and curability when used as an antifungal agent or an electromagnetic shielding agent, From the viewpoint of coating film (film) characteristics, R 1 in the general formula (1) is a group selected from a methyl group and a phenyl group, and R 2 is a group selected from a methyl group and an ethyl group. Specifically, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethylenogetoxysilane, diphenylenole are preferable. Examples include dimethoxysilane and dipheninoresiethoxysilane.
[0040] 部分 (共)加水分解縮合物としては、上記したようなシランィ匕合物の 2量体 (シランィ匕 合物 2モルに水 1モルを作用させてアルコール 2モルを脱離させ、ジシロキサン単位 としたもの)〜 100量体が挙げられ、好ましくは 2〜50量体、更に好ましくは 2〜30量 体としたものが好適に使用でき、また 2種以上のシランィ匕合物を原料とする部分 (共) 加水分解縮合物を使用することもできる。  [0040] As the partial (co) hydrolysis condensate, a dimer of the above silane compound (1 mol of water is allowed to act on 2 mol of the silane compound and 2 mol of alcohol is eliminated). Siloxane units) to 100 mer, preferably 2 to 50 mer, more preferably 2 to 30 mer can be suitably used, and two or more silane compounds are used as raw materials. The (co) hydrolysis condensate can also be used.
[0041] 本発明の樹脂組成物で用いることのある硬化性シリコーン樹脂としては、上記した シラン化合物またはその部分 (共)加水分解縮合物を単独で使用しても良いが、構造 の異なる 2種類以上のシラン化合物または部分 (共)加水分解縮合物を用いることや 、シラン化合物と部分 (共)加水分解縮合物を併用することも可能である。但し、各成 分の混合時や塗装時の揮発性、作業性や、硬化性コントロールの容易さ、湿気硬化 により発生するアルコール量といった観点からは、部分 (共)加水分解縮合物を必須 成分とすることが好ましい。 [0042] 尚、上記のような部分 (共)加水分解縮合物は、シリコーンアルコキシオリゴマーとし て市販されているものが使用できるが、常法に基づき、加水分解性シラン化合物に 対し当量未満の加水分解水を反応させた後に、アルコール、塩酸等の副生物を除 去することによって製造することができる。原料の加水分解性シラン化合物として、例 えば上記したようなアルコキシシラン類やァシロキシシラン類を使用する場合は、塩 酸、硫酸等の酸、水酸化ナトリウム、水酸化カリウム等のアルカリ金属若しくはアル力 リ土類金属の水酸化物、トリェチルァミン等のアルカリ性有機物質等を反応触媒とし て部分加水分解縮合すればよぐクロロシラン類から直接製造する場合には、副生す る塩酸を触媒として水やアルコールを反応させればよい。 [0041] As the curable silicone resin that may be used in the resin composition of the present invention, the above-mentioned silane compound or a partial (co) hydrolysis condensate thereof may be used alone, but two types having different structures are used. The above silane compound or partial (co) hydrolysis condensate may be used, or the silane compound and partial (co) hydrolysis condensate may be used in combination. However, partial (co) hydrolysis condensate is an essential component from the viewpoint of volatility during mixing and coating of components, workability, ease of curability control, and the amount of alcohol generated by moisture curing. It is preferable to do. [0042] As the partial (co) hydrolysis condensate as described above, those commercially available as silicone alkoxy oligomers can be used, but less than an equivalent amount of hydrolyzable silane compound can be added based on a conventional method. It can be produced by removing by-products such as alcohol and hydrochloric acid after reacting with the decomposed water. As the raw material hydrolyzable silane compound, for example, when using alkoxysilanes or acyloxysilanes as described above, an acid such as hydrochloric acid or sulfuric acid, an alkali metal such as sodium hydroxide or potassium hydroxide, or an alkali In the case of direct production from chlorosilanes that require partial hydrolysis and condensation using alkaline earth metal such as alkaline earth metal hydroxide or triethylamine as a reaction catalyst, water or What is necessary is just to make alcohol react.
[0043] また、各成分の混合時の作業性、防鲭剤 ·電磁波シールド剤の塗装性ゃ防鲭効果 •シールド効果を考慮した場合、硬化性シリコーン樹脂成分の 25°Cにおける粘度 (力 学的粘度)は、好ましくは l〜200mPa' s、より好ましくは 5〜50mPa' s、更に好ましく は 10〜30mPa' s程度とするのが良ぐ粘度や硬化性の調整目的で上記したシラン 化合物を使用することができるし、場合によってアルコール類等の溶剤成分を併用す ることも可肯である。  [0043] In addition, workability at the time of mixing each component, antibacterial agent · coating properties of electromagnetic shielding agent, antibacterial effect • When considering the shielding effect, the viscosity (mechanical properties) of curable silicone resin component at 25 ° C The silane compound described above for the purpose of adjusting viscosity and curability is preferably 1 to 200 mPa's, more preferably 5 to 50 mPa's, and even more preferably 10 to 30 mPa's. It can be used, and in some cases, it is also acceptable to use a solvent component such as alcohol together.
[0044] 更に、基材との密着性向上を目的としてエポキシ基、アミノ基、メルカプト基等を有 するシランカップリング剤を配合したり、塗膜特性向上を目的としてシラノール基含有 シリコーン樹脂を一部併用することも可能である。  [0044] Further, a silane coupling agent having an epoxy group, amino group, mercapto group or the like is added for the purpose of improving the adhesion to the substrate, or a silanol group-containing silicone resin is used for the purpose of improving the coating film properties. It is also possible to use parts together.
[0045] 本発明の樹脂組成物には、必要によって(1)金属アルコキシドゃ(2)水酸化リチウ ム(LiOH)を含有させることも有効である。このうち金属アルコキシドは、硬化性シリコ ーン樹脂がなす 3次元架橋の間に入り込み、水分と反応して遊離した金属イオンによ つて皮膜の導電性が向上し、犠牲陽極作用や電磁波シールド特性を強化し、防鲭 効果'電磁波シールド効果を向上させることができる。  [0045] It is also effective to contain (1) a metal alkoxide (2) lithium hydroxide (LiOH) if necessary in the resin composition of the present invention. Among these, metal alkoxides enter between the three-dimensional cross-links formed by the curable silicone resin, and the metal ions released by reaction with moisture improve the conductivity of the film, resulting in sacrificial anodic action and electromagnetic shielding properties. By strengthening, the anti-magnetic effect “electromagnetic wave shielding effect” can be improved.
[0046] 金属アルコキシドの種類としては、 Al、 Li、 Sn、 Zr、 Fe、 Zn等の各種アルコキシド が使用できる力 金属のイオンィ匕という観点からして Siアルコキシドは採用できない。 このうち、特に A1アルコキシドが導電性を上げる効果が高ぐ好ましく用いることがで きる。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基 、ブトキシ基、へキシノレォキシ基、フエノキシ基等を示すことができるが、取り扱いの容 易性からして、イソプロポキシ基が好ましい。特に好ましいものとしては、アルミニウム トリイソプロボキシドが挙げられる。 [0046] As the type of metal alkoxide, various alkoxides such as Al, Li, Sn, Zr, Fe, and Zn can be used. From the viewpoint of metal ionicity, Si alkoxide cannot be adopted. Among these, A1 alkoxide can be preferably used because it has a high effect of increasing conductivity. Examples of the alkoxy group may include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a hexenoreoxy group, and a phenoxy group. In view of easiness, an isopropoxy group is preferred. Particularly preferred is aluminum triisopropoxide.
[0047] 上記金属アルコキシドを用いる場合には、アルコール類と併用して良レ、。このとき用 レ、るアルコールとしては、一価アルコール類が好ましいものとして挙げられ、なかでも 2 _プロパノールが好ましい。金属アルコキシドの含有量は、金属粉と金属イオンの 割合とシリコーン樹脂のゲルィ匕防止という観点からして、樹脂成分 100質量部に対し て:!〜 20質量部の範囲とすれば良ぐ好ましくは 8〜: 15質量部の範囲である。  [0047] When the above metal alkoxide is used, it is good in combination with alcohols. As the alcohol used at this time, monohydric alcohols are preferable, and 2-propanol is particularly preferable. The content of the metal alkoxide is preferably in the range of! To 20 parts by mass with respect to 100 parts by mass of the resin component from the viewpoint of the ratio of the metal powder and the metal ions and the prevention of gelling of the silicone resin. 8: The range is 15 parts by mass.
[0048] 一方、水酸化リチウムを硬化性シリコーン樹脂と混合することによって、上記金属ァ ルコイシドと同様に、部分的に遊離した Liイオンがシリコーン樹脂に導電性を付与し 、硬化性シリコーン樹脂がなす 3次元架橋の間に入り込み、皮膜の導電性が向上し、 犠牲陽極作用や電磁波シールド特性を強化し、防鲭効果 ·電磁波シールド効果を向 上させることができる。  [0048] On the other hand, by mixing lithium hydroxide with a curable silicone resin, as in the case of the above metal alcohol, partially liberated Li ions impart conductivity to the silicone resin, thereby forming the curable silicone resin. It can penetrate between the three-dimensional cross-linking, improve the conductivity of the film, enhance the sacrificial anodic action and electromagnetic wave shielding characteristics, and improve the antibacterial effect and electromagnetic wave shielding effect.
[0049] 水酸化リチウムは水和物と無水和物が使用できる力 S、硬化性シリコーン樹脂との混 合時に水和物が混入していると、加水分解反応による粘度上昇が生じ易いので、無 水和物を用いることが好ましい。  [0049] Lithium hydroxide has the ability to use hydrates and hydrates S, and if hydrates are mixed with curable silicone resin, viscosity increases easily due to hydrolysis reaction. It is preferable to use a non-hydrate.
[0050] 上記水酸化リチウム無水和物を用いる場合の含有量は、樹脂成分 100質量部に対 して 0·:!〜 5質量部の範囲とすれば良ぐ好ましくは 0· 5〜2質量部の範囲である。 [0050] When the above lithium hydroxide anhydride is used, the content is preferably in the range of 0 :! to 5 parts by mass with respect to 100 parts by mass of the resin component, preferably 0.5-2 parts by mass Part range.
[0051] 本発明の樹脂組成物には、必要に応じて (硬化性シリコーン樹脂を使用する場合)[0051] If necessary, the resin composition of the present invention (when a curable silicone resin is used)
、アルコキシシリル基を含有する硬化性シリコーン樹脂を湿気硬化させるための硬化 触媒を使用しても良い。そのような硬化触媒としては、リン酸等の酸類;トリエタノール ァミン等の有機アミン類;ジメチルァミンアセテート等の有機アミン塩;テトラメチルアン モニゥムヒドロキシド等の第 4級アンモニゥム塩;炭酸水素ナトリウム等の有機酸のァ ルカリ(土類)金属塩; γ—ァミノプロピルトリエトキシシラン等のアミノアルキルシラン 化合物;ォクチル酸亜鉛等のカルボン酸金属塩;ジォクチル錫ジラウレート等の有機 錫化合物;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステ ル類;ァセチルアセトンアルミニウム塩等の金属キレート化合物等が挙げられる。 A curing catalyst for moisture curing the curable silicone resin containing an alkoxysilyl group may be used. Such curing catalysts include acids such as phosphoric acid; organic amines such as triethanolamine; organic amine salts such as dimethylamine acetate; quaternary ammonium salts such as tetramethylammonium hydroxide; carbonic acid Alkali (earth) metal salts of organic acids such as sodium hydride; Aminoalkylsilane compounds such as γ-aminopropyltriethoxysilane; Carboxylic acid metal salts such as zinc octylate; Organic tin compounds such as dioctyltin dilaurate; Examples thereof include titanic acid esters such as tetraisopropyl titanate and tetrabutyl titanate; metal chelate compounds such as acetylacetone aluminum salt.
[0052] この硬化触媒の配合量は、使用する硬化性シリコーン樹脂成分および硬化触媒の 種類や所望する硬化速度によって異なるが、少な過ぎても多過ぎても硬化性、作業 性、保存安定性や塗膜特性に悪影響があるため、一般的には硬化性シリコーン樹脂 成分 100質量部に対して、 0.:!〜 20質量部の範囲とすれば良ぐ好ましくは 0. 5〜 10質量部の範囲で配合するのが良い。 The blending amount of the curing catalyst varies depending on the type of the curable silicone resin component and the curing catalyst to be used and the desired curing rate, but the curability and the work can be increased or decreased. Generally, it is preferable that the amount be in the range of 0.:! To 20 parts by mass with respect to 100 parts by mass of the curable silicone resin component, because the properties, storage stability, and coating film properties are adversely affected. It is good to mix in the range of 5-10 parts by mass.
[0053] 本発明の樹脂組成物には、使用目的に応じて本発明の効果を妨げない範囲で、 上記成分に加えて各種の顔料、染料、充填剤、接着性改良剤、レべリング性向上剤 、無機および有機の紫外線吸収剤、保存安定性改良剤、可塑剤、老化防止剤等を 添カ卩することは任意である。  [0053] The resin composition of the present invention includes various pigments, dyes, fillers, adhesion improvers, leveling properties in addition to the above components within the range that does not interfere with the effects of the present invention depending on the purpose of use. It is optional to add improvers, inorganic and organic ultraviolet absorbers, storage stability improvers, plasticizers, anti-aging agents, and the like.
[0054] 本発明の樹脂組成物を製造するに当っては、クラッド状鱗箔微粉末を樹脂中に配 合すればよいが、具体的には、まず樹脂成分および金属アルコキシドを十分混合し たものを分散攪拌機に入れ、ここに (a)成分および/または (b)成分力、らなるクラッド 状鱗箔微粉末を所定量添加'混合して 60分〜 120分攪拌すれば良い。尚、この混 合時には、水分の混入によってアルコキシ基等の加水分解性基が加水分解してしま うことを防ぐ目的で、窒素雰囲気下で行うことが好ましい。  [0054] In producing the resin composition of the present invention, the clad scale fine powder may be mixed in the resin. Specifically, first, the resin component and the metal alkoxide were sufficiently mixed. In a dispersion stirrer, a predetermined amount of (a) component and / or (b) component force, clad scale-foil fine powder is added and mixed, and stirred for 60 minutes to 120 minutes. In this mixing, it is preferable to carry out in a nitrogen atmosphere for the purpose of preventing hydrolyzable groups such as alkoxy groups from being hydrolyzed due to water mixing.
[0055] 本発明の樹脂組成物が被覆される基材としては、防鲭性を付与することを目的とす る場合には鋼材ゃ铸鉄等の鉄鋼材料が代表的なものとして挙げられ、電磁波シール ド性を付与することを目的とする場合には木材、石膏ボード材、コンクリート系材、プ ラスチック材を挙げることができる。このときの被覆方法 (塗布方法)としては、浸漬法 、スプレー法、刷毛塗り法等を挙げることができ、更に現場塗装を行うことも可能であ る。また、樹脂組成物の被覆量としては、基材の種類や目的によっても異なる力 一 般的には硬化後の塗膜厚さが 150〜30 μ ΐηの範囲となるようにすれば良ぐ好ましく は 100〜60 μ mの範囲である。  [0055] As the base material on which the resin composition of the present invention is coated, steel materials such as steel and pig iron are representatively exemplified for the purpose of imparting antifungal properties, For the purpose of imparting electromagnetic shielding properties, wood, gypsum board material, concrete-based material, and plastic material can be mentioned. Examples of the coating method (coating method) at this time include a dipping method, a spray method, and a brush coating method, and it is also possible to perform on-site coating. Further, the coating amount of the resin composition may vary depending on the type and purpose of the substrate. Generally, it is preferable that the coating thickness after curing is in the range of 150 to 30 μΐη. Is in the range of 100-60 μm.
[0056] 樹脂組成物の硬化条件については特には限定されなレ、が、空気中の湿分によって 硬化して皮膜を形成するものであるため、特に加熱等の操作は必要とせず、室温雰 囲気下で 30分間〜 2時間程度放置することにより乾燥し (表面タックフリー状態)、更 に数時間〜数日間の放置によって硬化反応を完結させることができる。この際に、塗 装する基材ゃ塗膜特性に対して悪影響を与えない範囲で更に加熱処理を行うことは 任意とされるが、乾燥工程の初期段階力 高温に曝すと、硬化性シリコーン樹脂中の シラン化合物が蒸発してしまったり、硬化に必要な水分が供給されなくなるため好ま しくない。 [0056] The curing conditions of the resin composition are not particularly limited. However, the resin composition is cured by moisture in the air to form a film. It can be dried by allowing it to stand for 30 minutes to 2 hours in an ambient atmosphere (surface tack free state), and the curing reaction can be completed by leaving it for several hours to several days. In this case, it is optional to further heat-treat the substrate to be coated as long as it does not adversely affect the properties of the coating film, but the initial stage force of the drying process is exposed to high temperatures. It is preferable because the silane compound in the solvent evaporates and the moisture necessary for curing is not supplied. It ’s not good.
[0057] 本発明による樹脂組成物は、化学的結合によって異種金属をブリッジ状に結合さ せ、金属間内部電子の共有により経時的により強固になり、割れ、剥離することなく半 永久的に結合する皮膜を形成することができ、こうした皮膜を基材表面に被覆したも のでは防鲭性および/または導電性に優れた樹脂組成物被覆部材となる。  [0057] The resin composition according to the present invention bonds dissimilar metals in a bridge shape by chemical bonding, becomes stronger with time due to sharing of internal electrons between metals, and bonds semi-permanently without cracking or peeling. A film coated with such a film on the surface of the base material is a resin composition-coated member having excellent antifungal properties and / or conductivity.
実施例  Example
[0058] 以下、実施例によって本発明の作用効果をより具体的に示すが、本発明は下記実 施例によって限定されるものではなく、前 ·後記の趣旨に適合し得る範囲で適宜設計 変更することも可能であり、これらはいずれも本発明の技術的範囲に含まれるもので ある。  [0058] Hereinafter, the working effects of the present invention will be described more specifically by way of examples. However, the present invention is not limited by the following examples, and the design may be changed as appropriate within a range that can meet the gist of the preceding and following descriptions. These are all included in the technical scope of the present invention.
[0059] 本発明の樹脂組成物における成分として、下記 (A)〜(H)のものを準備し、これら の成分を用いて、下記実施例:!〜 16、比較例 1〜7の樹脂組成物を調整した。  [0059] As the components in the resin composition of the present invention, the following (A) to (H) were prepared, and using these components, the resin compositions of the following Examples:! To 16 and Comparative Examples 1 to 7 I adjusted things.
[0060] (A) クラッド ^ g 末)  [0060] (A) Clad ^ g end)
(A- 1):クラッド成分比率が、亜鉛/アルミニウム微粉末合計 100質量%に対して、 亜鉛粉末: 88質量%、アルミニウム粉末: 12質量%;大きさ(粒径): 20〜40 / m、厚 さ:!〜 5 x m (純度 98%)  (A-1): Clad component ratio is 100% by mass of zinc / aluminum fine powder, zinc powder: 88% by mass, aluminum powder: 12% by mass; Size (particle size): 20-40 / m , Thickness: ~~ 5 xm (purity 98%)
(A- 2):クラッド成分比率が、亜鉛 Zアルミニウム微粉末合計 100質量%に対して、 亜鉛粉末: 90質量0 /0、アルミニウム粉末: 10質量0 /0;大きさ(粒径): 20〜40 μ m、厚 さ 4〜7 x m (純度 98%) (A- 2): cladding component ratio, with respect to zinc Z aluminum fine powder per 100 wt%, zinc powder: 90 mass 0/0, aluminum powder: 10 mass 0/0; size (particle diameter): 20 -40 μm, thickness 4-7 xm (purity 98%)
(A- 3):クラッド成分比率が、ニッケル Zアルミニウム微粉末合計 100質量%に対し て、ニッケル粉末: 90質量%、アルミニウム粉末: 10質量%;大きさ(粒径): 15〜30 μ m、厚さ 3〜6 μ m (純度 98%)  (A-3): Clad component ratio is 100% by mass of nickel Z aluminum fine powder, nickel powder: 90% by mass, aluminum powder: 10% by mass; Size (particle size): 15-30 μm , Thickness 3-6 μm (purity 98%)
(A-4):クラッド成分比率が、ニッケル Z銅微粉末合計 100質量%に対して、ニッケ ル粉末:98質量%、銅粉末:2質量%;大きさ(粒径): I5〜: 30 a m、厚さ 3〜6 μ m ( 純度 98%) (A-4): Clad component ratio is 100% by mass of nickel Z copper fine powder, nickel powder: 98 % by mass, copper powder: 2 % by mass; size (particle size): I 5 ~: 30 am, thickness 3-6 μm (purity 98%)
(A- 5):クラッド成分比率が、亜鉛/アルミニウム/銅微粉末合計 100質量%に対 して、亜鉛粉末: 90質量%、アルミニウム粉末:9. 5質量%、銅粉末 : 0. 5% ;大きさ( 粒径): 20〜40 μ m、厚さ 4〜7 /i m (純度 98%) (A— 6):クラッド成分比率が、ニッケル/アルミニウム微粉末合計 100質量%に対し て、ニッケル粉末:95質量%、アルミニウム粉末: 5質量%;大きさ(粒径): 15〜30/i m、厚さ 3〜6 μ m (純度 98%) (A-5): Clad component ratio is 100% by mass of zinc / aluminum / copper fine powder, zinc powder: 90% by mass, aluminum powder: 9.5% by mass, copper powder: 0.5% ; Size (particle size): 20-40 μm, thickness 4-7 / im (purity 98%) (A-6): Nickel powder: 95% by mass, aluminum powder: 5% by mass, clad component ratio of 100% by mass of nickel / aluminum fine powder; Size (particle size): 15-30 / i m , thickness 3-6 μm (purity 98%)
(A- 7):クラッド成分比率が、ニッケル Z銅 Zアルミニウム微粉末合計 100質量%に 対して、ニッケル粉末:99.5質量%、銅粉末: 0.4質量%、アルミニウム粉末: 0.1 質量%;大きさ(粒径): 15〜30 xm、厚さ 3〜6 zm (純度 98%)  (A-7): Clad component ratio is nickel Z copper Z aluminum fine powder total 100 mass%, nickel powder: 99.5 mass%, copper powder: 0.4 mass%, aluminum powder: 0.1 mass%; Particle size): 15-30 xm, thickness 3-6 zm (purity 98%)
成ん ィ 牛シリコーン ^旨)  Nyui cow silicone ^)
(B-1):メチルトリメトキシシランの部分加水分解縮合物(平均重合度:5、粘度 5mP a's) (B-1): Partially hydrolyzed condensate of methyltrimethoxysilane (average degree of polymerization: 5, viscosity 5 mPas)
(B-2):メチルトリメトキシシランの部分加水分解縮合物(平均重合度:25、粘度:15 mPa-sj の部分共加水分解縮合物(平均重合度: 10、粘度: 35mPa*s) 分共加水分解縮合物(平均重合度: 20、粘度: lOOmPa · s)  (B-2): Partial hydrolysis hydrolysis condensate of methyltrimethoxysilane (average polymerization degree: 25, viscosity: 15 mPa-sj Partial cohydrolysis condensation product (average polymerization degree: 10, viscosity: 35 mPa * s) Cohydrolyzed condensate (average polymerization degree: 20, viscosity: lOOmPa · s)
(C)成分 (金属アルコキシドまたは水酸化リチウム) Component (C) (metal alkoxide or lithium hydroxide)
(C-1):アルミニウムトリイソプロポキシド (C-1): Aluminum triisopropoxide
(C-2):水酸化リチウム  (C-2): Lithium hydroxide
(D)その他の成分 (硬化触媒、溶剤)  (D) Other components (curing catalyst, solvent)
(D-1):ジ—n—ブトキシ'ェチルァセトアセテートアルミニウム  (D-1): Di-n-butoxyethyl acetate acetate aluminum
(D-2):テトライソプロポキシチタン (D-2): Tetraisopropoxy titanium
(D-3):無水エタノール (D-3): Absolute ethanol
(E) (纏 こ 成 れたュッケル微  (E) (Summary
(E—1)大きさ(粒径): 10〜30 xm、厚さ:!〜 5 μ m (純度 98%)  (E-1) Size (particle size): 10 to 30 xm, thickness:! To 5 μm (purity 98%)
(F)成, (粒 に开成 れたュッゲル微 未)  (F), (Uggel fine not developed into grains)
(F— 1)大きさ(粒径): 7〜: 10 xm (純度 98%) (F-1) Size (particle size): 7 ~: 10 xm (Purity 98%)
(G)成ん、 に 成,された ^敷 ま) (G— 1)大きさ(粒径):4〜8μΐη (G) Made, made, made ^^) (G-1) Size (particle size): 4-8μΐη
(Η) ^は立 に开 5¾された ま)  (Η) ^ is open 5¾)
(Η— 1)大きさ(粒径): 0· 5〜2μΐη (純度 98%)  (Η— 1) Size (particle size): 0.5 · 2μΐη (Purity 98%)
[0061] [実施例 1] [0061] [Example 1]
(1)室温、窒素雰囲気下において、(Β)成分の硬化性シリコーン樹脂として、 (B-1 ) :62質量部、(Β— 2) : 18質量部、(Β— 5) :2質量部を攪拌混合し、更に硬化触媒 として(D_l) :8質量部を添加して撹拌混合した。この(B)、(D)成分の混合物に、 更に(C)成分の金属アルコキシドとして(C— 1) : 10質量部を添加して、再度攪拌混 合した。  (1) At room temperature and in a nitrogen atmosphere, (B-1): 62 parts by mass, (Β-2): 18 parts by mass, (Β-5): 2 parts by mass as the curable silicone resin of component (Β) And (D_l): 8 parts by mass as a curing catalyst were added and mixed with stirring. To this mixture of components (B) and (D), 10 parts by mass of (C-1): metal alkoxide of component (C) was further added, and the mixture was stirred and mixed again.
(2) (A)成分として (A_l) : 100質量部を準備した。  (2) As component (A), (A_l): 100 parts by mass were prepared.
(3)工程(1)で作成した (B)、(C)、(D)成分の混合物: 45質量部と、工程 (2)で準 備した (A)成分の混合粉末 :55質量部を配合し、分散攪拌機を用いて水冷により 28 °C以下を保ちながら、窒素雰囲気下で十分に攪拌混合した。  (3) Mixture of component (B), (C), (D) prepared in step (1): 45 parts by mass and mixed powder of component (A) prepared in step (2): 55 parts by mass The mixture was mixed and sufficiently stirred and mixed under a nitrogen atmosphere while maintaining at 28 ° C. or lower by water cooling using a dispersion stirrer.
(4)粘度調整のため、工程(3)で作成した (A)〜(D)成分の混合物: 100質量部に 対して、更に溶剤として (D— 3) :4質量部を添加して攪拌混合を行い、樹脂組成物 を得た。この樹脂組成物の粘度は 60mPa'sであった。  (4) In order to adjust the viscosity, the mixture of components (A) to (D) prepared in step (3): 100 parts by mass and (D-3): 4 parts by mass as a solvent and stirring Mixing was performed to obtain a resin composition. The viscosity of this resin composition was 60 mPa's.
[0062] [実施例 2]  [Example 2]
(1)実施例 1における各成分の使用量を、工程(2)において、(A)成分 (A— 2) : 10 0質量部を準備した以外は同様の操作を行い、樹脂組成物を得た。この樹脂組成物 の粘度は 50mPa'sであった。  (1) The amount of each component used in Example 1 was the same as in step (2) except that (A) component (A-2): 100 parts by mass was prepared, and a resin composition was obtained. It was. The viscosity of this resin composition was 50 mPa's.
[0063] [実施例 3]  [0063] [Example 3]
(1)実施例 1における各成分の使用量を、工程(1)において、(B)成分の硬化性シリ コーン樹脂として、 (B— 2) : 18質量部、 (B— 3) :68質量部、(B— 5) :2質量部を撹 拌混合し、更に硬化触媒として (D— 2) :2質量部を添加混合した以外は同様の調整 を行い、樹脂組成物を得た。この樹脂組成物の粘度は 90mPa'sであった。  (1) The amount of each component used in Example 1 was determined as (B-2): 18 parts by mass, (B-3): 68 parts by mass as the curable silicone resin of component (B) in step (1). Part (B-5): 2 parts by mass was stirred and mixed, and (D-2): 2 parts by mass was added and mixed as a curing catalyst to obtain a resin composition. The viscosity of this resin composition was 90 mPa's.
[0064] [実施例 4]  [0064] [Example 4]
実施例 1における各成分の使用量を、工程(1)において、(B)成分の硬化性シリコ ーン樹脂として、 (B— 1) :40質量部、 (B— 4) :30質量部、 (B— 5) : 12質量部を撹 拌混合し、更に硬化触媒として (D— 1) : 8質量部を添加混合した以外は同様の調整 を行い、樹脂組成物を得た。この樹脂組成物の粘度は 90mPa' sであった。 In step (1), the amount of each component used in Example 1 was determined as (B-1): 40 parts by mass, (B-4): 30 parts by mass as the curable silicone resin of component (B). (B-5): Stir 12 parts by mass The mixture was stirred and the same adjustment was performed except that (D-1): 8 parts by mass was added and mixed as a curing catalyst to obtain a resin composition. The viscosity of this resin composition was 90 mPa's.
[0065] [実施例 5] [Example 5]
実施例 1における各成分の使用量を、工程(2)において、(A)成分として、 (A- 3) In step (2), the amount of each component used in Example 1 is (A) as component (A-3)
: 100質量部を準備した以外は同様の調整を行い、樹脂組成物を得た。この樹脂組 成物の粘度は 90mPa' sであった。 : The same adjustment was performed except that 100 parts by mass was prepared, and a resin composition was obtained. The viscosity of this resin composition was 90 mPa's.
[0066] [実施例 6] [Example 6]
(1)室温、窒素雰囲気下において、(B)成分の硬化性シリコーン樹脂として、 (B- 1 ) : 59質量部、(B— 2) : 18質量部、(B— 5) : 2質量部を攪拌混合し、更に硬化触媒 として(D_ l) : 8質量部を添加して撹拌混合した。この(B)、(D)成分の混合物に、 更に(C)成分の金属アルコキシドとして(C— 1) : 12質量部を添加して、再度攪拌混 合した。  (1) Under room temperature and nitrogen atmosphere, (B-1): 59 parts by mass, (B-2): 18 parts by mass, (B-5): 2 parts by mass as the curable silicone resin of component (B) And (D_l): 8 parts by mass as a curing catalyst were added and mixed by stirring. To this mixture of components (B) and (D), (C-1): 12 parts by mass was added as a metal alkoxide of component (C), and the mixture was stirred and mixed again.
(2) (A)成分として (A— 4) : 94· 5質量部を準備した。  (2) As component (A), (A-4): 94.5 mass parts were prepared.
(3) (F)成分として (F— 1) : 5質量部と、(G)成分として (G— 1) : 0. 5質量部を準備し た。  (3) (F-1): 5 parts by mass as component (F) and (G-1): 0.5 parts by mass as component (G) were prepared.
(4)工程(1)で作成した (B)、(C)、(D)成分の混合物: 40質量部と、工程 (2)、 (3) で作製した (A)、(F)、(G)成分 : 60質量部を配合し、分散攪拌機を用いて水冷によ り 28°C以下を保ちながら、窒素雰囲気下で十分に攪拌混合した。  (4) Mixture of components (B), (C), (D) prepared in step (1): 40 parts by mass, and (A), (F), () prepared in steps (2), (3) Component G): 60 parts by mass was blended and sufficiently stirred and mixed in a nitrogen atmosphere while maintaining at 28 ° C. or less by water cooling using a dispersion stirrer.
(5)粘度調整のため、工程 (4)で作成した (A)〜(D)、(F)、(G)成分の混合物: 10 0質量部に対して、更に溶剤として (D— 3) : 5質量部を添加して攪拌混合を行い、榭 脂組成物を得た。この樹脂組成物の粘度は 60mPa' sであった。  (5) Mixture of components (A) to (D), (F), (G) prepared in step (4) for viscosity adjustment: 100 parts by mass as a solvent (D-3) : 5 parts by mass was added and mixed with stirring to obtain a resin composition. The viscosity of this resin composition was 60 mPa's.
[0067] [実施例 7]  [0067] [Example 7]
(1)実施例 6における各成分の使用量を、工程 (4)において、(B)、(C)、(D)成分 の混合物: 45質量部と、工程(2)、(3)で作製した (A)、(F)、(G)成分:55質量部を 配合し、分散攪拌機を用いて水冷により 28°C以下を保ちながら、窒素雰囲気下で十 分に攪拌混合した以外は同様の操作を行い、樹脂組成物を得た。この樹脂組成物 の粘度は 50mPa' sであった。  (1) The amount of each component used in Example 6 was prepared in steps (4), (B), (C), and (D) in step (4): 45 parts by mass, and in steps (2) and (3) Components (A), (F), (G): 55 parts by weight were mixed, and the mixture was sufficiently stirred and mixed in a nitrogen atmosphere while maintaining at 28 ° C or lower by water cooling using a dispersion stirrer. Operation was performed to obtain a resin composition. The viscosity of this resin composition was 50 mPa's.
[0068] [実施例 8] (1)実施例 6における各成分の使用量を、工程(1)において、(A)成分として (A— 7 ):8.3質量部、(E)成分として、 (E-l):86.2質量部を準備した。工程 (4)で作製 した (B)、 (C)、(D)成分の混合物: 40質量部と、工程 (2)、 (3)で作製した (E)、(F) 、(G)成分 :60質量部を配合し、分散攪拌機を用いて水冷により 28°C以下を保ちな がら、窒素雰囲気下で十分に攪拌混合した。 [Example 8] (1) Prepare the amount of each component used in Example 6 in step (1) as (A) component (A-7): 8.3 parts by mass and (E) component (El): 86.2 parts by mass in step (1) did. Mixture of components (B), (C) and (D) prepared in step (4): 40 parts by mass, and components (E), (F) and (G) prepared in steps (2) and (3) : 60 parts by mass was mixed and sufficiently stirred and mixed in a nitrogen atmosphere while maintaining at 28 ° C or lower by water cooling using a dispersion stirrer.
粘度調整のため、工程 (4)で作成した(B)〜(D)、 (E)〜(G)成分の混合物: 100 質量部に対して、更に溶剤として (D— 3) :5質量部を添加して攪拌混合を行い、樹 脂組成物を得た。この樹脂組成物の粘度は 55mPa'sであった。  In order to adjust the viscosity, the mixture of components (B) to (D) and (E) to (G) prepared in step (4): 100 parts by mass, further as solvent (D-3): 5 parts by mass The mixture was stirred and mixed to obtain a resin composition. The viscosity of this resin composition was 55 mPa's.
[0069] [実施例 9] [0069] [Example 9]
(1)室温、窒素雰囲気下において、(B)成分の硬化性シリコーン樹脂として、 (B-1 ) :71質量部、(B— 4) :18質量部、(B— 5) :2質量部を攪拌混合し、更に硬化触媒 として(D_l) :8質量部を添加して撹拌混合した。この(B)、(D)成分の混合物に、 更に (C)成分の水酸化リチウムとして (C— 2) :1質量部を添加して、再度攪拌混合し た。  (1) Under room temperature and nitrogen atmosphere, (B-1): 71 parts by mass, (B-4): 18 parts by mass, (B-5): 2 parts by mass as the curable silicone resin of component (B) And (D_l): 8 parts by mass as a curing catalyst were added and mixed with stirring. To this mixture of components (B) and (D), (C-2): 1 part by mass as lithium hydroxide of component (C) was further added and stirred and mixed again.
(2) (A)成分として (A—1) :100質量部を準備した。  (2) (A-1): 100 parts by mass were prepared as the component (A).
(3)工程(1)で作成した (B)、(C)、(D)成分の混合物: 45質量部と、工程 (2)で準 備した (A)成分の混合粉末 :55質量部を配合し、分散攪拌機を用いて水冷により 28 °C以下を保ちながら、窒素雰囲気下で十分に攪拌混合した。  (3) Mixture of component (B), (C), (D) prepared in step (1): 45 parts by mass and mixed powder of component (A) prepared in step (2): 55 parts by mass The mixture was mixed and sufficiently stirred and mixed under a nitrogen atmosphere while maintaining at 28 ° C. or lower by water cooling using a dispersion stirrer.
(4)粘度調整のため、工程(3)で作成した (A)〜(D)成分の混合物: 100質量部に 対して、更に溶剤として (D— 3) :4質量部を添加して攪拌混合を行い、樹脂組成物 を得た。この樹脂組成物の粘度は 50mPa'sであった。  (4) In order to adjust the viscosity, the mixture of components (A) to (D) prepared in step (3): 100 parts by mass and (D-3): 4 parts by mass as a solvent and stirring Mixing was performed to obtain a resin composition. The viscosity of this resin composition was 50 mPa's.
[0070] [実施例 10]  [0070] [Example 10]
(1)実施例 9における各成分の使用量を、工程(2)において、(A)成分 (A_5) :10 0質量部を準備した以外は同様の操作を行い、樹脂組成物を得た。この樹脂組成物 の粘度は 50mPa'sであった。  (1) A resin composition was obtained in the same manner as in Example 9 except that the amount of each component used in Example 9 was prepared in step (2) except that (A) component (A_5): 100 parts by mass was prepared. The viscosity of this resin composition was 50 mPa's.
[0071] [実施例 11]  [0071] [Example 11]
(1)実施例 9における各成分の使用量を、工程(1)において、(B)成分の硬化性シリ コーン樹脂として、 (B— 4) :18質量部、 (B— 3) :78質量部、 (B— 5) :2質量部を撹 拌混合し、更に硬化触媒として (D— 2) : 2質量部を添加混合した以外は同様の調整 を行い、樹脂組成物を得た。この樹脂組成物の粘度は 70mPa' sであった。 (1) The amount of each component used in Example 9 was determined in the step (1) as (B) component curable silicone resin (B-4): 18 parts by mass, (B-3): 78 masses. Part, (B-5): 2 parts by mass The mixture was stirred and the same adjustment was performed except that (D-2): 2 parts by mass was added and mixed as a curing catalyst to obtain a resin composition. The viscosity of this resin composition was 70 mPa's.
[0072] [実施例 12]  [Example 12]
実施例 9における各成分の使用量を、工程(1)において、(B)成分の硬化性シリコ ーン樹脂として、 (B— 1) : 49質量部、 (B— 4) : 30質量部、 (B— 5): 12質量部を撹 拌混合し、更に硬化触媒として (D— 1) : 8質量部を添加混合した以外は同様の調整 を行い、樹脂組成物を得た。この樹脂組成物の粘度は 90mPa' sであった。  In step (1), the amount of each component used in Example 9 was determined as (B-1): 49 parts by mass, (B-4): 30 parts by mass, as the curable silicone resin of component (B). (B-5): 12 parts by mass was stirred and mixed, and the same adjustment was performed except that (D-1): 8 parts by mass was added and mixed as a curing catalyst to obtain a resin composition. The viscosity of this resin composition was 90 mPa's.
[0073] [実施例 13]  [0073] [Example 13]
実施例 1における各成分の使用量を、工程(2)において、(A)成分として、 (A-6) : 100質量部を準備した以外は同様の調整を行い、樹脂組成物を得た。この樹脂組 成物の粘度は 80mPa' sであった。  The amount of each component used in Example 1 was adjusted in the same manner as in step (2) except that (A-6): 100 parts by mass was prepared as component (A) to obtain a resin composition. The viscosity of this resin composition was 80 mPa's.
[0074] [実施例 14]  [0074] [Example 14]
(1)室温、窒素雰囲気下において、(B)成分の硬化性シリコーン樹脂として、 (B- 1 ) : 71質量部、(B— 4) : 18質量部、(B— 5) : 2質量部を攪拌混合し、更に硬化触媒 として(D— 1) : 8質量部を添加して撹拌混合した。この(B)、(D)成分の混合物に、 更に (C)成分の水酸化リチウムとして (C— 2) : 1質量部を添加して、再度攪拌混合し た。  (1) Under room temperature and nitrogen atmosphere, (B-1): 71 parts by mass, (B-4): 18 parts by mass, (B-5): 2 parts by mass as the curable silicone resin of component (B) And (D-1): 8 parts by mass as a curing catalyst were added and mixed with stirring. To this mixture of components (B) and (D), (C-2): 1 part by mass as lithium hydroxide of component (C) was further added and stirred and mixed again.
(2) (A)成分として (A— 7) : 94· 5質量部を準備した。  (2) As component (A), (A-7): 94.5 mass parts were prepared.
(3) (F)成分として (F— 1) : 5質量部と、(G)成分として (G— 1) : 0. 5質量部を準備し た。  (3) (F-1): 5 parts by mass as component (F) and (G-1): 0.5 parts by mass as component (G) were prepared.
(4)工程(1)で作成した (B)、(C)、(D)成分の混合物: 40質量部と、工程 (2)、 (3) で作製した (A)、(F)、(G)成分 : 60質量部を配合し、分散攪拌機を用いて水冷によ り 28°C以下を保ちながら、窒素雰囲気下で十分に攪拌混合した。  (4) Mixture of components (B), (C), (D) prepared in step (1): 40 parts by mass, and (A), (F), () prepared in steps (2), (3) Component G): 60 parts by mass was blended and sufficiently stirred and mixed in a nitrogen atmosphere while maintaining at 28 ° C. or less by water cooling using a dispersion stirrer.
(5)粘度調整のため、工程 (4)で作成した (A)〜(D)、(F)、(G)成分の混合物: 10 0質量部に対して、更に溶剤として (D— 3) : 5質量部を添加して攪拌混合を行い、樹 脂組成物を得た。この樹脂組成物の粘度は 90mPa' sであった。  (5) Mixture of components (A) to (D), (F), (G) prepared in step (4) for viscosity adjustment: 100 parts by mass as a solvent (D-3) : 5 parts by mass was added and mixed with stirring to obtain a resin composition. The viscosity of this resin composition was 90 mPa's.
[0075] [実施例 15]  [0075] [Example 15]
(1)実施例 14における各成分の使用量を、工程 (4)において、(B)、(C)、(D)成分 の混合物: 45質量部と、工程(2)、(3)で作製した (A)、(F)、(G)成分:55質量部を 配合し、分散攪拌機を用いて水冷により 28°C以下を保ちながら、窒素雰囲気下で十 分に攪拌混合した以外は同様の操作を行い、樹脂組成物を得た。この樹脂組成物 の粘度は 60mPa' sであった。 (1) The amount of each component used in Example 14 is the same as that in step (4) in (B), (C), and (D) components. Mixture of 45 parts by mass and (A), (F), and (G) components prepared in steps (2) and (3): 55 parts by mass, and water cooling using a dispersion stirrer to 28 ° C or less While maintaining the above, the same operation was performed except that the mixture was sufficiently stirred and mixed under a nitrogen atmosphere to obtain a resin composition. The viscosity of this resin composition was 60 mPa's.
[0076] [実施例 16]  [Example 16]
(1)実施例 14における各成分の使用量を、工程(2)において、(A)成分として、 (A - 7) : 89. 5質量部と (E)成分として (E—1) : 5質量部を準備した。工程 (4)で作製し た (B)、(C)、 (D)成分の混合物: 40質量部と、工程(2)、(3)で作製した (E)、(F)、 (G)成分 : 60質量部を配合し、分散攪拌機を用レ、て水冷により 28°C以下を保ちなが ら、窒素雰囲気下で十分に攪拌混合した。  (1) The amount of each component used in Example 14 was determined in step (2) as (A) component (A-7): 89.5 parts by mass and (E) component (E-1): 5 A mass part was prepared. Mixture of components (B), (C) and (D) prepared in step (4): 40 parts by mass, and (E), (F) and (G) prepared in steps (2) and (3) Ingredients: 60 parts by mass were blended, and the mixture was thoroughly stirred and mixed in a nitrogen atmosphere while maintaining a temperature of 28 ° C. or less by water cooling using a dispersion stirrer.
粘度調整のため、工程 (4)で作成した(B)〜(D)、 (E)〜(G)成分の混合物: 100 質量部に対して、更に溶剤として (D— 3) : 5質量部を添加して攪拌混合を行い、樹 脂組成物を得た。この樹脂組成物の粘度は 90mPa' sであった。  Mixture of components (B) to (D) and (E) to (G) prepared in step (4) for viscosity adjustment: 100 parts by mass, and further as solvent (D-3): 5 parts by mass The mixture was stirred and mixed to obtain a resin composition. The viscosity of this resin composition was 90 mPa's.
[0077] [比較例 1]  [0077] [Comparative Example 1]
実施例 1における各成分の使用量を、工程(1)において、(B— 1) : 72質量部、(B 2) : 18質量部、(B— 5) : 2質量部を撹拌混合し、更に硬化触媒として (D 1) : 8 質量部を添加して混合撹拌した。このとき(C)成分は使用せずに、それ以外は同様 の調整を行い、樹脂組成物を得た。この樹脂組成物の粘度は 60mPa' sであった。  In the step (1), the amount of each component used in Example 1 was stirred and mixed in (B-1): 72 parts by mass, (B2): 18 parts by mass, (B-5): 2 parts by mass, Further, 8 parts by mass of (D 1) as a curing catalyst was added and mixed and stirred. At this time, the component (C) was not used, and the same adjustment was carried out except for that to obtain a resin composition. The viscosity of this resin composition was 60 mPa's.
[0078] [比較例 2]  [0078] [Comparative Example 2]
亜鉛めつき鋼板を準備した。この亜鉛めつき鋼板は、実施例で作製した試験片と同 サイズの試験片を浸漬し、塗膜厚を 60 μ mにしたものである。  A galvanized steel sheet was prepared. This zinc-plated steel sheet is obtained by immersing a test piece of the same size as the test piece prepared in the example to have a coating thickness of 60 μm.
[0079] [比較例 3]  [0079] [Comparative Example 3]
有機ジンタリツチペイントを準備した。亜鉛含有量が 98質量%のアクリル樹脂系の 製品を使用した。  Organic Gintari Paint was prepared. An acrylic resin product with a zinc content of 98% by mass was used.
[0080] [比較例 4]  [0080] [Comparative Example 4]
無機ジンタリツチペイントを準備した。亜鉛含有量が 98質量%のアクリルシルケート 樹脂系の製品を使用した。  An inorganic Zintari paint was prepared. An acrylic silicate resin product with a zinc content of 98% by mass was used.
[0081] [比較例 5] (1)室温、窒素雰囲気下において、(B)成分の硬化性シリコーン樹脂として、 (B-1 ) :59質量部、(B— 2) :18質量部、(B— 5) :2質量部を攪拌混合し、更に硬化触媒 として(D— 1) :8質量部を添加して撹拌混合した。この(B)、(D)成分の混合物に、 更に(C)成分の金属アルコキシドとして(C— 1) :12質量部を添加して、再度攪拌混 合した。 [0081] [Comparative Example 5] (1) Under room temperature and nitrogen atmosphere, (B-1): 59 parts by mass, (B-2): 18 parts by mass, (B-5): 2 parts by mass as the curable silicone resin of component (B) And (D-1): 8 parts by mass as a curing catalyst were added and mixed with stirring. To this mixture of components (B) and (D), (C-1): 12 parts by mass as a metal alkoxide of component (C) was further added and mixed again with stirring.
(2) (E)成分として (E— 4) :94.5質量部を準備した。  (2) As component (E), (E-4): 94.5 parts by mass were prepared.
(3) (F)成分として (F— 1):5.5質量部を準備した。  (3) As component (F), (F-1): 5.5 parts by mass were prepared.
(4)工程(1)で作成した (B)、(C)、 (D)成分の混合物: 40質量部と、工程 (2), (3) で準備した (E)、(F)成分 :60質量部を配合し、分散攪拌機を用いて水冷により 28 °C以下を保ちながら、窒素雰囲気下で十分に攪拌混合した。  (4) Mixture of components (B), (C), (D) prepared in step (1): 40 parts by mass and components (E), (F) prepared in steps (2), (3): 60 parts by mass was blended, and the mixture was sufficiently stirred and mixed in a nitrogen atmosphere while maintaining a temperature of 28 ° C. or lower by water cooling using a dispersion stirrer.
(5)粘度調整のため、工程(3)で作成した (B)〜(D)、(E)、(F)成分の混合物: 100 質量部に対して、更に溶剤として (D— 3) :5質量部を添加して攪拌混合を行い、樹 脂組成物を得た。この樹脂組成物の粘度は 60mPa'sであった。  (5) Mixture of components (B) to (D), (E), and (F) prepared in step (3) for viscosity adjustment: 100 parts by mass as a solvent (D-3): 5 parts by mass was added and mixed with stirring to obtain a resin composition. The viscosity of this resin composition was 60 mPa's.
[0082] [比較例 6]  [0082] [Comparative Example 6]
比較例 1における各成分の使用量を、工程(2)において、(E— 1) :94質量部、 (F In Step (2), the amount of each component used in Comparative Example 1 is (E-1): 94 parts by mass, (F
—1) :5質量部、(H—1) :1質量部を準備した以外は同様の調整を行い、樹脂組成 物を得た。この樹脂組成物の粘度は 55mPa'sであった。 —1): 5 parts by mass, (H-1): Except that 1 part by mass was prepared, the same adjustment was performed to obtain a resin composition. The viscosity of this resin composition was 55 mPa's.
[0083] [比較例 7] [0083] [Comparative Example 7]
(1)室温、窒素雰囲気下において、(B)成分の硬化性シリコーン樹脂として、 (B-1 ) :71質量部、(B— 2) :18質量部、(B— 5) :2質量部を攪拌混合し、更に硬化触媒 として(D— 1) :8質量部を添加して撹拌混合した。この(B)、(D)成分の混合物に、 更に(C)成分の水酸化リチウムとして (C— 2) :1質量部を添加して、再度攪拌混合し た。  (1) At room temperature under a nitrogen atmosphere, (B-1): 71 parts by mass, (B-2): 18 parts by mass, (B-5): 2 parts by mass as the curable silicone resin of component (B) And (D-1): 8 parts by mass as a curing catalyst were added and mixed with stirring. To this mixture of components (B) and (D), (C-2): 1 part by mass as lithium hydroxide of component (C) was further added and stirred and mixed again.
(2) (E)成分として (E— 4) :94.5質量部を準備した。  (2) As component (E), (E-4): 94.5 parts by mass were prepared.
(3) (F)成分として (F— 1):5.5質量部を準備した。  (3) As component (F), (F-1): 5.5 parts by mass were prepared.
(4)工程(1)で作成した (B)、(C)、 (D)成分の混合物: 40質量部と、工程 (2), (3) で準備した (E)、(F)成分 :60質量部を配合し、分散攪拌機を用いて水冷により 28 °C以下を保ちながら、窒素雰囲気下で十分に攪拌混合した。 (5)粘度調整のため、工程(3)で作成した (B)〜(D)、(E)、(F)成分の混合物: 100 質量部に対して、更に溶剤として (D— 3) : 5質量部を添加して攪拌混合を行い、榭 脂組成物を得た。この樹脂組成物の粘度は 60mPa' sであった。 (4) Mixture of components (B), (C), (D) prepared in step (1): 40 parts by mass and components (E), (F) prepared in steps (2), (3): 60 parts by mass was blended, and the mixture was sufficiently stirred and mixed in a nitrogen atmosphere while maintaining a temperature of 28 ° C. or lower by water cooling using a dispersion stirrer. (5) Mixture of components (B) to (D), (E), and (F) prepared in step (3) for viscosity adjustment: 100 parts by mass as a solvent (D-3): 5 parts by mass was added and mixed with stirring to obtain a resin composition. The viscosity of this resin composition was 60 mPa's.
[0084] 上記各樹脂組成物にっレ、て、下記の方法によって防鲭性および電磁波シールド性 を評価した。尚、防繪性試験は、実施例:!〜 5、 9〜: 13、比較例:!〜 4について行い、 電磁波シールド性は、実施例 6〜8、 14〜: 16、比較例 5〜7について行った。  [0084] Each of the above resin compositions was evaluated for antifungal properties and electromagnetic wave shielding properties by the following methods. In addition, an antifungal test is performed about Example:!-5, 9-: 13, comparative example:!-4, and electromagnetic shielding property is Example 6-8, 14-: 16, comparative example 5-7. Went about.
[0085] [防鲭性の試験片作成および防鲭性試験方法]  [0085] [Preparation of anti-mold test piece and anti-mold test method]
鋼板(材質 SPCC、 1. Omm X 70mm X I 50mm)をサンドブラスト(細目:平均表 面粗度 Rzl 5 x m)で表面処理した後、 2_プロパノールにて脱脂、洗浄し、ェアース プレイガンにて乾燥時 60 μ mの塗膜厚になるように各樹脂組成を塗布し、温度: 25 °C、湿度: 55%の雰囲気下で 7日間放置して硬化皮膜とし、試験片とした。  Steel plate (Material: SPCC, 1. Omm X 70mm XI 50mm) is surface-treated with sandblast (fine: average surface roughness Rzl 5 xm), degreased and washed with 2_propanol, and dried with air play gun Each resin composition was applied so as to have a coating thickness of 60 μm, and allowed to stand for 7 days in an atmosphere at a temperature of 25 ° C. and a humidity of 55% to obtain a cured film, which was used as a test piece.
[0086] 上記各試験片につレ、て亜鉛めつき試験の一種で促進耐久試験のキャス試験 CFIS  [0086] A cast test for accelerated durability test, which is a kind of galvanizing test for each of the above test pieces. CFIS
H8520)に準拠して防鲭性試験を行い (試験温度: 50 ± 2°C、 360時間)、鯖の発 生の有無を目視にて観察することによって、防鲭性を評価した。  The antifungal property was evaluated by observing the presence or absence of wrinkles visually by conducting an antifungal test in accordance with H8520) (test temperature: 50 ± 2 ° C, 360 hours).
[0087] [電磁波シールド性の測定]  [0087] [Measurement of electromagnetic shielding properties]
電磁波シールド性については、アドバンテスト(近傍電磁界)によって測定した。こ のとき、測定試験片は、合板(5mm X 200mm X 200mm)の表面の埃、汚れを取り 除き、エアースプレーガンにて乾燥時 80 μ mの塗膜厚になるように樹脂組成物を塗 布し、温度: 25°C、湿度: 55%の雰囲気下で 7日間放置して硬化皮膜とし、試験片と した。  The electromagnetic shielding properties were measured by Advantest (near electromagnetic field). At this time, remove the dust and dirt from the surface of the plywood (5mm x 200mm x 200mm) and apply the resin composition so that the coating thickness is 80 μm when dried with an air spray gun. The sample was left to stand for 7 days in an atmosphere of temperature: 25 ° C and humidity: 55% to form a cured film, which was used as a test piece.
[0088] 各樹脂組成物における各成分の配合量 (質量%表示)、電気抵抗値、 25°Cにおけ る粘度を下記表 1および表 2に示す。また各樹脂組成物における防鲭性試験結果を 、樹脂組成物の硬化性と共に下記表 3および表 4に示す。また各樹脂組成物におけ る電磁波シールド性については、表 5に示す。電磁波シールド性を測定したもののう ち、電気抵抗性が低レ、実施例 8の樹脂組成物を用いたときの電磁波シールド性を図 1 (電界)および図 2 (磁界)に示す。  [0088] The amount of each component in each resin composition (expressed in mass%), the electrical resistance value, and the viscosity at 25 ° C are shown in Tables 1 and 2 below. In addition, the results of the antifungal test for each resin composition are shown in Table 3 and Table 4 below together with the curability of the resin composition. Table 5 shows the electromagnetic shielding properties of each resin composition. Of the measured electromagnetic shielding properties, the electrical resistance is low, and the electromagnetic shielding properties when using the resin composition of Example 8 are shown in Fig. 1 (electric field) and Fig. 2 (magnetic field).
[0089] [表 1]
Figure imgf000025_0001
[0089] [Table 1]
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0001
25°C硬化性 膜厚さ( m) 果 25 ° C curable film thickness (m)
360時間目:数箇所に班点状360th hour: Group dots in several places
1 o 60 1 o 60
の白鏑と赤銪を認める。  Recognize white and red foxes.
360時間目:数箇所に班点状 360th hour: Group dots in several places
2 o 60 2 o 60
の白銪と赤餚を認める。  Recognize white and red foxes.
間目:数箇所に班点状 実施例 3 o 360時  Intermittent: Group dots in several places Example 3 o 360 o'clock
60  60
の白銪と赤銪を認める。  Recognize white and red foxes.
360時間目:数箇所に班点状 360th hour: Group dots in several places
4 〇 60 4 〇 60
の白銪と赤銪を認める。  Recognize white and red foxes.
360時間目:全面に赤鏑の発 360th hour: Red sharks appear on the entire surface
5 o 60 5 o 60
生を |£める。  Make a raw | £.
25°C硬化性 膜厚さ(〃m) 試験結果 25 ° C Curability Film thickness (〃m) Test result
360時間目:数箇所【こ班点状 g o 60 360 hours: several places
の白餚と赤銪を認める。  Recognize white and red foxes.
1 0 360時間目:数箇所に班点状 1 0 360 hours: Several dots
o 60  o 60
の白銪と赤銪を認める。  Recognize white and red foxes.
360  360
1 1 時間目:数箇所に班点状 実施例 0 60  1 1st hour: Group dots in several places Example 0 60
の白銪と赤銪を認める。  Recognize white and red foxes.
360時間目:数箇所に班点状 360th hour: Group dots in several places
1 2 o 60 1 2 o 60
の白銪と赤銪を認める。  Recognize white and red foxes.
360時間目:全面に赤鑌の発 360th hour: Red sharks appear on the entire surface
1 3 o 60 1 3 o 60
生を める。  Life.
144時間目:ほぼ全面に白餚- 144th hour: Hakuho on almost the whole surface
1 o 60 数箇所に斑点状の孔鑌の発生 を認める。 1 o 60 Spotted pits are observed in several places.
目:ほぼ全面に白銪ぉ Eye: almost white
2 ― 72時間 2-72 hours
60  60
よび赤銪の発生を認める。 比較例  And the occurrence of red coral. Comparative example
48時間目:ほぼ全面に赤銪の 48th hour: Almost all of red coral
3 o 60 3 o 60
発生を認める。  Acknowledge the occurrence.
48時間目:ほぼ全面に赤銪の 48th hour: Almost all of red coral
4 0 60 4 0 60
発生を認める。 [0093] [表 5] Acknowledge the occurrence. [0093] [Table 5]
Figure imgf000028_0001
Figure imgf000028_0001
[0094] これらの結果から次のように考察できる。まず、本発明で規定する要件を満足する 実施例:!〜 5、 9〜: 13のものでは、優れた防鲭性を発揮していることが分かる。また実 施例 6〜8、 14〜: 16のものでは良好な電磁波シールド性を発揮していることが分かる 。また図 1、 2の結果は、電気抵抗性が低い実施例 8のもので 0Hz〜lGHzの周波数 帯域での範囲で測定したものであるが、高周波数帯域になるに従ってシールド効果 が高くなつており、電界においては _60dB以上(マーカー 500MHzの周波数帯域) となっていることが分かる。 [0094] From these results, it can be considered as follows. First, the examples satisfying the requirements specified in the present invention:! To 5 and 9 to 13 show that excellent antifungal properties are exhibited. It can also be seen that Examples 6 to 8 and 14 to 16 exhibit good electromagnetic shielding properties. The results in Figs. 1 and 2 were measured in the frequency band of 0 Hz to lGHz for Example 8 with low electrical resistance, but the shielding effect became higher as the frequency band became higher. It can be seen that the electric field is _60dB or more (frequency band of marker 500MHz).
産業上の利用可能性  Industrial applicability
[0095] 本発明では、鱗箔状微粉末に形成された、(a)鱗箔状微粉末に形成された Znおよ び/または A1と、 (b)鱗箔状微粉末に形成された Cuおよび/または Niの、少なくとも いずれ力を含んでなる異種金属のクラッド状鱗箔微粉末を、樹脂に配合することによ つて、簡便に塗布することができ、少量の金属粉の配合で導電性を有し、および/ま たは亜鉛めつきと同等以上の優れた防鲭(防食)性を有し、しかも電磁波を遮断する 優れたシールド特性をも発揮する樹脂組成物が実現できた。 [0095] In the present invention, (a) Zn and / or A1 formed on a scale-foil fine powder, and (b) formed on a scale-foil fine powder. Cu and / or Ni, at least The clad scale fine powder of dissimilar metal, which contains any force, can be easily applied by blending with the resin, and it has conductivity and / or a small amount of metal powder. In addition, a resin composition that has excellent anti-corrosion (corrosion-prevention) properties equivalent to or better than zinc plating and that also exhibits excellent shielding properties to block electromagnetic waves has been realized.

Claims

請求の範囲 The scope of the claims
[1] (a)鱗箔状微粉末に形成された Znおよび/または A1と、 (b)鱗箔状微粉末に形成 された Cuおよび/または Niの、少なくともいずれかを含んでなる異種金属のクラッド 状鱗箔微粉末を、樹脂に配合したものであることを特徴とする防鲭性および/または 導電性に優れた樹脂組成物。  [1] A dissimilar metal comprising at least one of (a) Zn and / or A1 formed on a scale-like fine powder and (b) Cu and / or Ni formed on a scale-like fine powder A resin composition having excellent antifungal properties and / or electrical conductivity, wherein the clad scale fine powder is blended with a resin.
[2] 更に、 Mn, Mg, Mo, Li, Cおよび Agよりなる群力 選ばれる 1種以上の元素の粉 末若しくは合金粉末を配合したものである請求項 1に記載の樹脂組成物。  [2] The resin composition according to claim 1, further comprising a powder or alloy powder of one or more elements selected from the group force consisting of Mn, Mg, Mo, Li, C and Ag.
[3] 前記樹脂は、一般式、 R1 Si (OR2) (式中、 R1は、炭素数 1〜: 10の炭化水素基 [3] The resin is represented by the general formula: R 1 Si (OR 2 ) (wherein R 1 is a hydrocarbon group having 1 to 10 carbon atoms.
N 4-N  N 4-N
であり、 R2は炭素数 1〜3のアルキル基、炭素数 2〜3のァシル基若しくは炭素数 3〜 5のアルコキシァシル基であり、 Nは 0〜2の整数である)で示されるシラン化合物、ま たはその部分加水分解縮合物からなる硬化性シリコーン樹脂である請求項 1または 2 に記載の樹脂組成物。 R 2 is an alkyl group having 1 to 3 carbon atoms, an acyl group having 2 to 3 carbon atoms or an alkoxyacyl group having 3 to 5 carbon atoms, and N is an integer of 0 to 2). 3. The resin composition according to claim 1, wherein the resin composition is a curable silicone resin comprising a silane compound or a partially hydrolyzed condensate thereof.
[4] 更に、金属アルコキシド(Siアルコキシドを除く)を含有するものである請求項 1〜3 のレ、ずれかに記載の樹脂組成物。  [4] The resin composition according to any one of claims 1 to 3, further comprising a metal alkoxide (excluding Si alkoxide).
[5] 更に、水酸化リチウムを含有するものである請求項 1〜3のいずれかに記載の樹脂 組成物。 [5] The resin composition according to any one of claims 1 to 3, further comprising lithium hydroxide.
[6] 請求項 1〜5のいずれ力 4項に記載の樹脂組成物を基材表面に被覆したものであ る防鲭性および Zまたは導電性に優れた樹脂組成物被覆部材。  [6] A resin composition-coated member excellent in antifungal properties, Z or conductivity, which is obtained by coating the surface of the substrate with the resin composition according to any one of claims 1 to 5.
PCT/JP2005/023612 2005-01-06 2005-12-22 Resin composition excelling in anticorrosive and/or conductive performance and member coated with resin composition WO2006073067A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-001924 2005-01-06
JP2005001924 2005-01-06
JP2005239088A JP2006213909A (en) 2005-01-06 2005-08-19 Resin composition excellent in anticorrosion property and/or conductivity and member coated with resin composition
JP2005-239088 2005-08-19

Publications (1)

Publication Number Publication Date
WO2006073067A1 true WO2006073067A1 (en) 2006-07-13

Family

ID=36647549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023612 WO2006073067A1 (en) 2005-01-06 2005-12-22 Resin composition excelling in anticorrosive and/or conductive performance and member coated with resin composition

Country Status (2)

Country Link
JP (1) JP2006213909A (en)
WO (1) WO2006073067A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092366A1 (en) * 2010-01-29 2011-08-04 Hilatura Científica Atais, S.L. Basic coating providing protection against electromagnetic fields
JP2016160446A (en) * 2015-02-27 2016-09-05 日立造船株式会社 Thermal spraying material and manufacturing method therefor, thermal spraying method and thermal spraying product
CN108475552A (en) * 2015-12-29 2018-08-31 3M创新有限公司 Compound for high-frequency electromagnetic interference (EMI) application
CN113789521A (en) * 2021-09-23 2021-12-14 安徽天元创涂新材料科技有限公司 Spray rust removal liquid and spray rust removal method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087499B2 (en) * 2011-10-18 2017-03-01 信越化学工業株式会社 Thermally conductive silicone composition
WO2014014063A1 (en) * 2012-07-20 2014-01-23 中国塗料株式会社 Primary rust preventive coating composition and use thereof
JP5605598B1 (en) * 2013-03-19 2014-10-15 株式会社シールドテクス Rust preventive composition
JP2016008755A (en) * 2014-06-24 2016-01-18 株式会社東芝 Heat exchanger and corrosion proof method
WO2019087286A1 (en) * 2017-10-31 2019-05-09 日立化成株式会社 Barrier material formation composition, barrier material, production method for barrier material, product, and production method for product
US20230170155A1 (en) * 2020-05-01 2023-06-01 Shoei Chemical Inc. Method for manufacturing electronic component
KR20230006863A (en) 2020-05-01 2023-01-11 쇼에이 가가쿠 가부시키가이샤 Conductive resin composition and manufacturing method of electronic parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141732A (en) * 1986-12-04 1988-06-14 住友特殊金属株式会社 Light-weight multilayer clad board having excellent corrosion resistance and manufacture thereof
JPH05163402A (en) * 1991-12-12 1993-06-29 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JP2004168986A (en) * 2002-11-22 2004-06-17 Ariyasu Kurimoto Electromagnetic wave-shielding coating

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201047A (en) * 1987-02-14 1988-08-19 住友セメント株式会社 Minute material with characterized coating layer
JPH0528829A (en) * 1991-07-12 1993-02-05 Tokyo Cosmos Electric Co Ltd Conductive coating and conductive film formation thereof
JPH10279885A (en) * 1997-04-08 1998-10-20 Nitsupan Kenkyusho:Kk Functional coating composition
JP2000303021A (en) * 1999-04-16 2000-10-31 Yokohama Rubber Co Ltd:The Resin composition
JP2004303628A (en) * 2003-03-31 2004-10-28 Sumitomo Osaka Cement Co Ltd Metal-clad metallic particle, its manufacturing method, transparent conductive film forming paint, conductive binding material, and transparent conductive film and display using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141732A (en) * 1986-12-04 1988-06-14 住友特殊金属株式会社 Light-weight multilayer clad board having excellent corrosion resistance and manufacture thereof
JPH05163402A (en) * 1991-12-12 1993-06-29 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JP2004168986A (en) * 2002-11-22 2004-06-17 Ariyasu Kurimoto Electromagnetic wave-shielding coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092366A1 (en) * 2010-01-29 2011-08-04 Hilatura Científica Atais, S.L. Basic coating providing protection against electromagnetic fields
JP2016160446A (en) * 2015-02-27 2016-09-05 日立造船株式会社 Thermal spraying material and manufacturing method therefor, thermal spraying method and thermal spraying product
CN108475552A (en) * 2015-12-29 2018-08-31 3M创新有限公司 Compound for high-frequency electromagnetic interference (EMI) application
CN108475552B (en) * 2015-12-29 2022-07-12 3M创新有限公司 Composites for high frequency electromagnetic interference (EMI) applications
CN113789521A (en) * 2021-09-23 2021-12-14 安徽天元创涂新材料科技有限公司 Spray rust removal liquid and spray rust removal method

Also Published As

Publication number Publication date
JP2006213909A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
WO2006073067A1 (en) Resin composition excelling in anticorrosive and/or conductive performance and member coated with resin composition
JP4433334B2 (en) Member with anti-rust coating
JP6502905B2 (en) Corrosion prevention coating
KR0156289B1 (en) Curable composition thermal latent acid catalyst, method of coating, coated article, method of molding and molded article
CA2939966C (en) Anticorrosive coating composition
JP5159833B2 (en) Rust preventive
CN111961412B (en) Polysilazane modified epoxy single-component anticorrosive coating slurry, coating and preparation method
JP5170801B2 (en) Anticorrosion coating method for metal substrates
JP5680350B2 (en) Anti-corrosion paint, article, nut and connector
JP2004300509A (en) Sealing treatment method for thermal spray coating
JP4131244B2 (en) Rust preventives and painted articles
KR101841596B1 (en) Ceramic coatings comprising hybrid ceramic resin and fine ceramic powder and process for anticorrosive coating of steel construction using the same
KR101378096B1 (en) pre-construction Anti-corrosive Primer Paint and forming the coating layer using the same
JP5605598B1 (en) Rust preventive composition
JP2022509926A (en) Organic / inorganic composite coating composition and galvanized steel sheet surface-treated using it
JP4573506B2 (en) Rust preventive paint composition
CN112920687B (en) Single-component flake type epoxy zinc-rich anti-corrosive primer and preparation method thereof
WO2009081452A1 (en) Corrosion inhibitor and process for producing the same
WO2006073004A1 (en) Resin composition excellent in rust inhibition and electroconductivity, and member coated with the resin composition
JP2006291149A (en) Antifouling coating and antifouling method of ferrous material
JP5612460B2 (en) Structure
JP2005255847A (en) Inorganic coating composition
CN117304801A (en) Nanometer organosilicon ceramic coating and preparation method thereof
KR101659444B1 (en) Steel plate having primer layer
JP5207439B2 (en) Rust preventive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820362

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5820362

Country of ref document: EP