JP2004168986A - Electromagnetic wave-shielding coating - Google Patents

Electromagnetic wave-shielding coating Download PDF

Info

Publication number
JP2004168986A
JP2004168986A JP2002339783A JP2002339783A JP2004168986A JP 2004168986 A JP2004168986 A JP 2004168986A JP 2002339783 A JP2002339783 A JP 2002339783A JP 2002339783 A JP2002339783 A JP 2002339783A JP 2004168986 A JP2004168986 A JP 2004168986A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
fine powder
silicone resin
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339783A
Other languages
Japanese (ja)
Inventor
Ariyasu Kurimoto
有康 栗本
Kazuo Kobayashi
和夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002339783A priority Critical patent/JP2004168986A/en
Publication of JP2004168986A publication Critical patent/JP2004168986A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave-shielding coating capable of being applied on anywhere, having a wide utilization range and equipped with a sufficient electromagnetic wave-shielding capacity. <P>SOLUTION: This electromagnetic wave-shielding coating is obtained by mixing and kneading a modified silicone resin solution after mixing scale-shaped or amorphous state fine powdery nickel and fine powdery aluminum with it, and as necessary mixing an organic solvent. Further, as the modified silicone resin solution, a silane-based silicone resin, e.g. a mixed solution of an organosilane-based silicone resin with an oligomer type silane-coupling agent is used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
この発明は、電磁波シールド塗料、特に、電磁波をほぼ完全にシールドすることのできる電磁波シールド塗料に関する。
【0002】
【従来の技術】
近年、軽量化や価格の低下により、携帯電話機の使用が盛んになってきている。それにともなって、携帯電話機から生じる電磁波によって、脳腫瘍、ガン、白血病、遺伝子障害の発生などの人体への悪影響や、医療機器の誤動作や停止による患者への悪影響が懸念されている。
【0003】
一方、社会のコンピュータ化が進むにつれて、コンピュータは、複数のコンピュータからなるコンピュータネットワークに接続して使用されることが多くなってきている。コンピュータネットワークとしては、有線LAN(ローカルエリアネットワーク)が最も一般的ではあるが、近年、機器の低価格化、構築や変更の容易さなどから無線LANにも注目が集まっている。ただ、無線LANは電磁波によって情報の交換を行っているため、電磁波を傍受されて情報が漏洩してしまう危険性が指摘されている。
【0004】
このように、電磁波は便利で有用なものであるが、不必要に放出された電磁波によって、人体への悪影響や情報漏が生じる恐れがある。そのため、従来から外部からの電磁波を遮断したり、外部への電磁波の放出を防ぐため、様々な電磁波シールド材や電磁波シールド塗料が開発されている。
【0005】
例えば、金属メッシュを透明樹脂に埋め込んだ電磁波シールド材(例えば、特許文献1)、合成ゴムや合成樹脂に金属製のフィラーやファイバーを混入した電磁波シールド材や電磁波シールド塗料(例えば、特許文献2、特許文献3)などがあった。
【0006】
【特許文献1】特開2002−299883
【特許文献2】特開2002−309107
【特許文献3】特開平10−316901
【0007】
【発明が解決しようとする課題】
しかし、上記の電磁波シールド材及び電磁波シールド塗料には次に掲げるような問題点があった。
まず、特許文献1に記載の電磁波シールド材は、固体状であるため、曲面や凸凹面には使用できず、その部分から電磁波が漏洩するという問題点があった。
【0008】
また、特許文献2及び特許文献3に記載の電磁波シールド材や電磁波シールド塗料は、有害な有機溶媒を含んでいるため、施工後も長期間に渡って、人体に有毒な蒸気を生じるとの問題点があった。
【0009】
そして、特許文献1,2,3に記載の発明のいずれも、電磁波のシールド能力が低く、電磁波による害悪を完全に除去することはできないとの問題点があった。
【0010】
そこで、この発明はどこにでも塗装できて利用範囲が広く、充分な電磁波シールド能力を備えた電磁波シールド塗料を提供することを目的とする。
【0011】
【課題を解決するための手段】
すなわち、この発明に係る電磁波シールド塗料は、ニッケル微粉末と、アルミニウム微粉末と、変性シリコーン樹脂溶液を含有することを特徴とする。また、ニッケル微粉末又はアルミニウム微粉末は、鱗片状の微粉末又はアモルファス状態の微粉末であってもよい。このように常磁性体であるニッケル微粉末と、変性シリコーン樹脂と、アルミニウム微粉末とが塗膜を形成することにより、高い電磁波シールド力が生じる。
【0012】
また、この発明に係る電磁波シールド塗料は、銅微粉末、フェライト、トルマリンを含有していてもよい。これらを含有することにより、電磁波シールド能力をより高めることができる。
【0013】
さらに、この発明に係る電磁波シールド塗料は、有機溶媒を含有していてもよい。これにより、電磁波シールド塗料の粘度が低下し、より塗装しやすくなる。
【0014】
【発明の実施の形態】
この発明の電磁波シールド塗料は、鱗片状のニッケル微粉末、鱗片状のアルミニウム微粉末、変性シリコーン樹脂溶液を含有している。また、このほかにも有機溶媒を含んでいてもよい。
【0015】
ニッケル微粉末びアルミニウム微粉末としては、鱗片状又はアモルファス状態のものがよく、その大きさは、150〜300メッシュのものが好ましいが、ニッケル及びアルミニウムともに180メッシュのものが、年輪状に交互に積層するためにはより好ましい。また、鱗片状のニッケル微粉末及びアルミニウムの微粉末は、アトマーズ法や電解法ではなく、スタンピングミルやボールミルで製造することによって形成することができる。さらに、アモルファス状態のニッケル微粉末及びアルミニウムの微粉末は、溶融した金属をノズルから水冷ロールに吹き付けて形成することができる。なお、シリコーン樹脂や有機溶媒と混合した際に、過剰な化学反応を抑えるため、ニッケル微粉末及びアルミニウムの微粉末に付着している他の物質、例えば、スタンピングミル処理時に付着したステアリン酸等の物質は予め除去しておけばよい。
【0016】
変性シリコーン樹脂溶液としては、シラン系のシリコーン樹脂が適しており、例えばオルガノシラン系シリコーン樹脂とオリゴマー型シランカップリング剤等との混入溶液が適している。
【0017】
より具体的には、硬化触媒を含有する脱メタノール硬化型メチル系シリコーン樹脂溶液(3官能性を持つオルガノシルセスキオキサンを基本骨格とするシリコーン樹脂を基本構成とする)のオルガノシランや、反応基アルコキシ基(Si−OR)のメトキシ基を含有するアルコキシオリゴマーをそれぞれ単独で使用したり、両樹脂を同時に使用するほか、これらの樹脂にアルミニウムアルコキシドAl(OR)を混ぜたり、さらにアルコール類を混合する等の色々な組み合わせ混合溶液で構成してもよい。さらに、各溶液と微粉金属の化学反応及び塗装性を考慮し、溶液の粘度は25℃において22〜25mm/Sが最適であり、かかる粘度調整により塗料化しやすくなる。
【0018】
有機溶媒としては、不必要な化学反応を抑制するため水分を含まない無水物であればよく、具体的には、エタノールなどのアルコール、ヘキサンなどの脂鎖式化合物、キシレンなどの芳香族化合物の無水物を例示することができる。なかでも、人体や自然環境に及ぼす影響や価格などを考慮すれば、無水エタノールがもっとも好ましい。
【0019】
この発明の電磁波シールド塗料は、上記の鱗片状のニッケル微粉末と鱗片状のアルミニウム微粉末とを混ぜたのち、変性シリコーン樹脂溶液を混練し、必要に応じて有機機溶媒を混ぜて完成する。
【0020】
このように、変性シリコーン樹脂溶液に鱗片状に形成されたニッケル及びアルミニウムを混入させると、変性シリコーン樹脂溶液の有する反応性の異なる2種類の官能基のうちの1つが鱗片状のニッケルとアルミニウムに対してそれぞれの水酸基分子同士が加水分解されて化学結合し、部分的に縮合して鱗片状のニッケルとアルミニウムがバインダ状に混入した状態(Al−O−Si−OR等の化学結合状態)となる。
【0021】
この状態でガラス、ベニア板、コンクリート等の被塗装物Mの表面に塗布すると、変性シリコーン樹脂溶液の他の官能基が被塗装物表面の水酸基と結合して加水分解され、水素結合的に吸着し、その後乾燥していくと脱水縮合反応により強固に化学結合(M−O−Si−OR)する。かかる作用により、被塗装物表面に鱗片状のニッケル・アルミニウムのバインダ層が結果的に異種金属結合した状態で形成され、表面にニッケル・アルミニウムがアルコキシオリゴマーの架橋反応により3次元的に交互に積層した状態に架橋されることになり、通電性を発揮することになる。また、ニッケルとアルミニウムの微粉末は鱗片状に形成されているので、より微細化されたニッケルとアルミニウムとが単一金属で交互に積層した状態で結合する。
【0022】
【実験例】
(1)電磁波シールド塗料の作製
鱗片状のニッケル微粉末(200メッシュ)55容量%と鱗片状のアルミニウム微粉末(180メッシュ)45容量%を混合して金属微粉末混合物を作る。この金属微粉末混合物100容量%に変性シリコーン樹脂を80容量%加えて混合し、無水エタノール30容量%加えて、電磁波シールド塗料を完成させた。
【0023】
(2)電磁シールド試験
(1)で作成した電磁波シールド塗料を、20cm角のベニア板に縦横方向にそれぞれ1回つづ塗装して試験片を作成し、常温で7日ほど乾燥した。なお、乾燥後、塗装面の膜厚を測定したところ、200〜400μmであった。
【0024】
このようにして作成した試料の電磁波シールド効果SEをアドバンテスト法(近接界)により測定した。その結果を図1(磁界)及び図2(電界)に示す。これらの図に示すように500MHzでのシールド効果SEは、磁界で−42.37db、電界で−47.82dbであった。
【0025】
一般的に、シールド効果SE(単位はdB)と入射電界(Ei)と透過電界(Eo)の間には、SE=−20log(Eo/Ei)が成り立ち、シールド効果SEと入射磁界(Hi)と透過磁界(Ho)の間にはSE=−20log(Ho/Hi)が成り立つ。また、G=Eo/Ei=Ho/Hiとすると、電界又は磁界の減衰率A(単位は%)は、A=(G−1)/G×100であらわすことができる。
【0026】
そこで、上記の計算式を使って、シールド効果SEの測定値から、電磁シールド塗料による磁界及び電界の減衰率を計算すると、磁界の減衰率は99.5%であり、電界の減衰率は99.6%であった。
【0027】
このように上記の実験の結果から、上記電磁波シールド塗料は、常温で乾燥して塗膜を形成するとともに、電界及び磁界波をほぼ完全にシールドした。
【0028】
なお、この発明は上記実験例に限定されるわけではなく、特許請求の範囲に記載された発明の技術的範囲内で様々な変更を加えることができる。
【0029】
例えば、ニッケルやアルミニウムに加えて、導電体である銅の微粉末、常磁性体であるフェライトやマイナスイオンを発生するトルマリンを含有してもよい。これらの成分を含有させることにより、電磁波シールド能力をより高めることができる。
【0030】
【発明の効果】
この発明にかかる電磁波シールド塗料は、常磁性体であるニッケルを含有するため、充分な電磁波シールド能力を備えており、これらの金属分が変性シリコーン樹脂などに分散しているため、どこにでも塗装できて利用範囲が広い。
【図面の簡単な説明】
【図1】電磁波シールド塗料による磁界のシールド効果を、広い周波数範囲で測定したグラフである。
【図2】電磁波シールド塗料による電界のシールド効果を、広い周波数範囲で測定したグラフである。
[0001]
[Industrial applications]
The present invention relates to an electromagnetic wave shielding paint, and more particularly to an electromagnetic wave shielding paint capable of almost completely shielding an electromagnetic wave.
[0002]
[Prior art]
2. Description of the Related Art In recent years, mobile phones have been increasingly used due to weight reduction and price reduction. Along with this, there is a concern that electromagnetic waves generated from the mobile phone may adversely affect the human body, such as the occurrence of brain tumors, cancer, leukemia, and genetic disorders, and adverse effects on patients due to malfunction or stoppage of medical equipment.
[0003]
On the other hand, as society has become computerized, computers are increasingly used by being connected to a computer network composed of a plurality of computers. As a computer network, a wired LAN (local area network) is the most common, but in recent years, a wireless LAN has also attracted attention due to cost reduction of equipment, ease of construction and change, and the like. However, since the wireless LAN exchanges information by using electromagnetic waves, it has been pointed out that there is a risk that information is leaked due to interception of the electromagnetic waves.
[0004]
As described above, electromagnetic waves are convenient and useful, but unnecessary electromagnetic waves may adversely affect the human body or cause information leakage. Therefore, various electromagnetic wave shielding materials and electromagnetic wave shielding paints have conventionally been developed in order to block electromagnetic waves from the outside and prevent electromagnetic waves from being emitted to the outside.
[0005]
For example, an electromagnetic wave shielding material in which a metal mesh is embedded in a transparent resin (for example, Patent Document 1), an electromagnetic wave shielding material or an electromagnetic wave shielding paint in which a metal filler or fiber is mixed in synthetic rubber or synthetic resin (for example, Patent Document 2, Patent Document 3) and the like.
[0006]
[Patent Document 1] JP-A-2002-299883
[Patent Document 2] JP-A-2002-309107
[Patent Document 3] JP-A-10-316901
[0007]
[Problems to be solved by the invention]
However, the above-mentioned electromagnetic wave shielding material and electromagnetic wave shielding paint have the following problems.
First, since the electromagnetic wave shielding material described in Patent Document 1 is in a solid state, it cannot be used on a curved surface or an uneven surface, and there is a problem that electromagnetic waves leak from that portion.
[0008]
Further, since the electromagnetic wave shielding materials and the electromagnetic wave shielding paints described in Patent Documents 2 and 3 contain harmful organic solvents, toxic vapor is generated in the human body for a long period of time even after construction. There was a point.
[0009]
In addition, all of the inventions described in Patent Documents 1, 2, and 3 have a problem that electromagnetic wave shielding performance is low and harm caused by electromagnetic waves cannot be completely removed.
[0010]
Accordingly, an object of the present invention is to provide an electromagnetic wave shielding paint having a sufficient electromagnetic wave shielding ability, which can be painted anywhere and has a wide range of use.
[0011]
[Means for Solving the Problems]
That is, the electromagnetic wave shielding paint according to the present invention is characterized by containing nickel fine powder, aluminum fine powder, and a modified silicone resin solution. Further, the nickel fine powder or the aluminum fine powder may be a scale-like fine powder or an amorphous fine powder. The formation of the coating film of the paramagnetic nickel fine powder, the modified silicone resin, and the aluminum fine powder as described above produces a high electromagnetic wave shielding force.
[0012]
Further, the electromagnetic wave shielding paint according to the present invention may contain fine copper powder, ferrite, and tourmaline. By containing these, the electromagnetic wave shielding ability can be further enhanced.
[0013]
Further, the electromagnetic wave shielding paint according to the present invention may contain an organic solvent. Thereby, the viscosity of the electromagnetic wave shielding paint decreases, and the paint becomes easier.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The electromagnetic wave shielding paint of the present invention contains a scale-like nickel fine powder, a scale-like aluminum fine powder, and a modified silicone resin solution. In addition, an organic solvent may be contained.
[0015]
The nickel fine powder and aluminum fine powder are preferably in the form of scale or amorphous state, and the size is preferably 150 to 300 mesh, but both 180 mesh of nickel and aluminum are alternately formed in annual rings. More preferable for lamination. Further, the flaky nickel fine powder and the aluminum fine powder can be formed by manufacturing using a stamping mill or a ball mill instead of the atomizer method or the electrolytic method. Further, the amorphous nickel fine powder and the aluminum fine powder can be formed by spraying a molten metal from a nozzle onto a water-cooled roll. In addition, when mixed with a silicone resin or an organic solvent, in order to suppress an excessive chemical reaction, other substances adhering to nickel fine powder and aluminum fine powder, for example, stearic acid and the like adhering during stamping mill treatment. The substance may be removed in advance.
[0016]
As the modified silicone resin solution, a silane-based silicone resin is suitable. For example, a mixed solution of an organosilane-based silicone resin and an oligomer-type silane coupling agent is suitable.
[0017]
More specifically, an organosilane or a reaction of a methanol-curable methyl-based silicone resin solution containing a curing catalyst (basically composed of a silicone resin having a trifunctional organosilsesquioxane as a basic skeleton), Using an alkoxy oligomer containing a methoxy group of a group alkoxy group (Si-OR) alone, using both resins simultaneously, mixing aluminum alkoxide Al (OR) 3 with these resins, and further using alcohols May be composed of various combination mixed solutions such as mixing. Further, in consideration of the chemical reaction between each solution and the fine metal powder and coatability, the viscosity of the solution is optimally 22 to 25 mm 2 / S at 25 ° C., and such viscosity adjustment facilitates the formation of a paint.
[0018]
The organic solvent may be any anhydride containing no water to suppress unnecessary chemical reactions.Specifically, alcohols such as ethanol, alicyclic compounds such as hexane, and aromatic compounds such as xylene may be used. Anhydrides can be exemplified. Above all, absolute ethanol is most preferable in consideration of the influence on the human body and the natural environment and the price.
[0019]
The electromagnetic wave shielding paint of the present invention is completed by mixing the above-mentioned scaly nickel fine powder and the scaly aluminum fine powder, kneading a modified silicone resin solution, and optionally mixing an organic solvent.
[0020]
Thus, when nickel and aluminum formed in the form of flakes are mixed in the modified silicone resin solution, one of the two types of functional groups having different reactivities of the modified silicone resin solution is added to the flake-like nickel and aluminum. On the other hand, each hydroxyl group molecule is hydrolyzed and chemically bonded, and partially condensed to form a state in which flaky nickel and aluminum are mixed in a binder state (chemical bonding state such as Al-O-Si-OR). Become.
[0021]
When applied to the surface of the workpiece M such as glass, veneer or concrete in this state, other functional groups of the modified silicone resin solution are combined with hydroxyl groups on the surface of the workpiece to be hydrolyzed and adsorbed by hydrogen bonding. Then, as the drying proceeds, a strong chemical bond (MO-Si-OR) is formed by a dehydration condensation reaction. By this action, a scale-like nickel-aluminum binder layer is formed on the surface of the object to be coated in a state in which different kinds of metals are bonded, and nickel-aluminum is alternately three-dimensionally laminated on the surface by a crosslinking reaction of an alkoxy oligomer. The crosslinked state is obtained, and the electric conductivity is exhibited. Further, since the fine powder of nickel and aluminum is formed in a scale shape, the finer nickel and aluminum are combined in a state of being alternately laminated with a single metal.
[0022]
[Experimental example]
(1) Preparation of Electromagnetic Shield Paint 55% by volume of scale-like nickel fine powder (200 mesh) and 45% by volume of scale-like aluminum fine powder (180 mesh) are mixed to prepare a metal fine powder mixture. 80% by volume of the modified silicone resin was added to and mixed with 100% by volume of the metal fine powder mixture, and 30% by volume of anhydrous ethanol was added to complete an electromagnetic wave shielding paint.
[0023]
(2) Electromagnetic shielding test The electromagnetic wave shielding paint prepared in (1) was applied to a 20 cm square veneer plate once each in the vertical and horizontal directions to prepare test pieces, which were dried at room temperature for about 7 days. After drying, the film thickness of the painted surface was measured and found to be 200 to 400 μm.
[0024]
The electromagnetic wave shielding effect SE of the sample thus prepared was measured by the Advantest method (near field). The results are shown in FIG. 1 (magnetic field) and FIG. 2 (electric field). As shown in these figures, the shielding effect SE at 500 MHz was -42.37 db in a magnetic field and -47.82 db in an electric field.
[0025]
Generally, SE = −20 log (Eo / Ei) is established between the shield effect SE (unit: dB), the incident electric field (Ei), and the transmission electric field (Eo), and the shield effect SE and the incident magnetic field (Hi) And SE = −20 log (Ho / Hi) between the transmission magnetic field (Ho). If G = Eo / Ei = Ho / Hi, the attenuation factor A (unit:%) of the electric field or the magnetic field can be expressed as A = (G−1) / G × 100.
[0026]
Therefore, when the attenuation rate of the magnetic field and the electric field by the electromagnetic shielding paint is calculated from the measured value of the shielding effect SE using the above formula, the attenuation rate of the magnetic field is 99.5%, and the attenuation rate of the electric field is 99%. 0.6%.
[0027]
As described above, from the results of the above experiment, the electromagnetic wave shielding paint was dried at room temperature to form a coating film, and almost completely shielded electric and magnetic waves.
[0028]
Note that the present invention is not limited to the above experimental examples, and various changes can be made within the technical scope of the invention described in the claims.
[0029]
For example, in addition to nickel and aluminum, fine powder of copper as a conductor, ferrite as a paramagnetic substance and tourmaline which generates negative ions may be contained. By including these components, the electromagnetic wave shielding ability can be further enhanced.
[0030]
【The invention's effect】
The electromagnetic wave shielding paint according to the present invention has sufficient electromagnetic wave shielding ability because it contains nickel which is a paramagnetic substance, and since these metals are dispersed in a modified silicone resin or the like, it can be applied anywhere. Wide range of use.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of shielding a magnetic field by an electromagnetic shielding paint measured in a wide frequency range.
FIG. 2 is a graph showing the effect of shielding an electric field by an electromagnetic wave shielding paint measured in a wide frequency range.

Claims (6)

ニッケル微粉末と、アルミニウム微粉末と、変性シリコーン樹脂溶液を含有することを特徴とする電磁波シールド塗料。An electromagnetic wave shielding paint comprising nickel fine powder, aluminum fine powder, and a modified silicone resin solution. ニッケル微粉末又はアルミニウム微粉末が、鱗片状の微粉末又はアモルファス状態の微粉末であることを特徴とする請求項1に記載の電磁波シールド塗料。The electromagnetic wave shielding paint according to claim 1, wherein the nickel fine powder or the aluminum fine powder is a scale-like fine powder or an amorphous fine powder. 銅微粉末を含有することを特徴とする請求項1又は請求項2に記載の電磁波シールド塗料。The electromagnetic wave shielding paint according to claim 1, wherein the paint contains copper fine powder. フェライトを含有することを特徴とする請求項1から請求項3のいずれかに記載の電磁波シールド塗料。The electromagnetic wave shielding paint according to any one of claims 1 to 3, further comprising a ferrite. トルマリンを含有することを特徴とする請求項1から請求項4のいずれかに記載の電磁波シールド塗料。The electromagnetic wave shielding paint according to any one of claims 1 to 4, further comprising tourmaline. 有機溶媒を含有することを特徴とする請求項1から請求項5のいずれかに記載の電磁波シールド塗料。The electromagnetic wave shielding paint according to any one of claims 1 to 5, further comprising an organic solvent.
JP2002339783A 2002-11-22 2002-11-22 Electromagnetic wave-shielding coating Pending JP2004168986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339783A JP2004168986A (en) 2002-11-22 2002-11-22 Electromagnetic wave-shielding coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339783A JP2004168986A (en) 2002-11-22 2002-11-22 Electromagnetic wave-shielding coating

Publications (1)

Publication Number Publication Date
JP2004168986A true JP2004168986A (en) 2004-06-17

Family

ID=32702655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339783A Pending JP2004168986A (en) 2002-11-22 2002-11-22 Electromagnetic wave-shielding coating

Country Status (1)

Country Link
JP (1) JP2004168986A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073067A1 (en) * 2005-01-06 2006-07-13 Shieldtechs, Inc. Resin composition excelling in anticorrosive and/or conductive performance and member coated with resin composition
JP2007006583A (en) * 2005-06-22 2007-01-11 Takayasu Kanemura Equipotential bonding construction method
RU2495069C1 (en) * 2012-03-23 2013-10-10 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Polymer composition for absorbing high-frequency energy
RU2543186C2 (en) * 2013-04-23 2015-02-27 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Polymer composition for absorbing high-frequency energy
CN106349925A (en) * 2016-08-30 2017-01-25 格林润滑科技(惠州)有限公司 High temperature-resistant special metal paint
CN111205743A (en) * 2020-03-20 2020-05-29 安徽省高泰新材料有限公司 High-temperature-resistant electromagnetic wave absorbing coating, coating and preparation method and application thereof
WO2023238784A1 (en) * 2022-06-08 2023-12-14 株式会社タムラ製作所 Electronic component unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073067A1 (en) * 2005-01-06 2006-07-13 Shieldtechs, Inc. Resin composition excelling in anticorrosive and/or conductive performance and member coated with resin composition
JP2007006583A (en) * 2005-06-22 2007-01-11 Takayasu Kanemura Equipotential bonding construction method
RU2495069C1 (en) * 2012-03-23 2013-10-10 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Polymer composition for absorbing high-frequency energy
RU2543186C2 (en) * 2013-04-23 2015-02-27 Открытое акционерное общество "Научно-исследовательский институт приборостроения имени В.В. Тихомирова" Polymer composition for absorbing high-frequency energy
CN106349925A (en) * 2016-08-30 2017-01-25 格林润滑科技(惠州)有限公司 High temperature-resistant special metal paint
CN111205743A (en) * 2020-03-20 2020-05-29 安徽省高泰新材料有限公司 High-temperature-resistant electromagnetic wave absorbing coating, coating and preparation method and application thereof
CN111205743B (en) * 2020-03-20 2021-09-14 安徽省高泰新材料有限公司 High-temperature-resistant electromagnetic wave absorbing coating, coating and preparation method and application thereof
WO2023238784A1 (en) * 2022-06-08 2023-12-14 株式会社タムラ製作所 Electronic component unit

Similar Documents

Publication Publication Date Title
CN102020899A (en) Composite coating electromagnetic shielding paint and composite coating electromagnetic shielding material prepared therefrom
JP6915887B2 (en) Polypyrrole film graphene oxide cement-based composite material and its preparation method
KR101090743B1 (en) Electromagnetic wave absorber
US20100059243A1 (en) Anti-electromagnetic interference material arrangement
CN103756509B (en) A kind of anti-electromagnetic radiation anti-contamination function coating and preparation method thereof
CN103275591A (en) 0.6-18GHz-frequency-band microwave-absorbing/epoxy anti-electromagnetic interference coating material and preparation method thereof
CN105111913A (en) Graphene/nano ferrite based water electromagnetic shielding paint and preparation method thereof
CN101712837B (en) High-efficiency broadband wave-absorbing coating material and use method
KR101859005B1 (en) Multi-layered heat radiation film
CN109852237A (en) A kind of organosilicon heat resistant coating and preparation method thereof with electromagnetic shielding effect
CN107474733A (en) The synthetic method of polysilazane Ceramic precursor resin and a kind of antiradar coatings
CN101709191B (en) High-performance electromagnetic shielding composite coating
TWI285528B (en) Extrudable crosslinked grease-like electromagnetic waves absorbent
CN103275529A (en) 0.6-18GHz-frequency-band wave-absorbing powder/inorganic silicate anti-electromagnetic interference coating material and preparation method thereof
JP2004168986A (en) Electromagnetic wave-shielding coating
CN109102962A (en) The Preparation method and use of conductive rubber strip
GB2463017A (en) Anti-electromagnetic interference material arrangement
CN108384441A (en) A kind of communication apparatus electromagnetic screen coating and preparation method thereof
CN112625441B (en) Manganese-zinc ferrite/polyaniline/titanium carbide composite wave-absorbing material and preparation method thereof
KR100874690B1 (en) A roll-type composite sheet with enhanced electromagnetic wave-shielding and -absorbing, and heat-releasing properties, and a method for preparation of the same
CN109971300A (en) A kind of microwave absorbing coating and preparation method thereof
CN108395807A (en) A kind of anti-electromagnetic radiation anti-contamination function coating and preparation method thereof
CN105238343A (en) Double-component silicon-based wave absorption glue and preparation method thereof
CN1441013A (en) Organic/inorganic composite electromagnetic wave absorbing and shielding paint
Zhiyuan et al. In-situ reduction of silver by surface DBD plasma: a novel method for preparing highly effective electromagnetic interference shielding Ag/PET