JP2007006583A - Equipotential bonding construction method - Google Patents

Equipotential bonding construction method Download PDF

Info

Publication number
JP2007006583A
JP2007006583A JP2005182302A JP2005182302A JP2007006583A JP 2007006583 A JP2007006583 A JP 2007006583A JP 2005182302 A JP2005182302 A JP 2005182302A JP 2005182302 A JP2005182302 A JP 2005182302A JP 2007006583 A JP2007006583 A JP 2007006583A
Authority
JP
Japan
Prior art keywords
building
foundation
reinforced concrete
steel
foundation pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005182302A
Other languages
Japanese (ja)
Inventor
Takayasu Kanemura
貴康 金村
Hiroko Kanemura
浩子 金村
Tomoko Kojima
知子 小島
Atsuko Yamamoto
厚子 山元
Akira Teruya
晃 照屋
Yasuhiro Sato
泰弘 佐藤
Ichiro Koyabu
一郎 小藪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005182302A priority Critical patent/JP2007006583A/en
Publication of JP2007006583A publication Critical patent/JP2007006583A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an equipotential bonding (single-point concentrated ground) construction method which electrically connects a metallic tank/metallic piping and foundational reinforcement which are used in a plant or a combustible combinat, all steel frames and reinforcement which constitute a steel frame building/a structure made of reinforced concrete within the premise of a radio base station, a highway, dam, airport runway, high level railway, warehouse, port facility, etc., and all steel frames and reinforcement (including metal pipings) which build a steel frame construction building/a building made of reinforced concrete adjacent to the structure, with each other. <P>SOLUTION: A steel frame 2 buried in reinforced concrete 1 and a metallic separator 4 for formwork fixation are connected electrically with each other via a conductive metallic body 5, and this steel frame 2 is connected electrically to the foundational steel frame 5 of a foundation pile 7 buried in the ground, and noise current due to thunder, static electricity, and electromagnetic waves are made to flow from this foundation pile 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、敷地内をフェンスで囲まれた、プラント、可燃物コンビナートで使用する金属製タンク・金属製配管と基礎鉄筋及び、無線基地、高速道路、ダム、空港滑走路、鉄道高架道、倉庫、港湾設備等の鉄骨構造ビルと基礎又は、鉄筋コンクリート製の構造物及び基礎と、近接する敷地内に建てられた工事用仮設事務所を含む一般住宅や一般ビル及び耐震・免震ビルと基礎鉄筋を等電位ボンディング(一点集中アース)する工法に関するものである。   The present invention includes, for example, a plant surrounded by a fence, a metal tank used in a combustible complex, a metal pipe and a basic rebar, a radio base, a highway, a dam, an airport runway, a railway elevated road Steel structure buildings and foundations such as warehouses, harbor facilities, etc., or structures and foundations made of reinforced concrete, and general houses and buildings and temporary and earthquake-resistant buildings including temporary offices for construction built in the nearby site It relates to a method for equipotential bonding (single point concentrated grounding) of basic reinforcing bars.

現在、プラント、可燃物コンビナートで使用する金属製タンク・金属製配管と基礎鉄筋及び、無線基地、高速道路、ダム、空港滑走路、鉄道高架道、倉庫、港湾設備等の鉄筋コンクリート製の構造物に隣接した敷地内に鉄筋コンクリート製のビルを建設する場合、鉄筋をコンクリートで固めた基礎架台の上に、金属製外柵を固定し、敷地内を囲み、基礎架台の上に受電施設を据え付け、電気・通信ルートは、電柱や地中に埋設された配管などを用いて確保することが一般化されている。   Currently, metal tanks and pipes and basic rebars used in plants and combustible complexes, as well as reinforced concrete structures such as radio bases, expressways, dams, airport runways, railway elevated roads, warehouses, and port facilities. When building a reinforced concrete building in an adjacent site, a metal outer fence is fixed on a foundation frame made of concrete that has been reinforced with reinforcement, and the power receiving facility is installed on the foundation frame,・ Communication routes are generally secured using telephone poles or pipes buried in the ground.

例えば、可燃物を扱うコンビナートや工場プラントなどでも、可燃物タンクと基礎鉄筋や設備棟と管理棟及び住居ビル等が隣設されている場合が多く、とくに、公共施設(行政ビル、防災無線、工場、管制塔と滑走路、ダム、降下道、高速道路、病院等)は、通常、同一敷地内に機器を据え付けるための設備棟と管理棟とが数メートルも離れていない場所に隣設されている。   For example, in combustibles and industrial plants that handle combustible materials, combustible material tanks, basic rebars, equipment buildings, management buildings, and residential buildings are often placed next to each other, especially public facilities (administrative buildings, disaster prevention radio, Factories, control towers and runways, dams, descending roads, highways, hospitals, etc.) are usually placed next to the same building, where the equipment building and management building are not separated by several meters. ing.

鉄筋コンクリート製の建築物では、その建築物ごとに、鉄筋をコンクリートで固めた基礎杭を地中に埋設し、コンクリートで地盤を固め、基礎杭の上に鉄筋で基礎架台を作り、柱・梁・天井フロアを鉄筋とコンクリートで固めてゆく工法が一般的に用いられる。また、高層建築物においては、基礎工事された架台の上に鉄骨を組み上げ、予め、鉄筋とコンクリートで固められた壁ボードを、柱筋間に溶接かボルトで止める工法が用いられる。また、耐震免震建物は、基礎架台と建物の間に積層ゴムと、縦揺れ防止のダンパー又は転動可能な金属製球体が設置されている。   For buildings made of reinforced concrete, for each building, foundation piles with reinforcing bars solidified with concrete are buried in the ground, the ground is solidified with concrete, and a foundation frame is built on the foundation piles with reinforcing bars. A construction method in which the ceiling floor is solidified with reinforcing bars and concrete is generally used. In high-rise buildings, a method is used in which a steel frame is assembled on a foundation that has undergone foundation work, and a wall board that has been previously solidified with reinforcing bars and concrete is welded or bolted between column bars. In addition, the seismic isolation building is provided with a laminated rubber and a vertical swing damper or a rollable metal sphere between the foundation frame and the building.

国内では、塔や高層のビルの頂部に避雷針を取り付け、この避雷針を導線を介して接地板と接続し、落雷により発生する雷電流を大地に逃がすことが義務付けられており、ほぼ全ての高層の建築物には避雷針が取り付けられている。また、上記技術に加え、西暦2003年には、ヨーロッパのIEC規格として、ビル建築に使用している鉄筋・鉄骨に電気的導通性をもたせるために、建物の全鉄筋・鉄骨を接続し、基礎杭の鉄筋とも接続(等電位ボンディング)することが定められ、ビルへの直撃雷対策をする新規な技術として世界的に共通な工事方法として認識が高まってきている。   In Japan, it is obliged to attach a lightning rod to the top of a tower or high-rise building, connect this lightning rod to a ground plate via a conductor, and let lightning current generated by lightning strike to the ground. A lightning rod is attached to the building. In addition to the above-mentioned technology, in 2003 AD, all the reinforcing bars and steel frames of the building were connected and the foundation was established as a European IEC standard in order to provide electrical continuity to the reinforcing bars and steel frames used in building construction. It is stipulated that it should be connected to the reinforcing bars of the pile (equipotential bonding), and it has been increasingly recognized as a common construction method worldwide as a new technology for measures against direct lightning strikes on buildings.

雷に対しては、従来から避雷針又は避雷器で対応している。例えば、高層建築物の壁面に垂直避雷導体を固定し、この垂直避雷導体をアンカーボルトを介して建築物の鉄筋又は鉄骨と電気的に接続して、外壁面に落雷した雷電流を鉄筋又は鉄骨から放流するような技術も提案されている(特許文献1参照。)。   For lightning, a lightning rod or lightning arrester has been used. For example, a vertical lightning conductor is fixed to the wall of a high-rise building, and this vertical lightning conductor is electrically connected to the building's reinforcing bar or steel frame via anchor bolts. A technique for releasing the gas from the water has also been proposed (see Patent Document 1).

特許第3251928号公報(第2頁−3頁、図5)Japanese Patent No. 3251828 (page 2 to page 3, FIG. 5)

一般に鉄筋コンクリート構造物は、基礎杭の上部に基礎ベースとなる鉄筋を組み、組まれた鉄筋を型枠で囲み、この型枠内にコンクリートを打設して構築される。その際、コンクリートの重量で型枠が外れないように、型枠板同士をセパレータ(金属製支持ボルト)を用いて締結させている。   In general, a reinforced concrete structure is constructed by assembling reinforcing bars as a foundation base on the upper part of a foundation pile, surrounding the assembled reinforcing bars with a formwork, and placing concrete in the formwork. At that time, the mold plates are fastened using separators (metal support bolts) so that the mold does not come off due to the weight of the concrete.

しかしながら、上記のような型枠工法では、鉄筋を組んだ後に型枠板を建て、セパレータを鉄筋に接触しないように隙間を貫通させ、これを締め付けた後に、コンクリートを打設するが、各階フロアの高さの鉄筋はセパレータと接続することができない。このため、基礎鉄筋と電気的に接続されていないビルの外壁や屋上などに取り付けられた看板、クーラー、水槽、エレベーター機械室、駐車設備等が据え付けられた金属製架台を固定するためのボルト・ナットは当然アースされていない独立した金属体となり、放電発火による火災を起こすおそれや衝撃を受けたコンクリートが破壊されて飛散するおそれがある。   However, in the above-mentioned formwork method, the formwork plate is built after assembling the reinforcing bars, the gap is penetrated so that the separator does not come into contact with the reinforcing bars, and the concrete is placed after tightening this. Cannot be connected to the separator. For this reason, bolts and bolts for fixing signboards, coolers, water tanks, elevator machine rooms, parking facilities, etc. installed on the outer walls and rooftops of buildings that are not electrically connected to the foundation rebar Naturally, the nut becomes an independent metal body that is not grounded, and there is a risk of causing a fire due to discharge ignition or destruction of the impacted concrete.

また、通常、ビル各階のフロアコンクリートには、階下の天井を牽吊するための吊りボルトを支持するインサート(導電性のない樹脂製ボルト・ナット)が配設されるが、このインサートやフロア看板・電化製品吊り金具、消防設備のスプリンクラー配管、電線・通信線配管、ラック等がビルの鉄筋と電気的に接続されていないことも上記と同様の問題がある。   Normally, the floor concrete on each floor of the building is provided with inserts (non-conductive resin bolts and nuts) that support hanging bolts for hanging down the ceiling of the downstairs. -There is a problem similar to the above in that electrical appliance hanging brackets, sprinkler piping for fire-fighting equipment, electric wire / communication line piping, racks, etc. are not electrically connected to the reinforcing bars of the building.

また、耐震・免震手段が施された建築物では、その構造上、基礎架台と建築物が積層ゴムにより分離しているため、ビル全体の金属が電気的に接続されないことになる。たとえ、ビルの柱から導線とアース線を接続し、雷電流を流すことを試みたとしても、雷による数百万ボルトの電流は、抵抗の大きい導線には流れずに基礎鉄筋に放電する。このため、積層ゴムが溶解しビル崩壊と火災の原因になる。   In addition, in a building to which earthquake-proofing and seismic isolation means have been applied, the foundation frame and the building are separated by laminated rubber due to the structure thereof, so that the metal of the entire building is not electrically connected. Even if you try to connect the conductor and ground wire from the pillar of the building and try to pass lightning current, the current of millions of volts caused by lightning will not flow through the conductor with high resistance, but will discharge to the basic rebar. For this reason, the laminated rubber is dissolved, causing a building collapse and a fire.

したがって、このような鉄筋とセパレータとインサートがアースと絶縁されている工法では、例えば、敷地内の一棟の建築物に落雷すると、隣接する建物の鉄筋にも放電を起こし、建物内の電気・通信ケーブルを使用している電気機器内の基板が破壊されるばかりでなく、火災やビル崩壊を招くおそれがある。   Therefore, in such a construction method in which the reinforcing bars, separators and inserts are insulated from the ground, for example, when a lightning strike occurs in one building on the site, a discharge is also generated in the reinforcing bars in the adjacent building, In addition to destroying the board in the electrical equipment using the communication cable, there is a risk of fire and collapse of the building.

すなわち、落雷防止工法としての鉄筋・鉄骨を電気的に接続する工法では、建物の完成前後に関わらず、同一敷地内の複数の建物の一棟が落雷を受けることで、鉄筋とセパレータ間又はインサート間及びビル外壁に取り付けられた看板等のアンカーボルトに放電することが考えられ、これが原因で次のような現象が起こる。   In other words, in the method of electrically connecting reinforcing bars and steel frames as a method of preventing lightning strikes, lightning strikes occur at one building in multiple buildings on the same site, regardless of whether the building is completed or not. It is conceivable to discharge to anchor bolts such as signboards attached to the outside and the outer wall of the building, and this causes the following phenomenon.

ビル上層部のコンクリートが剥がれ落下したり、ビルフロア内に使用している金属から放電発火する。アースケーブルを含む配管や天井を吊るす金属棒に過剰電流が流れ、アンカーボルトが破壊され、電波受信・発信機のアンテナ様を呈し、敷地内の建物全体に使用しているIC基板を使用した全ての電化製品は、電磁誘導された電磁波で破壊される。また、建設工事中に落雷が発生すると、コンクリート内の鉄筋から発火し、型枠に引火するおそれがある。さらに、従来工法は大地に埋設された基礎杭又は基礎ベース鉄筋に落雷時の電流が流れたことを確認することができず、基礎杭が破壊されたかどうかを視認できない。   The concrete in the upper layer of the building peels off and falls, or discharge is ignited from the metal used in the building floor. Excess current flows through pipes including ground cables and metal rods that hang ceilings, anchor bolts are destroyed, antennas for radio wave reception / transmitters are used, and all IC boards used for the entire building on the site are used The electrical appliances are destroyed by electromagnetically induced electromagnetic waves. Also, if a lightning strike occurs during construction work, it may ignite from the reinforcing bars in the concrete and ignite the formwork. Furthermore, the conventional method cannot confirm that a current during a lightning strike has passed through a foundation pile or foundation base rebar buried in the ground, and cannot see whether the foundation pile has been destroyed.

このため本発明は、プラント、可燃物コンビナートで使用する金属製タンク及び配管、無線基地、高速道路、ダム、空港滑走路、鉄道高架道、倉庫、港湾設備等の鉄骨構造ビル、又は、鉄筋コンクリート製の構造物を構築する全ての鉄骨及び鉄筋と、当該構造物に隣接した鉄骨構造ビル、又は、鉄筋コンクリート製のビルを構築する全ての鉄骨及び鉄筋とを電気的に接続する等電位ボンディング工法であって、鉄筋コンクリート内に埋設される鉄筋と型枠止め用の金属製セパレータとを導電性金属体を介して電気的に接続すると共に、この鉄筋を大地に埋設された基礎杭の基礎鉄筋に電気的に接続し、この基礎杭から雷、静電気、電磁波によるノイズ電流を大地に流すことを第1の特徴とする。また、ビルの基礎鉄筋と鉄骨柱とを導電性金属体を介して電気的に接続すると共に、キュービクル、分電盤、屋上看板、水槽架台、壁面看板、ビルフロア、天井内配管、電線ラック、天井吊り金具及びビルフロア内に配置された機器を導電性金属アングルと導電性金属体を介して基礎鉄筋に電気的に接続することを第2の特徴とする。さらに、鉄筋コンクリートの骨材として、トルマリン岩石又は天然レキ岩石(二酸化ケイ素を90%以上含む)を用いると共に、当該岩石の粉末を混合した塗料を用いて、フロアパーテーション又は天井ボード、金属製ボックスに塗布し、コンクリート壁内に電磁波を吸収させ、且つ、ビル又はビルフロア内にマイナスイオンを発生させることを第3の特徴とする。さらにまた、電流センサーを、基礎杭、鉄筋、鉄骨及びアースケーブルに取付けて、直撃雷ノイズ電流・静電気ノイズ電流・電磁波ノイズ電流・漏電電流が流れたかどうかを監視すると共に、基礎杭の内部空洞に、テレビカメラを取り付け、基礎杭内部の状況とノイズ状況をビル内監視センターで監視し、監視データを通信回線を使用し、リアルタイムに遠隔地でも監視し、ノイズ破壊の影響で、電気設備・通信設備・信号設備と、ビル構造及び基礎杭内に発生した亀裂やひび割れを補修することを第4の特徴とする。   For this reason, the present invention is a steel tank and piping used in a plant, a combustible complex, a radio base, a highway, a dam, an airport runway, a railway elevated road, a warehouse, a port facility, etc., or a reinforced concrete product. This is an equipotential bonding method that electrically connects all the steel frames and reinforcing bars that make up the steel structure and all the steel frames and reinforcing bars that make up the steel structure building adjacent to the structure or the building made of reinforced concrete. In addition, the reinforcing bar embedded in the reinforced concrete is electrically connected to the metal separator for fixing the formwork through a conductive metal body, and the reinforcing bar is electrically connected to the foundation reinforcing bar of the foundation pile embedded in the ground. The first feature is that a noise current caused by lightning, static electricity, and electromagnetic waves flows from the foundation pile to the ground. In addition, the building's foundation rebar and steel column are electrically connected via a conductive metal body, cubicles, distribution boards, rooftop signs, water tank stands, wall signs, building floors, ceiling piping, electric wire racks, The second feature is to electrically connect the ceiling hanging bracket and the device arranged in the building floor to the foundation rebar through the conductive metal angle and the conductive metal body. Furthermore, tourmaline rocks or natural reki rocks (containing 90% or more of silicon dioxide) are used as aggregates for reinforced concrete, and applied to floor partitions or ceiling boards and metal boxes using paint mixed with the rock powder. The third feature is that electromagnetic waves are absorbed in the concrete wall and negative ions are generated in the building or the building floor. Furthermore, current sensors are attached to foundation piles, reinforcing bars, steel frames, and ground cables to monitor whether direct lightning noise current, electrostatic noise current, electromagnetic wave noise current, and leakage current flow, and in the internal cavity of the foundation pile. A TV camera is installed, the situation inside the foundation pile and the noise situation are monitored at the monitoring center in the building, the monitoring data is monitored in real time using a communication line, and it is monitored in remote areas in real time. The fourth feature is to repair equipment and signal equipment and cracks and cracks generated in building structures and foundation piles.

本発明工法によれば、敷地内の基礎杭・基礎を含む全ての鉄筋コンクリート建築・鉄骨建築の全ての鉄筋・鉄骨を接続し、接続した基礎杭、基礎ベース筋、柱筋、梁筋、鉄骨柱、梁にセンサーを取り付けて監視し、電線・通信・信号線の全てのアースケーブルにも過剰電流をセンサーで監視し、大地に埋設した中心が空洞化された基礎杭の上中下のスペースに照明付カメラを取り付けるか照明付きカメラが基礎杭内を移動できるように宙吊りすることで改善できる。   According to the construction method of the present invention, all the reinforced concrete buildings and steel buildings including the foundation piles and foundations in the site are connected, and the connected foundation piles, foundation base bars, column bars, beam bars, steel columns The sensor is attached to the beam for monitoring, and the excess current is also monitored for all the ground cables for electric wires, communication and signal lines, and the center pile embedded in the ground is in the space above, below and below the foundation pile. It can be improved by attaching a lighted camera or hanging it so that the lighted camera can move in the foundation pile.

また、各階フロアのアース端子として、アース板を天井内に埋め込まれた金属製インサートとボルト・ナットで接続したり、この端子とボルト・ナットを使用し、耐震アングルと接続することで、各フロア内に設置した金属製備品の地震対策と、敷地内に使用している基礎杭・基礎ベース筋と、建屋に使用している鉄筋・鉄骨をはじめ、全ての金属が等電位ボンディングになり、アースケーブルを最小限のケーブル長にすることで、電波の受信・送信アンテン防止となり、ケーブルのコストダウンにつながる。   Also, as a ground terminal for each floor, connect the ground plate with a metal insert embedded in the ceiling and a bolt and nut, or use this terminal and bolt and nut to connect to a seismic angle, so that each floor Earthquake countermeasures for metal equipment installed in the building, ground piles and foundation base bars used in the site, and reinforcing bars and steel frames used in the building, all metals become equipotential bonding, By making the cable the minimum cable length, it will prevent reception and transmission of radio waves and lead to cost reduction of the cable.

さらに、本発明によれば、ビルディング内で使用されるキュービクル、集中監視盤、分電盤、情報ボックス、サーバーラック、監視カメラ、TV、OA機器をはじめ、精密機器内の基板、電源・通信・TV用・無線機用・監視カメラ用ケーブル等と接続された電子機器を、屋外から侵入する直雷、雷サージ電流、無線電波、電磁波、静電気等のノイズ電流のみならず、屋内で発生する無線電波、電磁波、静電気等のノイズ電流からも保護することができる。   Furthermore, according to the present invention, the cubicles, centralized monitoring panels, distribution boards, information boxes, server racks, surveillance cameras, TVs, office automation equipment used in buildings, substrates in precision equipment, power supplies / communications / Not only noise current such as direct lightning, lightning surge current, radio waves, electromagnetic waves, static electricity, etc. that penetrates electronic devices connected to TV / wireless device / surveillance camera cables etc. from the outside, but also wireless that occurs indoors It can also protect against noise currents such as radio waves, electromagnetic waves and static electricity.

次に、本発明の実施の形態を図面に示す実施例に基いて説明する。
図1は鉄筋コンクリート内に埋設される鉄筋と型枠止め用の金属製セパレータとを導電性金属体を介して電気的に接続する方法を模式的に示す斜視図、図2はセパレータを模式的に示す斜視図、図3は本発明に係るビルを模式的に示す説明図、図4は本発明に係るフロア天井内を模式的に示す要部斜視図、図5は本発明に係るビルフロアを模式的に示す説明図、図6は本発明に係るビルを模式的に示す説明図、図7は本発明に係る立体駐車場を模式的に示す説明図、図8は本発明に係る基礎杭を模式的に示す説明図、図9は本発明に係るビルの耐震・免震基礎を模式的に示す斜視図、図10は本発明に係る高速道路パーキングを模式的に示す説明図、図11は本発明に係る空港を模式的に示す説明図である。
Next, embodiments of the present invention will be described based on examples shown in the drawings.
FIG. 1 is a perspective view schematically showing a method of electrically connecting a reinforcing bar embedded in reinforced concrete and a metal separator for fixing a formwork via a conductive metal body, and FIG. 2 schematically showing the separator. FIG. 3 is an explanatory view schematically showing a building according to the present invention, FIG. 4 is a perspective view of a main part schematically showing the inside of the floor ceiling according to the present invention, and FIG. 5 is a building floor according to the present invention. FIG. 6 is an explanatory view schematically showing a building according to the present invention, FIG. 7 is an explanatory view schematically showing a multistory parking lot according to the present invention, and FIG. 8 is a foundation pile according to the present invention. FIG. 9 is a perspective view schematically showing an earthquake-proof / base-isolation foundation of a building according to the present invention, FIG. 10 is an explanatory diagram schematically showing highway parking according to the present invention, and FIG. These are explanatory drawings which show typically the airport which concerns on this invention.

本発明は、プラント、可燃物コンビナートで使用する金属製タンク及び配管、無線基地、高速道路、ダム、空港滑走路、鉄道高架道、倉庫、基礎港湾設備等の敷地内鉄骨ビル・鉄筋コンクリート製の構造物を構築する全ての鉄骨及び鉄筋と、当該構造物に隣接した鉄骨構造ビル・鉄筋コンクリート製のビルを構築する全ての鉄骨及び鉄筋(金属製配管を含む)とを電気的に接続する等電位ボンディング工法である。具体的には、基礎架台を含む鉄筋コンクリート内に埋設される鉄筋と型枠止め用の金属製セパレータとを導電性金属体を介して電気的に接続すると共に、この鉄筋を大地に埋設された基礎杭の基礎鉄筋に電気的に接続し、この基礎ベース又は基礎杭から雷、静電気、電磁波によるノイズ電流を大地に流す構成にされている。   The present invention is a structure made of steel buildings and reinforced concrete in a site such as a plant, a metal tank and piping used in a combustible complex, a radio base, an expressway, a dam, an airport runway, a railway elevated road, a warehouse, a basic port facility, etc. Equipotential bonding that electrically connects all the steel frames and reinforcing bars that make up the object and all the steel frames and reinforcing bars (including metal pipes) that make up the steel structure building and reinforced concrete building adjacent to the structure It is a construction method. Specifically, the steel bar embedded in the reinforced concrete including the foundation frame and the metal separator for formwork are electrically connected through the conductive metal body, and the foundation embedded in the ground. It is electrically connected to the foundation rebar of the pile and is configured to flow noise currents from lightning, static electricity, and electromagnetic waves from the foundation base or foundation pile to the ground.

図1及び図2は、鉄筋コンクリート1内に埋設される縦鉄筋2及び梁鉄筋3と型枠止め用の金属製セパレータ(金属製支持ボルト)4とを導電性金属体5を介して電気的に接続する方法を示す。すなわち、一般に鉄筋コンクリート構造物は、基礎杭の上部に基礎ベースとなる縦鉄筋2及び梁鉄筋3を組み、組まれた縦鉄筋2及び梁鉄筋3を型枠で囲み、この型枠内にコンクリートを打設して構築される。その際、コンクリートの重量で型枠が外れないように、型枠板1a同士をセパレータ4を用いて締結させているが、本実施例では、予め導電性金属体5で梁鉄筋3と金属製セパレータ4とを締結し電気的に導通させる。   FIGS. 1 and 2 show that a vertical reinforcing bar 2 and a beam reinforcing bar 3 embedded in a reinforced concrete 1 and a metal separator (metal supporting bolt) 4 for fixing a formwork are electrically connected through a conductive metal body 5. Shows how to connect. That is, in general, a reinforced concrete structure is constructed by assembling the vertical rebar 2 and the beam rebar 3 as the foundation base on the upper part of the foundation pile, surrounding the assembled vertical rebar 2 and the beam rebar 3 with a formwork, and placing concrete in this formwork. Constructed by casting. At that time, the formwork plates 1a are fastened together with the separator 4 so that the formwork does not come off due to the weight of the concrete. The separator 4 is fastened and electrically connected.

そして、図3乃至図7に示すように、上記のように構築された鉄筋コンクリートビルの基礎鉄筋35と鉄骨柱47とを電気的に接続すると共に、屋上に設けられた、避雷針11(アンテナ12)、屋上及び壁面の看板9、水槽10及びその架台10a、クーラー7やキュービクル(受変電設備)8、天井内に設けられた排煙ダクト13や金属配管25、電線ラック46及び吊りボルト18、ビルフロア内に配置されたデスクや集中監視盤、分電盤、情報ボックス・サーバーラック等の金属製ボックス、TV、OA機器等の各種機器を、インサートボルト29と導電性金属アングル(耐震金具)36とアースバー(導電性金属体)37を介して基礎鉄筋35に電気的に接続する。また、通常、ビル各階のフロアコンクリートには、階下の天井板43を牽吊するための天井板吊りボルト44が配設されるが、火災報知器15、フロア看板16、監視カメラ28の支持バー28a、照明器具(マイナスイオン発生照明)26、パトライト20a、スピーカー27の支持バー27a、消防設備のスプリンクラー17の配管17a、電線・通信線45の配管や吊りラック46等もこの吊りボルト18を介してビルの鉄筋と電気的に接続される。   As shown in FIGS. 3 to 7, the lightning rod 11 (antenna 12) provided on the rooftop is electrically connected to the foundation rebar 35 and the steel column 47 of the reinforced concrete building constructed as described above. , Rooftop and wall signs 9, water tank 10 and its mount 10a, cooler 7 and cubicle (substation equipment) 8, smoke exhaust duct 13 and metal pipe 25 provided in the ceiling, electric wire rack 46 and suspension bolt 18, building Various equipment such as desks, centralized monitoring panels, distribution boards, information boxes and server racks, TVs, OA equipment, etc., placed on the floor, insert bolts 29 and conductive metal angles (seismic brackets) 36 And a ground bar (conductive metal body) 37 to be electrically connected to the foundation rebar 35. Moreover, normally, the floor concrete on each floor of the building is provided with ceiling plate suspension bolts 44 for hanging the ceiling plate 43 below the floor, but the support bar for the fire alarm 15, the floor signboard 16, and the surveillance camera 28. 28a, lighting fixture (negative ion generating illumination) 26, patrol light 20a, support bar 27a of speaker 27, pipe 17a of sprinkler 17 of fire fighting equipment, pipe of electric wire / communication line 45, suspension rack 46, etc. It is electrically connected to the building's rebar.

また、床上にはフロア支持束22を介してフリーアクセスフロア21が設けられ、フロア21上には静電気対策用マット19が敷設される。フロア支持束22にはアースケーブル24が接続され鉄筋コンクリート壁面内の鉄筋に接続されると共に、電流センサー6が取り付けられ、ノイズカウンター20により静電気ノイズ電流が流れたかどうかを監視することができるようにされている。フリーアクセス支柱39、アース付コンセントボックス40等も天井板吊りボルト44に接続される。図3中、30はエレベーター、31はそのレールで、レール支持金具32はインサートボルト29を介して鉄筋コンクリート1と電気的に導通されている。また、屋外ケーブル用メッセンジャーワイヤー34もケーブル支持アングル33を介して鉄筋コンクリート1と電気的に導通されている。例えば、図4に示すように、フロア天井内では床鉄筋23を交差した状態で挟持固定する床鉄筋結束金具41を吊りボルト18に連結し、さらにこの吊りボルト18同士を吊りボルト連結金具18aでもって接続する。   Further, a free access floor 21 is provided on the floor via a floor support bundle 22, and an antistatic mat 19 is laid on the floor 21. A ground cable 24 is connected to the floor support bundle 22 to be connected to a reinforcing bar in a reinforced concrete wall, and a current sensor 6 is attached so that the noise counter 20 can monitor whether an electrostatic noise current flows. ing. The free access column 39, the grounded outlet box 40, and the like are also connected to the ceiling board suspension bolt 44. In FIG. 3, 30 is an elevator, 31 is a rail thereof, and a rail support fitting 32 is electrically connected to the reinforced concrete 1 via an insert bolt 29. The messenger wire 34 for the outdoor cable is also electrically connected to the reinforced concrete 1 through the cable support angle 33. For example, as shown in FIG. 4, in the floor ceiling, a floor rebar binding metal fitting 41 that is clamped and fixed in a state where the floor rebar 23 is crossed is connected to the suspension bolt 18, and the suspension bolt 18 is connected to the suspension bolt connection metal 18a. Connect with it.

図5乃至図7に示すように、ビルの地下埋設部分の構造基礎鉄骨又は基礎杭35は通常、基礎と繋がったスパイラル筋とされ、その底層及び中間層に銅板又は鉄板製の底板(アース板)36を溶接し、大地の各地層のアース抵抗値の低い地層に速やかに過剰電流を流すようにされている。また、鉄筋コンクリート1の骨材として、トルマリン岩石又は天然レキ岩石(二酸化ケイ素を90%以上含む)42を用いると共に、この岩石の粉末を混合した塗料を用いてフロアパーテーション67や天井ボード43、各種機器が収納された金属製ボックスに塗布することで、電磁波を吸収させ、ビル又はビルフロア内にマイナスイオンを発生させる。また、電流センサー6を、基礎杭35、鉄筋3、鉄骨47及びアースケーブル24や吊り金具18に取付けて、直撃雷ノイズ電流・静電気ノイズ電流・電磁波ノイズ電流が流れたか又は漏電したかどうかをノイズ監視盤48にて監視する共に、図8に示すように、基礎杭35の内部空洞に、光ケーブル54を介してテレビカメラ(照明付CCDカメラ)53を取り付け、基礎杭内部の状況をテレビモニター55で監視することで、基礎杭35内に発生した亀裂やひび割れを適宜補修工事することができる。また、管理者がいない無人化されたビル又は設備は、上記システムを電話回線などを使用し、遠隔地で監視することもできる。   As shown in FIG. 5 to FIG. 7, the structural foundation steel frame or foundation pile 35 in the underground portion of the building is usually a spiral line connected to the foundation, and a bottom plate (ground plate) made of a copper plate or an iron plate is formed in the bottom layer and the intermediate layer. ) 36 is welded so that an excess current can be quickly passed through the ground layers having low earth resistance values. Further, as the aggregate of the reinforced concrete 1, tourmaline rock or natural rock (containing 90% or more of silicon dioxide) 42 is used, and the floor partition 67, the ceiling board 43, and various devices are made using a paint mixed with the rock powder. Is applied to a metal box in which is stored, thereby absorbing electromagnetic waves and generating negative ions in the building or building floor. In addition, the current sensor 6 is attached to the foundation pile 35, the reinforcing bar 3, the steel frame 47, the ground cable 24, and the hanging metal fitting 18, and whether or not the direct lightning noise current, electrostatic noise current, electromagnetic wave noise current has flowed or the electric leakage has been detected. As shown in FIG. 8, a television camera (illuminated CCD camera) 53 is attached to the internal cavity of the foundation pile 35 via an optical cable 54 to monitor the situation inside the foundation pile, as shown in FIG. By monitoring at, cracks and cracks generated in the foundation pile 35 can be repaired appropriately. In addition, an unmanned building or facility without an administrator can monitor the above system remotely using a telephone line or the like.

通常、鉄筋コンクリート製の建築物では、その建築物ごとに、鉄筋をコンクリートで固めた基礎杭35を地中に埋設し、コンクリートで地盤を固め、基礎杭35の上に鉄筋で基礎架台1bを作り、柱・梁・天井フロアを鉄筋とコンクリートで固めてゆく工法が一般的に用いられる。この基礎架台1bは屋外の照明塔52等とも基礎鉄筋で等電位ボンディングされる。他にも例えば、電柱の支柱と基礎、送電鉄塔と基礎等にもこの工法が応用できる。また、高層建築物においては、基礎工事された架台1bの上に鉄骨を組み上げ、予め、鉄筋とコンクリートで固められた壁ボードを、柱筋間に溶接かボルトで止める工法が用いられる。また、図9に示すように、耐震免震建物には、基礎架台1bと建物の間に積層ゴム50と、縦揺れ防止のダンパー49又は転動可能な金属製ボール51が設置されているが、これらを固定するボルト・ナットは、金属板若しくはメッシュ銅線によって基礎架台1bのボルト・ナットと連結され、ノイズ電流を速やかに大地に流す構成にされている。   Normally, in a building made of reinforced concrete, a foundation pile 35 in which reinforcing bars are hardened with concrete is buried in the ground for each building, the ground is hardened with concrete, and a foundation frame 1b is made on the foundation pile 35 with reinforcing bars. In general, a method of fixing columns, beams and ceiling floors with reinforcing bars and concrete is generally used. This foundation frame 1b is equipotentially bonded to the outdoor lighting tower 52 and the like with a foundation rebar. In addition, for example, this construction method can be applied to poles and foundations of power poles, transmission towers and foundations, and the like. Moreover, in a high-rise building, a construction method is used in which a steel frame is assembled on a base 1b that has been subjected to foundation work, and a wall board that has been previously solidified with reinforcing bars and concrete is welded or bolted between column bars. Moreover, as shown in FIG. 9, in the seismic isolation building, a laminated rubber 50 and a damper 49 for preventing pitching or a rollable metal ball 51 are installed between the foundation frame 1b and the building. The bolts and nuts for fixing them are connected to the bolts and nuts of the foundation frame 1b by a metal plate or a mesh copper wire so that a noise current can be quickly passed to the ground.

図10は本発明に係る高速道路パーキングを示す。ガソリンスタンド57と料金所58と隣接した鉄筋コンクリート構造の管理棟56は、耐震・免震対策が施されると共に、管理棟56の基礎架台1aやガソリンスタンド57及び料金所58の基礎鉄筋及び金属製燃料タンク71及び配管は等電位ボンディングされ、要所には電流センサー6が配置されている。また、管理棟56内にはノイズ集中監視センター59が設けられ、静電気センサー用監視装置60、通信・ネットケーブル用監視装置61、分電盤・電源センサー用監視装置62及びビル鉄骨センサー用監視装置63が設置されている。そして、各フロアに設置された分電盤64、静電気対策フロアマット65、フリーアクセス66及びパーテーション67に流れるノイズ電流を監視できるようにされている。   FIG. 10 shows highway parking according to the present invention. The management building 56 of the reinforced concrete structure adjacent to the gas station 57 and the toll booth 58 is subjected to earthquake resistance and seismic isolation measures. The fuel tank 71 and the piping are equipotentially bonded, and the current sensor 6 is disposed at a key point. In addition, a noise concentration monitoring center 59 is provided in the management building 56. The electrostatic sensor monitoring device 60, the communication / net cable monitoring device 61, the distribution board / power supply sensor monitoring device 62, and the building steel frame sensor monitoring device. 63 is installed. The noise current flowing in the distribution board 64, the antistatic floor mat 65, the free access 66, and the partition 67 installed on each floor can be monitored.

図11は本発明に係る空港を示す。空港敷地の周囲には避雷針11が設置されると共に、飛行機69の滑走路68を構築する全ての鉄骨及び鉄筋と、隣接した管理棟(鉄骨構造ビル・鉄筋コンクリート製のビル)56や官制塔70を構築する全ての鉄骨及び鉄筋(金属製配管を含む)とは電気的に接続されている。すなわち、空港敷地内の鉄骨ビル・鉄筋コンクリート製の構造物を構築する全ての鉄骨及び鉄筋と、これら構造物に隣接した金属製燃料タンク71、鉄骨構造ビル・鉄筋コンクリート製のビルを構築する全ての鉄骨及び鉄筋(金属製配管を含む)とが電気的に接続され等電位ボンディングされ、基礎架台1aを含む鉄筋コンクリート内に埋設される鉄筋を大地に埋設された基礎杭35の基礎鉄筋に電気的に接続し、この基礎杭35から雷、静電気、電磁波によるノイズ電流を大地に流すことができるようにされている。   FIG. 11 shows an airport according to the present invention. Lightning rods 11 are installed around the airport site, and all the steel frames and reinforcing bars that make up the runway 68 of the airplane 69, as well as the adjacent management building (steel structure building and reinforced concrete building) 56 and government tower 70 are installed. All steel frames and reinforcing bars (including metal pipes) to be constructed are electrically connected. That is, all steel frames and reinforcing bars that construct steel frame buildings and reinforced concrete structures in the airport premises, and metal fuel tanks 71 adjacent to these structures, all steel frames that construct steel structure buildings and reinforced concrete buildings And rebar (including metal pipes) are electrically connected and equipotentially bonded, and the rebar embedded in the reinforced concrete including the foundation frame 1a is electrically connected to the foundation rebar of the foundation pile 35 embedded in the ground In addition, a noise current caused by lightning, static electricity, and electromagnetic waves can flow from the foundation pile 35 to the ground.

鉄筋コンクリート内に埋設される鉄筋と型枠止め用の金属製セパレータとを導電性金属体を介して電気的に接続する方法を模式的に示す斜視図である。It is a perspective view which shows typically the method of electrically connecting the reinforcement embed | buried in a reinforced concrete and the metal separator for a formwork via a conductive metal body. セパレータを模式的に示す斜視図である。It is a perspective view which shows a separator typically. 本発明に係るビルを模式的に示す説明図である。It is explanatory drawing which shows the building concerning this invention typically. 本発明に係るフロア天井内を模式的に示す要部斜視図である。It is a principal part perspective view which shows the inside of the floor ceiling which concerns on this invention typically. 本発明に係るビルフロアを模式的に示す説明図である。It is explanatory drawing which shows the building floor which concerns on this invention typically. 本発明に係るビルを模式的に示す説明図である。It is explanatory drawing which shows the building concerning this invention typically. 本発明に係る立体駐車場を模式的に示す説明図である。It is explanatory drawing which shows typically the multistory parking lot which concerns on this invention. 本発明に係る基礎杭を模式的に示す説明図である。It is explanatory drawing which shows the foundation pile which concerns on this invention typically. 本発明に係るビルの耐震・免震基礎を模式的に示す斜視図である。It is a perspective view which shows typically the earthquake-proof and seismic isolation base of the building concerning this invention. 本発明に係る高速道路パーキングを模式的に示す説明図である。It is explanatory drawing which shows typically the highway parking which concerns on this invention. 本発明に係る空港を模式的に示す説明図である。It is explanatory drawing which shows typically the airport which concerns on this invention.

符号の説明Explanation of symbols

1 鉄筋コンクリート
1a 型枠板
1b 基礎架台
2 縦鉄筋
3 梁鉄筋
4 セパレータ
5 導電性金属板(導電性金属体)
6 電流センサー
7 クーラー
8 キュービクル(受変電設備)
9 看板
10 水槽
10a水槽架台(アングル)
11 避雷針
12 アンテナ
13 排煙ダクト
14 排煙ダクト吊り金具
15 火災報知器
16 電子掲示板
17 スプリンクラー
17aスプリンクラー配管
18 吊りボルト
18a吊りボルト連結金具
19 静電気対策マット
20 ノイズカウンター
20a警報器(パトライト)
21 フリーアクセス
22 フロア支持束
23 床鉄筋
24 アースケーブル
25 金属配管
26 マイナスイオン発生照明器
27 スピーカー
27aスピーカー支持バー
28 監視カメラ
28a監視カメラ支持バー
29 インサート
30 エレベーター
31 レール
32 レール支持金具
33 ケーブル支持アングル
34 屋外ケーブル用メッセンジャーワイヤー
35 基礎鉄骨又は基礎杭(スパイラル筋)
36 底板
37 アースバー
38 耐震金具
39 フリーアクセス支柱
40 アース付コンセントボックス
41 床鉄筋結束金具
42 コンクリート骨材(トルマリン鉱石又はレキ岩)
43 天井板
44 天井板支持ボルト
45 電線
46 電線吊りラック
47 鉄骨柱
48 ノイズ監視盤
49 耐震・免震用ダンパー
50 耐震・免震用積層ゴム
51 耐震・免震用ボール
52 屋外照明塔
53 テレビカメラ(照明付CCDカメラ)
54 光ケーブル
55 テレビ(一般テレビ又は監視用モニターテレビ)
56 管理棟(耐震・免震対策ビル)
57 ガソリンスタンド
58 料金所
59 ノイズ集中監視センター
60 静電気センサー用監視装置
61 通信・ネットケーブル用監視装置
62 分電盤・電源センサー用監視装置
63 ビル鉄骨センサー用監視装置
64 分電盤
65 静電気対策フロアマット
66 フリーアクセス
67 パーテーション
68 滑走路
69 飛行機
70 官制塔
71 金属製燃料タンク
DESCRIPTION OF SYMBOLS 1 Reinforced concrete 1a Formwork board 1b Foundation stand 2 Vertical reinforcement 3 Beam reinforcement 4 Separator 5 Conductive metal plate (conductive metal body)
6 Current sensor 7 Cooler 8 Cubicle (Substation equipment)
9 Signboard 10 Water tank 10a Water tank stand (Angle)
11 Lightning rod 12 Antenna 13 Smoke duct 14 Smoke duct hanging bracket 15 Fire alarm 16 Electronic bulletin board 17 Sprinkler 17a Sprinkler piping 18 Suspension bolt 18a Suspension bolt coupling bracket 19 Antistatic mat 20 Noise counter 20a Alarm (patlight)
21 Free access 22 Floor support bundle 23 Floor rebar 24 Ground cable 25 Metal piping 26 Negative ion generation illuminator 27 Speaker 27a Speaker support bar 28 Monitoring camera 28a Monitoring camera support bar 29 Insert 30 Elevator 31 Rail 32 Rail support bracket 33 Cable support angle 34 Messenger wire for outdoor cable 35 Foundation steel frame or foundation pile (spiral muscle)
36 Bottom plate 37 Ground bar 38 Seismic bracket 39 Free access support 40 Grounded outlet box 41 Floor rebar binding bracket 42 Concrete aggregate (tourmaline ore or repellent rock)
43 Ceiling plate 44 Ceiling plate support bolt 45 Electric wire 46 Electric wire suspension rack 47 Steel column 48 Noise monitoring panel 49 Anti-seismic and seismic isolation damper 50 Seismic and seismic isolation laminated rubber 51 Seismic and seismic isolation ball 52 Outdoor lighting tower 53 TV camera (Lighting CCD camera)
54 Optical cable 55 Television (general television or monitor television for monitoring)
56 Management Building (Seismic / Seismic Isolation Building)
57 Gas station 58 Toll booth 59 Noise concentration monitoring center 60 Monitoring device for static electricity sensor 61 Monitoring device for communication / net cable 62 Monitoring device for distribution panel / power supply sensor 63 Monitoring device for building steel sensor 64 Distribution board 65 Static electricity countermeasure floor Mat 66 Free access 67 Partition 68 Runway 69 Airplane 70 Government tower 71 Metal fuel tank

Claims (4)

プラント、可燃物コンビナートで使用する金属製タンク・金属製配管と基礎鉄筋及び、無線基地、高速道路、ダム、空港滑走路、鉄道高架道、倉庫、港湾設備等の敷地内鉄骨ビル・鉄筋コンクリート製の構造物を構築する全ての鉄骨及び鉄筋と、当該構造物に隣接した鉄骨構造ビル・鉄筋コンクリート製のビルを構築する全ての鉄骨及び鉄筋(金属製配管を含む)とを電気的に接続する等電位ボンディング工法であって、基礎架台を含む鉄筋コンクリート内に埋設される鉄筋と型枠止め用の金属製セパレータとを導電性金属体を介して電気的に接続すると共に、この鉄筋を大地に埋設された基礎杭の基礎鉄筋に電気的に接続し、この基礎ベース又は基礎杭から雷、静電気、電磁波によるノイズ電流を大地に流すことを特徴とする等電位ボンディング工法。   Metal tanks and pipes and basic rebars used in plants, combustibles complexes, radio bases, expressways, dams, airport runways, railway elevated roads, warehouses, harbor facilities, etc. An equipotential that electrically connects all the steel frames and reinforcing bars that make up the structure and all the steel frames and reinforcing bars (including metal pipes) that make up the steel structure building and reinforced concrete building adjacent to the structure. This is a bonding method, in which the reinforcing bars embedded in the reinforced concrete including the foundation frame are electrically connected to the metal separator for fixing the formwork via a conductive metal body, and the reinforcing bars are embedded in the ground. An equipotential bonder characterized in that it is electrically connected to the foundation rebar of the foundation pile, and noise current caused by lightning, static electricity, and electromagnetic waves flows from the foundation base or foundation pile to the ground. Packaging method. ビルの基礎鉄筋と鉄骨柱とを導電性金属体を介して電気的に接続すると共に、キュービクル、分電盤、屋上看板、水槽架台、壁面看板、ビルフロア、天井内配管、電線ラック、天井吊り金具及びビルフロア内に配置された機器を導電性金属アングルと導電性金属体を介して基礎鉄筋に電気的に接続することを特徴とする請求項1記載の等電位ボンディング工法。   The building's foundation rebar and steel column are electrically connected via a conductive metal body, as well as cubicles, distribution boards, rooftop signs, aquarium stands, wall signs, building floors, ceiling piping, electric wire racks, and ceiling suspensions. 2. The equipotential bonding method according to claim 1, wherein the metal fitting and the device arranged in the building floor are electrically connected to the foundation rebar through the conductive metal angle and the conductive metal body. 鉄筋コンクリートの骨材として、トルマリン岩石又は天然レキ岩石(二酸化ケイ素を90%以上含む)を用いると共に、当該岩石の粉末を混合した塗料を用いてコンクリート壁内及びフロアパーテーション、天井ボード、金属製ボックスに塗布することで、電磁波を吸収させ、ビル又はフロア内にマイナスイオンを発生させることを特徴とする請求項1又は請求項2記載の等電位ボンディング工法。   As aggregate of reinforced concrete, tourmaline rock or natural reki rock (containing 90% or more of silicon dioxide) is used, and in the concrete wall and floor partition, ceiling board, metal box using paint mixed with rock powder. The equipotential bonding method according to claim 1 or 2, wherein by applying, the electromagnetic wave is absorbed and negative ions are generated in a building or a floor. 電流センサーを、基礎杭、鉄筋、鉄骨及びアースケーブルに取付けて、直撃雷ノイズ電流・静電気ノイズ電流・電磁波ノイズ電流が流れたか又は漏電したかどうかを監視すると共に、基礎杭の内部空洞に、テレビカメラを取り付け、基礎杭内部の状況とノイズ状況をビル内監視センターで監視し、監視データを通信回線を使用し、リアルタイムに遠隔地でも監視し、ノイズ破壊の影響で、電気設備・通信設備・信号設備と、ビル構造及び基礎杭内に発生した亀裂やひび割れを補修工事することを特徴とする請求項1乃至請求項3のいずれかに記載の等電位ボンディング工法。   A current sensor is attached to the foundation pile, rebar, steel frame and ground cable to monitor whether direct lightning noise current, electrostatic noise current, electromagnetic noise current has flowed or leaked, and in the internal cavity of the foundation pile, Install the camera, monitor the situation inside the foundation pile and the noise status at the monitoring center in the building, monitor the monitoring data in the remote area in real time, and influence the electrical / communication equipment / The equipotential bonding method according to any one of claims 1 to 3, wherein repair work is performed on signal equipment and cracks or cracks generated in the building structure and foundation pile.
JP2005182302A 2005-06-22 2005-06-22 Equipotential bonding construction method Pending JP2007006583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182302A JP2007006583A (en) 2005-06-22 2005-06-22 Equipotential bonding construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182302A JP2007006583A (en) 2005-06-22 2005-06-22 Equipotential bonding construction method

Publications (1)

Publication Number Publication Date
JP2007006583A true JP2007006583A (en) 2007-01-11

Family

ID=37691634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182302A Pending JP2007006583A (en) 2005-06-22 2005-06-22 Equipotential bonding construction method

Country Status (1)

Country Link
JP (1) JP2007006583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145249A1 (en) * 2008-05-28 2009-12-03 Kanemura Takayasu Discharge noise absorbing element, discharge gap-type arrester utilizing the element, discharge bouncing wave avoiding circuit, and noise avoiding box
CN102692566A (en) * 2011-03-24 2012-09-26 上海宝钢工业检测公司 Method for detecting equipment equipotential bonding

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138655U (en) * 1983-03-04 1984-09-17 丸井産業株式会社 Construction separator mounting bracket
JPS61200476A (en) * 1985-02-28 1986-09-05 Kinki Keisokki Kk High speed developing and automatic recording apparatus therefor
JPS6264132U (en) * 1985-10-11 1987-04-21
JPH03286069A (en) * 1990-03-31 1991-12-17 Shinichi Nogami Separator fixer for reinforced concrete placing form
JPH04185229A (en) * 1990-11-20 1992-07-02 Mitsubishi Kasei Corp Leak alarm
JPH101350A (en) * 1996-06-17 1998-01-06 Tokai Shoji Block Kogyo Kk Concrete product
JP2003027006A (en) * 2001-07-23 2003-01-29 Kikusui Chemical Industries Co Ltd Coating material composition
JP2003208929A (en) * 2002-01-16 2003-07-25 Tadahiro Omi Earthing system of building
JP2004064276A (en) * 2002-07-26 2004-02-26 System K:Kk Remote monitoring system
JP2004168986A (en) * 2002-11-22 2004-06-17 Ariyasu Kurimoto Electromagnetic wave-shielding coating
JP2004183426A (en) * 2002-12-06 2004-07-02 Kajima Corp Structural skeleton, grounding structure using structural skeleton, and its construction method
JP2004258003A (en) * 2003-02-28 2004-09-16 Techno Success Kk System and method for detecting line-to-ground fault accident of transmission line
JP2005062080A (en) * 2003-08-19 2005-03-10 Toko Electric Corp Lightening stroke current observation device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138655U (en) * 1983-03-04 1984-09-17 丸井産業株式会社 Construction separator mounting bracket
JPS61200476A (en) * 1985-02-28 1986-09-05 Kinki Keisokki Kk High speed developing and automatic recording apparatus therefor
JPS6264132U (en) * 1985-10-11 1987-04-21
JPH03286069A (en) * 1990-03-31 1991-12-17 Shinichi Nogami Separator fixer for reinforced concrete placing form
JPH04185229A (en) * 1990-11-20 1992-07-02 Mitsubishi Kasei Corp Leak alarm
JPH101350A (en) * 1996-06-17 1998-01-06 Tokai Shoji Block Kogyo Kk Concrete product
JP2003027006A (en) * 2001-07-23 2003-01-29 Kikusui Chemical Industries Co Ltd Coating material composition
JP2003208929A (en) * 2002-01-16 2003-07-25 Tadahiro Omi Earthing system of building
JP2004064276A (en) * 2002-07-26 2004-02-26 System K:Kk Remote monitoring system
JP2004168986A (en) * 2002-11-22 2004-06-17 Ariyasu Kurimoto Electromagnetic wave-shielding coating
JP2004183426A (en) * 2002-12-06 2004-07-02 Kajima Corp Structural skeleton, grounding structure using structural skeleton, and its construction method
JP2004258003A (en) * 2003-02-28 2004-09-16 Techno Success Kk System and method for detecting line-to-ground fault accident of transmission line
JP2005062080A (en) * 2003-08-19 2005-03-10 Toko Electric Corp Lightening stroke current observation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145249A1 (en) * 2008-05-28 2009-12-03 Kanemura Takayasu Discharge noise absorbing element, discharge gap-type arrester utilizing the element, discharge bouncing wave avoiding circuit, and noise avoiding box
CN102692566A (en) * 2011-03-24 2012-09-26 上海宝钢工业检测公司 Method for detecting equipment equipotential bonding

Similar Documents

Publication Publication Date Title
JP6153000B2 (en) Surge current backflow prevention circuit and counter system with tripolar SPD element
JP2010054440A (en) Method for inspecting on-site surge current discharge experiment to equipotential connection and basic pile grounded plate, discharge testing device, and discharge monitoring method
WO2005106150A1 (en) Building structure for preventing infiltration of noise
CN104993440A (en) Lightning-protection manual grounding system and construction method by utilizing structure steel bar externally-connected downlead wire
JP2007006583A (en) Equipotential bonding construction method
CN219798217U (en) GNSS displacement monitoring station
KR100658213B1 (en) Ground connection apparatus of electric institution using houses
US8373065B2 (en) Lightning protection system and method
Switzer Practical guide to electrical grounding
CN212908136U (en) Combined grounding system of sewage treatment plant
CN216921612U (en) Assembly type enclosure easy for temporary pipeline installation
CN207812682U (en) A kind of constructing structure of ground connection pre-embedded steel slab
WO2012087145A1 (en) Method for building a site for a telecommunication device
CN113839311B (en) Lightning protection method for multifunctional intelligent pole
JP2001227199A (en) Earth bonding by skeleton of structure
CN110242050B (en) Lightning protection grounding construction method for vertical structure of fabricated building
CN216355298U (en) Multifunctional intelligent rod lightning protection system
KR20050093459A (en) Grounding apparatus as one body with telegraph pole
Okunyomi STRUCTURAL HEALTH MONITORING OF A LATTICE TOWER
CN201226176Y (en) Earthquake-proof device
JP4919793B2 (en) Grounding device, grounding equipment, and method of manufacturing grounding device
JP4050929B2 (en) Lightning protection method for electrical facilities having terminal units
Rowland Industrial system grounding for power, static, lightning, and instrumentation, practical applications
CN110161557A (en) A kind of movable integral type seismic observatory
Wahba Tower Design, Erection, and Maintenance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120118

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120316