WO2009145249A1 - Discharge noise absorbing element, discharge gap-type arrester utilizing the element, discharge bouncing wave avoiding circuit, and noise avoiding box - Google Patents

Discharge noise absorbing element, discharge gap-type arrester utilizing the element, discharge bouncing wave avoiding circuit, and noise avoiding box Download PDF

Info

Publication number
WO2009145249A1
WO2009145249A1 PCT/JP2009/059756 JP2009059756W WO2009145249A1 WO 2009145249 A1 WO2009145249 A1 WO 2009145249A1 JP 2009059756 W JP2009059756 W JP 2009059756W WO 2009145249 A1 WO2009145249 A1 WO 2009145249A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
noise
circuit
ground
electronic device
Prior art date
Application number
PCT/JP2009/059756
Other languages
French (fr)
Japanese (ja)
Inventor
貴康 金村
Original Assignee
Kanemura Takayasu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41377119&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009145249(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kanemura Takayasu filed Critical Kanemura Takayasu
Publication of WO2009145249A1 publication Critical patent/WO2009145249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • the present invention relates to a discharge noise absorbing element used for protecting various electrical devices from discharge noise caused by lightning, static electricity, electromagnetic waves, magnetism, etc., a discharge gap type lightning arrester using the same, a discharge bounce wave avoidance circuit, and a noise avoidance box It is about.
  • the cause is that the filter circuit of the power circuit in the board and the lightning arrester for lightning protection are not connected in parallel.
  • IEC standard 10/350 ⁇ sec large capacity (100 KV) direct lightning lightning arrester and an IEC standard 8/20 ⁇ sec induction lightning arrester in a distribution board installed on the rooftop of a building, Although some lightning currents and noise in the frequency band can be removed, electrostatic noise of 200V to 1000V cannot be stopped by the filter circuit.
  • the line to be discharged is calculated from the current and the line resistance when discharging from the lightning arrester line connected to all cables to the ground cable. It can be seen that the longer the is, the more the reflected wave is amplified and the noise is transmitted to adjacent cables.
  • the circuit board is not protected because the lightning arrester does not react when the voltage rises when switching the electric circuit, arcing or glowing. is there. Therefore, the International Electrotechnical Commission IEC standard (10/350, 8/20, 1.2 / 50 ⁇ sec) class ⁇ 1 ⁇ lightning arrester (10/350) equipped with an element that responds when the response start voltage is 1500 V or higher is an electronic circuit. Although it may be introduced into the substrate, the element itself cannot be stored in the substrate. For this reason, the class ⁇ 1 ⁇ lightning arrester is generally attached to a distribution board. However, it has also been reported that this lightning arrester did not react at a current of 1499 V, for example. In other words, it is no exaggeration to say that a lightning arrester structure that does not respond to noise of 1500 V or less is a globally unified standard.
  • the present inventor conducted intensive research to apply the spark plug discharge technology used in gasoline engines and the like to a noise avoidance circuit connected to a lightning arrester with a cable.
  • the engine spark plug does not cause the electronic components to malfunction due to the reflected noise during discharge of the spark plug according to “International Standard GISPR12 (International Commission on Radio Interference)”. So that it is standardized. Therefore, it is desirable to employ a spark plug-like discharge technique for the reflected wave noise avoidance circuit.
  • Circuits that do not have a reflected wave absorption element connected serve as an antenna that emits noise, and the cable is connected
  • Malfunctions occur due to noise flowing in the lead wires in the circuit board between electrical devices.
  • the noise current flowing in the ground cable during discharge and the current that bounces off the power communication cable rides on the electric wire, communication line, and ground line and enters inside and outside the board.
  • the element of the lightning arrester of class ⁇ 2 ⁇ of the International Electrotechnical Commission IEC standard (10/350, 8/20, 1.2 / 50 ⁇ sec) (8/20 ⁇ sec) is mainly composed of zinc oxide, for example, coastal areas
  • IEC standard International Electrotechnical Commission IEC standard
  • a method of connecting a class ⁇ 2 ⁇ lightning arrester (8/20 ⁇ sec) and a class ⁇ 3 ⁇ (1.2 / 50) lightning arrester in series and in parallel was developed in EU (2004).
  • Japan the present inventor disclosed in Japanese Patent Application Laid-Open Nos. 2001-169460, 2001-249131 and 4048314 as a lightning frequency band of 500,000 to 1 million volts only by a lightning arrester. We have proposed lightning protection technology against the above high-voltage noise.
  • the filter in a noise filter that uses only a filter that combines a coil and a resistor or a coil and a capacitor, the filter itself generates heat, the substrate temperature rises, and malfunctions of electronic components such as capacitors, transistors, ICs, LSIs, etc. Not only is it possible to invade, but the heated filter exceeds the Curie point and deactivates the magnetic force. This deactivation of magnetic force also causes noise to enter the substrate.
  • the present invention has been made in view of the above-described problems of the prior art, and its purpose is not only for building inside / outside / site / factory / plant / public infrastructure facilities, but also for electric wires for automobiles, ships, airplanes, etc. ⁇
  • Discharge noise absorbing element capable of avoiding current and voltage noise in all frequency bands such as lightning, static electricity, electromagnetic waves, magnetism, etc. to electrical equipment connected to communication lines and signal lines, and discharge gap type lightning arrester using the same
  • the present invention also provides a discharge bounce wave avoidance circuit and a noise avoidance box.
  • the discharge noise absorbing element according to claim 1 of the present invention is mainly composed of zinc oxide (ZnO: oxide semiconductor), clay (rare earth oxide), antimony (dopant), and zirconia (heat-resistant ceramic material). A fine powder kneaded product to which is added is sintered.
  • a discharge noise absorbing element obtained by adding a natural rock containing silicon dioxide (SiO 2 ) to the discharge noise absorbing element according to the first aspect.
  • the discharge gap type lightning arrester according to claim 3 is characterized in that at least a pair of discharge gap terminals are accommodated in the discharge noise absorbing element according to claim 1 or claim 2.
  • the discharge bounce wave avoiding circuit according to claim 4 has a pair of discharge terminals, the tips of which are formed in a spherical shape or a convex shape, housed in an insulated case, and the tips are spaced apart from each other.
  • the positive terminal (line electrode) is used as the negative terminal and the negative electrode (ground electrode) as the other terminal.
  • Different discharge elements and at least two discharge elements connected in series as a first discharge circuit, further connected in parallel with the first discharge circuit as a second discharge circuit, and a positive electrode of the second discharge circuit
  • the discharge noise absorbing element according to claim 1 or 2 is interposed between the negative electrode and the negative electrode, and a rebound wave generated at the ground earth electrode during discharge is absorbed. That.
  • the discharge bounce wave avoiding circuit according to claim 5 is configured such that a line terminal of a lightning arrester is connected in parallel to both the positive and negative poles of a noise filter configured by connecting a coil and a resistor or connecting a coil and a capacitor. Noise current discharged to the negative pole flows through the frame, arc discharge and glow discharge generated when the switch is turned off are protected by the noise filter, and voltage and high frequency noise exceeding static electricity are avoided by a lightning arrester.
  • the noise avoidance box according to claim 6 fixes at least three layers of the electronic device mounting base board in the metal box, the lowermost layer is an insulating board, the middle layer is a copper plate or a metal ground plate, and the uppermost layer is insulated.
  • the board is provided with an equipotential ground bar connected to the grounding ground cable in the box frame to prevent noise current from flowing from the ground cable to the electronic device.
  • the commercial power source, the electronic device storage space, and the cable breaker are partitioned by a metal partition plate, and the partition plate and the electronic device mounting base board are connected to a shielding ground.
  • the electronic device mounting baseboard mounted device is surrounded by a wire mesh shield.
  • a magnetic body is attached to an outlet plug of an electronic device, a high frequency filter is connected in series to a power outlet, and a commercial power supply breaker is an IEC standard 50 KA (kiloampere) corresponding to a large current. ), 10/350 ⁇ sec or 40 KA (kiloampere), 20/20 ⁇ Ssec, 20/20 ⁇ s lightning arrester for 1.2 / 50 ⁇ sec, and a high frequency noise filter of gigahertz band (GHz) are connected in parallel.
  • a noise avoidance box is a communication cable connected to the noise avoidance box according to any one of claims 6 to 8, wherein an electric wire is wound around a magnetic body shaped like a mounting bracket.
  • An electromagnet is attached, a switch circuit is connected to the primary coil side of the electromagnet, and the magnetic noise of the electromagnet is applied to the communication cable by the switch circuit in response to an alarm signal from the computer monitoring software (antivirus software). It is characterized by destroying spam signals that are generated and trying to penetrate inside the computer.
  • the present invention has the following excellent effects.
  • Noise from motors, switch circuits and converters, and electromagnetic noise from wireless LANs and mobile phones can be directly applied to ultra-high frequency band filters (coils and resistors or coils and capacitors), gap type discharge arresters and zinc oxide type arresters. It can be protected by a parallel connection filtering avoidance circuit and a shielding filtering earth grounding avoidance circuit box.
  • a lightning arrester is housed in the air gap of the element around which the coil is wound, and is housed in the power supply base as a parallel circuit with the reflected wave absorption element of the discharge current, so that the space for housing the filter and the lightning arrester can be reduced to half that of the prior art.
  • Space saving can be achieved, the amount of heat generated from the filter can be reduced, and it can help to prevent global warming in a broad sense.
  • System circuits such as solar power generation, wind power generation, vibration power generation, etc. by defending the noise entry path to the electronic equipment stored in the storage box and providing an avoidance circuit that does not transmit noise from the box
  • the electronic device can be protected from currents and voltages in all frequency bands of lightning, static electricity, electromagnetic waves, and magnetic field noise entering the inverter / converter circuit in the electronic device adjacent to the motor.
  • FIG. 1 shows the lightning arrester using the discharge noise absorption element which concerns on this invention is a perspective view
  • FIG. 2 is a front view.
  • A) is a perspective view which shows an example of a discharge noise element
  • (b) is sectional drawing which shows the basic composition of the gap type lightning arrester which concerns on this invention.
  • It is a front view which shows typically the lightning arrester which concerns on this invention.
  • It is a front view which shows typically the discharge rebound wave avoidance element which combined the reflected wave absorption resistor with the lightning arrester which concerns on this invention.
  • It is the circuit diagram which connected in series the discharge bounce wave avoidance element and gap type arrester which concern on this invention.
  • FIG. 3 is a circuit diagram in which a discharge bounce wave avoiding element and a gap type lightning arrester according to the present invention are connected in series, and a pair of these are connected in parallel. It is the circuit diagram which connected the discharge bounce wave avoidance element and coil type filter which concern on this invention in parallel. It is the circuit diagram which connected in parallel the discharge bounce wave avoidance element, coil type filter, and resistor which concern on this invention. It is a front view which shows typically the gap type lightning arrester which has arrange
  • FIG. 1A shows a lightning arrester using a discharge noise absorbing element according to the present invention
  • FIG. 1A is a perspective view
  • FIG. 1B is a front view
  • FIG. 2A is a perspective view showing an example of a discharge noise element
  • FIG. Fig. 3 is a cross-sectional view showing the basic configuration of the gap type arrester according to the present invention
  • Fig. 3 is a front view schematically showing the arrester according to the present invention
  • Fig. 4 is a discharge in which a reflected wave absorption resistor is combined with the arrester according to the present invention.
  • FIG. 5 is a front view schematically showing a bounce wave avoiding element
  • FIG. 5 is a front view schematically showing a bounce wave avoiding element
  • FIG. 5 is a circuit diagram in which a discharge bounce wave avoiding element according to the present invention and a gap type arrester are connected in series
  • FIG. 6 is a discharge bounce wave avoiding element according to the present invention and a gap type
  • FIG. 7 is a circuit diagram in which a discharge bounce wave avoiding element according to the present invention and a coil type filter are connected in parallel
  • FIG. 8 is a circuit diagram in which a discharge bounce wave is avoided in accordance with the present invention.
  • FIG. 9 is a front view schematically showing a gap type lightning arrester in which discharge elements having different ratings are arranged in parallel
  • FIG. 10 is a discharge rebound wave avoiding element and a coil type according to the present invention.
  • FIG. 11 is a perspective view showing a surge current avoidance element that also serves as a lightning arrester and a coil type filter according to the present invention
  • FIG. 12 is a circuit diagram of a reflected wave absorption circuit during discharge.
  • FIG. 13 is a graph analyzing the theoretical current at each point of the plug cord
  • FIG. 14 is a graph showing the noise level due to discharge of the spark plug
  • FIG. 15 is a front view schematically showing the configuration of the noise avoidance box according to the present invention.
  • 16 is a perspective view showing a method of shielding an electronic device on a circuit board
  • FIG. 17 is a circuit diagram showing a configuration of a distribution board provided with a reflected wave absorption circuit at the time of discharge according to the present invention
  • FIG. 19 is a configuration diagram schematically showing an example in which all the noise countermeasure methods according to the present invention are applied to a wireless LAN relay station, and FIG. 20 relates to the present invention. It is a circuit diagram which shows the structure of an outlet box and an extension cable.
  • a discharge noise absorbing element 3 serving as an insulator housing case for a discharge gap type arrester 4 according to the present invention is powdered natural leechite (SiO 2 ) containing 90% or more of silicon dioxide. And then pulverizing it into a fine powder kneaded mixture of zinc oxide (ZnO), which is an oxide semiconductor having an electromagnetic shielding function, clay, which is a rare earth oxide, antimony as a dopant, and zirconia, which is a heat-resistant ceramic material.
  • ZnO zinc oxide
  • the discharge noise absorbing element 3 may be composed mainly of zinc oxide (ZnO).
  • As the discharge terminal 1 copper, molybdenum, zirconia, or the like is used.
  • the pair of discharge terminals 1 is formed in a spherical or convex shape at the tip, and the rear end is connected to a metal electrode 2 such as copper, and the tips are separated from each other so as to face each other.
  • a cylindrical storage hole 3 a is formed in the discharge noise absorbing element (storage case) 3 to store the discharge terminal 1.
  • one terminal 1 is a positive electrode (line electrode)
  • the other terminal 1 is a negative electrode (ground electrode) G
  • the distance (gap) d of these is changed to change the response speed and response to various noises.
  • the gap type lightning arrester 4 having different start voltage / response start current or discharge withstand capability is used.
  • the shape of the discharge terminal 1 of a present Example was made into the cone shape or the cylinder by which the front-end
  • the gap type lightning arrester 4 is combined with a reflected wave absorbing resistor 6 to form a discharge rebound wave avoiding element 4A.
  • a discharge rebound wave avoiding element 4A at least two discharge rebound wave avoiding elements 4 ⁇ / b>
  • a and gap type surge arresters 4 are connected in series as a first discharge circuit C ⁇ b> 1, and as shown in FIG. 6, the first discharge circuit C ⁇ b> 1 is further reduced.
  • a circuit connected in parallel is a second discharge circuit C2, which is a discharge bounce wave avoiding circuit that absorbs a bounce wave generated at the ground earth electrode during discharge.
  • FIG. 7 shows a noise avoidance circuit 7 in which a discharge bounce wave avoiding element 4A and a coiled noise filter 5 are connected in parallel.
  • the coiled noise filter 5 takes a countermeasure against a surge current of low level noise, and a high level like lightning lightning. Noise surge current countermeasures can be taken by the discharge bounce wave avoiding element 4A.
  • FIG. 8 shows a gap type lightning arrester 4, a reflected wave absorbing resistor 6 and a coiled noise filter 5 connected in parallel, which can also be used as the noise avoidance circuit 7 according to the present invention.
  • the gap type lightning arrester 4 may have discharge terminals 1 having different ratings (sizes) arranged in parallel, and as shown in FIG. A coil-type noise filter 5 connected is accommodated as a surge current avoidance element 7, or as shown in FIG. 11, the discharge noise element 3 portion of the gap type lightning arrester 4 is used as a core, and an electric wire is wound around it. If the surge current avoiding element 7 also serving as the coil type noise filter 5 is used, the storage space can be reduced.
  • the discharge terminal 1 of the gap type lightning arrester 4 is a three-pole type, and the first pole is connected to the input terminal of the noise filter, the second pole is connected to the output terminal of the noise filter, and the third pole is connected to the ground pole terminal. All noise from low level noise that is induced to the outlet plug cable due to the noise from the noise, to intermediate level noise such as static noise, and high level noise such as lightning lightning can flow to the ground .
  • the reflected wave at the point P of the discharge gap of the discharge gap terminals Z A and the ignition coil Z B it is characteristic that it is very fast frequency current rise, first, an ignition coil ( When a reflection phenomenon occurs at point B on the ignition coil) Z B side, this reflected wave once propagates in the minus direction by the distance X and reaches the point P, and immediately returns to the point A on the ignition coil Z B side.
  • the reflected wave that reaches point A is reflected again at point A and reaches point B. This phenomenon is repeated indefinitely, and these sums are superimposed on the line, and it is considered that a steady state is established.
  • the reflected wave is proportional to the voltage when the resistance of the ground cable or line cable is large (the cable is long) even if the current is constant. It increases and becomes a radio wave transmitted from the antenna, and the same thing occurs in the substrate. Moreover, heat is generated only by the coil, and radio waves are transmitted only by the lightning arrester. Therefore, magnetic force is applied to the cable by the coil, the lightning arrester, and the permanent magnet to reduce noise, and the coil is attenuated by the resistor during discharge.
  • the cable must be protected by a coil-type noise filter and a lightning arrester, and a circuit that drops the noise flowing on the shielded board to the earth ground is required.
  • As the earth ground there are S ⁇ G (signal ground; earth in the substrate) and F ⁇ G (frame ground; earth of the housing).
  • the “return signal” of the power source and signals constituting the electronic circuit flows through S ⁇ G. That is, at least two electric wires are required to pass electricity, and in an electric circuit, one of them is grounded and shared as a “return line” of a power line / communication line.
  • F ⁇ G functions to ground the enclosure surrounding the electronic device to the ground and to release the leakage current from the power source to the ground.
  • the noise avoidance box 10 is made of metal, fixes at least three layers of the base board 9, the lowermost layer is an insulating board 9A, and the intermediate layer (electronic device mounting board 9B) is a copper plate.
  • a metal conductive plate and the uppermost layer is an insulating board 9A, and an equipotential ground bar 11a that is grounded (G) is provided on the box frame 8 to prevent noise from entering the electronic device 16.
  • the insulating board 9A is a metal plate coated with an insulating paint mixed with natural requistone (containing 90% silicon dioxide) made of wood, plastic, or powder. Then, the electronic device 16 attached to the electronic device attachment board 9B is surrounded by a mesh-shaped surrounding shield 17 formed by bending expanded metal or punching metal into a convex shape.
  • the noise avoidance box 10 has a natural energy utilization power source (solar light source) connected in parallel with the commercial power source 12 in order to enable transmission in any situation such as a disaster.
  • Power generation / wind power generation / vibration power generation) 31 power distribution device storage space 13B in which the power cable 12a, breaker 14 and livestock battery 29 are stored, mobile phone / wireless transmission / reception device 26, electronic HUB 27 for PC, etc.
  • the device storage space 13A is partitioned and provided by a metal shield plate 15, and the power cable 12a is connected in series with the first discharge circuit C1 and the second discharge circuit C2 configured by the gap type lightning arrester 4.
  • a discharge bounce wave avoiding circuit C3 that absorbs a bounce wave generated in the ground earth pole G during discharge is configured.
  • the power cable 12a is connected to the plus and minus poles of a coiled noise filter 7 or 21 configured by connecting the coil 5 and the resistor 6 in parallel or connecting the coil 5 and the capacitor 6 in parallel via the breaker 14.
  • the line terminal of the discharge bounce wave avoidance circuit C3 is connected in parallel, and the noise current discharged to the negative pole of the lightning arrester 4 flows to the frame (F ⁇ G).
  • Arc discharge and glow discharge generated when the device is switched off are
  • the coil type noise filter 7 or 21 is used to prevent the voltage and high frequency noise exceeding static electricity with the gap type lightning arrester 4.
  • the gap type lightning arrester 4 is also interposed between the power source side and the outlet side of the filter 21.
  • a plurality of lightning arresters 4 with a low / high frequency noise filter 21 and a ground cable 11 are connected to the power cable 12a drawn from the commercial power supply 12 via the ferrite core 19.
  • a coiled noise filter 21 is provided between the power source 12 and the power outlet 20.
  • the breaker 14 has a IEC standard 50KA (kiloampere) 10/350 ⁇ sec or 40KA (kiloampere) 8/20 ⁇ Ssec, 1.2 / 50 ⁇ sec compatible 20KA (kiloampere) gap type lightning arrester for high current. 4 and a coil type high frequency noise filter 21 having a gigahertz band (GHz) are connected in parallel.
  • the electronic device 16 in the electronic device storage space 13A is surrounded by the mesh-shaped surrounding shield 17 described above.
  • the optical communication cable 28 inserted from the outside into the noise avoidance box 10 is connected to the optical communication cable HUB 27A via the discharge gap type arrester 4.
  • a cable branched from the optical communication cable HUB 27A is connected to the PC HUB 27B in the electronic device storage space 13A.
  • the discharge gap type lightning arrester 4 and the ferrite core 19 are also attached to this communication cable.
  • a coiled noise filter 5 in which a resistor 6 is connected in parallel is provided between the PC HUB 27B and the ground cable 11.
  • a gap type lightning arrester 4 corresponding to 10 KA (kiloamperes) to 5 A (amperes) and a noise filter 21 in the middle frequency band from 1000 MHz to 500 MHz are attached, and from a low level to a high level.
  • a discharge bounce wave absorption circuit C3 are connected to the cable 11, and the flow of the discharge bounce wave into all of the connected cables and the electronic device board connected to these cables. It is supposed to stop.
  • the wristband 22 is connected to the primary side of the discharge terminal 1 and the ground cable 11 is connected to the secondary side of the discharge terminal 1 to protect the electronic equipment from static electricity generated by the operator during the installation work.
  • a counter 30 is attached to the ground cable 11 to count the number of lightning strikes and the number of noise occurrences.
  • the communication cable connected to the noise avoidance box 10 is formed by forming an electromagnet 19 by winding an electric wire on a magnetic body shaped like a circular or substantially U-shaped mounting bracket (not shown). Attach and connect a switch circuit to the primary coil side of the electromagnet 19, and generate magnetic noise of the electromagnet in the communication cable by the switch circuit according to the alarm signal from the computer monitoring software (antivirus software). It is theoretically possible to destroy spam signals that try to break into At that time, it can be a monitoring system in which the sub-system can be operated.
  • a class ⁇ 1 ⁇ lightning arrester (10/350 ⁇ sec) and a low frequency band noise filter are arranged in the distribution board space 13B in the noise avoidance box 10 to commercialize electronic equipment.
  • a medium / high frequency filter and a lightning arrester (8/20 1.2 / 50 ⁇ sec) are housed to protect in front of the outlet.
  • Corresponding coil type filter 21 and lightning arrester 4 (series / parallel connection), that is, a triple lightning arrester 4 and filter 21 take measures, and electronic device 16 is surrounded by wire mesh shield 17 and electronic device 16 is attached to board 9B
  • excess current such as electromagnetic noise, static electricity, lightning, magnetic field noise and eddy currents flow from the board to the ground, and the cable
  • the ferrite core 19 is protected by attaching the ferrite core 19 to the primary side of the breaker, the primary side of the outlet 18, and the power plug 18a of the electronic device 16 and the connector side of the wireless / communication cable.
  • each transmission antenna 24A is shielded by the noise avoidance box 10, and the antenna cable 24C and the wireless / mobile phone
  • the receiving antenna 24 ⁇ / b> B is connected to the electronic device 16 through the ferrite core or the electromagnet 19.
  • the ferrite core 19 is arranged and connected to each wireless LAN relay station 23 and the portion to be pulled into the electronic device storage box 10.
  • a ferrite core 19 is also attached to the outlet plug 18 of the electronic device 16, and the lightning arrester 4 and the coil type high frequency noise filter 21 are connected in series to the commercial power supply 12 to the power outlet 20.
  • the electronic device storage box 10 is partitioned by the shield plate 5 into an electronic device storage space 13A and a power distribution device storage space 13B.
  • FIG. 20 shows an outlet box 10a that houses the outlet 18, and the C3 circuit comprising a plurality of lightning arresters 4 in parallel and in series is connected to the primary side and the secondary side of the coil type high frequency noise filter 21, respectively. And by attaching the ferrite core 19 to the beginning and the end of the extension cable of the outlet plug 18a of the electronic equipment such as the PC HUB 27B or the PC, it is possible to prevent all noises from low to high. In addition, heat generation of the coil can be prevented.
  • the noise avoidance box 10 can also be applied in a 19-inch rack for optical communication servers. It can be applied between floors in buildings, between buildings in a site, or a transmission station such as a cable TV and a relay box or space. It can also be used for development stations. Moreover, the radiator which cools the heat
  • the gist of the present invention is that the main distribution board protects electronic devices from large-capacity lightning noise, and the branched distribution panel and low-power box protects from medium-capacity lightning, static electricity, and low-frequency noise, and a lightning arrester.
  • the outlet with a noise filter protects against ultra-high frequency, high-frequency noise and intermediate lightning noise.
  • the base storage box is a 19-inch rack storage type in practical use. Therefore, all boxes including the rack have wrist straps for static electricity generated by workers and ferrite cables (magnets) passed through all cables. Connect to the connector. That is, For example, even if the noise filter and lightning arrester on the main distribution board are destroyed, the branched distribution board prevents the inflow of noise.

Abstract

Provided is a discharge noise absorbing element, which can avoid the noises of currents and voltages of all frequency bands of thunder, static electricity, electromagnetic wave and magnetism to electric devices connected with electric wires, communication wires and signal wires.  Also provided are a discharge gap-type arrester utilizing the discharge noise absorbing element, and a discharge bouncing wave avoiding circuit and a noise avoiding box.  An arrester (4) under the IEC standards for a high electric current and a high-frequency noise filter (21) for a gigahertz band (GHz) are connected in parallel with a breaker (14) of a commercial power source (12).  Furthermore, the arrester (4) for a range of 10 KA (kilo-amperes) to 5A (amperes), and the noise filter (21) of an intermediate frequency band from 1,000 megahertz (MHz) to 500 megahertz (MHz) are mounted, whereby the noises of the frequency band from the low level to the high level are absorbed and the inflow of the discharge bouncing waves into an electronic device substrate (9) connected with all the connected cables is prevented.

Description

[規則26に基づく補充 29.06.2009] 放電ノイズ吸収素子及びこれを利用した放電ギャップ式避雷器並びに放電跳ね返り波回避回路[Supplement based on Rule 26 29.06.2009] Discharge noise absorber, discharge gap type lightning arrester using the same, and discharge bounce wave avoidance circuit
 本発明は、雷、静電気、電磁波、磁気等による放電ノイズから各種電気機器を保護するために使用される放電ノイズ吸収素子及びこれを利用した放電ギャップ式避雷器並びに放電跳ね返り波回避回路及びノイズ回避ボックスに関するものである。 The present invention relates to a discharge noise absorbing element used for protecting various electrical devices from discharge noise caused by lightning, static electricity, electromagnetic waves, magnetism, etc., a discharge gap type lightning arrester using the same, a discharge bounce wave avoidance circuit, and a noise avoidance box It is about.
 近年、オフィスビル・工場・プラント等で使用されているコンピューターやそのネットワーク、さらに計装設備間のセンサー通信や、光通信と無線LAN又は光通信と携帯電話中継局等の制御部を司るハード(電子基板と電子部品)及びソフトウエアに、雷や静電気由来の過剰電流(以下、単にノイズという)による損壊等の被害が多発している。 In recent years, computers and networks used in office buildings, factories, plants, etc., sensor communication between instrumentation facilities, and hardware that controls controllers such as optical communication and wireless LAN or optical communication and mobile phone relay stations ( Electronic boards and electronic components) and software are frequently damaged by lightning and static excess damage (hereinafter simply referred to as noise).
 原因の一つとして、アナログ電気技術とデジタル電子回路技術の双方の特性に鑑み、これら双方に適応する技術的対策がなされていないことが挙げられる。例えば、アナログ電気回路においては、0V~3V以内の信号は0としてカウントする。例えば、2.3Vも2.9Vも信号0であり、また、3.1V、3.9V、4.95Vと少々ノイズの影響を受けた信号であっても、信号1とカウントする。また、金属ボックス内に収納された電子機器と、金属配管内に敷設されたケーブルは、最も過剰電流の大きい雷ノイズからも、シールディング工法やアースグランディング接続を用いて保護できることを強電施工技術者は会得しているが、デジタル電子回路の設計者においては、強電施行技術者からの損害原因報告を元に電子機器とハードウエアの障害を抑えていた。 One of the reasons is that, in view of the characteristics of both analog electrical technology and digital electronic circuit technology, no technical countermeasures have been taken to adapt to both. For example, in an analog electric circuit, a signal within 0V to 3V is counted as 0. For example, both 2.3V and 2.9V are signals 0, and signals that are slightly affected by noise such as 3.1V, 3.9V, and 4.95V are counted as signal 1. In addition, it is possible to protect the electronic equipment housed in the metal box and the cables laid in the metal pipe from the lightning noise with the largest excess current by using the shielding method and earth grounding connection technology. However, in the designer of digital electronic circuit, the failure of the electronic equipment and hardware was suppressed based on the damage cause report from the strong electrical engineer.
 一方、IC、LSI等のデジタル集積回路においては、実験室レベルにおける2000ボルトから数千ボルトの定格電圧での耐久試験は行われているが、自然界で発生する乱雑なノイズでは回路が正常に動作しないことがある。これは畜電池からの直流電流を交流電流に変換するためのコンバーター回路に不具合があるためと推測される。また、基本クロック波形に少量の波形ノイズが流入することが原因で、正常な水晶発信ができず、ソフトウエアも定格の信号でなければ動作しないのがデジタル回路の弱点である。 On the other hand, in digital integrated circuits such as IC and LSI, endurance tests are performed at a rated voltage of 2000 volts to thousands of volts at the laboratory level, but the circuit operates normally with random noise generated in nature. There are things that do not. This is presumably because there is a problem in the converter circuit for converting the direct current from the livestock battery into the alternating current. Also, the weak point of the digital circuit is that normal crystal transmission cannot be performed due to a small amount of waveform noise flowing into the basic clock waveform, and the software does not operate unless it is a rated signal.
 その他、現在の建築物においては、プラスチック製配管が使用されているため、モーターからの動力回路と、電燈回路の交流電線にノイズが乗り電気機器の誤作動の原因となっている。また、テレビ、無線、携帯電話、携帯電話中継局から発信される電波の影響も考慮されていない。すなわち、電子部品を金属で囲むシールディングやケーブルから侵入するノイズ電流に対するフィルタリングが施されていない。 In addition, since the plastic construction is used in the current building, noise gets on the power circuit from the motor and the AC power line of the electric circuit, causing malfunction of the electrical equipment. In addition, the influence of radio waves transmitted from TVs, radios, mobile phones, and mobile phone relay stations is not considered. That is, no filtering is performed on noise current that enters from the shielding or cable surrounding the electronic component with metal.
 さらに、ノイズ電流を確実に大地に流すためのルートが施工されていないため、デジタル回路基板の破壊や、ソフトウエアにバグが発生して誤作動しているのが現状である。例えば、携帯電話使用の混雑時間帯(朝や夕方のトラフィック時間帯)になると、ビル屋上に設置されたエアコンの室外機が自動運転するような事故が発生することが報告されている。 Furthermore, since there is no route for surely flowing the noise current to the ground, the current situation is that the digital circuit board is broken or the software is buggy and malfunctions. For example, it has been reported that an accident occurs in which an outdoor unit of an air conditioner installed on the roof of a building automatically operates when it is in a busy time zone (morning and evening traffic hours) when using a mobile phone.
 その原因は、基板中の電源回路のフィルター回路と雷対策用の避雷器とが並列に接続されていないことにある。近年では、ビルの屋上等に据付けられた分電盤内に、IEC規格10/350μsecの大容量(100KV)直撃雷用避雷器と、IEC規格8/20μsecの誘導雷用避雷器を装備することで、一部の雷電流と周波数帯のノイズは除去することが可能になってきてはいるものの、200Vから1000Vの静電気ノイズ等は前記フィルター回路では止めることができない。 The cause is that the filter circuit of the power circuit in the board and the lightning arrester for lightning protection are not connected in parallel. In recent years, by installing a IEC standard 10/350 μsec large capacity (100 KV) direct lightning lightning arrester and an IEC standard 8/20 μsec induction lightning arrester in a distribution board installed on the rooftop of a building, Although some lightning currents and noise in the frequency band can be removed, electrostatic noise of 200V to 1000V cannot be stopped by the filter circuit.
 したがって、数GHzから数KHz帯域のノイズ電流で電気機器が破壊されることはないが、全てのケーブルと接続した避雷器線路からアースケーブルに放電したときの電流と線路抵抗から算出すると、放電する線路が長くなればなるほど反射波が増幅し、近接したケーブルにノイズとして発信されることが分かる。 Therefore, although the electrical equipment is not destroyed by the noise current in the band of several GHz to several KHz, the line to be discharged is calculated from the current and the line resistance when discharging from the lightning arrester line connected to all cables to the ground cable. It can be seen that the longer the is, the more the reflected wave is amplified and the noise is transmitted to adjacent cables.
 また、電源ケーブルだけをフィルタリングしても、電気回路のスイッチング、アーク放電やグロー放電する際の電圧の立上がり時に避雷器が反応しない設計であったりして、回路基板は保護されていないのが現状である。そこで、応答開始電圧が1500V以上で反応する素子を備えた国際電気標準会議IEC規格(10/350・8/20・1.2/50μsec)のクラス▼1▲避雷器(10/350)を電子回路基板内に導入することが考えられるが、素子自体が基板内に収納できない構造である。このため、当該クラス▼1▲避雷器は分電盤に取り付けられているのが一般的である。しかし、この避雷器においても例えば、1499Vの電流では反応しなかったケースも報告されている。すなわち、現在、1500V以下のノイズでは反応しない避雷器構造が世界的に統一された規格であるとも言っても過言ではない。 Moreover, even if only the power cable is filtered, the circuit board is not protected because the lightning arrester does not react when the voltage rises when switching the electric circuit, arcing or glowing. is there. Therefore, the International Electrotechnical Commission IEC standard (10/350, 8/20, 1.2 / 50 μsec) class ▼ 1 ▲ lightning arrester (10/350) equipped with an element that responds when the response start voltage is 1500 V or higher is an electronic circuit. Although it may be introduced into the substrate, the element itself cannot be stored in the substrate. For this reason, the class ▼ 1 ▲ lightning arrester is generally attached to a distribution board. However, it has also been reported that this lightning arrester did not react at a current of 1499 V, for example. In other words, it is no exaggeration to say that a lightning arrester structure that does not respond to noise of 1500 V or less is a globally unified standard.
 上述した雷由来のノイズ電流の弊害として、建築物だけでなく、畜電池や太陽光発電機等を搭載している車両等のアンテナが、落雷や稲光で発生するノイズ電流を受信し、当該車両等の制御系基板を破壊することもある。雷に対しては、従来から避雷針又は避雷器で対応している。例えば、高層建築物の壁面に垂直避雷導体を固定し、この垂直避雷導体をアンカーボルトを介して建築物の鉄筋又は鉄骨と電気的に接続して、外壁面に落雷した雷電流を鉄筋又は鉄骨から放流するような技術も提案されている(特許文献1参照。)。 As an adverse effect of the lightning-derived noise current described above, not only buildings but also vehicles such as vehicles equipped with livestock batteries or solar power generators receive noise currents generated by lightning strikes or lightning, and the vehicles The control system substrate such as For lightning, a lightning rod or lightning arrester has been used. For example, a vertical lightning conductor is fixed to the wall of a high-rise building, and this vertical lightning conductor is electrically connected to the building's reinforcing bar or steel frame via anchor bolts. A technique for releasing the gas from the water has also been proposed (see Patent Document 1).
特許第3251928号公報(第2頁-3頁、図5)Japanese Patent No. 3251828 (page 2 to page 3, FIG. 5)
 そこで本発明者は、避雷器とケーブル接続したノイズ回避回路にガソリンエンジン等に使用されている点火プラグの放電技術を応用するべく鋭意研究を行なった。すなわち、エンジン点火プラグは、「自動車・モーターボート及び点火式エンジン装置の妨害特性及び測定法国際規格GISPR12(国際無線障害特別委員会)」によって、点火プラグの放電時の反射ノイズが電子部品を誤動作させないように規格されている。したがって、反射波ノイズの回避回路にも点火プラグ様の放電技術を採用することが望ましい。反射波吸収素子を接続(ラインケーブルに直列・並列接続とアースケーブルにも吸収素子を接続するかフィルターを接続する)していない回路は、ノイズを発信するアンテナの役目を果たし、ケーブルが接続された電気機器同士の基板内のリード線にノイズが流れていることで、誤動作が起こる。また、放電時にアースケーブルに流れるノイズ電流と、電源通信ケーブルに跳ね返る電流が、電線や、通信線、アース線に乗り、基板内外に進入する欠点があることを知得した。 Therefore, the present inventor conducted intensive research to apply the spark plug discharge technology used in gasoline engines and the like to a noise avoidance circuit connected to a lightning arrester with a cable. In other words, the engine spark plug does not cause the electronic components to malfunction due to the reflected noise during discharge of the spark plug according to “International Standard GISPR12 (International Commission on Radio Interference)”. So that it is standardized. Therefore, it is desirable to employ a spark plug-like discharge technique for the reflected wave noise avoidance circuit. Circuits that do not have a reflected wave absorption element connected (series / parallel connection to the line cable and an absorption element to the ground cable or a filter) serve as an antenna that emits noise, and the cable is connected Malfunctions occur due to noise flowing in the lead wires in the circuit board between electrical devices. In addition, it has been found that the noise current flowing in the ground cable during discharge and the current that bounces off the power communication cable rides on the electric wire, communication line, and ground line and enters inside and outside the board.
 また、国際電気標準会議IEC規格(10/350・8/20・1.2/50μsec)のクラス▼2▲の避雷器の素子は(8/20μsec)、酸化亜鉛が主材であり、例えば沿岸地域では素子とケーブルの接点が大気中の塩分により腐食し漏電する事故が発生していた。 そこで、クラス▼2▲の避雷器(8/20μsec)と、クラス▼3▲(1.2/50)避雷器を直・並列接続する工法が、EU等で(2004年)に開発された。一方、日本国内では、本発明者が、特開2001-169460号公報、特開2001-249131号公報及び特許第4048314号公報において、避雷器のみにより雷の周波帯域である50万ボルト~100万ボルト以上の高電圧ノイズに対する避雷技術を提案している。 In addition, the element of the lightning arrester of class ▼ 2 ▲ of the International Electrotechnical Commission IEC standard (10/350, 8/20, 1.2 / 50 μsec) (8/20 μsec) is mainly composed of zinc oxide, for example, coastal areas However, there was an accident in which the contact point between the element and cable was corroded by salt in the atmosphere and leaked. Therefore, a method of connecting a class ▼ 2 ▲ lightning arrester (8/20 μsec) and a class ▼ 3 ▲ (1.2 / 50) lightning arrester in series and in parallel was developed in EU (2004). On the other hand, in Japan, the present inventor disclosed in Japanese Patent Application Laid-Open Nos. 2001-169460, 2001-249131 and 4048314 as a lightning frequency band of 500,000 to 1 million volts only by a lightning arrester. We have proposed lightning protection technology against the above high-voltage noise.
 しかしながら、前記のような避雷器のみによる対応では、50万ボルト以下の低電圧ノイズは基板内に流入してしまうという問題が残った。そして、回路基板と電源基板とがアースグランディングされておらず、また、回路基板内で一番脆弱なデジタル回路がシールドされていないため、ノイズ侵入時に基板に接続されているケーブルから発信される高周波帯域成分の電磁波がデジタル回路を破壊する。 However, in the case of dealing with only the lightning arrester as described above, there remains a problem that low voltage noise of 500,000 volts or less flows into the substrate. And since the circuit board and the power supply board are not grounded, and the most vulnerable digital circuit in the circuit board is not shielded, it is transmitted from the cable connected to the board when noise enters. High-frequency band electromagnetic waves destroy the digital circuit.
 また、コイルと抵抗又はコイルとコンデンサーとを組み合わせたフィルターのみを用いたノイズフィルターにおいては、フィルター自体が発熱してしまい基板が昇温し、コンデンサー、トランジスター、IC、LSI等の電子部品の誤動作を招くおそれがあるばかりでなく、昇温したフィルターがキュリー・ポイントを越えて磁力を失活する。この磁力の失活もまた基板内にノイズが侵入する原因となる。 In addition, in a noise filter that uses only a filter that combines a coil and a resistor or a coil and a capacitor, the filter itself generates heat, the substrate temperature rises, and malfunctions of electronic components such as capacitors, transistors, ICs, LSIs, etc. Not only is it possible to invade, but the heated filter exceeds the Curie point and deactivates the magnetic force. This deactivation of magnetic force also causes noise to enter the substrate.
 本発明は、上記のような従来技術の課題に鑑みなされたものであり、その目的は、ビル内外・敷地・工場・プラント・公共の各種インフラ設備のみならず、自動車・船舶・航空機等の電線・通信線・信号線と接続された電気機器への雷・静電気・電磁波・磁気等の全ての周波数帯域の電流・電圧のノイズが回避可能な放電ノイズ吸収素子及びこれを利用した放電ギャップ式避雷器並びに放電跳ね返り波回避回路及びノイズ回避ボックスを提供するものである。 The present invention has been made in view of the above-described problems of the prior art, and its purpose is not only for building inside / outside / site / factory / plant / public infrastructure facilities, but also for electric wires for automobiles, ships, airplanes, etc.・ Discharge noise absorbing element capable of avoiding current and voltage noise in all frequency bands such as lightning, static electricity, electromagnetic waves, magnetism, etc. to electrical equipment connected to communication lines and signal lines, and discharge gap type lightning arrester using the same The present invention also provides a discharge bounce wave avoidance circuit and a noise avoidance box.
 このため本発明の請求項1に係る放電ノイズ吸収素子は、酸化亜鉛(ZnO:酸化物半導体)を主成分とし、粘土(稀土類酸化物)、アンチモン(ドーパント)及びジルコニア(耐熱性セラミックス材料)を添加した微細粉混練物を焼結してなること特徴とする。 Therefore, the discharge noise absorbing element according to claim 1 of the present invention is mainly composed of zinc oxide (ZnO: oxide semiconductor), clay (rare earth oxide), antimony (dopant), and zirconia (heat-resistant ceramic material). A fine powder kneaded product to which is added is sintered.
 請求項2に係る放電ノイズ吸収素子は、請求項1記載の放電ノイズ吸収素子に二酸化ケイ素(SiO)を含有する天然レキ岩を添加したことを特徴とする。 According to a second aspect of the present invention, there is provided a discharge noise absorbing element obtained by adding a natural rock containing silicon dioxide (SiO 2 ) to the discharge noise absorbing element according to the first aspect.
 請求項3に係る放電ギャップ式避雷器は、請求項1又は請求項2記載の放電ノイズ吸収素子内に少なくとも一対の放電ギャップ端子を収納したことを特徴とする。 The discharge gap type lightning arrester according to claim 3 is characterized in that at least a pair of discharge gap terminals are accommodated in the discharge noise absorbing element according to claim 1 or claim 2.
 請求項4に係る放電跳ね返り波回避回路は、その先端を球状又は凸状に形成した一対の放電端子を、絶縁されたケース内に収納すると共に、その先端同士を離間させて対向配置し、一方の端子をプラス電極(ライン極)とし、他方の端子をマイナス電極(アース極)とし、これらの離間距離(ギャップ)を変えることで、ノイズに対する応答速度・応答開始電圧・応答開始電流又は放電耐量の異なる放電素子とし、当該放電素子を少なくとも2個直列接続したものを第1放電回路とし、当該第1放電回路をさらに並列接続したものを第2放電回路とし、当該第2放電回路のプラス電極とマイナス電極間に請求項1又は請求項2記載の放電ノイズ吸収素子を介在させ、放電時にグランドアース極に発生する跳ね返り波を吸収することを特徴とする。 The discharge bounce wave avoiding circuit according to claim 4 has a pair of discharge terminals, the tips of which are formed in a spherical shape or a convex shape, housed in an insulated case, and the tips are spaced apart from each other. The positive terminal (line electrode) is used as the negative terminal and the negative electrode (ground electrode) as the other terminal. By changing the distance (gap) between these terminals, the response speed, response start voltage, response start current or discharge withstand capability against noise can be changed. , Different discharge elements, and at least two discharge elements connected in series as a first discharge circuit, further connected in parallel with the first discharge circuit as a second discharge circuit, and a positive electrode of the second discharge circuit The discharge noise absorbing element according to claim 1 or 2 is interposed between the negative electrode and the negative electrode, and a rebound wave generated at the ground earth electrode during discharge is absorbed. That.
 請求項5に係る放電跳ね返り波回避回路は、コイルと抵抗を接続又はコイルとコンデンサーを接続して構成されたノイズフィルターのプラス・マイナス両極に、避雷器のライン端子を並列に接続し、当該避雷器のマイナス極に放電されたノイズ電流はフレームに流し、スイッチ・オフ時に発生するアーク放電、グロー放電は前記ノイズフィルターで防御し、静電気以上の電圧及び高周波ノイズは避雷器で回避することを特徴とする。 The discharge bounce wave avoiding circuit according to claim 5 is configured such that a line terminal of a lightning arrester is connected in parallel to both the positive and negative poles of a noise filter configured by connecting a coil and a resistor or connecting a coil and a capacitor. Noise current discharged to the negative pole flows through the frame, arc discharge and glow discharge generated when the switch is turned off are protected by the noise filter, and voltage and high frequency noise exceeding static electricity are avoided by a lightning arrester.
 請求項6に係るノイズ回避ボックスは、金属製ボックス内に、少なくとも3層の電子機器取付け用ベースボードを固定し、最下層を絶縁ボード、中間層を銅板又は金属製アース板、最上層を絶縁ボードとし、ボックスフレームにグランディングアースケーブルと接続される等電位アースバーを設け、アースケーブルから電子機器へのノイズ電流の回り込みを防止することを特徴とする。 The noise avoidance box according to claim 6 fixes at least three layers of the electronic device mounting base board in the metal box, the lowermost layer is an insulating board, the middle layer is a copper plate or a metal ground plate, and the uppermost layer is insulated. The board is provided with an equipotential ground bar connected to the grounding ground cable in the box frame to prevent noise current from flowing from the ground cable to the electronic device.
 請求項7に係るノイズ回避ボックスは、商用電源と電子機器収納スペースと、ケーブル・ブレーカーとを金属製の仕切板で区画し、当該仕切板と電子機器取り付け用ベースボードとをシールディングアース接続し、電子機器取り付けベースボード取り付けた機器を金網状のシールドで包囲することを特徴とする。 In the noise avoidance box according to claim 7, the commercial power source, the electronic device storage space, and the cable breaker are partitioned by a metal partition plate, and the partition plate and the electronic device mounting base board are connected to a shielding ground. The electronic device mounting baseboard mounted device is surrounded by a wire mesh shield.
 請求項8に係るノイズ回避ボックスは、電子機器のコンセントプラグに磁性体を取り付け、電源コンセントには高周波フィルターを直列接続し、商用電源のブレーカーには、大電流対応のIEC規格の50KA(キロアンペア)用、10/350μsec又は40KA(キロアンペア)用、8/20μSsec、1.2/50μsec対応の20KA(キロアンペア)避雷器と、ギガヘルツ帯域(GHz)の高周波ノイズフィルターを並列接続し、且つ、10KA(キロアンペア)から5A(アンペア)対応の避雷器と、1000メガヘルツ(MHz)帯域から500メガヘルツ(MHz)帯域の中周波数帯域のノイズフィルターを取り付け、低レベルから高レベルまでの周波数帯域のノイズを吸収すると共に、放電跳ね返り波吸収素子をケーブルに接続し、接続された全てのケーブルと、これらのケーブルに接続された電子機器基板内への放電跳ね返り波の流入を防止することを特徴とする。 In the noise avoidance box according to claim 8, a magnetic body is attached to an outlet plug of an electronic device, a high frequency filter is connected in series to a power outlet, and a commercial power supply breaker is an IEC standard 50 KA (kiloampere) corresponding to a large current. ), 10/350 μsec or 40 KA (kiloampere), 20/20 μSsec, 20/20 μs lightning arrester for 1.2 / 50 μsec, and a high frequency noise filter of gigahertz band (GHz) are connected in parallel. Install a lightning arrester compatible with (kiloamperes) to 5A (amperes) and a noise filter in the middle frequency band from 1000 MHz to 500 MHz to absorb noise in the frequency range from low to high. In addition, the discharge bounce wave absorption element Connect to Bull, and all cables are connected, characterized in that to prevent the flow of discharge rebound wave to the connected electronic device substrate in these cables.
 請求項9に係るノイズ回避ボックスは、請求項6乃至請求項8のいずれかに記載のノイズ回避ボックスに接続された通信ケーブルに、取付金具様に成形された磁性体に電線を巻捲して電磁石と成したものを取り付け、電磁石の一次コイル側にスイッチ回路を接続し、コンピューターの監視ソフトウエア(ウイルス対策ソフト)からのアラーム信号に応じて、前記スイッチ回路により通信ケーブルに電磁石の磁気ノイズを発生させ、コンピューター内部に侵入しようとするスパム信号を破壊することを特徴とする。 A noise avoidance box according to claim 9 is a communication cable connected to the noise avoidance box according to any one of claims 6 to 8, wherein an electric wire is wound around a magnetic body shaped like a mounting bracket. An electromagnet is attached, a switch circuit is connected to the primary coil side of the electromagnet, and the magnetic noise of the electromagnet is applied to the communication cable by the switch circuit in response to an alarm signal from the computer monitoring software (antivirus software). It is characterized by destroying spam signals that are generated and trying to penetrate inside the computer.
 本発明は以下の優れた効果がある。
(1)モーター・スイッチ回路・コンバーターからのノイズ、無線LAN・携帯電話の電磁波ノイズを、超高周波数帯フィルター(コイルと抵抗又はコイルとコンデンサー)とギャップ式放電避雷器と酸化亜鉛式避雷器の直・並列接続フィルタリング回避回路及びシールディング・フィルタリング・アースグランディング回避回路ボックスにより防御することができる。
(2)コイルを巻きつけた素子の空隙内に避雷器を収納し、放電電流の反射波吸収素子との並列回路として電源基盤内に収納することにより、フィルターと避雷器収納スペースが従来の半分で済み、省スペース化を図ることができ、フィルターからの発熱量を減少させ、広義での地球温暖化対策の一助となり得る。
(3)収納ボックス内に収納した電子機器へのノイズ進入経路をディフェンスし、且つ、ボックスからもノイズを発信させない回避回路を提供することで、ソーラー発電・風力発電・振動発電等々のシステム回路又はモーターと隣接している電子機器内のインバーター・コンバーター回路に侵入してくる雷・静電気・電磁波・磁場ノイズの全ての周波数帯域の電流・電圧から電子機器を保護することができる。
The present invention has the following excellent effects.
(1) Noise from motors, switch circuits and converters, and electromagnetic noise from wireless LANs and mobile phones can be directly applied to ultra-high frequency band filters (coils and resistors or coils and capacitors), gap type discharge arresters and zinc oxide type arresters. It can be protected by a parallel connection filtering avoidance circuit and a shielding filtering earth grounding avoidance circuit box.
(2) A lightning arrester is housed in the air gap of the element around which the coil is wound, and is housed in the power supply base as a parallel circuit with the reflected wave absorption element of the discharge current, so that the space for housing the filter and the lightning arrester can be reduced to half that of the prior art. , Space saving can be achieved, the amount of heat generated from the filter can be reduced, and it can help to prevent global warming in a broad sense.
(3) System circuits such as solar power generation, wind power generation, vibration power generation, etc. by defending the noise entry path to the electronic equipment stored in the storage box and providing an avoidance circuit that does not transmit noise from the box The electronic device can be protected from currents and voltages in all frequency bands of lightning, static electricity, electromagnetic waves, and magnetic field noise entering the inverter / converter circuit in the electronic device adjacent to the motor.
本発明に係る放電ノイズ吸収素子を用いた避雷器を示す(a)は斜視図、(b)は正面図である。BRIEF DESCRIPTION OF THE DRAWINGS (a) which shows the lightning arrester using the discharge noise absorption element which concerns on this invention is a perspective view, (b) is a front view. (a)は放電ノイズ素子の一例を示す斜視図、(b)は本発明に係るギャップ式避雷器の基本構成を示す断面図である。(A) is a perspective view which shows an example of a discharge noise element, (b) is sectional drawing which shows the basic composition of the gap type lightning arrester which concerns on this invention. 本発明に係る避雷器を模式的に示す正面図である。It is a front view which shows typically the lightning arrester which concerns on this invention. 本発明に係る避雷器に反射波吸収抵抗器を組合せた放電跳ね返り波回避素子を模式的に示す正面図である。It is a front view which shows typically the discharge rebound wave avoidance element which combined the reflected wave absorption resistor with the lightning arrester which concerns on this invention. 本発明に係る放電跳ね返り波回避素子とギャップ式避雷器を直列接続した回路図である。It is the circuit diagram which connected in series the discharge bounce wave avoidance element and gap type arrester which concern on this invention. 本発明に係る放電跳ね返り波回避素子とギャップ式避雷器を直列接続し、さらにこれら一対を並列接続した回路図である。FIG. 3 is a circuit diagram in which a discharge bounce wave avoiding element and a gap type lightning arrester according to the present invention are connected in series, and a pair of these are connected in parallel. 本発明に係る放電跳ね返り波回避素子とコイル式フィルターを並列接続した回路図である。It is the circuit diagram which connected the discharge bounce wave avoidance element and coil type filter which concern on this invention in parallel. 本発明に係る放電跳ね返り波回避素子とコイル式フィルターと抵抗器とを並列接続した回路図である。It is the circuit diagram which connected in parallel the discharge bounce wave avoidance element, coil type filter, and resistor which concern on this invention. 定格が異なる放電素子を並列に配置したギャップ式避雷器を模式的に示す正面図である。It is a front view which shows typically the gap type lightning arrester which has arrange | positioned the discharge element from which ratings differ in parallel. 本発明に係る放電跳ね返り波回避素子とコイル式フィルターを並列接続したサージ電流回避素子を示す斜視図である。It is a perspective view which shows the surge current avoidance element which connected the discharge bounce wave avoidance element and coil type filter which concern on this invention in parallel. 本発明に係る避雷器とコイル式フィルターを兼ねたサージ電流回避素子を示す斜視図である。It is a perspective view which shows the surge current avoidance element which served as the lightning arrester and coil type filter which concern on this invention. 放電時反射波吸収回路の回路図である。It is a circuit diagram of the reflected wave absorption circuit at the time of discharge. プラグコード各点における理論電流を分析したグラフである。It is the graph which analyzed the theoretical electric current in each point of plug cord. 点火プラグの放電による雑音レベルを示すグラフである。It is a graph which shows the noise level by discharge of a spark plug. 本発明に係るノイズ回避ボックスの構成を模式的に示す正面図である。It is a front view which shows typically the structure of the noise avoidance box which concerns on this invention. 回路基板上の電子機器のシールド方法を示す斜視図である。It is a perspective view which shows the shielding method of the electronic device on a circuit board. 本発明に係る放電時反射波吸収回路を備えた分電盤の構成を示す回路図である。It is a circuit diagram which shows the structure of the distribution board provided with the reflected wave absorption circuit at the time of discharge which concerns on this invention. 本発明に係る分電盤のノイズ対策工法を示す斜視図である。It is a perspective view which shows the noise countermeasure construction method of the distribution board which concerns on this invention. 無線LAN中継局に本発明に係る全てのノイズ対策工法を適用した例を模式的に示す構成図である。It is a block diagram which shows typically the example which applied all the noise countermeasure construction methods concerning this invention to the wireless LAN relay station. 本発明に係るコンセントボックスとコンセントケーブルの構成を示す回路図である。It is a circuit diagram which shows the structure of the outlet box and outlet cable which concern on this invention.
 次に、本発明の実施の形態を図面に示す実施例に基づいて説明する。
 図1は本発明に係る放電ノイズ吸収素子を用いた避雷器を示す(a)は斜視図、(b)は正面図、図2(a)は放電ノイズ素子の一例を示す斜視図、(b)は本発明に係るギャップ式避雷器の基本構成を示す断面図、図3は本発明に係る避雷器を模式的に示す正面図、図4は本発明に係る避雷器に反射波吸収抵抗器を組合せた放電跳ね返り波回避素子を模式的に示す正面図、図5は本発明に係る放電跳ね返り波回避素子とギャップ式避雷器を直列接続した回路図、図6は本発明に係る放電跳ね返り波回避素子とギャップ式避雷器を直列接続し、さらにこれら一対を並列接続した回路図、図7は本発明に係る放電跳ね返り波回避素子とコイル式フィルターを並列接続した回路図、図8は本発明に係る放電跳ね返り波回避素子とコイル式フィルターと抵抗器とを並列接続した回路図、図9は定格が異なる放電素子を並列に配置したギャップ式避雷器を模式的に示す正面図、図10は本発明に係る放電跳ね返り波回避素子とコイル式フィルターを並列接続したサージ電流回避素子を示す斜視図、図11は本発明に係る避雷器とコイル式フィルターを兼ねたサージ電流回避素子を示す斜視図、図12は放電時反射波吸収回路の回路図、図13はプラグコード各点における理論電流を分析したグラフ、図14は点火プラグの放電による雑音レベルを示すグラフ、図15は本発明に係るノイズ回避ボックスの構成を模式的に示す正面図、図16は回路基板上の電子機器のシールド方法を示す斜視図、図17は本発明に係る放電時反射波吸収回路を備えた分電盤の構成を示す回路図、図18は本発明に係る分電盤のノイズ対策工法を示す斜視図、図19は無線LAN中継局に本発明に係る全てのノイズ対策工法を適用した例を模式的に示す構成図、図20は本発明に係るコンセントボックスと延長ケーブルの構成を示す回路図である。
Next, embodiments of the present invention will be described based on examples shown in the drawings.
1A shows a lightning arrester using a discharge noise absorbing element according to the present invention, FIG. 1A is a perspective view, FIG. 1B is a front view, FIG. 2A is a perspective view showing an example of a discharge noise element, and FIG. Fig. 3 is a cross-sectional view showing the basic configuration of the gap type arrester according to the present invention, Fig. 3 is a front view schematically showing the arrester according to the present invention, and Fig. 4 is a discharge in which a reflected wave absorption resistor is combined with the arrester according to the present invention. FIG. 5 is a front view schematically showing a bounce wave avoiding element, FIG. 5 is a circuit diagram in which a discharge bounce wave avoiding element according to the present invention and a gap type arrester are connected in series, and FIG. 6 is a discharge bounce wave avoiding element according to the present invention and a gap type. FIG. 7 is a circuit diagram in which a discharge bounce wave avoiding element according to the present invention and a coil type filter are connected in parallel. FIG. 8 is a circuit diagram in which a discharge bounce wave is avoided in accordance with the present invention. Elements and coil filters FIG. 9 is a front view schematically showing a gap type lightning arrester in which discharge elements having different ratings are arranged in parallel, and FIG. 10 is a discharge rebound wave avoiding element and a coil type according to the present invention. FIG. 11 is a perspective view showing a surge current avoidance element that also serves as a lightning arrester and a coil type filter according to the present invention, and FIG. 12 is a circuit diagram of a reflected wave absorption circuit during discharge. FIG. 13 is a graph analyzing the theoretical current at each point of the plug cord, FIG. 14 is a graph showing the noise level due to discharge of the spark plug, and FIG. 15 is a front view schematically showing the configuration of the noise avoidance box according to the present invention. 16 is a perspective view showing a method of shielding an electronic device on a circuit board, FIG. 17 is a circuit diagram showing a configuration of a distribution board provided with a reflected wave absorption circuit at the time of discharge according to the present invention, and FIG. FIG. 19 is a configuration diagram schematically showing an example in which all the noise countermeasure methods according to the present invention are applied to a wireless LAN relay station, and FIG. 20 relates to the present invention. It is a circuit diagram which shows the structure of an outlet box and an extension cable.
 図1乃至図3に示すように、本発明に係る放電ギャップ式避雷器4の絶縁体収納ケースとなる放電ノイズ吸収素子3は、二酸化ケイ素を90%以上含有する天然レキ岩(SiO)をパウダー状に粉砕し、電磁波シールド機能を有する酸化物半導体である酸化亜鉛(ZnO)、希土類酸化物である粘土、ドーパントとしてのアンチモン及び耐熱性セラミック材料であるジルコニアとの微細粉混練物を焼結して作製する。尚、放電ノイズ吸収素子3は酸化亜鉛(ZnO)のみを主成分とするものであってもよい。また、放電端子1としては、銅、モリブデン、ジルコニア等を用いる。 As shown in FIGS. 1 to 3, a discharge noise absorbing element 3 serving as an insulator housing case for a discharge gap type arrester 4 according to the present invention is powdered natural leechite (SiO 2 ) containing 90% or more of silicon dioxide. And then pulverizing it into a fine powder kneaded mixture of zinc oxide (ZnO), which is an oxide semiconductor having an electromagnetic shielding function, clay, which is a rare earth oxide, antimony as a dopant, and zirconia, which is a heat-resistant ceramic material. To make. The discharge noise absorbing element 3 may be composed mainly of zinc oxide (ZnO). As the discharge terminal 1, copper, molybdenum, zirconia, or the like is used.
 一対の放電端子1は、その先端を球状又は凸状に形成すると共に、後端を銅等の金属製電極2に接続し、その先端同士を離間させて対向配置して、例えば、直方体状の放電ノイズ吸収素子(収納ケース)3に筒状の収納孔3aを穿孔して放電端子1を収納する。そして、一方の端子1をプラス電極(ライン極)とし、他方の端子1をマイナス電極(アース極)Gとし、これらの離間距離(ギャップ)dを変えることで、様々なノイズに対する応答速度・応答開始電圧・応答開始電流又は放電耐量の異なるギャップ式避雷器4とする。尚、本実施例の放電端子1の形状は円錐形又は先端が円弧状にされた円柱とした。 The pair of discharge terminals 1 is formed in a spherical or convex shape at the tip, and the rear end is connected to a metal electrode 2 such as copper, and the tips are separated from each other so as to face each other. A cylindrical storage hole 3 a is formed in the discharge noise absorbing element (storage case) 3 to store the discharge terminal 1. Then, one terminal 1 is a positive electrode (line electrode), the other terminal 1 is a negative electrode (ground electrode) G, and the distance (gap) d of these is changed to change the response speed and response to various noises. The gap type lightning arrester 4 having different start voltage / response start current or discharge withstand capability is used. In addition, the shape of the discharge terminal 1 of a present Example was made into the cone shape or the cylinder by which the front-end | tip was made into circular arc shape.
 そして、図4に示すように、このギャップ式避雷器4に反射波吸収用の抵抗器6を組み合わせて、放電跳ね返り波回避素子4Aとする。さらに、図5に示すように、放電跳ね返り波回避素子4Aとギャップ式避雷器4を少なくとも2個直列接続したものを第1放電回路C1とし、図6に示すように、第1放電回路C1をさらに並列接続したものを第2放電回路C2とし、放電時にグランドアース極に発生する跳ね返り波を吸収する放電跳ね返り波回避回路とする。 Then, as shown in FIG. 4, the gap type lightning arrester 4 is combined with a reflected wave absorbing resistor 6 to form a discharge rebound wave avoiding element 4A. Further, as shown in FIG. 5, at least two discharge rebound wave avoiding elements 4 </ b> A and gap type surge arresters 4 are connected in series as a first discharge circuit C <b> 1, and as shown in FIG. 6, the first discharge circuit C <b> 1 is further reduced. A circuit connected in parallel is a second discharge circuit C2, which is a discharge bounce wave avoiding circuit that absorbs a bounce wave generated at the ground earth electrode during discharge.
 図7は、放電跳ね返り波回避素子4Aとコイル式ノイズフィルター5を並列接続したノイズ回避回路7で、コイル式ノイズフィルター5により低レベルノイズのサージ電流対策を行い、雷の稲光のような高レベルノイズのサージ電流対策を放電跳ね返り波回避素子4Aで行うことができる。また、図8はギャップ式避雷器4と反射波吸収用の抵抗器6とコイル式ノイズフィルター5を並列接続したものであり、これも本発明に係るノイズ回避回路7として使用できる。 FIG. 7 shows a noise avoidance circuit 7 in which a discharge bounce wave avoiding element 4A and a coiled noise filter 5 are connected in parallel. The coiled noise filter 5 takes a countermeasure against a surge current of low level noise, and a high level like lightning lightning. Noise surge current countermeasures can be taken by the discharge bounce wave avoiding element 4A. FIG. 8 shows a gap type lightning arrester 4, a reflected wave absorbing resistor 6 and a coiled noise filter 5 connected in parallel, which can also be used as the noise avoidance circuit 7 according to the present invention.
 尚、ギャップ式避雷器4は、図9に示すように、定格(サイズ)が異なる放電端子1を並列に配置しても良いし、図10に示すように、同一ケース内にギャップ式避雷器4とコイル式ノイズフィルター5を接続したものを収納してサージ電流回避素子7としたり、また、図11に示すように、ギャップ式避雷器4の放電ノイズ素子3部分をコアとし、周囲に電線を巻回してコイル式ノイズフィルター5を兼ねたサージ電流回避素子7とすれば、収納スペースを削減できる。また、ギャップ式避雷器4の放電端子1を3極型とし、1極目をノイズフィルターの入力端子に、2極目をノイズフィルターの出力端子に、3極目をアース極端子に接続することで、ブレーカー14からのノイズによりコンセントプラグケーブルに誘導されて発生する低レベルのノイズから、静電気ノイズのような中間レベルのノイズ、雷の稲光のような高レベルのノイズまで全てのノイズをアースに流すことができる。 In addition, as shown in FIG. 9, the gap type lightning arrester 4 may have discharge terminals 1 having different ratings (sizes) arranged in parallel, and as shown in FIG. A coil-type noise filter 5 connected is accommodated as a surge current avoidance element 7, or as shown in FIG. 11, the discharge noise element 3 portion of the gap type lightning arrester 4 is used as a core, and an electric wire is wound around it. If the surge current avoiding element 7 also serving as the coil type noise filter 5 is used, the storage space can be reduced. In addition, the discharge terminal 1 of the gap type lightning arrester 4 is a three-pole type, and the first pole is connected to the input terminal of the noise filter, the second pole is connected to the output terminal of the noise filter, and the third pole is connected to the ground pole terminal. All noise from low level noise that is induced to the outlet plug cable due to the noise from the noise, to intermediate level noise such as static noise, and high level noise such as lightning lightning can flow to the ground .
 図12乃至図14に示すように、放電ギャップ端子Zと点火コイルZの放電ギャップのP点における反射波は、立ち上がりの非常に早い高周波電流であるという特性があり、先ず、イグニッションコイル(点火コイル)Z側のB点で反射現象が起こると、この反射波は、一旦距離Xだけマイナス方向に伝わりP点に達した後、すぐに点火コイルZ側のA点に戻る。A点に到達した反射波は、再びA点で反射されB点に達する。この現象は無限に繰り返され、これらの和が線路上に重なって定常状態が成立していると考えられる。 As shown in FIGS. 12 to 14, the reflected wave at the point P of the discharge gap of the discharge gap terminals Z A and the ignition coil Z B, it is characteristic that it is very fast frequency current rise, first, an ignition coil ( When a reflection phenomenon occurs at point B on the ignition coil) Z B side, this reflected wave once propagates in the minus direction by the distance X and reaches the point P, and immediately returns to the point A on the ignition coil Z B side. The reflected wave that reaches point A is reflected again at point A and reaches point B. This phenomenon is repeated indefinitely, and these sums are superimposed on the line, and it is considered that a steady state is established.
 したがって、反射波は、電流=電圧(V)/抵抗(Ω)の式から分かるように、電流が一定でもアースケーブルやラインケーブルの線路抵抗が大きい(ケーブルが長い)場合、電圧が比例して増大し、アンテナからの発信電波となり、同様のことが基板内でも発生する。また、コイルだけでは熱が発生し、避雷器のみでは電波が発信してしまう。したがって、コイルと避雷器と永久磁石でケーブルに磁力を付与してノイズを減少させ、放電時には抵抗器で減衰させる。 Therefore, as can be seen from the formula of current = voltage (V) / resistance (Ω), the reflected wave is proportional to the voltage when the resistance of the ground cable or line cable is large (the cable is long) even if the current is constant. It increases and becomes a radio wave transmitted from the antenna, and the same thing occurs in the substrate. Moreover, heat is generated only by the coil, and radio waves are transmitted only by the lightning arrester. Therefore, magnetic force is applied to the cable by the coil, the lightning arrester, and the permanent magnet to reduce noise, and the coil is attenuated by the resistor during discharge.
 すなわち、ケーブルはコイル式ノイズフィルターと避雷器で守り、シールドされた基板に流れるノイズをアースグランドに落とす回路が必要である。アースグランドとしては、S・G (シグナルグランド;基板内のアース)とF・G (フレームグランド;筺体のアース)がある。S・Gには、電子回路を構成している電源や信号の「戻り信号」が流れる。すなわち、電気を流すためには最低2本の電線を要し、電気回路においては、そのうちの一本を電源線・通信線の「戻り線」としてグランドアースして共有している。このため、デジタル回路基板には、ケーブルやパソコンのモーター等から発生するノイズが、回路基板のS・Gに回り込み、LSIやICに間違った信号が流れ誤動作を引き起こす。一方、F・Gは、電子機器を囲む筺体を大地にアースし、電源からの漏電電流を大地に逃がす働きをするものである。 That is, the cable must be protected by a coil-type noise filter and a lightning arrester, and a circuit that drops the noise flowing on the shielded board to the earth ground is required. As the earth ground, there are S · G (signal ground; earth in the substrate) and F · G (frame ground; earth of the housing). The “return signal” of the power source and signals constituting the electronic circuit flows through S · G. That is, at least two electric wires are required to pass electricity, and in an electric circuit, one of them is grounded and shared as a “return line” of a power line / communication line. For this reason, noise generated from a cable, a motor of a personal computer, or the like flows into the S / G of the circuit board on the digital circuit board, and an incorrect signal flows to the LSI or IC to cause a malfunction. On the other hand, F · G functions to ground the enclosure surrounding the electronic device to the ground and to release the leakage current from the power source to the ground.
 図15及び図16に示すように、ノイズ回避ボックス10は、金属製で、少なくとも3層のベースボード9を固定し、最下層を絶縁ボード9A、中間層(電子機器取り付け用ボード9B)を銅板又は金属の導電板、最上層を絶縁ボード9Aとし、ボックスフレーム8にグランディングアース(G)される等電位アースバー11aを設け、電子機器16へのノイズの回り込みを防止する。尚、絶縁ボード9Aは、木製又はプラスチック製又はパウダー状の天然レキ岩(二酸化珪素90%含有)と混合した絶縁ペイントを塗布した金属板とする。そして、電子機器取り付け用ボード9Bに取り付けた電子機器16をエキスパンテッドメタル又はパンチングメタルを凸状に屈曲して形成されたメッシュ状の囲みシールド17で包囲する。 As shown in FIGS. 15 and 16, the noise avoidance box 10 is made of metal, fixes at least three layers of the base board 9, the lowermost layer is an insulating board 9A, and the intermediate layer (electronic device mounting board 9B) is a copper plate. Alternatively, a metal conductive plate and the uppermost layer is an insulating board 9A, and an equipotential ground bar 11a that is grounded (G) is provided on the box frame 8 to prevent noise from entering the electronic device 16. The insulating board 9A is a metal plate coated with an insulating paint mixed with natural requistone (containing 90% silicon dioxide) made of wood, plastic, or powder. Then, the electronic device 16 attached to the electronic device attachment board 9B is surrounded by a mesh-shaped surrounding shield 17 formed by bending expanded metal or punching metal into a convex shape.
 また、ノイズ回避ボックス10は、図17及び図18に示すように、例えば、災害時等の如何なる状況においても発信可能にするために、商用電源12と並列接続された自然エネルギー利用電源(太陽光発電・風力発電・振動発電)31、電源ケーブル12aやブレーカー14及び畜電池29が収納される分電機器収納スペース13Bと、携帯電話・無線の送受信装置26、PC用HUB27等が収納される電子機器収納スペース13Aとを金属製のシールド板15で区画して設け、電源ケーブル12aには、上記ギャプ式避雷器4で構成された第1放電回路C1と第2放電回路C2を直列に接続し、放電時にグランドアース極Gに発生する跳ね返り波を吸収する放電跳ね返り波回避回路C3を構成する。さらに、電源ケーブル12aには、ブレーカー14を介して、コイル5と抵抗6を並列接続又はコイル5とコンデンサー6を並列接続して構成されたコイル式ノイズフィルター7又は21のプラス・マイナス両極に、放電跳ね返り波回避回路C3のライン端子を並列に接続し、避雷器4のマイナス極に放電されたノイズ電流はフレーム(F・G)に流し、機器のスイッチ・オフ時に発生するアーク放電、グロー放電はコイル式ノイズフィルター7又は21で防御し、静電気以上の電圧及び高周波ノイズはギャップ式避雷器4で回避する。フィルター21の電源側とコンセント側にもギャプ式避雷器4を介在させる。 Further, as shown in FIGS. 17 and 18, the noise avoidance box 10 has a natural energy utilization power source (solar light source) connected in parallel with the commercial power source 12 in order to enable transmission in any situation such as a disaster. Power generation / wind power generation / vibration power generation) 31, power distribution device storage space 13B in which the power cable 12a, breaker 14 and livestock battery 29 are stored, mobile phone / wireless transmission / reception device 26, electronic HUB 27 for PC, etc. The device storage space 13A is partitioned and provided by a metal shield plate 15, and the power cable 12a is connected in series with the first discharge circuit C1 and the second discharge circuit C2 configured by the gap type lightning arrester 4. A discharge bounce wave avoiding circuit C3 that absorbs a bounce wave generated in the ground earth pole G during discharge is configured. Further, the power cable 12a is connected to the plus and minus poles of a coiled noise filter 7 or 21 configured by connecting the coil 5 and the resistor 6 in parallel or connecting the coil 5 and the capacitor 6 in parallel via the breaker 14. The line terminal of the discharge bounce wave avoidance circuit C3 is connected in parallel, and the noise current discharged to the negative pole of the lightning arrester 4 flows to the frame (F · G). Arc discharge and glow discharge generated when the device is switched off are The coil type noise filter 7 or 21 is used to prevent the voltage and high frequency noise exceeding static electricity with the gap type lightning arrester 4. The gap type lightning arrester 4 is also interposed between the power source side and the outlet side of the filter 21.
 具体的には、分電機器収納スペース13Bには、商用電源12から引き込まれた電源ケーブル12aに、低・高周波ノイズフィルター21とアースケーブル11付の複数の避雷器4を、フェライトコア19を介して接続し、また、電源12と電源コンセント20の間には、コイル式ノイズフィルター21を設ける。例えば、ブレーカー14には、大電流対応のIEC規格の50KA(キロアンペア)用10/350μsec又は40KA(キロアンペア)用8/20μSsec、1.2/50μsec対応の20KA(キロアンペア)用ギャップ式避雷器4と、ギガヘルツ帯域(GHz)のコイル式高周波ノイズフィルター21を並列接続する。また、電子機器収納スペース13A内の電子機器16は、上述したメッシュ状の囲みシールド17で包囲される。 Specifically, in the distribution device storage space 13B, a plurality of lightning arresters 4 with a low / high frequency noise filter 21 and a ground cable 11 are connected to the power cable 12a drawn from the commercial power supply 12 via the ferrite core 19. A coiled noise filter 21 is provided between the power source 12 and the power outlet 20. For example, the breaker 14 has a IEC standard 50KA (kiloampere) 10/350 μsec or 40KA (kiloampere) 8/20 μSsec, 1.2 / 50 μsec compatible 20KA (kiloampere) gap type lightning arrester for high current. 4 and a coil type high frequency noise filter 21 having a gigahertz band (GHz) are connected in parallel. The electronic device 16 in the electronic device storage space 13A is surrounded by the mesh-shaped surrounding shield 17 described above.
 ノイズ回避ボックス10内に外部から入線される光通信ケーブル28は、放電ギャップ式避雷器4を介して光通信ケーブル用HUB27Aに接続される。電子機器収納スペース13A内のPC用HUB27Bには、光通信ケーブル用HUB27Aから分岐されたケーブルが接続されるが、この通信ケーブルにも放電ギャップ式避雷器4とフェライトコア19が取り付けられている。また、PC用HUB27Bとアースケーブル11との間に抵抗器6を並列接続したコイル式ノイズフィルター5を設ける。 The optical communication cable 28 inserted from the outside into the noise avoidance box 10 is connected to the optical communication cable HUB 27A via the discharge gap type arrester 4. A cable branched from the optical communication cable HUB 27A is connected to the PC HUB 27B in the electronic device storage space 13A. The discharge gap type lightning arrester 4 and the ferrite core 19 are also attached to this communication cable. A coiled noise filter 5 in which a resistor 6 is connected in parallel is provided between the PC HUB 27B and the ground cable 11.
 すなわち、10KA(キロアンペア)から5A(アンペア)対応のギャップ式避雷器4と、1000メガヘルツ(MHz)帯域から500メガヘルツ(MHz)帯域の中周波数帯域のノイズフィルター21を取り付け、低レベルから高レベルまでの周波数帯域のノイズを吸収すると共に、放電跳ね返り波吸収回路C3をケーブル11に接続し、接続された全てのケーブルと、これらのケーブルに接続された電子機器基板内への放電跳ね返り波の流入を阻止するようにされている。尚、放電端子1の一次側にリストバンド22を接続し、放電端子1の二次側にアースケーブル11を接続し、入線工事の際に作業者から発生する静電気から電子機器を保護する。また、アースケーブル11にはカウンター30を取付け、落雷回数やノイズ発生回数をカウントする。 That is, a gap type lightning arrester 4 corresponding to 10 KA (kiloamperes) to 5 A (amperes) and a noise filter 21 in the middle frequency band from 1000 MHz to 500 MHz are attached, and from a low level to a high level. And a discharge bounce wave absorption circuit C3 are connected to the cable 11, and the flow of the discharge bounce wave into all of the connected cables and the electronic device board connected to these cables. It is supposed to stop. Note that the wristband 22 is connected to the primary side of the discharge terminal 1 and the ground cable 11 is connected to the secondary side of the discharge terminal 1 to protect the electronic equipment from static electricity generated by the operator during the installation work. A counter 30 is attached to the ground cable 11 to count the number of lightning strikes and the number of noise occurrences.
 また、ノイズ回避ボックス10に入線接続された通信ケーブルに、円形又は略U字型(図示せず)の取付金具様に成形された磁性体に電線を巻捲して電磁石19と成したものを取り付け、電磁石19の一次コイル側にスイッチ回路を接続し、コンピューターの監視ソフトウエア(ウイルス対策ソフト)からのアラーム信号に応じて、前記スイッチ回路により通信ケーブルに電磁石の磁気ノイズを発生させ、コンピューター内部に侵入しようとするスパム信号を破壊することも理論上可能である。その際、サブシステムに運転を代行させることも可能な監視システムともなり得る。 In addition, the communication cable connected to the noise avoidance box 10 is formed by forming an electromagnet 19 by winding an electric wire on a magnetic body shaped like a circular or substantially U-shaped mounting bracket (not shown). Attach and connect a switch circuit to the primary coil side of the electromagnet 19, and generate magnetic noise of the electromagnet in the communication cable by the switch circuit according to the alarm signal from the computer monitoring software (antivirus software). It is theoretically possible to destroy spam signals that try to break into At that time, it can be a monitoring system in which the sub-system can be operated.
 以上のように、本実施例においては、例えば、ノイズ回避ボックス10内の分電盤スペース13Bに、クラス▼1▲避雷器(10/350μsec)と低周波数帯域ノイズフィルターを配置し、電子機器を商用電源に接続するために必要なコンセントボックス10a内には、中/高周波フィルターと、(8/20・1.2/50μsec)避雷器を収納してコンセント前で防御し、基盤内対策は、超高周波対応コイル式フィルター21と避雷器4で(直列・並列接続)、すなわち、三重の避雷器4とフィルター21で対策をし、電子機器16を金網状シールド17で囲み、電子機器16を取り付けられたボード9Bのアースに接続することで、電磁波・静電気・雷・磁場からのノイズや渦電流等の過剰電流が当該ボードから大地へ流し、ケーブルから発信されるノイズを、フェライトコア19をブレーカーの一次側、コンセント18の一次側そして、電子機器16の電源プラグ18aと無線・通信ケーブルのコネクター側に取り付けることで防御する。 As described above, in this embodiment, for example, a class ▼ 1 ▲ lightning arrester (10/350 μsec) and a low frequency band noise filter are arranged in the distribution board space 13B in the noise avoidance box 10 to commercialize electronic equipment. In the outlet box 10a necessary for connecting to the power supply, a medium / high frequency filter and a lightning arrester (8/20 1.2 / 50μsec) are housed to protect in front of the outlet. Corresponding coil type filter 21 and lightning arrester 4 (series / parallel connection), that is, a triple lightning arrester 4 and filter 21 take measures, and electronic device 16 is surrounded by wire mesh shield 17 and electronic device 16 is attached to board 9B By connecting to the earth ground, excess current such as electromagnetic noise, static electricity, lightning, magnetic field noise and eddy currents flow from the board to the ground, and the cable The ferrite core 19 is protected by attaching the ferrite core 19 to the primary side of the breaker, the primary side of the outlet 18, and the power plug 18a of the electronic device 16 and the connector side of the wireless / communication cable.
 また、例えば、図19に示すように、送信アンテナ24Aを備えた無線LAN中継局23においては、各々の送信アンテナ24Aをノイズ回避ボックス10でシールディングし、且つ、アンテナケーブル24Cと無線・携帯電話の受信アンテナ24Bとを、フェライトコア又は電磁石19を介して接続すると共に、電子機器16と接続される。このアンテナケーブル24Cにおいても、各無線LAN中継局23と電子機器収納ボックス10への引込みの部分にフェライトコア19を配置して接続する。また、電子機器16のコンセントプラグ18にもフェライトコア19を取り付け、電源コンセント20には避雷器4とコイル式高周波ノイズフィルター21を商用電源12に直列に接続する。尚、電子機器収納ボックス10は、シールド板5でもって電子機器収納スペース13Aと分電機器収納スペース13Bに区画される。図20は、上記コンセント18を収納するコンセントボックス10aを示すもので、コイル式高周波ノイズフィルター21の一次側と二次側に複数の避雷器4の並列・直列からなる上記C3回路を各々接続する。そして、PC用HUB27BあるいはPC等の電子機器のコンセントプラグ18aの延長ケーブルの始端及び終端にフェライトコア19を取り付けることで、低レベルから高レベルまでの全てのノイズの流入を防止することができるばかりでなく、コイルの発熱を防止することができる。 For example, as shown in FIG. 19, in the wireless LAN relay station 23 provided with the transmission antenna 24A, each transmission antenna 24A is shielded by the noise avoidance box 10, and the antenna cable 24C and the wireless / mobile phone The receiving antenna 24 </ b> B is connected to the electronic device 16 through the ferrite core or the electromagnet 19. Also in this antenna cable 24 </ b> C, the ferrite core 19 is arranged and connected to each wireless LAN relay station 23 and the portion to be pulled into the electronic device storage box 10. A ferrite core 19 is also attached to the outlet plug 18 of the electronic device 16, and the lightning arrester 4 and the coil type high frequency noise filter 21 are connected in series to the commercial power supply 12 to the power outlet 20. The electronic device storage box 10 is partitioned by the shield plate 5 into an electronic device storage space 13A and a power distribution device storage space 13B. FIG. 20 shows an outlet box 10a that houses the outlet 18, and the C3 circuit comprising a plurality of lightning arresters 4 in parallel and in series is connected to the primary side and the secondary side of the coil type high frequency noise filter 21, respectively. And by attaching the ferrite core 19 to the beginning and the end of the extension cable of the outlet plug 18a of the electronic equipment such as the PC HUB 27B or the PC, it is possible to prevent all noises from low to high. In addition, heat generation of the coil can be prevented.
 尚、上記ノイズ回避ボックス10は光通信サーバー用19インチラック内に応用することも可能であり、ビル内のフロア間・敷地内のビル間、又は、ケーブルテレビ等の発信局と中継ボックスや宇宙開発ステーション等にも使用できる。また、ノイズ回避ボックス10内の各ボート9及びボックスにはパウダー状の天然レキ岩石(二酸化ケイ素90%以上含有)を混合した絶縁ペイントを塗布することで、電子部品16から出る熱を冷却するラジエーターの役割も果たす。すなわち、従来の課題の一つであったノイズ対策回路の発熱を抑制することができ、地球温暖化防止対策の一助ともなり得る。 The noise avoidance box 10 can also be applied in a 19-inch rack for optical communication servers. It can be applied between floors in buildings, between buildings in a site, or a transmission station such as a cable TV and a relay box or space. It can also be used for development stations. Moreover, the radiator which cools the heat | fever emitted from the electronic component 16 by apply | coating the insulating paint which mixed the powdery natural rock rock (containing 90% or more of silicon dioxide) to each boat 9 and box in the noise avoidance box 10. Also plays the role of That is, the heat generation of the noise countermeasure circuit, which has been one of the conventional problems, can be suppressed, and can also help to prevent global warming.
 以上、本発明の要旨は、主たる分電盤で大容量の雷ノイズから電子機器を保護し、分岐された分電盤と弱電ボックスで中容量の雷と静電気と低周波ノイズから保護し、避雷器・ノイズフィルター付きコンセントで超高周波と高周波ノイズと中間の雷静電気ノイズから保護するものである。尚、現在実用上、基盤収納ボックスは19インチラック収納タイプであるので、ラックを含む全てのボックスに作業者から発生する静電気アース用のリストバンドと、全てのケーブルにフェライトコア(磁石)貫通させコネクターに接続する。すなわち、
例え、メインの分電盤のノイズフィルターと避雷器が破壊されても分岐された分電盤がノイズの流入を阻止する。そして、コンセントボックスと基板で雷・静電気ノイズを大地に逃がし、従来のコイル式フィルターで防御していた領域のノイズを避雷器で逃がせば、過剰電流が熱変換されることがないので、これもまた地球温暖化対策に繋がり、基板損壊による産業廃棄物処理上の問題解決の一助となり得る。
The gist of the present invention is that the main distribution board protects electronic devices from large-capacity lightning noise, and the branched distribution panel and low-power box protects from medium-capacity lightning, static electricity, and low-frequency noise, and a lightning arrester. -The outlet with a noise filter protects against ultra-high frequency, high-frequency noise and intermediate lightning noise. Currently, the base storage box is a 19-inch rack storage type in practical use. Therefore, all boxes including the rack have wrist straps for static electricity generated by workers and ferrite cables (magnets) passed through all cables. Connect to the connector. That is,
For example, even if the noise filter and lightning arrester on the main distribution board are destroyed, the branched distribution board prevents the inflow of noise. And if you let the lightning and static noises escape to the ground with the outlet box and the board, and the noise of the area that was protected by the conventional coil type filter with a lightning arrester, excess current will not be converted into heat, so this too This leads to global warming countermeasures and can help solve industrial waste disposal problems due to substrate damage.

Claims (9)

  1. 酸化亜鉛(ZnO:酸化物半導体)を主成分とし、粘土(稀土類酸化物)、アンチモン(ドーパント)及びジルコニア(耐熱性セラミックス材料)を添加した微細粉混練物を焼結してなることを特徴とする放電ノイズ吸収素子。 It is made by sintering a fine powder kneaded material containing zinc oxide (ZnO: oxide semiconductor) as the main component and added with clay (rare earth oxide), antimony (dopant) and zirconia (heat-resistant ceramic material). Discharge noise absorbing element.
  2. 二酸化ケイ素(SiO)を含有する天然レキ岩を添加してなることを特徴とする放電ノイズ吸収素子。 A discharge noise absorbing element comprising a natural requisite containing silicon dioxide (SiO 2 ).
  3. 請求項1又は請求項2記載の放電ノイズ吸収素子内に、少なくとも一対の放電ギャップ端子を収納してなることを特徴とする放電ギャップ式避雷器。 3. A discharge gap type lightning arrester comprising at least a pair of discharge gap terminals accommodated in the discharge noise absorbing element according to claim 1.
  4. その先端を球状又は凸状に形成した一対の放電端子を、絶縁されたケース内に収納すると共に、先端同士を離間して対向配置し、一方の端子をプラス電極(ライン極)とし、他方の端子をマイナス電極(アース極)とし、これらの離間距離(ギャップ)を変えることで、ノイズに対する応答速度・応答開始電圧・応答開始電流又は放電耐量の異なる放電素子とし、当該放電素子を少なくとも2個直列接続したものを第1放電回路とし、当該第1放電回路をさらに並列接続したものを第2放電回路とし、当該第2放電回路のプラス電極とマイナス電極間に請求項1又は請求項2記載の放電ノイズ吸収素子を介在させ、放電時にグランドアース極に発生する跳ね返り波を吸収することを特徴とする放電跳ね返り波回避回路。 A pair of discharge terminals whose tips are formed in a spherical or convex shape are housed in an insulated case, the tips are spaced apart from each other, one terminal is a positive electrode (line electrode), and the other is The terminal is a negative electrode (ground electrode), and by changing the separation distance (gap) between them, a discharge element having a different response speed, response start voltage, response start current, or discharge withstand capability with respect to noise can be obtained. 3. The first discharge circuit is connected in series, the second discharge circuit is further connected in parallel with the first discharge circuit, and the positive electrode and the negative electrode of the second discharge circuit are claimed in claim 1 or claim 2. A discharge bounce wave avoiding circuit characterized by absorbing a bounce wave generated at the ground earth electrode during discharge by interposing a discharge noise absorbing element of the above.
  5. コイルと抵抗を接続又はコイルとコンデンサーを接続して構成されたノイズフィルターのプラス・マイナス両極に、避雷器のライン端子を並列に接続し、当該避雷器のマイナス極に放電されたノイズ電流はフレームに流し、スイッチ・オフ時に発生するアーク放電、グロー放電は前記ノイズフィルターで防御し、静電気以上の電圧及び高周波ノイズは避雷器で回避することを特徴とする放電跳ね返り波回避回路。 Connect the line terminal of a lightning arrester in parallel to both the positive and negative poles of a noise filter configured by connecting a coil and a resistor or connecting a coil and a capacitor, and the noise current discharged to the negative pole of the arrester flows through the frame. A discharge bounce wave avoiding circuit characterized in that arc discharge and glow discharge generated when the switch is turned off are protected by the noise filter, and voltage and high frequency noise exceeding static electricity are avoided by a lightning arrester.
  6. 金属製ボックス内に、少なくとも3層の電子機器取付け用ベースボードを固定し、最下層を絶縁ボード、中間層を銅板又は金属製アース板、最上層を絶縁ボードとし、ボックスフレームにグランディングアースケーブルと接続される等電位アースバーを設け、アースケーブルから電子機器へのノイズ電流の回り込みを防止することを特徴とするノイズ回避ボックス。 A base board for mounting electronic devices of at least 3 layers is fixed in a metal box, the bottom layer is an insulation board, the middle layer is a copper plate or metal ground plate, the top layer is an insulation board, and a grounding ground cable is attached to the box frame. A noise avoidance box characterized in that an equipotential ground bar connected to the ground is provided to prevent noise current from flowing from the ground cable to the electronic device.
  7. 電源と電子機器収納スペースと、ケーブル・ブレーカーとをシールド板で区画し、当該シールド板と電子機器取り付け用ベースボードとをシールディングアース接続し、ベースボード取り付けた電子機器を金網状の囲みシールドで包囲することを特徴とする請求項6記載のノイズ回避ボックス。 The power supply, the electronic device storage space, and the cable breaker are partitioned by a shield plate, the shield plate and the base board for mounting the electronic device are connected to the shielding ground, and the electronic device mounted with the base board is covered with a wire mesh enclosure shield. The noise avoidance box according to claim 6, wherein the noise avoidance box is enclosed.
  8. 電子機器のコンセントプラグに磁性体を取り付け、電源コンセントには高周波フィルターを直列接続し、商用電源のブレーカーには、大電流対応のIEC規格の50KA(キロアンペア)用、10/350μsec又は40KA(キロアンペア)用、8/20μSsec、1.2/50μsec対応の20KA(キロアンペア)避雷器と、ギガヘルツ帯域(GHz)の高周波ノイズフィルターを並列接続し、且つ、10KA(キロアンペア)から5A(アンペア)対応の避雷器と、1000メガヘルツ(MHz)帯域から500メガヘルツ(MHz)帯域の中周波数帯域のノイズフィルターを取り付け、低レベルから高レベルまでの周波数帯域のノイズを吸収すると共に、放電跳ね返り波吸収素子をケーブルに接続し、接続された全てのケーブルと、これらのケーブルに接続された電子機器基板内への放電跳ね返り波の流入を防止することを特徴とするノイズ回避ボックス。 A magnetic substance is attached to the outlet plug of the electronic device, a high frequency filter is connected in series to the power outlet, and the commercial power supply breaker is for 50 KA (kiloamperes) of IEC standards corresponding to large currents, 10/350 μsec or 40 KA (kilo) 20KA (kiloampere) surge arrester for 8 / 20μSsec, 1.2 / 50μsec and high frequency noise filter of gigahertz band (GHz) are connected in parallel, and from 10KA (kiloampere) to 5A (ampere) A lightning arrester and a 1000 MHz to 500 MHz band mid-frequency band noise filter are installed to absorb noise in the frequency band from low to high levels, and a discharge bounce wave absorbing element is cabled. Connect all connected cables If, noise avoidance boxes, characterized in that to prevent the flow of discharge rebound wave to the connected electronic device substrate in these cables.
  9. 請求項6乃至請求項8のいずれかのノイズ回避ボックスに接続された通信ケーブルに、取付金具様に成形された磁性体に電線を巻捲して電磁石と成したものを取り付け、電磁石の一次コイル側にスイッチ回路を接続し、コンピューターの監視ソフトウエア(ウイルス対策ソフト)からのアラーム信号に応じて、前記スイッチ回路により通信ケーブルに電磁石の磁気ノイズを発生させ、コンピューター内部に侵入しようとするスパム信号を破壊することを特徴とするノイズ回避ボックス。 A communication cable connected to the noise avoidance box according to any one of claims 6 to 8, wherein an electric magnet is wound around a magnetic body shaped like a mounting bracket, and an electromagnet is attached. A spam signal that tries to infiltrate the inside of a computer by connecting a switch circuit on the side and generating magnetic noise of an electromagnet in a communication cable by the switch circuit in response to an alarm signal from a computer monitoring software (antivirus software) A noise avoidance box characterized by destroying.
PCT/JP2009/059756 2008-05-28 2009-05-28 Discharge noise absorbing element, discharge gap-type arrester utilizing the element, discharge bouncing wave avoiding circuit, and noise avoiding box WO2009145249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-139933 2008-05-28
JP2008139933A JP5252272B2 (en) 2008-05-28 2008-05-28 Discharge noise absorption element, discharge gap type lightning arrester using the same, discharge bounce wave avoidance circuit and noise avoidance box

Publications (1)

Publication Number Publication Date
WO2009145249A1 true WO2009145249A1 (en) 2009-12-03

Family

ID=41377119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059756 WO2009145249A1 (en) 2008-05-28 2009-05-28 Discharge noise absorbing element, discharge gap-type arrester utilizing the element, discharge bouncing wave avoiding circuit, and noise avoiding box

Country Status (2)

Country Link
JP (1) JP5252272B2 (en)
WO (1) WO2009145249A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130552A1 (en) * 2013-02-20 2014-08-28 Emprimus, Llc Overvoltage protection for power systems
US11664653B2 (en) 2020-05-22 2023-05-30 Techhold, Llc Overvoltage protection assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205082A (en) * 1987-02-21 1988-08-24 三菱マテリアル株式会社 Surge absorption element for high voltage
JPH0246678A (en) * 1988-08-05 1990-02-16 Mitsubishi Mining & Cement Co Ltd Surge absorption device
JPH11126674A (en) * 1997-07-21 1999-05-11 Harris Corp Gas discharge tube provided with metal oxide varistor case body
JP2003109807A (en) * 2001-09-28 2003-04-11 Atsushi Iga Zinc oxide based sintered body and its manufacturing method and zinc oxide varistor
JP2005145809A (en) * 2003-11-15 2005-06-09 Atsushi Iga Zinc oxide-based sintered compact, zinc oxide varistor, and lamination type zinc oxide varistor
JP2007006583A (en) * 2005-06-22 2007-01-11 Takayasu Kanemura Equipotential bonding construction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205082A (en) * 1987-02-21 1988-08-24 三菱マテリアル株式会社 Surge absorption element for high voltage
JPH0246678A (en) * 1988-08-05 1990-02-16 Mitsubishi Mining & Cement Co Ltd Surge absorption device
JPH11126674A (en) * 1997-07-21 1999-05-11 Harris Corp Gas discharge tube provided with metal oxide varistor case body
JP2003109807A (en) * 2001-09-28 2003-04-11 Atsushi Iga Zinc oxide based sintered body and its manufacturing method and zinc oxide varistor
JP2005145809A (en) * 2003-11-15 2005-06-09 Atsushi Iga Zinc oxide-based sintered compact, zinc oxide varistor, and lamination type zinc oxide varistor
JP2007006583A (en) * 2005-06-22 2007-01-11 Takayasu Kanemura Equipotential bonding construction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130552A1 (en) * 2013-02-20 2014-08-28 Emprimus, Llc Overvoltage protection for power systems
US9660441B2 (en) 2013-02-20 2017-05-23 Emprimus, Llc Overvoltage protection for power systems
US11038347B2 (en) 2013-02-20 2021-06-15 Techhold, Llc Overvoltage protection for power systems
US11621557B2 (en) 2013-02-20 2023-04-04 Techhold, Llc Overvoltage protection for power systems
US11664653B2 (en) 2020-05-22 2023-05-30 Techhold, Llc Overvoltage protection assembly

Also Published As

Publication number Publication date
JP2009289551A (en) 2009-12-10
JP5252272B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US11102918B2 (en) Electromagnetic pulse/high altitude electromagnetic pulse (EMP/HEMP) filter system
JP7325440B2 (en) Systems and methods for suppressing electrical system surges induced by electromagnetic pulses
US8929048B2 (en) Very fast transient suppressing device
Martzloff Coordination of surge protectors in low-voltage AC power circuits
JP5252272B2 (en) Discharge noise absorption element, discharge gap type lightning arrester using the same, discharge bounce wave avoidance circuit and noise avoidance box
US6606231B2 (en) Integrated telephony subscriber line protection and filter device
CN219513785U (en) Surge protection device and charging system
CN110768226A (en) MOV overvoltage protection device based on zinc oxide nonlinear resistor
Schmidt et al. HVDC transmission and the environment
Bai et al. Research on electromagnetic interference of vehicle GPS navigation equipment
EP1599913A2 (en) Electromagnetic pulse protected fuel cell power system
EP2808959B1 (en) High voltage discharge protection device and radio frequency transmission apparatus using the same
CN209881404U (en) Lightning overvoltage shielding device of 10kV distribution transformer
CN203326599U (en) High-energy-capacity voltage-limiting device
JP6443651B2 (en) Deletion system for storage data stored in electronic devices
JP2764008B2 (en) Lightning protection method using lightning transformer
JP2004254487A (en) Lightning surge protection method
JP2000261957A (en) Surge absorber and indoor wiring method using the same
US8390976B2 (en) Lightning proof device for filter
CN211530393U (en) Blocking reactor for lightning intrusion waves of booster station of power plant
CN220086955U (en) Protective device and vehicle
KR200237167Y1 (en) Construction of bitter cutoff
CN110931231B (en) Lightning protection dry-type transformer
CN202282607U (en) Surge absorber containing non-solid conductor
CN102354964A (en) Surge absorber containing non-solid conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754757

Country of ref document: EP

Kind code of ref document: A1