JP2005062080A - Lightening stroke current observation device - Google Patents

Lightening stroke current observation device Download PDF

Info

Publication number
JP2005062080A
JP2005062080A JP2003294926A JP2003294926A JP2005062080A JP 2005062080 A JP2005062080 A JP 2005062080A JP 2003294926 A JP2003294926 A JP 2003294926A JP 2003294926 A JP2003294926 A JP 2003294926A JP 2005062080 A JP2005062080 A JP 2005062080A
Authority
JP
Japan
Prior art keywords
observation device
current
lightning
waveform
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003294926A
Other languages
Japanese (ja)
Other versions
JP4211924B2 (en
Inventor
Takahiro Ootsuka
尊裕 大塚
Yasuhiro Shiraishi
康寛 白石
Kunihiko Mizumoto
州彦 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Toko Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Electric Corp filed Critical Toko Electric Corp
Priority to JP2003294926A priority Critical patent/JP4211924B2/en
Publication of JP2005062080A publication Critical patent/JP2005062080A/en
Application granted granted Critical
Publication of JP4211924B2 publication Critical patent/JP4211924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightening stroke current observation device capable of easily placing by using a large diameter Logowski coil applied to a tower such as iron tower and exactly measuring the wave height and waveform of lightening stroke current and other lightening characteristics to make a guideline for lightening resistive design and permissible dose design. <P>SOLUTION: A Logowski coil 1 for wave height measurement is connected to an observation device 2 for wave height measurement. A Logouski coil 2 for waveform measurement is connected with an observation device 5 for waveform measurement. The lightening observation device is a device that the observation device 2 for wave height measurement is to output wave height data and the observation device 5 for waveform measurement is to output waveform data to an external monitor 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に風力発電装置のような工作物への雷撃電流の波高値及び波形の計測に好適な雷撃電流観測装置に関する。   The present invention relates to a lightning strike current observation apparatus suitable for measuring the peak value and waveform of a lightning strike current on a workpiece such as a wind power generator.

風力発電装置は、クリーンエネルギーを得られることから近年では普及の途にあり、各地に設置され、又、設置計画も行われている。このような風力発電装置について図を参照しつつ説明する。図8は、風力発電装置の説明図である。風力発電装置1000は、塔体100、収容箱200、ブレード300を備えている。ブレード300は、さらに2枚または3枚の羽301、ヘッド302、ロータ軸303を備える。このような風力発電装置1000は、基礎部400上に敷設される。   In recent years, wind power generators have been in widespread use because they can obtain clean energy, and are installed in various places and installation plans are also being made. Such a wind turbine generator will be described with reference to the drawings. FIG. 8 is an explanatory diagram of the wind turbine generator. The wind power generator 1000 includes a tower body 100, a storage box 200, and a blade 300. The blade 300 further includes two or three wings 301, a head 302, and a rotor shaft 303. Such a wind turbine generator 1000 is laid on the foundation 400.

塔体100は、例えば内部空間を有するようにするため中空の鋼管を多段(例えば図8では3段)積み上げた鉄塔であり、その上側端部で収容箱200が回転自在となるように、図示しない軸受けを介して収容箱200を軸支している。
収容箱200は、増速器(図示せず)、発電を行う発電機(図示せず)、またはその他制御装置(図示せず)を内部に収容している。
ブレード300は、2枚又は3枚の長手の羽根301を備えている。この羽301はFRPやグラスファイバー等で形成されている。
これら羽301がヘッド302に取り付けられ、さらにヘッド302にはロータ軸303が取り付けられている。このロータ軸303には増速器が直結されている。ブレード300が回転するとロータ軸303が回転し、このロータ軸303に連結された増速器により回転が増速され、増速された回転により発電機が発電することとなる。
The tower body 100 is a steel tower in which, for example, hollow steel pipes are stacked in multiple stages (for example, three stages in FIG. 8) so as to have an internal space, and the container box 200 is rotatable at the upper end thereof. The storage box 200 is pivotally supported via a non-bearing bearing.
The storage box 200 stores therein a speed increaser (not shown), a generator (not shown) for generating power, or other control device (not shown).
The blade 300 includes two or three longitudinal blades 301. The wing 301 is formed of FRP, glass fiber, or the like.
These wings 301 are attached to a head 302, and a rotor shaft 303 is attached to the head 302. A speed increaser is directly connected to the rotor shaft 303. When the blade 300 rotates, the rotor shaft 303 rotates, and the rotation speed is increased by a speed increaser connected to the rotor shaft 303, and the generator generates power by the increased speed rotation.

このような風力発電装置1000は風況が良い箇所(強い風が長時間吹く状況にある箇所)に設置される。我が国ではこのような風況の良い箇所は、海岸淵に接した広大で開けた地上高い丘のような箇所である、このような箇所に風力発電装置1000の多くが敷設される。このような地勢の制約・気象条件に起因し、風力発電装置1000は落雷を受けやすいという危険に曝されている。特にブレード300の羽301は、図8でも明らかなように、最も高い箇所に位置するものであり、落雷を受けやすい。   Such a wind power generator 1000 is installed in a place where the wind condition is good (a place where a strong wind blows for a long time). In Japan, where the wind condition is good is a large open hill in contact with the coastal shore, many of the wind power generators 1000 are laid in such a place. Due to such terrain restrictions and weather conditions, the wind power generation apparatus 1000 is exposed to a risk of lightning strikes. In particular, the wing 301 of the blade 300 is located at the highest position, as is apparent from FIG.

そこで羽301は、その内部に避雷導体(図示せず)が埋め込まれ、この避雷導体の周りを覆うようにしてFRPやグラスファイバー等により羽の形状となるように形成されている。そして、避雷導体(図示せず)、導体であるロータ軸301、導体である塔体100を通して接地することで、雷保護を施している。   Therefore, the wing 301 has a lightning conductor (not shown) embedded therein, and is formed into a wing shape by FRP, glass fiber, or the like so as to cover the periphery of the lightning conductor. Lightning protection is provided by grounding through a lightning conductor (not shown), a rotor shaft 301 as a conductor, and a tower body 100 as a conductor.

しかしながら、数万アンペアの雷撃電流が避雷導体を通過する際の瞬時過熱により、羽301が爆発的に破損する虞もあった。この羽301、つまりブレード300が破損すると、風力発電装置1000は全く用をなさなくなり、修復期間と共に修復コストも嵩むという問題があった。このような問題点から雷害対策をより強固なものとするため風力発電装置1000用の雷撃観測装置が必要とされている。   However, the wing 301 may be explosively damaged due to instantaneous overheating when a lightning strike current of tens of thousands of amperes passes through the lightning conductor. When the wing 301, that is, the blade 300 is damaged, the wind power generator 1000 is not used at all, and there is a problem that the repair cost increases with the repair period. From such a problem, a lightning strike observation apparatus for the wind power generation apparatus 1000 is required to make the countermeasure for lightning damage stronger.

一般に夏場における雷は高電圧であるが雷撃電流がそれほど大きくなく時間も短いという傾向にあり、また、冬場における雷は雷撃電流が大きく時間も長いという傾向にある。このように季節により雷性状が異なっている。雷性状によっては、風力発電装置1000の制御装置(図示せず)内の電子部品が誘導過電圧で破壊されるというように破損状況も異なり、雷性状のふるまいの如何にかかわらず、適切な雷保護を施す前提として、風力発電装置1000に対する雷撃電流を確実に計測できる観測装置が望まれていた。   In general, lightning in summer tends to have a high voltage but a lightning current is not so large and the time is short, and lightning in winter tends to have a large lightning current and a long time. In this way, lightning properties vary depending on the season. Depending on the lightning properties, the damage situation is different such that electronic components in the control device (not shown) of the wind turbine generator 1000 are destroyed by induced overvoltage, and appropriate lightning protection regardless of the behavior of the lightning properties. As a premise, there has been a demand for an observation apparatus that can reliably measure a lightning strike current with respect to the wind power generator 1000.

本出願人は、このような雷撃電流観測について、風力発電装置用途ではないが、特許文献1(発明の名称:配電線雷観測システム)に記載されたような電柱・電力系統用の雷観測装置に係る発明を出願しており、この出願はすでに出願公開されている。
この特許文献1に記載された発明に係る配電線雷観測システムでは、配電設備に設置されて、ロゴウスキーコイルから取り込んだ雷撃電流を演算処理し、観測端末盤から携帯電話回線を介して遠隔地にあるセンター装置へ正確な雷撃電流データを送信するというものである。
また、特許文献2には、大きな建築物に流れる雷サージ電流の計測用途の電流プローブに係る発明が記載されている。
Although the present applicant is not using a wind power generator for such lightning strike current observation, the lightning observation device for a utility pole / power system as described in Patent Document 1 (title of the distribution line lightning observation system) The present invention has been filed, and this application has already been published.
In the distribution line lightning observation system according to the invention described in Patent Document 1, the lightning strike current received from the Rogowski coil is calculated and installed in the distribution facility, and remotely operated from the observation terminal board via the mobile phone line. It sends accurate lightning current data to the center equipment on the ground.
Patent Document 2 describes an invention relating to a current probe for measuring lightning surge current flowing in a large building.

特開平10−197652号公報 (図1,図2)JP-A-10-197652 (FIGS. 1 and 2) 特開2000−65866号公報 (段落番号0014〜0025,図1〜図11)JP 2000-65866 A (paragraph numbers 0014 to 0025, FIGS. 1 to 11)

特許文献1に記載された発明に係る「配電線雷観測システム」で使用している円環状電流センサは、接地線もしくは避雷針等を貫通させる小口径のロゴウスキーコイルを用いて雷観測を行うものであり、風力発電装置では単純に適用できないものであった。風力発電装置の雷観測では、建物の柱、梁や鉄塔等に流れる電流を測定する必要があり、このような用途のロゴウスキーコイルは大口径化が避けられない。   The annular current sensor used in the “distribution line lightning observation system” according to the invention described in Patent Document 1 performs lightning observation using a small-diameter Rogowski coil that penetrates a ground wire or a lightning rod. However, it was simply not applicable to wind power generators. In lightning observation of a wind turbine generator, it is necessary to measure the current flowing through the pillars, beams, steel towers, etc. of the building.

しかしながら、大口径化するために、ロゴウスキーコイルを長尺化していくと、コイルのインダクタンスおよびコイルの帰路線の浮遊容量の増加による共振周波数の低下により、高周波特性が悪化してしまうため、測定対象とするサージ電流に含まれる周波数成分によっては、ロゴウスキーコイルの長尺化はある長さ以上は困難であり、そのまま雷撃電流の計測に適用できなかった。   However, when the Rogowski coil is lengthened in order to increase the diameter, the high frequency characteristics are deteriorated due to the decrease in the resonance frequency due to the increase in the coil inductance and the stray capacitance of the coil return line. Depending on the frequency component included in the surge current to be measured, it is difficult to lengthen the Rogowski coil beyond a certain length, and it cannot be applied to the measurement of the lightning current as it is.

また、特許文献2に記載の電流プローブのように、コイルのインダクタンスと浮遊容量を低減するために、複数のユニットコイルを結合し、全体として大口径の円環状ロゴウスキーコイルを形成することにより、貫通する導体に流れる雷撃電流を取り込む電流プローブが既に知られている。   Further, like the current probe described in Patent Document 2, in order to reduce the inductance and stray capacitance of the coil, a plurality of unit coils are combined to form a large-diameter annular Rogowski coil as a whole. A current probe that captures a lightning strike current flowing through a penetrating conductor is already known.

しかしながら、この種の電流プローブは、円周上複数に分離したそれぞれのユニットコイルに積分回路や加算回路、その他制限抵抗等を敷設し、更に各ユニットコイルどうしの煩わしい接続作業や各ユニットコイル全体で円環状を形成する保持固定具を要する等、その構成や取り扱いに支障をきたしていた。   However, in this type of current probe, an integrating circuit, an adding circuit, other limiting resistors, etc. are laid on each unit coil divided into a plurality of parts on the circumference. The holding and fixing tool that forms an annular shape is required, which has hindered its configuration and handling.

そこで、本発明は上記問題点を解決するためになされたものであり、鉄塔等の塔体に供する大口径のロゴウスキーコイルを用いて、容易に設置可能とし、且つ、耐雷設計や耐量設計の指針とするべく雷撃電流の波高値及び波形その他雷性状を正確に計測できる雷撃電流観測装置を提供するものである。   Therefore, the present invention has been made to solve the above-described problems, and can be easily installed using a large-diameter Rogowski coil provided for a tower body such as a steel tower, and can also be designed for lightning and design. To provide a lightning strike current observation device capable of accurately measuring the peak value and waveform of lightning strike current and other lightning properties.

本発明の請求項1に係る雷撃電流観測装置は、
観測対象である工作物が有する塔体の根元部が貫通するように装着され、この塔体の根元部の外周面と絶縁体を介して内接する円環状電流センサと、
円環状電流センサから出力される電流を演算処理して波高値データを外部監視装置へ出力する波高値計測用観測装置と、
円環状電流センサから出力される電流を演算処理して波形データを外部監視装置へ出力する波形計測用観測装置と、
を備えることを特徴とする。
A lightning strike current observation apparatus according to claim 1 of the present invention is:
An annular current sensor that is mounted so that the base of the tower of the workpiece to be observed penetrates, and is inscribed through the insulator with the outer peripheral surface of the base of the tower,
An observation device for measuring the peak value, which calculates the current output from the annular current sensor and outputs the peak value data to the external monitoring device;
An observation device for waveform measurement that computes the current output from the annular current sensor and outputs the waveform data to an external monitoring device;
It is characterized by providing.

また、本発明の請求項2に係る雷撃電流観測装置は、
請求項1記載の雷撃電流観測装置において、
観測対象である工作物が有する塔体は、
塔体の根元部に形成されるフランジと、
フランジを基礎部に固定する複数のフランジボルトと、
を備えるものであり、
塔体の外周部、フランジ、およびフランジボルトにより形成される断面略凹状の溝部に円環状電流センサを配置することを特徴とする。
Moreover, the lightning strike current observation apparatus according to claim 2 of the present invention includes:
In the lightning strike current observation device according to claim 1,
The tower of the work being observed is
A flange formed at the base of the tower body;
A plurality of flange bolts for fixing the flange to the foundation,
It is equipped with
An annular current sensor is arranged in a groove portion having a substantially concave cross section formed by the outer peripheral portion of the tower body, the flange, and the flange bolt.

また、本発明の請求項3に係る雷撃電流観測装置は、
請求項1または請求項2に記載の雷撃電流観測装置において、
観測対象である工作物が有する塔体は、
塔体が立設される基礎部の周囲の地中に埋設され、接地線を介して塔体と電気的に接続される接地リンクと、
基礎部の周囲に埋設されるとともに、接地線を介して接地リンクと電気的に接続される接地極と、
を備えるものであり、
円環状電流センサは、接地リンクと平行面位置に装着されることを特徴とする。
A lightning current observation apparatus according to claim 3 of the present invention is
In the lightning strike current observation device according to claim 1 or 2,
The tower of the work being observed is
A ground link buried in the ground around the foundation where the tower is erected and electrically connected to the tower via a ground wire;
A grounding electrode buried around the foundation and electrically connected to the grounding link via a grounding wire;
It is equipped with
The annular current sensor is mounted at a position parallel to the ground link.

また、本発明の請求項4に係る雷撃電流観測装置は、
請求項1〜請求項3の何れか一項に記載の雷撃電流観測装置において、
工作物は、
風車を構成するブレードと、
ブレードを保持するロータ軸を回動自在に支持し、ロータ軸に直結される増速器およびこの増速器により回転して発電を行う発電機を収容する収容箱と、
収容箱を先端で支持する塔体と、
を備える風力発電装置であることを特徴とする。
Moreover, the lightning strike current observation apparatus according to claim 4 of the present invention includes:
In the lightning strike current observation device according to any one of claims 1 to 3,
The workpiece is
A blade constituting the windmill;
A housing box that rotatably supports a rotor shaft that holds a blade, and that houses a gearbox directly connected to the rotor shaft and a generator that generates power by rotating with the gearbox;
A tower supporting the containment box at the tip;
It is a wind power generator provided with.

また、本発明の請求項5に係る雷撃電流観測装置は、
請求項1〜請求項4の何れか一項に記載の雷撃電流観測装置において、
外部監視装置と波高値計測用観測装置との間、および、外部監視装置と波形計測用観測装置との間に移動体通信回線を介在させたことを特徴とする。
Moreover, the lightning strike current observation apparatus according to claim 5 of the present invention is:
In the lightning strike current observation device according to any one of claims 1 to 4,
A mobile communication line is interposed between the external monitoring device and the observation device for measuring the peak value, and between the external monitoring device and the observation device for measuring the waveform.

また、本発明の請求項6に係る雷撃電流観測装置は、
請求項1〜請求項5の何れか一項に記載の雷撃電流観測装置において、
前記円環状電流センサは、波高値計測用ロゴウスキーコイルと波形計測用ロゴウスキーコイルとであり、
波高値計測用観測装置に波高値計測用ロゴウスキーコイルが接続され、また、波形計測用観測装置に波形計測用ロゴウスキーコイルが接続されることを特徴とする。
Moreover, the lightning strike current observation apparatus according to claim 6 of the present invention includes:
In the lightning strike current observation device according to any one of claims 1 to 5,
The annular current sensor is a crest value measurement Rogowsky coil and a waveform measurement Rogowsky coil,
A crest value measuring Rogowsky coil is connected to the crest value measuring observation device, and a waviness measurement rogowsky coil is connected to the waveform measuring observation device.

また、本発明の請求項7に係る雷撃電流観測装置は、
請求項6項に記載の雷撃電流観測装置において、
波高値計測用ロゴウスキーコイルと波形計測用ロゴウスキーコイルとは、巻始めから巻終わりまで1コイルで閉ループを形成したコイルであることを特徴とする。
A lightning strike current observation apparatus according to claim 7 of the present invention is
In the lightning strike current observation device according to claim 6,
The crest value measuring Rogowsky coil and the waveform measuring Rogowsky coil are characterized in that they are coils in which a closed loop is formed by one coil from the beginning of winding to the end of winding.

以上のような本発明によれば、鉄塔等の塔体に供する大口径のロゴウスキーコイルを用いて、容易に設置可能とし、且つ、耐雷設計や耐量設計の指針とするべく雷撃電流の波高値及び波形その他雷性状を正確に計測できる雷撃電流観測装置を提供することができる。   According to the present invention as described above, a wave of a lightning current can be easily installed using a large-diameter Rogowski coil provided for a tower body such as a steel tower, and can be used as a guideline for lightning resistance design and resistance design. It is possible to provide a lightning strike current observation apparatus capable of accurately measuring high values, waveforms and other lightning properties.

本発明を実施するための最良の形態について図に基づき説明する。
図1は風力発電装置に設置された本形態の雷撃観測装置の構成図、図2はロゴウスキーコイルの設置を説明する説明図、図3は風力発電装置の接地を説明する説明図である。雷撃電流観測装置は、図1で示すように、波高値計測用ロゴウスキーコイル1、波高値計測用観測装置2、UPS電源装置3、波形計測用ロゴウスキーコイル4、波形計測用観測装置5を備えている。また、外部監視装置6と図示しない回線を介して通信可能に接続される。
The best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a lightning strike observation apparatus of the present embodiment installed in a wind power generator, FIG. 2 is an explanatory diagram for explaining the installation of a Rogowski coil, and FIG. 3 is an explanatory diagram for explaining grounding of the wind power generator. . As shown in FIG. 1, the lightning current observation apparatus includes a peak value measurement Rogowski coil 1, a peak value measurement observation apparatus 2, a UPS power supply apparatus 3, a waveform measurement Rogowsky coil 4, and a waveform measurement observation apparatus. 5 is provided. In addition, the external monitoring device 6 is communicably connected via a line (not shown).

この雷撃電流観測装置の波高値計測用ロゴウスキーコイル1および波形計測用ロゴウスキーコイル4(以下、これら波高値計測用ロゴウスキーコイル1および波形計測用ロゴウスキーコイル4を表すとき、単にロゴウスキーコイル1,4と表記する。)が、風力発電装置1000の塔体100の根元部101に配置される。   The peak value measuring logo whiskey coil 1 and the waveform measuring logo whiskey coil 4 of the lightning current observation device (hereinafter, these peak value measuring logo whiskey coil 1 and waveform measuring logo whiskey coil 4 are expressed as follows: Simply represented as Rogouski coils 1 and 4) is arranged at the base 101 of the tower body 100 of the wind turbine generator 1000.

根元部101については図2で示すように、詳しくは、塔体100にフランジ102が一体に形成されており、このフランジ102の図示しない孔に挿入されるフランジボルト103が、基礎部400に設けられた図示しないめねじ部と締結されて、基礎部400上で塔体100を固定する。そして、このような塔体100の外周部、フランジ102、およびフランジボルト103により形成される断面略凹状の溝部の中側にロゴウスキーコイル1,4が配置される。   As shown in FIG. 2, the base portion 101 is specifically formed with a flange 102 integrally formed on the tower body 100, and a flange bolt 103 to be inserted into a hole (not shown) of the flange 102 is provided on the base portion 400. The tower body 100 is fixed on the foundation portion 400 by being fastened to the female screw portion (not shown). The Rogowski coils 1 and 4 are arranged on the inner side of the outer periphery of the tower body 100, the groove 102 formed by the flange 102 and the flange bolt 103 and having a substantially concave cross section.

本形態では、上下二段にロゴウスキーコイル1,4を配置している。なお、ロゴウスキーコイル1,4は図示しないが外周部に絶縁被覆部が形成されており、短絡等が起きないように配慮されている。このような構成により、塔体100の外周面と内接しながら、巻始めから巻終わりまで1コイルで閉ループを形成して、極めて容易に装着できる。   In this embodiment, the Rogowski coils 1 and 4 are arranged in two upper and lower stages. In addition, although the Rogowski coils 1 and 4 are not shown in figure, the insulation coating part is formed in the outer peripheral part, and it is considered so that a short circuit etc. may not occur. With such a configuration, a closed loop can be formed with one coil from the beginning of winding to the end of winding while inscribed with the outer peripheral surface of the tower body 100, and can be mounted very easily.

次に、接地部について説明する。図3で示すように、中空円筒状の塔体100の基礎部400は段違い円筒状基礎部であり周囲がコンクリートにより形成されて強固に固定されている。また、中空円筒状の塔体100と、基礎部400を貫通した状態の接地リンク105と、接地極106とが、接地線104により電気的に接続されており、図3中の矢印の如く、雷撃の際に塔体100の上側から接地極106までに流れる雷撃電流が、局部的に流れるのではなく、中空円筒の根元部の全周囲を伝わって地中に逃すようにしている。   Next, the grounding part will be described. As shown in FIG. 3, the base portion 400 of the hollow cylindrical tower body 100 is a stepped cylindrical base portion, and the periphery thereof is formed of concrete and firmly fixed. Further, the hollow cylindrical tower body 100, the ground link 105 penetrating the base portion 400, and the ground electrode 106 are electrically connected by the ground wire 104, and as indicated by an arrow in FIG. The lightning current that flows from the upper side of the tower body 100 to the ground electrode 106 at the time of the lightning strike does not flow locally, but escapes to the ground through the entire circumference of the base of the hollow cylinder.

これにより、ロゴウスキーコイル1,4が、巻始めから巻終わりまで1コイルで閉ループを形成して長尺化しても、塔体100の根元部101の外周面との内接と、接地リンク105との近接平行面位置装着とも相俟って、ロゴウスキーコイル1,4のインダクタンスと浮遊容量を低減して高周波特性を確保し、雷撃電流の正確な計測を可能にしている。
ロゴウスキーコイル1,4は、風力発電装置1000への雷撃の際に塔体100に流れる雷撃電流を精度良く取り込むことができる。
As a result, even if the Rogowski coils 1 and 4 form a closed loop with a single coil from the beginning of winding to the end of winding and are elongated, the inscribed contact with the outer peripheral surface of the base 101 of the tower body 100 and the ground link Combined with the close parallel plane position mounting with 105, the inductance and stray capacitance of the Rogowski coils 1 and 4 are reduced to ensure high frequency characteristics, and the lightning current can be accurately measured.
The Rogowski coils 1 and 4 can accurately capture the lightning current flowing in the tower body 100 during a lightning strike on the wind power generator 1000.

続いて、回路ブロックについて説明する。図4は波高値計測ブロックを説明する説明図である。
波高値計測用観測装置2は、積分回路2a、正極性ピークホールド回路2b、負極性ピークホールド回路2c、メモリ2d、信号処理部2e、時計部2f、通信部2g、アンテナ2h、電源部2iを備えている。
Next, the circuit block will be described. FIG. 4 is an explanatory diagram for explaining a peak value measurement block.
The peak value measurement observation device 2 includes an integration circuit 2a, a positive polarity peak hold circuit 2b, a negative polarity peak hold circuit 2c, a memory 2d, a signal processing unit 2e, a clock unit 2f, a communication unit 2g, an antenna 2h, and a power supply unit 2i. I have.

電源部2iは、UPS電源装置3と接続されており、雷撃等があっても瞬断することなく各部に電力を供給する。
波高値計測用ロゴウスキーコイル1から取り込んだ雷撃電流を積分回路2aにより積分処理して正極性ピークホールド回路2bおよび負極性ピークホールド回路2cへ出力する。正極性ピークホールド回路2bおよび負極性ピークホールド回路2cはトリガ機能を有しており、所定値(例えば正負ともに2kA)を超える電流が入力された場合に動作するように構成されている。所定値を超える電流が入力された場合に、正極性ピークホールド回路2bにより正極の波高値をピークホールドして信号処理部2eへピークホールド値を出力し、また、負極性ピークホールド回路2cにより負極の波高値をピークホールドして信号処理部2eへピークホールド値を出力する。
The power supply unit 2i is connected to the UPS power supply device 3, and supplies power to each unit without being interrupted even if there is a lightning strike or the like.
The lightning strike current captured from the peak value measuring Rogowsky coil 1 is integrated by the integrating circuit 2a and output to the positive polarity peak hold circuit 2b and the negative polarity peak hold circuit 2c. The positive polarity peak hold circuit 2b and the negative polarity peak hold circuit 2c have a trigger function, and are configured to operate when a current exceeding a predetermined value (for example, 2 kA for both positive and negative) is input. When a current exceeding a predetermined value is input, the peak value of the positive electrode is peak-held by the positive polarity peak hold circuit 2b and the peak hold value is output to the signal processing unit 2e, and the negative value is held by the negative polarity peak hold circuit 2c. Is peak-held and the peak hold value is output to the signal processing unit 2e.

信号処理部2eはこれらピークホールド値を一時記憶し、さらに時計部2fから雷撃発生時刻(トリガ発生時刻)となる時刻を読み出してこれらを組み合わせた波高値データをメモリ2dに登録する。信号処理部2eは時計部2fから得た時刻が所定時刻(例えば1時間毎)に到達したとき、メモリ2dから波高値データを読み出して通信部2gへ送信すする。通信部2gは通信データを生成し、アンテナ2hからPHS回線(図示せず)を介して外部監視装置6のPHS電話6aに接続された端末装置6bへ伝送する。   The signal processing unit 2e temporarily stores these peak hold values, further reads the time when the lightning strike occurs (trigger generation time) from the clock unit 2f, and registers the peak value data combining them in the memory 2d. When the time obtained from the clock unit 2f reaches a predetermined time (for example, every hour), the signal processing unit 2e reads the peak value data from the memory 2d and transmits it to the communication unit 2g. The communication unit 2g generates communication data and transmits it from the antenna 2h to the terminal device 6b connected to the PHS phone 6a of the external monitoring device 6 via a PHS line (not shown).

図5は波形計測ブロックを説明する説明図である。
波形計測用観測装置5は、GPS(Global Positioning System)アンテナ5a、GPS時計部5b、演算処理部(CPU)5c、データ保存部5d、波形処理部5e、センサインターフェース部(センサI/F部)5f、システムバス5g、電源制御部5h、電源部5i、携帯電話アンテナ5j、携帯電話5k、TA(Terminal Adapter)5l、シリアル通信処理部5m,補助電池5nを備えている。
FIG. 5 is an explanatory diagram for explaining the waveform measurement block.
The waveform measurement observation apparatus 5 includes a GPS (Global Positioning System) antenna 5a, a GPS clock unit 5b, an arithmetic processing unit (CPU) 5c, a data storage unit 5d, a waveform processing unit 5e, and a sensor interface unit (sensor I / F unit). 5f, a system bus 5g, a power supply control unit 5h, a power supply unit 5i, a mobile phone antenna 5j, a mobile phone 5k, a TA (Terminal Adapter) 5l, a serial communication processing unit 5m, and an auxiliary battery 5n.

電源部5iはUPS電源装置3と接続されており、雷撃等があっても瞬断することなく各部に電力を供給する。また、補助電池5nが接続されており、停電時でも電力供給されて通信不能となる事態を回避する。
波形計測用ロゴウスキーコイル4から取り込んだ雷撃電流をセンサI/F部5fにより電圧信号に変換し、波形処理部5eによりデジタルの波形に係るデータに変換し、システムバス5gを介して演算処理部(CPU)5cが読み込んでいる。演算処理部(CPU)5cはトリガ機能を有しており、所定値(例えば正負1kA)を超える電流が入力された場合に波形計測を開始するように制御する。
The power supply unit 5i is connected to the UPS power supply device 3, and supplies power to each unit without being interrupted even if there is a lightning strike or the like. In addition, the auxiliary battery 5n is connected to avoid a situation in which power is supplied even during a power failure and communication becomes impossible.
The lightning strike current captured from the Rogowski coil 4 for waveform measurement is converted into a voltage signal by the sensor I / F unit 5f, converted into data relating to a digital waveform by the waveform processing unit 5e, and is processed via the system bus 5g. The unit (CPU) 5c is reading. The arithmetic processing unit (CPU) 5c has a trigger function and controls to start waveform measurement when a current exceeding a predetermined value (for example, positive and negative 1 kA) is input.

GPS時計部5bは、GPSアンテナ5aを介して入力されるGPS信号に基づいてGPS時計機能による時刻データを出力しており、部演算処理部(CPU)5cはトリガ発生時の時刻データを読み込んで波形と時刻に係るデータを組み合わせた波形データを生成し、データ保存部5dに記憶させる。   The GPS clock unit 5b outputs time data by a GPS clock function based on a GPS signal input via the GPS antenna 5a, and a unit calculation processing unit (CPU) 5c reads the time data at the time of trigger occurrence. Waveform data obtained by combining the waveform and time-related data is generated and stored in the data storage unit 5d.

演算処理部(CPU)5cは、GPS時計部5bから得た時刻が所定時刻(例えば1時間毎)に到達したとき、データ保存部5dから波形データを読み出してシリアル通信処理部5mへ伝送する。シリアル通信処理部5mは波形データを含む通信データを生成し、TA5l、携帯電話5kにより携帯電話アンテナ5jから携帯電話回線(図示せず)を介して外部監視装置6(図1参照)へ伝送する。
外部監視装置6では取り込んだ波高値データおよび波形データを用いて各種監視を行うこととなる。
When the time obtained from the GPS clock unit 5b reaches a predetermined time (for example, every hour), the arithmetic processing unit (CPU) 5c reads the waveform data from the data storage unit 5d and transmits it to the serial communication processing unit 5m. The serial communication processing unit 5m generates communication data including waveform data, and transmits the communication data to the external monitoring device 6 (see FIG. 1) from the mobile phone antenna 5j via the mobile phone line (not shown) by the TA 5l and the mobile phone 5k. .
The external monitoring device 6 performs various types of monitoring using the acquired peak value data and waveform data.

続いて、観測例について説明する。図6は観測された雷撃電流波形の全体波形の波形図、図7は観測された雷撃電流波形の時間軸拡大波形の波形図である。観測された雷撃電流波形は負極性雷撃であり、波高値−20kAであることが確認できる。このように本発明の雷撃電流観測装置では雷性状を把握し、耐雷設計や耐量設計の指針となる有効なデータを収集できる。   Subsequently, an observation example will be described. FIG. 6 is a waveform diagram of the entire waveform of the observed lightning current waveform, and FIG. 7 is a waveform diagram of an enlarged waveform of the time axis of the observed lightning current waveform. The observed lightning current waveform is a negative lightning stroke, and it can be confirmed that the peak value is −20 kA. As described above, the lightning strike current observation apparatus according to the present invention can grasp lightning properties and collect effective data as a guideline for lightning resistance design and resistance design.

なお、本形態の説明では雷撃電流観測装置が風力発電装置に適用されるものとして説明した。しかしながら、これは雷撃電流観測装置の適用形態の一例であり、他にも各種工作物(例えば避雷針など)・高層建築物(例えば、煙突など)に適用が可能である。   In the description of this embodiment, the lightning strike current observation device is described as being applied to a wind power generator. However, this is an example of an application form of the lightning current observation device, and can be applied to various other works (for example, lightning rods) and high-rise buildings (for example, chimneys).

また、ロゴウスキーコイルそれぞれ波高値計測用と波形計測用と便宜上分けているが、一つのロゴウスキーコイルが、波高値計測用と波形計測用とを兼ねるようにしてもよい。
しかしながら、ロゴウスキーコイルを分離することで、波高値計測用観測装置を波高値計測に最適となるように各種構成・設定値を決定することができ、同様に波形計測用観測装置でも波形計測に最適となるように各種構成・設定値を決定することができるため分離することが好ましい。
In addition, although each of the logo whiskey coils is divided into a peak value measurement and a waveform measurement for convenience, one logo whiskey coil may serve both as a peak value measurement and a waveform measurement.
However, by separating the Rogowski coil, it is possible to determine various configurations and setting values so that the peak value measurement observation device is optimal for peak value measurement. Similarly, the waveform measurement observation device can also perform waveform measurement. Separation is preferable because various configurations and setting values can be determined so as to be optimal.

また、図1では波高値計測用ブロック及び波形計測用ブロック構成が塔体外部で図示しない収容箱内に収容配置される構成を想定して説明したが、他に波高値計測用ブロック及び波形計測用ブロック構成共に塔体内部に収容し、ケーブルを塔体から外側に引き出してロゴウスキーコイルとケーブル接続し、またアンテナを塔体の外側に設置するような構成を採用しても良い。   In addition, although FIG. 1 has been described on the assumption that the block configuration for measuring the peak value and the block configuration for measuring the waveform are accommodated in a storage box (not shown) outside the tower body, the block for measuring the peak value and the waveform measurement are also provided. It is also possible to adopt a configuration in which the block configuration is housed inside the tower body, the cable is drawn out from the tower body and connected to the Rogowski coil, and the antenna is installed outside the tower body.

以上本形態について説明した。
こうして、本発明による雷撃電流観測装置では、特に、大口径ロゴウスキーコイルを用いることにより、塔体を有する大型施設に容易に設置可能とし、且つ、雷性状における雷撃電流の波高値、波形等各種データを正確に計測・収集できる。そして、これらのデータに基づいて、風力発電装置をはじめあらゆる大型施設に対する適切な雷保護措置を講ずることが容易となる。
The present embodiment has been described above.
Thus, in the lightning strike current observation apparatus according to the present invention, in particular, by using a large-diameter logo owski coil, it can be easily installed in a large facility having a tower body, and the lightning current has a peak value, waveform, etc. Various data can be measured and collected accurately. And based on these data, it becomes easy to take appropriate lightning protection measures for all large facilities including wind power generators.

風力発電装置に設置された本発明を実施するための最良の形態の雷撃観測装置の構成図である。It is a block diagram of the lightning strike observation apparatus of the best form for implementing this invention installed in the wind power generator. ロゴウスキーコイルの設置を説明する説明図である。It is explanatory drawing explaining installation of a Rogowski coil. 風力発電装置の接地を説明する説明図である。It is explanatory drawing explaining the earthing | grounding of a wind power generator. 波高値計測ブロックを説明する説明図である。It is explanatory drawing explaining a peak value measurement block. 波形計測ブロックを説明する説明図である。It is explanatory drawing explaining a waveform measurement block. 観測された雷撃電流波形の全体波形の波形図である。It is a wave form diagram of the whole waveform of the observed lightning strike current waveform. 観測された雷撃電流波形の時間軸拡大波形の波形図である。It is a wave form diagram of the time-axis enlarged waveform of the observed lightning strike current waveform. 風力発電装置の説明図である。It is explanatory drawing of a wind power generator.

符号の説明Explanation of symbols

1:波高値計測用ロゴウスキーコイル
2:波高値計測用観測装置
2a:積分回路
2b:正極性ピークホールド回路
2c:負極性ピークホールド回路
2d:メモリ
2e:信号処理部
2f:時計部
2g:通信部
2h:アンテナ
2i:電源部
3:UPS電源装置
4:波形計測用ロゴウスキーコイル
5:波形計測用観測装置
5a:GPS(Global Positioning System)アンテナ
5b:GPS時計部
5c:演算処理部(CPU)
5d:データ保存部
5e:波形処理部
5f:センサインターフェース部(センサI/F部)
5g:システムバス
5h:電源制御部
5i:電源部
5j:携帯電話アンテナ
5k:携帯電話
5l:TA(Terminal Adapter)
5m:シリアル通信処理部
5n:補助電池
6:外部監視装置
6a:PHS電話
6b:端末装置
1000:風力発電装置
100:塔体
101:根元部
102:フランジ
103:フランジボルト
104:接地線
105:接地リンク
106:接地極
200:収容箱
300:ブレード
301:羽
302:ヘッド
303:ロータ軸
400:基礎部
1: Rogowski coil 2 for measuring peak value 2: Observation device 2a for measuring peak value: Integration circuit 2b: Positive peak hold circuit 2c: Negative peak hold circuit 2d: Memory 2e: Signal processing unit 2f: Clock unit 2g: Communication unit 2h: Antenna 2i: Power supply unit 3: UPS power supply device 4: Waveform measurement logo whiskey coil 5: Waveform measurement observation device 5a: GPS (Global Positioning System) antenna 5b: GPS clock unit 5c: Arithmetic processing unit ( CPU)
5d: data storage unit 5e: waveform processing unit 5f: sensor interface unit (sensor I / F unit)
5g: System bus 5h: Power supply control unit 5i: Power supply unit 5j: Mobile phone antenna 5k: Mobile phone 5l: TA (Terminal Adapter)
5m: serial communication processing unit 5n: auxiliary battery 6: external monitoring device 6a: PHS phone 6b: terminal device 1000: wind power generator 100: tower body 101: root portion 102: flange 103: flange bolt 104: ground wire 105: ground Link 106: Grounding electrode 200: Storage box 300: Blade 301: Wing 302: Head 303: Rotor shaft 400: Foundation

Claims (7)

観測対象である工作物が有する塔体の根元部が貫通するように装着され、この塔体の根元部の外周面と絶縁体を介して内接する円環状電流センサと、
円環状電流センサから出力される電流を演算処理して波高値データを外部監視装置へ出力する波高値計測用観測装置と、
円環状電流センサから出力される電流を演算処理して波形データを外部監視装置へ出力する波形計測用観測装置と、
を備えることを特徴とする雷撃電流観測装置。
An annular current sensor that is mounted so that the base of the tower of the workpiece to be observed penetrates, and is inscribed through the insulator with the outer peripheral surface of the base of the tower,
An observation device for measuring the peak value, which calculates the current output from the annular current sensor and outputs the peak value data to the external monitoring device;
An observation device for waveform measurement that computes the current output from the annular current sensor and outputs the waveform data to an external monitoring device;
A lightning current observation device comprising:
請求項1記載の雷撃電流観測装置において、
観測対象である工作物が有する塔体は、
塔体の根元部に形成されるフランジと、
フランジを基礎部に固定する複数のフランジボルトと、
を備えるものであり、
塔体の外周部、フランジ、およびフランジボルトにより形成される断面略凹状の溝部に円環状電流センサを配置することを特徴とする雷撃電流観測装置。
In the lightning strike current observation device according to claim 1,
The tower of the work being observed is
A flange formed at the base of the tower body;
A plurality of flange bolts for fixing the flange to the foundation,
It is equipped with
A lightning strike current observing device, characterized in that an annular current sensor is disposed in a groove having a substantially concave cross section formed by an outer peripheral portion of a tower body, a flange, and a flange bolt.
請求項1または請求項2に記載の雷撃電流観測装置において、
観測対象である工作物が有する塔体は、
塔体が立設される基礎部の周囲の地中に埋設され、接地線を介して塔体と電気的に接続される接地リンクと、
基礎部の周囲に埋設されるとともに、接地線を介して接地リンクと電気的に接続される接地極と、
を備えるものであり、
円環状電流センサは、接地リンクと平行面位置に装着されることを特徴とする雷撃電流観測装置。
In the lightning strike current observation device according to claim 1 or 2,
The tower of the work being observed is
A ground link buried in the ground around the foundation where the tower is erected and electrically connected to the tower via a ground wire;
A grounding electrode buried around the foundation and electrically connected to the grounding link via a grounding wire;
It is equipped with
An annular current sensor is mounted at a position parallel to the ground link, and is a lightning current observation device.
請求項1〜請求項3の何れか一項に記載の雷撃電流観測装置において、
工作物は、
風車を構成するブレードと、
ブレードを保持するロータ軸を回動自在に支持し、ロータ軸に直結される増速器およびこの増速器により回転して発電を行う発電機を収容する収容箱と、
収容箱を先端で支持する塔体と、
を備える風力発電装置であることを特徴とする雷撃電流観測装置。
In the lightning strike current observation device according to any one of claims 1 to 3,
The workpiece is
A blade constituting the windmill;
A housing box that rotatably supports a rotor shaft that holds a blade, and that houses a gearbox directly connected to the rotor shaft and a generator that generates power by rotating with the gearbox;
A tower supporting the containment box at the tip;
A lightning current observing device, characterized by being a wind power generator.
請求項1〜請求項4の何れか一項に記載の雷撃電流観測装置において、
外部監視装置と波高値計測用観測装置との間、および、外部監視装置と波形計測用観測装置との間に移動体通信回線を介在させたことを特徴とする雷撃電流観測装置。
In the lightning strike current observation device according to any one of claims 1 to 4,
A lightning strike current observation device characterized in that a mobile communication line is interposed between an external monitoring device and a peak value measurement observation device and between the external monitoring device and a waveform measurement observation device.
請求項1〜請求項5の何れか一項に記載の雷撃電流観測装置において、
前記円環状電流センサは、波高値計測用ロゴウスキーコイルと波形計測用ロゴウスキーコイルとであり、
波高値計測用観測装置に波高値計測用ロゴウスキーコイルが接続され、また、波形計測用観測装置に波形計測用ロゴウスキーコイルが接続されることを特徴とする雷撃電流観測装置。
In the lightning strike current observation device according to any one of claims 1 to 5,
The annular current sensor is a crest value measurement Rogowsky coil and a waveform measurement Rogowsky coil,
A thunderbolt current observation device, characterized in that a crest value measurement Rogowsky coil is connected to a crest value measurement observation device, and a waveform measurement rogowsky coil is connected to the waveform measurement observation device.
請求項6項に記載の雷撃電流観測装置において、
波高値計測用ロゴウスキーコイルと波形計測用ロゴウスキーコイルとは、巻始めから巻終わりまで1コイルで閉ループを形成したコイルであることを特徴とする雷撃電流観測装置。
In the lightning strike current observation device according to claim 6,
A thunderbolt current observing apparatus, wherein a peak value measuring logoowski coil and a waveform measuring logoowski coil are coils that form a closed loop with one coil from the beginning to the end of winding.
JP2003294926A 2003-08-19 2003-08-19 Lightning strike current observation device Expired - Lifetime JP4211924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294926A JP4211924B2 (en) 2003-08-19 2003-08-19 Lightning strike current observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294926A JP4211924B2 (en) 2003-08-19 2003-08-19 Lightning strike current observation device

Publications (2)

Publication Number Publication Date
JP2005062080A true JP2005062080A (en) 2005-03-10
JP4211924B2 JP4211924B2 (en) 2009-01-21

Family

ID=34371317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294926A Expired - Lifetime JP4211924B2 (en) 2003-08-19 2003-08-19 Lightning strike current observation device

Country Status (1)

Country Link
JP (1) JP4211924B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006583A (en) * 2005-06-22 2007-01-11 Takayasu Kanemura Equipotential bonding construction method
JP2008025993A (en) * 2006-07-18 2008-02-07 Photonics:Kk Lightning detection device for blade
JP2008122167A (en) * 2006-11-10 2008-05-29 Yokogawa Electric Corp Peak detection circuit, multi-channel analyzer and radiation measuring system
JP2008153010A (en) * 2006-12-15 2008-07-03 Toko Electric Corp Blade-thunderstroke monitoring device and thunderstroke monitoring system
JP2008280940A (en) * 2007-05-11 2008-11-20 Mitsubishi Heavy Ind Ltd Wind power generation device and lightning receiving energy level judgment device
JP2010281234A (en) * 2009-06-03 2010-12-16 Kazuo Yamamoto Method and device for suppressing rise in potential of steel tower leg
DE102009050378A1 (en) * 2009-10-22 2011-05-12 Phoenix Contact Gmbh & Co. Kg Device for lightning current measurement
KR101112123B1 (en) * 2005-12-15 2012-02-22 도꾜덴료꾸가부시끼가이샤 System for gathering thunderbolt information
JP2013019753A (en) * 2011-07-11 2013-01-31 Otowa Denki Kogyo Kk Direct lightning stroke detector
WO2014024303A1 (en) * 2012-08-10 2014-02-13 三菱重工業株式会社 State observation system and state observation method for wind power generation device
JP2016095225A (en) * 2014-11-14 2016-05-26 株式会社東光高岳 Measuring device and measuring method
JP2017082689A (en) * 2015-10-28 2017-05-18 正昭 茆原 Detection method and detection device of thunderbolt to wind turbine generator system, and analysis method and analysis device of thunderbolt situations on wind turbine generator system
JP2020137301A (en) * 2019-02-21 2020-08-31 日揮グローバル株式会社 Lightning protection grounding device and lightning protection ground method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8239150B2 (en) * 2011-05-16 2012-08-07 General Electric Company System, device, and method for detecting electrical discharges on a structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006583A (en) * 2005-06-22 2007-01-11 Takayasu Kanemura Equipotential bonding construction method
KR101112123B1 (en) * 2005-12-15 2012-02-22 도꾜덴료꾸가부시끼가이샤 System for gathering thunderbolt information
JP2008025993A (en) * 2006-07-18 2008-02-07 Photonics:Kk Lightning detection device for blade
JP2008122167A (en) * 2006-11-10 2008-05-29 Yokogawa Electric Corp Peak detection circuit, multi-channel analyzer and radiation measuring system
JP2008153010A (en) * 2006-12-15 2008-07-03 Toko Electric Corp Blade-thunderstroke monitoring device and thunderstroke monitoring system
US8006552B2 (en) 2007-05-11 2011-08-30 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and method thereof for judging lightning energy level
WO2008139878A1 (en) * 2007-05-11 2008-11-20 Mitsubishi Heavy Industries, Ltd. Wind turbine generator and its method for judging energy level of thunderbolt
JP2008280940A (en) * 2007-05-11 2008-11-20 Mitsubishi Heavy Ind Ltd Wind power generation device and lightning receiving energy level judgment device
JP2010281234A (en) * 2009-06-03 2010-12-16 Kazuo Yamamoto Method and device for suppressing rise in potential of steel tower leg
DE102009050378A1 (en) * 2009-10-22 2011-05-12 Phoenix Contact Gmbh & Co. Kg Device for lightning current measurement
DE102009050378B4 (en) 2009-10-22 2018-12-20 Phoenix Contact Gmbh & Co. Kg Apparatus and method for lightning current measurement
JP2013019753A (en) * 2011-07-11 2013-01-31 Otowa Denki Kogyo Kk Direct lightning stroke detector
WO2014024303A1 (en) * 2012-08-10 2014-02-13 三菱重工業株式会社 State observation system and state observation method for wind power generation device
JP5614765B2 (en) * 2012-08-10 2014-10-29 三菱重工業株式会社 Wind power generator state monitoring system and state monitoring method
JP2016095225A (en) * 2014-11-14 2016-05-26 株式会社東光高岳 Measuring device and measuring method
JP2017082689A (en) * 2015-10-28 2017-05-18 正昭 茆原 Detection method and detection device of thunderbolt to wind turbine generator system, and analysis method and analysis device of thunderbolt situations on wind turbine generator system
JP2020137301A (en) * 2019-02-21 2020-08-31 日揮グローバル株式会社 Lightning protection grounding device and lightning protection ground method

Also Published As

Publication number Publication date
JP4211924B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4211924B2 (en) Lightning strike current observation device
JP4808148B2 (en) Blade lightning strike monitoring device and lightning strike monitoring system
EP2225810B1 (en) Method for detection of charge originating from lightning
Zangl et al. A feasibility study on autonomous online condition monitoring of high-voltage overhead power lines
EP1631846B1 (en) Registration of ligthning strike in a wind turbine
US20140093373A1 (en) System and method for detecting lightning strikes on a wind turbine
JP5846806B2 (en) Measuring system for windmill blade down conductors
JP6778366B2 (en) Double down conductor system, lightning strike determination system using double down conductor system, and wind power generator
KR20090083356A (en) Wind turbine generator and its method for judging energy level of thunderbolt
CN110850185B (en) Lightning forecasting method based on power transmission line
CN109891092A (en) The thunder and lightning detection of the position detection of lightning stroke on wind turbine blade and measuring system and method
CN206818781U (en) A kind of doublewound take of single can heavy impulse current sensor
JP6628395B2 (en) External lightning protection systems, wind turbine blades and wind turbines
KR101321090B1 (en) Lightning protection and method for a firing body
JP6132829B2 (en) Measuring device and measuring method
EP2385246A1 (en) Arrangement for lightning detection
JP2004225660A (en) Thunder-resistant wind power generation system
US20120176121A1 (en) Current passage indicator
JP6851053B2 (en) Double down conductor systems, sanity assessment systems for double down conductor systems, and wind turbines
JP2008128139A (en) Lightening current supervisory control system
CN207111312U (en) Lightning-protective cable system and the wind power generating set with the system
CN113236505A (en) Fan thunder and lightning on-line monitoring system
CN111103504A (en) Lightning stroke detection and positioning device and method for power transmission line tower
CN211785877U (en) Transmission line shaft tower thunderbolt detects positioner
CN216922367U (en) Wind generating set blade lightning protection lead measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4211924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term