JP2010281234A - Method and device for suppressing rise in potential of steel tower leg - Google Patents

Method and device for suppressing rise in potential of steel tower leg Download PDF

Info

Publication number
JP2010281234A
JP2010281234A JP2009133756A JP2009133756A JP2010281234A JP 2010281234 A JP2010281234 A JP 2010281234A JP 2009133756 A JP2009133756 A JP 2009133756A JP 2009133756 A JP2009133756 A JP 2009133756A JP 2010281234 A JP2010281234 A JP 2010281234A
Authority
JP
Japan
Prior art keywords
tower
potential
conductor
anchor
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009133756A
Other languages
Japanese (ja)
Other versions
JP5305394B2 (en
Inventor
Kazuo Yamamoto
和男 山本
Seito Senoo
聖人 妹尾
Shunichi Yanagawa
俊一 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoden Corp
Original Assignee
Shoden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoden Corp filed Critical Shoden Corp
Priority to JP2009133756A priority Critical patent/JP5305394B2/en
Publication of JP2010281234A publication Critical patent/JP2010281234A/en
Application granted granted Critical
Publication of JP5305394B2 publication Critical patent/JP5305394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost method and a device for suppressing a rise in potential, surely suppressing the rise in the potential of a tower leg by a simple structure such that a loop conductor or a tabular conductor is connected to the periphery of the anchor portion or base portion of the steel tower leg. <P>SOLUTION: In a structure including the base portion 20 buried in the ground and the anchor portion 11 fixed to the base portion 20, the loop conductor 30 or the tabular conductor is connected to the surface of the anchor portion 11 or the surface of the base portion 20, and induced current in a direction canceling lightning current flowing onto the ground from the steel tower leg through the anchor portion 11 or the base portion 20 is conducted to the loop conductor 30 or tabular conductor. Thereby, it is possible to suppress a steep rise in the potential of the steel tower leg 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、風力発電システム等の鉄塔塔脚(以下、単に塔脚ともいう)の電位上昇を抑制するための抑制方法及び抑制装置に関するものである。   The present invention relates to a suppression method and a suppression device for suppressing an increase in potential of a steel tower base (hereinafter also simply referred to as a tower base) such as a wind power generation system.

風力発電システムにおいて、風力発電装置が接地された鉄塔への雷撃により、波頭部分が急峻に増加する雷電流が塔脚から大地に流れると、接地点の有するインダクタンス成分によって雷電流の波頭部分による電位上昇値が波尾部分より著しく大きくなることがある。
ここで、図13(a)は風力発電システムの塔脚から大地に流れる雷電流の一例を示す波形図、図13(b)は上記雷電流による接地点の電位を示す波形図であり、塔脚を固定するアンカー部や地中の基礎部が有するインダクタンス成分に起因して、雷電流の波頭部分に対応する急峻な電位上昇が生じていることがわかる。
In a wind power generation system, if a lightning current that sharply increases the wave front part flows from the tower base to the ground due to a lightning strike to a steel tower to which the wind power generator is grounded, the potential due to the wave head part of the lightning current is caused by the inductance component of the ground point. The rising value may be significantly larger than the wave tail.
Here, FIG. 13 (a) is a waveform diagram showing an example of a lightning current flowing from the tower base of the wind power generation system to the ground, and FIG. 13 (b) is a waveform diagram showing the potential of the grounding point due to the lightning current. It can be seen that a steep increase in potential corresponding to the wavefront portion of the lightning current occurs due to the inductance component of the anchor portion for fixing the leg and the foundation portion in the ground.

上記の電位上昇により、風力発電システムの塔脚内またはその近傍に設置された電力・通信・制御設備と外部から引き込まれた導体との間に過電圧が印加され、その結果、これらの設備に大きな被害が発生することが非特許文献1,2等に記載されている。   Due to the above potential increase, an overvoltage is applied between the power, communication and control equipment installed in or near the tower base of the wind power generation system and the conductor drawn from the outside. It is described in Non-Patent Documents 1 and 2 that damage occurs.

一方、特許文献1には、風力発電システムにおける雷撃時の大地電位上昇を抑制するために、鉄塔の基礎部に設けられた配筋を接地すると共に、前記基礎部の等価半径以上で十分に離れた位置に接地極を複数埋設することにより、合成接地抵抗を低減することが記載されている。   On the other hand, in Patent Document 1, in order to suppress an increase in ground potential at the time of a lightning strike in a wind power generation system, a reinforcing bar provided at a base portion of a steel tower is grounded and separated sufficiently beyond an equivalent radius of the base portion. It is described that the composite grounding resistance is reduced by embedding a plurality of grounding electrodes at a predetermined position.

特開2004−225660号公報(段落[0027]〜[0031],[0076]〜[0082]、図9,図10等)JP 2004-225660 A (paragraphs [0027] to [0031], [0076] to [0082], FIG. 9, FIG. 10, etc.)

山本和男他,「縮小モデルを用いた風力発電システムの雷過電圧に関する実験的検討」(電気学会論文誌B,vol.126,No.1,pp.65−72,2006年1月)Kazuo Yamamoto et al., "Experimental study on lightning overvoltage of wind power generation system using reduced model" (The Institute of Electrical Engineers of Japan B, vol. 126, No. 1, pp. 65-72, January 2006) 山本和男他,「風力発電システムの雷過電圧に関する実験的検討−実際の土壌における縮小モデル実験」(電気学会論文誌B,vol.126,No.12,pp.1230−1238,2006年12月)Kazuo Yamamoto et al., “Experimental study on lightning overvoltage of wind power generation system-Reduction model experiment in actual soil” (The Institute of Electrical Engineers of Japan B, vol. 126, No. 12, pp. 1230-1238, December 2006)

特許文献1に記載された従来技術では、配筋と複数の接地極との接続作業や接地極の埋設作業に多くの手間とコストがかかるという問題があった。
そこで本発明の解決課題は、塔脚を固定するアンカー部や基礎部の表面にループ状または平板状の導体を接続するという簡単な構造により、塔脚の電位上昇を確実に抑制し、しかも低コストにて実現可能な電位上昇抑制方法及び抑制装置を提供することにある。
In the prior art described in Patent Document 1, there is a problem that a lot of labor and cost are required for the connection work between the bar arrangement and the plurality of grounding electrodes and the work for burying the grounding electrodes.
Therefore, the problem to be solved by the present invention is that the potential increase of the tower pedestal is reliably suppressed and reduced by a simple structure in which a loop or flat conductor is connected to the surface of the anchor part or the base part for fixing the tower pedestal. An object of the present invention is to provide a potential rise suppression method and a suppression device that can be realized at a low cost.

上記課題を解決するため、請求項1に係る鉄塔塔脚の電位上昇抑制方法は、地中に埋設される基礎部と、鉄塔塔脚を前記基礎部に固定するために地中に埋設されるアンカー部と、を備えた構造において、
前記アンカー部の表面または前記基礎部の表面に導体を接続し、前記鉄塔塔脚から前記アンカー部または前記基礎部を介して大地に雷電流が流れた際に、電磁誘導により、前記雷電流を打ち消す方向の誘導電流を前記導体に通流させ、前記鉄塔塔脚の電位上昇を抑制するものである。
In order to solve the above-described problem, a method for suppressing the potential increase of a tower pier according to claim 1 is embedded in the ground in order to fix the foundation tower buried in the ground and the tower tower base. In a structure provided with an anchor part,
When a conductor is connected to the surface of the anchor part or the surface of the foundation part, when a lightning current flows from the tower tower base to the ground through the anchor part or the foundation part, the lightning current is generated by electromagnetic induction. An induced current in a direction to cancel is passed through the conductor to suppress an increase in the potential of the tower tower base.

請求項2に係る鉄塔塔脚の電位上昇抑制装置は、地中に埋設される基礎部と、鉄塔塔脚を前記基礎部に固定するために地中に埋設されるアンカー部と、を備えた構造において、
前記アンカー部の表面または前記基礎部の表面に導体を接続し、前記鉄塔塔脚から前記アンカー部または前記基礎部を介して大地に流れる雷電流を打ち消す方向の誘導電流を前記導体に通流させ、前記鉄塔塔脚の電位上昇を抑制するものである。
The tower tower pedestal potential rise suppressing device according to claim 2 includes a foundation part buried in the ground and an anchor part buried in the ground to fix the tower tower base to the foundation part. In structure
A conductor is connected to the surface of the anchor part or the surface of the foundation part, and an induced current is passed through the conductor in a direction to cancel lightning current flowing from the tower tower base through the anchor part or the foundation part to the ground. , It suppresses the potential rise of the tower pedestal.

請求項3に係る鉄塔塔脚の電位上昇抑制装置は、請求項2に記載した電位上昇抑制装置において、
前記導体は、前記アンカー部の表面または前記基礎部の表面に接続され、前記アンカー部の表面または前記基礎部の表面と相まって閉回路を構成すると共に、雷電流により発生する磁束が内部空間に鎖交する線状のループ導体であることを特徴とする。
The apparatus for suppressing an increase in potential of a tower pedestal according to claim 3 is the apparatus for suppressing an increase in potential according to claim 2,
The conductor is connected to the surface of the anchor portion or the surface of the base portion, and forms a closed circuit together with the surface of the anchor portion or the surface of the base portion, and magnetic flux generated by lightning current is chained to the internal space. It is a linear loop conductor that intersects.

請求項4に係る鉄塔塔脚の電位上昇抑制装置は、請求項2に記載した電位上昇抑制装置において、
前記導体は、前記アンカー部の表面または前記基礎部の表面に接続され、雷電流により発生する磁束が鎖交する平板導体であることを特徴とする。
The apparatus for suppressing an increase in potential of a steel tower base according to claim 4 is the apparatus for suppressing an increase in potential according to claim 2,
The conductor is a flat conductor that is connected to the surface of the anchor portion or the surface of the base portion and in which magnetic flux generated by lightning current is linked.

請求項5に係る鉄塔塔脚の電位上昇抑制装置は、請求項3に記載した電位上昇抑制装置において、
前記アンカー部が棒状部材により構成され、その外周面に、互いに等間隔で放射状に複数の前記ループ導体を接続したものである。
The apparatus for suppressing an increase in potential of a steel tower base according to claim 5 is the apparatus for suppressing an increase in potential according to claim 3,
The anchor portion is constituted by a rod-shaped member, and a plurality of the loop conductors are connected radially to the outer peripheral surface thereof at equal intervals.

請求項6に係る鉄塔塔脚の電位上昇抑制装置は、請求項4に記載した電位上昇抑制装置において、
前記アンカー部が棒状部材により構成され、その外周面に、互いに等間隔で放射状に複数の前記平板導体を接続したものである。
The apparatus for suppressing an increase in potential of a steel tower base according to claim 6 is the apparatus for suppressing an increase in potential according to claim 4,
The anchor portion is composed of a rod-shaped member, and a plurality of the flat plate conductors are connected radially to the outer peripheral surface at equal intervals.

本発明によれば、鉄塔塔脚を固定する地中のアンカー部または基礎部の表面にループ導体や平板導体を接続することにより、塔脚からアンカー部または前記基礎部に流れる雷電流を打ち消す方向の誘導電流を流すことができ、アンカー部や基礎部のインダクタンス成分に起因した塔脚の急峻な電位上昇を抑制することができる。
また、本発明は、上述した雷電流による急峻な電位上昇の抑制以外にも、塔脚の定常接地抵抗値の低減にも有益である。
According to the present invention, the direction of canceling the lightning current flowing from the tower base to the anchor part or the base part by connecting the loop conductor or the flat plate conductor to the surface of the anchor part or the base part in the ground for fixing the tower tower base. Inductive current can be flowed, and a steep potential rise of the tower base due to the inductance component of the anchor portion or the base portion can be suppressed.
Further, the present invention is useful for reducing the steady ground resistance value of the tower base, in addition to the suppression of the steep potential increase due to the lightning current described above.

本発明の概略的な構成を示す図である。It is a figure which shows the schematic structure of this invention. 本発明による電位上昇の抑制原理を説明するための図である。It is a figure for demonstrating the suppression principle of the electric potential rise by this invention. FDTD法の解析空間を解析モデルと共に示した図である。It is the figure which showed the analysis space of the FDTD method with the analysis model. ループ導体及び平板導体の寸法の説明図である。It is explanatory drawing of the dimension of a loop conductor and a flat conductor. 解析に用いた注入電流の波形図である。It is a wave form chart of injection current used for analysis. 解析に用いたループ導体または平板導体の接続位置の説明図である。It is explanatory drawing of the connection position of the loop conductor or flat plate conductor used for the analysis. 導体の接続位置が異なる各ケースについての電位上昇値を示すグラフである。It is a graph which shows the electric potential rise value about each case from which the connection position of a conductor differs. 導体の種類が異なる各ケースについての電位上昇値を示すグラフである。It is a graph which shows the electric potential rise value about each case from which the kind of conductor differs. ループ導体について一辺の長さを変化させた場合の電位上昇値の最大値を示すグラフである。It is a graph which shows the maximum value of an electric potential rise value when changing the length of one side about a loop conductor. 平板導体について一辺の長さを変化させた場合の電位上昇値の最大値を示すグラフである。It is a graph which shows the maximum value of the electric potential rise value when changing the length of one side about a flat conductor. ループ導体について一辺の長さを変化させた場合の電位上昇値の最大値を示すグラフである。It is a graph which shows the maximum value of the electric potential rise value when changing the length of one side about a loop conductor. 平板導体について一辺の長さを変化させた場合の電位上昇値の最大値を示すグラフである。It is a graph which shows the maximum value of the electric potential rise value when changing the length of one side about a flat conductor. 風力発電システムの塔脚から大地に流れる雷電流の一例を示す波形図(図13(a))、及び、上記雷電流による接地点の電位を示す波形図(図13(b))である。It is a wave form diagram (Drawing 13 (a)) which shows an example of the lightning current which flows into the ground from the tower base of a wind power generation system, and a wave form diagram (Drawing 13 (b)) which shows the potential of the grounding point by the above-mentioned lightning current.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は、本発明の構成を示す概要図である。本発明では、図1に示すように、風力発電システムを構成する鉄塔の塔脚10に、地中に埋設されるアンカー部11が固定されており、このアンカー部11の表面、または基礎部20の表面に、雷電流を打ち消す誘導電流を流すためのループ導体30または平板導体(図示せず)が接続される。ここで、ループ導体30は厳密にはループ状(環状)ではなく例えばコ字形に形成されており、ループ導体30が接続されるアンカー部11等の表面と相まって閉回路を形成するものであるが、本明細書では、このような機能を果たす限り、ループ導体というものとする。この場合、ループ導体30または平板導体に接続されるアンカー部11や基礎部20は、例えば鉄筋コンクリートにより構成されている。
なお、図1において、a,bはループ導体30の各辺の長さを、X,Y,Zは三次元の各方向を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a schematic diagram showing the configuration of the present invention. In this invention, as shown in FIG. 1, the anchor part 11 embed | buried in the ground is being fixed to the tower base 10 of the steel tower which comprises a wind power generation system, The surface of this anchor part 11, or the foundation part 20 A loop conductor 30 or a flat conductor (not shown) for supplying an induced current that cancels the lightning current is connected to the surface of the substrate. Here, strictly speaking, the loop conductor 30 is not formed in a loop shape (annular shape) but is formed in, for example, a U-shape, and forms a closed circuit in combination with the surface of the anchor portion 11 or the like to which the loop conductor 30 is connected. In this specification, as long as such a function is achieved, it is referred to as a loop conductor. In this case, the anchor part 11 and the foundation part 20 connected to the loop conductor 30 or the flat conductor are made of, for example, reinforced concrete.
In FIG. 1, a and b indicate the length of each side of the loop conductor 30, and X, Y, and Z indicate three-dimensional directions.

図2は、本発明による電位上昇の抑制原理を説明するための図である。
いま、塔脚10に雷電流が流れ、この塔脚10に電気的に接続されたアンカー部11に図示する如く電流Iが流れたとする。なお、電流Iは、前述したように波頭部分が急峻に増加するような波形を持つ。
電流Iによってループ導体30の内部空間に磁束Φが発生すると、レンツの法則により前記磁束Φを打ち消す方向の磁束Φ’を発生させるようにループ導体30に起電力が発生して誘導電流Iが流れる。
FIG. 2 is a diagram for explaining the principle of suppressing the rise in potential according to the present invention.
Now, it is assumed that a lightning current flows through the tower pedestal 10 and a current I 1 flows through the anchor portion 11 electrically connected to the tower pedestal 10 as illustrated. Note that the current I 1 has a waveform in which the wave front portion sharply increases as described above.
When the magnetic flux Φ is generated in the internal space of the loop conductor 30 by the current I 1 , an electromotive force is generated in the loop conductor 30 so as to generate the magnetic flux Φ ′ in the direction to cancel the magnetic flux Φ according to Lenz's law, and the induced current I 2 Flows.

その結果、ループ導体30が接続されているアンカー部11の表面には電流(I−I)が流れることになり、ループ導体30が接続されていない場合に比べて、アンカー部11や基礎部20のインダクタンス成分による過渡的な電位上昇が抑制されることになる。
ここで、ループ導体30は、図1に示したようにアンカー部11の軸を中心として、外周面の複数箇所(例えば4箇所、8箇所等)に、互いに等間隔で放射状に配置することが望ましい。
As a result, a current (I 1 -I 2 ) flows on the surface of the anchor portion 11 to which the loop conductor 30 is connected, and the anchor portion 11 and the foundation are compared with the case where the loop conductor 30 is not connected. The transient potential increase due to the inductance component of the unit 20 is suppressed.
Here, as shown in FIG. 1, the loop conductors 30 may be arranged radially at equal intervals from each other at a plurality of locations (for example, 4 locations, 8 locations, etc.) on the outer peripheral surface around the axis of the anchor portion 11. desirable.

上述した電位上昇の抑制効果は誘導電流Iの大きさに依存し、言い換えればループ導体30または平板導体の種類、接続位置、大きさ等に左右される。
このため発明者は、以下の方法により様々なケースについて電位上昇の抑制効果を解析した。
The effect of suppressing the potential increase described above depends on the magnitude of the induced current I 2 , in other words, depends on the type, connection position, size, etc. of the loop conductor 30 or the flat conductor.
For this reason, the inventor analyzed the effect of suppressing the potential increase in various cases by the following method.

解析方法としては、数値電磁界解析手法の一つであるFDTD(Finite Difference Time Domain)法を用いた。このFDTD法は、例えば宇野享の「FDTD法による電磁界およびアンテナ解析」(コロナ社,1986年発行)に記載されている。
図3は、FDTD法の解析空間を解析モデル(塔脚10、アンカー部11、基礎部20、ループ導体30または平板導体からなる)と共に示した図である。解析空間50の大きさは、X,Y,Zの各方向の長さを50〔m〕とし、空間の刻み幅は全ての方向で0.5〔m〕とした。立方体である解析空間50を囲む6つの面は、二次のLiaoの吸収境界条件を用いて開空間を模擬している。大地は、抵抗率ρ=100〔Ω・m〕の物質をZ=20〔m〕の高さまで満たすことにより表現している。なお、60は塔脚10に接続された電流注入線である。
As an analysis method, an FDTD (Finite Difference Time Domain) method which is one of numerical electromagnetic field analysis methods was used. This FDTD method is described in, for example, “Understanding electromagnetic field and antenna analysis by FDTD method” by Koyo Uno (Corona, 1986).
FIG. 3 is a view showing an analysis space of the FDTD method together with an analysis model (consisting of a tower base 10, an anchor portion 11, a base portion 20, a loop conductor 30 or a flat conductor). As for the size of the analysis space 50, the length in each direction of X, Y, and Z was 50 [m], and the step size of the space was 0.5 [m] in all directions. The six faces surrounding the analysis space 50, which is a cube, simulate an open space using a secondary Liao absorption boundary condition. The earth is expressed by filling a substance having a resistivity ρ = 100 [Ω · m] up to a height of Z = 20 [m]. Reference numeral 60 denotes a current injection line connected to the tower base 10.

ループ導体30としては、Y.Baba, N.Nagaoka, A.Ametani, “Modeling of the wires in a lossy medium for FDTD simulation”, IEEE Transaction on Electromagnetic Compatibility, Vol.47, Issue 1, pp. 54-60 (2005年2月)に記載されている細線導体モデルを用いた。
図4は、解析に用いたループ導体30または平板導体の寸法を定義した図であり、Z方向(アンカー部11の長手方向)の長さをa〔m〕とし、これに直交する幅方向(Y方向)の長さをb〔m〕とした。
As loop conductor 30, Y.Baba, N.Nagaoka, A.Ametani, “Modeling of the wires in a lossy medium for FDTD simulation”, IEEE Transaction on Electromagnetic Compatibility, Vol.47, Issue 1, pp. 54-60 The thin wire conductor model described in (February 2005) was used.
FIG. 4 is a diagram in which the dimensions of the loop conductor 30 or the flat conductor used in the analysis are defined. The length in the Z direction (longitudinal direction of the anchor portion 11) is a [m], and the width direction ( The length in the Y direction was b [m].

種々のループ導体30及び平板導体を使用したときの電位上昇の抑制効果を検証するため、電流注入線60への注入電流Iと、基礎部20の電位上昇値V(基礎部20の周辺からループ導体30の中心軸に向かう方向を正とする)とを計算した。
図5は、注入電流Iの波形図であり、波高値1〔A〕、波頭長0.1〔μs〕の急峻な立ち上がりの波形として、比較的急峻に立ち上がる雷電流の波頭部分を模擬した。
In order to verify the effect of suppressing the potential increase when using various loop conductors 30 and flat plate conductors, the injection current I to the current injection line 60 and the potential increase value V of the base portion 20 (from the periphery of the base portion 20 to the loop) The direction toward the central axis of the conductor 30 is positive).
FIG. 5 is a waveform diagram of the injection current I, simulating a wavefront portion of a lightning current that rises relatively steeply as a steep rising waveform having a peak value of 1 [A] and a wavefront length of 0.1 [μs].

また、図6は、ループ導体30または平板導体の接続位置を説明した図である。なお、便宜的に、図6ではループ導体30のみを示してあるが、平板導体についても同様な位置に接続するものとする。
図6(a)は、アンカー部11の外周面(側面)において、アンカー部11の中心軸を含む平面内に位置するように(アンカー部11の径方向に沿って)ループ導体30または平板導体を接続した例であり、これらをケース2,ケース6〜18とする。図6(b)は、基礎部20の上面に直交する平面内に位置するようにループ導体30または平板導体を接続した例であり、これをケース3とする。
図6(c)は、基礎部20の側面において、アンカー部11の中心軸を含む平面内に位置するように(基礎部20の径方向に沿って)ループ導体30または平板導体を接続した例であり、これをケース4とする。図6(d)は、基礎部20の下面に直交する平面内に位置するようにループ導体30または平板導体を接続した例であり、これをケース5とする。
なお、ループ導体30または平板導体を接続しない例を、ケース1とする。
FIG. 6 is a diagram illustrating the connection position of the loop conductor 30 or the flat conductor. For convenience, only the loop conductor 30 is shown in FIG. 6, but the flat conductor is also connected to the same position.
FIG. 6A shows a loop conductor 30 or a flat conductor on the outer peripheral surface (side surface) of the anchor portion 11 so as to be located in a plane including the central axis of the anchor portion 11 (along the radial direction of the anchor portion 11). Are connected to each other, and these are referred to as Case 2 and Cases 6-18. FIG. 6B shows an example in which the loop conductor 30 or the flat plate conductor is connected so as to be located in a plane orthogonal to the upper surface of the base portion 20.
FIG. 6C shows an example in which the loop conductor 30 or the flat plate conductor is connected to the side surface of the base portion 20 so as to be located in a plane including the central axis of the anchor portion 11 (along the radial direction of the base portion 20). This is referred to as Case 4. FIG. 6D shows an example in which the loop conductor 30 or the flat plate conductor is connected so as to be located in a plane orthogonal to the lower surface of the base portion 20.
An example in which the loop conductor 30 or the flat conductor is not connected is referred to as case 1.

上述した図6(a)〜(d)の配置例において、本発明の原理上、ループ導体30または平板導体の向きは、アンカー部11を流れる雷電流によって発生する磁束が鎖交するような向きにする必要がある。例えば、ループ導体30について言えば、上記磁束がループ導体30の内部空間を貫通するような向きに配置する。
ループ導体30または平板導体を複数箇所(例えば4箇所、8箇所等)に接続する場合には、前述したように互いに等間隔で放射状に配置することが望ましい。
In the arrangement examples of FIGS. 6A to 6D described above, the direction of the loop conductor 30 or the flat plate conductor is such that the magnetic flux generated by the lightning current flowing through the anchor portion 11 is linked in accordance with the principle of the present invention. It is necessary to. For example, with respect to the loop conductor 30, the magnetic flux is arranged in such a direction that it penetrates the internal space of the loop conductor 30.
When the loop conductor 30 or the flat conductor is connected to a plurality of locations (for example, 4 locations, 8 locations, etc.), it is desirable to arrange them radially at equal intervals as described above.

上記各ケース1〜18の具体的条件を、一覧表として表1に示す。例えば、ケース2は、寸法が3〔m〕×5〔m〕であって断面積が100〔mm〕のループ導体を、アンカー部11の側面に4個接続した場合を示している。 Specific conditions of the above cases 1 to 18 are shown in Table 1 as a list. For example, the case 2 shows a case where four loop conductors having a dimension of 3 [m] × 5 [m] and a cross-sectional area of 100 [mm 2 ] are connected to the side surface of the anchor portion 11.

Figure 2010281234
Figure 2010281234

図7は、ケース1〜5についての基礎部20の電位上昇値Vを示したものである。ループ導体30等を接続しないケース1に比べ、ループ導体30をそれぞれ異なる位置に接続したケース2〜5では、何れも電位上昇値Vが低下していることが確認された。
ちなみに、ケース1に対するケース2〜18の電位上昇値Vの最大値の比を、表2にまとめて示す。この表2によれば、基礎部20の上面や側面、下面にループ導体30等を接続しても電位上昇の抑制効果は低く、アンカー部11の側面に接続した方が電位上昇の抑制効果が高いことが明らかである。
FIG. 7 shows the potential increase value V of the base portion 20 for cases 1-5. It was confirmed that in each of cases 2 to 5 in which the loop conductors 30 were connected to different positions compared to the case 1 in which the loop conductors 30 and the like were not connected, the potential increase value V decreased.
Incidentally, the ratio of the maximum value of the potential increase value V in cases 2 to 18 with respect to case 1 is summarized in Table 2. According to Table 2, even if the loop conductor 30 or the like is connected to the upper surface, side surface, or lower surface of the base portion 20, the effect of suppressing the potential increase is low, and the effect of suppressing the potential increase is better when connected to the side surface of the anchor portion 11. Clearly high.

Figure 2010281234
Figure 2010281234

以上の結果は、例えば風力発電システムの接地が有する誘導性の特性の多くは、アンカー部11が有するインダクタンス成分によるものであることを示している。
実際の風力発電システムにおいては、低接地抵抗値を得るために各種の接地線を基礎部に接続することが行われる。従って、このような場合には接地線を基礎部に接続するのではなく、図6(a)に示したように、アンカー部11の側面に接続した方が、定常接地抵抗値を低減させることができると共に、波頭部が急峻に増加する雷電流が接地側に侵入した際の急峻な電位上昇を抑制することも可能になり、一層効果的であると言える。
上述した理由から、以下では、アンカー部11の側面にループ導体30や平板導体を接続した場合について検討を進める。
The above results show that, for example, most of the inductive characteristics of the ground of the wind power generation system are due to the inductance component of the anchor portion 11.
In an actual wind power generation system, in order to obtain a low ground resistance value, various ground wires are connected to the base portion. Therefore, in such a case, instead of connecting the ground wire to the base portion, as shown in FIG. 6 (a), connecting the side surface of the anchor portion 11 reduces the steady ground resistance value. In addition, it is possible to suppress a steep potential rise when a lightning current whose wave head sharply increases enters the ground side, which can be said to be more effective.
For the reason described above, in the following, the case where the loop conductor 30 or the flat conductor is connected to the side surface of the anchor portion 11 will be studied.

まず、導体の種類と電位上昇の抑制効果との関係について考察する。
ループ導体30を構成する線状導体の断面積を変化させ、あるいは、ループ導体30に代えて平板導体を用いた場合の電位上昇の抑制効果を検討する。
図8は、ケース1,2,6〜9についての基礎部20の電位上昇値Vを示したものである。同図によれば、ループ導体30の断面積が大きい方が電位上昇の抑制効果が大きいが、断面積の違いによる電位上昇値Vの差異は1〔%〕以下と小さく、ループ導体30を用いる場合には、現在、接地線として使用されている導線で十分であることが判明した。
また、ループ導体30と同じ大きさ(a,bがそれぞれ等しい)の平板導体を用いたケース6では、ループ導体30を用いた場合よりも電位上昇の抑制効果が大きくなることが明らかになった。
First, the relationship between the type of conductor and the effect of suppressing potential rise will be considered.
The effect of suppressing the potential increase when the cross-sectional area of the linear conductor constituting the loop conductor 30 is changed or a flat conductor is used instead of the loop conductor 30 will be examined.
FIG. 8 shows the potential increase value V of the base portion 20 for cases 1, 2, 6-9. According to the figure, the effect of suppressing the potential increase is larger when the loop conductor 30 has a larger cross-sectional area, but the difference in potential increase value V due to the difference in cross-sectional area is as small as 1% or less, and the loop conductor 30 is used. In some cases, it has been found that the conductors currently used as ground wires are sufficient.
In addition, in the case 6 using a flat conductor having the same size as the loop conductor 30 (a and b are equal to each other), it has been clarified that the effect of suppressing the potential increase is larger than when the loop conductor 30 is used. .

次に、導体の大きさ(a,bの長さ)と電位上昇の抑制効果との関係について考察する。
ここでは、ループ導体30及び平板導体について、図4に示した長さa,bを変化させた場合の電位上昇の抑制効果を検討する。
Next, the relationship between the size of the conductor (the length of a and b) and the potential increase suppressing effect will be considered.
Here, regarding the loop conductor 30 and the flat conductor, the effect of suppressing the potential increase when the lengths a and b shown in FIG. 4 are changed will be examined.

図9は、ループ導体30の幅bを5〔m〕に固定し、高さaを変化させた場合の電位上昇値Vの最大値Vmaxを示している。また、図10は、平板導体について同様に測定した場合のものである。
これらの図から、何れの場合も高さaを長くするほど電位上昇の抑制効果が大きくなることが判る。
FIG. 9 shows the maximum value V max of the potential increase value V when the width b of the loop conductor 30 is fixed to 5 [m] and the height a is changed. Moreover, FIG. 10 is a thing at the time of measuring similarly about a flat conductor.
From these figures, it can be seen that in any case, the effect of suppressing the increase in potential increases as the height a is increased.

更に、図11は、ループ導体30の高さaを3〔m〕に固定し、幅bを変化させた場合の電位上昇値Vの最大値Vmaxを示している。また、図12は、平板導体について同様に測定した場合のものである。
何れの場合も幅bを長くするほど電位上昇の抑制効果が大きくなるが、単位導体長当たりの抑制効果は、高さaを長くした方が大きいことが判明した。これは、塔脚(アンカー部)から離れるに従って塔脚を流れる電流による磁界は距離に反比例して減少するので、aを長くした方がbを長くするよりもループ導体に鎖交する磁束が多くなり、この磁束に応じた誘導電流も大きくなるためである。
しかし、大地抵抗率が大きい場所などでは、bを長くすることで定常接地抵抗値を下げることができ、このような効果と併せて雷撃時の過渡的な接地抵抗を低減させたい場合には、bを長くすることも有効であると言える。
Further, FIG. 11 shows the maximum value V max of the potential increase value V when the height a of the loop conductor 30 is fixed to 3 [m] and the width b is changed. Moreover, FIG. 12 is a thing at the time of measuring similarly about a flat conductor.
In any case, the longer the width b, the greater the effect of suppressing the potential increase. However, it has been found that the effect of suppressing the unit conductor length is greater when the height a is increased. This is because the magnetic field due to the current flowing through the tower pedestal decreases as the distance from the tower pier (anchor part) decreases. Therefore, the longer a is, the more magnetic flux is linked to the loop conductor than b is longer. This is because the induced current corresponding to the magnetic flux also increases.
However, in places where the earth resistivity is large, it is possible to lower the steady grounding resistance value by increasing b, and when it is desired to reduce the transient grounding resistance during lightning strikes in combination with such effects, It can be said that it is effective to lengthen b.

以上のように、この実施形態によれば、アンカー部11の表面や基礎部20の表面にループ導体30または平板導体を接続することにより、アンカー部11や基礎部20のインダクタンス成分によって塔脚の電位が急激に上昇するのを抑制することができる。
また、必要な部品はループ導体30または平板導体であり、アンカー部11の側面等への接続作業も簡単に実現可能であるから、資材や工事の費用も安く済み、コストの低減を図ることができる。
As described above, according to this embodiment, the loop conductor 30 or the flat plate conductor is connected to the surface of the anchor portion 11 or the surface of the base portion 20, so that It is possible to suppress the potential from rising rapidly.
Further, since the necessary parts are the loop conductor 30 or the flat conductor, and the connection work to the side surface of the anchor portion 11 and the like can be easily realized, the cost of materials and construction can be reduced, and the cost can be reduced. it can.

本発明は、風力発電システムに限らず、送電鉄塔などの塔脚に対しても適用可能である。   The present invention is not limited to a wind power generation system, and can also be applied to tower legs such as a power transmission tower.

10:塔脚
11:アンカー部
20:基礎部
30:ループ導体
50:解析空間
60:電流注入線
10: Tower base 11: Anchor part 20: Foundation part
30: Loop conductor 50: Analysis space 60: Current injection line

Claims (6)

地中に埋設される基礎部と、鉄塔塔脚を前記基礎部に固定するために地中に埋設されるアンカー部と、を備えた構造において、
前記アンカー部の表面または前記基礎部の表面に導体を接続し、前記鉄塔塔脚から前記アンカー部または前記基礎部を介して大地に雷電流が流れた際に、電磁誘導により、前記雷電流を打ち消す方向の誘導電流を前記導体に通流させ、前記鉄塔塔脚の電位上昇を抑制することを特徴とする鉄塔塔脚の電位上昇抑制方法。
In a structure comprising a foundation part buried in the ground, and an anchor part buried in the ground in order to fix the tower pedestal to the foundation part,
When a conductor is connected to the surface of the anchor part or the surface of the foundation part, when a lightning current flows from the tower tower base to the ground through the anchor part or the foundation part, the lightning current is generated by electromagnetic induction. A method of suppressing an increase in the potential of a tower tower pedestal, wherein an induced current in a direction to cancel is passed through the conductor to suppress an increase in potential of the tower tower pedestal.
地中に埋設される基礎部と、鉄塔塔脚を前記基礎部に固定するために地中に埋設されるアンカー部と、を備えた構造において、
前記アンカー部の表面または前記基礎部の表面に導体を接続し、前記鉄塔塔脚から前記アンカー部または前記基礎部を介して大地に流れる雷電流を打ち消す方向の誘導電流を前記導体に通流させ、前記鉄塔塔脚の電位上昇を抑制することを特徴とする鉄塔塔脚の電位上昇抑制装置。
In a structure comprising a foundation part buried in the ground, and an anchor part buried in the ground to fix the tower pedestal to the foundation part,
A conductor is connected to the surface of the anchor part or the surface of the base part, and an induced current is passed through the conductor in a direction to cancel lightning current flowing from the tower tower base to the ground through the anchor part or the base part. An apparatus for suppressing an increase in potential of a steel tower column, which suppresses an increase in potential of the steel tower column.
請求項2に記載した鉄塔塔脚の電位上昇抑制装置において、
前記導体は、前記アンカー部の表面または前記基礎部の表面に接続され、前記アンカー部の表面または前記基礎部の表面と相まって閉回路を構成すると共に、雷電流により発生する磁束が内部空間に鎖交する線状のループ導体であることを特徴とする鉄塔塔脚の電位上昇抑制装置。
In the tower tower pedestal potential rise suppression device according to claim 2,
The conductor is connected to the surface of the anchor portion or the surface of the base portion, and forms a closed circuit together with the surface of the anchor portion or the surface of the base portion, and magnetic flux generated by lightning current is chained to the internal space. An apparatus for suppressing an increase in potential of a tower pedestal, which is a linear loop conductor that intersects.
請求項2に記載した鉄塔塔脚の電位上昇抑制装置において、
前記導体は、前記アンカー部の表面または前記基礎部の表面に接続され、雷電流により発生する磁束が鎖交する平板導体であることを特徴とする鉄塔塔脚の電位上昇抑制装置。
In the tower tower pedestal potential rise suppression device according to claim 2,
The electric conductor is a flat plate conductor connected to the surface of the anchor portion or the surface of the base portion, and a magnetic flux generated by a lightning current is interlinked, and the apparatus for suppressing an increase in potential of tower towers.
請求項3に記載した鉄塔塔脚の電位上昇抑制装置において、
前記アンカー部が棒状部材により構成され、その外周面に、互いに等間隔で放射状に複数の前記ループ導体を接続したことを特徴とする鉄塔塔脚の電位上昇抑制装置。
In the tower tower potential increase control device according to claim 3,
An apparatus for suppressing an increase in potential of a tower tower, wherein the anchor portion is composed of a rod-like member, and a plurality of the loop conductors are radially connected to the outer peripheral surface thereof at equal intervals.
請求項4に記載した鉄塔塔脚の電位上昇抑制装置において、
前記アンカー部が棒状部材により構成され、その外周面に、互いに等間隔で放射状に複数の前記平板導体を接続したことを特徴とする鉄塔塔脚の電位上昇抑制装置。
In the tower tower pedestal potential rise suppression device according to claim 4,
The tower tower base potential rise suppression device characterized in that the anchor portion is constituted by a rod-like member, and a plurality of the flat conductors are radially connected to the outer peripheral surface thereof at equal intervals.
JP2009133756A 2009-06-03 2009-06-03 Method and apparatus for suppressing potential rise of steel tower base Active JP5305394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133756A JP5305394B2 (en) 2009-06-03 2009-06-03 Method and apparatus for suppressing potential rise of steel tower base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133756A JP5305394B2 (en) 2009-06-03 2009-06-03 Method and apparatus for suppressing potential rise of steel tower base

Publications (2)

Publication Number Publication Date
JP2010281234A true JP2010281234A (en) 2010-12-16
JP5305394B2 JP5305394B2 (en) 2013-10-02

Family

ID=43538181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133756A Active JP5305394B2 (en) 2009-06-03 2009-06-03 Method and apparatus for suppressing potential rise of steel tower base

Country Status (1)

Country Link
JP (1) JP5305394B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662119A (en) * 2012-05-30 2012-09-12 广东电网公司佛山供电局 Method and device for evaluating risks of tripping of low-voltage distribution line in lightning induction
WO2018130328A1 (en) * 2017-01-10 2018-07-19 Dehn + Söhne Gmbh + Co. Kg Lightning arrester device
CN114486713A (en) * 2021-12-31 2022-05-13 贵州电网有限责任公司 Resistance test device and method for weather-resistant steel tower

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278400A (en) * 2003-03-14 2004-10-07 Jfe Engineering Kk Anchor frame of windmill tower
JP2005062080A (en) * 2003-08-19 2005-03-10 Toko Electric Corp Lightening stroke current observation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278400A (en) * 2003-03-14 2004-10-07 Jfe Engineering Kk Anchor frame of windmill tower
JP2005062080A (en) * 2003-08-19 2005-03-10 Toko Electric Corp Lightening stroke current observation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662119A (en) * 2012-05-30 2012-09-12 广东电网公司佛山供电局 Method and device for evaluating risks of tripping of low-voltage distribution line in lightning induction
CN102662119B (en) * 2012-05-30 2014-12-10 广东电网公司佛山供电局 Method and device for evaluating risks of tripping of low-voltage distribution line in lightning induction
WO2018130328A1 (en) * 2017-01-10 2018-07-19 Dehn + Söhne Gmbh + Co. Kg Lightning arrester device
DE102017126913B4 (en) 2017-01-10 2021-07-22 Dehn Se + Co Kg Lightning arrester
CN114486713A (en) * 2021-12-31 2022-05-13 贵州电网有限责任公司 Resistance test device and method for weather-resistant steel tower
CN114486713B (en) * 2021-12-31 2023-11-17 贵州电网有限责任公司 Resistance test device and method for weathering steel tower

Also Published As

Publication number Publication date
JP5305394B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
Tu et al. Research on lightning overvoltages of solar arrays in a rooftop photovoltaic power system
JP5305394B2 (en) Method and apparatus for suppressing potential rise of steel tower base
Zhang et al. Effective grounding of the photovoltaic power plant protected by lightning rods
Rizk et al. Investigation of lightning electromagnetic fields on underground cables in wind farms
Florkowski et al. Propagation of overvoltages in distribution transformers with silicon steel and amorphous cores
El Mghairbi et al. Technique to increase the effective length of practical earth electrodes: Simulation and field test results
Rizk et al. Induced voltages on overhead line by return strokes to grounded wind tower considering horizontally stratified ground
Niihara et al. Transient grounding characteristics of wind turbine with counterpoise
JP4362812B2 (en) Grounding body
Korobeynikov et al. Suppression of incoming high-frequency overvoltage in transformer coils
Yasui et al. Reduction measures of the overvoltage in the TN system of a building struck directly by lightning
JP5813420B2 (en) Building lightning potential rise suppression device
Abd‐Elhady et al. High‐frequency modeling of Zafarana wind farm and reduction of backflow current‐overvoltages
Yamamoto et al. Field tests of grounding at an actual wind turbine generator system
CN105426558A (en) Method for determining electrical connection mode between substation grounding grid and base station grounding grid
Elmghairbi et al. A technique to increase the effective length of horizontal earth electrodes and its application to a practical earth electrode system
Elmghairbi et al. Potential rise and safety voltages of wind turbine earthing systems under transient conditions
JP5545739B2 (en) Solar power plant
YASUDA et al. Equivalent equation of earth resistance for ring electrode of wind turbine
Triruttanapiruk et al. A simplified technique for detecting disconnections along down conductors in wind turbine blades
Yamamoto et al. Transient Grounding Characteristics of an Actual Wind Turbine Generator System at a Low‐resistivity Site
Yamamoto et al. Transient grounding characteristics of a wind turbine foundation with grounding wires and plates
Manikandan et al. Design and analysis of grounding systems for wind turbines using Finite element method
Yamamoto et al. Grounding characteristics of a wind turbine measured immediately after its undergrounding
Lehtonen et al. Ground potential rise and lightning overvoltages in control systems of large power-plants under high soil resistivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250