JP5545739B2 - Solar power plant - Google Patents

Solar power plant Download PDF

Info

Publication number
JP5545739B2
JP5545739B2 JP2010197446A JP2010197446A JP5545739B2 JP 5545739 B2 JP5545739 B2 JP 5545739B2 JP 2010197446 A JP2010197446 A JP 2010197446A JP 2010197446 A JP2010197446 A JP 2010197446A JP 5545739 B2 JP5545739 B2 JP 5545739B2
Authority
JP
Japan
Prior art keywords
power
lightning
conductors
conductor
power conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010197446A
Other languages
Japanese (ja)
Other versions
JP2012054180A (en
Inventor
和男 山本
俊一 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoden Corp
Original Assignee
Shoden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoden Corp filed Critical Shoden Corp
Priority to JP2010197446A priority Critical patent/JP5545739B2/en
Publication of JP2012054180A publication Critical patent/JP2012054180A/en
Application granted granted Critical
Publication of JP5545739B2 publication Critical patent/JP5545739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、メガソーラー発電所(大規模太陽光発電所)等に適用される太陽光発電装置に関し、詳しくは、雷撃による過電圧からパワーコンディショナーを保護するようにした太陽光発電装置に関するものである。   The present invention relates to a solar power generation device applied to a mega solar power plant (large-scale solar power plant), and more particularly to a solar power generation device that protects a power conditioner from an overvoltage caused by a lightning strike. .

メガソーラー発電所の建設には広大に土地が必要であり、より多くの太陽光エネルギーを得るために、発電所の周囲には高い建造物が少ないことが多い。このため、メガソーラー発電所自体はそれほど高い建造物でなくても、雷撃対象となりやすく、避雷針やサージ保護装置(SPD)等を用いた雷害対策が必要不可欠である。   The construction of a mega solar power plant requires a large amount of land, and there are often few high buildings around the power plant in order to obtain more solar energy. For this reason, even if the mega solar power plant itself is not a very high building, it is easy to become a lightning strike target, and lightning damage countermeasures using a lightning rod, a surge protection device (SPD), etc. are indispensable.

ここで、例えば、特許文献1には、電力系統に連系された太陽光発電装置の近辺に雷が発生したことを検出して太陽光発電装置を解列し、雷サージから内部電気回路を保護するようにした太陽光発電装置用制御装置、太陽光発電装置の雷サージ保護システム、及び雷サージ保護方法が記載されている。
この従来技術は、要約すると、電力系統に連系された太陽光発電装置の発電電力値を取得し、雷の発生を検知したときに、前記発電電力値が予め設定された値よりも小さかった場合に、当該太陽光発電装置を解列するための指示を行うものである。
Here, for example, in Patent Document 1, it is detected that lightning has occurred in the vicinity of a solar power generation device linked to an electric power system, the solar power generation device is disconnected, and an internal electric circuit is connected from the lightning surge. A control device for a solar power generation device, a lightning surge protection system for the solar power generation device, and a lightning surge protection method are described.
In summary, this prior art obtains the generated power value of the photovoltaic power generation apparatus linked to the power system, and when the occurrence of lightning is detected, the generated power value is smaller than a preset value. In this case, an instruction for disconnecting the photovoltaic power generation apparatus is given.

特開2007−116857号公報(段落[0070]〜[0142]、図1〜図3等)JP 2007-116857 A (paragraphs [0070] to [0142], FIGS. 1 to 3, etc.)

特開2007−116857号公報に係る従来技術によれば、落雷時に電力系統から太陽光発電装置に雷サージが侵入するのを未然に防止することができ、太陽光パネルによる直流発電電力を交流電力に変換するパワーコンディショナー等の内部電気回路を雷サージから保護することが可能である。
しかしながら、上記従来技術では、太陽光発電装置を解列するための開閉器や制御装置等の回路構成が複雑であり、装置の大型化やコストの増加を招く等の問題があった。
According to the prior art related to Japanese Patent Application Laid-Open No. 2007-116857, it is possible to prevent a lightning surge from entering the photovoltaic power generation device from the power system during a lightning strike, and to convert the DC generated power by the solar panel into AC power. It is possible to protect an internal electric circuit such as a power conditioner that converts to lightning surge.
However, in the above-described conventional technology, there are problems such as a complicated circuit configuration such as a switch and a control device for disconnecting the photovoltaic power generation device, which leads to an increase in the size of the device and an increase in cost.

そこで、本発明の解決課題は、雷撃時にパワーコンディショナーに印加される過電圧を簡単な構成及び低コストにて低減可能とし、過電圧によるパワーコンディショナーの故障や誤動作を防止するようにした太陽光発電装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a photovoltaic power generation apparatus that can reduce overvoltage applied to the power conditioner at the time of a lightning strike with a simple configuration and low cost, and prevents failure and malfunction of the power conditioner due to overvoltage. It is to provide.

上記課題を解決するため、請求項1に係る発明は、太陽光パネルを設置するための構造体の全ての辺を複数の導体により構成し、かつ、前記導体を大地に固定された導電性の基礎杭に接続し、これらの導体によって包囲される内部空間に、前記太陽光パネルによる直流発電電力を交流電力に変換するためのパワーコンディショナー及びこのパワーコンディショナーに接続された電力線を配置すると共に、前記構造体の一部または全部を覆うように導体メッシュ等の導電体を配置し、この導電体及び前記構造体によりファラデーケージを構成して、落雷時に前記パワーコンディショナーの筺体と前記電力線との間に印加される過電圧を抑制するものである。 In order to solve the above-mentioned problem, the invention according to claim 1 is a conductive material in which all sides of a structure for installing a solar panel are constituted by a plurality of conductors , and the conductors are fixed to the ground. A power conditioner for converting DC power generated by the solar panel into AC power and an electric power line connected to the power conditioner are disposed in an internal space connected to the foundation pile and surrounded by the conductors, and A conductor such as a conductor mesh is arranged so as to cover a part or all of the structure, and a Faraday cage is configured by this conductor and the structure, and between the power conditioner case and the power line during a lightning strike. It suppresses the applied overvoltage .

本発明によれば、メガソーラー発電所等において、太陽光発電装置の構造体の内部空間にパワーコンディショナーを配置し、かつ、導体メッシュ等の導電体を構造体の一部または全部を覆うように配置することにより、雷撃時にパワーコンディショナーに印加される過電圧を抑制することができ、パワーコンディショナーの故障や誤動作を防止することができる。
特に、従来技術のように解列用の開閉器や制御装置が不要であるため、回路構成の簡略化、コストの低減が可能である。
According to the present invention, in a mega solar power plant or the like, a power conditioner is disposed in the internal space of the structure of the solar power generation device, and a conductor such as a conductor mesh is covered over part or all of the structure. By arranging, overvoltage applied to the power conditioner during a lightning stroke can be suppressed, and failure or malfunction of the power conditioner can be prevented.
In particular, since a disconnection switch and control device are not required as in the prior art, the circuit configuration can be simplified and the cost can be reduced.

本発明の実施形態に係る太陽光発電装置の過電圧解析モデルの主要部を示す構成図である。It is a block diagram which shows the principal part of the overvoltage analysis model of the solar power generation device which concerns on embodiment of this invention. 図1の過電圧解析モデルに注入した擬似的な雷電流の波形図である。FIG. 2 is a waveform diagram of a pseudo lightning current injected into the overvoltage analysis model of FIG. 1. 図1のA〜F点に図2の雷電流を注入したときの電圧V,Vの波形図である。FIG. 3 is a waveform diagram of voltages V 1 and V 2 when the lightning current of FIG. 2 is injected into points A to F of FIG. 1. 導体メッシュを所定箇所に配置して図1のA点に図2の雷電流を注入したときの電圧V,Vの波形図である。FIG. 3 is a waveform diagram of voltages V 1 and V 2 when a conductor mesh is arranged at a predetermined position and the lightning current of FIG. 2 is injected at point A in FIG.

以下、図に沿って本発明の実施形態を説明する。
まず、本発明では、数値電磁界解析法の一つであるFDTD(Finite-Difference Time-Domain)法を用いて、太陽光発電装置に雷撃があった場合に発生する過電圧を解析する。なお、FDTD法(時間領域差分法、有限差分時間領域法などとも呼ばれる)は、マクスウェルの方程式を、空間と時間を離散化して電界及び磁界を交互に計算する解析手法であり、例えば、宇野亨「FDTD法による電磁界およびアンテナ解析」(コロナ社発行,1998年)等に詳しく説明されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, in the present invention, an overvoltage generated when a lightning strike occurs in a photovoltaic power generation apparatus is analyzed using a FDTD (Finite-Difference Time-Domain) method which is one of numerical electromagnetic field analysis methods. Note that the FDTD method (also called time domain difference method, finite difference time domain method, etc.) is an analysis method that calculates Maxwell's equations by discretely dividing space and time, and alternately calculating an electric field and a magnetic field. “Electromagnetic field and antenna analysis by FDTD method” (issued by Corona, 1998) and the like.

図1は、既存のメガソーラー発電所を基に構築した太陽光発電装置の解析モデルの主要部を示す構成図である。
図1において、100は太陽光パネルが設置される構造体であり、11,12,15は互いに平行な長尺かつ水平の導体、13,14は導体11,12を相互に連結する水平の導体、16,17は導体12,15を相互に連結する垂直の導体、18,19は導体11,15を相互に連結する斜めの導体である。
ここで、導体11,15,18,19によって形成される矩形の斜面は、太陽光パネル(図示を省略する)が設置される受光面を形成している。
FIG. 1 is a configuration diagram showing a main part of an analysis model of a solar power generation device constructed based on an existing mega solar power plant.
In FIG. 1, 100 is a structure on which a solar panel is installed, 11, 12, and 15 are long and horizontal conductors parallel to each other, and 13 and 14 are horizontal conductors that connect the conductors 11 and 12 to each other. 16, 17 are vertical conductors connecting the conductors 12, 15 to each other, and 18, 19 are oblique conductors connecting the conductors 11, 15 to each other.
Here, the rectangular slope formed by the conductors 11, 15, 18, and 19 forms a light receiving surface on which a solar panel (not shown) is installed.

また、導体11,12,15の長さは130[m]、導体13,14,16,17の長さは5[m]であり、導体11〜14は地上面から1[m]の高さに設置されている。
更に、21は、深さ15[m]に埋設された28本の導電性の基礎杭であり、これらの基礎杭は、大地(抵抗率:100[Ωm]、比誘電率:10)に固定されている。
The conductors 11, 12, and 15 have a length of 130 [m], the conductors 13, 14, 16, and 17 have a length of 5 [m], and the conductors 11 to 14 have a height of 1 [m] from the ground surface. Is installed.
Furthermore, 21 is 28 conductive foundation piles embedded at a depth of 15 [m], and these foundation piles are fixed to the ground (resistivity: 100 [Ωm], relative dielectric constant: 10). Has been.

31〜33は構造体100の背後に設置された避雷針であり、その地上高は11[m]、構造体100からの距離は2[m]である。
41は、太陽光パネルによる直流発電電力を交流電力に変換するパワーコンディショナーであり、構造体100の内部空間において、導体11,12,15の長手方向のほぼ中央に配置してある。また、51,52はこのパワーコンディショナー41と太陽光パネルとを接続するための電力線(長さはいずれも63[m])である。
なお、構造体100の形状や構造、各部の寸法、並びに、構造体100の内部におけるパワーコンディショナー41の位置は、上記の例になんら限定されるものではない。
Reference numerals 31 to 33 are lightning rods installed behind the structure 100, and the ground height is 11 [m], and the distance from the structure 100 is 2 [m].
Reference numeral 41 denotes a power conditioner that converts direct-current power generated by the solar panel into alternating-current power. Reference numerals 51 and 52 denote power lines (the length is 63 [m]) for connecting the power conditioner 41 and the solar panel.
Note that the shape and structure of the structure 100, the dimensions of each part, and the position of the power conditioner 41 in the structure 100 are not limited to the above example.

次に、図2は、上記解析モデルに注入される擬似的な雷電流波形(波高値1[A]、波頭長約1[μs])を示している。
図示されていないが、電流源と抵抗(500[Ω])とを並列接続した電源を図1のA〜F点の直上に設置し、雷道を模擬した細線導体を介して電源からA〜F点に図2の雷電流を注入することとした。
ここで、A〜C点は導体15上の点、D〜F点は避雷針31〜33の先端部である。
Next, FIG. 2 shows a pseudo lightning current waveform (crest value 1 [A], wavefront length about 1 [μs]) injected into the analysis model.
Although not shown, a power source in which a current source and a resistor (500 [Ω]) are connected in parallel is installed immediately above the points A to F in FIG. It was decided to inject the lightning current of FIG.
Here, points A to C are points on the conductor 15, and points D to F are tip portions of the lightning rods 31 to 33.

通常、太陽光パネルを支持する構造体やその近傍の避雷針等が雷撃を受けた場合、雷道や構造体を流れる電流により、電力線に誘導電圧が発生する。この誘導電圧により電力線が接続されているパワーコンディショナーに過電圧が加わり、パワーコンディショナーが故障したり誤動作するおそれがある。
メガソーラー発電所における雷事故の主たるものは、パワーコンディショナーの故障であると予想されるため、本実施形態では、擬似的な雷電流注入時における、図1の電力線51,52とパワーコンディショナー41の筐体との間の電圧(パワーコンディショナー41の直流側に発生する電圧)V,VをFDTD法により計算し、検討した。
Usually, when a structure supporting a solar panel or a lightning rod in the vicinity thereof receives a lightning strike, an induced voltage is generated in the power line due to a current flowing through the lightning path or the structure. Due to this induced voltage, an overvoltage is applied to the power conditioner to which the power line is connected, and the power conditioner may break down or malfunction.
Since the main lightning accident in the mega solar power plant is expected to be a failure of the power conditioner, in this embodiment, the power lines 51 and 52 and the power conditioner 41 of FIG. The voltage between the casing (voltage generated on the DC side of the power conditioner 41) V 1 and V 2 was calculated by the FDTD method and examined.

図3(a)〜(f)は、図1におけるA〜F点に図2の雷電流を注入した場合の電圧V,Vの計算結果である。
また、これらの解析結果による過電圧最大値(絶対値)を表1にまとめる。なお、表1において、Aは、後述するように導体メッシュを使用してA点に雷電流を注入した場合のデータである。
3A to 3F show calculation results of the voltages V 1 and V 2 when the lightning current of FIG. 2 is injected at points A to F in FIG.
Table 1 summarizes the maximum overvoltage (absolute value) based on these analysis results. In Table 1, A * is data when a lightning current is injected at point A using a conductor mesh as will be described later.

Figure 0005545739
Figure 0005545739

例えば、一般的な雷電流(波高値24[kA])による雷撃時に発生する過電圧は、表1に示した電圧V,Vを24×10倍すればよい。なお、異なる波頭長における検討を行いたい場合は、FDTD法を用いた計算を再度行う必要がある。 For example, the overvoltage generated during a lightning strike due to a general lightning current (crest value 24 [kA]) may be obtained by multiplying the voltages V 1 and V 2 shown in Table 1 by 24 × 10 3 . In addition, when it is desired to study at different wavefront lengths, it is necessary to perform the calculation using the FDTD method again.

図3(c)から明らかなように、パワーコンディショナー41の近傍に雷撃があった場合(C点から雷電流を注入した場合)に、電圧V,Vの最大値が最も大きくなっている。これらの最大値を一般的な雷電流(波高値24[kA])が流れた場合に換算すると、460[kV]にも達する。 As is clear from FIG. 3C, when there is a lightning strike in the vicinity of the power conditioner 41 (when a lightning current is injected from the point C), the maximum values of the voltages V 1 and V 2 are the largest. . When these maximum values are converted when a general lightning current (peak value 24 [kA]) flows, the maximum value reaches 460 [kV].

図1に示したように電力線51,52が構造体100の内部に配置されている場合、この構造体100を導体メッシュ等の導電体によって覆い、構造体100と導電体とによりファラデーージを構成することで、電圧V,Vが過大になるのを抑制することができると考えられる。 If the power lines 51, 52 as shown in FIG. 1 is disposed in the interior of the structure 100, covering the structure 100 by a conductive material such as conductive mesh Faraday cage by the structure 100 and the conductor It can be considered that the voltages V 1 and V 2 can be suppressed from becoming excessive.

一例として、構造体100の背面(避雷針31〜33と電力線51,52との間)、及び、構造体100の側面(導体13,16,18及び導体14,17,19によってそれぞれ構成される三角形の部分)に導体メッシュを挿入し、A点から擬似的な雷電流を注入した場合の計算結果を図4に示す。また、このときのV,Vの最大値は、前記表1にAとして示したとおりである。
上記のように導体メッシュを配置すると、完全なファラデーージを構成しているわけではないにも関わらず、過電圧最大値を導体メッシュのない場合に比べて約25%程度に抑制することが可能である。
As an example, the back surface of the structure 100 (between the lightning rods 31 to 33 and the power lines 51 and 52) and the side surface of the structure 100 (conductors 13, 16, 18 and conductors 14, 17, 19, respectively) FIG. 4 shows a calculation result when a conductor mesh is inserted into the portion (ii) and a pseudo lightning current is injected from the point A. Further, the maximum values of V 1 and V 2 at this time are as shown in Table 1 as A * .
Placing the conductive mesh as described above, despite are not constitute a complete faraday cage, it can be suppressed to the order of about 25% as compared with the case without the conductor mesh overvoltage maximum value Is possible.

以上のように、この実施形態によれば、パワーコンディショナー41を太陽光発電装置の構造体100の内部空間に配置し、かつ、導体メッシュ等の導電体を構造体の一部または全部を覆うように配置することで、パワーコンディショナー41の筐体と電力線との間に印加される過電圧を抑制することができ、パワーコンディショナー41の故障や誤動作を防止することができる。   As described above, according to this embodiment, the power conditioner 41 is disposed in the internal space of the structure 100 of the photovoltaic power generator, and a conductor such as a conductor mesh is covered over part or all of the structure. By disposing the power conditioner 41, an overvoltage applied between the casing of the power conditioner 41 and the power line can be suppressed, and a failure or malfunction of the power conditioner 41 can be prevented.

11〜19:導体
21:基礎杭
31〜33:避雷針
41:パワーコンディショナー
51,52:電力線
100:構造体
11-19: Conductor 21: Foundation pile 31-33: Lightning rod 41: Power conditioner 51, 52: Power line 100: Structure

Claims (1)

太陽光パネルを設置するための構造体の全ての辺を複数の導体により構成し、かつ、前記導体を大地に固定された導電性の基礎杭に接続し、これらの導体によって包囲される内部空間に、前記太陽光パネルによる直流発電電力を交流電力に変換するためのパワーコンディショナー及びこのパワーコンディショナーに接続された電力線を配置すると共に、前記構造体の一部または全部を覆うように導体メッシュ等の導電体を配置し、この導電体及び前記構造体によりファラデーケージを構成して、落雷時に前記パワーコンディショナーの筺体と前記電力線との間に印加される過電圧を抑制することを特徴とする太陽光発電装置。 An internal space in which all sides of a structure for installing a solar panel are constituted by a plurality of conductors , and the conductors are connected to a conductive foundation pile fixed to the ground and surrounded by these conductors. In addition, a power conditioner for converting DC power generated by the solar panel into AC power and a power line connected to the power conditioner are disposed, and a conductor mesh or the like is provided so as to cover a part or all of the structure. A photovoltaic power generation characterized in that a conductor is disposed and a Faraday cage is constituted by the conductor and the structure to suppress an overvoltage applied between the power conditioner housing and the power line during a lightning strike. apparatus.
JP2010197446A 2010-09-03 2010-09-03 Solar power plant Active JP5545739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010197446A JP5545739B2 (en) 2010-09-03 2010-09-03 Solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010197446A JP5545739B2 (en) 2010-09-03 2010-09-03 Solar power plant

Publications (2)

Publication Number Publication Date
JP2012054180A JP2012054180A (en) 2012-03-15
JP5545739B2 true JP5545739B2 (en) 2014-07-09

Family

ID=45907277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010197446A Active JP5545739B2 (en) 2010-09-03 2010-09-03 Solar power plant

Country Status (1)

Country Link
JP (1) JP5545739B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5592514B2 (en) * 2013-02-01 2014-09-17 株式会社 沢木組 How to install the solar panel mount

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199384A (en) * 1984-10-22 1986-05-17 Toshiba Corp Solar-battery-array protecting device
JP2009176578A (en) * 2008-01-24 2009-08-06 Panasonic Electric Works Co Ltd Columnar light emitter

Also Published As

Publication number Publication date
JP2012054180A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
CN102841280B (en) Method for simulating lightning trip-out rates of 500kV transmission line with four circuits on same tower
JP6856248B2 (en) Lightning strike suppression type lightning rod
Cavka et al. Transient analysis of grounding systems for wind turbines
Zhang et al. Effective grounding of the photovoltaic power plant protected by lightning rods
Chen et al. Lightning-induced voltages on a distribution line with surge arresters using a hybrid FDTD–SPICE method
Sabiha et al. Sustaining electrification service from photovoltaic power plants during backflow lightning overvoltages
Araneo et al. Analysis of the lightning transient response of the earthing system of large-scale ground-mounted PV plants
Zhang et al. Transients in solar photovoltaic systems during lightning strikes to a transmission line
Deshagoni et al. Factors determining the effectiveness of a wind turbine generator lightning protection system
JP5545739B2 (en) Solar power plant
Pretorius Loss of equipotential during lightning ground potential rise on large earthing systems
JP5813420B2 (en) Building lightning potential rise suppression device
Yasui et al. Reduction measures of the overvoltage in the TN system of a building struck directly by lightning
JP5305394B2 (en) Method and apparatus for suppressing potential rise of steel tower base
Elmghairbi et al. A technique to increase the effective length of horizontal earth electrodes and its application to a practical earth electrode system
Soloot et al. The assessment of overvoltage protection within energization of offshore wind farms
Abd‐Elhady et al. High‐frequency modeling of Zafarana wind farm and reduction of backflow current‐overvoltages
CN105426558A (en) Method for determining electrical connection mode between substation grounding grid and base station grounding grid
Thanasaksiri Improving the lightning performance of overhead lines applying additional underbuilt shield wire
Lehtonen et al. Ground potential rise and lightning overvoltages in control systems of large power-plants under high soil resistivity
Sekioka Lightning protections of renewable energy generation systems
Yamamoto et al. Transient grounding characteristic of wind turbines affecting back-flow lightning current into distribution system
Yamamoto et al. Transient grounding characteristics of a wind turbine foundation with grounding wires and plates
Grobbelaar et al. External lightning protection and earthing to reduce stress on spds within electrical equipment in photovoltaic plants
Osborne et al. Points to consider regarding the insulation coordination of GIS substations with cable connections to overhead lines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5545739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250