WO2006070648A1 - Pattern forming method and electronic circuit - Google Patents

Pattern forming method and electronic circuit Download PDF

Info

Publication number
WO2006070648A1
WO2006070648A1 PCT/JP2005/023405 JP2005023405W WO2006070648A1 WO 2006070648 A1 WO2006070648 A1 WO 2006070648A1 JP 2005023405 W JP2005023405 W JP 2005023405W WO 2006070648 A1 WO2006070648 A1 WO 2006070648A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
forming
transparent
forming step
thin film
Prior art date
Application number
PCT/JP2005/023405
Other languages
French (fr)
Japanese (ja)
Inventor
Ryohei Satoh
Yoshinori Iwata
Koji Nakagawa
Kenji Tanaka
Satoru Takaki
Original Assignee
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co., Ltd. filed Critical Asahi Glass Co., Ltd.
Priority to JP2006550697A priority Critical patent/JP4329817B2/en
Publication of WO2006070648A1 publication Critical patent/WO2006070648A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0073Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
    • H05K3/0082Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/442Light reflecting means; Anti-reflection means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/0551Exposure mask directly printed on the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/046Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by selective transfer or selective detachment of a conductive layer
    • H05K3/048Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by selective transfer or selective detachment of a conductive layer using a lift-off resist pattern or a release layer pattern

Definitions

  • the present invention relates to a pattern forming method provided in an electronic circuit and the like, and an electronic circuit such as a plasma display substrate.
  • a plasma display panel (hereinafter also referred to as "PDP"! /, U) can be thinned and can be easily increased in size, and has features such as light weight and high resolution. It is attracting attention as a strong candidate to replace CRT.
  • PDPs are broadly divided into DC and AC types, but the operating principle is based on the light emission phenomenon associated with gas discharge.
  • the cell space is defined by partition walls 3 formed between the transparent front substrate 1 and the rear substrate 2 arranged opposite to each other to define the cell.
  • Fills with a mixture gas such as He + Xe and Ne + Xe which has low visible light emission and high UV light emission efficiency.
  • plasma discharge is generated in the cell, and the phosphor layer 9A on the cell inner wall is caused to emit light, thereby forming an image on the display screen.
  • the PDP is provided on the front substrate 1 on the display electrode 5 for generating plasma discharge and on a part of the display electrode 5 to reduce the resistance of the display electrode 5.
  • the dielectric layer 8 and the MgO layer 9 that prevent the display electrode 5 and the display electrode 5 and the bus electrode 6 from being eroded by the plasma and coming into contact with the electrodes formed on the back substrate 2 are also necessary.
  • it has a plasma display substrate with black stripes 4 that reduce reflection of external light.
  • an address electrode 7 for writing information is provided on the back substrate 2.
  • the bus electrode 6 is formed on a part of the display electrode 5 using a conductive material. Form.
  • the black stripe 4 is provided, the black stripe 4 is further formed.
  • the dielectric layer 8 and the MgO layer 9 are formed (see Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2).
  • a thin layer formed using a conductive material is processed into a predetermined shape. As a method for processing the shape of the thin layer, wet etching using a resist is employed.
  • the processing of the thin layer by wet etching is performed by first forming a resist layer on the thin layer, then exposing and developing the resist layer to form openings in the resist layer, and then etching solution. This is done by etching the thin layer exposed in the opening using, and finally peeling off the resist layer.
  • the number of processes required for manufacturing the PDP becomes enormous.
  • the number of operations required for manufacturing increases, resulting in inconveniences such as an increase in complicated operations and an increase in cost.
  • the black stripe 4 is formed in a separate process from the display electrode 5 and the bus electrode 6. Also, when the black stripe 4 is formed, it is necessary to obtain a predetermined shape by wet etching. Therefore, the number of processes required for manufacturing the PDP is further increased by forming the black stripe 4.
  • the etchant used for wet etching exhibits strong acidity and strong alkalinity, for example, if it is discarded as it is, it has problems such as a large environmental load and is difficult to handle. Therefore, when wet etching is performed when manufacturing a PDP, it becomes necessary to perform complicated work associated with the handling of the etching solution, and the number of processes required for manufacturing further increases.
  • wet etching is used when forming a pattern of an electronic circuit other than the above-described PDP.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-65727
  • Non-Patent Document 1 Tatsuo Uchida and Taira Uchiike, “Flat Panel Display Display Dictionary”, Industrial Research Committee, December 25, 2001, p. 583-585
  • Non-Patent Document 2 Ken Okumura, “Flat Panel Display 2004 Practice”, Nikkei Business Publications, p. 176-183
  • the present invention has been proposed in view of the above-described conventional situation, and provides a pattern forming method capable of reducing the number of steps without performing wet etching and reducing the cost. The purpose is to do. It is another object of the present invention to provide an electronic circuit having a pattern formed by this forming method.
  • the present invention provides a pattern forming method and an electronic circuit shown in the following (1) to (17).
  • An antireflection layer forming step of forming an antireflection layer on one main surface side of the transparent substrate, and an antireflection layer that forms an opening by irradiating the antireflection layer with the first laser beam A mask layer forming step for forming a mask layer on the one main surface side of the transparent substrate, and a mask layer for forming an opening in the mask layer after the opening forming step and the antireflection layer opening forming step.
  • the mask layer forming step includes an ultraviolet curable resin coating step of applying an ultraviolet curable resin to the one main surface side of the transparent substrate, and the transparent substrate with respect to the ultraviolet curable resin.
  • the pattern forming method according to (1) further comprising: an ultraviolet resin curing step of irradiating ultraviolet rays from the other main surface side of the plate to cure the ultraviolet cured resin.
  • the antireflection layer includes a first antireflection layer containing chromate oxide and Z or titanate oxide, and a second antireflection layer containing metal chromium and Z or metal titanium.
  • the pattern forming method according to any one of (1) to (4), comprising:
  • the first laser beam is a wavelength force 00 ⁇ 1500Nm, the energy density is less than LjZcm 2 or more 2JZcm 2, wherein (1) to (7), pattern formation according to any deviation Method.
  • the second laser beam has a wavelength power of 00 to 1500 nm and an energy density of 2 to 40 J.
  • a ZCM 2 wherein (1) - (8) The pattern forming method according to any misalignment.
  • a method for forming a plasma display substrate comprising a step of forming a pattern by the pattern forming method according to any one of (1) to (11).
  • a first antireflection layer made of chromate and Z or titanate on one main surface side of the transparent substrate, and a second antireflection made of metal chromium and Z or metal titanium.
  • a plasma display panel comprising the plasma display substrate according to (15) or (16). The invention's effect
  • the antireflection layer also serves as a mask when forming the opening in the mask layer, the mask for forming the opening in the mask layer is formed. It is possible to form an opening in the mask layer. Therefore, according to the present invention, since wet etching is not performed, it is possible to form a pattern having a transparent layer and a thin film layer on a transparent substrate with fewer steps than in the past.
  • a pattern having a transparent layer and a thin film layer can be efficiently formed at a low cost on a transparent substrate. Further, an electronic circuit including a transparent substrate on which a pattern having a transparent layer and a thin film layer is formed can be efficiently formed at low cost.
  • the plasma display substrate black stripe and the plasma display substrate electrode are simultaneously formed. be able to.
  • an antireflection layer on the transparent substrate, it is possible to avoid the appearance of bus electrodes and black stripes when an image is displayed using the plasma display substrate as a PDP.
  • FIG. 1 (A) to (D) are schematic views showing a transparent layer forming step and a transparent layer opening forming step in the pattern forming method of the present invention.
  • FIGS. 2E to 2H are schematic views showing an antireflection layer forming step and an antireflection layer opening forming step in the pattern forming method of the present invention.
  • FIG. 3 (I) to (N) show a mask layer forming step, a mask layer opening forming step, a thin film layer forming step, and a peeling step in the pattern forming method of the present invention.
  • FIG. 4 is a cross-sectional view showing a state in which a light absorption thin film is formed between a mask layer and a transparent substrate.
  • FIG. 5 is a cross-sectional view showing a state in which a protective layer is formed on the thin film layer.
  • FIG. 6 (A) is a cross-sectional view showing a state in which a reflective layer, a transparent layer, and a thin film layer are formed in this order
  • FIG. 6 (B) is a diagram showing the reflective layer, the thin film layer, and the transparent layer in this order. It is sectional drawing which shows the state formed.
  • FIG. 7 shows an electrode for a plasma display substrate according to the present invention and an electrode for a plasma display substrate formed by a preferred embodiment of the method for forming a Z or black stripe and a substrate having a Z or black stripe. It is a schematic plan view.
  • FIG. 8 is a schematic cross-sectional view taken along the line AA ′ of the substrate shown in FIG.
  • FIGS. 9 (A) and 9 (B) show a transparent layer forming step and a transparent layer opening forming step among the steps of forming electrodes for plasma display substrates and Z or black stripes in Examples.
  • FIG. 9 shows a transparent layer forming step and a transparent layer opening forming step among the steps of forming electrodes for plasma display substrates and Z or black stripes in Examples.
  • FIGS. 10 (C) to (E) show the electrodes and electrodes for the plasma display substrate in the example.
  • FIG. 6 is a schematic view showing an antireflection layer forming step and an antireflection layer opening forming step in the step of forming z or black stripe.
  • FIGS. 11 (F) to (H) show a mask layer forming step and a mask layer opening forming step among the steps of forming electrodes for plasma display substrates and Z or black stripes in the examples.
  • FIG. 11 shows a mask layer forming step and a mask layer opening forming step among the steps of forming electrodes for plasma display substrates and Z or black stripes in the examples.
  • FIGS. 12 (I) to (K) show a thin film layer forming step, a protective layer forming step, and a peeling step among the steps of forming electrodes for plasma display substrates and Z or black stripes in Examples.
  • FIG. 12 shows a thin film layer forming step, a protective layer forming step, and a peeling step among the steps of forming electrodes for plasma display substrates and Z or black stripes in Examples.
  • FIG. 13 is a schematic diagram showing a schematic configuration of a conventional PDP.
  • a transparent layer 21 is formed on one main surface side of the transparent substrate 20 (FIG. 1 (A) ⁇ (B): transparent layer forming step), Thereafter, the transparent layer 21 is irradiated with the second laser beam L2 through the photomask 22 to form an opening in the transparent layer 21 (FIG. 1 (C) ⁇ (D): transparent layer opening forming step) ).
  • an antireflection layer 27 is formed by sequentially forming a first antireflection layer 23 and a second antireflection layer 24 on the one main surface side of the transparent substrate 20 (FIG. 2 (E ) ⁇ (F): Anti-reflection layer formation process), and then the first anti-reflection layer 23 and the second anti-reflection layer 24 are irradiated with the first laser beam L1 through the photomask 25 to produce the first reflection. Openings are formed in the prevention layer 23 and the second antireflection layer 24. (Fig. 2 (G) ⁇ (H): Antireflection layer opening forming process).
  • a mask layer 30 is formed on the transparent layer 21 and the second antireflection layer 24 (FIG. 3 (I): mask layer forming step), and then the other of the transparent substrate 20 is formed on the mask layer 30.
  • the main surface side is exposed to ultraviolet rays UV, exposed and developed to form an opening in the mask layer 30 (FIG. 3 CF) ⁇ (K): mask layer opening forming step).
  • the other principal surface side force is also applied to the mask layer 30 with the third main surface side force.
  • the mask surface 30 is also peeled off by the one main surface side force of the transparent substrate 20 (FIG. 3 (M) ⁇ (N): peeling step
  • the transparent layer 21, the first antireflection layer 23, the second antireflection layer 24, and the thin film layer 28 were patterned on the one main surface side of the transparent substrate 20. A pattern can be formed.
  • the transparent substrate 20 is formed of a transparent material (in the present invention, a material having a visible light transmittance of 80% or more as defined in JISR3106 (1998))! ⁇ .
  • a specific example of the transparent substrate 20 is preferably a glass substrate.
  • a glass substrate having a thickness of 0.7 to 3 mm is preferred as a glass substrate for PDP.
  • the main surface on the side where the transparent layer 21, the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, and the like are formed. Is referred to as one main surface, the transparent layer 21, the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, etc. are not formed!
  • the main surface on the side is the other main surface.
  • the transparent layer 21 is formed on the one main surface side of the transparent substrate 20.
  • the material used for forming the transparent layer 21 is not particularly limited as long as it is a conductive material having transparency, and a stannate such as ITO (Indium Tin Oxide) or acid tin (SnO) is used. Use
  • the transparent layer is the second layer described later.
  • the transparent layer preferably has a visible light transmittance of 80% or more as defined in JISR 3106 (1998).
  • the transparent layer 21 is preferably formed by sputtering or vapor deposition.
  • the thickness of the transparent layer 21 is preferably from 0.1 to 3 ⁇ , from 0.1 to 1 111, particularly from 0.1 to 0.5 m.
  • the thickness of the transparent layer 21 is preferably 0.1 to 3 ⁇ m from the viewpoint of conductivity and transparency. In order for the transparent layer 21 to have the above-mentioned thickness, it can be adjusted by controlling the film formation time by sputtering or vapor deposition.
  • the transparent layer 21 uses, for example, a transparent layer forming material such as ITO or SnO as a target.
  • a sputtering gas such as O with Ar or the like and performing sputtering.
  • the second laser beam L2 such as an excimer laser beam or a YAG laser beam is used in combination with the ablation and heat energy to evaporate and remove the formed transparent layer 21.
  • the second laser light L2 is applied to the transparent layer 21 through the photomask 22. As a result, only the second laser beam L2 that has passed through the opening provided in the photomask 22 is transparent layer 2.
  • the transparent layer 21 is covered according to the shape of the photomask 22.
  • the second laser light L2 used preferably has an energy density of 2 to 2 having a wavelength of 500 to 1500 nm.
  • L2 may be noless or CW (continuous light).
  • a laser beam specifically, a YAG laser beam having a wavelength of 1064 nm, Examples include 532 nm YAG laser light.
  • an antireflection layer is formed on the one main surface side of the transparent substrate 20.
  • the antireflection layer preferably has the first antireflection layer 23 and the second antireflection layer depending on the requirements of the optical low reflection condition.
  • the first antireflective layer 23 having chromic acid and Z or titanic acid strength, metal chromium (hereinafter also referred to as “Cr”), and Z or metal titanium (hereinafter also referred to as “Ti”). It is preferable to form the antireflection layer 27 by sequentially forming the second antireflection layer 24 made of.
  • the antireflection layer is preferably a layer that can be peeled off by using the first laser beam L1 described later and using a combination of abrasion and thermal energy! /.
  • the antireflection layer By forming the antireflection layer, visible light reflected by the first antireflection layer 23 and visible light reflected by the second antireflection layer 24 interfere with each other.
  • the image is displayed as a PDP, it is possible to avoid the appearance of a nose electrode or black stripe in the image.
  • the material of the first antireflection layer 23 preferably contains chromate oxide and Z or titanate oxide.
  • the material of the first antireflection layer 23 is preferably chromic oxide in that it can prevent the oxidation of Cu, which is a highly durable electrode material, and can easily provide reflective performance. If 95 mass% or more of chromic acid compound and Z or titanic acid compound is contained in the entire material forming the first antireflection layer 23, it is preferable as the antireflection layer in the present invention. ,.
  • the chromium oxide is oxygen deficient, such as Cr 2 O 3 or oxygen deficient CrO.
  • Chromium oxide is oxygen-deficient CrO (1. 0 ⁇ X ⁇ 1.5)
  • the reflection characteristics are good.
  • titanic acid oxide is TiO that is not deficient in oxygen, or oxygen deficient TiO (1 Including 0 ⁇ X ⁇ 2.0).
  • Titanium oxide is oxygen deficient TiO (1. 0 ⁇ X ⁇ 2. 0)
  • the reflection characteristics are good, which is particularly preferable.
  • the first antireflection layer 23 may further contain carbon, nitrogen, or the like.
  • carbon and Z or nitrogen By incorporating carbon and Z or nitrogen into the material forming the first antireflection layer 23, the extinction coefficient and the refractive index of the film can be finely adjusted, so that it matches the optical characteristics of the second antireflection layer 24. By doing so, the visible range force is also preferable in that the antireflection characteristic can be easily made good in the laser wavelength range used in the present invention.
  • the first anti-reflection layer 23 has a thread length of 0.3 ⁇ Y ⁇ 0.55, 0.03 ⁇ ⁇ ⁇ 0.
  • Chromates that are preferably 2 include these nitrogen-containing chromium oxides.
  • the thickness of the first antireflection layer 23 is preferably 30 to: LOOnm. 30 ⁇ : If LOOnm, anti-reflection property can be good. In addition, the thickness should be appropriately adjusted within the above range from the refractive index and extinction coefficient of the film.
  • the first antireflection layer 23 is preferably substantially transparent, and the refractive index at a wavelength of 550 nm is preferably 1.9 to 2.8. 1.9 to 2 4 is more preferable. Within this range, the reflected light from the first antireflection layer 23 and the reflected light from the second antireflection layer 24 interfere with each other, so that the reflectance of the visible light incident on the antireflection layer 27 is low. Become. “Substantially transparent” means that the extinction coefficient is 1.5 or less, more preferably 0.7 or less. Thus, sufficient light interference can be generated. Further, the first antireflection layer 23 may have a structure in which a plurality of films are stacked. Specifically, the substrate strength is exemplified by sequentially laminating acid chromium and chromium nitride.
  • the second antireflection layer 24 preferably contains Cr and / or Ti.
  • the material of the second antireflection layer 24 is preferably Cr in that it can prevent the oxidation of Cu, which is a highly durable electrode material, and easily achieves reflection performance. If Cr, Z, or Ti is contained in an amount of 95% by mass or more based on the entire material forming the second antireflection layer 24, the antireflection characteristics can be improved.
  • the second antireflection layer 24 may further contain carbon, nitrogen, or the like. Carbon and Z
  • nitrogen by adding nitrogen to the material forming the second antireflection layer 24, the extinction coefficient and the refractive index of the film can be finely adjusted, so that it can be made visible by matching the optical characteristics of the second antireflection layer 24.
  • the local power is also preferable in that the antireflection characteristics can be easily improved in the laser wavelength range used in the present invention.
  • the second antireflection layer 24 in the present invention is preferably substantially opaque in the visible light region where it is preferable that the light transmittance is low. Substantially opaque means that the visible light transmittance is 0.0001-0. 1%.
  • the thickness of the second antireflection layer 24 is preferably 10 to 200 nm, particularly 20 to 100 nm in terms of antireflection characteristics and patterning properties. Further, it is more preferable that the second antireflection layer 24 contains Cr, so that the second antireflection layer 24 serves as a protective layer for a thin film layer formed on the second antireflection layer 24. If the material of the thin film layer is copper, the second antireflection layer 24 containing Cr functions more effectively as a protective layer, which is more preferable.
  • the first antireflection layer 23 and the second antireflection layer 24 in the present invention are formed by sputtering or vapor deposition.
  • sputtering may be performed using a Cr target in an inert atmosphere such as Ar.
  • Ar an inert atmosphere
  • N or CH may be mixed with Ar or the like for sputtering.
  • a chromium target in addition to a sputtering method using a Cr target in an atmosphere containing oxygen. Is possible. The same applies when the titanium oxide layer is formed.
  • sputtering may be performed by mixing N, CH, CO, or the like with Ar or the like.
  • the thicknesses of the first antireflection layer 23 and the second antireflection layer 24 can be adjusted by controlling the film formation time by sputtering, vapor deposition, or the like, as with the transparent layer 21.
  • the antireflection layer forming step in the present invention is not limited to an embodiment in which only two layers of the first antireflection layer 23 and the second antireflection layer 24 exemplified in the preferred embodiment are formed. In addition to these two layers, one or more layers may be formed.
  • the antireflection layer opening forming step for example, excimer laser light, YAG laser light, etc.
  • the first antireflection layer 23 and the second antireflection layer 24 are removed by evaporation to form an opening.
  • the first laser light L1 is applied to the first antireflection layer 23 and the second antireflection layer 24 through the photomask 25.
  • Layer 24 is calo- lated according to the shape of photomask 25.
  • the first anti-reflection layer 23 and the second anti-reflection layer 24 are irradiated with the first laser beam L1 also with the other main surface side force of the transparent substrate 20. Irradiate from the main surface.
  • the first laser beam L1 is an excimer laser beam, a YAG laser beam, or the like, and is a third laser beam (for example, a wavelength of 500 to 1500 nm and an energy density of 0. It is preferable that the energy density is higher than that of the laser beam of lj / cm 2 or more and less than lj / cm 2, for example, the wavelength power is 00 to 1500 nm, and the energy density is ljZcm 2 or more and less than 2jZcm 2 .
  • the energy density is the total energy density of the irradiated pulses when the number of laser pulses is plural, and so on.
  • the pattern width of the antireflection layer 27 is determined by the shape (width) of the photomask 25 used in the antireflection layer opening forming step. Therefore, the pattern width is preferably determined in consideration of the balance between the desired contrast and brightness. If the pattern width is too thick, when used as a PDP, the light emitted from the PDP itself is blocked, so that the image displayed on the PDP cannot secure sufficient luminance.
  • the mask layer 30 is formed on the one main surface side of the transparent substrate 20.
  • the mask layer 30 may be formed using a material that is photopolymerized and cured by ultraviolet ray UV irradiation (exposure), which will be described later, and the cured product does not dissolve in the developer, for example, an ultraviolet curable resin. preferable. Also, laser ablation is performed by irradiation of the third laser beam L3, which will be described later. It is preferable that it can be raised and easily peeled off from the transparent substrate 20.
  • the material used for such a mask layer 30 (hereinafter also referred to as "mask layer forming material”) is preferably an organic material.
  • the mask layer 30 can be sufficiently separated even when irradiated with the third laser light L3 having a low energy density.
  • organic materials include epoxy resin, polyethylene resin, polyimide resin, polyester resin, tetrafluorinated styrene resin, acrylic resin, and the like.
  • the third laser beam L3 having a wavelength of 500 to 15 OOnm and an energy density of 0.1 lj / cm 2 or more and less than lj / cm 2 is used in the peeling process described later.
  • the mask layer 30 can be reliably peeled from the transparent substrate 20 without damaging the antireflection layer 23, the second antireflection layer 24, the thin film layer 28, and the like.
  • the thickness of the mask layer 30 is preferably 6 to 25 ⁇ m, more preferably 7 to 15 m, and even more preferably 7 to: LO m.
  • Such a mask layer 30 can be formed by a commonly used method, for example, a method of applying a mask layer forming material to the one main surface side of the transparent substrate 20 using a coater or the like. In order to achieve this, it is preferable to apply a film-like mask layer forming material to the surface of the transparent substrate 20 using a film laminator or the like.
  • the mask layer 30 may contain a pigment or a dye as the first method, or the second method may include a mask as shown in FIG. It is preferable to form a light-absorbing thin film 31 formed using an organic material containing a pigment or a dye between the layer 30 and the transparent substrate 20.
  • the absorptance with respect to the third laser light L3 as described later increases, so that laser ablation is likely to occur, and transparent
  • the mask layer 30 can be easily peeled from the substrate 20.
  • a pigment to be contained in the mask layer 30 and the light absorbing thin film 31 a black pigment is preferred because of its absorbability. Black dye is preferred as a material.
  • the laser layer has a low energy density (for example, about 0.1 lj / cm 2 or more and less than lj / cm 2 ). Even if the third laser beam L3 is irradiated, laser ablation occurs, and the mask is removed from the transparent substrate 20. Layer 30 is easily peeled off.
  • the content is preferably 10 to 95% by mass from the viewpoint of absorption and function as a mask, and is 20 to 90% by mass. More preferably.
  • the mask layer 30 is formed of a material containing a black pigment or a black dye in such a range, laser ablation is likely to occur, so that the mask layer 30 can be easily peeled off from the transparent substrate 20.
  • the light absorbing thin film 31 efficiently transmits the laser light.
  • the absorption of the laser beam at the interface with the light absorption thin film 31 increases, and laser abrasion is likely to occur. Therefore, the mask layer 30 is easily peeled from the transparent substrate 20.
  • the third laser beam L3 having a low energy density for example, about 0.1 to 0.5 jZcm 2
  • laser abrasion occurs and the mask layer 30 is easily peeled off from the transparent substrate 20.
  • the light absorbing thin film 31 itself is also peeled off from the transparent substrate 20 by laser ablation.
  • the content of the black pigment or black dye in the light-absorbing thin film 31 is preferably 30 to 95% by mass, more preferably 50 to 90% by mass in terms of absorbability.
  • the mask layer 30 increases the absorption of laser light at the interface with the light absorbing thin film 31. . Therefore, the mask layer 30 is likely to cause laser abrasion at the interface with the light absorbing thin film 31, and therefore can be easily peeled off from the transparent substrate 20.
  • the thickness of the light-absorbing thin film 31 is preferably 0.5 to 3 ⁇ m, more preferably 1 to 1.5 ⁇ m. With such a thickness, the ultraviolet ray UV passes through the light-absorbing thin film 31, so that the mask layer 30 is sufficiently cured in the mask layer opening forming step described later.
  • the black pigment or black dye contained in the mask layer 30 and the light absorption thin film 31 is not particularly limited as long as it is a compound that increases the absorption rate of the mask layer 30 with respect to the first laser light L1, and specific examples thereof are as follows. Suitable examples include carbon black, titanium black, bismuth sulfide, iron oxide, azo acid dyes (for example, CI Mordant Blackl7), disperse dyes, and cationic dyes. Of these, carbon black and titanium black power are more preferred because they have a high absorption rate for all laser beams.
  • a wavelength of 500 to 1500 nm and an energy density of 0.1 lj / cm 2 or more are used in the peeling process described later. Irradiation of 1 to 5 pulses of the third laser beam L3 that is less than / cm 2 damages the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, etc. that remain on the transparent substrate 20.
  • the mask layer 30 can be peeled off from the transparent substrate 20 without fail.
  • the use of the organic material containing such a black pigment or black dye is used as a mask layer forming material, the wavelength force S500 ⁇ 1500nm, energy density and 0. 1 ⁇ 0. 5j / cm 2, Even the third laser beam L3 having a low energy density has the same effect.
  • the mask layer 30 is exposed by irradiating UV light UV on the other main surface side force of the transparent substrate 20, and then developed to form the opening. Since the first antireflection layer 23 and the second antireflection layer 24 do not transmit ultraviolet rays UV, the mask layer 30 formed on the second antireflection layer 24 is not photopolymerized and cured by exposure. Therefore, an opening is formed in the mask layer 30 on the second antireflection layer 24 by development after exposure.
  • the thin film layer 28 is formed on the one main surface side of the transparent substrate 20.
  • the thin film layer forming material for forming the thin film layer 28 is not particularly limited as long as it functions as an electrode. For example, it is preferable to use Cu, Ag, Al, Au, etc. It is particularly preferable to use it.
  • the thin film layer 28 is preferably made of Cu as a main component because it is highly conductive and inexpensive as a material. Specifically, the thin film layer 28 preferably contains 85% by mass or more of Cu.
  • the thin film layer 28 using such a thin film layer forming material is formed by a normal sputtering method or vapor deposition method, as with the transparent layer 21.
  • the thickness of the thin film layer 28 is preferably 1 to 4 ⁇ m, particularly 2 to 4 ⁇ m, in terms of patterning properties. If the thickness is in the above range, it is preferable because the conductivity can be good even when the pattern formed in the present invention is used for PDP.
  • the thickness of the thin film layer 28 can be adjusted by controlling the film formation time such as the sputtering method or the vapor deposition method in the same manner as the transparent layer 21.
  • the thin film layer 28 and the antireflection layer 27 are used as plasma display substrate electrodes and Z or black stripes for plasma display, the thin film layer 28 and the antireflection layer 27 may be covered with a dielectric.
  • the resistance of the electrode of the present invention and the dielectric of the Z or black stripe is preferable because it can be further improved by the following two methods.
  • the first method is to include a protective layer forming step of forming a protective layer 34 on the upper surface of the thin film layer 28 after the thin film layer forming step.
  • the protective layer 34 preferably contains Cr and Z or Ti as a main component.
  • the protective layer 34 preferably contains 95 mass% or more of Cr and Z or Ti. This method is preferable because the dielectric does not directly contact the thin film layer 28 and the thin film layer 28 is less likely to be eroded.
  • the protective layer 34 is formed by a sputtering method or a vapor deposition method in the same manner as the transparent layer 21.
  • the thickness of the protective layer 34 is preferably 0.05 to 0.2 m. With this thickness, the thin film layer 28 can be prevented or suppressed from being eroded by the dielectric.
  • the thickness of the protective layer 34 can be adjusted by controlling the film formation time, such as sputtering or vapor deposition.
  • the second method is a method in which the thin film layer 28 contains Cr and Z or Ti. This is because Cr and Ti are highly resistant to dielectrics. Specifically, the thin film layer 28 includes a layer containing Cr and Z or Ti and Cu.
  • the thin film layer 28 is preferable because it has sufficient resistance to the dielectric and the conductivity is maintained.
  • the thin film layer 28 containing Cr and Z or Ti is formed by sputtering or vapor deposition using the thin film layer forming material containing Cr and Z or Ti.
  • the mask layer 30 is irradiated with the third laser light L3 to peel off the mask layer 30 from the transparent substrate 20.
  • the mask layer 30 evaporates by the combined use of the abrasion and the heat energy. As a result, the mask layer 30 is peeled off from the transparent substrate 20.
  • the type of the third laser light L3, excimer laser light, YAG laser light, or the like can be used in the same manner as in the above-described antireflection layer opening forming step.
  • the third laser beam L3 preferably has a wavelength power of 00 to 1500 nm and an energy density of 0.1 J / cm 2 or more and less than lj / cm 2 . If the wavelength and energy density of the third laser beam L3 are within the above ranges, the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, etc. remaining on the transparent substrate 20 are not damaged. The mask layer 30 can be reliably peeled from the transparent substrate 20.
  • the other main surface side force of the transparent substrate 20 when the thin film layer 28 is formed on the mask layer 30, the other main surface side force of the transparent substrate 20 also causes the third laser light L3 to be emitted.
  • the one main surface side force of the transparent substrate 20 is more reliably irradiated and the mask layer 30 can be peeled off from the transparent substrate 20 with less residue. it can. Therefore, it is preferable that the other main surface side force of the transparent substrate 20 is also irradiated with the third laser light L3.
  • the energy density of each laser is preferably in the order of second laser light> first laser light> third laser light. Further, it is preferable that the energy density of each laser beam has a difference of 0.8 jZcm 2 or more from each other in consideration of patterning accuracy.
  • reducing adhesiveness a process of reducing these adhesiveness by irradiating light (hereinafter referred to as “adhesion reducing process” t ⁇ ⁇ ) It may be provided.
  • the mask layer 30 is irradiated with light from the other principal surface side of the transparent substrate 20.
  • the light applied to the mask layer 30 is preferably ultraviolet light.
  • the mask layer forming material is decomposed and deteriorated.
  • the adhesion between the mask layer 30 and the transparent substrate 20 decreases. Therefore, in this case, as the mask layer forming material, it is preferable to use a material containing a component that decomposes or deteriorates when irradiated with light.
  • irradiation may be performed using light having a wavelength corresponding to each mask layer forming material.
  • the mask layer 30 can be easily peeled off even by the force of the transparent substrate 20 and the residue after peeling can be reduced.
  • one or more other thin film layers may be formed. For example, before the formation of the first antireflection layer 23, between the formation of the first antireflection layer 23 and the formation of the second antireflection layer 24, after the formation of the second antireflection layer 24 and the formation of the mask layer 30. Another thin film layer may be formed before or after the mask layer 30 is peeled off.
  • the present invention may add, for example, a step of appropriately changing the order of the steps in the preferred embodiment or forming another thin film.
  • a pattern having a first antireflection layer, a second antireflection layer, a thin film layer, and a transparent layer can be formed on one main surface side of the transparent substrate.
  • the first antireflection layer made of chromate and Z or titanate
  • the second antireflection layer made of metal chromium and Z or metal titanium
  • the thin film layer made of metal copper.
  • a pattern having a transparent layer that also has SnO force
  • the transparent layer is formed between the transparent substrate and the first antireflection layer.
  • the transparent layer is formed after the antireflection layer opening forming step. It may be formed between the second antireflection layer and the thin film layer (FIG. 6 (A)), or may be formed on the one main surface side of the thin film layer by forming it after the peeling step ( Figure 6 (B)).
  • the “pattern having the first antireflection layer, the second antireflection layer, the thin film layer, and the transparent layer” Includes configurations corresponding to FIG. 6 (A) and FIG. 6 (B).
  • the transparent layer 21 may be formed between the antireflection layer 27 and the thin film layer 28. In this case, it is possible to form a pattern in which the antireflection layer Z, the transparent layer, and the Z thin film layer are also patterned in order.
  • SnO as a material for the transparent layer 21
  • the transparent layer 21 is formed between the antireflection layer 27 and the thin film layer 28, the antireflection layer 27 is protected by the transparent layer 21 and is less likely to be eroded by the dielectric. preferable.
  • the transparent layer 21 may be formed on the one main surface side of the thin film layer 28. In this case, it is possible to form a pattern in which the transparent substrate force is also patterned in order of the antireflection layer Z thin film layer Z transparent layer.
  • SnO which is a transparent electrode material
  • the transparent layer 21 is formed of the antireflection layer 27 and the thin film layer 28.
  • the laminate of the antireflection layer 27 and the thin film layer 28 is preferably protected by the transparent layer 21 and eroded by the dielectric. Further, since the antireflection layer Z thin film layer is formed in this order, it is preferable because the reflection characteristics are improved. Further, when the pattern of the present invention is used as a PDP, it is preferable in that the conduction between the thin film layer and the transparent layer can be effectively taken. In addition, when the antireflection layer is patterned by forming the transparent layer after the formation of the thin film layer, the transparent layer does not exist, so the energy density of the first laser light L1 is shown in FIG. Compared to the case, it can be high.
  • the first laser beam L1 is an excimer laser beam, a YAG laser beam, or the like, and preferably has a wavelength of 500 to 1500 nm and an energy density of 1 to 40 j / cm 2 . Note that the wavelength and energy density as described above can be used for the second laser beam L2 and the third laser beam L3.
  • the opening when the opening is formed in the transparent layer 21 by irradiation with the second laser beam L2, the antireflection layer 27 or the laminate of the antireflection layer 27 and the thin film layer 28 is Since it is covered with the photomask, the opening can be formed in the transparent layer 21 without damaging them.
  • the electrode for the plasma display substrate and the cost can be reduced with a smaller number of forming steps. z or black stripes can be formed.
  • the electronic circuit provided with the pattern formed with the said pattern formation method, and the electronic device using the said electronic circuit can be formed.
  • the electronic circuit include a substrate with an electrode for LCD, a substrate with an electrode for organic EL, an electrode for a plasma display substrate, a substrate with Z or black stripe, and the electronic device includes an LCD, Examples include organic EL and PDP.
  • PDP organic EL and PDP.
  • a plasma display substrate can be formed using the pattern formed by the pattern forming method of the present invention as an electrode for a plasma display substrate and a Z or black stripe.
  • the electrodes mean display electrodes and bus electrodes in the plasma display substrate.
  • the black stripe and the electrode can be formed at the same time, so that the process can be shortened.
  • the transparent layer is the display electrode
  • the thin film layer is the bus electrode.
  • FIG. 8 shows a cross-sectional view taken along line AA ′ of FIG.
  • the black stripe 42 is formed of a first antireflection layer 23, a second antireflection layer 24, and a thin film layer 28 that are sequentially formed on the upper surface of the transparent substrate 20.
  • the display electrode 43 is formed from the transparent layer 21.
  • the display electrode 43 is attached to the electrode and Z or black stripe force SPDP, current flows and it is sealed in the corresponding position. Discharge the plasma.
  • the nose electrode 41 is formed of a transparent layer 21, a first antireflection layer 23, a second antireflection layer 24, and a thin film layer 28 that are sequentially formed on the upper surface of the transparent substrate 20.
  • the bus electrode 41 supplies current to the display electrode 43 and reduces the resistance value of the display electrode 43.
  • the bus electrode 41 includes the first antireflection layer 23 and the second antireflection layer 24, the reflection of visible light incident on the other main surface side force of the transparent substrate 20 is also reflected in the same manner as the black stripe 42. Is prevented. In addition, a clear image can be displayed on the PDP of the present invention.
  • the reflectance of visible light (specified in JIS-R3106 (1998)) incident from the other main surface side of the transparent substrate 20 is preferably 50% or less. More preferably, it is 40% or less, and more preferably 10% or less. If the reflectance is 50% or less, a clearer image is formed on the PDP.
  • a film made of talyl resin containing 40% by mass of carbon black (hereinafter simply referred to as “mask film”) is used as the material for forming the mask layer.
  • a metal Cr target purity: 99.99% or higher
  • a metal Cr target purity: 99.99% or higher
  • a metal Cu target purity: 99 as the material for forming the thin film layer
  • the electrode for the plasma display substrate and the method for forming the Z or black stripe according to the example are as follows: (1) Transparent layer forming step (FIG. 9 (A)), (2 ) Transparent layer opening formation process (Fig. 9 (B)), (3) Antireflection layer formation process (Fig. 10 (C) '(D)), (4) Anti-reflection layer opening formation process (Fig. 10 (E)), (5) Mask film bonding process (Fig. 11 (F)), (6) Mask layer opening formation process by UV irradiation (development (Fig. 11 ( G) '( ⁇ )), (7) Thin film layer formation process (Fig. 12 (1)), (8) Protective layer formation process (Fig. 12 Ci)), (9) Mask layer peeling by laser light irradiation The process (Fig. 12 (K)) is provided.
  • the glass substrate 70 is mounted on the sputter deposition apparatus 80, and sputter deposition is performed using SnO containing 5% by mass of Sb. , Transparent
  • a bright layer 81 is formed (FIG. 9A).
  • the thickness of the transparent layer 81 is 0.
  • Sputter deposition is performed on the transparent layer 81 to form a CrO with an extinction coefficient of 0.3.
  • a first antireflection layer 83 composed of 1.3 layers is formed (FIG. 10C), and further, sputter film formation is performed on the first antireflection layer 83 using a metal Cr target in Ar gas.
  • the antireflection layer 85 is formed by forming the second antireflection layer 84 composed of a Cr layer having a visible light transmittance of 0.05% (FIG. 10 (D)).
  • the thickness of the first antireflection layer 83 is about 50 nm, and the thickness of the second antireflection layer 84 is 80 nm.
  • a Y AG laser beam having a wavelength of 1064 nm and an energy density of 1.2 jZcm 2 is applied from the other main surface side of the glass substrate 70 to the antireflection layer 85 through the photomask 86. Irradiation is performed to form an opening in the antireflection layer 85 (FIG. 10E).
  • a 10 ⁇ m-thick mask film 88 is evenly attached to the one main surface side of the glass substrate 70 with a film muraminator 90 (FIG. 11 (F)). Then, the mask film 88 is irradiated with ultraviolet rays from the other main surface side of the glass substrate 70 using an ultraviolet curing device 92 (FIG. 11 (G)).
  • the glass substrate 70 is placed in the sputter deposition apparatus 80 again, and the second antireflection layer is formed.
  • a thin film layer 94 made of Cu is formed on the layer 84 and the mask film 88 by sputtering using a metal Cu target in Ar gas (FIG. 12 (1)).
  • the thickness of thin film layer 94 is &) At 3 ⁇ m.
  • a protective layer 95 made of Cr is formed on the thin film layer 94 by sputtering using a metal Cr target in Ar gas (FIG. 12 Ci)).
  • the thickness of the protective layer 95 is lOnm.
  • YAG laser light having a wavelength of 1064 nm and an energy density of 0.25jZcm 2 is applied to the mask film 88 from the other main surface side of the glass substrate 70, and the mask film 8
  • a plasma display substrate having electrodes and Z or black stripes similar to those shown in FIGS. 7 and 8 can be formed.
  • the formed plasma display substrate is useful as a PDP.
  • a pattern having a transparent layer and a thin film layer can be formed on a transparent substrate with fewer steps than in the past. Therefore, according to the present invention, it is possible to efficiently form a pattern having a transparent layer and a thin film layer on a transparent substrate at a low cost.
  • an electronic circuit including a transparent substrate on which a pattern having a transparent layer and a thin film layer is formed can be efficiently formed at low cost.

Abstract

A pattern forming method by which a number of steps and cost can be reduced without performing wet etching. The pattern forming method is provided with a reflection preventing layer forming step, a reflection preventing layer opening section forming step, a mask layer forming step, a mask layer opening section forming step, a thin film layer forming step, and a peeling step, which are to be performed to a transparent substrate. In a preliminary stage of the reflection preventing layer forming step and in a post stage of the reflection preventing layer opening section forming step or in a post stage of the peeling step, a transparent layer forming step and a transparent layer opening section forming step are provided.

Description

明 細 書  Specification
パターン形成方法および電子回路  Pattern forming method and electronic circuit
技術分野  Technical field
[0001] 本発明は、電子回路などに備えられるパターンの形成方法、ならびに、プラズマデ イスプレイ基板などの電子回路に関する。  The present invention relates to a pattern forming method provided in an electronic circuit and the like, and an electronic circuit such as a plasma display substrate.
背景技術  Background art
[0002] プラズマディスプレイパネル(以下、「PDP」とも!/、う)は、薄型化が可能で、かつ大 型化が容易であり、さらに軽量、高解像度等の特徴を有するため、表示装置として C RTに替わる有力候補として注目されて 、る。  [0002] A plasma display panel (hereinafter also referred to as "PDP"! /, U) can be thinned and can be easily increased in size, and has features such as light weight and high resolution. It is attracting attention as a strong candidate to replace CRT.
PDPは DC型と AC型に大別されるが、その動作原理は、ガス放電に伴う発光現象 を利用したものである。例えば AC型では、図 13に示すように、対向して配置された 透明な前面基板 1と背面基板 2との間に形成した隔壁 3によりセル空間を区画してセ ルを画定し、セル内には可視発光が少なく紫外線発光効率が高い He+Xe、 Ne+X eなどのぺユング混合ガスを封入する。そして、セル内でプラズマ放電を発生させ、セ ル内壁の蛍光体層 9Aを発光させて表示画面上に画像を形成する。  PDPs are broadly divided into DC and AC types, but the operating principle is based on the light emission phenomenon associated with gas discharge. For example, in the AC type, as shown in FIG. 13, the cell space is defined by partition walls 3 formed between the transparent front substrate 1 and the rear substrate 2 arranged opposite to each other to define the cell. Fills with a mixture gas such as He + Xe and Ne + Xe which has low visible light emission and high UV light emission efficiency. Then, plasma discharge is generated in the cell, and the phosphor layer 9A on the cell inner wall is caused to emit light, thereby forming an image on the display screen.
[0003] PDPは、一般的に、前面基板 1上に、プラズマ放電を発生させるための表示電極 5 と、表示電極 5の一部の上に設けられており表示電極 5の抵抗を低減するノ ス電極 6 と、表示電極 5およびバス電極 6がプラズマに侵食されることや、背面基板 2上に形成 されている電極に接触することを防ぐ誘電体層 8および MgO層 9と、また、必要に応 じて、外光の反射を低減するブラックストライプ 4とを備えたプラズマディスプレイ基板 を有している。また、背面基板 2上に、情報を書き込むためのアドレス電極 7を備えて いる。  [0003] Generally, the PDP is provided on the front substrate 1 on the display electrode 5 for generating plasma discharge and on a part of the display electrode 5 to reduce the resistance of the display electrode 5. And the dielectric layer 8 and the MgO layer 9 that prevent the display electrode 5 and the display electrode 5 and the bus electrode 6 from being eroded by the plasma and coming into contact with the electrodes formed on the back substrate 2 are also necessary. In response to this, it has a plasma display substrate with black stripes 4 that reduce reflection of external light. Further, an address electrode 7 for writing information is provided on the back substrate 2.
[0004] PDPを製造するときには、前面基板 1上に、透明な導電性材料を用いて表示電極 5を形成した後に、表示電極 5の一部の上に、導電材料を用いてバス電極 6を形成す る。また、ブラックストライプ 4を備える場合には、さらにブラックストライプ 4を形成する 。ついで、誘電体層 8と MgO層 9を形成する(特許文献 1、非特許文献 1、非特許文 献 2参照)。 [0005] ところで、表示電極 5やバス電極 6などを形成する場合には、導電材料を用いて形 成された薄層を、所定の形状に加工する。薄層の形状を加工する方法としては、レジ ストを用いたウエットエッチングが採用されて 、る。 [0004] When manufacturing a PDP, after forming the display electrode 5 on the front substrate 1 using a transparent conductive material, the bus electrode 6 is formed on a part of the display electrode 5 using a conductive material. Form. When the black stripe 4 is provided, the black stripe 4 is further formed. Next, the dielectric layer 8 and the MgO layer 9 are formed (see Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2). [0005] By the way, when forming the display electrode 5, the bus electrode 6 and the like, a thin layer formed using a conductive material is processed into a predetermined shape. As a method for processing the shape of the thin layer, wet etching using a resist is employed.
し力しながら、ウエットエッチングによる薄層の加工は、最初に、薄層上にレジスト層 を形成した後に、レジスト層の露光および現像を行ってレジスト層に開口部を形成し 、ついで、エッチング液を用いて開口部に露出した薄層をエッチングし、最後にレジ スト層を剥離することによってなされるために、多くの工程を必要とする。  However, the processing of the thin layer by wet etching is performed by first forming a resist layer on the thin layer, then exposing and developing the resist layer to form openings in the resist layer, and then etching solution. This is done by etching the thin layer exposed in the opening using, and finally peeling off the resist layer.
[0006] また、ウエットエッチングは、表示電極 5やバス電極 6など、各部材を形成する毎に 行うために、 1つの PDPを製造するに際して、複数回行う。  [0006] In addition, since wet etching is performed each time a member such as the display electrode 5 and the bus electrode 6 is formed, a single PDP is manufactured a plurality of times.
したがって、ウエットエッチングによって薄膜を所定の形状に加工する場合には、 P DPの製造に必要となる工程数が膨大になる。工程数が多いと、製造に必要となる作 業が増えるために、煩雑な作業の増加やコストの上昇などの不都合が生じる。  Therefore, when the thin film is processed into a predetermined shape by wet etching, the number of processes required for manufacturing the PDP becomes enormous. When the number of processes is large, the number of operations required for manufacturing increases, resulting in inconveniences such as an increase in complicated operations and an increase in cost.
[0007] また、コントラストをさらに向上させて、画像を鮮明にするために、前面基板 1上に、 ブラックストライプ 4を形成することが提案されている。  [0007] In addition, it has been proposed to form the black stripe 4 on the front substrate 1 in order to further improve the contrast and make the image clearer.
しカゝしながら、ブラックストライプ 4は、表示電極 5やバス電極 6などとは別工程で形 成される。また、ブラックストライプ 4を形成するときにも、ウエットエッチングによって所 定の形状にする必要がある。したがって、 PDPは、ブラックストライプ 4を形成すること によって、製造に必要となる工程数がさらに増加する。  However, the black stripe 4 is formed in a separate process from the display electrode 5 and the bus electrode 6. Also, when the black stripe 4 is formed, it is necessary to obtain a predetermined shape by wet etching. Therefore, the number of processes required for manufacturing the PDP is further increased by forming the black stripe 4.
[0008] また、ウエットエッチングに用いられるエッチング液は、強酸性や強アルカリ性を示 すために、例えばそのまま廃棄すると環境負荷が大きいなどの問題点を有し、取り扱 いが困難である。したがって、 PDPを製造するときにウエットエッチングを行う場合に は、エッチング液の取り扱いに伴った煩雑な作業を行う必要がさらに生じ、製造に必 要となる工程数がさらに増加する。  [0008] In addition, since the etchant used for wet etching exhibits strong acidity and strong alkalinity, for example, if it is discarded as it is, it has problems such as a large environmental load and is difficult to handle. Therefore, when wet etching is performed when manufacturing a PDP, it becomes necessary to perform complicated work associated with the handling of the etching solution, and the number of processes required for manufacturing further increases.
[0009] さらに、ウエットエッチングは、上述した PDP以外の電子回路のパターンを形成する ときにも用いられる。  [0009] Further, wet etching is used when forming a pattern of an electronic circuit other than the above-described PDP.
電子回路のパターンは、近年、急速に進展する高度情報化社会に対応するために 、より複雑ィ匕している。したがって、パターンの複雑化に伴い、電子回路を作製する 場合にも、ウエットエッチングを行うことによる工程数が大幅に増加し、上述したような 煩雑な作業の増加や、コストの上昇などの不都合が生じる。 Electronic circuit patterns have become more complex in order to cope with the rapidly advanced information society in recent years. Therefore, as the pattern becomes more complex, the number of processes by performing wet etching has increased significantly even when manufacturing electronic circuits. Inconveniences such as an increase in complicated work and an increase in cost occur.
特許文献 1:特開平 7— 65727号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-65727
非特許文献 1 :内田龍男、内池平榭著、「フラットパネル ·ディスプレイ大辞典」、工業 調査会、 2001年 12月 25日、 p. 583- 585  Non-Patent Document 1: Tatsuo Uchida and Taira Uchiike, “Flat Panel Display Display Dictionary”, Industrial Research Committee, December 25, 2001, p. 583-585
非特許文献 2:奥村健史著、「フラットパネル ·ディスプレイ 2004実務編」、日経 BP社 、 p. 176- 183  Non-Patent Document 2: Ken Okumura, “Flat Panel Display 2004 Practice”, Nikkei Business Publications, p. 176-183
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、以上説明した従来の実情を鑑みて提案されたものであり、ゥヱットエッチ ングを行うことなぐ工程数を少なくしかつコストの低減を図ることが可能なパターン形 成方法を提供することを目的とする。また、この形成方法により形成されるパターンを 備える電子回路を提供することを目的とする。 [0010] The present invention has been proposed in view of the above-described conventional situation, and provides a pattern forming method capable of reducing the number of steps without performing wet etching and reducing the cost. The purpose is to do. It is another object of the present invention to provide an electronic circuit having a pattern formed by this forming method.
課題を解決するための手段  Means for solving the problem
[0011] 本発明は、上記の課題を解決するために、以下の(1)〜(17)に示すパターン形成 方法、および電子回路などを提供するものである。  In order to solve the above-described problems, the present invention provides a pattern forming method and an electronic circuit shown in the following (1) to (17).
[0012] (1)透明基板の一方主面側に、反射防止層を形成する反射防止層形成工程と、前 記反射防止層に第 1レーザ光を照射して開口部を形成する反射防止層開口部形成 工程と、前記反射防止層開口部形成工程の後段に、前記透明基板の該一方主面側 にマスク層を形成するマスク層形成工程と、前記マスク層に開口部を形成するマスク 層開口部形成工程と、前記マスク層開口部形成工程の後段に、前記透明基板の該 一方主面側に薄膜層を形成する薄膜層形成工程と、前記薄膜層形成工程の後段に 、前記マスク層を前記透明基板から剥離する剥離工程とを備え、前記反射防止層形 成工程の前段、前記反射防止層開口部形成工程の後段または前記剥離工程の後 段に、前記透明基板の該一方主面側に、透明層を形成する透明層形成工程と、前 記透明層形成工程の後段に、前記透明層に第 2レーザ光を照射して開口部を形成 する透明層開口部形成工程とを備える、パターン形成方法。  [0012] (1) An antireflection layer forming step of forming an antireflection layer on one main surface side of the transparent substrate, and an antireflection layer that forms an opening by irradiating the antireflection layer with the first laser beam A mask layer forming step for forming a mask layer on the one main surface side of the transparent substrate, and a mask layer for forming an opening in the mask layer after the opening forming step and the antireflection layer opening forming step. An opening forming step, a thin film layer forming step of forming a thin film layer on the one main surface side of the transparent substrate, and a subsequent step of the thin film layer forming step after the mask layer opening forming step. A separation step of separating the transparent substrate from the transparent substrate, the one main surface of the transparent substrate before the antireflection layer forming step, after the antireflection layer opening forming step, or after the peeling step. A transparent layer forming step for forming a transparent layer on the side, and the transparent Downstream of the forming process, and a transparent layer opening portion forming step of irradiating a second laser beam to form an opening in the transparent layer pattern forming method.
[0013] (2)前記マスク層形成工程は、前記透明基板の該一方主面側に紫外線硬化榭脂を 塗布する紫外線硬化榭脂塗布工程と、前記紫外線硬化榭脂に対して、前記透明基 板の他方主面側から紫外線を照射して、前記紫外線硬化榭脂を硬化する紫外線榭 脂硬化工程とを備える、前記(1)に記載のパターン形成方法。 [0013] (2) The mask layer forming step includes an ultraviolet curable resin coating step of applying an ultraviolet curable resin to the one main surface side of the transparent substrate, and the transparent substrate with respect to the ultraviolet curable resin. The pattern forming method according to (1), further comprising: an ultraviolet resin curing step of irradiating ultraviolet rays from the other main surface side of the plate to cure the ultraviolet cured resin.
[0014] (3)前記剥離工程では、前記マスク層に第 3レーザ光を照射して、前記マスク層を前 記透明基板上力も剥離する、前記(1)または(2)に記載のパターン形成方法。 (3) In the peeling step, the pattern formation according to (1) or (2), wherein the mask layer is irradiated with a third laser beam to peel off the force on the transparent substrate. Method.
[0015] (4)前記第 3レーザ光は、波長が 500〜1500nmであり、エネルギー密度が 0. 1J/ cm2以上 ljZcm2未満である、前記(3)に記載のパターン形成方法。 [0015] (4) The pattern forming method according to (3), wherein the third laser beam has a wavelength of 500 to 1500 nm and an energy density of 0.1 J / cm 2 or more and less than ljZcm 2 .
[0016] (5)前記反射防止層が、クロム酸ィ匕物および Zまたはチタン酸ィ匕物を含有する第 1 反射防止層と、金属クロムおよび Zまたは金属チタンを含有する第 2反射防止層とを 備える、前記(1)〜 (4)の 、ずれかに記載のパターン形成方法。 [0016] (5) The antireflection layer includes a first antireflection layer containing chromate oxide and Z or titanate oxide, and a second antireflection layer containing metal chromium and Z or metal titanium. The pattern forming method according to any one of (1) to (4), comprising:
[0017] (6)前記マスク層は、有機材料を用いて形成される、前記(1)〜(5)のいずれかに記 載のパターン形成方法。 [0017] (6) The pattern forming method according to any one of (1) to (5), wherein the mask layer is formed using an organic material.
[0018] (7)前記マスク層は、黒色顔料または黒色染料を含有する、前記(1)〜(6)のいずれ かに記載のパターン形成方法。 [0018] (7) The pattern forming method according to any one of (1) to (6), wherein the mask layer contains a black pigment or a black dye.
[0019] (8)前記第 1レーザ光は、波長力 00〜1500nmであり、エネルギー密度が ljZcm2 以上 2jZcm2未満である、前記(1)〜(7)の 、ずれかに記載のパターン形成方法。 [0019] (8) the first laser beam is a wavelength force 00~1500Nm, the energy density is less than LjZcm 2 or more 2JZcm 2, wherein (1) to (7), pattern formation according to any deviation Method.
[0020] (9)前記第 2レーザ光は、波長力 00〜1500nmであり、エネルギー密度が 2〜40J(9) The second laser beam has a wavelength power of 00 to 1500 nm and an energy density of 2 to 40 J.
Zcm2である、前記(1)〜(8)の 、ずれかに記載のパターン形成方法。 A ZCM 2, wherein (1) - (8) The pattern forming method according to any misalignment.
[0021] (10)前記薄膜層は、金属クロムおよび Zまたは金属チタンと、金属銅とを含有する、 前記(1)〜(9)の 、ずれかに記載のパターン形成方法。 [0021] (10) The pattern forming method according to any one of (1) to (9), wherein the thin film layer includes metal chromium and Z or metal titanium, and metal copper.
[0022] (11)前記薄膜層形成工程の後段に、保護層を形成する保護層形成工程を備える、 前記(1)〜(10)のいずれかに記載のパターン形成方法。 [0022] (11) The pattern forming method according to any one of (1) to (10), further including a protective layer forming step of forming a protective layer after the thin film layer forming step.
[0023] (12)前記(1)〜(11)のいずれかに記載のパターン形成方法により形成されるパタ ーンを備える電子回路。 [0023] (12) An electronic circuit comprising a pattern formed by the pattern forming method according to any one of (1) to (11).
[0024] (13)前記(12)に記載の電子回路を有する電子機器。 [0024] (13) An electronic device having the electronic circuit according to (12).
[0025] (14)前記(1)〜(11)のいずれかに記載のパターン形成方法によりパターンを形成 する工程を含む、プラズマディスプレイ基板の形成方法。  [0025] (14) A method for forming a plasma display substrate, comprising a step of forming a pattern by the pattern forming method according to any one of (1) to (11).
[0026] (15)透明基板の一方主面側に、クロム酸ィ匕物および Zまたはチタン酸ィ匕物からなる 第 1反射防止層と、金属クロムおよび Zまたは金属チタン力 なる第 2反射防止層と、 金属銅力もなる薄膜層と、 SnO力もなる透明層とを有するパターンをプラズマデイス [0026] (15) A first antireflection layer made of chromate and Z or titanate on one main surface side of the transparent substrate, and a second antireflection made of metal chromium and Z or metal titanium. Layers, A pattern with a thin film layer that also has metallic copper power and a transparent layer that also has SnO power
2  2
プレイ基板用の電極および Zまたはブラックストライプとして備える、プラズマディスプ レイ基板。  Plasma display substrate with play substrate electrodes and Z or black stripes.
[0027] (16)前記電極および Zまたは前記ブラックストライプは、前記透明基板の他方主面 側から入射した可視光反射率が 50%以下である前記(15)に記載のプラズマデイス プレイ基板。  [0027] (16) The plasma display substrate according to (15), wherein the electrode and Z or the black stripe have a visible light reflectance of 50% or less incident from the other main surface side of the transparent substrate.
[0028] (17)前記(15)または(16)に記載のプラズマディスプレイ基板を具備するプラズマ ディスプレイパネル。 発明の効果  [0028] (17) A plasma display panel comprising the plasma display substrate according to (15) or (16). The invention's effect
[0029] 本発明のパターン形成方法によれば、反射防止層がマスク層に開口部を形成する ときのマスクとしての役割も果たすために、マスク層に開口部を形成するためのマスク を形成することなぐマスク層に開口部を形成することが可能となる。したがって、本発 明によれば、ウエットエッチングを行うことがないため、透明基板上に、透明層と薄膜 層とを有するパターンを、従来より少ない工程数で形成することが可能となる。  [0029] According to the pattern forming method of the present invention, since the antireflection layer also serves as a mask when forming the opening in the mask layer, the mask for forming the opening in the mask layer is formed. It is possible to form an opening in the mask layer. Therefore, according to the present invention, since wet etching is not performed, it is possible to form a pattern having a transparent layer and a thin film layer on a transparent substrate with fewer steps than in the past.
したがって、本発明によれば、透明基板上に、透明層と薄膜層とを有するパターン を、低コストで効率よく形成することが可能となる。また、透明層と薄膜層とを有するパ ターンが形成された透明基板を備える電子回路を、低コストで効率よく形成すること が可能となる。  Therefore, according to the present invention, a pattern having a transparent layer and a thin film layer can be efficiently formed at a low cost on a transparent substrate. Further, an electronic circuit including a transparent substrate on which a pattern having a transparent layer and a thin film layer is formed can be efficiently formed at low cost.
[0030] また、従来法では、薄膜層の厚さが厚い場合には、レーザ出力と透明基板の破壊 エネルギー密度との関係から、薄膜層にレーザ光を照射して直接パターユングする ことは困難であるが、本発明によれば、薄膜層の厚さが厚い場合にも直接パターニン グすることが可能である。  [0030] In the conventional method, when the thin film layer is thick, it is difficult to directly pattern the thin film layer by irradiating the thin film layer with laser light because of the relationship between the laser output and the fracture energy density of the transparent substrate. However, according to the present invention, direct patterning is possible even when the thin film layer is thick.
[0031] また、本発明によれば、透明層が用いられたパターンと薄膜層が用いられたパター ンを、ウエットエッチングを施すことなく形成することが可能となる。  Furthermore, according to the present invention, it is possible to form a pattern using a transparent layer and a pattern using a thin film layer without performing wet etching.
したがって、本発明によれば、強酸性や強アルカリ性を示すエッチング液を用いる 必要がなくなるために、透明層が用いられたパターンと薄膜層が用いられたパターン を備える電子回路を形成するときに、エッチング液の取り扱いに伴って生じる煩雑な 作業を、削減することが可能となる。また、ウエットエッチングを施すことによる工程数 の増加を、抑制することが可能となる。 Therefore, according to the present invention, since it is not necessary to use an etching solution exhibiting strong acidity or strong alkalinity, when forming an electronic circuit including a pattern using a transparent layer and a pattern using a thin film layer, It is possible to reduce troublesome work caused by handling the etching solution. Also, the number of processes by wet etching It is possible to suppress the increase in.
[0032] また、本発明のパターン形成方法により、プラズマディスプレイ用基板を形成する場 合には、プラズマディスプレイ基板用ブラックストライプとプラズマディスプレイ基板用 電極 (表示電極およびバス電極)とを、同時に形成することができる。  [0032] When the plasma display substrate is formed by the pattern forming method of the present invention, the plasma display substrate black stripe and the plasma display substrate electrode (display electrode and bus electrode) are simultaneously formed. be able to.
また、透明基板上に反射防止層を形成することで、プラズマディスプレイ基板を PD Pとして画像を表示するときに、バス電極やブラックストライプが映し出されることを回 避できる。  In addition, by forming an antireflection layer on the transparent substrate, it is possible to avoid the appearance of bus electrodes and black stripes when an image is displayed using the plasma display substrate as a PDP.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]図 1 (A)〜(D)は、本発明のパターン形成方法のうち、透明層形成工程と透明 層開口部形成工程とを示す概略図である。  FIG. 1 (A) to (D) are schematic views showing a transparent layer forming step and a transparent layer opening forming step in the pattern forming method of the present invention.
[図 2]図 2 (E)〜(H)は、本発明のパターン形成方法のうち、反射防止層形成工程と 、反射防止層開口部形成工程とを示す概略図である。  FIGS. 2E to 2H are schematic views showing an antireflection layer forming step and an antireflection layer opening forming step in the pattern forming method of the present invention.
[図 3]図 3 (I)〜(N)は、本発明のパターン形成方法のうち、マスク層形成工程と、マス ク層開口部形成工程と、薄膜層形成工程と、剥離工程とを示す概略図である。  FIG. 3 (I) to (N) show a mask layer forming step, a mask layer opening forming step, a thin film layer forming step, and a peeling step in the pattern forming method of the present invention. FIG.
[図 4]図 4は、マスク層と透明基板との間に、光吸収薄膜を形成した状態を示す断面 図である。  FIG. 4 is a cross-sectional view showing a state in which a light absorption thin film is formed between a mask layer and a transparent substrate.
[図 5]図 5は、薄膜層上に保護層を形成した状態を示す断面図である。  FIG. 5 is a cross-sectional view showing a state in which a protective layer is formed on the thin film layer.
[図 6]図 6 (A)は反射層と透明層と薄膜層とをこの順に形成した状態を示す断面図で あり、図 6 (B)は反射層と薄膜層と透明層とをこの順に形成した状態を示す断面図で ある。  [FIG. 6] FIG. 6 (A) is a cross-sectional view showing a state in which a reflective layer, a transparent layer, and a thin film layer are formed in this order, and FIG. 6 (B) is a diagram showing the reflective layer, the thin film layer, and the transparent layer in this order. It is sectional drawing which shows the state formed.
[図 7]図 7は、本発明のプラズマディスプレイ基板用の電極および Zまたはブラックス トライプの形成方法の好適実施例により形成されたプラズマディスプレイ基板用の電 極および Zまたはブラックストライプを備える基板の概略平面図である。  [FIG. 7] FIG. 7 shows an electrode for a plasma display substrate according to the present invention and an electrode for a plasma display substrate formed by a preferred embodiment of the method for forming a Z or black stripe and a substrate having a Z or black stripe. It is a schematic plan view.
[図 8]図 8は、図 7に示す基板の A— A'線断面概略図である。  FIG. 8 is a schematic cross-sectional view taken along the line AA ′ of the substrate shown in FIG.
[図 9]図 9 (A)および (B)は、実施例におけるプラズマディスプレイ基板用の電極およ び Zまたはブラックストライプの形成工程のうち、透明層形成工程と透明層開口部形 成工程とを示す概略図である。  [FIG. 9] FIGS. 9 (A) and 9 (B) show a transparent layer forming step and a transparent layer opening forming step among the steps of forming electrodes for plasma display substrates and Z or black stripes in Examples. FIG.
[図 10]図 10 (C)〜(E)は、実施例におけるプラズマディスプレイ基板用の電極およ び zまたはブラックストライプの形成工程のうち、反射防止層形成工程と反射防止層 開口部形成工程とを示す概略図である。 [FIG. 10] FIGS. 10 (C) to (E) show the electrodes and electrodes for the plasma display substrate in the example. FIG. 6 is a schematic view showing an antireflection layer forming step and an antireflection layer opening forming step in the step of forming z or black stripe.
[図 11]図 11 (F)〜 (H)は、実施例におけるプラズマディスプレイ基板用の電極およ び Zまたはブラックストライプの形成工程のうち、マスク層形成工程とマスク層開口部 形成工程とを示す概略図である。  [FIG. 11] FIGS. 11 (F) to (H) show a mask layer forming step and a mask layer opening forming step among the steps of forming electrodes for plasma display substrates and Z or black stripes in the examples. FIG.
[図 12]図 12 (I)〜 (K)は、実施例におけるプラズマディスプレイ基板用の電極および Zまたはブラックストライプの形成工程のうち、薄膜層形成工程と保護層形成工程と 剥離工程とを示す概略図である。  [FIG. 12] FIGS. 12 (I) to (K) show a thin film layer forming step, a protective layer forming step, and a peeling step among the steps of forming electrodes for plasma display substrates and Z or black stripes in Examples. FIG.
[図 13]図 13は従来の PDPの概略構成を示す概略図である。  FIG. 13 is a schematic diagram showing a schematic configuration of a conventional PDP.
符号の説明 Explanation of symbols
1 前面基板  1 Front board
2 背面基板  2 Back board
3 隔壁  3 Bulkhead
4 ブラックストライプ  4 Black stripe
5 表示電極  5 Display electrode
6 バス電極  6 Bath electrode
7 アドレス電極  7 Address electrode
8 誘電体層  8 Dielectric layer
9 MgO層  9 MgO layer
11 蛍光体層  11 Phosphor layer
20 透明基板  20 Transparent substrate
21 透明層  21 Transparent layer
22 フォトマスク  22 Photomask
23 第 1反射防止層  23 First antireflection layer
24 第 2反射防止層  24 Second antireflection layer
25 フォトマスク  25 Photomask
27 反射防止層 30 マスク層 27 Antireflection layer 30 mask layers
31 光吸収薄膜  31 Light-absorbing thin film
34 保護層  34 Protective layer
41 バス電極  41 bus electrode
42 ブラックストライプ  42 Black stripe
43 表示電極  43 Display electrode
70 ガラス基板  70 Glass substrate
80 スパッタ成膜装置  80 Sputter deposition system
81 透明層  81 Transparent layer
82 フォトマスク  82 Photomask
83 第 1反射防止層  83 First antireflection layer
84 第 2反射防止層  84 Second antireflection layer
85 反射防止層  85 Antireflection layer
86 フォトマスク  86 photomask
88 マスクフイノレム  88 Mask Hoinolem
90 フィルムラミネータ  90 film laminator
92 紫外線硬化装置  92 UV curing equipment
94 薄膜層  94 Thin film layer
95 保護層  95 Protective layer
LI 第 1レーザ光  LI 1st laser beam
L2 第 2レーザ光  L2 Second laser beam
L3 第 3レーザ光  L3 3rd laser beam
UV 紫外線  UV UV
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下、本発明について詳細に説明する。なお、以下の説明は本発明の一例であり [0035] Hereinafter, the present invention will be described in detail. The following description is an example of the present invention.
、本発明はこれに限定されない。 However, the present invention is not limited to this.
[0036] 本発明のパターン形成方法について、図 1および図 2を用いて説明する。まず、透 明基板 20の一方主面側に、透明層 21を形成し (図 1 (A) · (B):透明層形成工程)、 その後、透明層 21に、フォトマスク 22を介して第 2レーザ光 L2を照射して、透明層 2 1に開口部を形成する(図 1 (C) · (D):透明層開口部形成工程)。 The pattern forming method of the present invention will be described with reference to FIGS. 1 and 2. First, a transparent layer 21 is formed on one main surface side of the transparent substrate 20 (FIG. 1 (A) · (B): transparent layer forming step), Thereafter, the transparent layer 21 is irradiated with the second laser beam L2 through the photomask 22 to form an opening in the transparent layer 21 (FIG. 1 (C) · (D): transparent layer opening forming step) ).
[0037] ついで、透明基板 20の該一方主面側に、第 1反射防止層 23と、第 2反射防止層 2 4とを順次形成することで反射防止層 27を形成し (図 2 (E) · (F):反射防止層形成ェ 程)、その後、第 1反射防止層 23および第 2反射防止層 24に、フォトマスク 25を介し て第 1レーザ光 L1を照射して、第 1反射防止層 23および第 2反射防止層 24に開口 部を形成する。(図 2 (G) · (H):反射防止層開口部形成工程)。  Next, an antireflection layer 27 is formed by sequentially forming a first antireflection layer 23 and a second antireflection layer 24 on the one main surface side of the transparent substrate 20 (FIG. 2 (E ) · (F): Anti-reflection layer formation process), and then the first anti-reflection layer 23 and the second anti-reflection layer 24 are irradiated with the first laser beam L1 through the photomask 25 to produce the first reflection. Openings are formed in the prevention layer 23 and the second antireflection layer 24. (Fig. 2 (G) · (H): Antireflection layer opening forming process).
[0038] ついで、透明層 21上および第 2反射防止層 24上に、マスク層 30を形成し(図 3 (I) :マスク層形成工程)、その後、マスク層 30に、透明基板 20の他方主面側から紫外線 UVを照射して露光して現像し、マスク層 30に開口部を形成する(図 3 CF) · (K):マス ク層開口部形成工程)。  Next, a mask layer 30 is formed on the transparent layer 21 and the second antireflection layer 24 (FIG. 3 (I): mask layer forming step), and then the other of the transparent substrate 20 is formed on the mask layer 30. The main surface side is exposed to ultraviolet rays UV, exposed and developed to form an opening in the mask layer 30 (FIG. 3 CF) · (K): mask layer opening forming step).
[0039] ついで、第 2反射防止層 24上およびマスク層 30上に、薄膜層 28を形成(図 3 (L): 薄膜層形成工程)した後、マスク層 30に他方主面側力も第 3レーザ光 L3を照射して 、透明基板 20の該一方主面側力もマスク層 30を剥離する(図 3 (M) · (N):剥離工程 Next, after forming the thin film layer 28 on the second antireflection layer 24 and the mask layer 30 (FIG. 3 (L): thin film layer forming step), the other principal surface side force is also applied to the mask layer 30 with the third main surface side force. When the laser beam L3 is applied, the mask surface 30 is also peeled off by the one main surface side force of the transparent substrate 20 (FIG. 3 (M) · (N): peeling step
) o ) o
[0040] このような形成工程により、透明基板 20の該一方主面側に、透明層 21と、第 1反射 防止層 23と、第 2反射防止層 24と、薄膜層 28がパターユングされたパターンを形成 することが可能となる。  [0040] Through such a forming process, the transparent layer 21, the first antireflection layer 23, the second antireflection layer 24, and the thin film layer 28 were patterned on the one main surface side of the transparent substrate 20. A pattern can be formed.
[0041] <透明基板 >  [0041] <Transparent substrate>
透明基板 20は、透明材料 (本発明においては、 JISR3106 (1998年)規定の可視 光透過率が 80%以上の材料)を用いて形成されて!ヽれば特に限定されな!ヽ。透明 基板 20の具体例としては、ガラス基板が好適に挙げられる。特に、 PDP用のガラス 基板として用いられて 、る厚さが 0. 7〜3mmのガラス基板が好まし 、。  The transparent substrate 20 is formed of a transparent material (in the present invention, a material having a visible light transmittance of 80% or more as defined in JISR3106 (1998))!ヽ. A specific example of the transparent substrate 20 is preferably a glass substrate. In particular, a glass substrate having a thickness of 0.7 to 3 mm is preferred as a glass substrate for PDP.
[0042] なお、本発明では、透明基板 20の両主面のうち、透明層 21、第 1反射防止層 23、 第 2反射防止層 24、および薄膜層 28などが形成される側の主面を一方主面といい、 透明層 21、第 1反射防止層 23、第 2反射防止層 24、および薄膜層 28などが形成さ れな!、側の主面を他方主面と 、う。  In the present invention, of both main surfaces of the transparent substrate 20, the main surface on the side where the transparent layer 21, the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, and the like are formed. Is referred to as one main surface, the transparent layer 21, the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, etc. are not formed! The main surface on the side is the other main surface.
[0043] <透明層形成工程 > 透明層形成工程では、透明基板 20の該一方主面側に透明層 21を形成する。この 透明層 21の形成に用いられる材料は、透明性を有する導電性の材料であれば特に 限定されず、 ITO (Indium Tin Oxide)や酸ィ匕錫(SnO )などの錫酸ィ匕物を用いること [0043] <Transparent layer forming step> In the transparent layer forming step, the transparent layer 21 is formed on the one main surface side of the transparent substrate 20. The material used for forming the transparent layer 21 is not particularly limited as long as it is a conductive material having transparency, and a stannate such as ITO (Indium Tin Oxide) or acid tin (SnO) is used. Use
2  2
ができる。誘電体による侵食の防止の観点から、 SnOを用いることが好ましぐ特に S  Can do. From the viewpoint of preventing erosion by dielectrics, it is preferable to use SnO, especially S
2  2
bを 2〜8質量%含有する SnOを用いることが好ましい。透明層は、後述する第 2レ  It is preferable to use SnO containing 2 to 8% by mass of b. The transparent layer is the second layer described later.
2  2
一ザ光によりレーザアブレーシヨンにより剥離されることが好ましい。透明層は、 JISR 3106 (1998年)規定の可視光透過率が 80%以上であることが好ましい。  It is preferable to peel off by laser ablation with one light. The transparent layer preferably has a visible light transmittance of 80% or more as defined in JISR 3106 (1998).
[0044] 透明層 21は、スパッタリング法や蒸着法によって形成されることが好ましい。透明層 21の厚さは、ノ《ターニングのしゃすさ力ら、 0. 1〜3 πι、0. 1〜1 111、特に0. 1〜 0. 5 mであることが好ましい。表示電極として用いる場合には、その導電性や透明 性の点で、透明層 21の厚さは 0. 1〜3 μ mであることが好ましい。透明層 21が、上 記の厚さとなるようにするには、スパッタリング法や蒸着法等による成膜時間等を制御 することで調整可能である。 [0044] The transparent layer 21 is preferably formed by sputtering or vapor deposition. The thickness of the transparent layer 21 is preferably from 0.1 to 3 πι, from 0.1 to 1 111, particularly from 0.1 to 0.5 m. When used as a display electrode, the thickness of the transparent layer 21 is preferably 0.1 to 3 μm from the viewpoint of conductivity and transparency. In order for the transparent layer 21 to have the above-mentioned thickness, it can be adjusted by controlling the film formation time by sputtering or vapor deposition.
透明層 21は、例えば、 ITOや SnOなどの透明層形成材料をターゲットとして用い  The transparent layer 21 uses, for example, a transparent layer forming material such as ITO or SnO as a target.
2  2
て、 Ar等に Oなどのスパッタガスを混合させてスパッタリングを行うことにより形成され  Formed by mixing a sputtering gas such as O with Ar or the like and performing sputtering.
2  2
る。  The
[0045] く透明層開口部形成工程 >  [0045] Transparent layer opening forming step>
透明層開口部形成工程では、例えばエキシマレーザ光や YAGレーザ光等の第 2 レーザ光 L2を用いて、アブレーシヨンと熱エネルギーとを併用することによって、形成 した透明層 21を蒸発除去して開口部を形成する。  In the transparent layer opening forming step, for example, the second laser beam L2 such as an excimer laser beam or a YAG laser beam is used in combination with the ablation and heat energy to evaporate and remove the formed transparent layer 21. Form.
[0046] 第 2レーザ光 L2は、透明層 21に対して、フォトマスク 22を介して照射される。これに より、フォトマスク 22に設けられた開口部を透過した第 2レーザ光 L2のみが透明層 2[0046] The second laser light L2 is applied to the transparent layer 21 through the photomask 22. As a result, only the second laser beam L2 that has passed through the opening provided in the photomask 22 is transparent layer 2.
1に照射され、透明層 21は、フォトマスク 22の形状どおりにカ卩ェされる。 1 is irradiated, and the transparent layer 21 is covered according to the shape of the photomask 22.
[0047] 本発明の透明層開口部形成工程において開口部を形成するにあたり、用いる第 2 レーザ光 L2は、波長が 500〜1500nmであることが好ましぐエネルギー密度が 2〜[0047] In forming the opening in the transparent layer opening forming step of the present invention, the second laser light L2 used preferably has an energy density of 2 to 2 having a wavelength of 500 to 1500 nm.
40j/cm2であることが好ましぐ 2〜5j/cm2であることがより好ましい。第 2レーザ光It is more preferably preferably tool 2~5j / cm 2 is 40j / cm 2. Second laser beam
L2は、ノ レスであっても、 CW (連続光)であってもよい。 L2 may be noless or CW (continuous light).
このようなレーザ光として、具体的には、波長が 1064nmの YAGレーザ光、波長が 532nmの YAGレーザ光等が挙げられる。 As such a laser beam, specifically, a YAG laser beam having a wavelength of 1064 nm, Examples include 532 nm YAG laser light.
このような第 2レーザ光 L2を、透明層 21に照射すれば、極短時間の照射のみで、 開口部に露出した透明基板 20の表面に透明層 21が残存することなぐ確実に開口 部を形成することができる。  By irradiating the transparent layer 21 with such second laser light L2, it is possible to reliably open the opening without leaving the transparent layer 21 on the surface of the transparent substrate 20 exposed to the opening with only a very short time of irradiation. Can be formed.
[0048] <反射防止層形成工程 > [0048] <Antireflection layer forming step>
反射防止層形成工程では、透明基板 20の該一方主面側に反射防止層を形成す る。反射防止層は、その光学的な低反射条件の要求により、第 1反射防止層 23およ び第 2反射防止層を有することが好ましい。特に、クロム酸ィ匕物および Zまたはチタ ン酸ィ匕物力 なる第 1反射防止層 23と、金属クロム (以下、「Cr」ともいう。)および Z または金属チタン (以下、「Ti」ともいう。)からなる第 2反射防止層 24とを順次形成し て、反射防止層 27を形成することが好ましい。また、反射防止層は、後述する第 1レ 一ザ光 L1を用いて、アブレーシヨンと熱エネルギーとを併用することにより剥離される ような層であることが好まし!/、。  In the antireflection layer forming step, an antireflection layer is formed on the one main surface side of the transparent substrate 20. The antireflection layer preferably has the first antireflection layer 23 and the second antireflection layer depending on the requirements of the optical low reflection condition. In particular, the first antireflective layer 23 having chromic acid and Z or titanic acid strength, metal chromium (hereinafter also referred to as “Cr”), and Z or metal titanium (hereinafter also referred to as “Ti”). It is preferable to form the antireflection layer 27 by sequentially forming the second antireflection layer 24 made of. In addition, the antireflection layer is preferably a layer that can be peeled off by using the first laser beam L1 described later and using a combination of abrasion and thermal energy! /.
上記反射防止層を形成することにより、第 1反射防止層 23によって反射された可視 光と第 2反射防止層 24によって反射された可視光とが互 、に干渉するために、可視 光の反射率が低くなり、 PDPとして画像を表示するときに、ノ ス電極やブラックストラ イブが画像に映し出されることを回避できる。  By forming the antireflection layer, visible light reflected by the first antireflection layer 23 and visible light reflected by the second antireflection layer 24 interfere with each other. When the image is displayed as a PDP, it is possible to avoid the appearance of a nose electrode or black stripe in the image.
[0049] <第 1反射防止層 > [0049] <First antireflection layer>
本発明において、第 1反射防止層 23の材料はクロム酸ィ匕物および Zまたはチタン 酸ィ匕物を含有することが好ましい。特に耐久性が高ぐ電極の材料となる Cuの酸ィ匕 を防止でき、かつ反射性能を出しやすい点で、第 1反射防止層 23の材料はクロム酸 化物であることが好ましい。第 1反射防止層 23を形成する材料の全体に対して、クロ ム酸ィ匕物および Zまたはチタン酸ィ匕物が 95質量%以上含有されれば、本発明にお ける反射防止層として好ま 、。  In the present invention, the material of the first antireflection layer 23 preferably contains chromate oxide and Z or titanate oxide. In particular, the material of the first antireflection layer 23 is preferably chromic oxide in that it can prevent the oxidation of Cu, which is a highly durable electrode material, and can easily provide reflective performance. If 95 mass% or more of chromic acid compound and Z or titanic acid compound is contained in the entire material forming the first antireflection layer 23, it is preferable as the antireflection layer in the present invention. ,.
[0050] ここで、クロム酸化物とは、酸素が欠損して 、な 、Cr Oなどや酸素欠損型の CrO [0050] Here, the chromium oxide is oxygen deficient, such as Cr 2 O 3 or oxygen deficient CrO.
2 3 X 2 3 X
(1. 0≤X< 1. 5)なども含む。クロム酸化物が酸素欠損型の CrO (1. 0≤X< 1. 5) Including (1. 0≤X <1.5). Chromium oxide is oxygen-deficient CrO (1. 0≤X <1.5)
X  X
であると、反射特性が良好となり特に好ましい。  It is particularly preferable that the reflection characteristics are good.
また、チタン酸ィ匕物とは、酸素が欠損していない TiOなどや酸素欠損型の TiO (1 . 0≤X< 2. 0)なども含む。チタン酸化物が酸素欠損型の TiO (1. 0≤X< 2. 0)で In addition, titanic acid oxide is TiO that is not deficient in oxygen, or oxygen deficient TiO (1 Including 0≤X <2.0). Titanium oxide is oxygen deficient TiO (1. 0≤X <2. 0)
X  X
あると、反射特性が良好となり特に好ましい。  In particular, the reflection characteristics are good, which is particularly preferable.
[0051] また、第 1反射防止層 23は、さらに炭素、窒素等を含有していてもよい。炭素およ び Zまたは窒素を、第 1反射防止層 23を形成する材料に含有させることにより、消衰 係数や膜の屈折率を微調整できるため、第 2反射防止層 24の光学特性と整合させる ことで可視域力も本発明で使用されるレーザ波長範囲において反射防止特性を容 易に良好とできる点で好ましい。クロム酸化物に窒素を含有している場合、第 1反射 防止層 23の糸且成は、 Cr O Nと表す場合に、 0. 3≤Y≤0. 55、 0. 03≤Ζ≤0.  [0051] The first antireflection layer 23 may further contain carbon, nitrogen, or the like. By incorporating carbon and Z or nitrogen into the material forming the first antireflection layer 23, the extinction coefficient and the refractive index of the film can be finely adjusted, so that it matches the optical characteristics of the second antireflection layer 24. By doing so, the visible range force is also preferable in that the antireflection characteristic can be easily made good in the laser wavelength range used in the present invention. When chromium oxide contains nitrogen, the first anti-reflection layer 23 has a thread length of 0.3 ≤ Y ≤ 0.55, 0.03 ≤ ≤ ≤ 0.
1-Υ-Ζ Υ ζ  1-Υ-Ζ Υ ζ
2であることが好ましぐクロム酸ィ匕物には、こうした窒素含有クロム酸化物も含まれる  Chromates that are preferably 2 include these nitrogen-containing chromium oxides.
[0052] 第 1反射防止層 23の厚さは、 30〜: LOOnmとすることが好ましい。 30〜: LOOnmで あれば反射防止特性を良好とできる。また、厚さは、該範囲で、膜の屈折率および消 衰係数などから適宜調整されればょ ヽ。 [0052] The thickness of the first antireflection layer 23 is preferably 30 to: LOOnm. 30 ~: If LOOnm, anti-reflection property can be good. In addition, the thickness should be appropriately adjusted within the above range from the refractive index and extinction coefficient of the film.
[0053] また、第 1反射防止層 23は、実質的に透明であることが好ましぐ波長 550nmでの 屈折率が 1. 9〜2. 8であることが好ましぐ 1. 9〜2. 4であることがより好ましい。この 範囲内であれば、第 1反射防止層 23からの反射光と第 2反射防止層 24からの反射 光とが干渉することにより、反射防止層 27に入射された可視光の反射率が低くなる。 なお、実質的に透明であるとは、消衰係数が 1. 5以下、より好ましくは 0. 7以下で あることをいう。これにより、十分な光の干渉を生じさせることができるようになる。 また、第 1反射防止層 23は複数の膜を積層した構成であってもよい。具体的には、 基板力も酸ィ匕クロム、窒化クロムを順に積層したものが例示される。 [0053] The first antireflection layer 23 is preferably substantially transparent, and the refractive index at a wavelength of 550 nm is preferably 1.9 to 2.8. 1.9 to 2 4 is more preferable. Within this range, the reflected light from the first antireflection layer 23 and the reflected light from the second antireflection layer 24 interfere with each other, so that the reflectance of the visible light incident on the antireflection layer 27 is low. Become. “Substantially transparent” means that the extinction coefficient is 1.5 or less, more preferably 0.7 or less. Thus, sufficient light interference can be generated. Further, the first antireflection layer 23 may have a structure in which a plurality of films are stacked. Specifically, the substrate strength is exemplified by sequentially laminating acid chromium and chromium nitride.
[0054] <第 2反射防止層 > [0054] <Second antireflection layer>
本発明において、第 2反射防止層 24は、 Crおよび/または Tiを含有することが好 ましい。特に耐久性が高ぐ電極の材料となる Cuの酸ィ匕を防止でき、かつ反射性能 を出しやすい点で、第 2反射防止層 24の材料は Crであることが好ましい。第 2反射 防止層 24を形成する材料の全体に対して、 Crおよび Zまたは Tiが 95質量%以上 含有されれば、反射防止特性を良好とできる。  In the present invention, the second antireflection layer 24 preferably contains Cr and / or Ti. In particular, the material of the second antireflection layer 24 is preferably Cr in that it can prevent the oxidation of Cu, which is a highly durable electrode material, and easily achieves reflection performance. If Cr, Z, or Ti is contained in an amount of 95% by mass or more based on the entire material forming the second antireflection layer 24, the antireflection characteristics can be improved.
第 2反射防止層 24は、さらに炭素、窒素等を含有していてもよい。炭素および Zま たは窒素を、第 2反射防止層 24を形成する材料に含有させることにより、消衰係数や 膜の屈折率を微調整できるため、第 2反射防止層 24の光学特性と整合させることで 可視域力も本発明で使用されるレーザ波長範囲において反射防止特性を容易に良 好とできる点で好ましい。 The second antireflection layer 24 may further contain carbon, nitrogen, or the like. Carbon and Z In addition, by adding nitrogen to the material forming the second antireflection layer 24, the extinction coefficient and the refractive index of the film can be finely adjusted, so that it can be made visible by matching the optical characteristics of the second antireflection layer 24. The local power is also preferable in that the antireflection characteristics can be easily improved in the laser wavelength range used in the present invention.
[0055] 本発明における第 2反射防止層 24は光透過率が低いことが好ましぐ可視光領域 で実質的に不透明であることが好ましい。実質的に不透明であるとは、可視光透過 率が 0. 0001-0. 1%であることを意味する。第 2反射防止層 24の厚さは、反射防 止特性とパター-ング性の点で 10〜200nm、特に 20〜100nmであることが好まし い。また、第 2反射防止層 24が Crを含有することで、第 2反射防止層 24が第 2反射 防止層 24上に形成される薄膜層の保護層の役割を果たすため、より好ましい。薄膜 層の材料が銅であると、 Crを含有する第 2反射防止層 24が保護層としてより有効に 機能するため、さらに好ましい。  [0055] The second antireflection layer 24 in the present invention is preferably substantially opaque in the visible light region where it is preferable that the light transmittance is low. Substantially opaque means that the visible light transmittance is 0.0001-0. 1%. The thickness of the second antireflection layer 24 is preferably 10 to 200 nm, particularly 20 to 100 nm in terms of antireflection characteristics and patterning properties. Further, it is more preferable that the second antireflection layer 24 contains Cr, so that the second antireflection layer 24 serves as a protective layer for a thin film layer formed on the second antireflection layer 24. If the material of the thin film layer is copper, the second antireflection layer 24 containing Cr functions more effectively as a protective layer, which is more preferable.
[0056] 本発明における第 1反射防止層 23および第 2反射防止層 24は、透明層 21と同様 に、スパッタリング法や蒸着法によって形成される。スパッタリング法により、第 2反射 防止層 24である Cr層を形成するためには、 Crターゲットを用い、 Ar等の不活性雰 囲気下でスパッタリングを行えばよい。 Ti層を形成する場合も同様である。ここで Ar 等に Nや CHなどを混合させてスパッタリングを行ってもよい。  [0056] As with the transparent layer 21, the first antireflection layer 23 and the second antireflection layer 24 in the present invention are formed by sputtering or vapor deposition. In order to form the Cr layer, which is the second antireflection layer 24, by sputtering, sputtering may be performed using a Cr target in an inert atmosphere such as Ar. The same applies when forming a Ti layer. Here, N or CH may be mixed with Ar or the like for sputtering.
2 4  twenty four
また、第 1反射防止層 23であるクロム酸ィ匕物層を形成するためには、 Crターゲット を用い、酸素を含む雰囲気下でスパッタリングを行う方法のほか、クロム酸化物ター ゲットを用いることも可能である。チタン酸化物層を形成する場合も同様である。ここ で Ar等に N、 CHや COなどを混合させてスパッタリングを行ってもよい。  In addition, in order to form the chromate oxide layer as the first antireflection layer 23, a chromium target can be used in addition to a sputtering method using a Cr target in an atmosphere containing oxygen. Is possible. The same applies when the titanium oxide layer is formed. Here, sputtering may be performed by mixing N, CH, CO, or the like with Ar or the like.
2 4 2  2 4 2
[0057] 第 1反射防止層 23および第 2反射防止層 24の厚さは、透明層 21と同様に、スパッ タリング法ゃ蒸着法等による成膜時間等を制御することで調整できる。  [0057] The thicknesses of the first antireflection layer 23 and the second antireflection layer 24 can be adjusted by controlling the film formation time by sputtering, vapor deposition, or the like, as with the transparent layer 21.
[0058] なお、本発明における反射防止層形成工程では、上記の好適実施例に例示した 第 1反射防止層 23と第 2反射防止層 24との 2層のみを形成する態様に限定されず、 この 2層の他に、さらに 1層以上の層を形成してもよい。  [0058] The antireflection layer forming step in the present invention is not limited to an embodiment in which only two layers of the first antireflection layer 23 and the second antireflection layer 24 exemplified in the preferred embodiment are formed. In addition to these two layers, one or more layers may be formed.
[0059] <反射防止層開口部形成工程 >  <Antireflection layer opening forming step>
反射防止層開口部形成工程では、例えばエキシマレーザ光や YAGレーザ光等の 第 1レーザ光 L 1を用いて、アブレーシヨンと熱エネルギーとを併用することによって、 第 1反射防止層 23および第 2反射防止層 24を蒸発除去して開口部を形成する。 第 1レーザ光 L1は、第 1反射防止層 23および第 2反射防止層 24に対して、フォト マスク 25を介して照射される。これにより、フォトマスク 25に設けられた開口部を透過 した第 1レーザ光 L1のみが第 1反射防止層 23および第 2反射防止層 24に照射され 、第 1反射防止層 23および第 2反射防止層 24は、フォトマスク 25の形状どおりにカロ ェされる。 In the antireflection layer opening forming step, for example, excimer laser light, YAG laser light, etc. By using the first laser beam L 1 in combination with abrasion and thermal energy, the first antireflection layer 23 and the second antireflection layer 24 are removed by evaporation to form an opening. The first laser light L1 is applied to the first antireflection layer 23 and the second antireflection layer 24 through the photomask 25. As a result, only the first laser light L1 transmitted through the opening provided in the photomask 25 is irradiated to the first antireflection layer 23 and the second antireflection layer 24, and the first antireflection layer 23 and the second antireflection layer are irradiated. Layer 24 is calo- lated according to the shape of photomask 25.
なお、図 1 (G)では、第 1反射防止層 23および第 2反射防止層 24に対して、第 1レ 一ザ光 L1を、透明基板 20の他方主面側力も照射しているが、該一方主面側から照 射してちょい。  In FIG. 1 (G), the first anti-reflection layer 23 and the second anti-reflection layer 24 are irradiated with the first laser beam L1 also with the other main surface side force of the transparent substrate 20. Irradiate from the main surface.
[0060] 第 1レーザ光 L1は、エキシマレーザ光や YAGレーザ光等であって、後述するマス ク層の剥離に用いる第 3レーザ光(例えば、波長が 500〜1500nm、エネルギー密 度が 0. lj/cm2以上 lj/cm2未満のレーザ光)よりもエネルギー密度が高ぐ例えば 、波長力 00〜1500nmであり、エネルギー密度が ljZcm2以上 2jZcm2未満であ ることが好ましい。レーザ光のエネルギー密度を上記の範囲とすることにより、透明層 21に影響を与えることなぐ開口部を形成することができる。なお、エネルギー密度は 、レーザパルス数が複数の場合は、照射したパルスの合計のエネルギー密度であり 、以下同様である。 [0060] The first laser beam L1 is an excimer laser beam, a YAG laser beam, or the like, and is a third laser beam (for example, a wavelength of 500 to 1500 nm and an energy density of 0. It is preferable that the energy density is higher than that of the laser beam of lj / cm 2 or more and less than lj / cm 2, for example, the wavelength power is 00 to 1500 nm, and the energy density is ljZcm 2 or more and less than 2jZcm 2 . By setting the energy density of the laser light within the above range, an opening that does not affect the transparent layer 21 can be formed. The energy density is the total energy density of the irradiated pulses when the number of laser pulses is plural, and so on.
[0061] また、反射防止層 27のパターン幅は、反射防止層開口部形成工程で用いるフォト マスク 25の形状 (幅)により決まる。したがって、パターン幅は目的のコントラストと輝 度とのバランスを考慮して決めることが好ましい。パターン幅が太すぎると、 PDPとし て用いる場合は、 PDPから発する光そのものが遮光されるために、 PDPに表示され る映像は、十分な輝度を確保できなくなる。  Further, the pattern width of the antireflection layer 27 is determined by the shape (width) of the photomask 25 used in the antireflection layer opening forming step. Therefore, the pattern width is preferably determined in consideration of the balance between the desired contrast and brightness. If the pattern width is too thick, when used as a PDP, the light emitted from the PDP itself is blocked, so that the image displayed on the PDP cannot secure sufficient luminance.
[0062] <マスク層形成工程 >  [0062] <Mask layer forming step>
マスク層形成工程では、透明基板 20の該一方主面側にマスク層 30を形成する。  In the mask layer forming step, the mask layer 30 is formed on the one main surface side of the transparent substrate 20.
[0063] マスク層 30は、後述する紫外線 UVの照射 (露光)により光重合して硬化し、その硬 化物が現像液に溶解しない材料、例えば、紫外線硬化榭脂を用いて形成されること が好ましい。また、後述する第 3レーザ光 L3の照射によってレーザアブレーシヨンを 起こし、透明基板 20から容易に剥離できることが好ま 、。 [0063] The mask layer 30 may be formed using a material that is photopolymerized and cured by ultraviolet ray UV irradiation (exposure), which will be described later, and the cured product does not dissolve in the developer, for example, an ultraviolet curable resin. preferable. Also, laser ablation is performed by irradiation of the third laser beam L3, which will be described later. It is preferable that it can be raised and easily peeled off from the transparent substrate 20.
[0064] このようなマスク層 30に用いられる材料(以下、「マスク層形成材料」ともいう。)とし ては、有機材料が好ましい。有機材料を用いてマスク層 30を形成することにより、マ スク層 30は、エネルギー密度の低い第 3レーザ光 L3を照射した場合にも十分に剥 離ができる。 [0064] The material used for such a mask layer 30 (hereinafter also referred to as "mask layer forming material") is preferably an organic material. By forming the mask layer 30 using an organic material, the mask layer 30 can be sufficiently separated even when irradiated with the third laser light L3 having a low energy density.
[0065] このような有機材料として、例えば、エポキシ榭脂、ポリエチレン榭脂、ポリイミド榭 脂、ポリエステル榭脂、四フッ化工チレン榭脂、アクリル榭脂等が挙げられる。  [0065] Examples of such organic materials include epoxy resin, polyethylene resin, polyimide resin, polyester resin, tetrafluorinated styrene resin, acrylic resin, and the like.
このような有機材料を用いることで、後述する剥離工程において、波長が 500〜15 OOnm、エネルギー密度が 0. lj/cm2以上 lj/cm2未満である第 3レーザ光 L3によ つて、第 1反射防止層 23、第 2反射防止層 24および薄膜層 28等にダメージを与える ことなぐ確実にマスク層 30を透明基板 20から剥離することができる。 By using such an organic material, the third laser beam L3 having a wavelength of 500 to 15 OOnm and an energy density of 0.1 lj / cm 2 or more and less than lj / cm 2 is used in the peeling process described later. The mask layer 30 can be reliably peeled from the transparent substrate 20 without damaging the antireflection layer 23, the second antireflection layer 24, the thin film layer 28, and the like.
[0066] ところで、マスク層 30を、後述する剥離工程で透明基板 20から確実に剥離させるた めには、マスク層 30でレーザアブレーシヨンを生じさせることが好ましいが、そのため には、マスク層 30がレーザ光を十分に吸収することが好ましい。  By the way, in order to surely peel the mask layer 30 from the transparent substrate 20 in the peeling step described later, it is preferable to cause laser abrasion in the mask layer 30. 30 preferably absorbs laser light sufficiently.
[0067] マスク層 30の厚さは、 6〜25 μ mであることが好ましぐ 7〜15 mであることがより 好ましぐ 7〜: LO mであることがさらに好ましい。  [0067] The thickness of the mask layer 30 is preferably 6 to 25 μm, more preferably 7 to 15 m, and even more preferably 7 to: LO m.
このようなマスク層 30は、通常用いられる方法、例えば、コータ等を用いて透明基 板 20の該一方主面側にマスク層形成材料を塗布する方法によって形成できるが、容 易に所望の厚さとするためには、フィルム状のマスク層形成材料を、フィルムラミネ一 タ等を用いて透明基板 20の表面に貼り付ける方法が好ましい。  Such a mask layer 30 can be formed by a commonly used method, for example, a method of applying a mask layer forming material to the one main surface side of the transparent substrate 20 using a coater or the like. In order to achieve this, it is preferable to apply a film-like mask layer forming material to the surface of the transparent substrate 20 using a film laminator or the like.
[0068] マスク層 30にレーザ光を十分に吸収させるためには、第 1の方法としてマスク層 30 に顔料または染料を含有させることや、第 2の方法として、図 4に示すように、マスク層 30と透明基板 20との間に、顔料または染料を含有する有機材料を用いて形成され た光吸収薄膜 31を形成することが好ましい。  [0068] In order to sufficiently absorb the laser beam in the mask layer 30, the mask layer 30 may contain a pigment or a dye as the first method, or the second method may include a mask as shown in FIG. It is preferable to form a light-absorbing thin film 31 formed using an organic material containing a pigment or a dye between the layer 30 and the transparent substrate 20.
[0069] 第 1の方法として、マスク層 30に顔料または染料を含有させることにより、後述する ような第 3レーザ光 L3に対する吸収率が増加することから、レーザアブレーシヨンが 生じやすくなり、透明基板 20からのマスク層 30の剥離が容易となる。マスク層 30およ び光吸収薄膜 31に含有させる顔料としては、吸収性の点で黒色顔料が好ましぐ染 料としては黒色染料が好ま 、。 [0069] As a first method, by incorporating a pigment or a dye into the mask layer 30, the absorptance with respect to the third laser light L3 as described later increases, so that laser ablation is likely to occur, and transparent The mask layer 30 can be easily peeled from the substrate 20. As a pigment to be contained in the mask layer 30 and the light absorbing thin film 31, a black pigment is preferred because of its absorbability. Black dye is preferred as a material.
また、マスク層 30にエネルギー密度が低い(例えば、 0. lj/cm2以上 lj/cm2未 満程度)第 3レーザ光 L3を照射してもレーザアブレーシヨンが生じ、透明基板 20から マスク層 30が容易に剥離される。 In addition, the laser layer has a low energy density (for example, about 0.1 lj / cm 2 or more and less than lj / cm 2 ). Even if the third laser beam L3 is irradiated, laser ablation occurs, and the mask is removed from the transparent substrate 20. Layer 30 is easily peeled off.
[0070] マスク層 30に黒色顔料または黒色染料を含有させる場合、その含有量は、吸収性 およびマスクとしての機能の点から 10〜95質量%であるのが好ましぐ 20〜90質量 %であるのがより好ましい。 [0070] When the black pigment or black dye is contained in the mask layer 30, the content is preferably 10 to 95% by mass from the viewpoint of absorption and function as a mask, and is 20 to 90% by mass. More preferably.
マスク層 30は、黒色顔料または黒色染料をこのような範囲で含有する材料によって 形成されていれば、レーザアブレーシヨンが生じやすくなるために、透明基板 20から の剥離が容易となる。  If the mask layer 30 is formed of a material containing a black pigment or a black dye in such a range, laser ablation is likely to occur, so that the mask layer 30 can be easily peeled off from the transparent substrate 20.
[0071] また、第 2の方法として、図 4に示すように、マスク層 30と透明基板 20との間に光吸 収薄膜 31を形成することにより、光吸収薄膜 31がレーザ光を効率よく吸収するため に、マスク層 30では、光吸収薄膜 31との界面でのレーザ光の吸収が増加してレーザ アブレーシヨンが生じやすくなる。したがって、透明基板 20からマスク層 30が容易に 剥離される。  In addition, as a second method, as shown in FIG. 4, by forming the light absorbing thin film 31 between the mask layer 30 and the transparent substrate 20, the light absorbing thin film 31 efficiently transmits the laser light. In order to absorb, in the mask layer 30, the absorption of the laser beam at the interface with the light absorption thin film 31 increases, and laser abrasion is likely to occur. Therefore, the mask layer 30 is easily peeled from the transparent substrate 20.
また、エネルギー密度の低い(例えば、 0. 1〜0. 5jZcm2程度)第 3レーザ光 L3を 照射してもレーザアブレーシヨンが生じ、透明基板 20からマスク層 30が容易に剥離 される。なお、光吸収薄膜 31自体も、レーザアブレーシヨンによって、透明基板 20か ら剥離する。 Further, even when the third laser beam L3 having a low energy density (for example, about 0.1 to 0.5 jZcm 2 ) is irradiated, laser abrasion occurs and the mask layer 30 is easily peeled off from the transparent substrate 20. The light absorbing thin film 31 itself is also peeled off from the transparent substrate 20 by laser ablation.
[0072] 光吸収薄膜 31中の黒色顔料または黒色染料の含有量は、吸収性の点で、 30〜9 5質量%であるのが好ましぐ 50〜90質量%であるのがより好ましい。  [0072] The content of the black pigment or black dye in the light-absorbing thin film 31 is preferably 30 to 95% by mass, more preferably 50 to 90% by mass in terms of absorbability.
光吸収薄膜 31が黒色顔料または黒色染料をこのような範囲で含有する材料によつ て形成されていれば、マスク層 30は、光吸収薄膜 31との界面でのレーザ光の吸収 が増加する。したがって、マスク層 30は、光吸収薄膜 31との界面でレーザアブレ一 シヨンが生じやすくなるために、透明基板 20からの剥離が容易となる。  If the light absorbing thin film 31 is formed of a material containing a black pigment or black dye in such a range, the mask layer 30 increases the absorption of laser light at the interface with the light absorbing thin film 31. . Therefore, the mask layer 30 is likely to cause laser abrasion at the interface with the light absorbing thin film 31, and therefore can be easily peeled off from the transparent substrate 20.
[0073] また、光吸収薄膜 31の厚さは、 0. 5〜3 μ mであるのが好ましぐ 1〜1. 5 μ mであ るのがより好ましい。このような厚さであれば、紫外線 UVが光吸収薄膜 31を透過す るため、マスク層 30は、後述するマスク層開口部形成工程において十分に硬化され る。 [0073] The thickness of the light-absorbing thin film 31 is preferably 0.5 to 3 µm, more preferably 1 to 1.5 µm. With such a thickness, the ultraviolet ray UV passes through the light-absorbing thin film 31, so that the mask layer 30 is sufficiently cured in the mask layer opening forming step described later. The
[0074] マスク層 30および光吸収薄膜 31に含有させる黒色顔料または黒色染料は、マスク 層 30の第 1レーザ光 L 1に対する吸収率を上昇させる化合物であれば特に限定され ず、その具体例としては、カーボンブラック、チタンブラック、硫化ビスマス、酸化鉄、 ァゾ系酸性染料 (例えば、 C. I. Mordant Blackl7)、分散系染料およびカチオン系染 料等が好適に挙げられる。これらのうち、カーボンブラックおよびチタンブラック力 全 てのレーザ光に対して高 、吸収率を有するために、より好まし 、。  [0074] The black pigment or black dye contained in the mask layer 30 and the light absorption thin film 31 is not particularly limited as long as it is a compound that increases the absorption rate of the mask layer 30 with respect to the first laser light L1, and specific examples thereof are as follows. Suitable examples include carbon black, titanium black, bismuth sulfide, iron oxide, azo acid dyes (for example, CI Mordant Blackl7), disperse dyes, and cationic dyes. Of these, carbon black and titanium black power are more preferred because they have a high absorption rate for all laser beams.
[0075] このような黒色顔料または黒色染料を含有する材料をマスク層形成材料として使用 することにより、後述する剥離工程において、波長が 500〜1500nm、エネルギー密 度が 0. lj/cm2以上 lj/cm2未満である第 3レーザ光 L3を 1〜5パルス照射するだ けで、透明基板 20上に残存させる第 1反射防止層 23、第 2反射防止層 24、および 薄膜層 28等にダメージを与えることなぐ確実にマスク層 30を透明基板 20から剥離 することができる。 [0075] By using such a material containing a black pigment or black dye as a mask layer forming material, a wavelength of 500 to 1500 nm and an energy density of 0.1 lj / cm 2 or more are used in the peeling process described later. Irradiation of 1 to 5 pulses of the third laser beam L3 that is less than / cm 2 damages the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, etc. that remain on the transparent substrate 20. The mask layer 30 can be peeled off from the transparent substrate 20 without fail.
[0076] また、このような黒色顔料または黒色染料を含有する前記有機材料をマスク層形成 材料として使用すれば、波長力 S500〜1500nm、エネルギー密度が 0. 1〜0. 5j/c m2と 、う低 、エネルギー密度を有する第 3レーザ光 L3であっても、同様な効果を奏 する。 [0076] Further, the use of the organic material containing such a black pigment or black dye is used as a mask layer forming material, the wavelength force S500~1500nm, energy density and 0. 1~0. 5j / cm 2, Even the third laser beam L3 having a low energy density has the same effect.
[0077] <マスク層開口部形成工程 >  <Mask layer opening forming step>
マスク層開口部形成工程では、マスク層 30に透明基板 20の他方主面側力も紫外 線 UVを照射して露光し、その後現像を行い開口部を形成する。第 1反射防止層 23 および第 2反射防止層 24は紫外線 UVを透過しないので、第 2反射防止層 24上に 形成されたマスク層 30は、露光によって光重合して硬化することはない。したがって 、露光の後の現像によって、第 2反射防止層 24上のマスク層 30に開口部が形成され る。  In the mask layer opening forming step, the mask layer 30 is exposed by irradiating UV light UV on the other main surface side force of the transparent substrate 20, and then developed to form the opening. Since the first antireflection layer 23 and the second antireflection layer 24 do not transmit ultraviolet rays UV, the mask layer 30 formed on the second antireflection layer 24 is not photopolymerized and cured by exposure. Therefore, an opening is formed in the mask layer 30 on the second antireflection layer 24 by development after exposure.
[0078] <薄膜層形成工程 >  [0078] <Thin film layer forming step>
薄膜層形成工程では、透明基板 20の該一方主面側に薄膜層 28を形成する。  In the thin film layer forming step, the thin film layer 28 is formed on the one main surface side of the transparent substrate 20.
[0079] この薄膜層 28を形成する薄膜層形成材料は、電極としての機能を果たすものであ れば特に限定されない。例えば、 Cu、 Ag、 Al、 Au等を用いることが好ましぐ Cuを 用いることが特に好ましい。薄膜層 28は、導電性が高く材料として安価である点で、 Cuを主成分とすることが好ましぐ具体的には、 Cuが 85質量%以上含有されること が好ましい。 The thin film layer forming material for forming the thin film layer 28 is not particularly limited as long as it functions as an electrode. For example, it is preferable to use Cu, Ag, Al, Au, etc. It is particularly preferable to use it. The thin film layer 28 is preferably made of Cu as a main component because it is highly conductive and inexpensive as a material. Specifically, the thin film layer 28 preferably contains 85% by mass or more of Cu.
[0080] このような薄膜層形成材料を用いた薄膜層 28は、透明層 21と同様に、通常のスパ ッタリング法や蒸着法によって形成される。薄膜層 28の厚さは、パターユング性の点 で 1〜4 μ m、特に 2〜4 μ mとすることが好ましい。厚さが上記範囲であれば、本発 明で形成されるパターンを PDP用に使用する場合であっても導電性を良好とでき好 ましい。また、薄膜層 28の厚さは、透明層 21と同様に、スパッタリング法や蒸着法等 の成膜時間等を制御することで調整できる。  The thin film layer 28 using such a thin film layer forming material is formed by a normal sputtering method or vapor deposition method, as with the transparent layer 21. The thickness of the thin film layer 28 is preferably 1 to 4 μm, particularly 2 to 4 μm, in terms of patterning properties. If the thickness is in the above range, it is preferable because the conductivity can be good even when the pattern formed in the present invention is used for PDP. In addition, the thickness of the thin film layer 28 can be adjusted by controlling the film formation time such as the sputtering method or the vapor deposition method in the same manner as the transparent layer 21.
[0081] 薄膜層 28および反射防止層 27を、プラズマディスプレイ基板用電極および Zまた はプラズマディスプレイ用ブラックストライプとして使用するにあたり、薄膜層 28および 反射防止層 27を誘電体によって被覆する場合がある。本発明の電極および Zまた はブラックストライプの誘電体に対する耐性は、以下に例示する 2つの方法により、さ らに向上するため好ましい。  When the thin film layer 28 and the antireflection layer 27 are used as plasma display substrate electrodes and Z or black stripes for plasma display, the thin film layer 28 and the antireflection layer 27 may be covered with a dielectric. The resistance of the electrode of the present invention and the dielectric of the Z or black stripe is preferable because it can be further improved by the following two methods.
[0082] 第 1の方法は、図 5に示すように、薄膜層形成工程の後に、薄膜層 28の上面に保 護層 34を形成する保護層形成工程を備えることである。保護層 34は、 Crおよび Zま たは Tiを主成分とすることが好ましぐ具体的には、 Crおよび Zまたは Tiが 95質量 %以上含有されることが好ましい。この方法により誘電体が薄膜層 28に直接接するこ とがなくなるので、薄膜層 28が侵食されにくくなるため好ましい。  As shown in FIG. 5, the first method is to include a protective layer forming step of forming a protective layer 34 on the upper surface of the thin film layer 28 after the thin film layer forming step. Specifically, the protective layer 34 preferably contains Cr and Z or Ti as a main component. Specifically, the protective layer 34 preferably contains 95 mass% or more of Cr and Z or Ti. This method is preferable because the dielectric does not directly contact the thin film layer 28 and the thin film layer 28 is less likely to be eroded.
[0083] 保護層 34は、透明層 21と同様にスパッタリング法や蒸着法によって形成される。ま た、保護層 34の厚さは、 0. 05-0. 2 mとすることが好ましい。この厚さであれば、 薄膜層 28が誘電体により侵食されるのを防止または抑制することができる。保護層 3 4の厚さは、透明層 21と同様に、スパッタリング法や蒸着法等の成膜時間等を制御 することで調整できる。  The protective layer 34 is formed by a sputtering method or a vapor deposition method in the same manner as the transparent layer 21. In addition, the thickness of the protective layer 34 is preferably 0.05 to 0.2 m. With this thickness, the thin film layer 28 can be prevented or suppressed from being eroded by the dielectric. As with the transparent layer 21, the thickness of the protective layer 34 can be adjusted by controlling the film formation time, such as sputtering or vapor deposition.
[0084] 第 2の方法は、薄膜層 28に Crおよび Zまたは Tiを含有させる方法である。 Crや Ti は誘電体に対する耐性が高いからである。薄膜層 28は、具体的には、 Crおよび Zま たは Tiと、 Cuとを含有する層が挙げられる。  [0084] The second method is a method in which the thin film layer 28 contains Cr and Z or Ti. This is because Cr and Ti are highly resistant to dielectrics. Specifically, the thin film layer 28 includes a layer containing Cr and Z or Ti and Cu.
Crおよび/または Tiが薄膜層 28を構成する材料全体に対して 5〜15質量%含有 されていると、薄膜層 28は誘電体に対して十分な耐性を有し、かつ導電性が保たれ るので好ましい。 Cr and / or Ti 5 to 15% by mass with respect to the entire material constituting thin film layer 28 In this case, the thin film layer 28 is preferable because it has sufficient resistance to the dielectric and the conductivity is maintained.
Crおよび Zまたは Tiを含有する薄膜層 28は、 Crおよび Zまたは Tiを含有する前 記薄膜層形成材料を用いて、スパッタリング法や蒸着法により形成される。  The thin film layer 28 containing Cr and Z or Ti is formed by sputtering or vapor deposition using the thin film layer forming material containing Cr and Z or Ti.
[0085] <剥離工程 > [0085] <Peeling step>
剥離工程では、マスク層 30に第 3レーザ光 L3を照射して、マスク層 30を透明基板 20から剥離する。マスク層 30に第 3レーザ光 L3を照射すると、アブレーシヨンと熱ェ ネルギ一との併用によってマスク層 30が蒸発する。この結果、マスク層 30は透明基 板 20から剥離する。  In the peeling step, the mask layer 30 is irradiated with the third laser light L3 to peel off the mask layer 30 from the transparent substrate 20. When the mask layer 30 is irradiated with the third laser beam L3, the mask layer 30 evaporates by the combined use of the abrasion and the heat energy. As a result, the mask layer 30 is peeled off from the transparent substrate 20.
[0086] 第 3レーザ光 L3の種類は、前述の反射防止層開口部形成工程と同様にエキシマ レーザ光や YAGレーザ光等を用いることができる。  As the type of the third laser light L3, excimer laser light, YAG laser light, or the like can be used in the same manner as in the above-described antireflection layer opening forming step.
また第 3レーザ光 L3は、波長力 00〜1500nmであり、エネルギー密度が 0. 1J/ cm2以上 lj/cm2未満であることが好ま U、。第 3レーザ光 L3の波長およびエネルギ 一密度が上記範囲であれば、透明基板 20上に残存させる第 1反射防止層 23、第 2 反射防止層 24、および薄膜層 28等にダメージを与えることなぐ確実にマスク層 30 を透明基板 20から剥離することができる。 The third laser beam L3 preferably has a wavelength power of 00 to 1500 nm and an energy density of 0.1 J / cm 2 or more and less than lj / cm 2 . If the wavelength and energy density of the third laser beam L3 are within the above ranges, the first antireflection layer 23, the second antireflection layer 24, the thin film layer 28, etc. remaining on the transparent substrate 20 are not damaged. The mask layer 30 can be reliably peeled from the transparent substrate 20.
[0087] また、図 3 (M)に示されているように、マスク層 30上に、薄膜層 28が形成されている 場合は、透明基板 20の他方主面側力も第 3レーザ光 L3を照射する方が、透明基板 20の該一方主面側力 第 3レーザ光 L3を照射するのと比較して、より確実に、かつ、 残渣が少なくマスク層 30を透明基板 20から剥離することができる。したがって、透明 基板 20の他方主面側力も第 3レーザ光 L3を照射することが好ましい。  In addition, as shown in FIG. 3 (M), when the thin film layer 28 is formed on the mask layer 30, the other main surface side force of the transparent substrate 20 also causes the third laser light L3 to be emitted. Compared with the irradiation with the third laser beam L3, the one main surface side force of the transparent substrate 20 is more reliably irradiated and the mask layer 30 can be peeled off from the transparent substrate 20 with less residue. it can. Therefore, it is preferable that the other main surface side force of the transparent substrate 20 is also irradiated with the third laser light L3.
以上説明した方法により、透明基板力 順に透明層 Z反射防止層 Z薄膜層がバタ 一ユングされたパターンを形成することができる。また、パターユングの順序を考慮す ると、各レーザのエネルギー密度は、第 2レーザ光 >第 1レーザ光 >第 3レーザ光の 順番になることが好ましい。また、各レーザ光のエネルギー密度は、パターユング精 度を考慮すれば、お互いに 0. 8jZcm2以上の差異があることが好ましい。 By the method described above, a pattern in which the transparent layer Z antireflection layer Z thin film layer is patterned in the order of the transparent substrate force can be formed. In consideration of the patterning order, the energy density of each laser is preferably in the order of second laser light> first laser light> third laser light. Further, it is preferable that the energy density of each laser beam has a difference of 0.8 jZcm 2 or more from each other in consideration of patterning accuracy.
[0088] <接着力低下工程 >  [0088] <Adhesive strength reduction process>
なお、剥離工程の直前にマスク層 30と透明基板 20との接着性を低下させる、また は無くす (以下、これらをまとめて単に「接着性を低下させる」という)ために、光を照 射してこれらの接着性を低下させる工程 (以下、「接着力低下工程」 t ヽぅ)を設けても よい。 In addition, the adhesiveness between the mask layer 30 and the transparent substrate 20 is reduced immediately before the peeling process. (Hereinafter collectively referred to as “reducing adhesiveness”), a process of reducing these adhesiveness by irradiating light (hereinafter referred to as “adhesion reducing process” t ヽ ぅ) It may be provided.
[0089] マスク層 30上に薄膜層 28を成膜した後、マスク層 30に対して、透明基板 20の他 方主面側から光を照射する。マスク層 30に対して照射する光は紫外光が好ましい。 これにより、マスク層形成材料が分解'劣化する。その結果、マスク層 30と透明基板 2 0との接着性が低下する。したがって、この場合、マスク層形成材料としては、光の照 射により分解 ·劣化を起こす成分を含む材料を用いることが好ましい。  After forming the thin film layer 28 on the mask layer 30, the mask layer 30 is irradiated with light from the other principal surface side of the transparent substrate 20. The light applied to the mask layer 30 is preferably ultraviolet light. Thereby, the mask layer forming material is decomposed and deteriorated. As a result, the adhesion between the mask layer 30 and the transparent substrate 20 decreases. Therefore, in this case, as the mask layer forming material, it is preferable to use a material containing a component that decomposes or deteriorates when irradiated with light.
[0090] さらに、マスク層形成材料の種類が異なる場合には、それら各マスク層形成材料に 対応した波長の光を用いて照射すればよい。これにより、マスク層 30を透明基板 20 力も剥離しやすくするとともに、剥離した後の残渣を減少させることができる。  Furthermore, when the types of mask layer forming materials are different, irradiation may be performed using light having a wavelength corresponding to each mask layer forming material. Thereby, the mask layer 30 can be easily peeled off even by the force of the transparent substrate 20 and the residue after peeling can be reduced.
[0091] なお、上記の第 1反射防止層 23、第 2反射防止層 24、および薄膜層 28の他に、さ らに 1層以上の他の薄膜層を形成してもよい。例えば、第 1反射防止層 23の形成前 、第 1反射防止層 23の形成と第 2反射防止層 24の形成との間、第 2反射防止層 24 の形成後であってマスク層 30の形成前、または、マスク層 30の剥離後に、さらに他の 薄膜層を形成してもよい。  In addition to the first antireflection layer 23, the second antireflection layer 24, and the thin film layer 28, one or more other thin film layers may be formed. For example, before the formation of the first antireflection layer 23, between the formation of the first antireflection layer 23 and the formation of the second antireflection layer 24, after the formation of the second antireflection layer 24 and the formation of the mask layer 30. Another thin film layer may be formed before or after the mask layer 30 is peeled off.
[0092] また、本発明は、例えば、上記好適実施例における各工程の順番を適宜入れ換え たり、さらに別の薄膜を形成する工程を加えてもよい。  [0092] In addition, the present invention may add, for example, a step of appropriately changing the order of the steps in the preferred embodiment or forming another thin film.
[0093] 本発明のパターン形成方法により、透明基板の一方主面側に、第 1反射防止層と、 第 2反射防止層と、薄膜層と、透明層とを有するパターンを形成することができる。特 に好ましくは、クロム酸ィ匕物および Zまたはチタン酸ィ匕物からなる第 1反射防止層と、 金属クロムおよび Zまたは金属チタン力 なる第 2反射防止層と、金属銅力 なる薄 膜層と、 SnO力もなる透明層とを有するパターンを形成することができる。なお、図 1  [0093] By the pattern forming method of the present invention, a pattern having a first antireflection layer, a second antireflection layer, a thin film layer, and a transparent layer can be formed on one main surface side of the transparent substrate. . Particularly preferably, the first antireflection layer made of chromate and Z or titanate, the second antireflection layer made of metal chromium and Z or metal titanium, and the thin film layer made of metal copper. And a pattern having a transparent layer that also has SnO force. Figure 1
2  2
〜5においては、透明層が、透明基板と第 1反射防止層との間に形成される場合に ついて説明したが、透明層は、反射防止層開口部形成工程の後段に形成することに より第 2反射防止層と薄膜層との間に形成されていてもよく(図 6 (A) )、剥離工程の 後段に形成することにより薄膜層の該一方主面側に形成されてもよい(図 6 (B) )。な お、「第 1反射防止層と、第 2反射防止層と、薄膜層と、透明層とを有するパターン」と は、図 6 (A)や図 6 (B)に対応する構成も含まれる。 In (5) to (5), the case where the transparent layer is formed between the transparent substrate and the first antireflection layer has been described. However, the transparent layer is formed after the antireflection layer opening forming step. It may be formed between the second antireflection layer and the thin film layer (FIG. 6 (A)), or may be formed on the one main surface side of the thin film layer by forming it after the peeling step ( Figure 6 (B)). The “pattern having the first antireflection layer, the second antireflection layer, the thin film layer, and the transparent layer” Includes configurations corresponding to FIG. 6 (A) and FIG. 6 (B).
[0094] 図 6 (A)に示すように、透明層 21は、反射防止層 27と薄膜層 28との間に形成され ていてもよい。この場合は、透明基板力も順に反射防止層 Z透明層 Z薄膜層がバタ 一ユングされたパターンを形成することができる。特に、透明層 21の材料として SnO As shown in FIG. 6 (A), the transparent layer 21 may be formed between the antireflection layer 27 and the thin film layer 28. In this case, it is possible to form a pattern in which the antireflection layer Z, the transparent layer, and the Z thin film layer are also patterned in order. In particular, SnO as a material for the transparent layer 21
2 を用いた場合には、透明層 21が反射防止層 27と薄膜層 28との間に形成されること により、反射防止層 27は、透明層 21によって保護され、誘電体により侵食されにくく なり好ましい。  2 is used, since the transparent layer 21 is formed between the antireflection layer 27 and the thin film layer 28, the antireflection layer 27 is protected by the transparent layer 21 and is less likely to be eroded by the dielectric. preferable.
[0095] また、図 6 (B)に示すように、透明層 21は、薄膜層 28の該一方主面側に形成され ていてもよい。この場合は、透明基板力も順に反射防止層 Z薄膜層 Z透明層がバタ 一ユングされたパターンを形成することができる。特に、透明層 21の材料として透明 電極の材料である SnOを用いた場合には、透明層 21が反射防止層 27と薄膜層 28  In addition, as shown in FIG. 6 (B), the transparent layer 21 may be formed on the one main surface side of the thin film layer 28. In this case, it is possible to form a pattern in which the transparent substrate force is also patterned in order of the antireflection layer Z thin film layer Z transparent layer. In particular, when SnO, which is a transparent electrode material, is used as the material of the transparent layer 21, the transparent layer 21 is formed of the antireflection layer 27 and the thin film layer 28.
2  2
との積層体上に形成されることにより、反射防止層 27と薄膜層 28との積層体は、透 明層 21によって保護され、誘電体により侵食されに《なり好ましい。また、反射防止 層 Z薄膜層がこの順に接して形成されるため、反射特性がより良好となり好ましい。 また、本発明のノターンを PDPとして用いる場合には、薄膜層と透明層との導通を有 効にとることができる点で好ましい。また、透明層を薄膜層の形成後に形成することに より、反射防止層をパターユングする場合には透明層が存在していないため、第 1レ 一ザ光 L1のエネルギー密度を、図 5の場合と比較して、高くとることができる。具体的 には、第 1レーザ光 L1はエキシマレーザ光や YAGレーザ光等であって、波長が 500 〜1500nmであり、エネルギー密度が l〜40j/cm2であることが好ましい。なお、第 2レーザ光 L2や第 3レーザ光 L3には、前述したような波長やエネルギー密度を使用 することができる。 Therefore, the laminate of the antireflection layer 27 and the thin film layer 28 is preferably protected by the transparent layer 21 and eroded by the dielectric. Further, since the antireflection layer Z thin film layer is formed in this order, it is preferable because the reflection characteristics are improved. Further, when the pattern of the present invention is used as a PDP, it is preferable in that the conduction between the thin film layer and the transparent layer can be effectively taken. In addition, when the antireflection layer is patterned by forming the transparent layer after the formation of the thin film layer, the transparent layer does not exist, so the energy density of the first laser light L1 is shown in FIG. Compared to the case, it can be high. Specifically, the first laser beam L1 is an excimer laser beam, a YAG laser beam, or the like, and preferably has a wavelength of 500 to 1500 nm and an energy density of 1 to 40 j / cm 2 . Note that the wavelength and energy density as described above can be used for the second laser beam L2 and the third laser beam L3.
なお、図 6Aおよび図 6Bに示す態様において第 2レーザ光 L2の照射により透明層 21に開口部を形成する際には、反射防止層 27あるいは反射防止層 27と薄膜層 28 との積層体はフォトマスクにより覆われるため、これらにダメージを与えることなく透明 層 21に開口部を形成することができる。  6A and 6B, when the opening is formed in the transparent layer 21 by irradiation with the second laser beam L2, the antireflection layer 27 or the laminate of the antireflection layer 27 and the thin film layer 28 is Since it is covered with the photomask, the opening can be formed in the transparent layer 21 without damaging them.
[0096] 本発明では、レジスト膜を用いたウエットエッチングによる薄膜の加工を行わないた め、より少ない形成工程数で、より安価にプラズマディスプレイ基板用の電極および zまたはブラックストライプを形成することができる。 [0096] In the present invention, since the thin film is not processed by wet etching using a resist film, the electrode for the plasma display substrate and the cost can be reduced with a smaller number of forming steps. z or black stripes can be formed.
また、強酸性や強アルカリ性を示すエッチング剤を使用しないために、エッチング 剤を取り扱うことによって必要となる煩雑な作業を行う必要がなくなり、プラズマデイス プレイ基板用の電極および Zまたはブラックストライプの形成に必要となる工程が削 減される。  In addition, since an etching agent exhibiting strong acidity or strong alkalinity is not used, there is no need to perform complicated operations required by handling the etching agent, and it is possible to form electrodes for plasma display substrates and Z or black stripes. Necessary processes are reduced.
また、本発明では、前記パターン形成方法により形成されるパターンを備える電子 回路、および前記電子回路を用いてなる電子機器を形成することができる。前記電 子回路としては、 LCD用の電極付き基板、有機 EL用の電極付き基板、プラズマディ スプレイ基板用の電極および Zまたはブラックストライプ付き基板等が例示され、前 記電子機器としては、 LCD,有機 EL、 PDP等が例示される。 PDPとして用いる場合 は、前面基板および背面基板のうち、特に前面基板として用いることが好ましい。 また、本発明のパターン形成方法により形成されたパターンをプラズマディスプレイ 基板用の電極および Zまたはブラックストライプとして、プラズマディスプレイ基板を 形成することができる。ここで電極とは、プラズマディスプレイ基板における表示電極 およびバス電極を意味する。この方法により、プラズマディスプレイ基板に対して電極 およびブラックストライプを設ける場合には、ブラックストライプと電極とを同時に形成 することができるため、工程を短縮できる。なお、 PDPの場合、透明層が表示電極と なり、薄膜層がバス電極となる。  Moreover, in this invention, the electronic circuit provided with the pattern formed with the said pattern formation method, and the electronic device using the said electronic circuit can be formed. Examples of the electronic circuit include a substrate with an electrode for LCD, a substrate with an electrode for organic EL, an electrode for a plasma display substrate, a substrate with Z or black stripe, and the electronic device includes an LCD, Examples include organic EL and PDP. When used as a PDP, it is particularly preferable to use it as a front substrate among the front substrate and the rear substrate. In addition, a plasma display substrate can be formed using the pattern formed by the pattern forming method of the present invention as an electrode for a plasma display substrate and a Z or black stripe. Here, the electrodes mean display electrodes and bus electrodes in the plasma display substrate. By this method, when the electrode and the black stripe are provided on the plasma display substrate, the black stripe and the electrode can be formed at the same time, so that the process can be shortened. In the case of PDP, the transparent layer is the display electrode, and the thin film layer is the bus electrode.
[0097] つぎに、図 7および図 8を用いて、以上説明したパターン形成方法により形成された 、ブラックストライプ 42、バス電極 41、および表示電極 43が備えられているプラズマ ディスプレイ基板用の電極および Zまたはブラックストライプにつ 、て説明する。なお 、図 8は図 7の A— A'線断面図を示している。  Next, with reference to FIG. 7 and FIG. 8, the electrode for the plasma display substrate provided with the black stripe 42, the bus electrode 41, and the display electrode 43 formed by the pattern forming method described above and Z or black stripe will be explained. FIG. 8 shows a cross-sectional view taken along line AA ′ of FIG.
[0098] 図 8に示すように、ブラックストライプ 42は、透明基板 20の上面に順次形成された 第 1反射防止層 23と、第 2反射防止層 24と、薄膜層 28とから形成される。第 1反射防 止層 23と第 2反射防止層 24とを備えていることにより、透明基板 20の他方主面側か ら入射した可視光の反射が防止される。  As shown in FIG. 8, the black stripe 42 is formed of a first antireflection layer 23, a second antireflection layer 24, and a thin film layer 28 that are sequentially formed on the upper surface of the transparent substrate 20. By providing the first antireflection layer 23 and the second antireflection layer 24, reflection of visible light incident from the other main surface side of the transparent substrate 20 is prevented.
[0099] 表示電極 43は、透明層 21から形成される。表示電極 43は、電極および Zまたは ブラックストライプ力 SPDPに装着されたときに電流が流れ、対応する位置に封入され て!、るプラズマを放電させる。 The display electrode 43 is formed from the transparent layer 21. When the display electrode 43 is attached to the electrode and Z or black stripe force SPDP, current flows and it is sealed in the corresponding position. Discharge the plasma.
[0100] ノ ス電極 41は、透明基板 20の上面に順次形成された透明層 21と、第 1反射防止 層 23と、第 2反射防止層 24と、薄膜層 28とから形成される。バス電極 41は、表示電 極 43に電流を供給するとともに、表示電極 43の抵抗値を低減する。  The nose electrode 41 is formed of a transparent layer 21, a first antireflection layer 23, a second antireflection layer 24, and a thin film layer 28 that are sequentially formed on the upper surface of the transparent substrate 20. The bus electrode 41 supplies current to the display electrode 43 and reduces the resistance value of the display electrode 43.
また、バス電極 41は、第 1反射防止層 23と第 2反射防止層 24とを備えるために、ブ ラックストライプ 42と同様に、透明基板 20の他方主面側力も入射した可視光の反射 が防止される。また、本発明の PDP上に鮮明な画像を表示することができる。  In addition, since the bus electrode 41 includes the first antireflection layer 23 and the second antireflection layer 24, the reflection of visible light incident on the other main surface side force of the transparent substrate 20 is also reflected in the same manner as the black stripe 42. Is prevented. In addition, a clear image can be displayed on the PDP of the present invention.
[0101] 電極および Zまたはブラックストライプ部において、透明基板 20の他方主面側から 入射した可視光の反射率 (JIS—R3106 (1998年)に規定)は 50%以下であることが 好ましぐ 40%以下であることがより好ましぐ 10%以下であることがさらに好ましい。 50%以下の反射率となるようにすれば、 PDP上により鮮明な画像が形成される。  [0101] In the electrode and the Z or black stripe part, the reflectance of visible light (specified in JIS-R3106 (1998)) incident from the other main surface side of the transparent substrate 20 is preferably 50% or less. More preferably, it is 40% or less, and more preferably 10% or less. If the reflectance is 50% or less, a clearer image is formed on the PDP.
[0102] なお、本発明のパターン形成方法により、アドレス電極を備えるプラズマディスプレ ィ背面基板を形成することもできる。さらに、このプラズマディスプレイ背面基板を用 いて、 PDPを形成することもできる。  [0102] It is also possible to form a plasma display back substrate having an address electrode by the pattern forming method of the present invention. Furthermore, a PDP can be formed using the plasma display back substrate.
実施例  Example
[0103] 以下、実施例に基づいて本発明をより具体的に説明する力 本発明はこれらに限 定されるものではない。  Hereinafter, the ability to more specifically describe the present invention based on examples. The present invention is not limited to these.
実施例に係るプラズマディスプレイ基板用の電極および Zまたはブラックストライプ の形成方法を図 9〜図 12に基づき説明する。  A method for forming electrodes and Z or black stripes for a plasma display substrate according to the embodiment will be described with reference to FIGS.
[0104] 本実施例においては、透明層を形成するターゲットとして Sbを 5質量%含む SnO [0104] In this example, SnO containing 5% by mass of Sb as a target for forming a transparent layer.
2 を用い、マスク層を形成する材料としてカーボンブラックを 40質量%含有するアタリ ル榭脂からなるフィルム(以下、単に「マスクフィルム」という。)を用い、第 1反射防止 層を形成する材料として金属 Crターゲット(純度: 99. 99%以上)を用い、第 2反射 防止層を形成する材料として金属 Crターゲット (純度:99. 99%以上)、薄膜層形成 材料として金属 Cuターゲット(純度: 99. 99%以上)を用いる。  As a material for forming the first antireflection layer, a film made of talyl resin containing 40% by mass of carbon black (hereinafter simply referred to as “mask film”) is used as the material for forming the mask layer. Using a metal Cr target (purity: 99.99% or higher), a metal Cr target (purity: 99.99% or higher) as the material for forming the second antireflection layer, and a metal Cu target (purity: 99 as the material for forming the thin film layer) 99% or more).
[0105] 図 9〜図 12に示すように、実施例に係るプラズマディスプレイ基板用の電極および Zまたはブラックストライプの形成方法は、(1)透明層形成工程(図 9 (A) )、(2)透明 層開口部形成工程 (図 9 (B) )、(3)反射防止層形成工程 (図 10 (C) ' (D) )、(4)反 射防止層開口部形成工程 (図 10 (E) )、(5)マスクフィルムの貼り付け工程 (図 11 (F ) )、 (6)紫外線照射'現像によるマスク層開口部形成工程 (図 11 (G) ' (Η) )、 (7)薄 膜層形成工程 (図 12 (1) )、 (8)保護層形成工程 (図 12Ci) )、 (9)レーザ光照射によ るマスク層の剥離工程 (図 12 (K) )を具備する。 As shown in FIG. 9 to FIG. 12, the electrode for the plasma display substrate and the method for forming the Z or black stripe according to the example are as follows: (1) Transparent layer forming step (FIG. 9 (A)), (2 ) Transparent layer opening formation process (Fig. 9 (B)), (3) Antireflection layer formation process (Fig. 10 (C) '(D)), (4) Anti-reflection layer opening formation process (Fig. 10 (E)), (5) Mask film bonding process (Fig. 11 (F)), (6) Mask layer opening formation process by UV irradiation (development (Fig. 11 ( G) '(Η)), (7) Thin film layer formation process (Fig. 12 (1)), (8) Protective layer formation process (Fig. 12 Ci)), (9) Mask layer peeling by laser light irradiation The process (Fig. 12 (K)) is provided.
[0106] 具体的には、まず、ガラス基板 70をスパッタ成膜装置 80に装着し、 Sbを 5質量% 含む SnOを用いたスパッタ成膜を行うことにより、ガラス基板 70の一方主面側に、透 [0106] Specifically, first, the glass substrate 70 is mounted on the sputter deposition apparatus 80, and sputter deposition is performed using SnO containing 5% by mass of Sb. , Transparent
2  2
明層 81を形成する(図 9 (A) )。透明層 81の厚さは 0. である。  A bright layer 81 is formed (FIG. 9A). The thickness of the transparent layer 81 is 0.
[0107] ついで、第 2レーザ光として、波長が 1064nm、エネルギー密度が 2. 5jZcm2の Y[0107] Next, as the second laser beam, Y having a wavelength of 1064 nm and an energy density of 2.5 jZcm 2
AGレーザ光を、ガラス基板 70の他方主面側から、フォトマスク 82を介して透明層 81 に照射して、透明層 81に開口部を形成する(図 9 (B) )。 AG laser light is irradiated to the transparent layer 81 from the other main surface side of the glass substrate 70 through the photomask 82 to form an opening in the transparent layer 81 (FIG. 9B).
[0108] ついで、同じスパッタ成膜装置 80を用いて、 Arと Oの混合ガス中で金属 Crターゲ [0108] Next, using the same sputter deposition apparatus 80, a metal Cr target was obtained in a mixed gas of Ar and O.
2  2
ットを用いてスパッタ成膜を行うことにより、透明層 81上に、消衰係数が 0. 3の CrO  Sputter deposition is performed on the transparent layer 81 to form a CrO with an extinction coefficient of 0.3.
1.3 層からなる第 1反射防止層 83を形成し(図 10 (C) )、さらに、 Arガス中で金属 Crター ゲットを用いてスパッタ成膜を行うことにより、第 1反射防止層 83上に可視光透過率 が 0. 05%の Cr層からなる第 2反射防止層 84を形成することで、反射防止層 85を形 成する(図 10 (D) )。第 1反射防止層 83の厚さは約 50nmであり、第 2反射防止層 84 の厚さは 80nmである。  A first antireflection layer 83 composed of 1.3 layers is formed (FIG. 10C), and further, sputter film formation is performed on the first antireflection layer 83 using a metal Cr target in Ar gas. The antireflection layer 85 is formed by forming the second antireflection layer 84 composed of a Cr layer having a visible light transmittance of 0.05% (FIG. 10 (D)). The thickness of the first antireflection layer 83 is about 50 nm, and the thickness of the second antireflection layer 84 is 80 nm.
[0109] ついで、第 1レーザ光として、波長が 1064nm、エネルギー密度が 1. 2jZcm2の Y AGレーザ光を、ガラス基板 70の他方主面側から、フォトマスク 86を介して反射防止 層 85に照射して、反射防止層 85に開口部を形成する(図 10 (E) )。 Next, as the first laser beam, a Y AG laser beam having a wavelength of 1064 nm and an energy density of 1.2 jZcm 2 is applied from the other main surface side of the glass substrate 70 to the antireflection layer 85 through the photomask 86. Irradiation is performed to form an opening in the antireflection layer 85 (FIG. 10E).
[0110] ついで、ガラス基板 70の該一方主面側に、厚さ 10 μ mのマスクフィルム 88を、フィ ルムラミネータ 90で均一に貼り付ける(図 11 (F) )。そして、ガラス基板 70の他方主面 側から、紫外線硬化装置 92を用いて、マスクフィルム 88に、紫外線を照射する(図 1 1 (G) )。  Next, a 10 μm-thick mask film 88 is evenly attached to the one main surface side of the glass substrate 70 with a film muraminator 90 (FIG. 11 (F)). Then, the mask film 88 is irradiated with ultraviolet rays from the other main surface side of the glass substrate 70 using an ultraviolet curing device 92 (FIG. 11 (G)).
ついで、現像して、第 2反射防止層 84上に形成されたマスクフィルム 88を除去した 後(図 11 (H) )、再度、ガラス基板 70をスパッタ成膜装置 80に入れ、第 2反射防止層 84およびマスクフィルム 88上に、 Arガス中で金属 Cuターゲットを用いてスパッタ成 膜を行うことにより、 Cuからなる薄膜層 94を形成する(図 12 (1) )。薄膜層 94の厚さは 3 μ mで &)る。 Next, after developing and removing the mask film 88 formed on the second antireflection layer 84 (FIG. 11 (H)), the glass substrate 70 is placed in the sputter deposition apparatus 80 again, and the second antireflection layer is formed. A thin film layer 94 made of Cu is formed on the layer 84 and the mask film 88 by sputtering using a metal Cu target in Ar gas (FIG. 12 (1)). The thickness of thin film layer 94 is &) At 3 μm.
[0111] ついで、薄膜層 94上に、 Arガス中で金属 Crターゲットを用いてスパッタ成膜をする ことにより、 Crからなる保護層 95を形成する(図 12 Ci) )。保護層 95の厚さは lOnmで ある。  Next, a protective layer 95 made of Cr is formed on the thin film layer 94 by sputtering using a metal Cr target in Ar gas (FIG. 12 Ci)). The thickness of the protective layer 95 is lOnm.
[0112] レーザ光として、波長が 1064nm、エネルギー密度が 0. 25jZcm2の YAGレーザ 光を、ガラス基板 70の他方主面側からマスクフィルム 88に照射して、マスクフィルム 8[0112] As the laser light, YAG laser light having a wavelength of 1064 nm and an energy density of 0.25jZcm 2 is applied to the mask film 88 from the other main surface side of the glass substrate 70, and the mask film 8
8をガラス基板 70から剥離する(図 12 (K) )。 8 is peeled from the glass substrate 70 (FIG. 12 (K)).
[0113] 以上の工程により、図 7および図 8に示したものと同様の電極および Zまたはブラッ クストライプを有するプラズマディスプレイ基板を形成することができる。また、形成さ れたプラズマディスプレイ基板は PDPとして有用である。 [0113] Through the above steps, a plasma display substrate having electrodes and Z or black stripes similar to those shown in FIGS. 7 and 8 can be formed. The formed plasma display substrate is useful as a PDP.
[0114] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0114] Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
本出願は、 2004年 12月 27日出願の日本特許出願 2004— 376174に基づくものであ り、その内容はここに参照として取り込まれる。  This application is based on Japanese Patent Application 2004-376174 filed on December 27, 2004, the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0115] 本発明によれば、ウエットエッチングを行うことないため、透明基板上に、透明層と 薄膜層とを有するパターンを、従来より少ない工程数で形成することが可能となる。し たがって、本発明によれば、透明基板上に、透明層と薄膜層とを有するパターンを、 低コストで効率よく形成することが可能となる。また、透明層と薄膜層とを有するバタ ーンが形成された透明基板を備える電子回路を、低コストで効率よく形成することが 可能となる。 [0115] According to the present invention, since wet etching is not performed, a pattern having a transparent layer and a thin film layer can be formed on a transparent substrate with fewer steps than in the past. Therefore, according to the present invention, it is possible to efficiently form a pattern having a transparent layer and a thin film layer on a transparent substrate at a low cost. In addition, an electronic circuit including a transparent substrate on which a pattern having a transparent layer and a thin film layer is formed can be efficiently formed at low cost.

Claims

請求の範囲 The scope of the claims
[1] 透明基板の一方主面側に、反射防止層を形成する反射防止層形成工程と、 前記反射防止層に第 1レーザ光を照射して開口部を形成する反射防止層開口部 形成工程と、  [1] An antireflection layer forming step of forming an antireflection layer on one main surface side of the transparent substrate, and an antireflection layer opening forming step of forming an opening by irradiating the antireflection layer with a first laser beam When,
前記反射防止層開口部形成工程の後段に、前記透明基板の該一方主面側にマス ク層を形成するマスク層形成工程と、  A mask layer forming step of forming a mask layer on the one main surface side of the transparent substrate after the antireflection layer opening forming step;
前記マスク層に開口部を形成するマスク層開口部形成工程と、  A mask layer opening forming step of forming an opening in the mask layer;
前記マスク層開口部形成工程の後段に、前記透明基板の該一方主面側に薄膜層 を形成する薄膜層形成工程と、  A thin film layer forming step of forming a thin film layer on the one main surface side of the transparent substrate, after the mask layer opening forming step;
前記薄膜層形成工程の後段に、前記マスク層を前記透明基板から剥離する剥離 工程とを備え、  And a peeling step of peeling the mask layer from the transparent substrate after the thin film layer forming step,
前記反射防止層形成工程の前段、前記反射防止層開口部形成工程の後段または 前記剥離工程の後段に、前記透明基板の該一方主面側に、透明層を形成する透明 層形成工程と、  A transparent layer forming step of forming a transparent layer on the one main surface side of the transparent substrate, before the antireflection layer forming step, after the antireflection layer opening forming step, or after the peeling step;
前記透明層形成工程の後段に、前記透明層に第 2レーザ光を照射して開口部を 形成する透明層開口部形成工程とを備える、パターン形成方法。  A transparent layer opening forming step of forming an opening by irradiating the transparent layer with a second laser beam after the transparent layer forming step.
[2] 前記マスク層形成工程は、 [2] The mask layer forming step includes
前記透明基板の該一方主面側に紫外線硬化榭脂を塗布する紫外線硬化榭脂塗 布工程と、  An ultraviolet curable resin coating step of applying an ultraviolet curable resin to the one main surface side of the transparent substrate;
前記紫外線硬化榭脂に対して、前記透明基板の他方主面側から紫外線を照射し て、前記紫外線硬化榭脂を硬化する紫外線榭脂硬化工程とを備える、請求項 1に記 載のパターン形成方法。  2. The pattern formation according to claim 1, further comprising: an ultraviolet resin curing step of irradiating the ultraviolet curable resin with ultraviolet rays from the other main surface side of the transparent substrate to cure the ultraviolet curable resin. Method.
[3] 前記剥離工程では、前記マスク層に第 3レーザ光を照射して、前記マスク層を前記 透明基板力も剥離する、請求項 1または 2に記載のパターン形成方法。 [3] The pattern forming method according to claim 1 or 2, wherein, in the peeling step, the mask layer is irradiated with a third laser beam to peel the mask layer also with the transparent substrate force.
[4] 前記第 3レーザ光は、波長が 500〜1500nmであり、エネルギー密度が 0. lj/c m2以上 lj/cm2未満である、請求項 3に記載のパターン形成方法。 4. The pattern forming method according to claim 3, wherein the third laser light has a wavelength of 500 to 1500 nm and an energy density of 0.1 lj / cm 2 or more and less than lj / cm 2 .
[5] 前記反射防止層が、クロム酸化物および Zまたはチタン酸化物を含有する第 1反 射防止層と、金属クロムおよび Zまたは金属チタンを含有する第 2反射防止層とを備 える、請求項 1〜4のいずれかに記載のパターン形成方法。 [5] The antireflection layer includes a first antireflection layer containing chromium oxide and Z or titanium oxide, and a second antireflection layer containing metal chromium and Z or titanium. The pattern formation method according to any one of claims 1 to 4.
[6] 前記マスク層は、有機材料を用いて形成される、請求項 1〜5のいずれか〖こ記載の パターン形成方法。 6. The pattern forming method according to any one of claims 1 to 5, wherein the mask layer is formed using an organic material.
[7] 前記マスク層は、黒色顔料および Zまたは黒色染料を含有する、請求項 1〜6のい ずれかに記載のパターン形成方法。  [7] The pattern forming method according to any one of claims 1 to 6, wherein the mask layer contains a black pigment and Z or a black dye.
[8] 前記第 1レーザ光は、波長が 500〜1500nmであり、エネルギー密度が lj/cm2 以上 2jZcm2未満である、請求項 1〜7のいずれかに記載のパターン形成方法。 [8] The pattern forming method according to any one of [1] to [7], wherein the first laser beam has a wavelength of 500 to 1500 nm and an energy density of lj / cm 2 or more and less than 2 jZcm 2 .
[9] 前記第 2レーザ光は、波長力 S500〜1500nmであり、エネルギー密度が 2〜40jZ cm2である、請求項 1〜8のいずれかに記載のパターン形成方法。 [9] The pattern forming method according to any one of [1] to [8], wherein the second laser light has a wavelength force of S500 to 1500 nm and an energy density of 2 to 40 jZ cm 2 .
[10] 前記薄膜層は、金属クロムおよび Zまたは金属チタンと、金属銅とを含有する、請 求項 1〜9のいずれかに記載のパターン形成方法。 [10] The pattern forming method according to any one of claims 1 to 9, wherein the thin film layer contains metallic chromium and Z or metallic titanium and metallic copper.
[11] 前記薄膜層形成工程の後段に、保護層を形成する保護層形成工程を備える、請 求項 1〜10のいずれかに記載のパターン形成方法。 [11] The pattern forming method according to any one of claims 1 to 10, further comprising a protective layer forming step of forming a protective layer after the thin film layer forming step.
[12] 前記透明層の厚さが 0. 1〜3 /ζ πιである請求項 1〜: L 1のいずれかに記載のパター ン形成方法。 [12] The pattern forming method according to any one of [1] to [1] above, wherein the transparent layer has a thickness of 0.1 to 3 / ζ πι.
[13] 前記マスク層の厚さが 6〜25 μ mである請求項 1〜12のいずれかに記載のパター ン形成方法。  13. The pattern forming method according to claim 1, wherein the mask layer has a thickness of 6 to 25 μm.
[14] 前記マスク層の中に、前記黒色顔料および Zまたは前記黒色染料を 30〜95質量 [14] 30 to 95 masses of the black pigment and Z or the black dye in the mask layer
%含む請求項 7に記載のパターン形成方法。 The pattern formation method of Claim 7 containing%.
[15] 透明基板の一方主面側に、反射防止層を形成する反射防止層形成工程と、 前記反射防止層に第 1レーザ光を照射して開口部を形成する反射防止層開口部 形成工程と、 [15] An antireflection layer forming step of forming an antireflection layer on one main surface side of the transparent substrate, and an antireflection layer opening forming step of forming an opening by irradiating the antireflection layer with a first laser beam When,
前記反射防止層開口部形成工程の後段に、前記透明基板の該一方主面側にマス ク層を形成するマスク層形成工程と、  A mask layer forming step of forming a mask layer on the one main surface side of the transparent substrate after the antireflection layer opening forming step;
前記マスク層に開口部を形成するマスク層開口部形成工程と、  A mask layer opening forming step of forming an opening in the mask layer;
前記マスク層開口部形成工程の後段に、前記透明基板の該一方主面側に薄膜層 を形成する薄膜層形成工程と、  A thin film layer forming step of forming a thin film layer on the one main surface side of the transparent substrate, after the mask layer opening forming step;
前記薄膜層形成工程の後段に、前記マスク層を前記透明基板から剥離する剥離 工程とを備え、 Peeling off the mask layer from the transparent substrate after the thin film layer forming step A process,
前記剥離工程の後段に、前記透明基板の該一方主面側に、透明層を形成する透 明層形成工程と、  A transparent layer forming step of forming a transparent layer on the one main surface side of the transparent substrate after the peeling step;
前記透明層形成工程の後段に、前記透明層に第 2レーザ光を照射して開口部を 形成する透明層開口部形成工程とを備える、パターン形成方法。  A transparent layer opening forming step of forming an opening by irradiating the transparent layer with a second laser beam after the transparent layer forming step.
[16] 請求項 1〜15のいずれかに記載のパターン形成方法により形成されるパターンを 備える電子回路。  [16] An electronic circuit comprising a pattern formed by the pattern forming method according to any one of claims 1 to 15.
[17] 請求項 16に記載の電子回路を有する電子機器。  17. An electronic device having the electronic circuit according to claim 16.
[18] 請求項 1〜15のいずれかに記載のパターン形成方法によりパターンを形成するェ 程を含む、プラズマディスプレイ基板の形成方法。  [18] A method for forming a plasma display substrate, comprising the step of forming a pattern by the pattern forming method according to any one of [1] to [15].
[19] 透明基板の一方主面側に、  [19] On one main surface side of the transparent substrate,
クロム酸ィヒ物および Zまたはチタン酸ィヒ物からなる第 1反射防止層と、 金属クロムおよび Zまたは金属チタン力 なる第 2反射防止層と、  A first antireflective layer made of chromate and Z or titanate, a second antireflective layer made of metal chromium and Z or metal titanium,
金属銅力 なる薄膜層と、  A thin film layer made of metallic copper,
SnO 2力 なる透明層とを有するパターンを電極および Zまたはブラックストライプと して備える、プラズマディスプレイ基板。  A plasma display substrate comprising a pattern having a transparent layer made of SnO 2 as electrodes and Z or black stripes.
[20] 前記電極および Zまたは前記ブラックストライプは、前記透明基板の他方主面側か ら入射した可視光の反射率が 50%以下である請求項 19に記載のプラズマディスプ レイ基板。 20. The plasma display substrate according to claim 19, wherein the electrode and Z or the black stripe have a reflectance of 50% or less of visible light incident from the other main surface side of the transparent substrate.
[21] 前記第 2反射防止層が、前記薄膜層の保護層である請求項 19または 20に記載の プラズマディスプレイ基板。  21. The plasma display substrate according to claim 19 or 20, wherein the second antireflection layer is a protective layer for the thin film layer.
[22] 請求項 19、 20または 21に記載のプラズマディスプレイ基板を具備するプラズマデ イスプレイパネノレ。 [22] A plasma display panel comprising the plasma display substrate according to claim 19, 20 or 21.
PCT/JP2005/023405 2004-12-27 2005-12-20 Pattern forming method and electronic circuit WO2006070648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006550697A JP4329817B2 (en) 2004-12-27 2005-12-20 Pattern forming method and electronic circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-376174 2004-12-27
JP2004376174 2004-12-27

Publications (1)

Publication Number Publication Date
WO2006070648A1 true WO2006070648A1 (en) 2006-07-06

Family

ID=36614767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023405 WO2006070648A1 (en) 2004-12-27 2005-12-20 Pattern forming method and electronic circuit

Country Status (2)

Country Link
JP (1) JP4329817B2 (en)
WO (1) WO2006070648A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233872A (en) * 2010-04-08 2011-11-17 Asahi Glass Co Ltd Method for manufacturing substrate with metal pattern, and substrate with metal laminate
WO2013047245A1 (en) * 2011-09-29 2013-04-04 国立大学法人大阪大学 Substrate with electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101986106B1 (en) * 2017-09-20 2019-06-05 한국기계연구원 Method for forming a pattern using a mask pattern reflecting light

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410540A (en) * 1987-07-01 1989-01-13 Fujitsu Ltd Formation of multilayer electrode
JPH02284333A (en) * 1989-04-26 1990-11-21 Dainippon Printing Co Ltd Plasma display panel
JPH04345734A (en) * 1991-05-22 1992-12-01 Fujitsu Ltd Plasma display panel and manufacture thereof
JPH1092325A (en) * 1996-09-13 1998-04-10 Fujitsu Ltd Gas discharge display panel, and manufacture of the same
JPH11167874A (en) * 1997-10-03 1999-06-22 Hitachi Ltd Wiring substrate and gas discharge type display using it
JPH11213873A (en) * 1998-01-28 1999-08-06 Hitachi Chem Co Ltd Manufacture of barrier for plasma display panel
JP2000011896A (en) * 1998-06-24 2000-01-14 Hitachi Ltd Gas-discharge type display device and its manufacture
JP2001236885A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2002507044A (en) * 1998-03-09 2002-03-05 松下電器産業株式会社 Electrode for high contrast gas discharge panel and method of manufacturing the same
JP2003215816A (en) * 2002-01-22 2003-07-30 Fuji Photo Film Co Ltd Conductive pattern material and method for forming conductive pattern
JP2003331736A (en) * 2002-05-08 2003-11-21 Matsushita Electric Ind Co Ltd Plasma display device and its manufacturing method
JP2004273771A (en) * 2003-03-10 2004-09-30 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device
JP2004335226A (en) * 2003-05-06 2004-11-25 Sumitomo Rubber Ind Ltd Front electrode for plasma display panel, and its manufacturing method
JP2004356039A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Plasma display panel

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410540A (en) * 1987-07-01 1989-01-13 Fujitsu Ltd Formation of multilayer electrode
JPH02284333A (en) * 1989-04-26 1990-11-21 Dainippon Printing Co Ltd Plasma display panel
JPH04345734A (en) * 1991-05-22 1992-12-01 Fujitsu Ltd Plasma display panel and manufacture thereof
JPH1092325A (en) * 1996-09-13 1998-04-10 Fujitsu Ltd Gas discharge display panel, and manufacture of the same
JPH11167874A (en) * 1997-10-03 1999-06-22 Hitachi Ltd Wiring substrate and gas discharge type display using it
JPH11213873A (en) * 1998-01-28 1999-08-06 Hitachi Chem Co Ltd Manufacture of barrier for plasma display panel
JP2002507044A (en) * 1998-03-09 2002-03-05 松下電器産業株式会社 Electrode for high contrast gas discharge panel and method of manufacturing the same
JP2000011896A (en) * 1998-06-24 2000-01-14 Hitachi Ltd Gas-discharge type display device and its manufacture
JP2001236885A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2003215816A (en) * 2002-01-22 2003-07-30 Fuji Photo Film Co Ltd Conductive pattern material and method for forming conductive pattern
JP2003331736A (en) * 2002-05-08 2003-11-21 Matsushita Electric Ind Co Ltd Plasma display device and its manufacturing method
JP2004273771A (en) * 2003-03-10 2004-09-30 Fuji Electric Device Technology Co Ltd Method for manufacturing semiconductor device
JP2004335226A (en) * 2003-05-06 2004-11-25 Sumitomo Rubber Ind Ltd Front electrode for plasma display panel, and its manufacturing method
JP2004356039A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Plasma display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233872A (en) * 2010-04-08 2011-11-17 Asahi Glass Co Ltd Method for manufacturing substrate with metal pattern, and substrate with metal laminate
WO2013047245A1 (en) * 2011-09-29 2013-04-04 国立大学法人大阪大学 Substrate with electrode

Also Published As

Publication number Publication date
JPWO2006070648A1 (en) 2008-06-12
JP4329817B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
KR101026659B1 (en) Method for manufacturing electrode and/or black stripe for plasma display substrate
KR100497186B1 (en) Microwave shielding sheet and method for manufacturing the same
US20070042654A1 (en) Electromagnetic wave shielding sheet
US7449768B2 (en) Electromagnetic wave shielding sheet
EP1389901A1 (en) Shield material and method of manufacturing the shield material
JP2006074052A (en) Electromagnetic wave shielding film and its forming method
US20160039188A1 (en) Transfer material, substrate with transfer layer, touch panel, manufacturing methods therefor, and information display device
US20060158114A1 (en) Plasma display panel including a display filter having a black peripheral portion formed using a black treatment layer and method of fabricating the same
WO2017010521A1 (en) Transparent electrode film, dimming element, and method for manufacturing transparent electrode film
JP2008311565A (en) Composite filter for display
WO2006070648A1 (en) Pattern forming method and electronic circuit
JP4289396B2 (en) Pattern forming method and electronic circuit manufactured thereby
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
JP2008176088A (en) Filter for display
JP2017128083A (en) Method for producing laminate, method for manufacturing display device, and laminate
JP2000105312A (en) Filter for plasma display panel
WO2006070649A1 (en) Pattern forming method and electronic circuit
JP2010080825A (en) Electromagnetic wave shield sheet, and method of manufacturing the same
JP2008249880A (en) Composite filter for display
JP4272900B2 (en) Method for forming barrier layer of organic EL element and method for manufacturing organic EL element
JP6627769B2 (en) Transparent conductor and touch panel including the same
JP2003015536A (en) Filter for display and display element using the same
JP2000303163A (en) Low reflection black film, low reflection black laminated film, production of low reflection black film and color filter
JP5428124B2 (en) Organic EL display
JP2010127951A (en) Coating liquid for forming low refractive index layer and method of manufacturing reflection preventing layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550697

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05820281

Country of ref document: EP

Kind code of ref document: A1