WO2006070162A1 - Dispositif de dispense de gouttes - Google Patents
Dispositif de dispense de gouttes Download PDFInfo
- Publication number
- WO2006070162A1 WO2006070162A1 PCT/FR2005/051131 FR2005051131W WO2006070162A1 WO 2006070162 A1 WO2006070162 A1 WO 2006070162A1 FR 2005051131 W FR2005051131 W FR 2005051131W WO 2006070162 A1 WO2006070162 A1 WO 2006070162A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- electrodes
- reservoir
- drop
- liquid
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502784—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
- B01L3/502792—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0605—Metering of fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/089—Virtual walls for guiding liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
- B01L2400/0427—Electrowetting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/02—Burettes; Pipettes
- B01L3/0241—Drop counters; Drop formers
Definitions
- the invention relates to a device and a method for forming drops or small volumes of liquid from a liquid reservoir, using electrostatic forces.
- the invention particularly relates to a liquid dispensing device that can be applied in discrete microfluidic, or microfluidic drop, for example for chemical or biological applications.
- the invention applies to the formation of drops in devices, for biochemical, chemical or biological analysis, whether in the medical field, or in environmental monitoring, or in the field of quality control.
- One of the most used modes of movement or manipulation is based on the principle of electrowetting on a dielectric, as described in the article by MG Pollack, AD Shendorov, RB Fair, entitled “Electro-wetting-based actuation of droplets for integrated microfluidics ", Lab Chip 2 (1) (2002), pp. 96-101.
- the forces used for displacement are electrostatic forces.
- the document FR 2 841 063 describes a device implementing a catenary opposite electrodes activated for displacement.
- a drop 2 rests on a network 4 of electrodes, from which it is isolated by a dielectric layer 6 and a hydrophobic layer 8 (FIG. 1A), all resting on a substrate 9.
- Each electrode is connected to a common electrode via a switch , or rather an individual electrical relay control system 11.
- the counterelectrode 10 may be either a catenary as described in FR-2 841 063 or a buried wire or a planar electrode on a hood in the case of a confined system.
- the forces of electrostatic origin are superimposed on the wetting forces which causes the spreading of the drop on the surface.
- the surface is rendered hydrophilic.
- the drop can thus be displaced step by step (FIG. 1C) on the hydrophobic surface 8 by successive activation of the electrodes 4-1, 4-2, etc. and along the catenary 10.
- the drops rest on the surface of a substrate comprising the matrix of electrodes, as illustrated in FIG. 1A and as described in document FR 2 841 063.
- a second family of embodiments consists in confining the drop between two substrates, as explained for example in the document by MG POLLAK et al already cited above.
- the system generally consists of a chip and a control system.
- the chips have electrodes as described above.
- the electrical control system comprises a set of relays and a PLC or a PC for programming the switching of the relays.
- the chip is electrically connected to the control system, so each relay can control one or more electrodes. Thanks to the relays, all the electrodes can be placed at a potential VO or Vl.
- the liquid segment obtained is cut off by deactivating one of the activated electrodes (electrode Ec in FIG. 2C). A drop 22 is thus obtained, as illustrated in FIG. 2D.
- This method can be applied by inserting electrodes between the reservoir R and one or more electrodes Ec (FIG. 2C), called the breaking electrode.
- FIGS. 3A-3D Applied to the confined configuration explained above, this principle leads to a configuration of a drop dispensing device, as illustrated in FIGS. 3A-3D.
- a liquid to be dispensed is deposited in a well 35 of this device (FIG. 3A).
- This well is for example made in the upper cover 36 of the device.
- the lower part is similar to the structure of Figures 1A-1C. So we use a series of electrodes 31 to stretch ( Figures 3B and 3C) and then to cut liquid finger (FIG. 3D) as explained above with reference to FIGS. 2A-2D.
- the disadvantage of this method is its non-reproducibility. Indeed the fluidic mechanisms during the formation of the finger as well as the cutting of the finger are unfortunately very influenced by the pressure in the well 35. As the well empties, the pressure in it changes (the shape meniscus in the well can influence the capillary pressure, and the liquid height can also modify the hydrostatic pressure) and the drops formed do not have a constant volume.
- the invention relates first of all to a liquid dispensing device, of the confined type, comprising a first and a second substrate, the second substrate being provided with a fluid introduction opening, the first substrate being provided with a plurality of electrodes, of which:
- the reservoir electrode located between the transfer electrode and the drop formation electrodes, or associated with the transfer electrode and with the drop forming electrodes, and having a surface area of at least equal to 3 times the area of each drop forming electrode.
- the device may further comprise at least one second reservoir electrode and at least one second transfer electrode located between two adjacent reservoir electrodes, at least two drop forming electrodes being associated with each reservoir electrode.
- the device may further comprise at least one second reservoir electrode, and at least one second transfer electrode located at least partially opposite the opening and at least two drop forming electrodes associated with the second reservoir electrode.
- at least one second reservoir electrode, or each reservoir electrode has a surface at least equal to 3 times the area of each drop-forming electrode of the drop-forming electrodes associated therewith.
- the invention therefore also relates to a liquid dispensing device, of the confined type, comprising a first and a second substrate, the second substrate being provided with an opening for introducing a fluid, the first substrate being provided with a plurality of electrodes, of which:
- transfer electrodes of which at least a part is situated at least partially opposite the opening, and of reservoir electrodes, a series of drop-forming electrodes associated with each reservoir electrode , at least one of the reservoir electrodes having an area at least equal to 3 times the area of each drop forming electrode of the series of drop forming electrodes associated with this reservoir electrode.
- the invention also relates to a liquid dispensing device, of the confined type, comprising a first and a second substrate, the second substrate being provided with an opening for introducing a fluid, the first substrate being provided with a plurality of electrodes, including:
- each transfer electrode being situated at least partially opposite the opening, and a plurality of reservoir electrodes, each reservoir electrode being associated with a transfer electrode ,
- drop delivery systems comprising a plurality of reservoir electrodes each associated with a series of drop-forming electrodes, the reservoir electrodes being: - arranged in series from a liquid supply opening, and alternating with transfer electrodes,
- At least one reservoir electrode has a surface at least 3 times or 10 times or 20 times the area of each drop forming electrode.
- At least one reservoir electrode has a comb shape, the teeth of which can be tapered on the side of the transfer electrode.
- At least one reservoir electrode has a star shape.
- a device may comprise a confinement wall between a reservoir electrode and the opening, or even a confinement wall around at least one reservoir electrode.
- One of the drop forming electrodes advantageously has a rounded shape on one side and a pointed one on the other, thus favoring the drop ejection mechanism minimizing the dependence on the nature of the liquids and the parameters of use. of the device.
- the first substrate may include conductive means to form a counter electrode.
- This first substrate may also have a hydrophobic surface.
- the second substrate may also have a hydrophobic surface, and optionally a dielectric layer under the hydrophobic surface.
- the invention also relates to a method for forming a liquid reservoir, from a liquid well comprising:
- the pressure in the liquid reservoir can be made independent of the pressure of the liquid in the well by deactivation of the transfer electrode after formation of the liquid volume.
- the invention also relates to a liquid drop dispensing method comprising a method of forming a liquid reservoir as described above, and the formation of a drop of liquid by activation of at least n electrodes for forming a liquid droplet. drops, n;> 2, then deactivating at least one of these electrodes among the n-1 electrodes closest to the reservoir electrode, in order to pinch a finger of liquid.
- the invention also relates to a liquid drop dispensing method implementing a device as described above, the formation of a liquid reservoir facing or above the reservoir electrode or at least two tank electrodes, and ejecting a drop of liquid through activation of n drop forming electrodes, n>; 2, then deactivating at least one of these electrodes from the n-1 electrodes closest to the reservoir electrode for which a reservoir is formed.
- FIGS. 1A-1C illustrate the principle of manipulation of a drop by electrowetting on an insulator
- FIGS. 2A-2D represent steps of a known method for producing a drop on an electrode line
- FIGS. 3A-3D show a device of the prior art
- FIGS. 4A and 4B show an exemplary embodiment of a device according to the invention
- FIGS. 5A-5B are examples of variants of a device according to the invention.
- FIGS. 6A-6B are examples of other variants of a device according to the invention.
- FIGS. 7A-7C illustrate yet another example of variants of a device according to the invention.
- FIGS. 8A and 8B illustrate yet another example of application of a device according to the invention.
- FIGS. 9A and 9B show two structures of devices according to the invention. DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
- FIGS. 4A and 4D A first embodiment of the invention is illustrated in FIGS. 4A and 4D, respectively in plan view and in side view.
- FIG. 4A represents in fact only the electrode system implemented in a device for dispensing calibrated drops according to the invention.
- This well is placed at least partially in front of a transfer electrode 44, which is in fact formed in the substrate 46 of the device.
- a reservoir electrode 48 which will allow to define a liquid holding micro-reservoir.
- a counter electrode 47 is disposed in the cover 42.
- the invention therefore proposes the organization of a series of electrodes in a drop dispensing device, these electrodes having different functions, a series of drop-forming electrodes and a transfer electrode being associated with each reservoir electrode.
- the reservoir electrode is located between the transfer electrode and the formation electrodes drops, but other configurations are possible, as shown in Figures 8A and 8B.
- the first electrode 44 is used to pump the liquid from the reservoir and bring it near the second electrode 48, said reservoir electrode.
- this reservoir electrode can be accumulated a certain amount of liquid. It is shown as having a square or rectangular shape in Figure 4A, but its shape can be any. Preferably, it can accumulate at least three to four times the volume of drops to be dispensed, and preferably at least 10 times or 20 times the volume of each drop dispensed. As the distance between the two substrates
- the transfer electrode when activated, makes it possible to bring a portion of liquid, located in the well 40, close to the reservoir electrode 48.
- the liquid is transferred into the area of the device located above the reservoir electrode 48. If it is desired to continue feeding the zone situated above the tank 48, it is possible to reactivate the electrode 44, then the electrode 48, so as to continue to accumulate liquid in this reservoir zone.
- the drops that can then be formed using the electrodes 50-56 will themselves be independent of the pressure of the liquid in the well 40.
- the transfer electrode 44 is not activated, the liquid defined by the reservoir electrode 48 is not in contact with the well 40.
- the ejection or the drop dispensation that can be made from the liquid stored above the electrode 48 can therefore be performed in a calibrated manner, while using a well 40, and independently of the pressure therein, to fill the component.
- the user fills the well 40 with the liquid to be dispensed in the microfluidic component.
- the electrical control of the different electrodes is then controlled and controlled by an electric controller or a PC, which drives relays assigned to each of the electrodes.
- the different sequences can be the following:
- step 5 By repeating step 5, several drops can be made.
- the reservoir electrode is empty, or is no longer sufficiently filled, it is possible to start a new cycle (steps 1 to 5) again to repel the liquid in the well 40 and bring it to the level of the reservoir electrode thanks to the 44 transfer electrode, etc.
- the device comprises at least two forming electrodes, but other electrodes may be provided for handling the drops in the microsystem (electrodes 54, 56 in dashed lines in FIG. 4A).
- the volume of the well is defined by its diameter (or section) and by its height.
- the height of the well may be of the order of a millimeter to a few millimeters, for example between 1 mm and 10 mm.
- confinement means for example in the form of walls 60, to better confine the liquids.
- the spacer can be a thick layer of resin whose shape can be structured: for example by using a layer of photoresist (SU8, ordyl ...) and defining the patterns by photolithography.
- SU8 ordyl photoresist
- a wall is made with an opening 61 between the reservoir electrode 48 and the well 40).
- This first pattern makes it possible to ensure that the liquid of the reservoir electrode 48 does not rise towards the well 40, which is explained by the capillarity forces: the narrowing acts as a dam as long as the surfaces are non-wetting. that is to say, as long as there is no activation by the electrodes.
- the surfaces of the walls 60 are preferably rendered hydrophobic.
- FIGS. 5A and 5B are seen from above in FIGS. 5A and 5B, but are located between the two substrates 42, 46 of the device.
- the shape of the reservoir electrode 48 so as to constantly press or attract the liquid towards the drop formation electrodes 50 and 56 and to always allow the initiation of the finger formation process to take place.
- liquid when dispensing with gout for example, as illustrated in FIGS. 6A and 6B, an electrode 48 can be used. Comb or Vi-star shape to ensure an electrode surface gradient. It is also possible, as illustrated in FIGS. 9A and 9B, to use a tip-shaped electrode 481. Indeed, 1 electrowetting on insulator has the effect of spreading the liquid at the activated electrodes, which is reflected here by a liquid position to maximize the surface facing the electrode. This results in a "collecting" effect of the liquid near the first drop forming electrode 50.
- This improvement also makes it possible to empty the tank completely.
- the fingers of the comb ( Figure 6A) or the half-star ( Figure 6B) or the tip ( Figures 9A, 9B) may be square or pointed.
- the transfer electrode 44 has a shape adapted to bring the liquid to the reservoir electrode 48.
- This variant is shown in FIGS. 6A and 6B with the confinement means 62 defining a cavity but can be implemented without these means, or simply with the wall 60 of Figure 5A.
- it is also possible to improve the reproducibility of the volume of the drops by optimizing the shape of the drop formation electrodes 50-56, as illustrated in FIGS. Figures 7A-7C.
- the finger is cut to form a new drop.
- the future drop has a pointed shape on one side, and is rather spherical or angular on the other ( Figure 7B).
- the spherical or angular shape is explained by the competition between the capillary forces and the effect of electrowetting on a square electrode. In the end, the volume of the drop depends very much on the values of the surface tension and the value of the voltage applied to the electrodes.
- the finger takes a shape gooseneck.
- This gooseneck geometry can also depend on a certain number of parameters such as the surface tension, the values of the voltage applied to the electrodes, as well as the geometry of the cutoff electrode.
- a drop forming electrode can be defined by a shape limiting angle effects on one side, and controlling the shape of the gooseneck. This is obtained by producing an electrode, for example the electrode 54, in the form of a "drop": it is round on one side 54-1 and pointed on the other side 54-2, as shown in FIG. 7A.
- FIGS. 8A and 8B Another example of application is illustrated in Figures 8A and 8B, schematically in top view.
- the upper substrate providing confinement and in which the well is formed, is not shown. Only the distribution of the transfer electrodes, the reservoir electrodes and the drop forming electrodes is represented.
- a well 100 supplies a plurality of reservoir electrodes 104, 106, 108, 110 according to the invention, via transfer electrodes 101, 103, 105, 107.
- drop forming electrodes At the outlet of each reservoir electrode are arranged drop forming electrodes generally designated by references 154, 156, 158, 160.
- Each series of forming electrodes is associated with a reservoir electrode.
- the tanks 104, 106, 108, 110 are arranged in series from the well and the drops are formed in parallel from each tank.
- a well 200 supplies in parallel a plurality of reservoir electrodes 204, 206, 208 according to the invention, via transfer electrodes 201, 203, 205. At the outlet of each reservoir electrode, electrodes are arranged. Drop forming generally designated by references 254, 256, 258. Again, each series of forming electrodes is associated with a reservoir electrode.
- the tanks 204, 206, 208 are arranged in parallel with the well, and the drops are formed in parallel from each tank.
- the electrical control of the different electrodes can be controlled by a electric controller or a PC, which drives relays assigned to each of the electrodes.
- Figs. 8A and 8B may be combined with one or more of the embodiments of Figs. 5A-7C.
- One or more of the reservoir electrodes may be provided with confinement means, as in Figs. 5A and 5B, and / or have a shape as shown in Figs. 6A-6B, while one or more of the drops may have a shape as illustrated in Figure 7A.
- the buried electrodes are obtained by depositing and then etching a thin layer of a metal chosen from Au, Al, Ito, Pt, Cu, Cr, ... by means of conventional microtechnologies microelectronics.
- the thickness of the electrodes is from a few tens of nm to a few microns, for example between 10 nm and 1 ⁇ m.
- the width of the pattern is from a few ⁇ m to a few mm (flat electrodes) for the electrodes 50-56 and the transfer electrode 44.
- the two substrates 42, 46 are typically spaced apart by a distance of, for example, 10 ⁇ m and 100 ⁇ m or 500 ⁇ m. Whatever the embodiment considered, a drop ejected liquid 22 will have a volume between, for example, a few picoliters and a few microliters, for example between 1 or 10 pi and 5 .mu.l or 10 .mu.l.
- 152, 154, 250, 252, 254 has for example a surface of the order of a few tens of ⁇ m 2 (for example 10 ⁇ m 2 ) up to 1 mm 2 , depending on the size of the drops to be transported, the spacing between adjacent electrodes being for example between 1 micron and 10 microns.
- the structuring of the electrodes can be obtained by conventional methods of micro ⁇ technologies, for example by photolithography.
- the electrodes are for example made by depositing a metal layer (Au, Al, ITO, Pt, Cr, Cu, ...) by photolithography.
- a deposit of a hydrophobic layer is performed, such as a teflon deposit made by spinning.
- Conductors and in particular buried catenaries, may be made by depositing a conductive layer and etching this layer in the appropriate pattern of conductors, before deposition of the hydrophobic layer.
- Each of the different electrodes is connected to a relay means to bring it to a potential defined by a voltage source.
- the whole is controlled by an electric automaton or a PC. Examples of chip structures according to the invention are given in FIGS. 9A and 9B.
- the chips measure 13mm by 13mm, and the drop displacement electrodes measure 800 ⁇ m per 800 ⁇ m.
- the hatched discs 350, 352, 354, 356, 358 (FIG. 9A) 351, 353, 355 (FIG. 9B) represent the location of the holes in the hood (the wells).
- the disk 360 represents a trash zone.
- a main tank 400 - according to the invention opening on a first electrode line 255, whose left end opens to the trash zone 360. Through this line, drops of liquids can be removed and transported by electrowetting from the main tank 400.
- FIGS. 9A and 9B are two chip structures showing different shapes and arrangements of the tanks 350, 352, 354, 356 and 351,
- the chip of Figure 9A has 4 secondary tanks 350, 352, 354, 356 open on the outside by wells.
- the chip of Figure 9B has 3 secondary tanks 351, 353, 355 open on the outside by wells.
- Each reservoir is associated with a set of electrodes 360, 362, 364, 366 and 361, 363 which make it possible to bring one or more drops from the corresponding reservoir to the path 402.
- a section 257 also formed of electrodes allows to link the path 255 and the loop 402.
- the references 410, 411 represent zones or addressing pads of the electrodes which constitute the paths 255, 402 and electrodes located at the outlet of the different reservoirs. These zones or pads may themselves be controlled by electronic or computer means.
- the tanks are configured and used according to the invention: they comprise a series of electrodes for confining a volume of liquid at a reservoir electrode from a well to allow reproducible dispensing drops.
- the tanks comprise containment means 480, 481 (tank electrodes) star or tip, arranged, according to the invention, downstream of the transfer electrodes from the tank.
- a drop dispensing method according to the invention can implement a device as described in connection with Figures 9A and 9B.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Micromachines (AREA)
Abstract
L'invention concerne un dispositif de dispense de liquide, comportant un premier et un deuxième substrats (46, 42), le premier substrat (42) étant muni d'une ouverture (40) d'introduction d'un fluide, le deuxième substrat (46) étant muni d'une pluralité d'électrodes, dont : - une électrode (44) dite de transfert, située au moins partiellement en regard de l'ouverture (40), - au moins deux électrodes (50, 52) de formation de gouttes, - et une électrode (48), dite électrode réservoir, située entre l'électrode de transfert (44) et les électrodes de formation de goutte (50, 52), et ayant une surface au moins égale à 3 fois la surface de chaque électrode de formation de gouttes.
Description
DISPOSITIF DE DISPENSE DE GOUTTES
DESCRIPTION
DOMAINE TECHNIQtJE ET ART ANTERIEtJR
L'invention concerne un dispositif et un procédé de formation de gouttes ou de petits volumes de liquide, à partir d'un réservoir de liquide, mettant en œuvre des forces électrostatiques.
L'invention concerne notamment un dispositif de dispense de liquide pouvant être appliqué en microfluidique discrète, ou microfluidique en goutte, par exemple en vue d'applications chimiques ou biologiques .
L'invention s'applique à la formation de gouttes dans des dispositifs, en vue d'analyses biochimiques, chimique ou biologiques, que ce soit dans le domaine médical, ou dans la surveillance environnementale, ou dans le domaine du contrôle de qualité. Un des modes de déplacements ou de manipulation les plus utilisés repose sur le principe de l' électromouillage sur un diélectrique, comme décrit dans l'article de M. G. Pollack, A. D. Shendorov, R. B. Fair, intitulé « Electro-wetting-based actuation of droplets for integrated microfluidics », Lab Chip 2 (1) (2002), pages 96-101.
Les forces utilisées pour le déplacement sont des forces électrostatiques.
Le document FR 2 841 063 décrit un dispositif mettant en œuvre un caténaire en regard des électrodes activées pour le déplacement.
Le principe de ce type de déplacement est synthétisé sur les figures 1A-1C.
Une goutte 2 repose sur un réseau 4 d'électrodes, dont elle est isolée par une couche diélectrique 6 et une couche hydrophobe 8 (figure IA) , le tout reposant sur un substrat 9. Chaque électrode est reliée à une électrode commune via un commutateur, ou plutôt un système de commande individuel par relais électrique 11.
Initialement, toutes les électrodes ainsi que la contre électrode sont placées à un potentiel de référence VO.
Lorsque l'électrode 4-1 située à proximité de la goutte 2 est activée (placée à un potentiel Vl différent de VO par actionnement du relais 11) , la couche diélectrique 6 et la couche hydrophobe 8 entre cette électrode activée et la goutte, polarisée par la contre-électrode 10, agissent comme une capacité, les effets de charge électro-statiques induisent le déplacement de la goutte sur l'électrode activée. La contre-électrode 10 peut être soit un caténaire comme décrit dans FR-2 841 063 soit un fil enterré, soit une électrode planaire sur un capot dans le cas d'un système confiné.
Les forces d' origine électrostatique se superposent aux forces de mouillage ce qui provoque l'étalement de la goutte sur la surface. Par abus de langage, on dit que la surface est rendue hydrophile.
La goutte peut ainsi être déplacée de proche en proche (figure IC) , sur la surface hydrophobe 8, par activation successive des électrodes 4-1, 4-2,... etc. et le long du caténaire 10. Les documents cités ci-dessus donnent des exemples de mises en œuvre de séries d'électrodes adjacentes pour la manipulation d'une goutte dans un plan.
Il existe deux familles de réalisation de ce type de dispositif.
Dans un premier cas les gouttes reposent à la surface d'un substrat comportant la matrice d'électrodes, comme illustré sur la figure IA et comme décrit dans le document FR 2 841 063. Une deuxième famille de réalisation consiste à confiner la goutte entre deux substrats, comme expliqué par exemple dans le document de M. G. POLLAK et al déjà cité ci-dessus.
Dans le premier cas on parle de système ouvert, dans le deuxième cas on parle de système confiné.
Le système est en général constitué d'une puce et d'un système de commande.
Les puces comportent des électrodes, comme décrit ci-dessus.
Le système de pilotage électrique comporte un ensemble de relais et un automate ou un PC permettant de programmer la commutation des relais.
La puce est connectée électriquement au système de commande, ainsi chaque relais permet de piloter une ou plusieurs électrodes.
Grâce aux relais, toutes les électrodes peuvent être placées à un potentiel VO ou Vl.
Pour déplacer une goutte sur une ligne d'électrodes, il suffit de relier toutes les électrodes à des relais et de les activer successivement comme décrit sur les figures 1A-1C.
Sur ce principe, il est possible de former des gouttes à partir d'un réservoir R (figure 2A) grâce à une ligne d'électrodes E1-E4 qui est reliée à ce réservoir.
L'activation de cette série d'électrodes E1-E4 conduit à l'étalement d'une goutte, et donc à un segment liquide 20 comme illustré sur la figure 2B.
Puis, on coupe le segment liquide obtenu en désactivant une des électrodes activées (électrode Ec sur la figure 2C) . On obtient ainsi une goutte 22, comme illustré sur la figure 2D.
On peut appliquer ce procédé en insérant des électrodes entre le réservoir R et une ou plusieurs électrode Ec (figure 2C) dite électrode de coupure.
Appliqué à la configuration confinée expliquée ci-dessus, ce principe conduit à une configuration d'un dispositif de dispense de goutte, comme illustré sur les figures 3A-3D. Un liquide 30 à dispenser est déposé dans un puits 35 de ce dispositif (figure 3A) . Ce puits est par exemple réalisé dans le capot supérieur 36 du dispositif. La partie inférieure est similaire à la structure des figures 1A-1C. On utilise donc une série d'électrodes 31 pour étirer (figures 3B et 3C) puis pour couper ce
doigt de liquide (figure 3D) comme expliqué ci-dessus en liaison avec les figures 2A-2D.
L'inconvénient de cette méthode est sa non reproductibilité. En effet les mécanismes fluidiques lors de la formation du doigt ainsi que la coupure du doigt sont malheureusement très influencés par la pression dans le puits 35. Au fur et à mesure que le puits se vide, la pression dans celui-ci évolue (la forme de ménisque dans le puits peut influencer la pression capillaire, et la hauteur de liquide peut aussi modifier la pression hydrostatique) et les gouttes formées ne présentent pas un volume constant.
EXPOSÉ DE I/ INVENTION
L'invention, concerne d'abord un dispositif de dispense de liquide, du type confiné, comportant un premier et un deuxième substrat, le deuxième substrat étant muni d'une ouverture d'introduction d'un fluide, le premier substrat étant muni d'une pluralité d'électrodes, dont :
- au moins une électrode dite de transfert, située au moins partiellement en regard de 1' ouverture,
- au moins deux électrodes de formation de gouttes,
- et au moins une électrode, dite électrode réservoir, située entre l'électrode de transfert et les électrodes de formation de goutte, ou associée à l'électrode de transfert et aux électrodes de formation de gouttes, et ayant une surface au moins
égale à 3 fois la surface de chaque électrode de formation de gouttes.
Le dispositif peut en outre comporter au moins une deuxième électrode réservoir et au moins une deuxième électrode de transfert située entre deux électrodes réservoirs voisines, au moins deux électrodes de formation de gouttes étant associées à chaque électrode réservoir.
Selon une variante, le dispositif peut comporter en outre au moins une deuxième électrode réservoir, et au moins une deuxième électrode de transfert située au moins partiellement en regard de l'ouverture et au moins deux électrodes de formation de gouttes associées à la deuxième électrode réservoir. De préférence au moins une deuxième électrode réservoir, ou chaque électrode réservoir, a une surface au moins égale à 3 fois la surface de chaque électrode de formation de gouttes des électrodes de formation de gouttes qui lui sont associées. L'invention concerne donc également un dispositif de dispense de liquide, du type confiné, comportant un premier et un deuxième substrat, le deuxième substrat étant muni d'une ouverture d'introduction d'un fluide, le premier substrat étant muni d'une pluralité d'électrodes, dont :
- une alternance d'électrodes, dites de transfert, dont au moins une partie est située au moins partiellement en regard de l'ouverture, et d'électrodes réservoirs, - une série d'électrodes de formation de gouttes, associée à chaque électrode réservoir, au
moins une des électrodes réservoir ayant une surface au moins égale à 3 fois la surface de chaque électrode de formation de gouttes de la série d'électrodes de formation de gouttes associée à cette électrode réservoir.
L'invention concerne également un dispositif de dispense de liquide, du type confiné, comportant un premier et un deuxième substrat, le deuxième substrat étant muni d'une ouverture d'introduction d'un fluide, le premier substrat étant muni d'une pluralité d'électrodes, dont :
- une pluralité d'électrodes, dites de transfert, au moins une partie de chaque électrode de transfert étant située au moins partiellement en regard de l'ouverture, et une pluralité d'électrodes réservoirs, chaque électrode réservoir étant associée à une électrode de transfert,
- une série d'électrodes de formation de gouttes, associée à chaque électrode réservoir, au moins une des électrodes réservoir ayant une surface au moins égale à 3 fois la surface de chaque électrode de formation de gouttes de la série d'électrodes de formation de gouttes associée à cette électrode réservoir. On peut donc réaliser des systèmes d'alimentation en gouttes selon l'invention, comportant plusieurs électrodes réservoir, chacune étant associée à une série d'électrodes de formation de gouttes, les électrodes réservoirs étant :
- disposées en série à partir d'une ouverture d'alimentation en liquide, et alternant avec des électrodes de transfert,
- ou disposées en parallèle autour ou à partir de cette ouverture, et chacune étant alimentée par une électrode de transfert.
De préférence, au moins une électrode réservoir a une surface au moins égale à 3 fois ou à 10 fois ou 20 fois la surface de chaque électrode de formation de gouttes.
Avantageusement, au moins une électrode réservoir a une forme en peigne, dont les dents peuvent être effilées du côté de l'électrode de transfert.
Selon une variante, au moins une électrode réservoir a une forme en étoile.
Un dispositif selon l'invention peut comporter un mur de confinement entre une électrode réservoir et l'ouverture, ou même un mur de confinement autour d'au moins une électrode réservoir. L'une des électrodes de formation de gouttes a avantageusement une forme arrondie d'un côté et pointue de l'autre, favorisant ainsi le mécanisme d'éjection des gouttes minimisant la dépendance par rapport à la nature des liquides et aux paramètres d'utilisation du dispositif.
Le premier substrat peut comporter des moyens conducteurs, afin de former une contre- électrode.
Ce premier substrat peut également présenter une surface hydrophobe.
Le deuxième substrat peut lui aussi présenter une surface hydrophobe, et éventuellement une couche diélectrique sous la surface hydrophobe.
L'invention concerne également un procédé de formation d'un réservoir liquide, à partir d'un puits de liquide comportant :
- le transfert total ou partiel du liquide depuis le puit vers une électrode dite réservoir, à l'aide d'une électrode dite de transfert située au moins partiellement en regard du puits, la pression dans le réservoir de liquide étant indépendante de la pression du liquide dans le puits.
La pression dans le réservoir de liquide peut être rendue indépendante de la pression du liquide dans le puits par désactivation de l'électrode de transfert après formation du volume de liquide.
L'invention concerne également un procédé de dispense de goutte de liquide comportant un procédé de formation d'un réservoir liquide tel que décrit ci- dessus, et la formation d'une goutte de liquide par activation d' au moins n électrodes de formation de gouttes, n ;> 2, puis désactivation d'au moins une de ces électrodes parmi les n-1 électrodes les plus proches de l'électrode réservoir, afin de pincer un doigt de liquide.
L'invention concerne également un procédé de dispense de goutte de liquide mettant en œuvre un dispositif tel que décrit ci-dessus, la formation d'un réservoir de liquide en regard ou au-dessus de l'électrode réservoir ou d'au moins deux électrodes réservoir, et l'éjection d'une goutte de liquide par
activation de n électrodes de formation de gouttes, n >; 2, puis désactivation d'au moins une de ces électrodes parmi les n-1 électrodes les plus proches de l'électrode réservoir pour laquelle un réservoir est formé.
BRÈVE DESCRIPTION DES DESSINS
- Les figures IA-IC illustrent le principe de manipulation de goutte par électromouillage sur isolant, - les figures 2A-2D représentent des étapes d'un procédé connu pour fabriquer une goutte sur une ligne d'électrodes,
- les figures 3A-3D représentent un dispositif de l'art antérieur, - les figures 4A et 4B représentent un exemple de réalisation d'un dispositif selon 1' invention,
- les figures 5A-5B sont des exemples de variantes d'un dispositif selon l'invention, - les figures 6A-6B sont des exemples d'autres variantes d'un dispositif selon l'invention,
- les figures 7A-7C illustrent encore un autre exemple de variantes d'un dispositif selon 1' invention. - les figures 8A et 8B illustrent encore un d'autres exemples d'application d'un dispositif selon 1' invention.
- les figures 9A et 9B représentent deux structures de dispositifs selon l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Un premier mode de réalisation de l'invention est illustré sur les figures 4A et 4D, respectivement en vue de dessus et en vue de côté. La figure 4A ne représente en fait que le système d'électrodes mis en œuvre dans un dispositif de distribution de gouttes calibrées selon l'invention.
Sur cette figure, apparaît d'abord, le plus à gauche, un puits 40, qui est en fait pratiqué dans le capot 42 du dispositif (voir figure 4B) .
Ce puits est placé au moins partiellement en face d'une électrode de transfert 44, qui est en fait formée dans le substrat 46 du dispositif.
A la suite de cette électrode de transfert on trouve une électrode réservoir 48, qui va permettre de définir un micro-réservoir de rétention de liquide.
Sont ensuite disposées des électrodes de formation de gouttes, quatre électrodes de formation 50, 52, 54, 56 étant représentées sur les figures 4A et 4B.
Une contre électrode 47 est disposée dans le capot 42.
L'invention propose donc l'organisation d'une série d'électrodes dans un dispositif de dispense de gouttes, ces électrodes ayant des fonctions différentes, une série d'électrodes de formation de gouttes et une électrode de transfert étant associées à chaque électrode réservoir. Sur les figures 4A et suivantes, l'électrode de réservoir est située entre l'électrode de transfert et les électrodes de formation
de gouttes, mais d'autres configurations sont possibles, comme illustré sur les figures 8A et 8B.
La première électrode 44, dite électrode de transfert, permet de pomper le liquide du réservoir et de l'amener à proximité de la deuxième électrode 48, dite électrode réservoir.
Sur cette électrode réservoir peut être accumulée une certaine quantité de liquide. Elle est représentée comme ayant une forme carrée ou rectangulaire sur la figure 4A, mais sa forme peut être quelconque. De préférence, elle peut accumuler au moins trois à quatre fois le volume des gouttes à dispenser, et de préférence au moins 10 fois ou 20 fois le volume de chaque goutte dispensée. Comme la distance entre les deux substrats
42, 46 est sensiblement constante (comme on peut le voir sur la figure 4B) c'est en fait la surface de l'électrode 48 qui est au moins trois à quatre fois égale, ou au moins 10 ou 20 fois égale à la surface de chacune des électrodes de formation de gouttes 50, 52, 54, 56.
L'électrode de transfert, lorsqu'elle est activée, permet d'amener une portion de liquide, située dans le puits 40, à proximité de l'électrode réservoir 48.
Lorsque cette dernière est elle aussi activée, le liquide est transféré dans la zone du dispositif située au-dessus de l'électrode réservoir 48. Si l'on souhaite continuer à alimenter la zone située au-dessus du réservoir 48, on peut
réactiver l'électrode 44, puis l'électrode 48, de manière à continuer à accumuler du liquide dans cette zone réservoir.
Il est ainsi possible d'accumuler un volume important de liquide 51 (figure 4B), à l'intérieur du dispositif. Un avantage important est que la pression dans ce volume de liquide accumulé au-dessus de l'électrode 48 est indépendante de la pression du liquide dans le puits 40 par désactivation de l'électrode de transfert 44.
Ainsi, les gouttes qui vont pouvoir ensuite être formées à l'aide des électrodes 50-56 vont elles- mêmes être indépendantes de la pression du liquide dans le puits 40. Tant que l'électrode 44 de transfert n'est pas activée, le liquide défini par l'électrode réservoir 48 n'est pas en contact avec le puits 40. L'éjection ou la dispense de goutte que l'on va pouvoir réaliser à partir du liquide stocké au-dessus de l'électrode 48 peut donc être réalisée de manière calibrée, tout en utilisant un puits 40, et indépendamment de la pression dans celui-ci, pour remplir le composant.
Un exemple de mode opératoire est le suivant.
L'utilisateur rempli le puits 40 avec le liquide à dispenser dans le composant microfluidique.
Le pilotage électrique des différentes électrodes est alors contrôlé et piloté par un automate électrique ou un PC, qui pilote des relais affectés à chacune des électrodes.
Les différentes séquences peuvent être les suivantes :
1- Toutes les électrodes sont au repos (état 0) , 2- L'électrode de transfert 44 est placée à l'état 1 : le liquide dans le puits est amené à proximité de l'électrode réservoir 48,
3- L'électrode réservoir 48 est placée à l'état 1 : le liquide remplit l'espace au-dessus de l'électrode de réservoir 48,
4- L'électrode 44 de transfert est remise à l'état 0. On a formé une grande goutte 51 (figure 4B) au niveau de l'électrode réservoir, et cette goutte n'est plus en contact physique avec le puits. 5- Pour chaque nouvelle goutte à fabriquer on peut :
5-1. Désactiver l'électrode réservoir 48, 5-2. Activer les (au moins) deux électrodes de dispense 50-56, 5-3. Désactiver au moins une des électrodes de dispense 50-56 (si deux électrodes seulement: on désactive l'électrode 50) et activer les électrodes 48 et 52, afin de pincer le doigt de liquide ; de manière générale, on désactive une des électrodes de dispense sauf celle qui est la plus éloignée du réservoir 51.
5-4. Activer l'électrode réservoir 48 afin de favoriser la coupure. Il en résulte la formation et l'éjection de la nouvelle goutte.
En réitérant l'étape 5 on peut fabriquer plusieurs gouttes.
Quand l'électrode réservoir est vide, ou n'est plus assez remplie, on peut recommencer un nouveau cycle (étapes 1 à 5) pour repomper le liquide dans le puits 40 et l'amener au niveau de l'électrode réservoir grâce à l'électrode 44 de transfert, etc....
Le dispositif comporte au moins deux électrodes de formation, mais d'autres électrodes peuvent être prévues pour la manipulation des gouttes dans le microsystème (électrodes 54, 56 en pointillé sur la figure 4A) .
Le volume du puits est défini par son diamètre (ou section) et par sa hauteur. En particulier la hauteur du puits peut être de l'ordre du mm à quelques millimètres, par exemple comprise entre 1 mm et 10 mm. Ainsi le volume de liquide stocké dans le puits peut être important avec un encombrement minimum
(en surface de puce) . Ainsi on peut dispenser un grand nombre de gouttes tout en minimisant la surface des électrodes, notamment l'électrode réservoir 48. Par exemple on peut dispenser des gouttes de quelques dizaines de nanolitres à partir d'un réservoir d'une capacité de plusieurs microlitres.
Selon une variante illustrée en figure 5A, on peut rajouter des moyens de confinement, par exemple sous la forme de murs 60, pour mieux confiner les liquides. L'espaceur peut être une couche épaisse de résine dont la forme peut être structurée : par exemple en utilisant une couche de résine photosensible (SU8, ordyl ...) et en définissant les motifs par photolithographie. Ainsi il est possible de définir des murs autour de certaines des électrodes. En particulier
on réalise un mur avec une ouverture 61 entre l'électrode réservoir 48 et le puits 40) .
Ce premier motif permet de s'assurer que le liquide de l'électrode réservoir 48 ne remonte pas vers le puits 40, ce qui s'explique par les forces de capillarité : le rétrécissement agit comme un barrage tant que les surfaces sont non mouillantes c'est à dire tant qu'il n'y a pas d' activation par les électrodes. Les surfaces des murs 60 sont préférentiellement rendues hydrophobes.
Comme illustré sur la figure 5B, on peut aussi confiner l'ensemble de l'électrode réservoir 48 avec des moyens de confinement, encore sous la forme de murs 62, laissant juste une ouverture d'entrée 61 et une ouverture de sortie 63. Ceci permet de maintenir toujours le liquide dans le réservoir 48 même si l'électrode réservoir n'est pas à l'état 1, et de limiter les risques de contamination entre différents réservoirs adjacents. Ces murs ou ces moyens de confinement 60,
62 sont vus de dessus sur les figures 5A et 5B, mais sont localisés entre les deux substrats 42, 46 du dispositif.
Selon une autre variante, on peut optimiser la forme de l'électrode réservoir 48 afin de plaquer ou d' attirer constamment le liquide vers les électrodes 50 - 56 de formation de goutte et de toujours permettre l'amorçage du processus de formation du doigt de liquide lors de la dispense de goutte. On peut, par exemple, comme illustré sur les figures 6A et 6B, utiliser une électrode 48 en
forme en peigne ou en Vi étoile afin de garantir un gradient de surface d'électrode. On peut aussi, comme illustré sur les figures 9A et 9B, utiliser une électrode 481 en forme de pointe. En effet, 1' électromouillage sur isolant a pour effet d'étaler le liquide au niveau des électrodes activées, ce qui se traduit ici par une position de liquide permettant de maximiser la surface en regard avec l'électrode. Il en résulte un effet de « rassemblement » du liquide à proximité de la première électrode 50 de formation de gouttes .
Cette amélioration permet aussi de vider complètement le réservoir.
Notons que les doigts du peigne (figure 6A) ou la demi-étoile (figure 6B) ou la pointe (figures 9A, 9B) peuvent être carrés ou pointues.
Dans les différents cas, l'électrode de transfert 44 a une forme adaptée pour amener le liquide à l'électrode réservoir 48. Cette variante est présentée sur les figures 6A et 6B avec les moyens de confinement 62 définissant une cavité mais peut être mise en œuvre sans ces moyens, ou simplement avec la paroi 60 de la figure 5A. Selon encore une autre variante, qui peut être combinée avec l'une ou l'autre des variantes précédentes, on peut aussi améliorer la reproductibilité du volume des gouttes en optimisant la forme des électrodes 50-56 de formation de gouttes, comme illustré sur les figures 7A-7C.
Pendant la phase de coupure (figure 7A) on coupe le doigt pour former une nouvelle goutte. Au moment de la coupure, la future goutte a une forme en pointe d'un coté, et est plutôt sphérique ou anguleuse de l'autre (figure 7B) . La forme sphérique ou anguleuse s'explique par la concurrence entre les forces de capillarité et l'effet de l' électromouillage sur une électrode carrée. Au final le volume de la goutte dépend beaucoup des valeurs de la tension de surface et de la valeur de la tension appliquée aux électrodes.
D'autre part, pendant la coupure, le doigt prend une forme en col de cygne.
Cette géométrie en col de cygne peut aussi dépendre d'un certain nombre de paramètre comme la tension de surface, les valeurs de la tension appliquée sur les électrodes, ainsi que de la géométrie de l'électrode de coupure.
Il en résulte une dépendance du volume des gouttes par rapport à la nature des liquides et aux paramètres d'utilisation de la puce.
Pour remédier à ce problème, on peut définir une électrode de formation de goutte par une forme limitant les effets d'angle d'un côté, et en contrôlant la forme du col de cygne. Ceci est obtenu en réalisant une électrode, par exemple l'électrode 54, en forme de « goutte» : elle est ronde d'un coté 54-1 et pointue de l'autre côté 54-2, comme illustré sur la figure 7A.
Un autre exemple d' application est illustré sur les figures 8A et 8B, schématiquement en vue de dessus. Sur ces figures, comme sur les figures 4A-7A,
le substrat supérieur, assurant le confinement et dans lequel le puits est formé, n'est pas représenté. Seule la répartition des électrodes de transfert, des électrodes réservoir et des électrodes de formation de gouttes est représentée.
Sur la figure 8A, un puits 100 alimente plusieurs électrodes réservoir 104, 106, 108, 110 suivant l'invention, par l'intermédiaire d'électrodes de transfert 101, 103, 105, 107. A la sortie de chaque électrode réservoir sont disposées des électrodes de formation de gouttes globalement désignées par les références 154, 156, 158, 160. Chaque série d'électrodes de formation est associée à une électrode réservoir. Dans cet exemple, les réservoirs 104, 106, 108, 110 sont disposés en série à partir du puits et les gouttes sont formées en parallèle à partir de chaque réservoir.
Sur la figure 8B, un puits 200 alimente en parallèle plusieurs électrodes réservoir 204, 206, 208 suivant l'invention, par l'intermédiaire d'électrodes de transfert 201, 203, 205. A la sortie de chaque électrode réservoir sont disposées des électrodes de formation de gouttes globalement désignées par les références 254, 256, 258. Là encore, chaque série d'électrodes de formation est associée à une électrode réservoir. Dans cet exemple, les réservoirs 204, 206, 208 sont disposés en parallèle par rapport au puits, et les gouttes sont formées en parallèle à partir de chaque réservoir. Là encore, le pilotage électrique des différentes électrodes peut être contrôlé par un
automate électrique ou un PC, qui pilote des relais affectés à chacune des électrodes.
Ces modes de réalisation des figures 8A et 8B peuvent être combinés avec l'un ou plusieurs des modes de réalisation des figures 5A-7C. Une ou plusieurs des électrodes réservoir peut être munie de moyens de confinement, comme sur les figures 5A et 5B, et/ou avoir une forme telle qu'illustré sur les figures 6A-6B, tandis qu'une ou plusieurs des électrodes de formation de gouttes peut avoir une forme telle qu'illustré sur la figure 7A.
Dans l'un ou l'autre substrat, les électrodes enterrées sont obtenues par dépôt, puis gravure d'une fine couche d'un métal choisi parmi Au, Al, Ito, Pt, Cu, Cr, ... grâce aux microtechnologies classiques de la microélectronique. L'épaisseur des électrodes est de quelques dizaines de nm à quelques μm, par exemple comprise entre 10 nm et 1 μm. La largeur du motif est de quelques μm à quelques mm (électrodes planes) pour les électrodes 50-56 et l'électrode de transfert 44.
Les deux substrats 42, 46 sont typiquement distants d'une distance comprise entre, par exemple, 10 μm et 100 μm ou 500 μm. Quel que soit le mode de réalisation considéré, une goutte éjectée de liquide 22 aura un volume compris entre, par exemple, quelques picolitres et quelques microlitres, par exemple entre 1 pi ou 10 pi et 5 μl ou 10 μl. En outre chacune des électrodes 50-56, 150,
152, 154, 250, 252, 254 a par exemple une surface de
l'ordre de quelques dizaines de μm2 (par exemple 10 μm2) jusqu'à 1 mm2, selon la taille des gouttes à transporter, l'espacement entre électrodes voisines étant par exemple compris entre 1 μm et 10 μm. La structuration des électrodes peut être obtenue par des méthodes classiques des micro¬ technologies, par exemple par photolithographie. Les électrodes sont par exemple réalisées par dépôt d'une couche métallique (Au, Al, ITO, Pt, Cr, Cu, ...) par photolithographie.
Le substrat est ensuite recouvert d'une couche diélectrique en Si3N4, SiO2, ... Enfin, un dépôt d'une couche hydrophobe est effectué, comme par exemple un dépôt de Téflon réalisé à la tournette. Des procédés de réalisation de puces incorporant un dispositif selon l'invention peuvent être directement dérivés des procédés décrits dans le document FR-2 841 063.
Des conducteurs, et notamment des caténaires, enterrés peuvent être réalisés par dépôt d'une couche conductrice et gravure de cette couche suivant le motif approprié de conducteurs, avant dépôt de la couche hydrophobe.
En particulier, ce sera le cas pour le capot supérieur 42, dans lequel une contre-électrode peut être réalisée.
Chacune des différentes électrodes est reliée à un moyen formant relais pour la porter à un potentiel défini par une source de tension. L'ensemble est commandé par un automate électrique ou un PC.
Des exemples de structures de puce selon l'invention sont donnés sur les figures 9A et 9B.
Selon un exemple de réalisation, les puces mesurent 13mm par 13mm, et les électrodes de déplacement de gouttes mesurent 800μm par 800μm.
Les disques hachurés 350, 352, 354, 356, 358 (figure 9A) 351, 353, 355 (figure 9B) représentent l'emplacement des trous dans le capot (les puits) . Le disque 360 représente une zone poubelle. Dans la partie inférieure de la puce on distingue un réservoir principal 400 - conformément à l'invention - débouchant sur une première ligne d'électrode 255, dont l'extrémité gauche débouche vers la zone poubelle 360. Par cette ligne, des gouttes de liquides peuvent être prélevées et transportée par électromouillage depuis le réservoir principal 400.
Ainsi on peut purger facilement le réservoir 400, en le vidant entièrement et directement vers la poubelle 360. Les gouttes formées à partir du réservoir 400 peuvent, par ailleurs, être envoyées vers la boucle 402 sur laquelle elles pourront être déplacées par électromouilllage. Autour de cette boucle est disposé un ensemble de réservoirs secondaires 350,
352, 354, 356 (figure 9A) ou 351, 353, 355 (figure 9B) disposés en parallèle.
Les figures 9A et 9B sont deux structures de puces montrant des formes et des dispositions différentes des réservoirs 350, 352, 354, 356 et 351,
353, 355. Ainsi la puce de la figure 9A possède 4 réservoirs secondaires 350, 352, 354, 356 ouverts sur l'extérieur par des puits. La puce de la figure 9B
comporte 3 réservoirs secondaires 351, 353, 355 ouverts sur l'extérieur par des puits.
A chaque réservoir est associé un ensemble d'électrodes 360, 362, 364, 366 et 361, 363 qui permettent d' amener une ou plusieurs gouttes depuis le réservoir correspondant vers le chemin 402. De même un tronçon 257 formé lui aussi d'électrodes permet de relier le chemin 255 et la boucle 402.
Les références 410, 411 représentent des zones ou plots d'adressage des électrodes qui constituent les chemins 255, 402 et des électrodes situées en sortie des différents réservoirs. Ces zones ou plots peuvent être elle - mêmes commandées par des moyens électroniques ou informatiques. Les réservoirs sont configurés et utilisés conformément à l'invention : ils comportent une série d'électrodes permettant de confiner un volume de liquide au niveau d'une électrode réservoir à partir d'un puits pour permettre la dispense reproductible des gouttes. De plus, les réservoirs comportent des moyens de confinement 480, 481 (électrodes réservoir) en étoile ou en pointe, disposés, conformément à l'invention, en aval des électrodes de transfert à partir du réservoir. Ces structures permettent de dispenser des gouttes de solution aqueuse avec des grandes précisions en volume de liquide.
Des CV (Cv= 2 x écart type/moyenne xlOO) inférieurs à 3% sont mesurés.
Un procédé de dispense de gouttes selon l'invention peut mettre en œuvre un dispositif tel que décrit en liaison avec les figures 9A et 9B.
Il est possible de produire une goutte à partir du réservoir principal 400, de la faire se déplacer sur le trajet 402, sur lequel elle sera mélangée avec une ou plusieurs gouttes d'un ou de plusieurs des réservoirs 350, 352, 354, 356 (figure 9A) ou 351, 353, 355 (figure 9B) .
Claims
1. Dispositif de dispense de liquide, comportant un premier et un deuxième substrat (46, 42), le premier substrat (42) étant muni d'une ouverture (40) d'introduction d'un fluide, le deuxième substrat (46) étant muni d'une pluralité d'électrodes, dont :
- au moins une électrode (44) dite de transfert, située au moins partiellement en regard de l'ouverture (40),
- au moins deux électrodes (50, 52) de formation de gouttes,
- et au moins une électrode (48), dite électrode réservoir, associée à l'électrode de transfert (44) et aux électrodes de formation de goutte (50, 52), et ayant une surface au moins égale à 3 fois la surface de chaque électrode de formation de gouttes.
2. Dispositif selon la revendication 1, comportant en outre au moins une deuxième électrode réservoir (104, 106, 108, 110), et au moins une deuxième électrode de transfert (101, 103, 105, 107) située entre, ou associée à, deux électrodes réservoirs voisines, au moins deux électrodes (154, 156, 158, 160) de formation de gouttes étant associées à chaque électrode réservoir.
3. Dispositif selon la revendication 1, comportant en outre au moins une deuxième électrode réservoir (204, 206, 208), et au moins une deuxième électrode de transfert (201, 203, 205) située au moins partiellement en regard de l'ouverture (40) et au moins deux électrodes (254, 256, 258) de formation de gouttes associées à la deuxième électrode réservoir.
4. Dispositif selon l'une des revendications 2 ou 3, au moins une deuxième électrode réservoir ayant une surface au moins égale à 3 fois la surface de chaque électrode de formation de gouttes des électrodes de formation de gouttes qui lui sont associées.
5. Dispositif selon l'une des revendications 1 à 4, au moins une des électrodes (48) réservoir, ayant une surface au moins égale à 10 fois la surface de chaque électrode de formation de gouttes des électrodes de formation de gouttes qui lui sont associées .
6. Dispositif selon l'une des revendications 1 à 5, au moins une des électrodes réservoir ayant une forme en peigne ou en pointe.
7. Dispositif selon la revendication 6, le peigne ayant des dents effilées du côté de l'électrode de transfert, ou la pointe étant effilée du côté de l'électrode de transfert.
8. Dispositif selon l'une des revendications 1 à 7, au moins une des électrodes réservoir ayant une forme en étoile.
9. Dispositif selon l'une des revendications 1 à 8, comportant un mur (60) de confinement entre au moins une électrode réservoir et l'ouverture (40) .
10. Dispositif selon l'une des revendications 1 à 9, comportant au moins un mur (62) de confinement autour d' au moins une électrode réservoir.
11. Dispositif selon l'une des revendications 1 à 10, au moins l'une des électrodes de formation de gouttes ayant une forme arrondie d'un côté et pointue de l'autre.
12. Dispositif selon l'une des revendications 1 à 11, le premier substrat comportant des moyens conducteurs (47) .
13. Dispositif selon l'une des revendications 1 à 12, le premier substrat (42) présentant une surface hydrophobe.
14. Dispositif selon l'une des revendications 1 à 13, le deuxième substrat (42) présentant une surface hydrophobe (8) .
15. Dispositif selon la revendication 14, le deuxième substrat (42) présentant une couche diélectrique sous la surface hydrophobe (8) .
16. Dispositif selon l'une des revendications 1 à 15, comportant en outre des moyens de déplacement de gouttes par électromouillage, disposés en forme de boucle (402) .
17. Dispositif selon la revendication 16, comportant en outre un ou plusieurs réservoirs secondaires (350, 352, 354, 356, 358, 351, 353, 355) disposés autour de la boucle (402) .
18. Dispositif selon la revendication 17, chaque réservoir secondaire étant relié à la boucle (402) par une ou plusieurs électrodes de transfert (360, 361, 362, 363, 364, 366) .
19. Procédé de formation d'un réservoir liquide (51), à partir d'un puits de liquide (40) comportant :
- le transfert d'une partie du liquide depuis le puits (40) vers une électrode (48) dite réservoir, à l'aide d'une électrode dite de transfert (44) située au moins partiellement en regard du puits (40), la pression dans le réservoir de liquide étant indépendante de la pression du liquide dans le puits (40),
- la désactivation de l'électrode de transfert (44) .
20. Procédé de dispense de goutte de liquide comportant un procédé de formation d'un réservoir liquide selon la revendication 19, et la formation d'une goutte de liquide par activation d'au moins n électrodes (50, 52) de formation de gouttes, n ;> 2, puis désactivation d'au moins une de ces électrodes parmi les n-1 électrodes les plus proches de l'électrode réservoir, afin de pincer un doigt de liquide.
21. Procédé selon la revendication 20, l'électrode réservoir (48) ayant une surface au moins égale à 3 fois la surface de chaque électrode de formation de gouttes.
22. Procédé de dispense de goutte de liquide mettant en œuvre un dispositif selon l'une des revendication 1 à 18, la formation d'un réservoir de liquide (51) en regard de l'électrode réservoir (48), et l'éjection d'une goutte de liquide par activation de n électrodes de formation de gouttes, n ;> 2, puis désactivation d' au moins une de ces électrodes parmi les n-1 électrodes les plus proches de l'électrode réservoir.
23. Procédé de dispense de goutte de liquide mettant en œuvre un dispositif selon l'une des revendications 16 à 18.
24. Procédé selon la revendication 23, dans lequel une goutte formée est transportée selon un trajet en forme de boucle (402) .
25. Procédé selon la revendication 24, dans lequel une goutte formée est mélangée avec une ou plusieurs gouttes de réservoirs disposés autour de la boucle (402) .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/722,637 US7922886B2 (en) | 2004-12-23 | 2005-12-22 | Drop dispenser device |
JP2007547602A JP4824697B2 (ja) | 2004-12-23 | 2005-12-22 | 小滴分配装置 |
EP05848241A EP1827694B1 (fr) | 2004-12-23 | 2005-12-22 | Dispositif de dispense de gouttes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0453211A FR2879946B1 (fr) | 2004-12-23 | 2004-12-23 | Dispositif de dispense de gouttes |
FR0453211 | 2004-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006070162A1 true WO2006070162A1 (fr) | 2006-07-06 |
Family
ID=34953970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2005/051131 WO2006070162A1 (fr) | 2004-12-23 | 2005-12-22 | Dispositif de dispense de gouttes |
Country Status (5)
Country | Link |
---|---|
US (1) | US7922886B2 (fr) |
EP (1) | EP1827694B1 (fr) |
JP (1) | JP4824697B2 (fr) |
FR (1) | FR2879946B1 (fr) |
WO (1) | WO2006070162A1 (fr) |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2937690A1 (fr) * | 2008-10-28 | 2010-04-30 | Commissariat Energie Atomique | Micropome a actionnement par gouttes |
US7875160B2 (en) | 2005-07-25 | 2011-01-25 | Commissariat A L'energie Atomique | Method for controlling a communication between two areas by electrowetting, a device including areas isolatable from each other and method for making such a device |
US20140014517A1 (en) * | 2007-12-10 | 2014-01-16 | Advanced Liquid Logic, Inc. | Droplet Actuator |
US8637324B2 (en) | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US8637242B2 (en) | 2011-11-07 | 2014-01-28 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
US8658111B2 (en) | 2006-04-18 | 2014-02-25 | Advanced Liquid Logic, Inc. | Droplet actuators, modified fluids and methods |
US8685344B2 (en) | 2007-01-22 | 2014-04-01 | Advanced Liquid Logic, Inc. | Surface assisted fluid loading and droplet dispensing |
US8702938B2 (en) | 2007-09-04 | 2014-04-22 | Advanced Liquid Logic, Inc. | Droplet actuator with improved top substrate |
US8716015B2 (en) | 2006-04-18 | 2014-05-06 | Advanced Liquid Logic, Inc. | Manipulation of cells on a droplet actuator |
US8809068B2 (en) | 2006-04-18 | 2014-08-19 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US8828655B2 (en) | 2007-03-22 | 2014-09-09 | Advanced Liquid Logic, Inc. | Method of conducting a droplet based enzymatic assay |
US8846414B2 (en) | 2009-09-29 | 2014-09-30 | Advanced Liquid Logic, Inc. | Detection of cardiac markers on a droplet actuator |
US8845872B2 (en) | 2006-04-18 | 2014-09-30 | Advanced Liquid Logic, Inc. | Sample processing droplet actuator, system and method |
US8852952B2 (en) | 2008-05-03 | 2014-10-07 | Advanced Liquid Logic, Inc. | Method of loading a droplet actuator |
US8872527B2 (en) | 2007-02-15 | 2014-10-28 | Advanced Liquid Logic, Inc. | Capacitance detection in a droplet actuator |
US8877512B2 (en) | 2009-01-23 | 2014-11-04 | Advanced Liquid Logic, Inc. | Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator |
US8883513B2 (en) | 2006-04-18 | 2014-11-11 | Advanced Liquid Logic, Inc. | Droplet-based particle sorting |
US8901043B2 (en) | 2011-07-06 | 2014-12-02 | Advanced Liquid Logic, Inc. | Systems for and methods of hybrid pyrosequencing |
US8926065B2 (en) | 2009-08-14 | 2015-01-06 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods |
US8927296B2 (en) | 2006-04-18 | 2015-01-06 | Advanced Liquid Logic, Inc. | Method of reducing liquid volume surrounding beads |
US8951721B2 (en) | 2006-04-18 | 2015-02-10 | Advanced Liquid Logic, Inc. | Droplet-based surface modification and washing |
US8951732B2 (en) | 2007-06-22 | 2015-02-10 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification in a temperature gradient |
US8980198B2 (en) | 2006-04-18 | 2015-03-17 | Advanced Liquid Logic, Inc. | Filler fluids for droplet operations |
US9011662B2 (en) | 2010-06-30 | 2015-04-21 | Advanced Liquid Logic, Inc. | Droplet actuator assemblies and methods of making same |
US9012165B2 (en) | 2007-03-22 | 2015-04-21 | Advanced Liquid Logic, Inc. | Assay for B-galactosidase activity |
US9046514B2 (en) | 2007-02-09 | 2015-06-02 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods employing magnetic beads |
US9050606B2 (en) | 2006-04-13 | 2015-06-09 | Advanced Liquid Logic, Inc. | Bead manipulation techniques |
US9091649B2 (en) | 2009-11-06 | 2015-07-28 | Advanced Liquid Logic, Inc. | Integrated droplet actuator for gel; electrophoresis and molecular analysis |
US9110017B2 (en) | 2002-09-24 | 2015-08-18 | Duke University | Apparatuses and methods for manipulating droplets |
US9140635B2 (en) | 2011-05-10 | 2015-09-22 | Advanced Liquid Logic, Inc. | Assay for measuring enzymatic modification of a substrate by a glycoprotein having enzymatic activity |
US9139865B2 (en) | 2006-04-18 | 2015-09-22 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification method and apparatus |
US9188615B2 (en) | 2011-05-09 | 2015-11-17 | Advanced Liquid Logic, Inc. | Microfluidic feedback using impedance detection |
US9216415B2 (en) | 2005-05-11 | 2015-12-22 | Advanced Liquid Logic | Methods of dispensing and withdrawing liquid in an electrowetting device |
US9223317B2 (en) | 2012-06-14 | 2015-12-29 | Advanced Liquid Logic, Inc. | Droplet actuators that include molecular barrier coatings |
US9238222B2 (en) | 2012-06-27 | 2016-01-19 | Advanced Liquid Logic, Inc. | Techniques and droplet actuator designs for reducing bubble formation |
US9248450B2 (en) | 2010-03-30 | 2016-02-02 | Advanced Liquid Logic, Inc. | Droplet operations platform |
US9446404B2 (en) | 2011-07-25 | 2016-09-20 | Advanced Liquid Logic, Inc. | Droplet actuator apparatus and system |
US9476856B2 (en) | 2006-04-13 | 2016-10-25 | Advanced Liquid Logic, Inc. | Droplet-based affinity assays |
US9513253B2 (en) | 2011-07-11 | 2016-12-06 | Advanced Liquid Logic, Inc. | Droplet actuators and techniques for droplet-based enzymatic assays |
US9630180B2 (en) | 2007-12-23 | 2017-04-25 | Advanced Liquid Logic, Inc. | Droplet actuator configurations and methods of conducting droplet operations |
US9631244B2 (en) | 2007-10-17 | 2017-04-25 | Advanced Liquid Logic, Inc. | Reagent storage on a droplet actuator |
US9675972B2 (en) | 2006-05-09 | 2017-06-13 | Advanced Liquid Logic, Inc. | Method of concentrating beads in a droplet |
US9863913B2 (en) | 2012-10-15 | 2018-01-09 | Advanced Liquid Logic, Inc. | Digital microfluidics cartridge and system for operating a flow cell |
US10078078B2 (en) | 2006-04-18 | 2018-09-18 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US10731199B2 (en) | 2011-11-21 | 2020-08-04 | Advanced Liquid Logic, Inc. | Glucose-6-phosphate dehydrogenase assays |
US10913064B2 (en) | 2014-04-16 | 2021-02-09 | Abbott Laboratories | Droplet actuator fabrication apparatus, systems, and related methods |
FR3127810A1 (fr) | 2021-10-01 | 2023-04-07 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Procédé de tri de gouttes |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8734003B2 (en) * | 2005-09-15 | 2014-05-27 | Alcatel Lucent | Micro-chemical mixing |
CN101490562B (zh) * | 2006-07-10 | 2012-12-19 | 株式会社日立高新技术 | 液体输送设备 |
US8202686B2 (en) * | 2007-03-22 | 2012-06-19 | Advanced Liquid Logic, Inc. | Enzyme assays for a droplet actuator |
AU2008237017B2 (en) * | 2007-04-10 | 2013-10-24 | Advanced Liquid Logic, Inc. | Droplet dispensing device and methods |
US20100236928A1 (en) * | 2007-10-17 | 2010-09-23 | Advanced Liquid Logic, Inc. | Multiplexed Detection Schemes for a Droplet Actuator |
US20100236929A1 (en) * | 2007-10-18 | 2010-09-23 | Advanced Liquid Logic, Inc. | Droplet Actuators, Systems and Methods |
FR2930457B1 (fr) * | 2008-04-24 | 2010-06-25 | Commissariat Energie Atomique | Procede de fabrication de microcanaux reconfigurables |
US9206794B2 (en) * | 2008-04-28 | 2015-12-08 | Nxp, B.V. | Microfluidic pump with metal electrode having variable oxidation state |
WO2010062163A1 (fr) * | 2008-11-25 | 2010-06-03 | Miortech Holding B.V. | Élément optique d'électromouillage et système de miroir comprenant ledit élément |
DE102009038469B4 (de) * | 2009-08-21 | 2015-02-12 | Advanced Display Technology Ag | Anzeigeelement und Verfahren zum Ansteuern eines Anzeigeelementes |
JP5610258B2 (ja) * | 2009-09-09 | 2014-10-22 | 国立大学法人 筑波大学 | 送液装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2548431A1 (fr) * | 1983-06-30 | 1985-01-04 | Thomson Csf | Dispositif a commande electrique de deplacement de fluide |
FR2794039A1 (fr) * | 1999-05-27 | 2000-12-01 | Osmooze Sa | Dispositif de formation, de deplacement et de diffusion de petites quantites calibrees de liquides |
US20030012483A1 (en) * | 2001-02-28 | 2003-01-16 | Ticknor Anthony J. | Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices |
US20040058450A1 (en) * | 2002-09-24 | 2004-03-25 | Pamula Vamsee K. | Methods and apparatus for manipulating droplets by electrowetting-based techniques |
US20040055536A1 (en) * | 2002-09-24 | 2004-03-25 | Pramod Kolar | Method and apparatus for non-contact electrostatic actuation of droplets |
WO2004058333A1 (fr) * | 2002-12-30 | 2004-07-15 | Koninklijke Philips Electronics N.V. | Système de distribution de fluide |
EP1439064A1 (fr) * | 2003-01-15 | 2004-07-21 | Samsung Electronics Co., Ltd. | Méthode d'éjection d'encre avec tête d'impression à jet d'encre |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL69431A (en) | 1983-08-04 | 1987-12-31 | Omikron Scient Ltd | Liquid delivery system particularly useful as an implantable micro-pump for delivering insulin or other drugs |
FI980874A (fi) * | 1998-04-20 | 1999-10-21 | Wallac Oy | Menetelmä ja laite pienten nestemäärien kemiallisen analyysin suorittamiseksi |
FR2841063B1 (fr) | 2002-06-18 | 2004-09-17 | Commissariat Energie Atomique | Dispositif de deplacement de petits volumes de liquide le long d'un micro-catenaire par des forces electrostatiques |
FR2872809B1 (fr) * | 2004-07-09 | 2006-09-15 | Commissariat Energie Atomique | Methode d'adressage d'electrodes |
JP2006058031A (ja) * | 2004-08-17 | 2006-03-02 | Hitachi High-Technologies Corp | 化学分析装置 |
-
2004
- 2004-12-23 FR FR0453211A patent/FR2879946B1/fr active Active
-
2005
- 2005-12-22 US US11/722,637 patent/US7922886B2/en active Active
- 2005-12-22 WO PCT/FR2005/051131 patent/WO2006070162A1/fr active Application Filing
- 2005-12-22 JP JP2007547602A patent/JP4824697B2/ja active Active
- 2005-12-22 EP EP05848241A patent/EP1827694B1/fr active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2548431A1 (fr) * | 1983-06-30 | 1985-01-04 | Thomson Csf | Dispositif a commande electrique de deplacement de fluide |
FR2794039A1 (fr) * | 1999-05-27 | 2000-12-01 | Osmooze Sa | Dispositif de formation, de deplacement et de diffusion de petites quantites calibrees de liquides |
US20030012483A1 (en) * | 2001-02-28 | 2003-01-16 | Ticknor Anthony J. | Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices |
US20040058450A1 (en) * | 2002-09-24 | 2004-03-25 | Pamula Vamsee K. | Methods and apparatus for manipulating droplets by electrowetting-based techniques |
US20040055536A1 (en) * | 2002-09-24 | 2004-03-25 | Pramod Kolar | Method and apparatus for non-contact electrostatic actuation of droplets |
WO2004058333A1 (fr) * | 2002-12-30 | 2004-07-15 | Koninklijke Philips Electronics N.V. | Système de distribution de fluide |
EP1439064A1 (fr) * | 2003-01-15 | 2004-07-21 | Samsung Electronics Co., Ltd. | Méthode d'éjection d'encre avec tête d'impression à jet d'encre |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9638662B2 (en) | 2002-09-24 | 2017-05-02 | Duke University | Apparatuses and methods for manipulating droplets |
US9110017B2 (en) | 2002-09-24 | 2015-08-18 | Duke University | Apparatuses and methods for manipulating droplets |
US9517469B2 (en) | 2005-05-11 | 2016-12-13 | Advanced Liquid Logic, Inc. | Method and device for conducting biochemical or chemical reactions at multiple temperatures |
US9452433B2 (en) | 2005-05-11 | 2016-09-27 | Advanced Liquid Logic, Inc. | Method and device for conducting biochemical or chemical reactions at multiple temperatures |
US9216415B2 (en) | 2005-05-11 | 2015-12-22 | Advanced Liquid Logic | Methods of dispensing and withdrawing liquid in an electrowetting device |
US7875160B2 (en) | 2005-07-25 | 2011-01-25 | Commissariat A L'energie Atomique | Method for controlling a communication between two areas by electrowetting, a device including areas isolatable from each other and method for making such a device |
US9050606B2 (en) | 2006-04-13 | 2015-06-09 | Advanced Liquid Logic, Inc. | Bead manipulation techniques |
US9476856B2 (en) | 2006-04-13 | 2016-10-25 | Advanced Liquid Logic, Inc. | Droplet-based affinity assays |
US9358551B2 (en) | 2006-04-13 | 2016-06-07 | Advanced Liquid Logic, Inc. | Bead manipulation techniques |
US9205433B2 (en) | 2006-04-13 | 2015-12-08 | Advanced Liquid Logic, Inc. | Bead manipulation techniques |
US9267131B2 (en) | 2006-04-18 | 2016-02-23 | Advanced Liquid Logic, Inc. | Method of growing cells on a droplet actuator |
US9377455B2 (en) | 2006-04-18 | 2016-06-28 | Advanced Liquid Logic, Inc | Manipulation of beads in droplets and methods for manipulating droplets |
US11789015B2 (en) | 2006-04-18 | 2023-10-17 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US8846410B2 (en) | 2006-04-18 | 2014-09-30 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US8845872B2 (en) | 2006-04-18 | 2014-09-30 | Advanced Liquid Logic, Inc. | Sample processing droplet actuator, system and method |
US11525827B2 (en) | 2006-04-18 | 2022-12-13 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US11255809B2 (en) | 2006-04-18 | 2022-02-22 | Advanced Liquid Logic, Inc. | Droplet-based surface modification and washing |
US10809254B2 (en) | 2006-04-18 | 2020-10-20 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US8883513B2 (en) | 2006-04-18 | 2014-11-11 | Advanced Liquid Logic, Inc. | Droplet-based particle sorting |
US10585090B2 (en) | 2006-04-18 | 2020-03-10 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US10139403B2 (en) | 2006-04-18 | 2018-11-27 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US8927296B2 (en) | 2006-04-18 | 2015-01-06 | Advanced Liquid Logic, Inc. | Method of reducing liquid volume surrounding beads |
US8951721B2 (en) | 2006-04-18 | 2015-02-10 | Advanced Liquid Logic, Inc. | Droplet-based surface modification and washing |
US10078078B2 (en) | 2006-04-18 | 2018-09-18 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US8980198B2 (en) | 2006-04-18 | 2015-03-17 | Advanced Liquid Logic, Inc. | Filler fluids for droplet operations |
US9494498B2 (en) | 2006-04-18 | 2016-11-15 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US8637324B2 (en) | 2006-04-18 | 2014-01-28 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US9395361B2 (en) | 2006-04-18 | 2016-07-19 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US8809068B2 (en) | 2006-04-18 | 2014-08-19 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US9081007B2 (en) | 2006-04-18 | 2015-07-14 | Advanced Liquid Logic, Inc. | Bead incubation and washing on a droplet actuator |
US9086345B2 (en) | 2006-04-18 | 2015-07-21 | Advanced Liquid Logic, Inc. | Manipulation of beads in droplets and methods for manipulating droplets |
US9395329B2 (en) | 2006-04-18 | 2016-07-19 | Advanced Liquid Logic, Inc. | Droplet-based particle sorting |
US9097662B2 (en) | 2006-04-18 | 2015-08-04 | Advanced Liquid Logic, Inc. | Droplet-based particle sorting |
US8716015B2 (en) | 2006-04-18 | 2014-05-06 | Advanced Liquid Logic, Inc. | Manipulation of cells on a droplet actuator |
US8658111B2 (en) | 2006-04-18 | 2014-02-25 | Advanced Liquid Logic, Inc. | Droplet actuators, modified fluids and methods |
US9139865B2 (en) | 2006-04-18 | 2015-09-22 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification method and apparatus |
US9243282B2 (en) | 2006-04-18 | 2016-01-26 | Advanced Liquid Logic, Inc | Droplet-based pyrosequencing |
US9675972B2 (en) | 2006-05-09 | 2017-06-13 | Advanced Liquid Logic, Inc. | Method of concentrating beads in a droplet |
US8685344B2 (en) | 2007-01-22 | 2014-04-01 | Advanced Liquid Logic, Inc. | Surface assisted fluid loading and droplet dispensing |
US9046514B2 (en) | 2007-02-09 | 2015-06-02 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods employing magnetic beads |
US10379112B2 (en) | 2007-02-09 | 2019-08-13 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods employing magnetic beads |
US8872527B2 (en) | 2007-02-15 | 2014-10-28 | Advanced Liquid Logic, Inc. | Capacitance detection in a droplet actuator |
US9321049B2 (en) | 2007-02-15 | 2016-04-26 | Advanced Liquid Logic, Inc. | Capacitance detection in a droplet actuator |
US10183292B2 (en) | 2007-02-15 | 2019-01-22 | Advanced Liquid Logic, Inc. | Capacitance detection in a droplet actuator |
US9574220B2 (en) | 2007-03-22 | 2017-02-21 | Advanced Liquid Logic, Inc. | Enzyme assays on a droplet actuator |
US9012165B2 (en) | 2007-03-22 | 2015-04-21 | Advanced Liquid Logic, Inc. | Assay for B-galactosidase activity |
US8828655B2 (en) | 2007-03-22 | 2014-09-09 | Advanced Liquid Logic, Inc. | Method of conducting a droplet based enzymatic assay |
US8951732B2 (en) | 2007-06-22 | 2015-02-10 | Advanced Liquid Logic, Inc. | Droplet-based nucleic acid amplification in a temperature gradient |
US9511369B2 (en) | 2007-09-04 | 2016-12-06 | Advanced Liquid Logic, Inc. | Droplet actuator with improved top substrate |
US8702938B2 (en) | 2007-09-04 | 2014-04-22 | Advanced Liquid Logic, Inc. | Droplet actuator with improved top substrate |
US9631244B2 (en) | 2007-10-17 | 2017-04-25 | Advanced Liquid Logic, Inc. | Reagent storage on a droplet actuator |
US20140014517A1 (en) * | 2007-12-10 | 2014-01-16 | Advanced Liquid Logic, Inc. | Droplet Actuator |
US9630180B2 (en) | 2007-12-23 | 2017-04-25 | Advanced Liquid Logic, Inc. | Droplet actuator configurations and methods of conducting droplet operations |
US9861986B2 (en) | 2008-05-03 | 2018-01-09 | Advanced Liquid Logic, Inc. | Droplet actuator and method |
US8852952B2 (en) | 2008-05-03 | 2014-10-07 | Advanced Liquid Logic, Inc. | Method of loading a droplet actuator |
FR2937690A1 (fr) * | 2008-10-28 | 2010-04-30 | Commissariat Energie Atomique | Micropome a actionnement par gouttes |
EP2182212A1 (fr) | 2008-10-28 | 2010-05-05 | Commissariat à l'énergie atomique et aux énergies alternatives | Micropompe à actionnement par gouttes |
US8877512B2 (en) | 2009-01-23 | 2014-11-04 | Advanced Liquid Logic, Inc. | Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator |
US9545640B2 (en) | 2009-08-14 | 2017-01-17 | Advanced Liquid Logic, Inc. | Droplet actuator devices comprising removable cartridges and methods |
US9545641B2 (en) | 2009-08-14 | 2017-01-17 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods |
US9707579B2 (en) | 2009-08-14 | 2017-07-18 | Advanced Liquid Logic, Inc. | Droplet actuator devices comprising removable cartridges and methods |
US8926065B2 (en) | 2009-08-14 | 2015-01-06 | Advanced Liquid Logic, Inc. | Droplet actuator devices and methods |
US8846414B2 (en) | 2009-09-29 | 2014-09-30 | Advanced Liquid Logic, Inc. | Detection of cardiac markers on a droplet actuator |
US9091649B2 (en) | 2009-11-06 | 2015-07-28 | Advanced Liquid Logic, Inc. | Integrated droplet actuator for gel; electrophoresis and molecular analysis |
US9952177B2 (en) | 2009-11-06 | 2018-04-24 | Advanced Liquid Logic, Inc. | Integrated droplet actuator for gel electrophoresis and molecular analysis |
US9248450B2 (en) | 2010-03-30 | 2016-02-02 | Advanced Liquid Logic, Inc. | Droplet operations platform |
US9910010B2 (en) | 2010-03-30 | 2018-03-06 | Advanced Liquid Logic, Inc. | Droplet operations platform |
US9011662B2 (en) | 2010-06-30 | 2015-04-21 | Advanced Liquid Logic, Inc. | Droplet actuator assemblies and methods of making same |
US9188615B2 (en) | 2011-05-09 | 2015-11-17 | Advanced Liquid Logic, Inc. | Microfluidic feedback using impedance detection |
US9492822B2 (en) | 2011-05-09 | 2016-11-15 | Advanced Liquid Logic, Inc. | Microfluidic feedback using impedance detection |
US9140635B2 (en) | 2011-05-10 | 2015-09-22 | Advanced Liquid Logic, Inc. | Assay for measuring enzymatic modification of a substrate by a glycoprotein having enzymatic activity |
US8901043B2 (en) | 2011-07-06 | 2014-12-02 | Advanced Liquid Logic, Inc. | Systems for and methods of hybrid pyrosequencing |
US9513253B2 (en) | 2011-07-11 | 2016-12-06 | Advanced Liquid Logic, Inc. | Droplet actuators and techniques for droplet-based enzymatic assays |
US9446404B2 (en) | 2011-07-25 | 2016-09-20 | Advanced Liquid Logic, Inc. | Droplet actuator apparatus and system |
US8637242B2 (en) | 2011-11-07 | 2014-01-28 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
US10167505B2 (en) | 2011-11-07 | 2019-01-01 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
US9309571B2 (en) | 2011-11-07 | 2016-04-12 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
US10731199B2 (en) | 2011-11-21 | 2020-08-04 | Advanced Liquid Logic, Inc. | Glucose-6-phosphate dehydrogenase assays |
US9223317B2 (en) | 2012-06-14 | 2015-12-29 | Advanced Liquid Logic, Inc. | Droplet actuators that include molecular barrier coatings |
US9815061B2 (en) | 2012-06-27 | 2017-11-14 | Advanced Liquid Logic, Inc. | Techniques and droplet actuator designs for reducing bubble formation |
US9238222B2 (en) | 2012-06-27 | 2016-01-19 | Advanced Liquid Logic, Inc. | Techniques and droplet actuator designs for reducing bubble formation |
US9863913B2 (en) | 2012-10-15 | 2018-01-09 | Advanced Liquid Logic, Inc. | Digital microfluidics cartridge and system for operating a flow cell |
US10913064B2 (en) | 2014-04-16 | 2021-02-09 | Abbott Laboratories | Droplet actuator fabrication apparatus, systems, and related methods |
FR3127810A1 (fr) | 2021-10-01 | 2023-04-07 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Procédé de tri de gouttes |
Also Published As
Publication number | Publication date |
---|---|
FR2879946A1 (fr) | 2006-06-30 |
JP4824697B2 (ja) | 2011-11-30 |
US7922886B2 (en) | 2011-04-12 |
FR2879946B1 (fr) | 2007-02-09 |
EP1827694A1 (fr) | 2007-09-05 |
US20080142376A1 (en) | 2008-06-19 |
JP2008525778A (ja) | 2008-07-17 |
EP1827694B1 (fr) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1827694B1 (fr) | Dispositif de dispense de gouttes | |
EP2318136A1 (fr) | Procede et dispositif de manipulation et d'observation de gouttes de liquide | |
WO2006134307A1 (fr) | Dispositif de pompage par electromouillage et application aux mesures d'activite electrique | |
EP1949145B1 (fr) | Procédé de fabrication d'un systeme diphasique liquide/liquide ou gaz en micro-fluidique | |
EP1376846B1 (fr) | Dispositif de déplacement de petits volumes de liquide le long d'un micro-catenaire par des forces électrostatiques | |
FR2933315A1 (fr) | Dispositif microfluidique de deplacement de liquide | |
EP1778976A2 (fr) | Methode d'adressage d'electrodes | |
EP1984110B1 (fr) | Procede de controle de l'avancee d'un liquide dans un composant microfluidique | |
EP1181450B1 (fr) | Dispositif de formation, de deplacement et de diffusion de petites quantites calibrees de liquides | |
FR2866493A1 (fr) | Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides | |
EP2282827A2 (fr) | Dispositif de séparation de biomolécules d'un fluide | |
EP1567269B1 (fr) | Dispositif microfluidique dans lequel l'interface liquide/fluide est stabilisee | |
FR2887030A1 (fr) | Dispositif planaire avec adressage de puits automatise par electromouillage dynamique | |
EP3347128A1 (fr) | Substrat de support d'échantillon liquide, ensemble comportant un tel substrat et son utilisation | |
WO2009130274A1 (fr) | Procede de fabrication de microcanaux reconfigurables | |
EP1644104B1 (fr) | Vanne a commande electrique comprenant une membrane microporeuse | |
EP2161449A1 (fr) | Micropompe pour microfluidique continue. | |
US20120038705A1 (en) | Method and Apparatus for Delivering Ink Material from a Discharge Nozzle | |
FR2811588A1 (fr) | Tete d'injection et de dosage thermique, son procede de fabrication et systeme de fonctionnalisation ou d'adressage la comprenant | |
EP1509324A1 (fr) | Dispositif de depot localise et controle activement d au moi ns une solution biologique. | |
WO2007138227A1 (fr) | Dispositif microfluidique avec materiau de volume variable | |
EP2591857A1 (fr) | Dispositif et procédé de manipulation des gouttes | |
FR2887983A1 (fr) | Dispositif microfluidique de preparation d'au moins un echantillon et procede de preparation mettant en oeuvre un tel dispositif | |
EP2182212A1 (fr) | Micropompe à actionnement par gouttes | |
FR2884243A1 (fr) | Dispositif et procede de commutation par electromouillage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11722637 Country of ref document: US Ref document number: 2007547602 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005848241 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005848241 Country of ref document: EP |